Chem 300A: Chemistry in Modern Society

The World of Chemistry

Chemical and Engineering News (C&EN) (2009) 87 (24), 7.

C&EN (2009) 87 (14), 10.

C&EN (2009) Latest news March 10

PUBLISHED BY THE AMERICAN CHEMICAL SOCIETY

Nishijima et al. (2007) J. Org. Chem. *72*, 2707.

The World of Chemistry

Energy – Costs and Requirements

Dragonfly accelerating to 50 km/h	2 x 10 ⁻⁷ kJ
Good MLB fastball (95 mph)	1.3 x 10 ⁻¹ kJ
Car accelerating from 0-90 km/h	∼ 10² kJ
Burning 1kg wood	1.4 x 10 ⁴ kJ
Burning 1kg coal	3 x 10 ⁴ kJ
Burning 1kg gasoline	5 x 10 ⁴ kJ
Burning 1kg natural gas	5.5 x 10 ⁴ kJ
Flying a 747 jet at 640 mph	13 x 10 ⁷ kJ
Nuclear fission 1kg ²³⁵ U	8 x 10 ¹⁰ kJ
Nuclear fusion 1kg ² H	34 x 10 ¹¹ kJ
US daily energy consumption	3 x 10 ¹⁴ kJ
World daily energy consumption	1 x 10 ¹⁵ kJ
Daily solar output	3 x 10 ²⁸ kJ

Energy

Uphill energetically endothermic 2800 kJ + 6 CO₂(g) + 6 H₂O(l) $\xrightarrow{\text{chlorophyll}}$ C₆H₁₂O₆(s) + 6 O₂(g) glucose

exothermic $C_6H_{12}O_6(s) + 6 O_2(g) \longrightarrow 6 CO_2(g) + 6 H_2O(l) + 2800 kJ$ Downhill energetically

Glucose is the energy currency here

NOTE: one 'food' calorie = 1 kcal = 4.18 kJ

Energy - Petroleum

Energy = Potential energy + kinetic energy

Energy is conserved

Chemistry in Context 6th Edition, ACS, McGraw-Hill

	Table	4.2	Bo	nd Ene	ergies (in	n kJ/m	ol)			
	Bernard were considered	Н	С	N	0	S	F	Cl	Br	Ι
	Single E	Bonds								
	Н	436								
	C	416	356							
	N	391	285	160						
Detential	0	467	336	201	146					
Polenilai	S	347	272			226				
energy	F	566	485	272	190	326	158			
Is stored in	C1	431	327	193	205	255	255	242		
	Br	366	285		234	213		217	193	
the bonds of	Ι	299	213		201	_		209	180	151
molecules	Multiple	e Bonds								
	C = C	598			C = N	616		C=0	803 in	$n CO_2$
	C≡C	813			C≡N	866		C≡0	1073	
	N=N	418			0=0	498				
	N≡N	946								

Source: Data from Darrell D. Ebbing, *General Chemistry*, Fourth Edition, 1993 Houghton Mifflin Co. Data originally from *Inorganic Chemistry: Principles of Structure and Reactivity*, Third Edition, by James E. Huheey, 1983, Addison Wesley Longman.

Energy balance = Energy of C – (Energy of A + Energy of B)

 $A + B \rightarrow C$

Energy balance < 0 corresponds to a favorable reaction – exothermic

Energy balance > 0 corresponds to an unfavorable reaction - endothermic

Chemistry in Context 6th Edition, ACS, McGraw-Hill

7

Euanmearns.com

US energy consumption:

Canada is the highest consumer of energy per capita on the planet

Projected world energy needs

US EIA

Energy content of fuels

Table 4.3 Energy Conten	t of Fuels
Source	kJ/g
Hydrogen	140
Methane	56
Propane	51
Gasoline	48
Coal (hard)	31
Ethanol	30
Wood (oak)	14

Coal = 2 x heat of wood

- approximate formula $C_{135}H_{96}O_9NS$
- also contains small amounts of Si, Na, Ca, Al, Ni, Cu, Zn, As, Pb, Hg

Chemistry in Context 6th Edition, ACS, McGraw-Hill

Petroleum

More concentrated source of energy – 40-60% more energy per gram than coal

Canada is a net exporter

Recent reversal of this trend due to rapidly increasing shale oil production

Petroleum

World Oil Consumption (2017)

World Oil Consumption Growth (2000-2017)

From: World Oil and Gas Review 2018, Vol. 1

Petroleum Refining: fractional distillation

LRG = liquefied refinery gas

Chemistry in Context 6th Edition, ACS, McGraw-Hill

Petroleum fractions and cracking

Gases	< 20 C	C1-C4 alkanes	synthesis
Petroleum ether	20-70 C	C5-C6 alkanes	gas additives
Gasoline	70-180 C	C6-C10 alkanes	gasoline <
Kerosene	180-230 C	C11-C12 alkanes	jet fuel
Light gas oil	230-305 C	C13-C17 alkanes	diesel and furnace fuel
Heavy gas oil	305-405 C	C18-C25 alkanes	lube oil
Lubricants	405-515 C	> C25 alkanes	grease, pet jelly
Solids	> 515 C	PAH, high MW	roofing and road
		alkanes	asphalt

Catalytic cracking at high T and P over a catalyst (usually a *Zeolite*) breaks long chains down to shorter ones via **radicals** and/or **alkyl cations**:

$$C_{14}H_{30} \longrightarrow C_7H_{16} + C_7H_{14}$$
 (alkene)

Fractions of petroleum

Natural gas = 87-96% methane + 2-6% ethane + other

Chemistry in Context 6th Edition, ACS, McGraw-Hill

Not all 'gasoline' fractions are created equal: the need for 'reforming'

Compression

Knocking is caused by **multiple ignition points or pre-ignition** and it depends on the **structure** of the hydrocarbon fuel For optimal power output, we need **smooth combustion** at the very top of the piston stroke: **when spark plug fires**

The Extraordinary Chemistry of Ordinary Things, 4th Ed.

Octane number and structure

94 Octane number

n-butane	C ₄ H ₁₀
n-pentane 2-methylbutane	C ₅ H ₁₂
n-hexane 2-methylpentane 2,2-dimethylbutane	C ₆ H ₁₄
n-heptane2-methylhexane2,3-dimethylpentane	C ₇ H ₁₆
n-octane 2-methylheptane 2,3-dimethylhexane 2,2,4-trimethylpentane	C ₈ H ₁₈
Benzene Toluene o-xylene Ethanol MTBE (methyl t-butyl ethe	r)

Arbitrarily set isooctane at 100 and **n-heptane at 0**; all others rated against a *blend of the two* -20 1..... **100 (isooctane = the standard)**

Reforming = rearranges the carbon backbone into more branched hydrocarbons

Octane boosters: gasoline anti-knock agents

Tetraethyllead – raises octane ratings

(TEL) 1920's until late 70's

 $CH_{3}-CH_{2}$ $CH_{3}-CH_{2}-Pb-CH_{2}-CH_{3} \text{ or } (CH_{3}-CH_{2})_{4}Pb$ $CH_{3}-CH_{2}$

The Extraordinary Chemistry of Ordinary Things, 4th Ed.

Why it works: Pb-C bond is weak and breaks readily providing many ethyl radicals that enhance combustion

Issues: Pb is highly toxic and organoleads are readily absorbed and fat soluble

By mid-70's roadside levels were often found to be as high as **3 mg/g of soil** (about 200x background)

Phased out NOT because of acute toxicity effects of Pb but because **TEL** killed the catalytic converters introduced to remove NOx and SOx byproducts (that eventually oxidized to HNO_3 and H_2SO_4 , forming acid rain)

Catalytic converter: Pd and Pt

$$2 \text{ NO}_{x} \longrightarrow x \text{ O}_{2} + \text{ N}_{2}$$

$$CO + \frac{1}{2} \text{ O}_{2} \longrightarrow CO_{2}$$

Alkanes +
$$O_2 \longrightarrow CO_2 + H_2O$$

Other octane enhancers – methyl-tert-butyl ether - MTBE

Higher octane rating Oxygenates CO to CO₂

E10 = gasoline with 10% ethanol

The Extraordinary Chemistry of Ordinary Things, 4th Ed.

Ethanol: renewable gasoline alternative or more trouble than its worth?

US government mandated use of ethanol blends E10, E15 and now up to E85

Many questions exist however:

lower fuel efficiency (up to 30% less) massive subsidy to producers in US (51 cents per gallon in 2011) severe corrosion problems in fuel lines and pumps net zero or negative impact on CO₂ emissions

Substantial impact on world food sources:

'The diversion of US maize into the production of biofuels, amid high energy prices, have pushed maize prices 84% higher year on year fueling rising global food prices, a report released by the World Bank Tuesday said.' from Platts News Agency, 2011

See also: https://www.factcheck.org/2015/11/ethanol-higher-emissions-or-lower/

Sources:

Eubanks, L.P., Middlecamp, C.H. Hetzel, C.E. and Keller, S.W. "Chemistry in Context: Applying Chemistry to Society" 6th edition (2009), A Project of the American Chemical Society, McGraw Hill Higher Education

Snyder, C.H. "The Extraordinary Chemistry of Ordinary Things" (2003), Wiley.

Platts News Agency, Singapore, Aug. 16, 2011

Sherman, A. and Sherman S.J. "Chemistry in Our Changing World", 3rd Ed. (1992), Prentice Hall