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We consider how a particular set of information processing principles, de-
veloped within the parallel distributed processing (PDP) framework, can
address issues concerning automaticity. These principles include graded,
activation-based processing that is subject to attentional modulation; incre-
mental, connection-based learning; and interactivity and competition in pro-
cessing. We show how simulation models, based on these principles, can
account for the major phenomena associated with automaticity, as well as
many of those that have been troublesome for more traditional theories. In
particular, we show how the PDP framework provides an alternative to the
usual dichotomy bétween automatic and controlled processing and can ex-
plain the relative nature of automaticity as well as the fact that seemingly
automatic processes can be influenced by attention. We also discuss how this
framework can provide insight. into the role that bidirectional influences
play in processing: that is, how attention can influence processing at the
same time that processing influences attention. Simulation models of . the
Stroop color-word task -and the Eriksen response-competition task are de-
scribed. that help illustrate the application of the prmc1ples to performance
in specific | behavioral tasks.

This special issue surveys current thinking about the concept of au-

tomaticity. In this‘article, we consider this issue within the context of

a set of principles of information processing formulated in the broad

framework of parallel distributed processing (PDP). We will show how

these principles make it possible to construct models that capture the

major phenomena of automaticity, as well as many findings that have

been seen as problematic for the usual dichotomy between automatic

and controlled processes. In particular, we will show how our frame-
work allows us to capture the inescapable conclusions that (a) auto-
maticity is a relative matter, and (b) processes that are automatic by

some criteria are nevertheless susceptible to interference and influ-

ences of attention. We will also show that the principles provide ways

of understanding bidirectional influences between processing and at-
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240 ‘ COHEN, SERVAN-SCHREIBER, AND McCLELLAND

tention: that is, that attention influences processing while at the same
time processing influences attention.

The article is structured as follows. First, we present the processing
principles. Then, we consider the basic phenomena of automaticity
and illustrate how these phenomena can be captured in a model of
performance in the Stroop interference task. This model incorporates
most but not all of the principles, and as we shall explain, it now
appears that incorporation of the rest of the principles would allow
the model to account for the mutual dependency of processing and
attention, and to overcome several specific empirical shortcomings.
We then illustrate the usefulness of the full set of principles by applying
them to an interesting pattern of data from the Eriksen response-
competition paradigm that could not be accounted for by the Stroop
model. The discussion considers several general issues related to at-
tention in light of models based on these principles, including the
concept of “‘resources” and the distinction between automatic and
controlled processes. - '

Principles of information processing

McClelland (1992) has articulated a small set of basic principles that
appear to provide a promising framework for modeling a broad range
of information pfocessing phenomena. These principles presuppose
that information processing takes place in a PDP system (Rumelhart,
Hinton, & McClelland, 1986). A PDP system is simply a system in
which processing occurs through the interactions of a large number
of simple, interconnected processing elements called units. These ele-
ments may be organized into modules, each containing a number of
units; sets of modules may be organized into pathways, each containing
a set of interconnected modules. Pathways may overlap, in that they
may contain modules in common. Processing in a PDP system occurs
by the propagation of activation among the units, via weighted con-
nections. The knowledge that governs processing is stored in the
weights of the connections, and the effects of experience on infor-
mation processing are captured by changes to the connection weights.

The PDP framework is extremely broad, and can be used to address
a very wide range of different modeling goals, from efforts to capture
the detailed properties of specific neural circuits to efforts to solve
problems in artificial intelligence that have not yielded to more tra-
ditional symbolic approaches.

The PDP framework has also been applied to psychological mod-
eling, and it has been extremely useful in this regard; but it is suffi-
ciently broad that it does not provide adequate guidance or constraint
without further assumptions. To constrain the further development
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A PDP APPROACH TO AUTOMATICITY 241

of our own theoretical efforts, we have constructed the following
provisional list of principles: .

1. The activation of each unit is a graded, sigmoid function of its
input.

2. Activation propagates gradually in time.

3. The activation process is intrinsically variable.

4. Learning (by connection adjustment) is also gradual, and is dri-
‘ven by differences between the obtained activation value and the one
representing the correct response.

5. Attentional influences occur through the modulation of pro-
cessing in one or more pathways as a result of the pattern of activation
in another.

6. Between-module connections are bidirectional and excitatory, so
that processing is interactive.

7 Within-module connections are bidirectional and inhibitory, so
that processing is competitive.

We do not go into the full motivation for each principle in this
article, because this would take us too far afield; this is spelled out
in McClelland (1992). We focus instead on the relevance of the prin-
ciples to issues of automaticity and attention. ‘ '

We also want to stress that-we do not take this set of principles as
the final word. Rather, we take it as a provisional starting-place and
guide for research. No doubt there are other principles in addition
to these, and some or all of the principles will require further re-
finement.

The principles are stated in qualitative terms, without specific de-
tailed quantitative assumptions. Although particular models must be
formulated in terms of specific quantitative assumptions, we have
found repeatedly that these details are relatively unimportant. It does
not matter, for example, what the exact form of the graded sigmoid
function is, or whether the intrinsic noise is Gaussian or uniformly
distributed in a bounded interval. '

Basic aspects of automaticity

As other authors in this volume point out, the term automaticity
encompasses a number of different phenomena that often vary from
one definition to another. Nevertheless, there are a core set of phe-
nomena that seem to recur in most discussions of automaticity:

1. an increase in speed of performance with practice following a
power law

9. diminishing requirements for attention with practice, with

3. a concomitant release from attentional control—or involuntar-
iness (i.e., the involuntariness of automatic processes)
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242 COHEN, SERVAN-SCHREIBER, AND McCLELLAND

4. immunity from interference with competing processes, and

5. the requirement that practice be ““consistently mapped” for these
phenomena to develop. '

Many discussions have treated automaticity as an all-or-none phe-
nomenon. That is, a process is either automatic or “controlled.” A
classic example of this is the widely accepted account of the Stroop
effect (e.g., Posner & Snyder, 1975): Word reading is considered to
be automatic because it is fast, it produces interference even when
subjects attempt to ignore the word, and it is not subject to interfer-
ence by ink color. In contrast, color naming is considered to be con-
trolled because it is slower, it can be voluntarily inhibited (thereby
failing to interfere with word reading), and it is subject to interference.

Recent evidence suggests, however, that the attributes of automat-
icity can develop gradually with practice and, furthermore, that they
may depend on the context in which they are evaluated. For example,
MacLeod and Dunbar (1988) demonstrated that color naming shows
all of the attributes of automaticity when it is placed in competition
with a novel task, such as producing color words as names that have
been arbitrarily assigned to shapes (see Figure 1). However, extensive
practice with shape naming led to a gradual reversal of interference
effects, with the color-naming task eventually reassuming its traditional
role as the slower task, subject to but not able to produce interference.
These findings suggest that there is a continuum of automaticity, and
that speed of processing and interference effects may indicate the
relative position of two tasks along this continuum, rather than ne-
cessitating that one be automatic and the other controlled.:

The Stroop Model

In this section, we describe a PDP model that captures all of these
aspects of automaticity, as they arise in the Stroop color-interference
task, in terms of the first five principles of information processing
listed above. As we shall see, the model accounts for a large number
of basic and sometimes puzzling findings in ways that directly reflect
the operation of the principles enumerated. After presenting the
model and these successes, we will turn to a number of further con-
siderations that implicate the remaining principles of interactivity and
competition.

The model is shown in Figure 2. In brief, it consists of two processing
pathways, one for color naming and one for word reading, and a task
demand module that can selectively facilitate processing in either
pathway. Simulations are conducted by activating input units corre-
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Shape-Naming Task

“red” "green” - “"blue”
Figure 1. Training stimuli of the type used by MacLeod and Dunbar (1988)
for the shape-naming task. Each of four shapes was assigned an arbitrary
color name, which the subjects had to learn. Note. Figure after Cohen et
al., 1990. Copyright 1990 by the American Psychological Association. Re-
printed by permission.

sponding to stimuli used in an actual experiment (e.g., the input unit
in the color-naming pathway representing the color red) and the
appropriate task demand unit. Activation is then allowed to spread
through the network. This leads to activation of the output unit
corresponding to the appropriate response (e.g., red). Reaction time
is linearly related to the number of cycles it takes for an output unit
to accumulate a specified amount of activation. Training was more
extensive on the word-reading than on the color-naming task, cap-
turing the assumption that subjects have more extensive experience
with the former than with the latter. Similar results would obtain if
the network were given more consistent training on one task than
the other, in agreement with the observation that consistency as well
as amount of practice is important for the development of automaticity
(e.g., Schneider & Shiffrin, 1977). This simple model is able to capture
a number of empirical findings associated with the Stroop task (see
Figure 3) and the development of automaticity in general. ’

Empirical and simulation results

Speed improvements and the power law. The model provides a
straightforward account of the relationship between practice and speed.
Additional training on the word-reading task resulted in the devel-
opment of larger connection weights in that pathway, and therefore
more rapid spread of activation along that pathway, with a corre-
sponding decrease in reaction time. In addition, the model demon-
strates the universal finding that, with practice, speed increases (and
standard deviation decreases, Logan, 1988) according to a power law.
This stems from two of our principles: incremental, difference-based
learning; and a graded, sigmoidal activation function. The model was
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RESPONSE

"red"” "green"”

22

red green GREEN

Color Word
INK COLOR Naming Reading WORD
TASK DEMAND

Figure 2. Diagram of the network used for the Stroop model, showing the
connection strengths after training on the word-reading and color-naming
tasks. Strengths are shown next to connections; biases on the intermediate
units are shown inside the units. Attention strengths (i.e., from task demand
units to intermediate units) were fixed, as were biases for the intermediate
units. The values were chosen so that when the task demand unit was on,
the base input for units in the corresponding pathway was 0.0, while the
base input to units in the other pathway was in range of —4.0 to —4.9,
depending upon the experiment (see text). Note. Figure after Cohen et al.,
1990. Copyright 1990 by the American Psychological Association. Reprinted
by permission.

trained using the back propagation learning algorithm of Rumelhart,
Hinton, and Williams (1986). The details of the algorithm are not
relevant here, but the fact that the algorithm is incremental, and that
the sizes of the changes that are made are proportional to the mag-
nitude of the difference between actual and desired output, is relevant.
The amount that each connection weight is changed in each training
trial is proportional to how much the asymptotic activations of the
response units in the network differ from the desired output, which
in this case is taken to be maximal activation of 1.0 for the correct
response unit, and minimal activation of 0.0 for all other responses.
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Empirical Data Simulation Data
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Figure 3. Performance data for the standard Stroop task. Panel A shows
data from an -empirical study (after Dunbar & MacLeod, 1984). Panel B
shows the results of the model’s simulation of this data. Note. Figure after
Cohen et al., 1990. Copyright 1990 by the American Psychological Asso-
ciation. Reprinted by permission.

Early in training, this difference is likely to be large, so sizable changes
will be made to the connection strengths. As the appropriate set of
strengths develops, the error gets smaller and therefore so do the
changes made to the connections.

A deceleration of speedup with practice also results from the fact
that as connections get stronger, subsequent increases in strength have
less of an influence on activation (and therefore reaction time). This
is because of the sigmoidal shape of the activation function (see Figure
4): Once a connection (or set of connections) is strong enough to
produce an activation close-to 0.0 or 1.0, further changes will have
little effect on that unit. Thus, smaller changes in strength, as well
as the smaller effects that such changes have, progressively reduce
the speedup of reaction time that occurs with practice. In our sim-
ulations, this pattern of diminishing returns adheres to the form of
a log-log relationship; however, a formal analysis of these factors, as
well as their relationship to the power law, remains to be done.

Interference effects. As seen in Figure 3, the model also reprpduces
the relative amounts of interference and facilitation observed in the
word-reading and color-naming tasks. These effects are attributable
to a pair of interacting factors: the relative strengths of the connections
in the two competing pathways, and the modulatory effects that at-
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Logistic Activation Function

Activation

Net Input

Figure 4. The loglstlc functlon an example of a graded sigmoid function.
Note that the slope of this function is greatest when the net input is 0.0,
and decreases when the net input is large in either the positive or negative
directions.

tention has on processing in these pathways. Attention is implemented
in the model as a pattern of activation over units in the task demand
module (see Figure 2). The units in this module have connections to
the intermediate units in each processing pathway such that activation
of the unit for a given task sends input to the intermediate units in
the corresponding pathway. This input increases the activation level
of the corresponding intermediate units from a very low value, where
the activation function is relatively flat, to a higher value, where the
slope of the activation function is steeper and units are more sensitive
to their input. Thus, the attentional mechanism takes advantage of
the sigmoid shape of the activation function, to produce a modulatory
influence on processing: Failure to-allocate attention to a particular
pathway reduces, but does not completely eliminate, stimulus-driven
activation in that pathway. The amount of activation in an unattended
pathway depends upon the strength of connections in that pathway
This is seen in the results of the Stroop simulation.

* When the task is to name the color, connection weights in the word
pathway are sufficient to allow some activation to flow along this
pathway, enough so that when the word agrees with the color there
is facilitation, and when it conflicts there is interference. This flow
‘of activation along the word pathway, in the absence of attention,
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A PDP APPROACH TO AUTOMATICITY 247

captures the involuntary or “automatic” nature of this process. In
contrast, when the task is to name the word, there is an almost
undetectable amount of interference. The reason for this is that in
this case activation builds up very fast through the word pathway,
because of the combined effects of the strong connections and the
increased sensitivity due to attention. This rapid increase in activation
through the word pathway has the effect of minimizing the effect that
other factors can have on the time to reach the response threshold.

The phenomena that have been discussed so far, speedup with
practice, and an asymmetry of interference effects between processes
with different amounts of practice, are readily accounted for by a
number of other theories (cf. Anderson, 1983; Logan, 1980, 1988).
However, the simple model we have presented accounts for a number
of other phenomena that have not, to date, been explained by other
means.

Asymmetry of facilitation versus interference. First, note in the

empirical data that the size of the interference effect is significantly
greater than the facilitation effect. This is a general finding in the
Stroop task and its equivalents (Dunbar & MacLeod, 1984). The model
faithfully reproduces this effect. Although the details of the inter-
actions that produce this effect are beyond this discussion (see Cohen,
Dunbar, & McClelland, 1990), an important factor is the nonlinearity
of the activation function (see Figure 4). This imposes a ceiling on
the activation of the correct response unit, which leaves less room for
an excitatory response to congruent information than for an inhibitory
response to conflicting information coming from the competing path-
way. :
This unanticipated consequence of the use of a saturating activation
function is noteworthy in that it shows that the asymmetry may be
accounted for without assuming that facilitation and interference arise
from distinct processing mechanisms, as proposed by some authors
(e.g., Glaser & Glaser, 1982; MacLeod & Dunbar, 1988). Although it
remains possible that separate mechanisms are involved, the model
we present demonstrates that this is not necessarily the case. The
failure of previous theories to account for this asymmetry in terms
of a single mechanism may well be due to their reliance, either ex-
plicitly or implicitly, on strictly linear processing mechanisms.

Stimulus onset asynchrony effects. Another anomaly that has con-
fronted Stroop theorists concerns the finding that stimulus onset asyn-
chrony (SOA) has little impact on the Stroop effect. Thus, even when
the color is presented well before. the word (400 ‘ms), it still fails to
produce interference with word reading (Glaser & Glaser, 1982). Au-
tomaticity theory can explain this finding (color naming is controlled,
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therefore it can be inhibited), but no process model has succeeded in
reproducing this effect. Furthermore, as we have seen (and will return
to shortly), there are problems in assuming that color naming is truly
a controlled process. Our model addresses this phenomenon by dem-
onstrating that interference effects depend directly on the strength
of processing, and not on the relative finishing times of the two tasks.
When attention is withdrawn from the weaker pathway, it produces
less activation at the output level than does the stronger pathway
under the same conditions. As a result, weaker pathways produce less
interference, independent of finishing time.

Relative nature of automaticity. As mentioned above, MacLeod
and Dunbar (1988) showed that the pattern of interference effects
associated with a particular task can depend heavily on the context
in which it is performed. Thus, when compared with a novel task,
such as shape naming, color naming may actually appear automatic.
The model can account for this finding in terms of the relative strengths
of competing pathways. When a new pathway is added —to represent
the shape-naming process—and given connection strengths weaker
than those in the color pathway, processing in the new pathway is
subject to interference (and facilitation) from color information. Color
naming, on the other hand, is not influenced by information in the
new pathway. Thus, as observed in the MacLeod and Dunbar exper-
iment, color naming reverses roles.

After demonstrating these initial effects, MacLeod and Dunbar went
on to train their subjects on the shape-naming task over a period of
20 days. As expected, reaction time decreased according to a power
law. At the end of training, when shape naming had become faster
than color naming, interference effects had also reversed. We were
able to accurately simulate their reaction time findings on a trial;for-
trial basis, as well as the different patterns of interference effects on
the first and last days of training. Thus, the model not only supports
the notion of a continuum of automaticity, but provides an explicit
set of information processing mechanisms underlying this continuum.
These mechanisms accurately simulate the concurrent changes in re-
action time and interference effects that occur with practice and link
these changes to the gradual changes in connection strengths that
occur with difference-based learning. '

Requirements for attention. Attention is implemented as a graded,
modulatory influence on processing. This means that information can
flow along pathways, even when there is no allocation of attention.
This was the case for word information, which was able to influence
the color-naming process, even when no attention was allocated to
the word pathway. This is consistent with the automatic nature of
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word reading. However, contrary to traditional views of automaticity,
this does not mean that attention has no effect on automatic processes.
To the contrary, in the model, attention has a strong influence on
“automatic” processes such as word reading: Although some infor-
mation ‘‘leaks” through the unattended channel—influencing the
speed of the response—it is not enough to determine the actual
content of the response. Only with the allocation of attention can a
process, even if it is a strong one, be carried to completion. The
degree to which a process relies on attention is determined by the
strength of the underlymg pathway (i.e., the connections in that path-
way). This is shown in Figure 5A, which compares the word-reading
and color-naming processes under varying degrees of attentional al-
location. The model shows that requirements for attention are also
influenced by the strength of a competing process. This is shown in
Figure 5B, which compares the attentional requirements of the color-
naming process when it faces competition from processes of varying
strength. We should be clear that the ideas that attention is a mod-
ulatory process and that even automatic processes may rely on atten-
tion are not new ones. For example, Treisman (1960) proposed an
aftenuation theory which claimed that messages outside of the focus

Influence of Attention on Processing

© 20001 2000+ ]
8 A Color Naming:
+ . © Conflicting Word
o } A Confiicting Shape ,
@ 1500 O Color Naming O Control Condition
S ®  Word Reading 15001 .
2 : .
-«
o~ 100
o .
I | 1000
@
£ sood
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Figure 5. Influence of attention on processing. Panel A shows differences
in the requirements for attention between color naming and word reading,
and the effect on these two processes of reducing activation of the task
demand unit. Panel B shows the different requirements for attention of the
color-naming process when it must compete with a stronger process (word
reading) and a weaker one (shape naming, early in training). Note. Figure
after Cohen et al., 1990. Copyrlght 1990 by the American Psychological
Association. Reprmted by permlsswn
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250 COHEN, SERVAN-SCHREIBER, AND McCLELLAND

of attention were not completely shut out; rather, the flow of infor-
mation was simply ‘‘attenuated” on the unattended channel. Fur-
thermore, Kahneman and Treisman (1984) argued strongly against
what they termed the ‘“‘strong automaticity claim’: that automatic
processes have no requirements for attention. The model helps sup-
port these claims by committing them to a specific set of information-
processing mechanisms that can account for the empirical data and
that help extend these ideas to encompass related, but previously
unintegrated phenomena (e.g., SOA and practice effects).

Interactivity and Competition in Attention

Thus far we have seen how the Stroop model was able to capture
several phenomena associated with automaticity and attention as they
emerge in the Stroop task, in terms of several of the principles enum-
erated at the outset. However, the Stroop model did not incorporate
the principles of interactivity and competition; processing was strictly
feed-forward, whereas interactivity and competition are inherently
bidirectional processes. In previous work these principles have been
exploited in models of context effects in perception (McClelland,
1992; McClelland & Rumelhart, 1981). We argue here that they
should also be incorporated into thinking about automaticity and
attention. '

A primary reason for incorporating interactivity is that there appear
to be bidirectional influences between stimulus processing and atten-
tion. One particularly interesting example of this comes from an
intriguing experiment by Brunn and Farah (1991). They examined
the effects that familiar stimuli (words) can have on the allocation of
attention in patients with hemilateral neglect. Such patients have right-
sided parietal lesions, and tend to neglect stimuli appearing in the
left half of space. To quantify this effect, Brunn and Farah asked such
a patient to indicate the midpoint of a horizontal line. She marked
the line well to the right of center, indicating neglect of its left end.
Brunn and Farah next showed the patient a horizontal line beneath
a string of letters, as shown in Figure 6. When the string of letters
formed a random sequence, the patient bisected the line as before.
But when the string of letters formed a word, the patient bisected
the line much closer to its true midpoint. The study strongly suggests
that the word stimulus elicits attention to the entire spatial region
occupied by the word, thereby inducing the subject to notice the part
of the line that might otherwise have been neglected.

On any account in which attention was a top-down process (as it is
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Figure 6. Stimuli used in the Brunn and Farah (in press) experiment, with
the kind of responses generated by their subject.

in our Stroop model), this finding must seem perplexing. If attention
is a top-down process, then why does the nature of the stimulus
influence it? At the same time, the finding seems perplexmg on any
model in which perception is strlctly bottom up (as in our Stroop
model again). For if perception is bottom up, then surely the left- .
hand letters of the word suffer as much from neglect as the left-hand
letters of a random string. Why then can their presence lead to a
reorientation of perception?

A straightforward account for these findings can be offered in terms
of a model that incorporates interactivity—both in perception, as in
the interactive activation model, and in attention, as recently proposed
by Phaf, Van der Heijden, and Hudson (1990). The idea is sketched
in Flgure 7. Three modules are shown, one representing position-
specific feature patterns (the letters in the string), one representing
familiar objects (words), and one representlng the focus of spatial
attention (locatlons) We assume that in patients with neglect, spatial
attention is ordinarily biased to the right; therefore, there is more
activation for r1ght-s1ded locations in the attention module. When a
random letter string is presented, this bias leads to stronger activation
of the letters on the right, and because no familiar object is activated,
that is the end of the matter. But when a word is shown, the letters
on the right, plus weak activations from the letters on the left, lead
to. the activation of a representation for the whole word in the familiar
objects module. This in turn feeds activation back to the position-
specific feature level, strengthening the activations of the letters in
the ordinarily neglected field. These strengthened feature-level ac-
tivations then lead to a strengthening in the activation of the location
representations: associated with the ordinarily neglected field. As a
result attention itself is allocated more evenly across_the field.

Thus far we have considered evidence for the interactivity as-
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Familiar Spatial
Objects Attention

Position-specific
Features
Figure 7. Interactivity in perception, localization, identification, and
attention.

sumption. What about the assumption that there is competition among
alternatives at each level? This assumption was originally introduced
into the framework to capture the winner-take-all character of per-
ceptual processes, in which the alternative that best satisfies the com-
bined constraints imposed by bottom-up and top-down influences be-
comes most active and suppresses all competitors. However, there are
several reasons to feel that competition may play a strong role not
only in perception but in attention. For one thing, the presentation
of one stimulus tends to divert attention away from other stimuli.
This kind of attention diversion is particularly apparent in visual
search after extended practice with a constant target set (e.g., Schnei-
der & Shiffrin, 1977). The practiced targets come to command at-
tention, as is easily shown after changing to a new target set. Now
the practiced targets are distractor items. When such items appear in
the display, they appear to prevent the subject from noticing members
of the new target set. Thus, when attention is attracted to one item
it appears simultaneously to be withdrawn from others.

That an attention-demanding stimulus diverts attention from other
targets is naturally captured in terms of competitive or mutually in-
- hibitory interactions between units representing alternative loci of
attention. In the model shown above, the presentation of the dis-
tracting stimulus tends to activate the attention units for the location
containing the distracting stimuli. These in turn inhibit attention to
other loci. Competition, if it is present at the position-specific feature
level as well, would tend to have a direct suppressive effect at that
level too. Competition at either the perceptual level or attentional
level, or both, could be the reason that target detection is generally
faster and more accurate when the target is presented alone rather
than in the presence of other stimuli.
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We have only begun to explore the roles of interactivity and com-
petition in our simulations of attentional phenomena. Below we report
one simulation that we have conducted recently (Servan-Schreiber,
1990). The simulation does not consider learning, but otherwise in-
corporates all the principles enumerated at the beginning of this
article. These are used to address, in detail, an interesting pattern in
the time course of processing seen in some recent experiments using
a response-competition task originally described by Eriksen & Eriksen
(1974). These data cannot be accounted for by the feed-forward
Stroop model described above, but can easily be captured by a model
that adds the principles of interactivity and competition.

The Eriksen task

The Eriksen task has been studied extensively in behavioral as well
as psychophysiological experiments and is particularly well suited to
the detailed study of attentional effects in choice reaction-time situ-
ations (Coles & Gratton, 1986; Coles, Gratton, Bashore, Eriksen, &
Donchin, 1985; Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988).
In this task, subjects are asked to respond with a different hand to
two different target letters (S or H) that appear in the middle of a
three- or five-letter stimulus array. In the compatible condition, all
letters are identical (i.e., HHHHH or S$SS$SS), whereas in the incom-
patible condition the central letter is different from the surrounding
letters (i.e., HHSHH or SSHSS). All stimuli have an equal probability
of being presented. As in the Stroop task, subjects are slower and
make more errors in the incompatible condition.

In psychophysiological studies, responses are recorded when sub-
jects squeeze a dynamometer to 25% of maximal force. Because elec-
'tromyographic activity in both arms is also recorded, information
about activity in either response channel is available even when it is
not associated with an overt response. In recent studies, Gratton et
al. (1988) have also used recordings of event-related potentials over

~ the motor cortex to provide information about covert response prep-
aration in the absence of overt muscular activity.

The overt performance of subjects on this task, together with elec-
troencephalogram (EEG) and electromyogram (EMG) recordings, sheds
light on the coupling between sensory processing of the stimuli and
response selection over time. We will start by reviewing the empirical
observations that have helped constrain the development of our model.

Graded and continuous evaluation processes. EEG recordings have
been used to argue that responses can occur before stimulus evaluation
is complete. This conclusion is based on P300 recordings showing
that reaction times can be shorter than P300 latency. Also, EEG and
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EMG recordings have shown that both the correct and incorrect
responses can-be activated on the same trial. This suggests a contin-
uous, parallel flow of information from stimulus analysis to response
selection, rather than a single stage for stimulus evaluation followed
by a response selectlon process (Coles & Gratton, 1986; Gratton et
, 1988). |

Competltion between response channels. The delay between EMG
activity and squeeze response in the correct channel can be plotted
as a function of EMG activity in the incorrect channel. There is a
systematic positive relationship between the two: When EMG activity
in the incorrect channel is greater, correct responses are delaYed. This
observation provides clear evidence for a competitive interaction be-
tween the two response processes.

Delayed effect of attention. When accuracy of responses is plotted
against reaction time, the shape of this time-accuracy curve is not the
same for the compatible and incompatible conditions. In the com-
patible condition, ’accuracy starts at 50% (random response) for very
short reaction times and rises monotonically to an asymptote close to
100% correct. However, in the incompatible condition-—which re-
quires selective attention to the central letter of the stimulus array—
performance is at chance initially but then drops significantly below
chance level before it rises to asymptote (see Figure 9A). This “dip”’
in the time-accuracy curve suggests that, at very short latencies, un-
attended but salient stimuli (i.e., the flankers) tend to influence re-
sponse processes. It is as if the mediation of task-appropriate responses
through spatial attention required additional processing time.

Fixed response criterion. The covert activity in the motor cortex
area that engenders overt muscular responses can be evaluated using
the contingent negative variation (CNV) wave of an EEG recording.
This CNV activity is lateralized to the cortical area contralateral to
the overt response. The magnitude of the CNV is related to motor
preparation for the overt response. It is possible to measure the dif-
ference between the two CNV waves on each side and to follow this
difference over time from the warning stimulus to after the response
execution. This measure provides an indication of relative response
activation. The data show that regardless of condition or speed of
response, there appears to be a fixed degree of asymmetry which,
when exceeded, leads to an overt response. This result suggests that
subjects use a fixed response criterion at all reaction times and in all
conditions. In turn, this suggests that the variability in reaction times
and the shape of the speed-accuracy curve is not due to a variable
threshold but rather to the interplay between random activity in the
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system (noise) and a process of progressive accumulation of evidence
about the target.

A model of the Eriksen task

Architecture. The network is composed of three modules, with
inhibitory connections among the units within each module, and ex-
citatory connections between units of different modules (see Figure
8). The input module contains six units, one for each letter (H or §)
in each of three positions (left, center, and right). The output module
contains only two units, one for each response (H or S). Input units
have excitatory connections to the corresponding output units (e.g.,
all H input units are connected to the H response unit). Finally, a
third module —the attention module — contains three units that each
represent one of the three input positions. Each of these units has
bidirectional excitatory connections to the two input units coding for
H or § in the corresponding position (e.g., the center attention unit
is connected to both H and § in the central position). When one of
these attention units is activated, the network can selectively enhance
the activation of input letters in the corresponding location. The
positive connection weights between the units in the different modules

Output Module
H S
Attention
Module
Pi Pc Pr
]
HI1) (81 He) (S Hr) (Sr
Input Module

Figure 8. Schematic representation of the network used to simulate the data
of Gratton et al. (1988). The subscripts /, ¢, and r refer to left, center, and
right, respectively. Between-module connections are excitatory only. In ad-
dition, connections between the input and attention modules are bidirec-
tional. Within each module, each unit inhibits every other unit.
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and the negative weights between the units within each module were
all set by hand such that, in the absence of noise, the system would
reach a stable state in which the correct output unit is active and the
other output units are inhibited (both in the compatible and incom-
patible conditions).

Intrinsic noise. As in the Stroop model, variability in the system’s
performance relies on an independently sampled Gaussian noise term
added to the net input of each unit at each cycle of processing.

Simulation of a trial. Simulations begin with several preparatory
processing cycles, before the presentation of the stimulus input. Be-
cause the task requires the subjects to identify only the central letter,

excitatory input is provided to the center attention unit at the be-
' ginning of the‘preparatory period and is left on throughout the trial.
This in turn primes the pos1t10n-spec1ﬁc letter units for the central
position. Because of the noise in the system, the activations of all of
the units tend to vary randomly during the preparatory interval. On
occasion, the response threshold can actually be reached during this
preparatory interval. If so, the response is classified as premature, and
the trial is aborted (human subjects also make such responses). The
stimulus array is presented as a fixed input into the input units. This
remains constant until a response is recorded. A failure to respond
after 100 cycles is recorded as an omission.

Response mechanism. A response is recorded when the activation
of one of the two output units reaches a fixed threshold. _

Parameter selection. In addition to the basic architectural as-
sumptions, the model has a number of free parameters. These include
the values of excitatory and inhibitory weights for each module, the
amount of net input provided to input units and to the attention unit,
the number of cycles preceding the beginning of a trial, and the value
of the response threshold. However, the richness of the data greatly
constrains the selection of parameters in the model. We attempted to
fit simultaneously the mean reaction time for each condition (com-
patible and incompatible), the average accuracy of each condition,
the number of premature responses (less than 1%), the number of
omissions (less than 1%), the proportion of responses in each of seven
reaction time bins for each condition, and the accuracy for each of
these seven reaction time bins in each condition.

The results of the simulation are summarized in Figure 9. Followmg
the method of Gratton et al. (1988), we divided the trials of the
simulation into seven reaction time bins (on the basis of the number
of cycles). A simple linear regression was used to establish the cor-
respondence between number of cycles in the simulation and the
reaction time in the empirical data.
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Figure 9 shows that the simulation captured all of the important
aspects of the data: (a) the monotonic approach to asymptote of the
accuracy curve in the compatible condition; (b) the dip in the accuracy
curve in the incompatible condition; (c) the overall shape of the re-
action time distribution; and (d) the greater number of responses in
the later bins in the incompatible condition than in the compatlble
condition.

How do each of these four effects arise in the model? First, consider
the compatible condition. Initially, the only source of activity in the
network is from the random noise associated with the input to each
unit. The early part of the reaction time distribution reflects this
random activity. However, as time passes, activation provided by the
stimulus spreads from the input units to the corresponding response
units, causing response accuracy to rise progressively toward asymp-
tote. <

In the incompatible condition, external input is provided to two
incorrect letter units and only one correct letter unit in the input
module. Because of this, the incorrect response unit tends to receive
more activation early in processing than the correct response unit.
However, the attention unit for the center position is also receiving
some initial input. This tends to activate both center letter units in
the input module. However, only one of these is receiving external
input from the stimulus. The other, though it receives excitatory input
from the center attention unit, is inhibited by all of the other active
input units and is therefore rapidly inactivated. Ultimately, the mutual
excitation between the center attention unit and the center letter unit
allows this unit to dominate the other two and, in turn, to activate
the correct response unit. It is the delay required for this interaction
to take place that accounts for the dip observed in the time-accuracy
curve.

Note that the account suggested by the model contrasts with other
attempts to explain the dip discovered by Coles et al. (1985). For
example, faced with the limitations of box-and-arrow models of in-
formation processing, these investigators have had to rely on two
subprocesses to explain this phenomenon: an early direct process
responsible for providing information on the identity of display ele-
ments independent of location, and a second, slower, process that
provides identity information tied to particular locations. In our ac-
count, location-independent information and location-specific infor-
mation arise successively from a single system. The interaction be-
tween stimulus feature information and the allocation of attention to
a particular location is such that processing is dominated early on by
the totality of information arising from all locations; only gradually
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A EMG Data from Gratton et al. (1988)
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Figure 9. Comparison of the empirical results of Gratton et al. (1988) with
the performance of the model. In each case, responses were divided by
response time into seven 50-ms bins. Data points in the lower part of each
- graph are the proportion of responses occurring in each bin. Data points
in the upper part of each graph are the proportion of correct responses in

each bin. The original empirical data were graciously provided by Gabriele
Gratton and Michael Coles.
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does the competition mechanism allow the active units in the attended
location to suppress the units in unattended locations, thereby per-
mitting a correct response.

The explanation we have given would seem completely ad hoc if
it were formulated in terms of unanalyzed boxes and arrows, because
it would simply amount to stipulating that there is a single box that
produces both position-independent and position-specific identity in-
formation, and that the former is produced more slowly than the
latter. Without a description of the mechanisms inside the box, the
explanation becomes a mere restatement of the data. Yet with a set
of principles guiding our conception of the mechanisms assumed to
underlie processing within each module, it is possible to see in fact
that a single module can produce just such a pattern at its outputs.

An additional comment is required here concerning the response
mechanism used in the model. Gratton et al. (1988) suggested that
subjects emitted an overt response when the difference between the
CNYV waves over each motor area reached a fixed threshold. In the
model, we did not compare the difference between the activation of
the two response units to a threshold. We simply compared the ac-
tivation of the most active unit to a fixed threshold. Yet, post hoc
analyses showed that when a response unit reached threshold in the
model, the difference between the activation of the two response units
was consistently the same whether the stimulus array was compatible
or incompatible (M = 0.22, SD = 0.055). This suggests that the
response selection mechanism used in the model also results in a strong
correlation between response emission and the difference between
activation levels of the two response channels. This is because the two
response units in the model have reciprocal inhibitory connections.
Hence, their activation levels are not independent; the more active
one unit: becomes, the more inhibited the other becomes.

The overall shape of the reaction time distribution in the model,
with the largest number of responses at intermediate bins, arises from
the interaction of information about the stimulus and random noise.
In the first bins, responses occur only when random noise spuriously
accumulates in favor of one of the two responses. In the last bins,
responses are delayed because noise spuriously strengthens the 'in-
correct response unit—which inhibits the correct response unit—or
directly -reduces the net input irito the correct unit. Both of these
events are comparatively rare because they rely on the noise terms
of many different units in the network having the same valence (with
respect to the response units) simultaneously (or a single noise term
being extremely large, or a large noise term having the same valence
for many consecutive cycles, etc.).
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Finally, the larger number of responses in the later bins seen in the
incompatible condition compared with the compatible condition is
due to the influence of the two input units that provide activation to
the incorrect response unit. A greater activation of the incorrect
‘response unit results in a direct inhibition of the. correct response
unit, which delays the latter’s approach to threshold.

DISCUSSION

The role of the seven principles

We have presented two models that exhibit many basic aspects of
automatic processes and the control of such processes via attention.
However, there are differences between the two models: The first is
strictly a feed-forward model, and highlights the role of incremental,
difference-reducing connection adjustment processes; the second is
fully interactive and competitive, exploiting bidirectional excitatory
connections between levels and bidirectional inhibitory -connections
within levels, though it looks at performance without regard to the
learning process. | :

The next step for this research is to unify the two models, capturing
all of the aspects of attention and automaticity discussed here within
a single model that encompasses all of the principles. One reason we
have not yet taken this step is that effective, computationally plausible
learning rules for networks with bidirectional connections have only
recently become available (Hinton, 1989; Movellan, 1990; Peterson
& Anderson, 1987), and we are just now beginning to incorporate
them into our work. These algorithms retain the incremental, dif-
ference-reducing character of back propagation (without requiring
the propagation of error information backward through time to cal-
culate weight changes for networks with recurrent connections, as has
been the case for back propagation networks)

All seven of the principles enumerated in the introduction have
played a role in our simulations. The first three principles—sigmoidal
activation function, gradual propagation of activation, and intrinsic
noise —seem to be basic prerequisites to the modeling of performance
in information-processing tasks. The next two—incremental, differ-
ence-driven connection adjustment and control by modulation—com-
bined with the first three principles give rise to the gradual emergence
of automaticity together with the strong but far from absolute control
over processing that is exerted by attentional influences. These five
principles play a central role in explaining the core phenomena of
automaticity that have concerned us here. But the last two princi-
ples—competition and interactivity—are also relevant to issues of
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_attention. The principle of competition is in fact partially incorporated
in the Stroop model, because in that model it is the difference in
activation between the most active response unit and its competitors
that is used to trigger a response. This principle is more thoroughly
integrated into the model of the conditional accuracy functions in the
Eriksen response-competition task, and plays a key role in allowing
the correct response to eventually dominate even when, initially, the
incorrect response is more strongly activated.

The principle of interactivity, which is.incorporated in the simu-
lation of Gratton et al. (1988), may not be crucial in this particular
case. The key aspect of this model is the competitive inhibition be-
tween alternatives, rather than the presence of bidirectional excitatory
connections. The role of interactivity in processing has been argued
elsewhere (Dell, 1985; McClelland & Elman, 1986; McClelland &
Rumelhart, 1981).

We argued above that interactivity plays a role in attention, though
we have not yet had the opportunity to develop simulations of tasks
in which this plays a crucial role. Principally, the role of interactivity
in attention is to provide a means where attention itself, albeit largely
a matter of top-down control, may be partially under the control of
stimuli themselves.

The idea that information processing is interactive can lead to a
blurring of the traditional distinction between attentional and per-
ceptual mechanisms. The distinction actually disappears in the recent
model of Phaf et al. (1990). These authors use a modeling framework
very close to the one we describe here to argue that the mechanisms
of attention and perception are in fact one and the same. They note
that when multiple stimuli are shown, subjects can be instructed to
select one to respond to on the basis of any property of the object.
In this view, location is just a property like any other (color, shape,
etc.). Thus, when shown a blue triangle to the left of a red square,
subjects .can select the blue object, the triangle, the left object, etc.
Phaf et al. use the same mechanism we use here to select by location,
but also add mechanisms to select by color, shape, etc., in exactly the
same way. Furthermore, the analyzers that are used to select for color,
shape, or location top down are the same ones that are used to
represent the perception of these items when they are activated bottom
up. Thus the interactive attentional model of Phaf et al. actually
obliterates the classical distinction between perception and attention
and views them as 51mply different aspects of the function of a single
interactive processing system. This fits squarely with the view that
emerges from both the Stroop model and our model of the Eriksen
paradigm: Attentional information can be treated like information of
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any other kind, and attentional effects can be attributed to the mod-
ulatory influence that one source of information has on any other.

Based on the foregoing, it appears that all of the principles enum-
erated at the beginning of this article play a role in automaticity and
the attentional control of processing. In the remainder of this section,
we consider the approach we have taken here in relation to general
issues in attention research and in relation to other models of auto-
matic processes and their control by attention. In particular, we focus
on two issues that often seem to be at the core of theoretical discussions
about automaticity and attention: the distinction between controlled
and automatic processes, and the notion of capacity.

Controlled versus automatic processing

The Stroop model strongly suggests that color naming and word
reading can be seen as relying on qualitatively similar processes, and
that differences in speed and interference effects can be attributed to
the relative strengths of the connections underlying each pathway.
This view differs from the traditional notion that the Stroop effect
demonstrates the properties of two"qualitatively different types of
processing: controlled (color naming) and automatic (word reading).
This does not mean, however, that we reject the idea that qualitatively
different kinds of processing exist. Indeed, we assume that very. early
in training on novel tasks-—before. connection weights of an appre-
ciable degree have had a chance to develop in the relevant pathway —
subjects rely on a different set of mechanisms than they eventually
come to rely on with practice. In Cohen et al. (1990), we called this
type of processing “indirect,” to capture the fact that it may be me-
diated by explicit consideration of verbal instructions or verbally me-
diated associations, and to distinguish it from ‘“‘direct” processing, in
which no such mediation is involved (i.e., there is a “‘direct” pathway
from stimulus to response, such as those in the Stroop model for color
naming and word reading). Furthermore, we assume that the type of
processing underlying early performance shares many of the attributes
traditionally associated with controlled, or strategic processing: It is
slow, highly susceptible to interference from distracting tasks, and
relies heavily on attention. The important point, however, is that these -
attributes can continue to be exhibited by tasks even after they have
received extensive practice, when they are placed in competition with
other, even more highly practiced tasks. The terms direct and indirect
map only partially, then, onto the classical distinction between con-
trolled and automatic; they are meant rather to convey the kind of
processing that we believe underlies each type. The correspondence
between these terms and the traditional ones is shown in Figure 10.
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Types of Processing

vel Task: Highly Practiced Tasks

Indire . direct with . .
ct S/I:tyweakw:iirect) — Weak Direct — Strong direct
Controlled = Controlled —— Automatic

Figure 10. Relationship of the proposed distinction between direct versus
indirect processing and the traditional distinction between controlled versus
automatic processing. Note. Figure after Cohen et al., 1990. Copyright 1990
by the American Psychological Association. Reprinted by permission.

"This distinction between direct versus indirect processing provides
an appropriate context in which to consider the relationship between
our approach and an approach based on production systems, such as
the ACT* model described in this issue by Anderson (1992). In our
view, each approach has its own natural domain of application. As
evidenced by the success of the Stroop model, the PDP approach
seems naturally suited to capturing the progressive changes that occur
with extensive practice and that lead to increases in automaticity. The
strengthening process used to account for these changes emerges
naturally from a system in which processing is connection based, and
learning involves the gradual adjustment of these connections. Pro-
ductions, on the other hand, are inherently discrete in nature—one
either has a production for something or one does not. Although
strengthening mechanisms can be tacked onto such models, they are
not really an intrinsic feature of the approach.

Indirect processing, however, presents a somewhat different per- -
spective. This may well be describable in terms of procedural rules
that can be flexibly sequenced to accomplish novel tasks. The ability
to model performance in higher level cognitive tasks in terms of a
composition of separate, rulelike parts is a primary motivation for the
use of production systems in psychological models (Anderson, personal
communication). The fundamental insight underlying the production
system approach is that many skills, especially ones that are unfamiliar
or that are complex and high level (e.g., muitidigit arithmetic), can
be decomposed into a set of simple, discrete strategies or rules, and
that these can be conveniently and effectively represented as “pro-
ductions.
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In our view, it makes good sense to characterize direct processes
in terms of connectionist mechanisms and to characterize indirect
processes in terms of productions. We do believe that, ultimately, all
processing relies on connection-based pathways, and that high-level
skills should be representable within the PDP framework. The point
we make here is only that for some purposes, a higher level charac-
terization, somewhat removed from the underlying processing mech-
anisms, may capture the essential features of some processes in a
succinct way. In other cases, a finer grain of analysis may provide the
more natural and perspicuous account.

Attention and capacity

The approach we have taken to automaticity also sheds light on
the notion of attentional capacity. There are two prevailing views
concerning this issue that have been described in the literature and -
that, on the surface, would seem to be in conflict. The traditional
view holds that ‘““‘controlled’” processing relies on a central, limited-
capacity attentional mechanism, whereas automatic processes are in-
dependent of this mechanism and compete only when they lead to
conflicting responses (e.g., Posner & Snyder, 1975; Shiffrin & Schnei-
der, 1977). The problem with this view is that all processes (including
putatively automatic ones) can be shown to rely to some extent on
the allocation of attention (e. g., Kahneman & Chajczyk, 1983; Kahne-
man & Henik, 1981). In contrast, other authors have proposed a
“multiple resources” view (e.g., Allport, 1982; Hirst & Kalmar, 1987;
Logan, 1985; Navon & Gopher, 1979; Wickens, 1984), which pos-
tulates that all processes require resources of some kind, but that these
are “local” and that there may be many different types. According
to this view, competition (and interference) arises when two tasks place
simultaneous demands on the same set of resources. The problem
with this view is that neither the nature of attention nor the nature
of the resources postulated are specified. Our approach offers a rec-
onciliation of these two perspectives, and can address the problems
that confront each. :

The models we have presented show how attention can be seen to
modulate processes that by -traditional criteria would be considered
to be automatic (e.g., word reading in the Stroop task). At the same
time, they show how the requirements for attention can vary both
among processes (color naming vs. word reading; see Figure 5A) and,
for a given process, depending upon the context in which it occurs
(color naming with a conflicting word vs. a conflicting shape; see
Figure 5B). However, attention is not given a unique status within
our framework. Rather attentional information is represented and
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processed like information of any other type: as a pattern of activation
over a set of units in a module. In this respect, the processing associated
with attention is governed by the same principles and constraints that
govern all other types of processing. One of these constraints is the
competition that can arise when two different sources of information
compete for representation within a module. If information arriving
from different pathways generates disparate patterns of activation
within a module, then the two processes will compete for represen-
tation within that module. Thus, the processing capacity of that mod-
ule can be thought of as being limited: It cannot support the full
processing of both signals at once. This property of the system can
account for the limited capacity of attention in the traditional view,
and for the notion of competition for resources in the multiple re-
sources view.

When a given module plays an attentional (i.e., modulatory) role
for some other set of processes (such as the task demand module does
for color naming and word reading in the Stroop model), we are led
to a perspective that is very similar to the traditional one. That is,
competing representations within an attentional module will manifest
as a limitation in attentional capacity: Both representations will be
degraded. Of course of the processes that rely on these attentional
representations, stronger ones will be less influenced by this degra-
dation than weaker ones (see Figure 5), consistent with the view that
the more automatic a process is, the less it will rely on attention.
However, our approach differs from the traditional approach in that
it allows there to be more than one attentional mechanism (module)
within the system, and that different processes may rely on different
such modules. The extent to which limitations in attentional capacity
will affect performance will depend on the particular processes in-
volved in the task (or set of tasks), the extent to which these processes
rely on attentional resources, and whether the attentional resources
are the same or different for the various processes involved.

The perspectlve shifts when we focus on modules that are dlrectly
involved in a processing pathway; that is, modules which lie in the
pathway along with information flows from input to output. Such
modules may be involved in one or more pathways (e.g., the response
module in the Stroop model), and there may be many such points of
intersection between pathways. When disparate information arrives
from different sources within such modules, interference occurs. This
seems to capture the main thrust of the multiple resources view: Tasks
will interfere to the extent that they compete for local resources.
However, the principles underlying our approach allow us to go be-
yond the multiple resources view, by specifying the exact nature of
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these resources and their limitations: Resources are sets of units whose
activations are used to represent information; their capacity is limited
by the competition for activation that is assumed to exist between
units within a module. These principles allow us to capture the type
of interference phenomena that arise when information from two
sources converge on a common module.

CONCLUSION

At the outset of this article we enumerated seven principles of
information processing that constrain the more general PDP frame-
work. We then showed how these principles can be used to account
for a number of the major phenomena associated with automaticity:
gradual development with practice; concomitant improvements in speed
(and a reduction of variance) that follow a power function; reduced
reliance on, but not complete autonomy from, the effects of attention;
the relative nature of interference effects; and the interacting influ-
ences of stimulus information and attentional allocation on respond-
ing. We presented two computational models to demonstrate the abil-
ity of the principles to account for empirical data concerning these
phenomena. It is important to emphasize, however, that it is not the
details of these implementations that we consider to be important
(e.g., the specific activation function used, or the shape of the noise
distribution), but rather the principles upon which they are based (a
sigmoid activation function, and variability of processing). Indeed, we
believe that these principles can be used to account for a wide variety
of findings in the psychological literature (see McClelland, 1992) that
go beyond the phenomena of automaticity discussed in this article.

Notes

Correspondence concerning this article should be addressed to Jonathan D.
Cohen, Department of Psychology, Carnegie Mellon University, Pittsburgh,
PA 15213. Received for publication May 14, 1991; revision received August
2, 1991. ‘
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