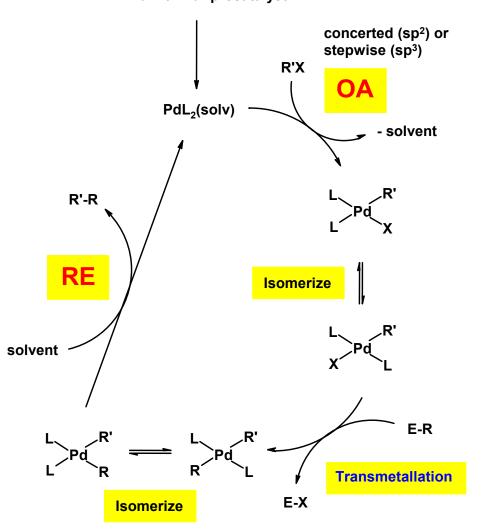
7. Palladium-catalyzed cross couplings: C-C couplings, usually at least one sp² C

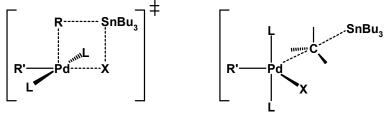

- general mechanism is the same for different variants; simply differ in the *transmetallation reagent*
- the **Heck** rx and **Buchwald-Hartwig amination** are related (but no transmetallation)

Reaction	E	R' type	R type	Promoter
Stille	SnBu ⁿ 3	wide range	sp>sp²>aryl> allylic>sp³	Cul, LiCl
Hiyama	SiR" ₃	sp², aryl aryl-I best	sp², aryl	F ⁻ (required)
Suzuki	B(OH) ₂	sp², aryl, alkyl	sp², aryl, alkyl (as BR ₃ type)	base (NaOH, Cs ₂ CO ₃)
Kumada Negishi	MgX ZnX	various	various	
Sonogashira*	Cu	sp²>aryl e⁻ poor>e⁻ rich	CCR e ⁻ rich>e ⁻ poor	Cul, base

(* without Pd this is the Stephens-Castro)

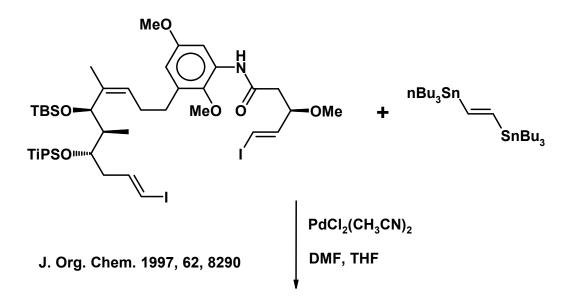
General mechanism:

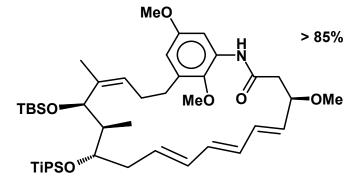
- oxidative-addition can be step-wise or concerted depending on R'X so inversion or retention of configuration observed
- L is generally a phosphine although NHC have been used
- Pd²⁺ precatalysts work quite well provided there is a means for *in situ* reduction to Pd⁰ (not usually too difficult)
- bulky alkyl phosphines (eg. PBu^t₃, PCy₃) work best: bulk enforces a lower coordination number and strong donor ability ensures an electron rich metal capable of OA
- many promoters or activators are known that increase rates
- for R'X, order usually parallels leaving group ability:
 I->OTf->Br->>Cl-


Pd²⁺ or Pd⁰ precatalyst

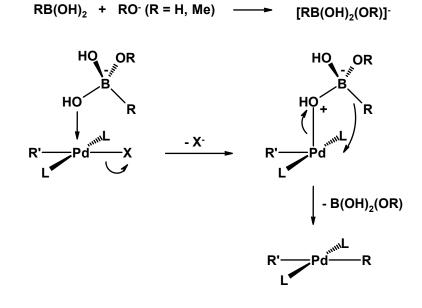
Examples

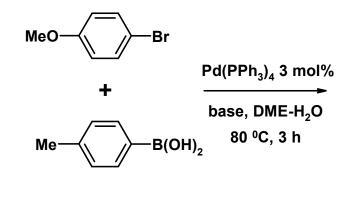
Stille coupling

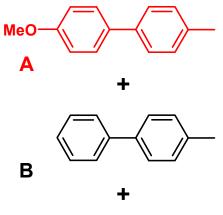

- carried out in polar solvents •
- two transition states in the transmetallation • step and they lead to different stereochemistry - explains the observation of opposite stereochemistry being reported with same partners but different conditions

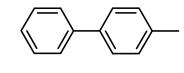


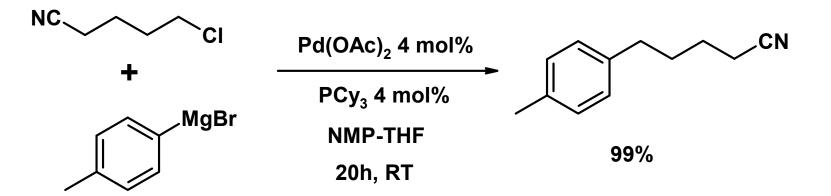
S_E2 (cyclic)


S_E2 (open)



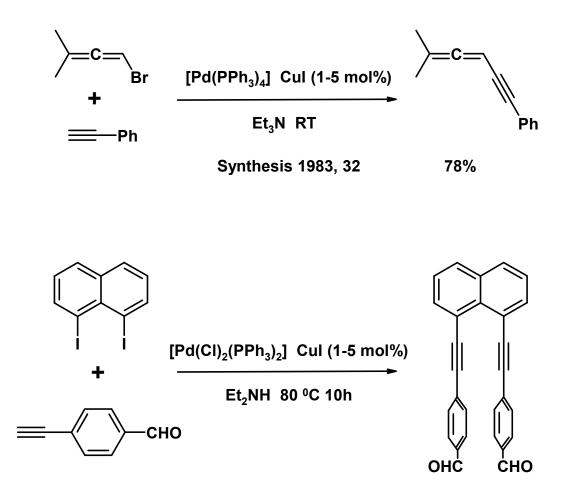

Suzuki


- aryl exchange with PPh₃
 is observed where
 transmetallation is slow
- stronger bases favour faster transmetallation


base	conversion	Α	в	С
Na ₂ CO ₃	100%	66	33	1
K₃PO₄	88	94	4	2
NaOH	82	92	1	7

С

Kumada (M= Mg) and Negishi (M = Zn)



Angew. Chem. Int. Ed. Engl. 2002, 41, 4056

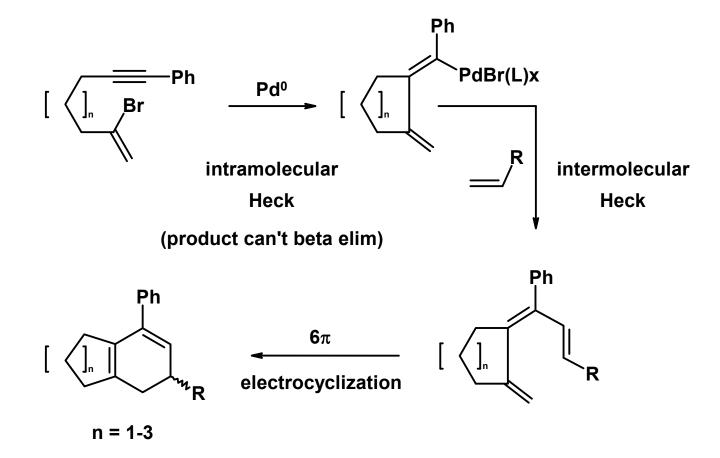
Sonogashira

- **Cu(I) alkynide** is the transmetallation species increasing base strength of the amine speeds up the reaction, presumably because it is better able to deprotonate the alkyne and form a Cu-CCAr species
- Cul may act as a phosphine scavenger helping to mitigate phosphine inhibition effects
- amine inhibition is observed

not too bad as amines are poor ligands Pd⁰ but reactions do proceed faster in mixed amine/THF than in pure amine

Bull. Chem. Soc. Jpn. 1982, 55, 2434 35%

Heck reaction (via carbopalladation of an alkene)


$$R = + R'X \xrightarrow{Pd^{0}} R'$$

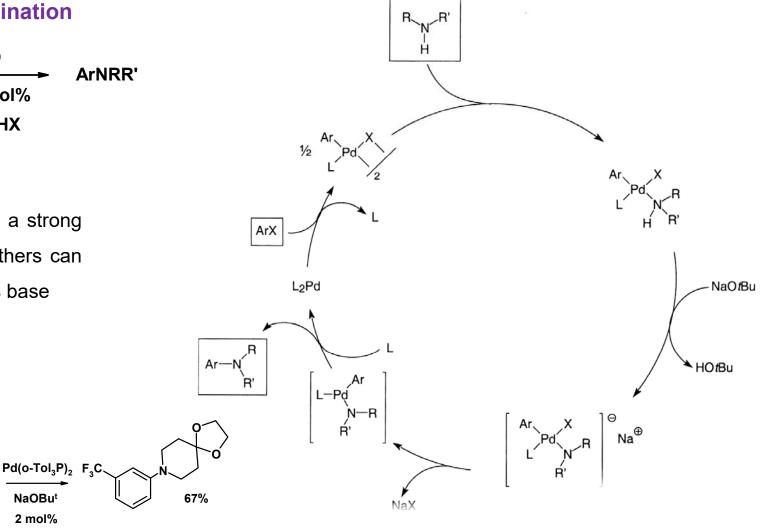
- first reaction of this family developed (c. 1970) but fundamentally different from others in that it involves alkene (or alkyne) insertion
- works best on monosubstituted or 1,1-disubstituted alkenes to form β-coupled product
- same reactivity order for R'X as in other reactions: X = I>OTf>Br>>CI
- electron rich and bulky phosphines work best

concerted (sp²) or stepwise (sp³) R'X **R' OA** $PdL_2(solv)$ - solvent R base-assisted .**R'** RE (a beta H elim) Isomerize solvent -R' R' :Base ^{₡₥}₽ Dd X Η H_R R R' Insertion Ligand substitution Ŕ L

Pd²⁺ or Pd⁰ precatalyst

Heck cascades useful in synthesis:

Buchwald-Hartwig Amination


Pd⁰ ArX + RR'NH ArNRR' 0.5-5 mol% R = aryl, alkyl base, -HX R' = alkyl, H

some catalysts require a strong • base like KOBut but others can utilize excess amine as base

NaOBu^t

2 mol%

yields typically > 90% •

F₃C

Tet. Lett. 1996, 37, 6993