## Crystal Field Theory (CFT) In Detail (H&S 3<sup>rd</sup> Ed. Chpt. 21.3)

CFT provides a simple model for d orbital splitting:

- works for several oxidation states and geometries
- allows prediction of properties such as structures, colours, magnetism

CFT examines *relative* d orbital energies when a  $M^{n+}$  ion is placed in an *'electrical field'* created by the ligand (donor) electrons:

- electrostatic *attraction* between  $M^{n+}$  and L
- electrostatic *repulsion* between d electrons and L electrons (considered as point charges) *destabilizes d electrons differentially depending upon their orientation in space*



## CFT for an Oh complex:



a, b = singly degenerate labelse = doubly degeneratet = triply degenerate

g = gerade (symmetrical about origin) u = ungerade (unsymmetrical about origin)

size of  $\Delta_{oct}$  or  $(\Delta_o)$  is determined by the 'crystal field strength'  $\Delta_{oct}$  (weak field) <  $\Delta_{oct}$  (strong field)

factors affecting the size of  $\Delta_{oct}$  include:

- identity and Ox. St. of the metal (larger for 2<sup>nd</sup>/3<sup>rd</sup> row than 1<sup>st</sup> row d block)
- nature of the ligands ( $\sigma$  and  $\pi$  bonding ability)

Electronic spectra (UV-Vis) can provide a measure of  $\Delta_{oct}$  because transitions between d orbitals  $(t_{2g} \rightarrow e_g)$  fall in this region:

*eg.*  $[Ti(H_2O)_6]^{3+}$  *d*<sup>1</sup>



- $\Delta_{oct}$  is a measurable quantity
- in this case, Ti<sup>3+</sup> has a λ<sub>max</sub> = 20,300 cm<sup>-1</sup> or 243 kJ mol<sup>-1</sup> for the energy required to promote an electron from the t<sub>2g</sub> to e<sub>g</sub> set

Electronic spectroscopy of many Oh complexes gives a *relative* ranking of the crystal field strengths of ligands called the *spectrochemical series*:

 $I^{-} < Br^{-} < NCS^{-} < CI^{-} < NO_{3}^{-} < F^{-} < OH^{-} < ox^{2-} \sim H_{2}O <$ weak field  $\rightarrow$  increasing  $\Delta_{oct} \rightarrow$ 

 $NCS^{-} < py < NH_{3} < en < bipy < phen < NO_{2}^{-} < PPh_{3} < CN^{-} \sim CO$ increasing  $\Delta_{oct} \rightarrow strong$  field

A few points about the spectrochemical series:

- 1 For a given  $M^{n+}$  ion, varying L gives *predictable trends* BUT NOT absolute values for  $\Delta_{oct}$
- 2 For a given  $ML_n$ , higher ox. states give larger  $\Delta_{oct}$  smaller ionic radius, shorter M-L distance?
- 3 Heavier metals of a given triad ( $2^{nd}$  and  $3^{rd}$  row) give greater  $\Delta_{oct}$  for a given ML<sub>n</sub> type complex
- 4 For a given  $ML_n$  type of complex,  $\Delta_{oct}$  does NOT vary in a predictable way across the row