Chemistry 423/523 Organometallic Chemistry

Introduction

- concerned with complexes containing M-C bonds but usually expanded to include hydrides (M-H) and carbonyls (M-CO) as well.
- relevance:
 - industrial catalysis
 - pharmaceutical industry
 - organic synthesis
- organometallic chemistry of the d-block has a long history dating back to Zeise's salt (Na⁺[PtCl₃(C₂H₄)]⁻) in the early part of the 19th century but most of the developments in this field date from 1950 on.
- major developments since 1950:
 - synthesis and structure of ferrocene (Pauson, Wilkinson and Fischer, Nobel 1973)
 - Ziegler-Natta alkene polymerization (Nobel 1963)

A] Basic Bonding Concepts and M.O. Theory

A reminder of simple orbital interactions:

•symmetry is defined w.r.t. the internuclear axis

 σ , π and δ bonding orbitals can always be treated separately because overlap between different classes of orbitals is identically zero.

Criteria for strong orbital interactions:

- correct symmetry (σ , π or δ)
- spatial overlap must occupy the same region in space
- similar energy minimal interaction if very different in energy

Note what the HCl diagram is telling you:

- the HOMO is mainly CI in character and LUMO is mainly H in character
- the bond is very polar: H⁺Cl⁻ is not a bad description

Metal-Ligand Bonding

σ-Bonding: no different from organic chemistry M-C(alkyl) σ-bonding

M-C π -bonding can't occur: all available orbitals on C are involved in C-H (or C-R) bonding.

M-C(aryl) σ -bonding

M-C π -bonding does not occur because it would disrupt the aromaticity of the phenyl ring.

Trends in M-Me and M-H bond strengths

M-Me bonds are NOT weak

- eg. Ta-Me 260 kJ/mol Ge-Me 240 kJ/mol
- high reactivity is kinetic in origin

C-C single bond ~350 kJ/mol H-H single bond ~436 kJ/mol CI-CI single bond ~240 kJ/mol

M-H bonds are stronger than M-Me for a given metal

- eg. Zr-Me 244 kJ/mol Zr-H 249 kJ/mol
- Rationale: better overlap with spherical 1s orbital, no nonbonding electron repulsions and minimal steric repulsion for H

M-Me bond strength increases DOWN a group

- eg. Ti-Me 200 kJ/mol
 Zr-Me 244 kJ/mol
- Rationale: overlap between the C 2s and 2p hybrids and TM d orbitals improves with increasing principal quantum number (3d are too contracted, projection of valence d orbitals beyond filled s and p shells is greater for 2nd and 3rd row TM).
- Note this trend is the *opposite* of that observed in the main group: Si-Me 290 kJ/mol vs Pb-Me 130 kJ/mol

M-Me bond strength increases to the left in the d-block

(early metals form stronger bonds to carbon)

- eg. Zr-Me 244 kJ/mol Pd-Me 174 kJ/mol* (* P.E.M. Siegbahn, J. Phys. Chem. 1995, 99, 12723)
- Rationale: better radial extension for the d orbitals and a better energy match with C 2s and 2p orbitals (the latter reaches a maximum latter for groups 6-8).

The difference in M-H and M-Me ($\Delta_{Me/H}$) bond strengths increases from left to right across the d-block

• *Rationale:* late d-block metals (groups 9-10) possess more nonbonding electrons than do early metals and this results in greatly increased repulsions with alkyl nonbonding electrons (in C-H or C-C bonds); H has no such electrons so this effect does not apply. It should be noted that electron density in C-H bonds is known to stabilize early transition metal alkyls (agostic bonding).

this point is one factor favouring β -H elimination in late metals (there are other factors involved too):

in contrast, early metals are known to undergo β -alkyl elimination even in cases where β -H elimination is possible:

*n***-Bonding:** donor (ligand $\pi \to M$) OR acceptor (M \to ligand π^*)

π -donors:

eg. amides and alkoxides

bent alkoxide (σ-only) sp³ at O

linear alkoxide (σ and π donor) sp at O (there is a second set of orbitals perpendicular to that shown)

well supported by structural evidence:

Grp 4-6M-O-R linearGrp 8-10M-O-R bentM-NR2 planarM-NR2 pyramidal

pyramidal amide (σ -only) sp³ at N

planar amide (σ and π donor)

sp² at N

π-acceptors: eg. carbon monoxide and alkenes Carbonyl Bonding

a) σ-donation: from the HOMO of CO (5σ orbital) to an empty metal orbital (s, p or d) of correct symmetry

b) π -back donation: from a *filled metal orbital* to the *empty LUMO* of CO (2 π)

NB: Removes negative charge from the metal

Synergic effects:

π promotes σ

 back donation maintains electron density on C while preventing excessive negative charge buildup on M

σ promotes π

- donation makes the metal more electron rich and therefore more willing to engage in back donation
- The two types of bonding are **COOPERATIVE**
- This type of bonding is not unique to CO; it also applies to N₂, CN⁻, NO⁺ (an isoelectronic series) and many others

Net effect: electron density is removed from the weakly C-O bonding 5σ level and put it into the strongly C-O antibonding 2π level.

Predictions:

- M-C bond should be *stronger* and *shorter* than a normal single bond
- C-O bond should be weaker and longer than a normal triple bond
- Both of these predictions are born out by experiment:
 - **IR** for stretching frequencies (ie. bond strength)
 - X-ray for bond length

IR evidence is most compelling for CO stretching vibrations but M-C can also provide some useful information:

free CO $v_{CO} = 2143 \text{ cm}^{-1}$

Mn(CO) ₆ +	$v_{CO} = 2090 \text{ cm}^{-1}$	v _{MC} = 416 cm ⁻¹
Cr(CO) ₆	$v_{CO} = 2000 \text{ cm}^{-1}$	$v_{\rm MC} = 441 \ {\rm cm}^{-1}$
V(CO) ₆	$v_{CO} = 1859 \text{ cm}^{-1}$	$v_{\rm MC} = 460 \ {\rm cm}^{-1}$

Effects on C=C bond

σ-donation:

removes e⁻ density from the C-C π bonding HOMO

 π -back donation:

places e⁻ density in the C-C π^* antibonding LUMO

Both LOWER the C-C bond order \therefore weaker (longer) C-C bond and $\upsilon_{C=C}$ decreases by 50-150 cm⁻¹ in the IR on complexation (free C₂H₄ $\upsilon_{C=C}$ = 1623 cm⁻¹)

Bending back of alkene substituents.

Alkene bonding falls between two extremes:

Alkene substituents bent back (sp³ C)

- σ donation dominant
- π back donation dominant

A metallacyclopropane

Dual *π*-Donor/Acceptor Ligands:

Alkynes and Conjugated π -systems

Alkynes as 2 e⁻ donors:

real situation falls between two extremes

A metallacyclopropene

Conjugated diene complexes

Increasing energy dienes usually coordinate to metals through the s-cis conformer π_1 π_2 π_3 2 3 Δ Metal d_{yz} s-cis s-trans $\supset d_z^2$ d_{xz} orbitals (s, p_z) (p_y) (p_x) σ π π donation donation back

 π_4 ${\rm d}_{\rm xy}$ δ back donation donation

z

٧

X

Net effect:

C1-C2 and C3-C4 *bond lengthens* [π^3 antibonding] C2-C3 *bond shortens* [π^3 bonding]

• degree of bond lengthening depends on the metal and the other ligands present

• real situation is again found between two extreme views:

A metallacyclopentene

Cyclobutadiene complexes

Free cyclobutadiene is unstable

- 1956 Orgel predicted stable cyclobutadiene TM complexes on the basis of MO theory
- 1959 Criegee prepared 1st cyclobutadiene complex

Bonding is very similar to butadiene

Cyclic conjugated *π*-systems

polygon trick: a useful device for remembering the π -orbital pattern for cyclic conjugated systems

- with the polygon representing the cyclic π -system point placed point downwards, the orbital pattern energy pattern is given by drawing energy levels at each corner
- number of nodes increases by one for each energy step

