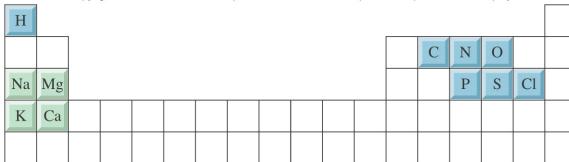
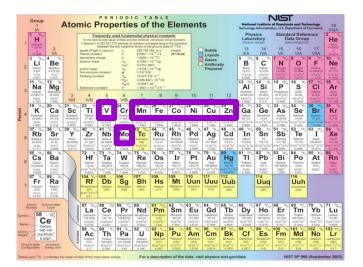
FOOD

Purpose of food energy water building blocks essential molecules the body does not make


Macronutrients

fats carbohydrates proteins


Micronutrients

vitamins minerals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemistry in Context 6th Edition, ACS, McGraw-Hill

Element	Symbo l	g/100g body mass	Relative abundance of atoms
Oxygen	0	64.6	2.7
Carbon	с	18	1
Hydrogen	н	10	6.7
Nitrogen	N	3.1	0.14
Calcium	Са	1.9	0.033
Phosphorous	Р	1.1	0.023
Chlorine	Cl	0.40	0.0060
Potassium	К	0.36	0.0061
Sulfur	S	0.25	0.0052
Sodium	Na	0.11	0.0032
Magnesium	Mg	0.03	0.0014

Composition of Food

Table 11.1Percentage of Water, Fats, Carbohydrates, and Proteins				
Food	Water	Fats	Carbohydrates	Proteins
White bread	. 37	4	48	8
2% Milk	89	2	5	3
Chocolate chip cookies	3	23	69	4
Peanut butter	1	50	19	25
Sirloin steak	57	15	0	28
Tuna fish	63	2	0	30
Black beans (cooked)	66	<1	23	9

Source: U.S. Department of Agriculture, Agricultural Research Service, Home and Garden Bulletin 72.

Chemistry in Context 6th Edition, ACS, McGraw-Hill

Nutrition facts

Sample label for Macaroni & Cheese

Nutrition Facts

3 Limit these Nutrients

4 Get Enough of these Nutrients

Serving Size 1 cup (228g) Servings Per Container 2	
Amount Per Serving	
Calories 250 Calories from Fa	ıt 110
% Daily	Value*
Total Fat 12g	18%
Saturated Fat 3g	15%
Trans Fat 3g	
Cholesterol 30mg	10%
Sodium 470mg	
Total Carbohydrate 31g	10%
Dietary Fiber 0g	0%
Sugars 5g	
Protein 5g	
	10/
Vitamin A	4%
Vitamin C	2%
Calcium	20%
Iron	4%
* Percent Daily Values are based on a 2,000 cald	orie diet.

* Percent Daily Values are based on a 2,000 calorie diet. Your Daily Values may be higher or lower depending on your calorie needs.

	Calories	2,000	2,500
Total Fat	Less than	65g	80g
Sat Fat	Less than	20g	25g
Cholesterol	Less than	300mg	300mg
Sodium	Less than	2,400mg	2,400mg
Total Carbohydrate	e	300g	375g
Dietary Fiber		25g	30g

6 Quick Guide to % DV

- 5% or less is Low
- 20% or more is High

wikipedia Source: US FDA

We need water, starches, fats, proteins, minerals as food input

Carbohydrates	45-65%	kcal/g = 4
Protein	20-35%	= 4
Fat	10-35%	= 9
alcohol		= 7

So per 100g of steak there are 50g water, 15 g protein, 35 g fat: = (15x4) + (35x9) kcals = 375 kcal

8oz = 227g = 825 kcal 12oz = 1240 kcal 16oz = 1650 kcal

Note: 1 kcal = 1 CAL (food cal)

1 cal raises temp of 1 gram water by 1°C

How much food do we need?

- Depends on size
- Depends on age
- Depends on gender

Table 11.6	Estimated C	alorie Requirements (U	nited States)
Gender by	Activity Level		
Age (yr)	Sedentary ^a	Moderately Active ^b	Active ^c
Females			
14–18	1800	2000	2400
19–30	2000 <	- 2000-2200	2400
31–50	1800	2000	2200
51+	1600	1800	2000-2200
Males			
14–18	2200	2400-2800	2800-3200
19–30	2400 <	- 2600-2800	3000
31–50	2200	2400-2600	2800-3000
51+	2000	2200-2400	2400-2800

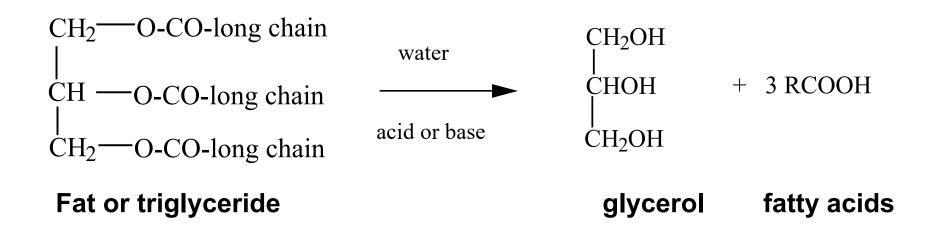
Chemistry in Context 6th Edition, ACS, McGraw-Hill

How do we spend energy?

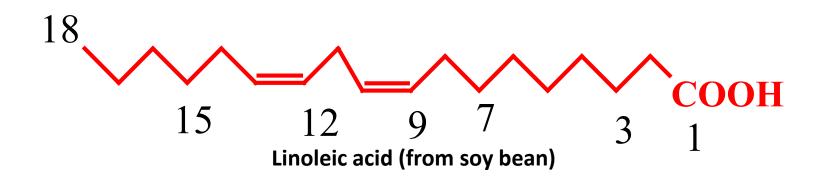
- Living basal metabolism rate (BMR)
 = 1 Cal/kg•h
- Light activity, e.g. slow walking, shopping, golf
 = 2-4 Cal/kg•h
- Moderate, e.g. fast walking, cycling, tennis, gardening = 4-6 Cal/kg•h
- Heavy, e.g. vigorous work, swimming, running = 6-10 Cal/kg•h

BODY MASS INDEX = BMI = [MASS in kg] / [Height in m]² <20 = underweight; 20-25 ok; 25-29 to overweight; > 30 obese

Waist/Height ratio is a more accurate predictor of 'health issues': > ca. 0.55 signals increased risk of neg. health effects


REFINED SUGAR HAS NO NUTRITIONAL VALUE.	REFINED SUG	AR IS LINKED TO:
	OBESITY ★	NERVOUS TENSION
	HYPERTENSION	ACHING LIMBS
	HIGH BLOOD PRESSU	R DIABETES
O VITAMINS	HYPOGLYCEMIA	ACNE
0 MINERALS	DEPRESSION	SKIN IRRITATION
O ENZYMES	HEADACHES	STIFFENING OF ARTERIES
O FIBER	FATIGUE	VIOLENT BEHAVIOR

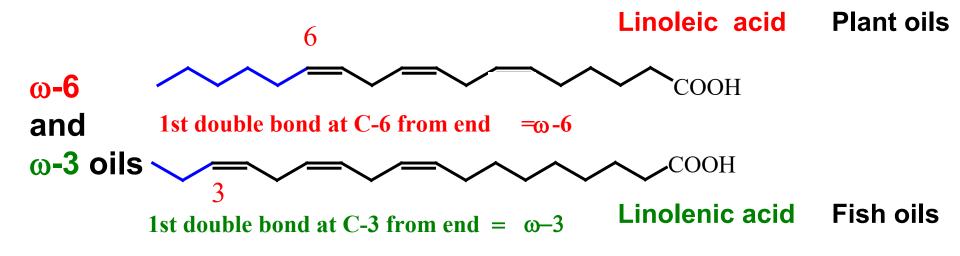
From www.skinnychef.com


Refined sugar is pure sucrose so it SHOULDN'T have any of these!

Average North American consumes 50-60 kg/y

FATS: triesters of glycerol with the fatty acids: hence triglycerides

FATTY ACIDS (natural ones have even numbers of C's and are cis)



СООН 9 7

#C'S	# DB'S	POSITIONS	NAME	SOURCE
4/6	0		Butyric/caproic	Butter
8/10	0		Caprylic/capric	Coconut
12/14/16	0	La	auric/myristic/palmitic	Palm
18	0		Stearic	Beef fat
18	1	9(-10)	Oleic	Olive Oil
18	2	9;12	Linoleic	Soy Bean
18	3	9;12;15	Linolenic	Fish/Liver
20	0		Arachidic	Peanut
20	4	5;8;11;14	Arachidonic	Fish/Liver
22	0		Behenic	Canola (Rapeseed)

Humans can synthesize most fats from different starting materials, i.e. we do not have to eat fat as fat

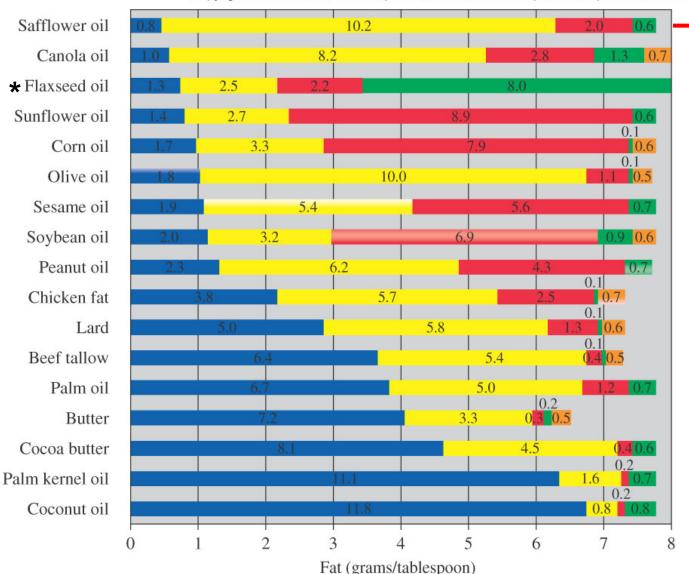
The exceptions are linoleic and linolenic acids

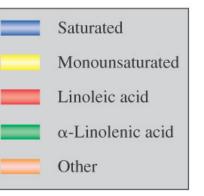
Modern diet: $10:1 \times \frac{6}{\omega} - 3$ vs. Ancient diet: $1:1 \times \frac{6}{\omega} - 3$

Current theory is that ω -3 gives lower blood triglyceride levels

PLUS 1g of ω -3 per day has been shown to give a 20% reduction in heart-related deaths

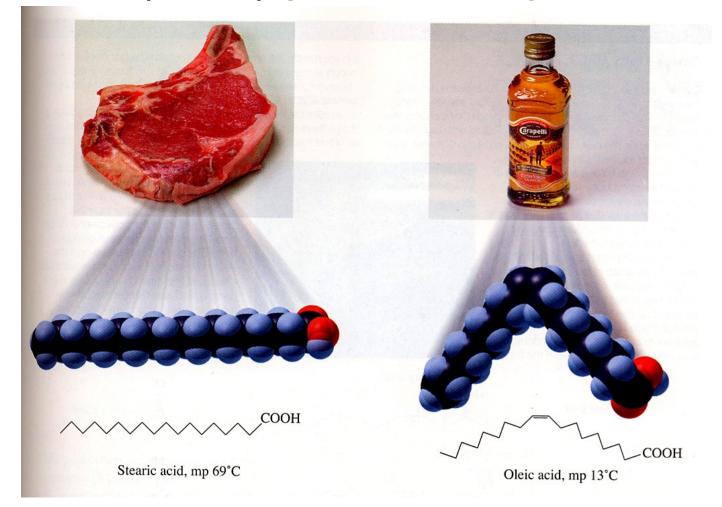
Lack of ω -3 leads to heart disease, thrombosis, atherosclerosis


Modern Canola has about $11\% \ \omega$ -3 while decreasing Erucic acid C22-1(13-14) to <1% (implicated in heart lesions and found in rapeseed oil)


*ADAM

Foods have different compositions of fats

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



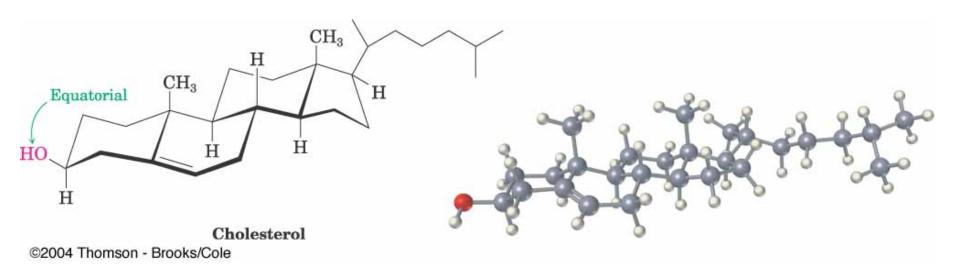
Chemistry in Context 6th Edition, ACS, McGraw-Hill

* aka 'Linseed oil'

Natural fatty acids are cis but can be isomerized to trans trans- are higher melting than cis- : solid fats vs. oils

Saturated fats (no d.b.): pack better, > Mp = **SOLIDS**

Saturated fats: increased risk of heart disease, stroke and some forms of cancer...maybe?


Medical studies mixed but generally support an increased risk - virtually all major health agencies recommend decreasing intake.

Trans-fats (US and CAN require labelling)

Modern margarine has some cis-bonds isomerized to trans to increase 'solidity':

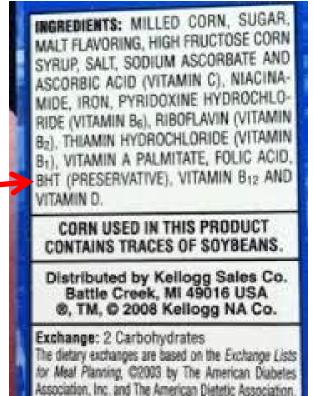
Hard margarine Soft margarine Becel

~12% trans-fats ~5% trans-fats 0% trans-fat but still ~12% satd fat

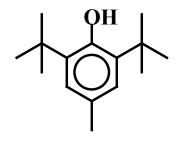
HDL = high-density lipoprotein (carries cholesterol to liver) LDL = low-density lipoprotein (carries cholesterol from liver) Excess LDL's seem to accumulate in artery walls, and become oxidized; contents provoke inflammatory response and plaque buildup. HDL's help interfere with this oxidation Hence HDL's are GOOD and LDL's are BAD

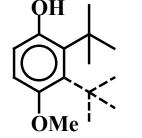
DISADVANTAGES of unsaturated fats: easier to oxidise

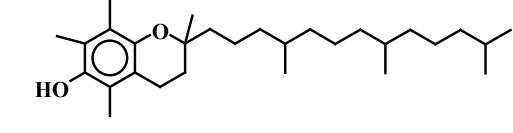
-CH=CH-CH-CH=CH-| | H


Allylic hydrogen is easily oxidised to a free radical which further reacts with oxygen to cleave the chain and produce SMELLY short chain fatty acids (under-arm sweat and rancid butter smell)

Rags soaked in linseed oil (mostly ω -3 acid: linolenic acid) can spontaneously combust:

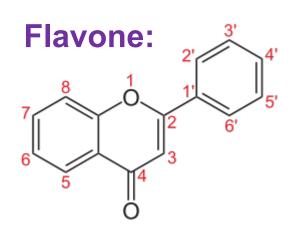

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QtwlwAA& url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9yq6VWc2Ts&ei=fHHiVLSFD9GsogTKzIDQAw&usg=AFQjCNFQEcXcuevn6ssyR4zWNaWFKzVBNw&sig2=X3Hy7DUBR TvU_dRJCQXEzq ANTIOXIDANT (usually ArOH) can supply a H• back to this free radical and reform the fat, before it has had time to react with oxygen


NOTE: **Butylated hydroxytoluene (BHT)** is 2-t-butyl-4-methylphenol and it is commonly added to cereals for the same reasons (next page)



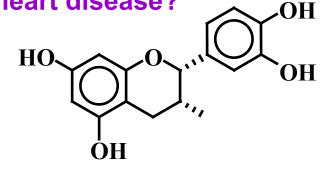
Hence need to protect fats with antioxidants:

BHT	BHA
butylated-	butylated-
hydroxy <mark>t</mark> oluene	hydroxyanisole


VITAMIN E a-tocopherol

allowed at 0.01-0.02%

too expensive for food

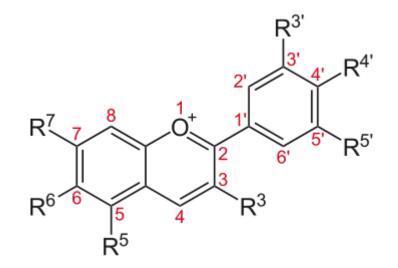

Note: in these the ArO• is highly crowded which makes it less reactive

FLAVONOIDS

e.g. epicatechin are found in green and black teas, red wines, dark chocolate and also have antioxidant properties:

reduced heart disease?

Proponents of dark chocolate also claim:


- 1) Helps weight loss
- 2) Lowers blood pressure
- 3) Decreases risk of Alzheimer's
- 4) Protects brain from stroke effects
- 5) Decreases risk of diabetes, etc.

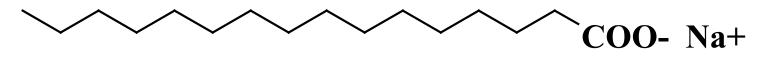
Your results may vary...

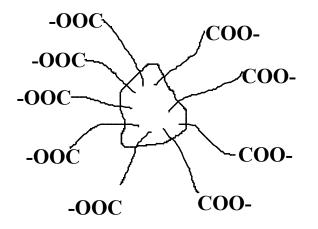
ANTHOCYANIDINS

R3, R5, R7 virtually always OH and other R groups may be OH

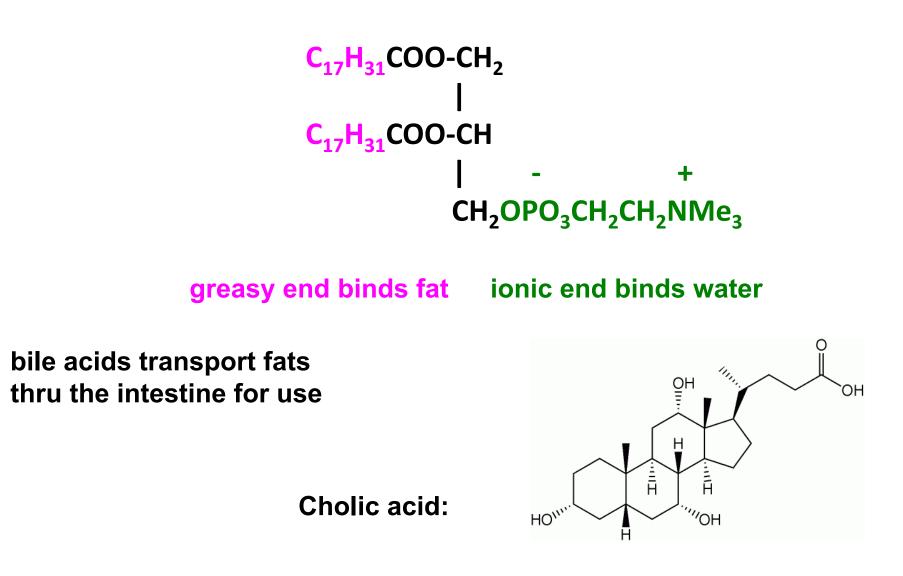
Powerful anti-oxidants found as *pigments* in berries, flowers, vegetables, outer skins:

blueberries, blood oranges, jalapeno peppers, purple onions, red apple skins, many others





OILS: Vegetable oil production 80-100 Mtons/y mostly as Soy, Palm, Canola (about ~20% each) plus minor amounts of coconut and peanut oils

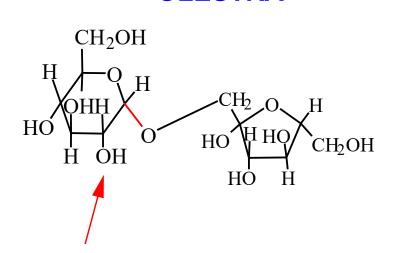

Soft margarine has80% fat16% waterLow fat soft margarine has40% fat56% water!!!

Fats don't dissolve in water, so have to emulsify them

A piece of dirt (grease): hydrocarbon tails embed in grease; water surrounds the -COO⁻ groups and the grease 'dissolves'" For fats, can use phospholipids: eg. Lethicin (egg yolks)

Similarly mono- or diglycerides bind fats to sugars:

```
C<sub>17</sub>H<sub>31</sub>COO-CH<sub>2</sub>
|
CH-OH
|
CH<sub>2</sub>-OH
```


greasy end binds fat this H-bonds to sugar -OH's

so used in *shortenings, cakes and cookies*: can get up to 40% sugar in a cake without it being 'crunchy'; fats make cookies more 'crumbly'

FAT SUBSTITUTES

Some are '*modified' starches*, have the texture of fat but 4 kcal/g rather than 9 kcal/g

OLESTRA

each -OH of sucrose is converted to a -OCO(CH₂)_{6,7,8}CH₃

the resulting molecule cannot pass through the intestine, so is not absorbed: because it is so 'greasy' it can lubricate the intestines too much so 'anal leakage' (!!) can occur carrying with it some fat soluble vitamins

25

Natural Waxes are long chain acid / long chain alcohol esters:

 $CH_3(CH_2)_{24/26}COO(CH_2)_{29/31}CH_3 = beeswax$

Carnauba wax (used for car polish and coatings on 'no-mess' candies like Smarties, M+M's) contains some pendant HO~~~COOH that polymerize and give it its hardness

CANNOT DIGEST THESE

Jojoba oil is an unsaturated 'wax' that is not metabolised: under study as a frying oil and diesel fuel; moisturizer in cosmetics $CH_3(CH_2)_7CH=CH(CH_2)_mCOO(CH_2)_nCH=CH(CH_2)_7CH_3$ m = 9,11; n=10,12 chain lengths vary

