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Abstract

We present a model of early auditory processinggutie Symmetric Diffusion Network (SDN)
architecture, a class of multi-layer, parallel wisited processing model based on the principles
of continuous, stochastic, adaptive, and interacgirocessing [Movellan & McClelland, 1993].
From a computational perspective, a SDN can be adews a continuous version of the
Boltzmann machine; that is, time is intrinsic te tynamics of the network. Furthermore, SDNs
embody Bayesian principles in that they developrimal representations based on the statistics of
the environment. One of the main advantages of SBNMsat they are able to learn probabilistic
mappings (i.e., mapping fromsmwhere m<<n) for a single input pattern, a taskossible for
many other classes of neural networks. SDNs aiettausing the Contrastive Hebbian Learning
(CHL) algorithm which is based on positive and niegalearning phases. The basic model has
been trained on two separate tasks: (i) a sign@ctlen task, and (ii) a phonetic/nonphonetic
discrimination task. In the signal detection takle model was able to capture the accuracy data
of human patrticipants, but only grossly approxirdgtarticipants’ reaction time data. Reanalysis
of the human data, however, showed that the neteammectly predicted the reaction times in the
early phases of the experiment. In the phonetigthonetic discrimination task, the network was
able to show both categorical and continuous pémrepf the stimuli. Importantly, the model
predicted learning curves for categorical perceptibnonphonetic stimuli that was subsequently
confirmed in a human learning study. It is conchiideat this simple type of network based on
correlational learning is able to effectively modally auditory processing.

1. Introduction

Speech is one of our most important forms of comioation. Decoding the speech signal is a
complex process requiring many neurophysiologitajess, from simple signal decoding in the early
auditory pathways, to higher cognitive processed thterpret the semantics and pragmatics of the
intended message [Clark & Clark, 1977]. At the damplevel, speech decoding—as opposed to general
auditory processing—consists of identifying spegifnonemes of the listener’s language. These phemnem
must initially be learned, and then correctly idiged in an uncertain environment. In this papee, use a
simplified model of early auditory processing taleess issues of phonetic learning and of identifica
of phonemes in noisy inputs.

The model employs a Symmetric Diffusion Network (§Da class of multi-layer, parallel
distributed processing model based on the pringipfecontinuous, stochastic, adaptive, and interact
processing [Movellan & McClelland, 1993]. From amquutational perspective, a SDN can be viewed as
a continuous version of the Boltzmann machine; ihaime is intrinsic to the dynamics of the netlwo
Furthermore, SDNs embody Bayesian principles inttiey develop internal representations based ®n th
statistics of the environment. One of the main athges of SDNs is that they are able to learn
probabilistic mappings (i.e., mapping frommmwhere m<<n) for a single input pattern, a tasgassible
for many other classes of neural network. One dmaihge of SDNs is that they have been difficult to
train on larger data sets, and they have been ynas#d with static inputs. Recent work [Medler &
McClelland, 2001] showed that when biologicallygined constraints (i.e, activations within the rang
[0,1], positive between-layer projections, lateiahibition) are applied to SDNs, their effective
performance is increased substantially in termthefnumber of patterns on which they can be trained



the rate at which patterns are learned, and tHhalityato separate out independent sources in an
unsupervised manner.

In addition to these biologically inspired archttgal constraints, the network was trained using a
biologically plausible process known as Contrastiebbian Learning (CHL) that embodies the maxim
of “units that fire together, wire together”; tHaf weights between coactive units are increasbeéreas
weights between uncorrelated units are decreasebl[HL949]. To avoid some of the problems inherent
in simple Hebbian learning, CHL uses positive aedative learning phases that act together to dxtrac
the signal from the environment [Peterson & Hartmi&@89; Movellan, 1990].

In these studies, we take advantage of the intriteshporal properties of SDNs to process time-
varying input, which allows auditory input to beepented to the network as a continuous spectrot@mnpo
stream. This approach stands in contrast to maeyiqus computational models of speech perception
that used abstract sets of phonetic features ag [epy., Anderson, Silverstein, Ritz, & Jones, 7,97
McClelland & Elman, 1986; but see Damper & Harn2d00]. The use of realistic spectrotemporal
inputs allows the model to be presented with eyattte same stimuli (including signal and acoustic
noise) given to the human participants. This apgho@ also more general in that it permits future
modeling studies of tasks involving nonspeech augstimuli.

The model has been trained on two separate tggka: phonetic/nonphonetic discrimination task,
and (ii) a signal detection task. In the first tathe model was trained to capture the processes of
categorical and continuous perception of phonemitreonphonemic stimuli [Liebenthal, Binder, Spitzer
Possing, & Medler, 2005]. The network was trainethwlynamic spectrotemporal auditory forms
representing the speech sounds /ba/ and /da/, gindhe anchor points of an acoustically-matched-no
phonetic continuum. The network was first trained the phonetic stimuli. Training was stopped at
specific times, and the model performance was asde§ he learning curves on the identification task
showed a progression for continuous to categofeateption with overtraining. The network was then
trained on the phonetic and non-phonetic stimuthwvein interleaved ratio of 9:1 to simulate diffeiah
experience. Following training, the model showetggarical perception of the phonemes and continuous
perception of the non-phonetic sounds. To testribdel’s prediction of the learning curves, partifs
were trained on the same non-phonetic stimuli, tested on the identification task at specific firajn
points. The participants produced qualitativelyiEimlearning curves as the model, eventually shgwi
categorical perception—as measured by the ideatiific task—of the non-phonetic stimuli.

In the second task, the model was trained withstmae dynamic spectrotemporal auditory forms
representing the speech sounds /ba/ and /da/ the ifirst simulations. After learning to identifiidse
sounds, the model was tested on a discriminatisk wath varying amounts of masking noise added to
the stimuli. Performance by the model and actil@égyels in the model units were compared to
psychophysical data obtained previously from normalbjects tested on the same stimuli [Binder,
Liebenthal, Possing, Medler, & Ward, 2004]. Thewwrk qualitatively reproduced the accuracy and
reaction time data of the human participants.

2. General Methods

2.1 Network Dynamics and Learning

Symmetric Diffusion Networks are based on contirsutine-varying activations and are governed
by Equation (1)

Aa, (t) = A[net (t) - rét; (t)] + o Q/ALZ, (1) (1)
where, net =h(2?:lajvvij), nét, =1/g, Of (a;) =1/g; Oog[(a, — min)/(max-a,)], gi is a gain

function, h(u) = 1-exp(-u), and Zi(t) is the stardi&aussian variable with zero mean and unit vagan
The last term in the equation provides the netwasith a stochastic and is essential for allowing the
network to learn multiple outputs for a single ibpu



SDNs are trained with the Contrastive Hebbian LisarfCHL) algorithm [Peterson & Hartman,
1989; Movellan, 1990]. The CHL is based on two isagi) a plus phase in which the training patterns
are clamped (i.e., clamped input and output uratsy, (i) a minus phase in which the network iswa#d
to run free (i.e., when at least one set of usitsriclamped). Furthermore, SDNs can be trainethierea
supervisory mode, or an unsupervised mode. In sigser learning, an input and output pattern are
clamped onto the relevant units, the network isvedld to settle for a pre-determined time, and co-

occurrence statistics are collected (iE}(aﬁaj+ )/s) where s is the number of collected samples. The
output units are then unclamped, the network gl to settle again and co-occurrence statisties (
Z(ai‘aj')/s) are re-sampled. In unsupervised learning, thevorét is allowed to run completely free
(i.e., no clamped patterns on either input or outmits) during the minus phase [Medler & McClellan
2001].

Once collected, the minus phase is subtracted fhenplus phase. In this way, the base activities in

the network (minus phase) are subtracted from #we [activities plus the applied pattern to leaee th
activity of the pattern alone. Consequently, thenge in weight between two units can be computed as

pw; = (Y @'a)) /5= Y (@ a) /s) )
wheree is a small constant typically referred to as #arhing rate parameter. Finally, the weight changes
are mediated by a momentum temmwhich determines how much influence the curreeigi change
has on the averaged weight change. That is, thghtvat time t is computed as:
w; (1) = a(Aw; (1) + @-a)(Aw; (t 1) 3

2.2 Network Architecture

The networks had 100 Input units (representingueegies 1-40 Hz, 41-80 Hz,..., 3961-4000
Hz), 20 Intermediate units, and 10 Output unitshim first model, the four target patterns (/ba@d// np1,
np8) were assigned random binary patterns acres&@hunits; in the second model, 2 banks of 5 units
were used to classify the input pattern as eithaf dr /da/. The network had lateral inhibitionhirit each
layer, positive connections between layers, and-esgitatory connections. Initial weights were
randomized from a square distribution between@}pr inhibitory connections or [0, +1] for excitay
connections. Finally, unit biases were initializeetween [-0.5, +0.5]. It should be recognized thi
model does not try to capture all aspects of andipyocessing, nor decision processes, but merely
captures those putative processes in which wepmeifcally interested. Much more detailed moddis o
auditory processing exist, but such models arendisrd-wired [e.g., Husain, Tagamets, Fromm, Braun,
& Horwitz, 2004], and are therefore limited in teywf addressing learning issues.

2.3 Stimuli

The same stimuli presented to the participanthéntivo studies [Binder et al., 2004; Liebenthal et
al., 2005] were presented to the network. Audiesfivere sampled at 44100 Hz and processed through
Praat 4.0.5Http://www.praat.orf) to produce spectrograms, which are time-varyiegresentations of
power spectra. The stimuli were analyzed at 5 migee steps using a 20 msec Gaussian filter, and
frequency steps of 40 Hz ranging from 0-4000 Hz §pectrograms were then presented to the network
as time-varying input signals at 5 ms time stepkém into 100 equally spaced 40-Hz frequency bins.
For the first study, 16 stimuli were created, tighephonetic stimuli and the eight nonphonetionsti.

In the second study, a total of 12 input patternsrewcreated: two training patterns (veridical
representations of /ba/ and /da/), and ten tegatiterns (the five noise plus signal versions af 4nd
/da/). Input activations were normalized for eauntlividual input pattern; that is, activations raddeom
0.0 to 1.0 for each pattern. Sample training pastéor the phonetic and nonphonetic stimuli arexshim
Figure 1. Formants are represented by the darkefsbaf activity.
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Figure 1 Sample inputs showing the time varying patternssgnted to the networks. Amount
activation is indicatedby the darkness of the square. The two phonetitudtiare in the top row, and tl
two nonphonetic stimuli are in the bottow row.

3. Continuous and Categorical Perception [Liebenthal et al., 2005]

One phenomena closely associated with speech pentep categorical perception. Categorical
perception refers to a poor ability to discrimindigtween members of the same category, yet a good
ability to discriminate between members of différeategories [MacMillan, Kaplan, & Creelman, 1977,
Pisoni, 1971]. Categorical perception may be a ssry component of speech recognition as multiple
acoustical instances (either by different speakensy slight mechanical variations in the vocattraer
tongue placement of the same speaker) must be mappgbe same phoneme for proper identification.
Consequently, as applied to speech, categoricakpton implies good discrimination between diffdre
phonemes produced by the same speaker and poomuinstion between two tokens of the same
phoneme spoken by the same speaker. Continuousppiert, on the other hand, can be described as an
approximate adherence to Weber's law, accordinghich the difference limen is a constant fractidn o
stimulus magnitude.

One way of assessing categorical perception igdm ta participant on two end points of a
continuous auditory spectrum (say /ba/ and /dad) twen to test the participant on identificatiordan



discrimination of stimuli that successively moverfr one end of the spectrum to the other (e.g., ba+0
ba+1, bat2, ba+3, da+3, da+2, da+1, da+0; wher® bad da+0 are the anchor points of the spectrum).
In ideal categorical perception, participants stquioduce a step function for identification accyran

that all ba+ stimuli should be categorized as &vaf all da+ stimuli should be categorized as /dianudi.

For continuous perception, however, accuracy shdelldw a linear function from one end of the
continuum to the other.

Liebenthal et al. [2005] tested participants’ aodit perception while undergoing functional
magnetic resonance imaging on both a synthetic ghan continuum and a spectrally matched
nonphonemic continuum. The phonemic continuum veset on the phonemes /ba/ and /da/ which form
a continuous auditory spectrum where the secomddot transforms from a rise for /ba/ to a fall fda/.
Eight equally spaced stimuli from /ba/ to /da/ (elip+1, ba+2, ba+3, ba+4, da+4, da+3, da+2, da+1;
where ba+1 and da+1 are the anchor points of thetispn) were created by systematically modifying th
F2 formant. The nonphonemic continuum was creayesplectrally inverting the first formant (F1) okth
phonemic sounds, increasing the slope of the foimthant (F3) transition, and adding a dip to Fihaf
second anchor. These latter two manipulations &sme the discriminability of the nonphonemic
continuum to be comparable to the phonemic contimulihe nonphonemic continuum was similarly
interpolated by varying the center frequenciesheffirst five formants of the nonphonemic anchanf
during the transition segment in equal steps. Tdmicbbehavioral results from Liebenthal et al. 00
showed the classic identification and discriminatiorves (See Figure 2).

Previous models of auditory categorical perceptiame been based on associative memories, and
showed that categorical perception would occur wherdels were trained on two end points of a
continuum and then tested on equally spaced pbeattgeen the proto-types [Anderson et al., 1977¢ Th
TRACE [McClelland & Elman, 1986] model used bothttbm-up and top-down influences to model
categorical perception at the phonetic level, bidt dot cover continuous perception. Still, other
researchers [Guenther & Gjaja, 1996; Bauer, DeHe&&rmann, 1996] have used self-organizing maps
trained with differential inputs (reflecting diffemces in auditory experience) to produce categoaiod
continuous perception of sounds. Finally, in a caghpnsive review of models of categorical perceptio
[Damper & Harnad, 2000], it has been argued thétguaical perception is an emergent property of
learning systems in general, and that computatiomadlels provide a much needed way of studying
categorical perception.

One of the most salient aspects of previous modeld human studies of categorical and
continuous perception is that training on the nestighuli (continuous stimuli) often is stopped aftee
model/participant reaches a specific criterion sash 90% correct. In this model and subsequent
experiment, we use overtraining on the novel stirmoder the assumption that regular speech sounds
(i.e., sounds that produce categorical perceptare) essentially overtrained from everyday exposure.
Furthermore, we focus our training on the anchantgmf the stimulus continuum, as opposed to title f
continuum.

3.1 Method

The stimuli and network architecture are describethe general methods section. For training
purposes, we sett=0.1, g = 1o0s 0.05,e = 0.001, and = 0.1. Two different simulations were actually
performed for this stimulus set. In the first siation, only the anchor points of the phonetic amntim
were presented to the network for training. Thevoet was initially given unsupervised training dret
speech phonemes for 20 epochs, followed by sumehisining for 1000 epochs (overtraining). The
network performance was evaluated on the entiraséatat five different time points during training;
during this testing phase, the network did notidae., weights were not updated).

In the second simulation, we took advantage optiebabilistic properties of the SDN, and trained
on interleaved speech and non-speech stimuli. V¥septed the stimuli with a 9:1 ratio such that the
speech stimuli would be overtrained by the timertbespeech stimuli reached a criterion of gredtan t
90% correct on anchor points. Following traininige thetwork was tested for identification of all 16



stimuli (8 phonetic, and 8 nonphonetic stimuli).bloth simulations, we trained 10 separate, randedniz
networks and averaged their responses.

To evaluate network performance, responses wererded using the equivalent of a two-
alternative forced choice paradigm. A differentiatscore [McClelland & Chappell, 1998] was computed
for the two alternatives

D =[] = P(T) = P(A) (@)

where P(Ti) is the probability of the target patteand P(Ai) is the actual probability of the geated
pattern. In this case, the target pattern was driheoanchor points. A decision was made when the
absolute value of the log ratio of the two scoreseeded a threshold.

‘Iog(D/ba/)—Iog(D/da/)‘ECRIT (5)

Note that this decision process is based solelfthenactivity levels in the network and an external
criterion that is set at a constant level for eiachvidual network.

3.2 Results and Discussion

3.2.1Simulation 1: Learning Phonetic Categories

In simulation 1, the network was simply trainedtba phonetic pair to see whether or not an SDN
would learn categorical perception. Figure 2a shthesperformance of the network as a function ef th
number of training trials. Before supervised tran{0 epochs), the network is essentially at charscie
has not learned to map the patterns onto the respoyet. By 250 epochs of supervised training, the
network exhibits continuous perception of the stimiti should be noted that by this time, the netiko
was identifying the anchor points with approximgat8b% accuracy. If we had stopped training at this
point because the performance had reached a setiami then we would have concluded that the
network was unable to show categorical perceptfastiouli. With further training, however the netuo
begins to show categorical perception, as defined bonlinearity in the identification curve. Aft2000
epochs of training, the network shows the classiea¢gorical perception identification function g€se
Figure 3). It should be emphasized that the netwa@ only ever trained on the anchor points (ba¥D a
da+0), and never on any of the intermediate stifai+1, ba+2, ba+3, da+3, da+2, da+1).
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Figure 2. (a) Performance of the model trainedrenghonetic stimuli. Note the progression from tordus to
categorical perceptiowith increased training. (b) Performance of humanghe nonphonetic stimuli showil
progression from continuous to categorical peroepiiith overtraining.



3.2.2Simulation 2: Learning Continuous and Categorical&eption

In simulation 2, the network was
trained with both the phonetic and non- 100
phonetic stimuli. The network was trained
with the phonetic stimuli on 90% of the
trials, and the non-phonetic on 10% of the
stimuli, until the non-phonetic stimuli
reached criterion of 90% correct on the
anchor points. Again, the network was only
trained on the anchor points of the
continuum, and not on the intermediate
stimuli.

Figure 3 shows the performance of the
model on the phonetic (P) and the
nonphonetic (NP) stimuli. For comparison,
the human performance data from oL
Liebenthal et al. [2005] are shown as well. ba+0
The first thing to note is the fairly good Stimulus
correspondence between the performance OfFigure 3 Performance of the human participants (H) anc
the mpdel and the performanc_e of the h_um"?mmodel (M) on the phonetic (P) and nonphonetic (
participants. There are two discrepancies in jgentification task.
the performance of the model and the
participants. The first is on the da+3 stimuli foe phonetic stimuli, where participants were arbb8%
in calling it a /ba/ stimulus, whereas the modekwaore likely to identify it as a /da/ stimulus.€Th
second discrepancy is on the fact that participhatsa harder time identifying the nonphonetic stim
on the /da/ end of the scale, as shown by thetlfettparticipants were only at approximately 20% fo
identifying the da+0 nonphonetic stimuli. More imn@mtly, however, this simulation shows that a
network can exhibit both categorical and continupesception of stimuli. This result is due mainty t
overtraining of a stimulus to produce categoricakcpption, and training to criterion to produce
continuous perception.
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3.3 From Continuous to Categorical Perception

One of the predictions that can be taken from thdehin Simulations 1 and 2 is that overtraining
on the anchor points of a stimulus should be ableréduce categorical perception. This is in cattta
previous research that found that categorical péiae could not be learned simply by training oe th
anchor points [e.g., Guenther, Husain, Cohen, &®itunningham, 1999]. This previous research,
however, only trained participants to criterioreyhdid not overtrain their participants.

In this pilot experiment, participants were preséntwith the same nonphonetic stimuli as
Liebenthal et al. [2005]. Initially, participantseve given minimal exposure to the stimuli, and ttessted
on the identification task. Participants were thramned on the anchor points and tested afteresehing
periods.

3.3.1Methods

Participants were six normal, healthy volunteersef8ales) with no reported hearing difficulties.
Informed consent was obtained from all participaiise stimuli were the same nonphonemic anchor
points and testing stimuli as in Liebenthal et [@D05], and used in the modeling simulations. All
auditory stimuli were presented over KOSS UR20 phades (Milwaukee, WI). Presentation of stimulus
and data collection was controlled by E-Prime safew(v 1.1; Psychology Software Tools, Inc.) run on
an IBM A22m laptop computer.



The experiment had three components: (i) initigdasure to the anchor points, (ii) identification
testing of the full continuum, and (iii) trainingnothe anchor points. During the initial exposure,
participants were given three samples of eachefwlo anchor points labeled as “sound 1” or “soRhd
participants passively listened to these sampledowing this initial exposure, participants weested
on the full continuum of sounds. Each sound wadaany presented a total of 10 times (80 trialsljota
Participants were asked to identify the sound #eel'sound 1” or “sound 2" by using either thet lef
the right mouse button. No response feedback wangluring testing. Response selection and reaction
times were recorded.

After initial testing, participants were then giv2@ random samples of the two anchor points (10
of sound 1, 10 of sound 2) and were asked to ifjettte sounds as sound 1 or sound 2. Accuracy
feedback was provided during training. Participamége then tested again on the full continuum. This
training/testing procedure was for a total of ftiures. The proportion of “sound 1” responses was th
calculated for each testing period and plotted.

3.3.2 Results and Discussion

The results for the five testing period are shownFigure 2b. As can be seen, after limited
exposure to the anchor points, participants arecsis at chance for identifying the individual rsiili.
With training, however, participants begin to shoentinuous perception of the stimuli (time point 2
and 40). It should be noted that participants altlebenthal et al. study were given a total otréfhing
trials. Further training on the stimuli, howevenpss a progression towards more categorical permepti
as defined by a step-like function between stimibéi+3” and “da+3”. The entire testing and training
session approximately 20 minutes, indicating tlzégorical perception of novel stimuli can be legn
rapidly.

We showed in these simulations how a simple contipami@ model can learn to discriminate
between spectrograms of the synthetic speech sdbatland /da/. Initial perception of these phoneme
was continuous as measured by the identificatiomeclVith overtraining, however, perception of #hes
phonemes became categorical. We then trained thielnom the phonetic stimuli and spectrally similar
non-speech sounds, until criterion was reachedhi®mnon-speech sounds. It is important to notettiet
speech sounds were being overtrained during thiegas they were being presented nine times &# oft
as the non-speech stimuli. Following training, thedel showed categorical perception of the speech
sounds, and continuous perception of the non-spemafds.

A pilot study with human participants was then aactéd to test the predictions of the model in
terms of the learning curves showing continuousategorical perception. Participants were repegated|
trained on the anchor points of the nonspeech mamth and then tested on the entire continuum. Resul
show that initially, participants only showed contbus perception of these nonspeech sounds. With
repeated exposure, however, these nonspeech soamdsto be perceived categorically. These results
are somewhat at odds with previous studies tha¢ BRewn training on the anchor points is insuffitie
to produce categorical perception [Guenther etl&99]. These previous studies, however, only &@in
participants to a specific criterion. These curmesults suggest that categorical perception majuleein
part to (over)exposure to auditory stimuli.

4. Auditory Object Identification Study: Binder et al. [2004]

Binder et al. [2004] conducted a fMRI study in whijgarticipants had to discriminate between two
synthetic speech syllables, /ba/ and /da/, whidiferégid only in their second and higher formant
transitions (see Figure 1a & 1b). Participants wgven a target syllable—either /ba/ or /da/—to rwon
Trials consisted of presentation of one of theahj#s, followed by a 200-ms interstimulus intertaén
presentation of the other syllable. Participantidated whether the first or second syllable presewas
the target syllable. To manipulate task difficultye test stimuli were presented at a constantB%dd a
simultaneous white noise mask was presented aingalgvels that produced signal/noise ratios (SHR)



+24 dB, +14 dB, +4 dB, -1 dB, or -6 dB. A simpled#@ary detection task (respond to a sinewave tone)
was also presented to the participants to provideaseline measure for comparisons to the SNR
conditions. Participants completed 100 trials mamsing run (20 at each noise level), and a tdtabo
runs. The behavioral results from this study apeed in Figure 4a. As the level of the noise mask
increased (i.e., a decrease in the SNR), accuramedsed in accordance with a standard signaltietec
curve, whereas RT followed an inverted-U-shapedtian.

We designed a computational model of auditory idfieation and tested the model on a task
analogous to the one used by Binder et al. (200#9.model was first trained to criterion on theidieal
representations of /ba/ and /da/, and then testeth® noise-masked stimuli. Model performance was
behaviorally evaluated in terms of accuracy and RT.

4.1 Training and Testing Procedure

The stimuli and network architecture are descrilbethe general methods section. For training
purposes, we sett = 0.1, g = 107 0.05,6 = 0.001, andx = 0.1. Initially, the network was presented
with 25 epochs of unsupervised training. The nekweas presented with a training pattern clamped and
no output pattern during the plus phase, and noda patterns during the minus phase. Within each
epoch, each pattern was sampled once (1 restadtha network activations were updated over 1@ tim
steps (with co-occurrence statistics collected dherlast five time steps). Weights were updatedr af
each pattern presentation. The network was thesepted with supervised training for 100 epochsutinp
and output patterns clamped during the plus phadg,input pattern clamped during the minus phase).
Again, each pattern was sampled once during thehe@md allowed to settle for 10 time steps with co
occurrence statistics collected over the last fimee steps. Weights were modified after each patter
presentation. Following training, the network disgnated the veridical training patterns with 100%
accuracy. The same network parameters given abeve used for the test stimuli, although weights
were not updated during testing. Ten networks, ditferent initial starting weights, were trained the
problem. The 10 test patterns (2 syllables, eactednwith 5 levels of noise) were then presenteekith
network 50 times for testing, and responses wererded using the differentiation score elaborated i
Equations 4 and 5 to simulate the two-alternatbredd choice paradigm.

Sample decision curves for the /ba/ and /da/utiat the various noise levels are shown in
Figure 5. One notable difference between the maddl participants in Binder et al. [2004] is thag th
model does not have any learning processes orioritadjustments during the testing phase, wheteas
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Figure 4. (a) Accruacy and RT performance fromphdicipants in Binder et al. [2004]. (b) Perfaance
of the model on an analogous task.



participants were free to adjust their decisioriecia and task strategy. This discrepancy betwhen t

actual experiment and the simulation is addregséioli Results and Discussion section.
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Figure 5. Sample differentiation scores and degisiiterion for the /ba/ and /da/ stimuli with varg noise.

4.2 Results and Discussion

Ten networks, with different initial starting weigh were trained to discriminate the /ba/ and /da/
stimuli. Each network was given unsupervised trajrfor 25 epochs, and then 100 epochs of supervised
training. Following training, all networks discrindted the veridical training patterns with 100%
accuracy. The network performance results from ktimns using the noise-masked inputs are shown in
Figure 4b. The network produced the same qualédtighavioral performance—in terms of accuracy and
RT-as the human participants shown in Figure 4a.

Network accuracy followed a standard signal
detection curve, with 100% accuracy at the low

noise level and chance performance at the higher '
noise levels. Reaction time, as measured by the
number of network time steps before response 650
criterion was reached, exhibited an inverted-U- &
shape function, but with one notable difference £ |
compared to the human participants. Specifically, g
the peak of the RT function produced by the
network was at the -1 dB SNR condition rather S 57
than at -4 dB. g
The small discrepancy in the simulated  soo-
RT response over the output units could be due to
the design of the original fMRI study. Recall that .

in the fMRI study, participants completed 600 608 1dB  +4dB  +14dB  +240B

trials across six scanning runs (100 trials/run). Signal/Noise Ratio

During this extensive testing, it is likely that Figure 6 Reaction time performance of hum
subjects learned strategies for optimizing speed- participantsas a function of experimental run. Note 1
accuracy trade-offs. For example, as the the first 4 runs match the model data quite well.



experiment progressed, it is likely that subjeetrihed that the very low SNR conditions could ret b
performed accurately and so acquired a strateggdbas “fast guessing” [Binder et al., 2004]. The
model, on the other hand, was presented with alesitmipl per testing block and possessed no
mechanisms for adjusting speed of responses baskkietthood of accuracy. Follow-up analyses of the
original human data showed an interesting evoluitiothe response pattern across runs. Figure 6 show
that RTs to the highest noise conditions (-6 dB &hdlB SNR) became faster over the last two runs
(1159 msec) when compared to the first four ru22{lmsec) (F =12.75,9.01). Furthermore, the peak
of the RT response occurred at -1 dB SNR for thet four runs and shifted to the +4 dB SNR conditio
only on the last two runs. This suggests that gpents shifted strategies over the course of the
experiment, effectively trading a negligible chamateliscrimination accuracy for much faster RTshat
highest noise levels. The current model does neg ltiais type of strategy shift capability, and tfere

is only a model of the first run of trials; regagsi, it models the initial human RTs quite well.

5. General Discussion

In this paper, we showed how a simple symmetriéusiibn network trained with contrastive
Hebbian learning is able to successfully modelyeadditory processing. Specifically, the model was
trained and tested on two different auditory tasikghe first task, the model was trained on phicrexd
nonphonetic speech stimuli presented to particgpant.iebenthal et al. [2005]. It was shown thatewh
trained to criterion, the model showed simple aumtius perception of the stimuli; however, when the
model was overtrained on the anchor points of ttmusus continuum, then the model showed
categorical perception of the stimuli as assesgeididntification curves. Both continuous perceptain
nonspeech stimuli and categorical perception okdlpestimuli was then shown in a single model; this
was accomplished by interleaving the training @& stimuli such that the speech stimuli were present
nine times as often as the nonspeech stimuli. dukshbe noted at this point that the model had no
preconceived notion of what a speech sound wasvéwadl was a nonspeech sound (as both stimuli were
spectrally similar). The results of the network evdue simply to the training paradigm presentediéal,
follow-up simulations in which the speech and naesh stimuli were trained in a 1:9 ratio showed the
opposite effects; that is, the model showed categjoperception with the nonspeech sounds and
continuous perception with the speech sounds. Itaptly, the model was able to predict that human
participants should also be able to show catedagpe@eption of nonspeech sounds when overtrained o
the anchor points of the nonspeech continuum.

In the second auditory task, the model was traimedhe speech sounds /ba/ and /da/ and then
tested on noised-versions of these stimuli in & tawmlogous to Binder et al. [2004]. Again, the elod
was able to qualitatively capture the accuracy détine participants. An interesting discrepancyha
reaction time data between the model and the pgazatit data led to a reanalysis of the original hama
data. This reanalysis showed that the model wastaldualitatively capture the reaction time ddtthe
participants before the participants were ablenplément a strategy shift.

In conclusion, this simple model of early auditgmpcessing [cf., Husain et al., 2004] that used
realistic time varying inputs was able to correctigdel existing data and predict human learnintepas
of novel stimuli. Further models that are more dgitally realistic in terms of auditory processstgges
are currently in development, as well as a mettfadapping the network activities onto a model o th
blood oxygenation level dependent signal to métehmaging data of the two studies presented here.
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