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Abstract
 

For Artificial Neural Networks (ANNs) to be effec-
tive modelling tools, they must draw upon biological
characteristics:  One characteristic often overlooked
in the design of ANNs is the replication, or redundan-
cy, of processes within the brain.  This paper exam-
ines the effects of redundancy on the performance of
ANNs trained on either a pattern classification task
(e.g. parity, encoder) or a function approximation
task (e.g. forward kinematics).  Results suggest  that
there is an optimal level of redundancy that increases
the likelihood of network convergence while decreas-
ing overall network processing time.  ANNs with this
level of redundancy consistently perform better than
standard ANNs on pattern classification tasks. 
Furthermore, redundant ANNs trained on the func-
tion approximation task are more accurate in terms of
overall system error than standard ANNs.  These
results imply that redundancy may be effectively
used to increase the performance of ANNs, both in
accuracy and speed.

1 Introduction

The design of Artificial Neural Networks (ANNs) is normally
based on engineering principles-- make the system as simple
and efficient as possible.  From a strict computing science
viewpoint, there is little wrong with this approach; however,
from a cognitive science viewpoint, this approach is highly
suspect.  A growing number of scientists are now questioning
this performance approach on the grounds that ANNs are
moving away from their biological basis and are therefore
losing validity as models in cognitive science [e.g.
Lewandowsky, 1993; McCloskey, 1991].  To be effective
models, ANNs must draw upon biological characteristics,
especially those associated with the brain [Dawson and
Shamanski, 1994; Dawson, Shamanski, and Medler, 1993].
_____________
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One biological characteristic often overlooked in the design
of ANNs is redundancy:  Redundancy is the replication of
processes within the brain.

Redundancy in biological systems has been documented
since the nineteenth century when it was proposed that
functional recovery following unilateral brain lesions was
facilitated by replicated processes between the left and right
hemispheres of the brain [Gall and Spurzheim, 1810-1819;
cited in Almli and Finger, 1992].  Although we now know that
the two hemispheres of the brain perform vastly different
functions, redundancy within the two hemispheres is still held
as a viable theory of functional recovery [Almli and Finger,
1992; Marshall, 1984].  More recently, studies of hydrocepha-
lus patients suggest that normal psychological functioning is
still evident with only half the normal brain tissue mass
[Berker, Lorber, and Smith, 1983; cited in Glassman, 1987]. 
This implies that the brain is at least twice as large as is
needed for immediate survival, and the extra baggage of the
normal brain simply replicates functions already present.

Further neurophysiological evidence for redundancy in
biological systems comes from recent studies of animal
physiology.  Kovac, Davis, Matera, and Croll [1983] found
several physiological systems within the nervous system of
Pleurobranchaea californica that produced essentially the
same behavior;  when combined, though,these systems greatly
enhanced the precision of simple and complex movements.
Furthermore,Strehler and Lestienne [1986] examined the firing
patterns of neurons within a monkey’s visual cortex and found
redundant coding in the regularity of triplets of impulses
triggered by specific stimuli.  Similarly, Swindale [1986]
noted that orientation selectivity in the visual cortex is pro-
duced by more than one mechanism, and in more than one
location.  This physiological evidence is complemented by a
sizable theoretical literature on the biological relevance of
redundancy.

The vast majority of theoretical work on the relevance of
biological redundancy has centered on the factors surrounding
the evolution of redundancy.  Although one of the earlier
assumptions concerning redundancy was that it allowed
recovery of functioning following brain trauma, it is unlikely
that such a rarely survived event like brain damage could exert
any natural selection pressure for neural spare capacity [c.f.



Glassman, 1987].  If we assume that recovery from brain
damage is just a convenient side effect of redundancy, we
must consider other evolutionary stresses.

Most evolutionary changes involve small, simple changes
that allow better adaptation to the surrounding environment; 
The faster a system can evolve, the greater the chance of
survival.  Therefore, it would be more advantageous to evolve
several small systems that work in parallel to achieve a goal,
than a large and highly specialized system [Swindale, 1986]. 
In fact, such a system is evident in the neural wirings of
Pleurobranchaea californica [Kovac et al., 1983].  This view
is echoed by Calvin [1983] who considered the evolution of
neural timing systems required by early hominids for hunting
with thrown objects.  At short distances, a single timing
neuron is sufficient to allow the proper release time needed for
a hit; however, the timing precision required for a strike
increases eight-fold with a mere doubling of throwing dis-
tance.  Therefore, the brain combined the efforts of several
timing neurons to increase the precision above that of any
single neuron.  Consequently, redundancy may have evolved
not because brain damage was anticipated, but because it was
easier to replicate, and thus improve, what was already present
than to develop a single system beyond reproach.

A slightly different theoretical approach to redundancy
comes from Jacobson [1976] and Glassman [1987].  Jacobson
[1976] considered the connections between neurons involved
in a memory trace based on Hebb’s model of the cortex, and
defined redundancy as "to mean the condition that  pairs of
cells joined along one effective pathway are joined again along
another" (p. 150).  Using mathematical calculations and
assuming initial random connections between neurons,
Jacobson showed that redundancy is an inevitable conse-
quence of the connections within the cortex.  Glassman
[1987], on the other hand, looked at the probability of overall
system failure for any large structure.  With no redundancy,
failure within a finite time is guaranteed;  therefore, if the
brain had no redundancy, the chances of it functioning for any
significant amount of time are slim. 

We have seen that redundancy is a viable, if not neces-
sary, biological property, but can it be effectively implemented
in ANNs?  Recently, there has been a flurry of connectionist
research on using multiple nets to solve problems (e.g.
committees, agent teams, stacked generalization, model
averaging, error correcting codes).  As an example, Baxt’s
[1992] medical diagnosis network is based on two networks
working in parallel:  one network is trained to classify positive
examples of myocardial infarction, and the other network is
trained to classify negative examples.  By combining their
outputs, Baxt has produced a network that has a hit rate of
97.50% and a false alarm rate of 1.63%, which is considerably
better than any human.  Although this network is not strictly
redundant (i.e. each network is trained on different pattern
sets), it gives some indication of the increased accuracy
associated with redundancy.

Another form of computational redundancy widely
studied today centers around committee machines.  Committee

machines are based on the principle of using several comput-
ers (or networks) at once to solve the same problem.  The
training algorithm for such machines is rather unique [see
Schapire, 1990]:  Briefly,  the first machine is trained on one
pattern set, and then subsequent machines are trained on new
pattern sets composed of equal amounts of correctly and
incorrectly classified patterns that have been passed through
previous machines.  Once trained, however, there is little
agreement as to the best way of combining the outputs of the
different committee machines.  Several alternatives have been
suggested, from a simple "winner-take-all" or "voting"
strategy, to summing the outputs, to calculating the mean
output, to implementing a separate network to choose which
machine’s output is the most appropriate.  Regardless of the
combining strategy used, the committee machines invariably
perform better than single networks alone.  

The above research examples, however, have centered on
improving the performance of ANNs from an engineering
perspective solely.  For example, it is not clear that any of the
output strategies listed above, or even the training algorithms
used for committee machines, are biologically plausible. 

Constraints borrowed from biological networks, neverthe-
less, may have positive effects on the performance of ANNs
as illustrated by Izui and Pentland’s [1990] research on
redundant networks.  Using biological redundancy as a model,
they mathematically analyzed the functional effects of one of
neuronal duplication.  Their mathematical calculations predict
that redundant networks are more accurate, faster, and stable
than standard networks.  These predictions were confirmed by
both a feedforward neural network trained on the XOR
problem, and a feedback neural network trained on the
travelling salesman problem.  From these results, Izui and
Pentland claim that the "highly redundant nature of biological
systems is computationally important and not merely a side-
effect of limited neuronal transmission speed and lifetime" (p.
237).  Although Izui and Pentland’s research has laid the
mathematical foundations of network redundancy, their
practical work requires expansion before redundancy is
accepted as a useful addition in ANN design.  For example,
larger problem sets should be considered as well as the
applicability of redundancy to different  network architectures.

Three different questions are addressed by this current
research.  First, is there an optimal level of redundancy that
improves ANN convergence without increasing the amount of
processing required?  Second,  how do redundant ANNs fare
on different classes of problems (e.g. pattern classification
versus function approximation)?  Third, can redundancy be
effectively used with different types of network processing
units (e.g. monotonic versus non-monotonic)?  It is hypothe-
sized that when the optimal level of redundancy is used,
redundant networks will have better convergence on pattern
classification problems than standard networks.  Furthermore,
redundant networks should be more accurate than standard
networks on function approximation tasks.  Finally, redundan-
cy should be effective with both types of processing units.
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Figure 1. 3-Parity Network Structure with 5 Levels of Redundancy

2 Experiment 1:  Levels of Redundancy

Adding redundancy to a network creates an interesting
question from an engineering viewpoint:  Are the added
hardware requirements of adding extra processing nodes more
than compensated for by an increase in performance? In other
words, can we trade simplicity for efficiency?  Theoretically,
redundancy will not increase the overall network processing
time as all redun-
dant layers are
working in paral-
lel; however, the
number of pro-
cessing steps re-
quired will in-
crease propor-
tional to the num-
ber of redundant
layers.  There-
fore, we can com-
pare the perform-
ance of redundant
ANNs to either
the total process-
ing time of a stan-
dard ANN, or to
1/N  processing
sweeps of a stan-
dard ANN, where
N is equal to the level of redundancy.

The problem that now exists is to find the optimal level of
redundancy where the increase  in hardware requirements is
offset by an equal or greater increase in performance.  It has
been calculated that the brain has at least two, and as many as
seven, different layers of redundancy [Glassman, 1987]. 
Therefore, to assess the optimal level of redundancy for an
ANN, the performance of a standard ANN trained on varying
levels of a difficult pattern classification task (i.e. 2- to 8-par-
ity) will be compared to the performance of ANNs with from
two to eight levels of redundancy.

2.1 Method

2.1.1 Network Architecture

The standard network architecture consisted of an input
layer, a hidden unit layer, and an output layer:  The number of
input units and hidden units was equivalent to the size of the
parity problem (e.g. ANNs trained on 3-parity had 3 input
units, 3 hidden units, and 1 output unit).  Connection weights
were randomly assigned from a rectangular distribution over
the range [-1, +1], and processing unit biases were initialized
to 0.  All biases and connections within the network were
modifiable.

The redundant network architecture was created by
replicating the hidden unit layer and the output unit layer a set
number of times.  Each of the replicated output units was then

connected to a Decision Unit, which acts as the redundant
network’s output unit.  All connections leading into the
Decision Unit are modifiable;  therefore, the Decision Unit’s
response is a weighted sum of the replicated output units. 
Figure 1 shows the redundant network structure for an ANN
with five levels of redundancy trained on a 3-parity problem. 
It should be noted that, as opposed to a three-layer network,
no connections exist directly between each of replicated net-

works.  Further-
more, each of
the replicated
networks was
initialized inde-
pendent of the
others.  Connec-
t ion weights
were randomly
distributed over
the range [-5,
+5] to introduce
more variability
in the network,
and all unit bi-
ases were set to
0.  Seven differ-
ent levels of re-
dundancy were
tested: 2, 3, 4, 5,
6, 7,  and 8.

2.1.2 Training Stimuli

Parity is a linearly inseparable pattern classification task
defined by the number of active input units:  If the number of
1’s in the input pattern is odd, then the output is 1, otherwise
it is 0 [Minsky and Papert, 1969]. ANNs were trained on 2-, 3-
4-, 5-, 6-, 7-, or 8-parity problems which had training set sizes
of 2, 8, 16, 32, 64, 128, and 256 respectively.  Each training
set had equal numbers of positive and negative examples of
parity.

2.1.3 Training Procedure

The network was trained with the backpropagation
algorithm using the generalized delta rule (GDR) [see
Rumelhart, Hinton, & Williams, 1986].  Backpropagation is
described as a steepest descent optimization algorithm for tra-
versing the surface of a weight space whose height measures
error.  Descent through the weight space is aided by two
parameters:  momentum (α) and rate-of-learning (η).  Momen-
tum is a  technique for escaping local minima within the
weight space by averaging the weight change for one item
with the weight change for the previous item.  The rate-of-
learning parameter is used to dictate how large a "step" to
make when traversing the weight space.  For all parity
problems, α = 0.9, and η = 0.1.

To train the network, a pattern was randomly sampled--
 without replacement-- from the pattern set and presented to



_____________________________________________________________

Level of Redundancy
          __________________________________________________

Problem          0          2          3          4          5          6          7          8
_____________________________________________________________

2 Parity
Time    2551      932      841      819      663      641      660      491
Steps    2551    1864    2522    3276    3315    3846    4620    3928
n        10        10        10        10        10        10        10        10

3 Parity
Time    1214    2235      973      630      587      688      447      526
Steps    1214    4470    2919    2520    2935    4128    3129    4208
n        10          9        10        10        10          9        10        10

4 Parity
Time  14126    1732    1051      709      608      680      550      543
Steps  14126    3464    3153    2836    3040    4080    3850    4344
n          4          9        10        10        10        10        10        10

5 Parity
Time     -----    1548      997      831      634      748      747      693
Steps     -----    3096    2991    3324    3170    4488    5229    5544
n          0          6        10        10        10        10        10        10

6 Parity
Time     -----    1846    1492      932      738      821      720      470
Steps     -----    3692    4476    3728    3690    4926    5040    3760
n          0          8        10        10        10        10        10        10

7 Parity
Time     -----    1826    1663      874      724      579      716      664
Steps     -----    3652    4989    3496    3620    3474    5012    5312
n          0          3          7          9        10          9          9        10

8 Parity
Time     -----    1811    1835      884      758      579      692      566
Steps     -----    3622    5505    3536    3790    3474    4844    4528
n          0          4          9          8        10          7        10          9

_____________________________________________________________
Note.  Maximum number of sweeps = 30000; n = number of converged
networks out of 10.

Table 1.  Median Processing Time and Steps to Convergence
as a Function of Parity and Redundancy

the network.  The network’s actual output was then compared
to the desired output, and connection weights and unit biases
were modified according to the above algorithm.  If the
absolute difference between the actual output and desired
output was less than 0.05 then a "hit" was recorded.  One
sweep of the network was completed once all patterns were
presented to the network.  Training of the network continued
either until the maximum number of sweeps was completed
(30,000) or until each pattern in a sweep produced a hit. 

2.2 Results and Discussion

The performance of standard ANNs versus redundant ANNs
was compared using three measures:  probability of conver-
gence, sweeps to convergence, and total processing steps to
convergence.  As can be seen from Table 1, the standard
networks failed to classify 5-parity and above within 30,000
processing sweeps, whereas the redundant networks found a
solution from 30% to 100% of the time on all parity problems. 
It should be noted that as the level of redundancy increased,

so did the probability of convergence;  however, only net-
works with 5 levels of redundancy converged 100% of the
time on all sizes of parity problems.

Similarly, when sweeps to convergence is considered,
there is a general decrease in sweeps with an increase in
redundancy.  Again, though, this decrease begins to asymp-
tote around 5 levels of redundancy, which suggests a floor
effect.  A slightly different function appears with the total
processing steps to convergence, calculated by multiplying the
number of sweeps by the level of redundancy.  This time, there
is a slight quadratic function with its lowest points being
around 4, 5, or 6 levels of redundancy depending on the
problem difficulty.  When the number of processing steps is
averaged across all parity problems, networks with 4 levels of
redundancy perform best, followed by networks with 5 and
then 6 levels of redundancy.  

Taking all of the above results into consideration, it
appears that networks give best overall performance with 5
levels of redundancy for this type of linearly inseparable
pattern classification problem.  It does appear, however, that
networks trained on easier problems (e.g.  2- and 3-parity) do
not  benefit, and may actually suffer, from redundancy. 
Nevertheless, these results show that the added hardware
requirements of redundancy are more than compensated for by
an impressive increase in performance.  Although these results
only generalize to the parity problem, all further experiments
within this paper will adopt a redundancy level of 5. 

3 Experiment 2:  Pattern Classification

 Experiment 1 has shown that redundancy improves the per-
formance of ANNs trained on the parity problem; however,
we do not know if theses results will generalize to other types
of pattern classification problems, or if redundancy only
improves the performance of networks with monotonic
activation functions.  Experiment 2  looked at the effects of
redundancy on the number of network sweeps required for
ANNs to learn two different types of difficult pattern classi-
fication tasks: 3-, 5-, 7-, and 9-parity, and 424-, 838-, and
16416-encoder.  Furthermore, the effect of redundancy on the
"standard" ANN architecture [e.g. Rumelhart, Hinton, and
Williams, 1986] was compared to the effect of redundancy on
a different architecture [Dawson and Schopflocher, 1992].

Originally, the backpropagation algorithm was developed
under the assumption that the activation function for process-
ing units had to be differentiable and monotonic [Rumelhart,
Hinton, and Williams, 1986]; Such processing units are termed
integration devices by Ballard [1986].  Recently, however,
Dawson and Schopflocher [1992] have shown that processing
units with a non-monotonic activation function-- called value
units [Ballard, 1986]-- can learn pattern classification prob-
lems much faster than integration devices.  Consequently, it is
hypothesized that redundant ANNs will converge faster than
standard ANNs, and that value unit ANNs will perform better
then integration device ANNs.  Therefore, the best perform-
ance is expected from the redundant value unit network.



_____________________________________________________________

          Network Architecture
     ______________________________________________

         Standard         Redundant
     _______________________    _____________________

Sweeps          3          5         7a         9          3          5          7          9
_____________________________________________________________

Integration Device ANNs

Minimum      661    5817     -----     -----      261      576      353      397
Median    2599    6943     -----     -----      623      717    1237    1378
Maximum  24850    8068     -----     -----    1017    1047    2853    3695
      n          8          2          0          0        10        10        10        10
_____________________________________________________________

Value Unit ANNs

Minimum        49      213    1042    3052        37        34        71      360
Median        81      258    2744    5848        67        84        97      918
Maximum      200    1015  28322  14310      156      130      302    1449
      n        10          9          8          6        10        10        10        10
_____________________________________________________________
Note.  Maximum number of sweeps = 30000; n = number of converged
networks out of 10.
a. Due to the difficulty of the 7- and 9-parity problems, different values of

 η were tried.  Value units learned best with η = 0.01, whereas integration

devices failed to learn at all values of η.

Table 2.   Parity Problem:  Sweeps to Convergence as a
Function of Network Architecture and Processing Unit Type

3.1 Method

3.1.1 Network Architecture

The standard networks used for the parity classification
problems were two-layer networks with one output unit.  The
number of input units and hidden units, however, were
equivalent to the size of problem being solved: namely 3, 5, 7,
or 9 units  for the respective parity problem.  Networks for the
encoder problems had 4, 8, or 16 input and output units , and
2, 3, or 4 hidden units as dictated by the size of problem.
Connection weights were randomized from a rectangular
distribution over the range [-5, +5] for integration device
networks using a sigmoidal activation function, or [-1, +1] for
value unit networks using a Gaussian activation function. 
Processing unit biases, regardless of activation function, were
initialized to zero.  The redundant networks were created as
described in Experiment 1.

3.1.2 Training Stimuli

The 3-, 5-, and 7-parity training sets used in this experi-
ment were the same as in Experiment 1:  A 9-parity set with
512 training patterns was also included.  The training sets for
the encoder problems consisted of 4, 8, or 16 orthogonal input
patterns composed of a single 1 and filler 0’s (e.g. 1 0 0 0, 0 1
0 0, 0 0 1 0, 0 0 0 1).  The output patterns and input patterns
were equivalent.

3.1.3 Training Procedure

The networks were trained with the backpropagation
algorithm using either the GDR for processing units with a
sigmoidal activation function [Rumelhart, Hinton, and
Williams, 1986], or a modification of the GDR for processing
units with a Gaussian activation function [Dawson and
Schopflocher, 1992].   For the integration device networks, the
parameters were set at α = 0.9 and η = 0.1.  Parameters for the
value unit networks were α = 0 and η = 0.05.

Training of the ANNs proceeded as described in Experi-
ment 1.  A hit was recorded if the actual output was 0.95 or
higher when a 1 was desired, or 0.05 or lower when a 0 was
desired, and the maximum number of sweeps before failure
was set at 30,000.  Second, the maximum number of sweeps
allowed was held constant at 30000 for all networks.  Training
continued until all patterns in the set were learned or until the
maximum number of sweeps was reached.   As the initial
random assignment of connection weights introduces variabili-
ty in learning, each of the four different networks (standard vs.
redundant, integration device vs. value unit) was initialized
and trained 10 times.  The minimum, median, and maximum
number of sweeps to convergence, and the number of ANNs
reaching convergence were recorded.

3.2 Results and Discussion

Table 2 shows the minimum, median, and maximum number
of sweeps required to reach convergence and the total number
of networks out of 10 to reach convergence for the 3-, 5-, 7-

and 9-parity problems.  The redundant networks solved the
problems in fewer sweeps than the standard networks. 
Furthermore, the redundant networks converged on a solution
100% of the time while the standard networks often failed to
converge on a solution even after 30000 sweeps. When
equalized for the total number of network processing steps, the
redundant networks only outperform the standard networks as
the problem difficulty increases.  Finally, it should be noted
that the value unit networks converged much faster than the
integration device networks for both the standard network
architecture and the redundant network architecture. Also, the
standard value unit networks converged on a solution more
often than the standard integration device networks, particular-
ly with the more difficult problems. 

Similar results are obtained when we look at the different
encoder problems.  Redundancy decreases the amount of
processing time and increases the likelihood of convergence
for both integration device  networks and value unit networks
(see Table 3).  When the number of processing steps are taken
into consideration, however, redundancy does not help the
integration device networks;  On the other hand, value unit
networks profit greatly from redundancy.  In fact, the worst
performance of the redundant value unit networks is better
than the best performance of the redundant integration device



_____________________________________________________________

          Network Architecture
 ____________________________________________

  Standard Redundant
______________________    ____________________

Sweeps      424      838    16416      424     838    16416
_____________________________________________________________

Integration Device ANNs

Minimum    1200    2232    5143      353      588      827
Median    1399    3377    7177      514      787    2265
Maximum    4024  10399  22636      879    3060    8884
      n        10          9          6        10        10        10
_____________________________________________________________

Value Unit ANNs

Minimum      360      482      772        52        63        74
Median      545      775      944        77        96        95
Maximum      975    1088    1921      145      154      127
      n        10        10        10        10        10        10
_____________________________________________________________
Note.  Maximum number of sweeps = 30000; n = number of converged
networks out of 10.

Table 3.   Encoder Problem:  Sweeps to Convergence as a
Function of Network Architecture and Processing Unit Type

ω

φ

ρ µ

Indicates unreachable position

Figure 2.  Definition of Problem Space for Simulated
Robotic Arm.

networks. 

In conclusion, convergence on pattern classification
problems is much faster with redundant ANNs than with
standard ANNs.  Furthermore, redundant ANNs converge on
a solution 100% of the time regardless of problem type or size,
whereas the standard ANNs often failed to reach convergence. 
 Also, standard value unit networks converged more often than
standard integration device networks  When the networks are
equalized for total number of processing steps, the redundant
integration device networks only outperform the standard
networks on the more difficult problems, whereas redundancy
always improves the performance of value unit networks. 
These findings support Dawson and Schopflocher’s (1992),
conclusions the value unit networks outperform integration
device networks on linearly inseparable pattern classification
problems. 

4 Experiment 3:  Function Approximation

Experiment 1 and Experiment 2 have conclusively shown that
redundancy can improve the performance of ANNs trained on
difficult pattern classification tasks.  The last question to be
addressed is whether or not redundancy will improve the
performance of ANNs trained on a function approximation
task.  With function approximation, however, the number of
sweeps to reach convergence is no longer an appropriate
measure of network performance;  therefore, performance will
be evaluated via overall network error.  

The function approximation task chosen is based on
Churchland’s [1992] crablike creature which is programmed
to reach to a point in space.  Our simulated robotic arm,
however, will use a neural network to essentially learn forward
kinematics.  Previous research [Calvin, 1983; Kovac et al.,
1983] has suggested that redundancy in biological systems
increases the accuracy of simple movements.  Therefore, it is
hypothesized that redundant ANNs trained on a function
approximation task will have less error in responding than
standard ANNs. 

4.1 Method

4.1.1 Network Architecture

The standard network used was a two-layer network with
two input units, two hidden units, and two output units. 
Connection weights were randomly assigned from a  rectan-
gular distribution over the range [-5,+5], and processing unit
biases were initialized to zero.  The redundant network was
created as before with the exception that there were now two
Decision Units to correspond with each replicated network’s
two output units.
 
4.1.2 Training Stimuli 

A schematic diagram of the simulated robot and the
problem space is shown in Figure 2.  An object was placed
randomly in front of the simulated robot:  If the object fell
within an unreachable area (i.e.grey area in Figure 2) then a
new position was randomly chosen.  Inputs to the network
were the two angles (µ, ω) that the eyes subtended when con-
verged on the object, while the desired network outputs were
the angles (ρ, φ) that the shoulder joint and elbow joint made
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contact the object.  All angles were n-
ormalized to fall within the range of 0 to 1.  The  inputs could
be considered two-dimensional sensory-state space coordi-
nates, and the outputs would then be considered as separate
two-dimensional motor-state space coordinates.  The network,
therefore, learns the appropriate mapping between the two
state spaces [see also Zipser and Anderson, 1988].  As the
mapping of the two state spaces forms a continuous function,
there are an infinite number of input/output pairs; however, pr-
acticality limited the training set to 50 randomly chosen pairs.

4.1.3 Training Procedure

Training of the networks proceeded as in Experiment 1
with some minor changes.  First, a "hit" was defined when the
absolute error between the desired output and the actual output
was less than 0.001.  Second, the networks were trained for
50,000 sweeps.  Momentum and rate of learning for the simu-
lated robotic arm were α = 0.9, and η = 0.1. 

To assess the network’s ability to learn the function
approximation problem, maximum network sweeps were
increased from 100 to 50000 in log10 steps.  Total network sum
of squared errors (SSE)-- as measured by the difference
between desired and actual network response-- as well as the
SSE for each individual output (ρ, φ), were recorded at each
maximum sweep step.  As the initial randomness of connec-
tion weight assignment produces great variability in network
learning, five different networks were trained for both the
standard network architecture and the redundant network
architecture.

4.2 Results and Discussion

The total SSE range and median for the simulated robotic arm
for both the standard and re-
dundant networks are shown
in Figure 3.  As can be seen,
median SSE decreases faster
for the redundant networks
than for the standard net-
works.  In fact, the average
median SSE for the redundant
network is significantly less
than the average median SSE
for the standard network (x =
0.355, 0.892 respectively; F
(1,44) = 23.899, p < .001). 
Furthermore, the range of the
total SSE is significantly less
for the redundant network
than for  the standard net-
work (F (1,44)  = 23.90, p <
.001).  This holds true for both
the elbow joint φ  (F (1,44) =
15.95, p < .001) and the
shoulder joint ρ (F (1,44) =
6.91, p < .05).

As hypothesized, redundant networks are significantly
more accurate than standard networks on function approxima-
tion problems.  Not only is the median SSE less for the redun-
dant ANNs than for the standard ANNs, but the SSE range is
significantly less for redundant networks as well.  This means
that the responding of the redundant ANNs is much less
variable-- or more stable-- than the responding of the standard
ANNs.  Also, the advantage for the redundant ANNs increases
with the number of sweeps completed when total network
processing time is considered.  This advantage even holds at
the higher end of the sweep scale when the redundant and
standard networks are equalized for total number of processing
steps.

5 General Discussion

The results from both the PC problem and the FA problem
confirm Izui and Pentland’s [1990] mathematical analysis of
redundant networks:  Redundancy produces faster conver-
gence, more accurate results, and more stable networks than
comparable standard networks. In terms of the relevance of
redundancy to the performance of ANNs in general, redundant
networks should be considered as a viable alternative to
standard networks.  The initial cost of the extra hardware
associated with redundancy is far out-weighed by the savings
in training, accuracy in responding, and network stability
produced by redundant processes. 

Our results have shown that there is another alternative to
the combining algorithms used by committee machines (e.g.
mean response, winner-take-all, median response, etc.).   The
modifiable connections from the individual output units to the
decision unit allows the network to train itself.  As opposed to
taking the mean output response of individual networks, which

gives equal weighting to all
networks, the amount of con-
tribution is weighted according
to how well the individual net-
works classify the problem. 
Furthermore, all individual
networks contribute to the fi-
nal result, unlike winner-take-
all or median response meth-
ods.  Consequently, the modi-
fiable connections of the deci-
sion unit have proven to be a
functional alternative to those
methods conventionally used
while preserving some sem-
blance of  biological systems. 

Some evolutionary the-
ories are supported by the per-
formance of the redundant
ANN.  For example, the in-
creased precision of the redun-
dant network over the standard
network on the FA problem



lends credence to Calvin’s [1983] hypothesis about redundan-
cy evolving to increase the precision of a system.  In fact, as
the upper limit of network sweeps increases, the worst
redundant network is more precise than the best standard
network.  Also, the number of sweeps to train both the FA
network and the PC network suggests that it is easier to evolve
several crude mechanisms working in parallel than one
extremely effective mechanism [Swindale, 1986].  

Further research will consider the possibility of loss of
redundancy accounting for loss of functioning in patients with
debilitating diseases.  As stated earlier, it is widely held that
redundancy in the brain allows for functional recovery after
brain damage [Almli and Finger, 1992].  It follows that loss of
redundancy may cause loss of functioning.  Modelling
redundancy via computer simulation has a distinct advantage
over biological models, in that precise ablations can be
performed on artificial neural networks.  Therefore, predica-
tions can be made about  the performance of biological
functioning when redundancy is compromised.

For example, the results of Experiment 3 show that the
variability in making a response is much greater for a non-
redundant network than a fully redundant network; therefore,
as redundancy decreases, variability in responding should
increase.  Monitoring the variability changes should be an
effective tool for estimating how much damage the system has
suffered, and should even predict when terminal drop will
occur.  A practical application of this theory has already been
hinted at  by Patterson, Foster, and Heron, who conclude that
for assessing damage by Multiple Sclerosis, "variability is a
more sensitive indicator of visual pathway damage than the
usual measure of mean" (1980, p.143).  By attempting to
model this increase in variability, we may be in a better
position to understand the underlying damage associated with
such diseases as Multiple Sclerosis and Alzheimers.

References

Almli, C. R., & Finger, S. (1992).  Brain injury and recovery
of function:Theories and mechanisms of functional reorgani-
zation.  Journal of Head Trauma Rehabilitation, 7, 70-77.

Ballard, D. (1986).  Cortical structures and parallel process-
ing: Structure and function. TheBehavioral and Brain Scien-
ces, 9, 67-120.

Baxt, W. G. (1992).  Improving the accuracy of an artificial 
neural network using multipledifferently trained networks. 
Neural Computation, 4, 772-780.

Calvin, W. H. (1983).  A stone’s throw and its launch window: 
Timing precision and its implications for language and
hominid brains.  Journal of Theoretical Biology, 104, 121-
135.

Churchland, P. M. (1992).  A neurocomputational perspective: 
The nature of mind and the structure of science.  Cambridge,
MA: MIT Press. 

Dawson, M. R. W., & Schopflocher, D. P. (1992).  Modifying
the Generalized Delta Rule to train networks of non-mono-
tonic processors for pattern classification.  Connection

Science, 4, 19-31.
Dawson,M.R.W., & Shamanski, K. S. (1994).  Connectionism,
confusion, and cognitive science.  Journal of Intelligent
Systems,  In press.

Dawson, M.R.W., Shamanski, K. S., & Medler, D. A. (1993). 
From connectionism to cognitive science.  In L. Goldfarb
(Ed.)  Proceedings of the Fifth University of New Brunswick
Artificial Intelligence Symposium.  Fredericton, NB: UNB
Press.

Glassman, R. B. (1987).  An hypothesis about redundancy and
reliability in the brains of higher species:  Analogies with
genes, internal organs, and engineering systems.  Neurosci-
ence & Biobehavioral Reviews, 11, 275-285.

Izui, Y., & Pentland, A. (1990).  Analysis of neural networks
with redundancy.  Neural Computation, 2, 226-238.

Jacobson, J. Z. (1976).  Relative possibilities of loops and
redundant connections in neural nets. Journal of Mathemati-
cal Psychology, 13, 148-162.

Kovac, M.P., Davis, W.J., Matera, E.M., & Croll, R.P. (1983). 
Organization of synaptic inputs to paracerebral feeding
command interneurons of Pleurobranchaea californica. I.
Excitatory inputs.  Journal of Neurophysiology, 49, 1517-
1538.

Lewandowsky, S. (1993).  The rewards and hazards of 
computer simulations.  Psychological Science, 4, 236-243.

McCloskey, M. (1991).  Networks and theories:  The place of
connectionism in cognitive science.  Psychological Science,
2, 387-395.

Marshall, J. F. (1984).  Brain function: neural adaptations and
recovery from injury.  Annual Review of Psychology, 35,
277-308.

Minsky, M. L., & Papert, S. A. (1969).  Perceptrons.  Cam-
bridge, MA: MIT Press.

Patterson, V. H., Foster, D. H., & Heron, J. R. (1980). Vari-
ability of visual threshold in Multiple Sclerosis:  Effect of 
background luminance on frequency of seeing.  Brain:  A
Journal of Neurology, 103, 139-147.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).
  Learning internal representations by error propagation.  In D.
E. Rumelhart, J. L. McClelland, and the PDP Group (Eds.),
Parallel distributed processing: Explorations in the micro-
structure of cognition.  Vol 1.  (pp 318-362).  Cambridge,
MA.: MIT Press.

Schapire, R. (1990).  The strength of weak learnability. 
Machine Learning, 5, 197-227.

Strehler, B. L., & Lestienne, R. (1986).  Evidence on precise
time-coded symbols and memory of patterns in monkey
cortical neuronal spike trains.  Proceedings of the National
Academy of Sciences of the United States of America, 83,
9812-9816.

Swindale, N. V. (1986).  Parallel channels and redundant
mechanisms in visual cortex.  Nature, 322, 775-776.

Zipser, D., & Andersen, R. A. (1988).  A back-propagation
programmed network that simulates response properties of
a subset of posterior parietal neurons.  Nature, 331, 679-684.


