2. Nucleophilic attack on coordinated ligands

- direct attack can occur at any unsaturated ligand such as CO, alkenes, alkynes, arenes
- free π-ligands such as alkenes normally react with electrophiles NOT nucleophiles so this is an example of *'umpolung'*: polarity reversal due to coordination.

Factors favouring Nu⁻ attack at coordinated ligands:

- Coordinatively saturated metal center
- Pi accepting ancillary ligands (eg. CO)
- Electron poor metal centers / cationic metal centers
- Soft nucleophiles (hard nucleophiles usually attack the metal first)

Example: free CO and all but the most activated alkenes only react with very strong nucleophiles; free alkenes react with electrophiles

BUT ALL react readily with mild nucleophiles when complexed to electron poor metals

a) Nucleophilic attack at coordinated CO and RNC

$$L_n(CO)_x M - C \equiv O + NaHB(OR)_3 \longrightarrow L_n(CO)_x M - C H$$

M = Cr, W, Fe; L = CO or PR₃

$$CO + H_2O \implies CO_2 + H_2$$

b) Nucleophilic attack at coordinated π -ligands

Generally speaking, free π -systems are susceptible to electrophilic attack but their coordinated counterparts, nucleophilic attack; it does depend on the metal and ligand set some:

Davies-Green-Mingos (DGM) rules:

predict *which* unsaturated ligand will be attacked AND the *regiochemistry of attack*.

- Rule 1 Even before odd
- Rule 2 Open before closed
- Rule 3 Regiochemistry: open, even polyenes are attacked at the terminal position; open, odd polyenes are not normally attacked at a terminal C unless the metal fragment is strongly electron withdrawing
 - Even and odd refer to the number of C in the π -system
 - **Open** and **closed** refer to whether the π -system is a **closed loop** or **open-ended**

Even closed

Even open

Even open

η6

Figure 8-4 Classification of Pi Ligands

Rationale for the DGM rules

Rule 1 Even before odd:

- HOMO of even is doubly occupied while HOMO of odd is singly occupied
- more charge can be transferred from an even polyene resulting in a more positive centre for enhanced Nuattack

Rule 2 Open before closed:

- closed rings have more even charge distribution than open polyenes
- some sites on open polyenes will therefore bear more positive charge than in closed ring systems

Rule 3 Regiochemistry of attack:

 consider the nature of the Nu⁻ / ligand interaction: Nu⁻ is a donor and donates electron density into an empty M.O. on the ligand (usually the LUMO).

for an even polyene like butadiene this will be Ψ_3 . Since Ψ_3 has larger lobes at the terminal C, the best overlap will occur if the Nu⁻ attacks at this site.

- for odd polyenes (eg. allyl) the LUMO could be either Ψ₃ (if the ene has anionic character) or Ψ₂ (if the metal is a very good acceptor).
- if the LUMO is Ψ_3 , attack occurs at the central C because this has the biggest lobe and also no formal negative charge.
- if the LUMO is Ψ_2 , attack occurs at the terminal C because this has the largest lobe (there is a node at the central C in the allyl case)

(i) alkenes

Fp⁺ complexes most widely used examples

Attack is anti

Preference is for the *most substituted alkene C*

(ii) η³-allyls

If the allyl is relatively *electron rich*:

Attack at central C

8.31

If the allyl is relatively *electron poor:*

Attack at terminal C

(iii) η^4 -dienes

Note: Even before odd; open before closed

(iv) η^{5} -cyclopentadienes

(v) η^6 -arenes

rate: X = F > CI > Br > I

rate is comparable to free $x = \sqrt{-1}$

Semmelhack (Princeton): carbanion attack by 'soft' nucleophiles

Works for $R = CMe_2CN$, CH_2CN , $CH(CO_2Me)_2$ and other stabilized carbanions

- 3. Nucleophilic abstraction: part or all of the ligand is removed from the metal during nucleophilic attack
 - Nu⁻ can be metal or organic based:

4. Electrophilic Reactions

i) Electrophilic addition

 attacking E⁺ can include metallic ions or complexes (*eg.* HgX⁺), organic electrophiles (*egs.* R₃O⁺, δ⁺ C of CH₃I) or non-metallic electrophiles (egs. H⁺, NO₂⁺, CO₂, X₂, etc.)

ii) Electrophilic abstraction

Most common example: cleavage of M-C bonds by acid

direct attack at C (carbanion character; HOMO has a large coefficient at C)

initial protonation at metal = oxidative addition (HOMO has largest coefficient at M; i.e., electron rich metal) **retention** of configuration during elimination

Hydride abstraction by electrophilic carbocations (usually Ph₃C⁺) is another well-known example:

