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Abstract One biological principle that is often overlooked 
in the design of artificial neural networks (ANNs) is re- 
dundancy. Redundancy is the replication of processes 
within the brain. This paper examines the effects of re- 
dundancy on learning in ANNs when given either a func- 
tion-approximation task or a pattern-classification task. The 
function-approximation task simulated a robotic arm 
reaching toward an object in two-dimensional space, and 
the pattern-classification task was detecting parity. Results 
indicated that redundant ANNs learned the pattern-classi- 
fication problem much faster, and converge on a solution 
100% of the time, whereas standard ANNs sometimes 
failed to learn the problem. Furthermore, when overall 
network error is considered, redundant ANNs were signif- 
icantly more accurate than standard ANNs in performing 
the function-approximation task. These results are dis- 
cussed in terms of the relevance of redundancy to the 
performance of ANNs in general, and the relevance of re- 
dundancy in biological systems in particular. 

Introduction 

Recently a considerable amount of debate has been gener- 
ated as to the relevance of connectionist networks to cog- 
nitive science and cognitive neuroscience (e.g., Le- 
wandowsky, 1993; McCloskey, 1991; Seidenberg, 1993). 
Part of the debate centers on the fact that many ANN-de- 
sign decisions are based on engineering principles and not 
on biological principles. Consequently, there often is a 
trade-off between theoretical and technological advances. 
To be effective cognitive models, however, ANNs should 
draw on the characteristics of the brain, even though such 
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design decisions may be counterintuitive from an en- 
gineering viewpoint (Dawson & Shamanski, 1993; Daw- 
son, Shamanski, & Medler, 1993). One biological char- 
acteristic that has often been overlooked in the design of 
ANNs is redundancy. Redundancy is the replication of 
processes within the brain. 

The question of redundancy in biological systems has 
been debated since the nineteenth century, when it was 
proposed that the recovery from behavioral impairment 
resulting from brain injury was facilitated by the replication 
of processes within the brain. Initial theories held that the 
two hemispheres of the brain duplicated each other, which 
was the reason for recovery of function following unilateral 
brain lesions (Gall & Spurzheim, 1810-1819; cited in 
Almli & Finger, 1992). Although alternative explanations 
of functional recovery exist (e. g., alternate strategies, vi- 
carious functioning, diaschisis), redundancy is still held as a 
viable theory today (for a review of theories of recovery 
following brain trauma see Almli & Finger, 1992, and 
Marshall, 1984). 

Further neurophysiological evidence for redundancy 
comes from studies of patients with hydrocephalus. A re- 
view of 279 adult patients who suffered hydrocephalus 
onset within the first year of life showed normal psycho- 
logical functioning, even though some patients had less 
than half the normal brain-tissue mass (Berker, Lorber, & 
Smith, 1983; as cited in Glassman, 1987). This suggests 
that the normal brain is at least twice as large as it needs to 
be for immediate survival, and that the extra baggage of the 
normal brain only replicates functions it already possesses. 
In fact, Glassman's (1987) calculations of the brain's safety 
factor, using reliability theory, indicate that the most con- 
servative estimate of brain size is at least twice the mini- 
mum size required for short-term survival. 

Other neurophysiological evidence for redundancy in 
the brain comes from recent studies of animal physiology. 
Kovac, Davis, Matera, and Croll (1983) studied the nervous 
system of Pleurobranchaea californica extensively, and 
found several physiological systems that produced essen- 
tially the same behavior; however, when combined, these 
systems greatly enhanced the precision of simple and 



complex movements. Strehler and Lestienne (1986) ana- 
lyzed the firing patterns of neurons in the monkey's visual 
cortex and found redundant doubling of coded information 
in the regularity of triplets of impulses triggered by specific 
stimuli. Furthermore, Swindale (1986) noted that orienta- 
tion selectivity in the visual cortex is produced by more 
than one mechanism, and in more than one location. Citing 
evidence from several experiments, Swindale explains that 
inactivation of the A layers of the lateral geniculate nucleus 
removes all responding from the middle layers of the visual 
cortex, yet leaves orientation selectivity in the upper cor- 
tical layers intact. Conversely, inactivating the upper layers 
of the visual cortex via cooling leaves the orientation se- 
lectivity of the middle layers unimpaired. These results 
contradict the thought previously held, that orientation se- 
lectivity in the upper layers was simply a passive reflection 
of the responses of the middle layers. Instead, these results 
suggest that there are redundant systems for orientation 
selectivity. Complementing the physiological evidence for 
the relevance of redundancy, there is a sizable theoretical 
literature on the relevance of redundancy. 

Most theoretical work on the relevance of biological 
redundancy has centered on the factors in the evolution of 
redundancy. One common assumption, as was described 
earlier, is that redundancy allows for recovery of function 
following brain trauma; however, some theorists and neu- 
rophysiologists use this assumption as an argument against 
biological redundancy. The argument follows the line that 
since brain damage is an event rarely survived, it is unlikely 
to exert any natural-selection pressure for neural spare ca- 
pacity in anticipation of brain damage (cf. Glassman 1987). 
But this argument assumes that recovery of function is the 
main reason for redundancy, as opposed to being a side 
effect of redundancy. If we assume for a moment that re- 
covery of function is just a convenient side effect of re- 
dundancy, then we can consider alternative evolutional 
theories. 

Calvin (1983) considered the problem early hominids 
must have faced when trying to knock their prey down by 
throwing an object. The timing precision required to strike 
a target increases eightfold with a mere doubling of 
throwing distance; however, the precision of a single timing 
neuron is too crude to allow effective strikes at any sig- 
nificant distance. So Calvin proposed that the brain evolved 
redundant timing neurons to increase the timing accuracy 
above the known accuracy of any single neuron. This in- 
crease in the number of timing neurons to compensate for 
an otherwise deficient system is related to Swindale's 
(1986) hypothesis that it is easier to evolve several crude 
mechanisms that work in parallel to perform a function than 
one especially effective neural mechanism. Consequently, 
redundancy may have evolved not because brain damage 
was anticipated, but because it was easier to replicate, and 
thus improve, what was already present than to develop a 
single system beyond reproach. 

A slightly different theoretical approach to redundancy 
comes from Leon (1992) and Jacobson (1976). Leon re- 
viewed the literature on filial learning in both animal and 
human infants, and proposed that redundant structures 
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within the brain allow the neonate to learn about its en- 
vironment despite the degraded stimuli that it often en- 
counters. Leon also noted that the neonate brain is far less 
developed than the adult brain, despite the fact that most of 
survival learning must occur within the first few months of 
life; he suggests that redundant systems exist to ensure 
learning, even with a degraded nervous system. On the 
other hand, Jacobson (1976) considered the connections 
between neurons involved in a memory trace to be based on 
Hebb's model of the cortex, and defined redundancy as "to 
mean the condition that pairs of cells joined along one ef- 
fective pathway are joined again along another" (p. 150). 
Using mathematical calculations and assuming initial ran- 
dom connections between neurons, Jacobson showed that 
redundancy is an inevitable consequence of the connections 
within the cortex. 

We have seen that redundancy is a viable biological 
property, but can it be effectively implemented in ANNs? 
Redundancy has mostly been ignored in the design of 
ANNs. Recently, though, there has been a flurry of con- 
nectionist research on the use of multiple nets to solve 
problems. For example, Baxt's (1992) medical-diagnosis 
network is based on two networks working in parallel: one 
network is trained to classify positive examples of myo- 
cardial infarction, and the other to classify negative ex- 
amples. By combining their outputs, Baxt has produced a 
network that has a hit rate of 97.50% and a false-alarm rate 
of 1.63%. Using similar principles, Tabary and Salat~n 
(1992) trained a neural network to keep the upper bar of a 
simulated robotic bicycle horizontal while it moved over 
uneven terrain. To accomplish this, they trained a "static" 
network to control the angles of the bicycle's forks and a 
"velocity" network to control the speed of the bicycle. The 
combined networks allow the bike to adapt itself success- 
fully to the terrain as it moves across it. Both Baxt's (1992) 
network and Tabary and Salatin's (1992) network are not 
truly redundant in the way we defined earlier, but are more 
akin to different aspects of the same system working to- 
gether, much like episodic and semantic memory systems 
(see Tulving, 1972). Nevertheless, their multiple nets sug- 
gest that smaller networks can be combined successfully to 
solve a larger problem. 

Another form of computational redundancy widely 
studied today centers on committee machines. Committee 
machines are based on the principle of using several com- 
puters (or networks) at once to solve the same problem. The 
training algorithm for such machines is rather unique (see 
Schapire, 1990). Briefly, the first machine is trained on one 
pattern set, and then subsequent machines are trained on 
new pattern sets composed of equal amounts of correctly 
and incorrectly classified patterns that have been passed 
through previous machines. Once the machines are trained, 
however, there is little agreement as to the best way of 
combining the outputs of the different committee machines. 
Several alternatives have been suggested, from a simple 
winner-take-all, or voting, strategy, to summing the outputs, 
calculating the mean output, or implementing a separate 
network to choose which machine's output is the most 
appropriate. Regardless of the combining strategy used, the 
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committee machines invariably perform better than single 
networks alone. 

These research examples have nevertheless centered on 
improving the performance of ANNs solely from an en- 
gineering perspective. For example, it is not clear that any 
of the output strategies listed above, or even the training 
algorithms used for committee machines, are biologically 
plausible. Furthermore, Baxt's (1992) network and Tabary 
and Salatin's (1992) network necessarily have no basis in 
biological networks. 

Constraints borrowed from biological networks, how- 
ever, may have positive effects on the performance of 
ANNs, as is illustrated by Izui and Pentland's (1990) re- 
search on redundant networks. Using biological redundancy 
as a model, they mathematically analyzed the functional 
effects of one of the simplest forms of redundancy - neu- 
ronal duplication. Their mathematical calculations predict 
that redundant networks are more accurate, faster, and more 
stable than standard networks. These predictions were 
confirmed by both a feedforward neural network trained on 
the XOR problem and a feedback neural network trained on 
the travelling-salesman problem. From these results, Izui 
and Pentland (1990) claim that the "highly redundant nature 
of biological systems is computationally important and not 
merely a side-effect of limited neuronal transmission speed 
and lifetime" (p. 237). Although Izui and Pentland's re- 
search has laid the mathematical foundations of network 
redundancy, their practical work requires expansion before 
redundancy is accepted as a useful addition in ANN design. 
For example, larger problem sets should be considered as 
well as the applicability of redundancy to different artificial 
neural-network architectures. 

The purpose of this current research is to study the ef- 
fects of redundancy on ANN learning and performance on 
two different types of task. The first task is a function ap- 
proximation (FA) problem of controlling a simulated ro- 
botic arm trained to reach toward an object in two-dimen- 
sional space. The second task consists of different versions 
of a difficult pattern-classification (PC) problem: 3-, 5-, and 
7-parity. It is hypothesized that, when compared to standard 
networks, the redundant networks will be more accurate 
(i.e., have less variability) on the FA problem, and will 
converge faster on the PC problem. 

the nervous system carries forth such complex trigono- 
metric functions in the step-by-step fashion required. Em- 
ploying ANNs to approximate the inverse-kinematics 
function circumvents the computational complexity of the 
numerical solution while providing a learning mechanism 
for adaptation to environmental changes such as obstacles, 
loads, and friction (Eckmiller, 1989; Kuperstein, 1988). 

Most research on robotic-limb control via ANNs has 
been motivated by the superior performance of biological 
systems over the traditional robotic-control algorithms 
(Walter & Schulten, 1993). This advantage derives from the 
organization of topographic maps, such as sensory and 
motor maps, within the brain (Chnrchland, 1992). Conse- 
quently, a common approach to robotic-limb manipulation 
is to use self-organizing neural networks (e. g., Kuperstein, 
1988; Eckmiller, 1989; Walter & Schulten, 1993). These 
ANNs normally use a variation of Kohonen's algorithm for 
self-organizing maps (see Wasserman, 1989). Zurada 
(1992), however, reports several ANNs (e.g., Arteaga- 
Bravo, 1990; Nguyen, Patel & Khorasani, 1990; both as 
cited in Zurada, 1992) that have successfully used the 
standard back-propagation algorithm to learn the forward- 
and inverse-kinematics problems required for robotic-limb 
manipulation. 

It has been shown that ANNs learn to control robotic 
limbs successfully when biological constraints are imposed 
on the learning algorithm used for training (e. g., Kuper- 
stein, 1988; Eckmiller, 1989; Walter & Schulten, 1993). In 
Experiment 1 we consider the performance of ANNs when 
the biological characteristic of redundancy is imposed on 
the network architecture. The ANNs will be trained on the 
inverse-kinematics problem by the back-propagation algo- 
rithm. The problem space is based on Churchland's (1992) 
crablike robot, which effectively maps the inputs from the 
robot's two eyes onto the required angular positions of the 
shoulder and elbow joints; the networks will therefore be 
trained to approximate the function that maps one state 
space to another. It is hypothesized that ANNs with a re- 
dundant network architecture will be more accurate than 
ANNs with a standard network architecture. 

Method 

Experiment 1: Function approximation 

One task that seems particularly well suited to neural net- 
works is the control of robotic limbs (cf. McClelland, 
Rumelhart, & Hinton, 1986; Eckmiller, 1989; Walter & 
Schulten, 1993; Zurada, 1992). Traditional robotic-limb 
manipulation is achieved through a series of programmed 
end-effector movements based on either forward or inverse 
kinematics. Using this approach, Churchland (1992) has 
designed a crablike robot that can reach successfully toward 
an object that has been placed in front of it. Although this 
traditional method of robotic-limb manipulation effectively 
mimics sensorimotor behavior, there is no indication that 

Network architecture. The standard network architecture was a two- 
layer network 1 with two input units, two hidden units, and two output 
units. Connection weights were randomly assigned from a rectangular 
distribution over the range (-5, +5). Processing-unit biases were in- 
itialized to zero. All connection weights and unit biases were modifi- 
able. 

The redundant network architecture was created by replicating the 
bidden unit layer and the output unit layer of the standard network five 
times. Each of the replicated output units was then connected to the 
corresponding decision unit via modifiable connections. A decision 

1 There is little agreement as to the way of counting the number of 
layers in an ANN. In this paper, only the nodes affecting the 
computational capabilities of the network are counted; so a network 
consisting of an input layer, a hidden-unit layer, and an output layer is 
considered to be a two-layer network (cf. Wasserman, 1989) 
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Fig. 1 Redundant network 
architecture for the simulated 
robotic arm 
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unit acts as an output unit for the redundant network. All connection 
weights within the redundant network were randomly assigned from 
the range (-5, +5), and all biases were initialized to zero: Each 
replicated network's initial state was randomized independently of 
the others. As can be seen in Figure 1, which illustrates the redundant- 
network architecture for the simulated robotic arm, there are no direct 
connections between the replicated networks or between output units 
and decision units of different function. 

Training stimuli. The simulated robotic arm was modeled after 
Churchland's (1992) erablike schematic creature with two rotatable 
eyes and an extendable arm that can reach toward an object placed in 
front of it (see Figure 2), An object was placed randomly in front of the 
simulated robot; if the object fell within an unreachable area (i. e., the 
gray area in Figure 2) then a new position was randomly chosen. Inputs 
to the network were the two angles (It, m) that the eyes subtended when 
converged on the object, while the desired network outputs were the 
angles (P, 4)) made by the shoulder and elbow joints for the arm to 
contact the object. All angles were normalized to fall within the range of 
0 to 1. The inputs could be considered two-dimensional sensory-state 
space coordinates, and the outputs would then be considered as separate 
two-dimensional motor-state space coordinates. The network therefore 
learns the appropriate mapping between the two state spaces (see also 
Zipser & Andersen, 1988). As the mapping of the two spaces is con- 
tinuous, there are an infinite number of input and output pairs; however, 
practicality limited the training set to 50 randomly chosen pairs. 

Training procedure. The network was trained with the back-propaga- 
tion algorithm by use of the generalized delta rule (GDR) (see Ru- 
melhart, Hinton, & Williams, 1986). Backpropagation is described as a 
steepest descent optimization algorithm foI traversing the surface of a 
weight space whose height measures error. Descent through the weight 
space is aided by two parameters: momentum (c0 and rate-of-learning 
U1). Momentum is a technique for escaping local minima within the 
weight space by averaging the weight change for one pattern with the 
weight change for the previous pattern. The rate-of-learning parameter 
is used to dictate how large a step to make when traversing the weight 
space. For the simulated robotic-arm network, c( = 0.9, and T 1 = 0.1. 

To train the network, a pattern was randomly sampled - without 
replacement - from the pattern set and presented to the network. The 
network's actual output was then compared to the desired output, and 
connection weights and unit biases were modified according to the 
above algorithm. If the absolute difference between the actual output 
and the desired output was less than 0.001 then a hit was recorded. One 
sweep of the network was completed once all patterns were presented 
to the network. Training of the network continued either until the 

I I Indicates unreachable posit ion 
Fig. 2 Problem space definition for the simulated robotic arm 

maximum number of sweeps was completed or until each pattern in a 
sweep produced a hit. 

To assess the network's ability to learn the function-approximation 
problem, maximum network sweeps were increased from 100 to 50 000 
in log10 steps. The total network sum of squared errors (SSE) - as 
measured by the difference between desired and actual network 
response - as well as the SSE for each individual output (P, ~)), were 
recorded at each maximum sweep step. As the initial randomness of 
connection-weight assignment produces great variability in network 
learning, five different networks were trained for both the standard- 
network and the redundant-network architectures. 

Resu l t s  

The  to ta l  S S E  r a n g e  and  the  m e d i a n  for  the  s i m u l a t e d  robo t i c  
a rm  for  bo th  the  s t anda rd  and  the  r e d u n d a n t  n e t w o r k s  are 

s h o w n  in F igu re  3. As  can  be  seen,  m e d i a n  S S E  dec rea se s  
fas te r  for  the  r e d u n d a n t  n e t w o r k s  t han  for  the  s t anda rd  net -  

works .  In fact ,  the  a v e r a g e  m e d i a n  S S E  for  the  r e d u n d a n t  

n e t w o r k  is s ign i f i can t ly  less  t han  the  a v e r a g e  m e d i a n  S S E  for  
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Fig. 3 Overall network SSE 
range and median for the simu- 
lated robotic arm: Standard vs. 
redundant network architecture 
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the standard network, (0.355 and 0.892 respectively), F(1,44) 
= 23.899, p < .001. Furthermore, the range of the total SSE is 
significantly less for the redundant network than for the 
standard network, F(1,44) = 23.90, p < .001. This holds true 
for both the elbow joint ~), F(1,44) = 15.95, p < .001, and the 
shoulder joint P, F(1,44) = 6.91, p < .05. 

All calculations so far have centered on the total net- 
work-processing time, which is roughly equal for the two 
networks, as the redundant network theoretically works in 
parallel. We can also make comparisons between the total 
number of processing steps taken by each network (i. e., 
compare the performance of the standard network after X 
sweeps to the performance of the redundant network after 
X/N sweeps, where N is the degree of redundancy). Taking 
the total number of network-processing steps into con- 
sideration, there is little difference between the redundant 
ANN and the standard ANN when the number of sweeps is 
relatively small. In fact, when in Figure 3 we compare 1000 
sweeps of the standard ANN with 200 sweeps of the re- 
dundant ANN, the standard ANN actually has a lower 
median SSE than the redundant ANN (approximately 0.70 
vs. 1.09). The difference between the two ANNs, however, 
increases dramatically in favor of the redundant network 
when the number of sweeps increases. Figure 3 shows that 
the median-network SSE for the standard network after 
50000 sweeps (approximately 0.63) is about five times 
greater than the median-network SSE for the redundant 
network after 10000 sweeps (approximately 0.12). 

Discussion 

As was hypothesized, redundant networks are significantly 
more accurate than standard networks on function-approx- 

500 1000 2000 5000 10000 20000 50000 

LOgl0 Number  o f  Sweeps 

imation problems. Not only is the median SSE less for the 
redundant ANNs than for the standard ANNs, but the SSE 
range is significantly less for redundant networks as well. 
This means that the responding of the redundant ANNs is 
much less variable - or more stable - than the responding of 
the standard ANNs. Also, the advantage for the redundant 
ANNs increases with the number of sweeps completed 
when the total network-processing time is considered. This 
advantage holds even at the higher end of the sweep scale 
when the redundant and standard networks are equalized 
for the total number of processing steps. 

One criticism that can be raised at this point is that the 
redundant network has five times as many hidden units as 
the standard network; so it is not surprising that re- 
dundancy provides a better performance. Earlier work by 
Nguyen et al. (1990; as cited in Zurada, 1992) suggests, 
however, that the performance of redundant networks may 
be better than standard networks with equivalent numbers 
of processing units. Nguyen et al. (1990) trained two dif- 
ferent networks, one a fully connected three-layer network 
(BP), and the other a modification of the BP network that 
divided both layers of hidden units symmetrically so that 
the output nodes received activation from only half the 
total number of hidden units (BPOS). Although the BPOS 
network required slightly more training sweeps than the 
BP network to reach the same accuracy, the BPOS net- 
work had an overall shorter training time due to the 
smaller number of weight changes required. As the BPOS 
network is similar to the redundant network in that both 
architectures limit the number of connections, it is possible 
to conclude that redundant networks should perform better 
than standard networks with equivalent numbers of pro- 
cessing units. 



Experiment 2: Pattern Classification 

Exper imen t  1 has shown that r edundancy  improves  the 
per formance  of  A N N s  trained on a func t ion-approx imat ion  
task in which  per formance  is measured  by  overall  ne twork  
error. But,  how does r edundancy  affect A N N s  t ra ined on 
tasks in which  per formance  is measured  by  the amoun t  of  
ne twork  t ime required to converge  on a precise solut ion? 
Expe r imen t  2 looked at the effects of r edundancy  on the 
n u m b e r  of  ne twork  sweeps required for A N N s  to learn a 
difficult  pat tern-class i f icat ion task. Fur thermore,  the effect 
of  r edundancy  on the standard A N N  architecture (e.g.,  
Rumelhar t  et al., 1986) was compared  to the effect of  re- 
dundancy  on a different architecture (Dawson & Schopf- 
locher, 1992). 

Originally,  the back-propaga t ion  a lgor i thm was devel-  
oped on the assumpt ion  that the act ivat ion funct ion  for 
process ing units  had to be different iable  and mono ton ic  
(Rumelhar t  et al., 1986). Such process ing units are termed 
integration devices by Bal lard (1986). Recently,  however,  
Dawson  and Schopf locher  (1992) have shown that 
process ing units  with a n o n m o n o t o n i c  act ivat ion func t ion  - 
cal led value units (Ballard, 1986) - can  learn l inear ly  in- 
separable pat tern-class i f icat ion problems much  faster than 
integrat ion devices  can. Consequent ly ,  it is hypothes ized 
that redundant  A N N s  will  converge  faster than standard 
ANNs,  and  that va lue-un i t  A N N s  will  per form better  then 
in tegra t ion-device  ANNs.  Therefore,  the best  per formance  
is expected from the redundant  va lue-un i t  network.  
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+1) for value-unit networks with a Gaussian activation function. Pro- 
cessing-unit biases, regardless of activation function, were initialized 
to zero. The redundant networks were created as was described in 
Experiment 1, except that there was only one decision unit for each 
network. 

Training stimuli. Parity is a rather difficult classification task defined 
by the number of active input units. It the number of ls in the input 
pattern is odd, then the output is 1, otherwise it is 0 (Minsky & Papert, 
1969), ANNs were presented with 3-, 5-, or 7-parity problems. 
Training set sizes were 8, 32, or 128 orthogonal input patterns for the 
3-, 5-, and 7-parity problems respectively; consequently, there were 
equal numbers of positive and negative examples of parity in each 
training set. 

Training procedure. The networks were trained with the back-propa- 
gation algorithm by either the GDR for processing units with a sig- 
moidal activation function (Rumelhart et al., 1986), or a modification 
of the GDR for processing units with a Gaussian activation function 
(Dawson & Schopflocher, 1992). For the integration-device networks, 
the parameters were set at c~ = 0.9 and 11 = 0.1. Parameters for the value 
unit networks were c~ = 0 and 11 = 0.05. 

Training of the ANNs proceeded as described in Experiment 1 with 
some exceptions. First, a hit was recorded if the actual output was 0.95 
or higher when a 1 was desired, or 0.05 or lower when a 0 was desired. 
Second, the maximum number of sweeps allowed was held constant at 
30000 for all networks. Training continued until all patterns in the set 
were learned or until the maximum number of sweeps was reached. 
Again, as the initial random assignment of connection weights 
introduces variability in learning, each of the four different networks 
(i.e., standard integration, standard value unit, redundant integration, 
redundant value unit) was trained with different initial settings a total 
of 10 times. The minimum, median, and maximum number of sweeps 
to convergence, and the number of ANNs reaching convergence, were 
recorded for each type of network. 

Method  

Network architecture. The standard networks used in the pattern- 
classification problems were two-layer networks with one output unit. 
The number of input units and hidden units, however, were equivalent 
to the size of the parity problem being solved: namely 3, 5, or 7 units 
for the respective parity problem. Connection weights were rando- 
mized from a rectangular distribution over the range (-5, +5) for in- 
tegration-device networks with a sigmoidal activation function, or (-1, 

Results  

Table 1 shows the m i n i m u m ,  median ,  and m a x i m u m  
n u m b e r  of  sweeps required to reach convergence  and the 
total n u m b e r  of  networks  out of  10 to reach convergence  for 
the 3-, 5-, and 7-pari ty problems.  The redundant  networks  
solved the problems in fewer  sweeps than the standard 
networks.  Fur thermore ,  the r edundan t  networks  converged  

Table 1 Sweeps to convergence as a function of network architecture and processing unit type 

Number of Sweeps Network Architecture 

Standard Network Redundant Network 

3-Parity 5-Parity 7-Paritya 3-Parity 5-Parity 7-Parity 

Integration Device ANNs 
Minimum 661 5817 - 
Median 2599 6943 - 
Maximum 24850 8068 - 

n 8 3 0 

261 576 353 
623 717 1237 

1017 1047 2853 
10 10 10 

Value Unit ANNs 
Minimum 49 213 
Median 81 258 
Maximum 200 1015 

n l0 9 

1042 37 34 71 
2744 67 84 97 

28322 156 130 302 
8 10 10 10 

Note. Maximum number of sweeps 
networks out of 10. 

= 30000; n = number of converged a Because of the difficulty of the 7-parity problem, different values of 
were tried. Value units learned best with 1] = 0.01, whereas 

integration devices failed to learn at all values of 11. 
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on a solution 100% of the time while the standard networks 
often failed to converge on a solution even after 30000 
sweeps. When equalized for the total number of network- 
processing steps (i. e., when the standard network sweeps 
were multiplied by l/N, where N = 5), the redundant net- 
works outperform the standard networks only as the prob- 
lem difficulty increases. And finally, the value-unit net- 
works converged much faster than the integration-device 
networks for both the standard-network and the redundant- 
network architectures. The standard value-unit networks 
also converged on a solution more often than the standard 
integration-device networks, particularly with the more 
difficult problems. 

To assess whether either the individual networks within 
a redundant network are being trained toward local minima, 
or the entire network is being trained toward a global op- 
timum, we analyzed the underlying structure of a redundant 
integration-device network trained on the 3-parity problem. 
Analysis indicates that the individual networks within the 
redundant network are being trained toward local minima. 
For example, Figure 4 shows the desired and the actual 
output patterns of each individual network for a redundant 
integration-device network that had converged after 579 
sweeps. Connection weights from each individual network 
to the decision unit are -7.42, -5.99, 6.36, 4.10, and 1.49 
for Networks 0 to 4 respectively. Network 2 shows the most 
learning with five of the eight patterns actually falling 
within hit parameters, and it contributes the greatest amount 
of excitatory activation to the Decision Unit. Network 3 
also tends to classify the patterns correctly; however, it is 
not as accurate as Network 2, which is reflected in its lower 
weighting. As a side note, the two patterns that Network 2 
fails to classify are correctly classified by Network 3, and 
vice versa. Network 0 has actually learned to classify the 
opposite parity problem (i.e., responding 1 for an even 
number of ls in the input pattern); it contributes a strong 
inhibitory response to the Decision Unit. Network 4 can be 
interpreted as a network that always has a disposition to 
respond positively, although this response is slight, as is 
indicated by the low weighting it has with the Decision 
Unit. Network 1 is difficult to interpret, except as a possible 
agent against Network 4, as most of Network l 's  responses 
are above 0.5 and there is a relatively strong inhibitory 
weighting between it and the Decision Unit. 

Discussion 

Convergence on pattern-classification problems is much 
faster with redundant ANNs than with standard ANNs. 
Furthermore, redundant ANNs converge on a solution 
100% of the time regardless of problem size, whereas the 
standard ANNs often failed to reach convergence. In fact, 
the standard integration-device networks only reached 
convergence 80% of the time on the 3-parity problem, and 
completely failed to converge on a solution for the 7-parity 
problem, even after 30 000 sweeps. The standard value-unit 
networks, on the other hand, converged on a solution at 
least 80% of the time, even on the most difficult problem. 

When the networks are equalized for the total number of 
processing steps, as opposed to the total network-process- 
ing time, the redundant networks outperform the standard 
networks only on the more difficult problems. Finally, in 
support of Dawson and Schopflocher (1992), the value-unit 
networks outperform the integration-device networks on the 
PC problem in every aspect. 

General discussion 

The results from both the PC and the FA problems confirm 
Izui and Pentland's (1990) mathematical analysis of re- 
dundant networks. Redundancy produces faster con- 
vergence, more accurate results, and more stable networks 
than comparable standard networks. In terms of the rele- 
vance of redundancy to the performance of ANNs in gen- 
eral, redundant networks should be considered as a viable 
alternative to standard networks. The initial cost of the 
extra hardware associated with redundancy is far out- 
weighed by the savings in training, the accuracy in re- 
sponding, and the network stability produced by redundant 
processes. This improvement in performance may be due to 
individual networks training toward not a global optimum, 
but toward an orthogonal local optimum, much as Scha- 
pire's (1990) learning algorithm encourages. Indeed, anal- 
ysis of the individual networks within the redundant net- 
work showed that the networks find local complimentary 
minima in the problem space; so each individual network is 
being trained toward a local optimum. Instead of develop- 
ing one perfect algorithm or network, we should consider 
combining smaller and simpler networks that have their 
own specialization (cf. Ballard, 1986). 

Our results have shown that there is another alternative 
to the combining algorithms used by committee machines 
(e. g., mean response, winner take all, median response, 
etc.). The modifiable connections from the individual out- 
put units to the decision unit allows the network to train 
itself. As opposed to taking the mean output response of 
individual networks, which gives equal weighting to all 
networks, the amount of contribution is weighted according 
to how well the individual networks classify the problem. 
Furthermore, all individual networks contribute to the final 
result, unlike winner-take-all or median-response methods. 
Consequently, the modifiable connections of the decision 
unit have proven to be a functional alternative to those 
methods conventionally used while some semblance of 
biological systems is preserved. 

Ironically, it is the modifiable connections of the deci- 
sion unit that provide the strongest line of argument against 
the redundant network. Critics may claim that our re- 
dundant network is nothing more than a three-layer net- 
work, with the output units simply making up the second 
layer of hidden units. If this were the case, then it would not 
be surprising that the redundant networks were able to 
converge on all PC problems, as a three-layer network is 
capable of carving a problem space into an arbitrary num- 
ber of distinct regions (Lippman, 1987). The response to 
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Fig. 4 Actual vs. desired output responses of the decision unit and its 
individual networks for a redundant integration-device network trained 
on 3-parity 

this criticism centers on the architecture of the redundant 
network. Each of the subnetworks is an isolated unit that is 
capable, in theory, of solving the problem on its own. 
Figure 4 shows that this in fact is possible. This archi- 
tectural constraint is clearly different from the massive 
parallelism common to networks that have two layers of 
hidden units. Nevertheless, future research will concentrate 
on the differences between redundant and standard net- 
works that have equal numbers of processing units. It is 
postulated that redundant networks will be more resistant to 
damage and will generalize better than standard networks, 
as is suggested by biological research (e.g., Glassman, 
1987; Leon, 1992). 

The biological plausibility of the decision unit allows us 
to speculate on the relevance of redundancy in biological 
systems. By modeling redundancy with an ANN, we can 
begin to confirm or deny some of the theories and findings 
introduced earlier.~ First, the apparew specialization of each 
individual network within the redundant network is in line 

61 

with biological evidence from certain crustaceans whose 
movement is regulated via a set of redundant command 
neurons, each specialized for a particular range of motion 
(Kovac et al., 1983). Moreover, the specialization of one 
network for detecting the opposite parity can be related to 
the parallel ON and OFF channels leading from the retina to 
the visual cortex. Normal vision requires the push-pull 
action of both channels, although Swindale (1986) reports 
that a visual system with a blocked ON channel can still 
detect the onset of a dark spot, and therefore the absence of 
a light spot. Similarly, the opposite parity detector signifies 
the absence of odd parity by detecting even parity. Re- 
dundant information is carried by the ON and OFF channels 
of the visual system, and by the odd- and even-parity de- 
tectors of the ANN. 

Other evolutional theories are supported by the perfor- 
mance of the redundant ANN. For example, the increased 
precision of the redundant network over the standard net- 
work on the FA problem lends credence to Calvin's (1983) 
hypothesis about redundancy evolving to increase the pre- 
cision of a system. In fact, as the upper limit of network 
sweeps increases, the worst redundant network is more 
precise than the best standard network. Also, the number of 
sweeps needed to train both the FA and the PC networks 
suggests that it is easier to evolve several crude mechan- 
isms working in parallel than one extremely effective 
mechanism. Analysis of Figure 4, however, suggests that 
there may be an upper limit to the amount of redundancy 
required for optimal performance. Three of the subnetworks 
clearly show learning of the problem, whereas the re- 
sponses of the other two subnetworks are difficult to in- 
terpret. Too much redundancy may actually cause over- 
learning, and therefore may be detrimental to network 
performance. 

Further research will consider the possibility of loss of 
redundancy accounting for loss of functioning in patients 
suffering from debilitating diseases. As was stated earlier, it 
is widely held that redundancy in the brain allows for 
functional recovery after brain damage (Almli & Finger, 
1992). It follows that loss of redundancy may cause loss of 
functioning. Modeling redundancy via computer simulation 
has a distinct advantage over biological models, in that 
precise ablations can be performed on artificial neural 
networks (see Hinton & Shallice, 1991). One can therefore 
monitor the performance of the ANN when specific con- 
nections are cut. After each connection is cut, it is expected 
that there will be a slight decline in performance until the 
ANN has compensated for the missing link. This type of 
recovery is typical of patients who are recuperating from 
brain trauma-functional recovery is not immediate, but 
gradually improves (Marshall, 1984). Eventually, after en- 
ough redundant connections are cut, recovery of function 
for the ANN should be impossible. 

Furthermore, the results of Experiment 1 show that the 
variability in making a response is much greater for a 
nonredundant network than for a fully redundant network; 
therefore, as redundancy decreases, variability in respond- 
ing should increase. Monitoring the variability changes 
should be an effective way of estimating how much damage 
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the system has suffered, and should even predict  when  
te rminal  drop will  occur. A practical  appl icat ion of this 
theory has already been  h in ted  at by  Patterson,  Foster, and 
Heron  (1980), who conclude  that for the assessment  of 
damage  caused by  mul t ip le  sclerosis, "variabi l i ty  is a more  
sensi t ive indicator  of  visual  pa thway damage  than the usual  
measure  of  mean"  (p. 143). By a t tempt ing to model  this 
increase  in variabil i ty,  we m a y  be in a better  posi t ion to 
unders tand  the under ly ing  damage  associated with such 
diseases as mul t ip le  sclerosis and Alzhe imer ' s  disease. 
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