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Abstract

Recently Bayesianmprincipleshave beensuccessfullyapplied
to connectionishetworkswith aneyetowardsstudyingthefor-
mation of internal representations Our currentwork grows
out of an unsupervisedgeneratie framevork being applied
to understandhe representationsisedin visual cortex (Ol-
shauser& Field, 1996)andto discover the underlyingstruc-
ture in hierarchicalvisual domains(Lewicki & Sejnavski,
1997). We modified Lewicki and Sejnavski’'s approachto
studyhow incorporatingwo specificconstraints—conie and
sparsecoding—afect the developmentof internalrepresenta-
tionsin networkslearninga featurebasedalphabet.Analyses
of thetrainednetworks shaw that (1) the standardramework
works well for limited datasets,but tendsto poorerperfor
mancewith largerdatasets;(2) context aloneimprovesperfor
mancewhile developingminimalisticinternalrepresentations;
(3) sparseodingaloneimprovesperformancendactuallyde-
velopsinternal representationthat are someavhat redundant;
(4) the combinationof context and sparsecoding constraints
increasemetwork accurag and forms more robust internal
representationgspeciallyfor larger datasets. Furthermore,
by manipulatingthe form of the sparsecodingconstraintnet-
works can be encouragedo adopteitherdistributed or local
encodingsof surfacefeatures. Feedbackconnectionsn the
brain may provide contet informationto relatively low-level
visual areastherebyinforming their ability to discover struc-
turein theirinputs.

I ntroduction

Bayesianprinciples have beenregaining popularity within
cognitive science,both in the more traditional approaches
to cognitive psychology(e.g., Anderson,1990) and within
theconnectionisapproacho cognition(e.g.,MacKay, 1995;
McClelland, 1998). Our currentwork is a preliminaryin-
vestigationof incorporatingtwo specificconstraintscontext
and sparse coding, into an existing Bayesianunsupervised
learning paradigmfor multilayered architectureqLewicki
& Sejnavski, 1997). The conceptunderlyingthe original
framework s thathigherorderinternalrepresentationsanbe
formed by exploiting the statisticalstructureof simple fea-
tureswithin aninput stream.Indeed Lewicki andSejnavski
wereableto shav thattheir networkscouldextracthierarchi-
cal structurefrom simplevisualdomains.

In this paper we modify and expandthe original frame-
work to explore the internal representation®f networks
trainedon feature-basetetters. We first modifiedthe frame-
work to directly incorporatecontextual informationinto the
deepstructureof the network. In the currentexperiments,
“context” is definedasuniqueinformationthatis presented
to the network concurrentlywith aninput pattern.Therefore,

context canbe usedto uniquelyidentify input patternsand,
thus,provide hintsaboutwhich collectionof simplefeatures
constitutehigherorderrepresentations.

The second—andnore substantial—manipulatiowasto
placeprior constrainton the baseprobabilitiesof unit acti-
vationswithin the networks. This “sparsecoding” constraint
encouragea network to userelatively few unitsto represent
ary specificinput pattern. Thatis, a sparselycodednetwork
usesonly arelatively smallproportionof unitsto encodethe
internalrepresentatioffior a given pattern. Sparseencoding
within neuralnetworks haspreviously beenshown to create
more biologically plausiblereceptve fields (e.g., Olshausen
& Field,1996,1997).

Threedifferentexperimentsverecarriedout. Thefirst two
experimentausedareducedstimulussetto studythe baseef-
fects of independentlymanipulatingthe context and sparse
coding constraints;Experimentl manipulatedcontext with
the simplestsparsecoding constraint,while the secondex-
perimentspecificallyfocusedon differentformsof thesparse
codingconstraint. In Experiment3, the context and sparse
codingconstraintavereinvestigatediusingthe full alphabet.
Networks wereanalyzedboth in termsof their ability to re-
producehetrainingsetandin termsof theirinternalstructure
via weightanalysis.

Networ ks and Bayesian Theory

It is assumedhattheinternalrepresentationasedby a sys-
temmustcometo representhe externalworld in someman-
ner. In otherwords,internalrepresentationsould bethought
of ashypotheseaboutthe externalworld. Thus,theproblem
of definingtheseinternalrepresentationsanbereformulated
as computingthe probability of a given hypothesiginternal
representationyjiven the obsered data(external world)—a
potentiallydifficult task.

Fortunately a relatively simpletheoreticalframenork ex-
ists for computingthis probability In its simplestform,
Bayes theorem (seeEquationl) statesthat for a given hy-
pothesisH, andobsereddata,D, the posteriorprobability
of H givenD is computedas

DIH) x P(H)

p(uip) = ZE0 )

whereP(H) is regardedasthe prior probability of # before
observinghedataD, P(D) is theprobabilityof thedata,and
P(D|H) is the probability of the datagiven the hypothesis.
Thus, by specifyingP(D|#) and P(D), the mechanism®f
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Figure1: The basicnetwork configurationfor a three-layer
network. Sy aresurfaceunits; S; aremediatinglayer units;
S; aredeeplayerunits; .S, arecontext units.

Bayesiartheoryprovide asolutionto theproblemof learning
from data(Bernardo& Smith,1994;MacKay, 1995;McClel-
land,1998).

We canalsorearrangeghe modelto predictthe datagiven
thehypothesisin otherwords,thisframeawvork canbeusecdto
constructa generative model, suchthat the higherorderin-
ternalrepresentationgredictthe lower-level simplefeatures.

Network Architecture

To help explain the network dynamicswe will considerthe
simple caseof a three-layemetwork (seeFigure 1) consist-
ing of ansurfacelayer, Sy, a singlemediatinglayer, S; (in
practice therecouldbeany numberof mediatingayers),and
adeeplayer, S;. It is assumedhat connectionsxist only
betweenadjacentayers;thatis, thereare no direct connec-
tionsbetweerthe surfaceanddeepstructureayers. Further
more,the generatie natureof the modelmeanghatconnec-
tions are uni-directionaland flow from the deepto the sur
facelayer as indicatedby the directed connectionswithin
Figurel. Thus, we can definethreedifferent relationships
for a givenunit; the parent(pa[S;]; units contrituting acti-
vation), children(ch[S;]; unitsreceving activation), andsib-
lings (s:b[.S;]; unitswithin the sameayer).

Units are assumedo be stochasticand are probabilisti-
cally active or inactive as determinedcby the summedacti-

vationsbeingsentby their parentsvia weightedconnections.

Consequentlythe network weight vector W, canbe inter-
pretedasencodingthe underlyingprobabilitiesof the gener
ative model. This meansthat weightsare constrainedo be
zeroor positive.

In the presentstudies,this basicnetwork architecturenas
beenexpandedo includea context-layer, (S.), asillustrated
by the hexagonalunitsin Figurel. This context layeris con-
necteddirectlyto the deeplayerandthusprovidescontextual
informationto thedeeplayeronly.

L earning Objective

Within this framework, the learningobjective is to find the
mostprobableexplanation,#, for theinput patternsD, pre-
sentedto the network. In otherwords, we wish to develop
a generatie modelthat encodeghe probabilitiesof the in-
putdatawithin thenetwork’sweightstructure. Thereforethe
learningobjective reducego adaptingthe weightvector W,

to find the mostprobablesxplanationfor the input patterns.
If we knew theweightvector, we couldcalculatethe prob-
ability of theinput dataas

P(D1.n|W) =[] P(D.[W) 2)

where
P(Dn|w) = ZP(Dnlsm’W)P(Smlw)

is the mamginalizationof all possibleunit statesS,,, of the
network.

It shouldbe notedthatthe numberof all possiblenetwork
statesS,,, increasegxponentiallywith the numberof units
in thenetwork. Thereforecomputingtheexactsumbecomes
intractableas the networks becomelarger. One desirable
propertyof generatre models,however, is for mostpatterns
to have one—orjust afew—possiblesxplanationstherefore,
only afew terms,P(D,,|S,,, W), will benon-zeraandit be-
comesdtractableto sampleS,,, accordingo P(S,,|D,,, W).

Of course,we do not know the weight vector but must
adaptit instead. One way of adaptingthe weight vectoris
to usea variation of the expectation maximization (EM) al-
gorithm. EM is typically usedto find parameterestimates
in modelswheresomevariablesareunknonn or unobsered.
Thealgorithmis composeaf two steps:(i) anestimationE)
stepthatsamplesietwork states and(ii) amaximization(M)
stepthatadjustsweights.For our purposesthe E stepcanbe
accomplishedby GibbssamplingwhereagheM stepcanuse
maximume-likelihood(ML) estimation.

Computing Networ k Probabilities

Being a generatie model,the probability of any unit's state
is directly computabldrom the statef its parents:

P(S; = 1|pa[Si], W) = h(Z Sjwij) ®3)

whereS§; aretheparentf S; andw;; is theweightfrom unit
8, 10 S;. Thefunctionh in Equation3 specifieshow theseun-
derlyingcausesreto becombinedo producethe probability
of S; = 1. Onefunctionthatcanbeusedfor thisis the“noisy
OR” function:
huy=1—e* (4)

whereu = 3, Sjw; is thecausalinputto S;. Notethatbe-
causeweightsareconstrainedo be positive,u is never nega-
tive, andtherefored < h(u) < 1.

Thus,thejoint probabilitydensityof a sucha network can
be computedasthe productof the conditionalprobabilities

P(Sy... Sp|W) = [] P(SilpalSil, W).  (5)

Sampling Network States

In Lewicki and Sejnavski’s (1997) original formulation of
the problem,eachstateof the network, S,,,, is updatedtera-
tively accordingo the probabilityof eachunit state,S;, given
the statesof the remainingunitsin the network. This condi-
tional probabilityis computedas

P(8;]8j;j2i, W) o

P(Silpa[S:, W) [ P(SjlpalS;], Si;, W) (6)
J€ch[Si]



Thus, the Gibbs equationsas usedin this framework can
be interpretedin termsof a stochastiaecurrentneuralnet-
work, wherethe feedbackirom the higher(or deeper)ayers
influenceghestatesatthelower (or surface)layers.Whereas
Lewicki andSejnavski (1997)computedhe probability of a
unit changing its state,the problemcan be reformulatedas
onewherethe probability of a unit beingactive giventhere-
mainingstateof the network is calculated.

Consequentlyone can computethe probability of a unit
beingactive, S; = 1, giventhe remainingstatesof the net-
work as

1

P(S; = 1]Sj;j2i, W) = (.

(7)
This function will producea P(S; = 1) ~ 0 for negative
evidence,a P(S; = 1) ~ 0.5 for inconclusve evidence ,and
P(S; = 1) = 1 for positive evidence.

ThevariableAz; in Equation7 indicateshow muchchang-
ing theunit state,S;, to beingactive changesheoverall prob-
ability of thenetwork state.ln multilayerednetworks (where
the numberof layersis greaterthan 2), this term will have
both a feedbackcomponentirom the parentsin the deeper
layers,andafeedforwardcomponenfrom thechildrenin the
moresurfacelayerS'

Az; = fo(pa[Si]) + ff (ch[Si]) (8)

In networkswith only two layers,or in thedeepestayerof
a multilayer network, this feedbackermwill dropout. Typ-
ically, the feedforward componenbf Equation8 will domi-
natetheterm,but if thefeedforwardinputis ambiguousthen
the feedbackcomponenbecomesmportantasit allows the
moresurfacelevel unitsto useinformationcomputableonly
atthedeepetayers.

Thefeedbackermin Equation8is simply computedasthe
log probability of the unit beingon minusthelog probability
of theunit beingoff. Thisis calculatedas:

P(S:) h{u)

= log 1= h(a) 9
wherethefunctionh(u) is computedasdescribedearlier
Feedforvardis computedasthe probability of the unit be-
ing ongiventheactuity of its children. Thereforefor agiven
unit, we wantto sumthe evidenceof theunit beingon minus
theevidenceof theunit beingoff. We alsowantto weightthe
evidenceaccordingto the numberof otherunits contribtuting
to the child’s actiity (the more units contributing, the less
effectany oneunitwill have).

Z Sk log

k€ ch[S:]
1 — h(u — Siwir + wix)
+(1-Sk)lo l—h(u—Siwik)

Thus,if S; = 0, thenthe weightfrom S; is addedto the
top portionsof Equations10, whereasf S; = 1 thenthe
weight from S; is removed from the bottom portion of the
above equation.Furthermoreijf S = 0 (indicatingthatthe
parentnodeshouldbe off), thenthefirst termof Equationl0
dropsout, whereasf S;, = 1 (indicatingthatthe parentnode
shouldbeon),thenthesecondermof Equationl0dropsout.

-5 Wik + wzk)
(u — S;wig)

(10)

Adding Contextual I nformation

As definedearlier context is the addedinformationthatcan
provide hints aboutwhich collectionof simplefeaturescon-
stitutehigherorderrepresentationgndthushelpsconstrain
theinternalrepresentationdevelopedatthedeep-layerCon-
text canbeaddedo the network dynamicssimply by directly

connectinga setof context units (denotedS, in Figurel) to

thedeep-layeunits, S;, via Weightedconnectionsucj.

Z S log -9, jWej + ch)
(u — Sjwe;)
c€cn[S;]

1- h(u — Sjwcj)
where cn[S;] arethe context units directly connectedo the
deep-layeunits. Thus,contet informationis directly added

to theactivationprobabilitiesof the deep-layeunitsby sum-
ming the contributionsof EquationslOand11.

Adding Sparse Coding Constraints

A further modificationto the original framework is to adda
sparsecoding constrainton the unit activation probabilities.
That s, all things being equal, sparsecoding encourages
network to userelatively few units to represenary specific
input pattern. In the standardramework, in the absenceof

ary guiding information, a unit will be active with baseline
probability P = 0.5. Sparseodingcanbeencouragewithin

the network by modifying Equation8 to include a sparcity
constraint:

Az; = fb(palS;]) + ff (ch[S;]) + A - sp(S;)

where) is equivalentto againfunctionwhich modulatesow
mucheffect sp[.S;] exertsontherestof theequation.

Foursparseodingfunctionsaredefined.Thefirstandsim-
plestfunctionis animplicit, independenprior constrainthat
reducegshe baselineprobability of a unit beingactive by a
constanamount:

Constant :

(12)

spi[Si| =logrly, 0<¢<1  (13)

Thethreeotherfunctionsdefinedencouragsparsecoding
in an explicit, dependentmanner;thatis, sparsecodingis
dependendnthenumberof sibling unitsco-actve (excluding
thecurrentunit):

j= Z S, , wheren # i
nesib[S;]

(14)

Thefirst dependensparsecodingfunction(Logistic), uses
amodifiedlogisticfunctionto probabilisticallimit thenum-
berof unitsactive from O to ¢n units.

spa(8i) =

where . 1
£¢7Hv"(.7) =1- G/m—¢
1+e "
The seconddependentsparsecoding function placesa
prior activation constrainton the units suchthat probabilis-
tically ¢n unitswill be active atary giventime. This is ac-
complishedby samplingthe unit activation statesfrom the

binomialdistribution:

Logistic : Lown(Utl) "(J(H)

log=% o)

(15)

(16)



Binomial : sp3(S;) = log% (17)
where |

b n ) = ——— - J (1 — )" 18

o) = s @ (1-9) (18)

Finally, thelastdependensparsecodingfunctionis amix-
ture of poissonandbinomialdistributions.

TP~ (G+1)+(1=7)bg n (5+1)

Pois+ Bin: sp4(S;) = log e b ()
19)
whereby . (7) is definedin Equation18 and
J
p)=e" (20)

Thismixtureof distributionshastheeffectof probabilistically
having O unitsactive asdeterminedy Equation20with prob-
ability 7, andhaving ¢n units active with probabilityl — 7

asdeterminedy Equationl18.

Weight Estimation

Oncewe have sampledthe activation space,we arein the
positionto estimatethe weights. To control the compleity
of the model,a prior is placedon the weights. In usingthe
“noisy OR” functionwhereall weightsareconstrainedo be
positive, it is assumedhat the weight prior is a productof
independengammadistributionsparameterizety o andg.
Hencetheobjective functionwe wishthemaximizebecomes

L = P(Du.n|W)P(W|a, 3)

Using the maximizationstepfrom the EM algorithm, we
wantto setdL/w;; = 0 andsolve for w;;. Lewicki and
Sejnavski (1997) shav this can be accomplishedy using
thetransformationg;; =1 — e~ "% andg; =1 — e~ and
solvingfor

f . a—1+2fzj+Znsz(n)5(n)fz]/g(n) (21)
Y a+pB+Y, S

It shouldbe notedthatin the equation,S; is the cause of S;.

FurthermoreS(™ is the unit’s stateobtainedvia Gibbssam-
pling for thent" inputpattern.Thesumin theabove equation
is simply theweightedaverageof thenumberof timesunit S;

wasactive whenunit .S; wasactive. Theratio f;;/g; weights
eachtermin the suminverselyto the numberof causedor

S;; if S; isthesolecauseof S; (meaningthat f;; = g;), then
thetermhasfull weight.

Method

The Alphabet We adoptedRumelhartand Siple’s (1974)
featuredbasedalphabetEachletterwascomposeaf simple
visualfeaturessuchashorizontal,vertical,andobliquelines.
We modifiedthe original alphabetby breakingboth the top
andbottomhorizontalline sgmentsinto two segmentseach
in orderto equalizeall line sggmentlengths.

Figure2 shavs eachof the 26 lettersoverlayedon the 16
baseline sgments;a “Space”charactei(no featuresactive)
wasalsopresentedo the network. A subsetof theseletters
(‘'SPC'H,I, N, O, S, X, Z) wasusedin thefirst two studies
andthefull alphabetvasusedfor thethird study
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Figure2: Thefull alphabesuperimposednthe16features.

Eachline sgmentwasrepresentetly a unarycode;there-
fore, eachletter wasrepresentetby turning on the appropri-
atebitsin a 16 bit code. Context wasalsorepresentedsing
a simpleunaryschemetherewasoneuniqueunit active for
eachof theletterswithin thetrainingset. Thus,therewere8
context representationfor thereducedalphabetand27 con-
text representationfor thefull alphabet.

Network Architecture and Training The network archi-
tectureconsistedf 16 surfaceunits,no mediatingunits,and
either 10 or 30 deepunits for the reducedandfull alphabet
training setsrespectiely. If contet was beingtested,then
thearchitecturesncluded8 or 27 context unitsin accordance
with thetrainingset.

For all networks, theweightprior wasspecifiedwith o =
1.0 and8 = 1.25; weightswereinitialized betweerD.05and
0.15. Internalunits wereinitialized with P(S; = 1) = 0.5.
Gibbssamplingwas performed15 timesfor eachinput pat-
tern, or until the maximumstatechangeprobabilitywasless
than0.05. For thesparsecodingexperimentsthe parameters
weresetto A = 1.0, u = 1.0, 7 = 0.5, andy = 0.1; ¢ was
setto 0.1 for thefirst two experimentsand0.05for the third
experiment.lt shouldbe notedthatthe parametersverecho-
sento maximizenetwork performancdwith all thingsbeing
equal)anda morethoroughexplorationof parametespace
will be requiredin the future. For eachcondition, 25 net-
worksweretrainedwith differentrandomizednitial weights.

Results and Discussion

Network performancevasanalyzedvia two methods.First,
the generatie natureof the modelswas testedin terms of
their ability to reproducehe surfacepatternpresentedEach
patternwaspresentedo thenetwork andGibbssamplingwas
performedto producean internal patternof actwvity at the
deeplayer This internalactiity wasthenpropagatedack
to the surfacelayer units and the numberof bits in error—
either“Addition” (i.e., 1 insteadof 0) or “Omission” (i.e., 0
insteadf 1) errors—wascalculated ThiswasperformedL00
timesfor eachpattern.

Second the underlyingweight structureof eachnetwork
wasanalyzedoth qualitatively and quantitatvely. Thefirst
qualitatve measurds basedon the visual inspectionof the
weight matrix asin Lewicki and Sejnavski (1997). The
weight for eachinput featureis passedhroughEquation4
to producea color codefadingfrom “black” to “white” (rep-
resentingl — 0) andthenplottedastheappropriatdine sey-
ment. This type of analysisis shovn in Figure 4; unfortu-
nately it is restrictedto single networks. The secondis a
quantitatve measurehat can be averagedover runsandis
basednthenumberof weightvectors(i.e.,theweightsleav-
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Figure3: Meannumberof errorsfor the 7 lettersacrossthe
4 conditionsin Experimentl. Bottomportion of the barsare
‘Addition’ errorsandupperportionsare‘Omission’ errors.
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Figured4: Typical network weightsfor the context andsparse
codingmanipulations.

ing a parentnode)that have at leastone non-zeroelement;
this measuraivesa roughestimationof how mary unitsare
beingusedto representhe datasetandthereforelocal (one
unit per pattern)versugdistributedencoding.

Experiment 1:  Figure3 shavs the meannumberof bitsin
errorfor the reducedalphabebver the four conditions(only
sp; with A = 1.0, ¢ = 0.1 wastestedin Experimentl).
The meannumberof bits in error collapsedover all the let-
ters(excluding ‘'SPC’) for the Control, Contet, Sparseand
Contt+Sparseconditionsare0.96 (SD = 0.36),0.56 (SD =
0.16),0.62(SD = 0.18),and0.30(SD = 0.09)respectiely.

As canbe seenthe standarchetwork performsfairly well
on thereducednput set;it averageonly 1 bit in error. The
addition of the constraints,however, improves the perfor
manceof the networks, especiallywhenappliedin conjunc-
tion. Furthermoreijt shouldbe notedthat variability in net-
work performancéasindicatedby standardleviations)is de-
creasedvhenconstraintareadded.

The typical weight structuresfor the four conditionsare
shavn in Figure4. As canbe seen,the Control, Context,
and Sparseconditionstendedto extractgroupsof individual
featureqindicatinga distributedrepresentationivhereashe
otherconditiontendsto pick out completeetters(a morelo-
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Figure5: Meannumberof errorsfor the 7 lettersacrosshe
4 conditionsin Experiment2. Graphicalinterpretations the
sameasin Figure3.
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Figure6: Typical network weightsfor the sparsecodingma-
nipulation.

calist representation)lt shouldbe noted,however, thatthe
Sparseconditionappeargo redundantlyencodeinformation
in termsof replicatingline segments. Quantitatve analyses
shav that on average,the numberof non-zeroweight vec-
tors for eachof the four conditionsare 4.7 (3D = 0.8), 5.4
(SD =0.9),8.4(SD =1.0),and7.32(SD = 0.8) respectiely.
This analysisconfirmsthata combinationof the context and
sparsecodingconstraintsencouragekcal representationsf
completdettersto develop.

Experiment 2: Figure5 shawvs the meannumberof error
bits for the four differentsparsecodingfunctions(Constant
[sp,], Logistic [sp,], Binomial [sps], and Pois+Bin [sp,]).
The meanerrorfor eachof the four conditionsare0.64 (SD
=0.21),1.23(SD = 0.37),0.96 (SD = 0.31),and0.34(SD
= 0.09)respectiely. Thefirst thing to noteis thattwo of the
sparseodingfunctions(sp, andsp;) areworsethanor equal
to thecontrolconditionin Experimentl. Thefourth function
(sp4), however, actuallyimprovesperformancever thesim-
ple,independensparsecodingconstraint.

Figure 6 shav the typical weight structuresfor the four
sparseodingconditions.lt is interestingio notethatsp., and
sp5 havesimilarstructurd(i.e.,wealerweightspulling outin-
dividualllines)to the control conditionin Experimentl. The
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Figure7: Meannumberof bits in error collapsedacrosdet-
tersfor thefull alphabeplottedfor the six conditions.
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Figure8: Weightsfor thefully constrainedhetworks.

othertwo functions,sp, andsp,, have againpulledoutsome-
whatredundantodingsof line sgments.This distinctionis
supportedy thequantitatve analysisof theweightstructure:
themeanmumberof non-zeroweightvectorsfor thefour con-
ditionsare8.7(SD =0.8),4.3(8D =0.7),4.9(SD =0.9),and
8.0(SD =0.9).

Experiment 3: In this final experiment,we testedthe con-
text andsparsecodingconstrainton thefull alphabet.Only
the sp, andsp, sparsecodingconstraintsveretested. Fur-
thermoreto improve performance wasreducedo 1.05and
eachpatternwasonly sampledive timesperepoch.
Figure 7 shavs the averagenumberof bits in error col-
lapsedacrossall 26 lettersfor the six conditions(Control,
Contet, sp,, spy, Contet + sp,, Contet + sp,). Standard
deviationsfor thesesix conditionswere0.58,0.62,0.42,0.36,
0.34,and0.27.Moving to thefull datasetwasdetrimentato
Control, Context, and sp; networks; eachnetwork tendedto
have atleastone'Additive’ errorbit andone‘Omission’error
bit for eachletter This wasnot the casefor the threeother
conditions,with the bestperformancéeingproducedy the
combinatiorof the Contect andthe sp, constraints.
Theaveragenumberof non-zeraveightvectorsfor eachof
thesix conditionswere25.5(SD = 3.7),13.8(SD =6.4),30.0
(SD =0.0),18.5(SD = 1.6),25.0(SD = 1.5),and 19.5(SD

= 1.4). The network weightstructuredor the two fully con-

strainednetworks (i.e., Context + SparseCoding)areshavn

in Figure 4 (the four other conditionswere not graphedas
they tendedto have smallerweights). As canbe seencom-

bining the contet and sparsecoding constraintsproduced
networks with distinctweight structures.Onceagain,it ap-

pearsthat the Context + sp; function encouragesocal en-

coding. Interestingly however, the Context + sp, function

developeda moredistributed,redundanencoding.

General Conclusions

Theresultsfrom thesethreeexperimentssuggesthata com-
binationof context andsparsecodingconstraint@arerequired
for the formationof adequaténternalrepresentationgspe-
cially whenthe datasetis large. Moreover, analysisof the
weight structuresuggestshat more accurateperformances
due to the developmentof internal representationthat are
both distributed and redundantas opposedo purely local.
Although theseresultsare preliminary they suggestuture
studieswithin this generatie framewvork. Specifically future
researchwill considernetworks with mediatinglayers,and
networkstrainedon wordsusingthefeaturebasedetters.

In termsof visualcognition theseresultssuggesthatfeed-
backconnectionsn the brain may provide context informa-
tion to relatively low-level visual areastherebyaiding their
ability to discover structurein their inputs. Furthermore,
sparsecodingmay be requiredto createredundantepresen-
tationsthatactuallyincreaseperformance.
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