Electronic Spectroscopy of Transition Metal Ions

- colour is one of the distinguishing features of TM complexes (except d^0 and d^{10} of course!)
- visible and long UV light absorption causes electronic transitions from a filled or partially filled d orbital to a higher energy empty orbital (usually d)

$$\Delta \mathbf{E} = \mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{c}/\lambda$$

• complexes are often pale in colour but there are some notable exceptions:

d→d transitions	Charge transfer (CT) transitions
weak ($\epsilon < 100 \text{ L mol}^{-1} \text{ cm}^{-1}$)	strong ($\epsilon > 10,000 \text{ L mol}^{-1} \text{ cm}^{-1}$)
$[Cr(H_2O)_6]^{2+}$ d ⁴ sky blue	$MnO_4^- d^0$ intense purple
$[Mn(H_2O)_6]^{2+}$ d ⁵ pale pink	$[CoCl_4]^{2-}$ d^7 deep blue
$[Co(H_2O)_6]^{2+} [Cl^-]_2 d^7 pink$	
$\operatorname{CoCl}_2(s) d^7$ blue	

Beer's Law: $A = \epsilon cl$

(A = absorbance; ε = molar extinction coefficient or molar absorptivity; c = molar concentration; l = pathlength of light through the solution in cm

- ε ranges from 0-100 (pale colours) to >100,000 (intense colours) due to selection rules (*dealt with later*)
- bands are broad due to *vibronic coupling*: electronic transitions occur on a timescale much shorter than vibrations. Oscillating ligands = different transition energies

Electronic spectroscopy in multi d electron ions

- in order to understand the spectroscopy of d ions with more than one d electron we must take the effect of e⁻ - e⁻ repulsion into account (*we have ignored this so far*)
- each e⁻ has spin and orbital angular but it is the interaction of the **TOTAL RESULTANT spin and angular momentum** with light that is important
- we can treat the total spin and angular momentum separately OR we can combine them to form a new quantum number J and then come up with a total J...which is best to use depends on where we are in the periodic table:

Lighter d metal ions:	S and L total separately (Russell-
	Saunders coupling – dealt with in this course)

Heaviest d and f metal ions: need to define J states (*jj* coupling)

The energy levels derived from a d^2 ion in an Oh field:

Term symbols: energy differs by total S and L for a 'term'

(RS)

$^{(2S+1)}L_{J}$

where S = total spin multiplicity, L = total orbital angular momentum and J is combined TOTAL angular momentum (spin and orbital combined which can range from L+S to L-S)

eg. ³F has
$$S = 1$$
 and $L = 3$

With most TM ions, the **spin-orbit coupling is small** due to electron delocalization onto the ligands so the energy differences between the possible J states are negligible but the possibilities would be J = 4, 3 or 2 giving rise to ${}^{3}F_{4}$, ${}^{3}F_{3}$ and ${}^{3}F_{2}$ states.

Russell-Saunders coupling scheme for a d^2 **ion**

- each e⁻ in a d orbital has 1 = 2 (m₁ = 2,1,0,-1,-2) and s = $\frac{1}{2}$ (m_s = +1/2, -1/2)
- combine these into S and L which represent the TOTAL spin and orbital angular momentum
- there are many different arrangements of electrons in d orbitals so this gives rise to many possible states (Russell-Saunders *'terms'*) that represent different energies for the system as a whole

eg. d^2 ion

1st electron: any of the 5 d-orbitals and spin up or down gives rise to 10 possibilities

 2^{nd} electron: can go in any d orbital but only spin paired in the one already occupied = 9 possibilities

- therefore there are 90 ways to do this but since e⁻ are indistinguishable, there are actually only 45 unique arrangements (called *'microstates'* of the system)
- but L and S are quantized so an S = 1 state has $M_S = 1,0,-1$ and an L = 2 state has $M_L = 2,1,0,-1,-2$ thus we need to group these microstates together into the terms with unique L and S that give rise to them

From: 'd- and f-block Chemistry' by C. Jones, Wiley, 2002.

So the RS terms arising for a d^2 ion are: ¹G, ³F, ¹D, ³P and ¹S but...

which one is lowest in energy (the ground term)?

Hund's rules take care of this:

- a) lowest energy term has the largest spin multiplicity
- b) if two terms share the same multiplicity, the largest L value is lowest in energy

So that means ${}^{3}F$ is lowest for a d^{2} ion (Hund's rules only apply to the ground term NOT the order overall)

Here are the complete lists of RS terms for each d electron count:

d count RS Terms (ground term listed last in bold)

$$\begin{array}{lll} d^{l}, d^{9} & {}^{2}\mathbf{D} \\ d^{2}, d^{8} & {}^{1}\mathbf{S}, {}^{1}\mathbf{D}, {}^{1}\mathbf{G}, {}^{3}\mathbf{P}, {}^{3}\mathbf{F} \\ d^{3}, d^{7} & {}^{2}\mathbf{D}, {}^{2}\mathbf{P}, {}^{2}\mathbf{D}, {}^{2}\mathbf{F}, {}^{2}\mathbf{G}, {}^{2}\mathbf{H}, {}^{4}\mathbf{P}, {}^{4}\mathbf{F} \\ d^{4}, d^{6} & {}^{1}\mathbf{S}, {}^{1}\mathbf{D}, {}^{1}\mathbf{G}, {}^{1}\mathbf{S}, {}^{1}\mathbf{D}, {}^{1}\mathbf{F}, {}^{1}\mathbf{G}, {}^{1}\mathbf{I}, {}^{3}\mathbf{P}, {}^{3}\mathbf{F}, {}^{3}\mathbf{P}, {}^{3}\mathbf{D}, {}^{3}\mathbf{F}, {}^{3}\mathbf{G}, {}^{3}\mathbf{H}, \\ & {}^{5}\mathbf{D} \\ d^{5} & {}^{2}\mathbf{D}, {}^{2}\mathbf{P}, {}^{2}\mathbf{D}, {}^{2}\mathbf{F}, {}^{2}\mathbf{G}, {}^{2}\mathbf{H}, {}^{2}\mathbf{S}, {}^{2}\mathbf{D}, {}^{2}\mathbf{F}, {}^{2}\mathbf{G}, {}^{2}\mathbf{I}, {}^{4}\mathbf{P}, {}^{4}\mathbf{D}, {}^{4}\mathbf{F}, {}^{4}\mathbf{G}, \\ & {}^{6}\mathbf{S} \end{array}$$

• Since an electron in an empty shell behaves in the same way as an 'electron hole' in a filled shell, the d^1 and d^9 ions have the same set of terms and similarly for the other pairs listed.

Okay, so what happens when we consider crystal field effects?

RS terms (^{2S+1}L) split exactly the same way in a crystal field as do orbitals with the same value of *l*:

Free ion term	# of states (ML)	Oh crystal field terms
S	1	A_{1g}
Р	3	T_{1g}
D	5	T_{2g}, E_g
F	7	T_{1g}, T_{2g}, A_{2g}
G	9	$A_{1g}, E_g, T_{1g}, T_{2g}$

so the ³F ground term for a d^2 ion gives rise to:

 ${}^{3}T_{1g}$, ${}^{3}T_{2g}$ and ${}^{3}A_{2g}$ states in an Oh crystal field

Simplest case: d^1 ion (like Ti³⁺)

 $s = \frac{1}{2} (m_s = +1/2, -1/2); l = 2 (m_l = 2, 1, 0, -1, -2)$

therefore: $S = \frac{1}{2}$ and L = 2 which gives only one RS term: ²D

which in an Oh crystal field splits just like a simple d orbital into:

 2E_g and $^2T_{2g}$ and the transition observed by spectroscopy is from $^2T_{2g}$ to 2E_g