
University of Victoria

Notes for Math 413:

Applied Algebra

Peter Dukes

January 1, 2020

Contents

I Finite Fields 1

1 Introduction 3

1.1 Integers modulo n . 3

1.2 Fields . 5

1.3 Prime fields and extensions . 7

1.4 The multiplicative group of a finite field 8

1.5 Existence of finite fields . 10

Exercises . 16

2 Polynomials 19

2.1 Minimal and primitive polynomials . 19

2.2 Cyclotomic polynomials . 21

2.3 Factoring via idempotents in characteristic two 25

2.4 Linear algebra over finite fields . 27

2.5 Factoring via Berlekamp’s algorithm . 29

Exercises . 31

3 Applications 33

i

ii CONTENTS

3.1 Lagrange interpolation and secret sharing 33

3.2 Linear homogeneous recurrences and M-sequences 35

3.3 Orthogonal arrays and finite planes . 38

Exercises . 40

II Coding Theory 41

4 Codes and Hamming Distance 43

4.1 Introduction . 43

4.2 Balls, errors, minimum distance . 44

4.3 Bounds on code sizes . 46

Exercises . 48

5 Linear Codes 51

5.1 Preliminaries . 51

5.2 Duals and parity check matrices . 53

5.3 Minimum distance for linear codes . 55

Exercises . 57

6 Perfect Codes 59

6.1 The Hamming codes . 59

6.2 The Golay codes . 61

6.3 Classification . 64

Exercises . 66

CONTENTS iii

7 Cyclic Codes 69

7.1 Introduction and classification . 69

7.2 BCH codes . 73

Exercises . 75

Bibliography 79

iv CONTENTS

Part I

Finite Fields

1

Chapter 1

Introduction

Our notes begin by rougly following Chapter 3 of Applied Abstract Algebra, by Lidl and

Pilz, [2]. The goal is to quickly obtain structural information on finite fields, assuming an

introductory course in abstract algebra. Hungerford’s text [1] is an excellent reference on

the necessary background in algebra, as well as for additional depth and extra topics.

1.1 Integers modulo n

The ring of integers modulo n, written Z/nZ and sometimes abbreviated Zn, is the set

{0, 1, . . . , n − 1} together with operations of addition and multiplication mod n. The

additive group of Z/nZ is a cyclic group with n elements, and we denote it by (Z/nZ)+.

Concerning the multiplicative structure, an element a ∈ Z/nZ is a unit or is invertible if

there exists b ∈ Z/nZ such that ab ≡ 1 (mod n).

Proposition 1.1. An element a ∈ Z/nZ is invertible if and only if gcd(a, n) = 1.

Proof. Suppose there exists b ∈ Z/nZ such that ab ≡ 1 (mod n). Then, for some integer

t, we have ab+ nt = 1. It follows that if d | a and d | n, we have d | 1, So gcd(a, n) = 1.

Conversely, suppose gcd(a, n) = 1. Using Bézout’s lemma, find integers s, t such that

as + nt = 1. Letting b be the least residue of s modulo n, we have found b ∈ Z/nZ such

that ab ≡ as ≡ as+ nt = 1 (mod n).

3

4 CHAPTER 1. INTRODUCTION

Note that a product of invertible elements is invertible; its inverse is just the product of

inverses of its factors. So the set of invertible elements of Z/nZ forms an abelian group

under multiplication, sometimes called the group of units mod n, and denoted (Z/nZ)×,

or Un for short.

Define φ(n) to be the number of positive integers a ≤ n satisfying gcd(a, n) = 1. Then

|(Z/nZ)×| = φ(n). The function φ(n) is called Euler’s totient or the Euler-phi function.

It is clear that φ(p) = p − 1 for primes p. More generally, φ(pk) = pk − pk−1 because

there are exactly pk−1 multiples of p in the relevant range. Also, an integer a is relatively

prime to n if and only if it is relatively prime to every prime divisor of n. Putting these

together, we have the following identity.

Proposition 1.2. For a positive integer n, we have φ(n) = n
∏
p|n

(1− 1
p
).

Example 1.3. We compute φ(12) = 12(1
2
)(2

3
) = 4. The group of units mod 12 is

U12 = {1, 5, 7, 11}, and is isomorphic to the Klein 4-group Z2 ⊕ Z2.

Recall that the order of every element of a group divides the group order. Applying this

to the group of units mod n, we obtain a useful fact.

Theorem 1.4 (Euler’s theorem). If gcd(x, n) = 1 then xφ(n) ≡ 1 (mod n).

The RSA cipher

Let n = pq, where p and q are large primes. Each user gets a key pair of integers k = (a, b)

with a, b > 1 and ab ≡ 1 (mod φ(n)). Note that φ(n) = (p − 1)(q − 1) = n − p − q + 1.

Alice sends an encrypted message x ∈ Z/nZ to Bob by exponentiation using Bob’s public

key: Ek(x) = xb (mod n). Bob decrypts messages by doing the same with his private

key: Dk(y) = ya (mod n).

Proposition 1.5. With functions defined as above, Dk ◦Ek is the identity map on Z/nZ.

Proof. It is clear from the definition that Dk(Ek(0)) = Dk(0) = 0. Let x ∈ Z/nZ, x 6= 0.

If gcd(n, x) = 1, then Dk(Ek(x)) = (xb)a = xab ≡ x (mod n) by Euler’s theorem. Assume

now that gcd(n, x) = p. Then Dk(Ek(x)) ≡ 0 (mod p). And we have gcd(x, q) = 1, so

Dk(Ek(x)) = xab = x · xq−1 ≡ x · 1 (mod q). It follows that Dk(Ek(x)) ≡ x (mod pq) by

the Chinese remainder theorem. The case with p and q interchanged is similar.

1.2. FIELDS 5

1.2 Fields

A field is a triple (F,+,×), where:

• F is an abelian group under + (addition) with identity 0;

• F \ {0} is an abelian group under × (multiplication) with identity 1; and

• the distributive law(s) for rings hold: a(b+ c) = ab+ ac for all a, b, c ∈ F.

Various familiar laws can be proved from these properties, such as 0× a = a× 0 = 0 for

all a ∈ F.

The additive and multiplicative groups of F are here denoted F+ and F×, respectively.

Note that multiplication was written with juxtaposition in the distributive laws. This is

quite standard and will continue to be used in what follows.

Example 1.6. Q, R, and C (the sets of rational, real, and complex numbers) are fields

with the usual operations.

From our remarks in the previous section, we obtain instances of (finite) fields whose

cardinalities are prime.

Proposition 1.7. Let p be a prime. The integers mod p, Z/pZ, form a field under the

usual operations.

The field Z/pZ is commonly denoted by Fp or GF(p).

Example 1.8. The smallest possible field F2 has two elements {0, 1}. The additive group

(F2)
+ is the usual binary cyclic group and the multiplicative group (F2)

× is the trivial

group.
+ 0 1

0 0 1

1 1 0

and
× 1

1 1

Example 1.9. The field F5 has elements {0, 1, 2, 3, 4} and operation tables as shown.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

and

× 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 3 2

4 4 3 2 1

6 CHAPTER 1. INTRODUCTION

The characteristic of a field F is the least positive integer n such that

n · 1 =

n︷ ︸︸ ︷
1 + · · ·+ 1 = 0,

or 0 if no such n exists. Since fields have no zero-divisors, the only possible positive

characteristics are prime integers. Of course, the characteristic of Fp is p, while the fields

Q,R,C each have characteristic zero.

Recall that the field C of complex numbers can be constructed from R by appending the

new element i satisfying the relation i2 = −1. The notation C = R(i) is often used.

Something similar can be done to construct finite fields of non-prime order.

Example 1.10. Consider F3(i) = {a + bi : a, b ∈ F3}, where i2 = −1 ≡ 2 (mod 3). We

have |F3(i)| = 9 and, to illustrate the arithmetic,

(2 + i) + (2 + 2i) = (2 + 2) + (1 + 2)i ≡ 1 + 0i = 1,

(1 + 2i)2 = 1 + 4i+ 4i2 = 1 + i− 4 = i,

and

(1 + i)−1 = 2−1(1− i) = 2 + i.

Remark. The above construction works for Fp(i) for a general prime p. However, for

existence of inverses in Fp(i), it is necessary that −1 be a non-square in Fp. This occurs

if and only if p ≡ 3 (mod 4).

Whether we append it to R or some Fp, one can think of the imaginary unit i as a zero

of the polynomial x2 + 1. But note that we are not limited to this particular polynomial.

Example 1.11. Consider F2(α), where α is a new symbol satisfying α2 + α+ 1 = 0. We

obtain a field on four elements whose operation tables are below.

+ 0 1 α α + 1

0 0 1 α α + 1

1 1 0 α + 1 α

α α α + 1 0 1

α + 1 α + 1 α 1 0

× 1 α α + 1

1 1 α α + 1

α α α + 1 1

α + 1 α + 1 1 α

We can similarly obtain a field on 8 elements as F2(α), where α3 +α+ 1 = 0. As we shall

see, whenever we have an irreducible polynomial of degree k in Fp[x] , we can append a

zero of it to Fp to construct a field whose cardinality (also called its order) is of the form

pk, an integer power of a prime. In what follows, we show that these are the only possible

finite fields, and we examine the structure of such fields in more detail.

1.3. PRIME FIELDS AND EXTENSIONS 7

1.3 Prime fields and extensions

We say that F is a subfield of K if F ⊆ K and F is closed under the two operations of K.

Alternatively, K is an extension of F.

Example 1.12. Q is a subfield of R, which is in turn a subfield of C.

Example 1.13. The field F3(i) is an extension of F3.

Be careful: even though {0, 1} ⊆ F for every field F, this does not mean F2 is a subfield

of every field. Indeed, F2 is a subfield of precisely the fields of characteristic 2.

A prime field is a field with no proper subfields. If one takes the intersection of all subfields

of a field F, the result is the unique prime subfield of F. The following result classifies the

prime fields.

Theorem 1.14. Up to isomorphism, the only prime fields are Q and Fp, p prime.

Proof. Let P be a prime field with identity 1. Define D = {n · 1 : n ∈ Z} ⊂ P . The

mapping ψ : Z→ D defined by ψ : n 7→ n ·1 is a ring epimorphism (onto homomorphism)

of Z onto D.

Case 1: If kerψ = {0}, then ψ is an isomorphism. Therefore, P is isomorphic to the

smallest field containing Z, namely its field of fractions Q.

Case 2: If kerψ 6= {0}, then kerψ is a nontrivial ideal of Z. The integers are a PID,

so kerψ = 〈n〉 for some positive n ∈ Z. (This n is the characteristic of P .) So by the

first ring isomorphism theorem, D is isomorphic to Z/〈n〉 = Z/nZ. Since P is a field, it

follows that n is prime, say p and P = D = Z/pZ since P is prime.

To summarize: if F has characteristic zero, then its prime field is Q; otherwise, F has

prime characteristic p, and its prime subfield is Z/pZ.

If K is an extension of F, then it is a vector space over F. The ‘vector addition’ takes place

in K, and ‘scalar multiplication’ by elements of F acts on K. (The fact that elements of

K admit a multiplication is ignored here.)

The dimension of K over F is [K : F], called the degree of the field extension. An extension

of degree n is also sometimes written

8 CHAPTER 1. INTRODUCTION

F

K
n

Example 1.15. We have [C : R] = 2 with one R-basis for C being {1, i}. On the other

hand, R is an infinite-degree extension of Q.

Theorem 1.16 (Moore, 1896). If F is a finite field of characteristic p, then |F| = pn,

where n = [F : Fp].

Proof. When considered as a vector space over its prime field Fp, F contains a basis of

n elements. Each element of F can be expressed as a unique linear combination of the

n basis elements with coefficients in Fp. In counting these linear combinations, there are

independently p choices for each coefficient. Therefore, |F| = pn.

A finite field of order q = pn is written Fq, or sometimes GF (q).

Corollary 1.17. The additive group F+
pn is isomorphic to the ‘elementary’ abelian group

n︷ ︸︸ ︷
Zp ⊕ · · · ⊕ Zp .

Remark. This also follows from the fact that x 7→ b
a
x is an additive automorphism of F+

for any nonzero a, b ∈ F. So all nonzero elements have the same order, p, and the only

possibility is that F+ is an elementary abelian p-group.

Example 1.18. For p ≡ 3 (mod 4), the field Fp(i) has order p2 and a basis over its prime

field Fp is {1, i}.

Example 1.19. A basis for F8 = F2(α), α3 + α + 1 = 0, over F2 is {1, α, α2}.

1.4 The multiplicative group of a finite field

Having now essentially fully covered the additive structure of finite fields, we turn to the

multiplicative structure. First, we will need to recall that the polynomial ring F[x] is

Euclidean; it follows that a polynomial of degree d over a field has at most d zeros.

Theorem 1.20. The multiplicative group F×q is cyclic (of order q − 1).

1.4. THE MULTIPLICATIVE GROUP OF A FINITE FIELD 9

Proof. Suppose q > 2 to avoid triviality. Write q − 1 = pr11 p
r2
2 · · · prmm is the unique prime

factorization of q− 1. Then the polynomial fi = x(q−1)/pi − 1 has at most (q− 1)/pi roots

in Fq. Pick a nonzero element ai of Fq which is not a root of fi. Put bi = a
(q−1)/prii
i . Then

b
p
ri
i
i = 1, and so |bi| | prii . From this it follows that |bi| = psii for some integer 0 ≤ si ≤ ri.

But by definition of ai, we have b
p
ri−1
i
i = a

(q−1)/pi
i 6= 1. So |bi| = prii .

Now we claim that b = b1b2 · · · bm has order q − 1. If not, b has order (wlog) dividing

(q − 1)/p1. So

1 = b(q−1)/p1 = b
(q−1)/p1
1 b

(q−1)/p1
2 · · · b(q−1)/p1m = b

(q−1)/p1
1 ,

since for 2 ≤ j ≤ m we have b
(q−1)/p1
j = 1. This is a contradiction.

By Lagrange’s theorem, every element of Fq is a root of the polynomial equation xq−x = 0

in Fp[x]. Conversely, we see later that these q roots are distinct and form a field. This

guarantees existence of a field of order q for every prime power q.

Multiplicative subgroups

Suppose Fq is a field of order q. For any divisor d of q − 1, there is a unique subgroup of

F×q of index d, that is, of order (q − 1)/d. Letting g denote a generator of F×q , we have

〈gd〉 of index d in F×q . In particular, for odd q, the set of squares in F×q is a subgroup of

index two.

Example 1.21. Consider F7. It can be checked that 3 generates F×7 . Since 32 = 2 in

F7, the set of nonzero squares is 〈2〉 = {1, 2, 4}. Now consider F49 = F7(i). To find an

element of order 24, it suffices to find an element of order 8 and an element of order 3,

and take their product. As before, 2 ∈ F7(i) has order 3. To find an element of order 8,

it is enough to find an element z satisfying z2 = i. Letting z = a + bi for a, b ∈ F7, we

obtain the equations a2− b2 ≡ 0 (mod 7) and 2ab ≡ 1 (mod 7). By inspection, a = b = 2

is a solution. So the nonzero squares are generated by 2(2 + 2i) = 4 + 4i.

The element −1 is a square in Fq if and only if −1 = g(q−1)/2 is a power of g2; that is, −1

is a square if and only if q ≡ 1 (mod 4). When −1 is not a square, the set of squares has

an interesting arithmetic structure. A difference set in an additive group G is a subset

D ⊆ G with the property that every element of G\{0} occurs equally often a difference of

two distinct element of D. When |G| = n, |D| = k, and every element nonzero element of

10 CHAPTER 1. INTRODUCTION

G is a difference exactly λ times, the difference set is labelled by the triple of parameters

(n, k, λ). The difference set condition implies k(k − 1) = λ(n− 1).

Proposition 1.22. Let q ≡ 3 (mod 4) be a prime power. The set of squares in F×q is a

(q, (q − 1)/2, (q − 3)/4)-difference set in F+
q .

Proof. Let g be a generator of Fq, and put D = 〈g2〉, the set of squares in F×q . Since

|D| = (q− 1)/2, we need only check that every element of Fq \{0} occurs equally often as

a difference of squares. We can write Fq = ±D since −1 is a non-square, and hence −D
is the set of all non-squares. Then, for each fixed t = 1, 2, . . . , (q − 3)/4, we have

±{g2s+2t − g2s : s = 0, 1, . . . , (q − 3)/4} = ±(g2t − 1)D = Fq \ {0}.

It follows that every element of Fq \ {0} occurs exactly (q − 3)/4 times as a difference of

squares.

Example 1.23. The set D = {1, 3, 4, 5, 9} of squares in F11 is an (11, 5, 2)-difference set.

1.5 Existence of finite fields

Our main goal in this section is to prove existence and uniqueness of finite fields Fq of each

prime power order q. It turns out that Fq gets delivered as the splitting field of a special

polynomial: xq − x ∈ Fp[x]. First, though, we need some background on polynomials.

Quotient by poiynomial ideals

Let m(x) ∈ F[x]. Declare two polynomials u(x), v(x) to be congruent modulo m(x) if

m(x) | (u(x)− v(x)).

This is usually written u(x) ≡ v(x) (mod m(x)). When F = Fp, coefficients are also sub-

ject to reduction modulo p. For extra clarity when we wish to indicate the characteristic,

it is also meaningful to write u(x) ≡ v(x) (mod p,m(x)). The usual rules of modular

arithmetic can be extended to polynomials in this way.

1.5. EXISTENCE OF FINITE FIELDS 11

Example 1.24. Consider F5 with m(x) = x2 + 3x+ 2. Then

x4 ≡ (x2)2 = (−3x− 2)2 = (2x+ 3)2

≡ 4x2 + 12x+ 9 = −x2 + 2x+ 9

≡ (3x+ 2) + (2x+ 9)

≡ 1 (mod 5, x2 + 3x+ 2).

As you can see, there are really just 52 = 25 distinct equivalence classes of polynomials.

Beware, though: these 25 classes do not form a field since m(x) splits (more on this later).

Recall the ideal generated by polynomial m ∈ F[x] is

〈m(x)〉 = {m(x)f(x) : f ∈ F[x]}.

Note that we said u ≡ v (mod m) above if and only if u(x) − v(x) is an element of

〈m(x)〉. So, just as arithmetic modulo n induces the quotient ring Z/〈n〉, in the same

way polynomial arithmetic modulo m(x) is really happening in

F[x]/〈m(x)〉.

Theorem 1.25. If f(x) is irreducible in F[x], then the quotient F[x]/〈f(x)〉 is a field.

Proof. Since commutative rings mod maximal ideals are fields, it suffices to show 〈f(x)〉
is a maximal ideal in F[x]. Recall F[x] is Euclidean, hence a PID. So, to verify maximality,

we may consider the inclusion 〈f(x)〉 ⊆ 〈a(x)〉 ⊆ 〈1〉 = F[x]. In this case, a(x) | f(x);

thus by irreducibility of f(x) we have either 〈a(x)〉 = F[x] or 〈f(x)〉, as required.

Conversely, m(x) not irreducible yields zero divisors and renders the quotient not a field.

Corollary 1.26. If f(x) is an irreducible polynomial of degree n in Fp[x], then Fp[x]/〈f(x)〉
is a field of order pn.

This gives a concrete presentation of finite fields in which both operations (addition by

collecting powers of x and multiplication by reducing mod f(x)) are natural. It remains,

though, to find such irreducibles f(x). They do exist for each p, n (though we have not

seen a proof yet) and they can be found in a table or on computer.

12 CHAPTER 1. INTRODUCTION

Splitting fields

Definition 1.27. A polynomial f ∈ F[x] is said to split in an extension K of F if f can

be expressed as a product of linear factors in K[x]; that is, if

f(x) = c(x− a1)(x− a2) · · · (x− an)

holds in K[x] for some c ∈ F and (a possibly empty) list of ai ∈ K.

Example 1.28. In F13[x], f(x) = x2 + 1 splits as (x + 5)(x + 8). But in F7[x] (as with

R[x]), f(x) = x2 + 1 does not split in the ground field; so, being quadratic, it is an

irreducible polynomial.

Definition 1.29. Say K is a splitting field of f(x) ∈ F[x] over F if f splits in K but does

not split in any proper subfield of K containing F.

Next comes an important first result in the direction of explicitly obtaining splitting fields.

Fundamental Theorem of Fields (Kronecker, 1887). Let F be a field and f ∈ F[x] be

non-constant. There exists an extension field K of F such that f has a zero in K.

Proof. Take K = F[x]/〈g(x)〉, where g is an irreducible factor of f in F[x]. By the above

discussion, K is a field. A copy of F exists as a subfield inside K as a+ 〈g(x)〉. Finally, it

is easily checked that a zero of f in K is furnished by x+ 〈g(x)〉.

Theorem 1.30. For deg f > 0, there exists a splitting field for f ∈ F[x].

Proof idea. Use strong induction on deg f , together with the Fundamental Theorem of

Fields.

Example 1.31. Let’s return to f(x) = x2 + 1. As a polynomial in R[x], a splitting field

for f over R is C, the complex numbers. As we all know, x2 + 1 = (x+ i)(x− i) in C[x].

On the other hand, as a polynomial in F7[x], a splitting field for f over F7 is obtained as

F7[x]/〈x2 + 1〉. This is a finite field of order 49, with elements a+ bx+ 〈x2 + 1〉, a, b ∈ F7.

For an element α ∈ K \ F, where K is an extension of F, let F(α) denote the smallest

subfield of K which contains both F and α. Alternatively, F(α) is the field of fractions of

F[α].

1.5. EXISTENCE OF FINITE FIELDS 13

Theorem 1.32. Let F be a field and f(x) irreducible in F[x]. Suppose α is a zero of f(x)

in some extension. Then

F(α) ∼= F[x]/〈f(x)〉.

Proof. Consider the ‘evaluation’ homomorphism φ : F[x]→ F(α) defined by f(x) 7→ f(α).

Its kernel is an ideal containing f(x); hence ker(φ) = 〈f(x)〉 by maximality of this ideal.

The first isomorphism theorem completes the proof.

Example 1.33. We can identify F7[x]/〈x2 + 1〉 with F7(i), where as usual i satisfies the

relation i2 = −1.

Corollary 1.34. If α, β are two zeros of m(x), then F(α) ∼= F(β), since each is isomorphic

to F[x]/〈m(x)〉.

Example 1.35. Let f(x) = x2 +x+ 1 ∈ F2[x]. It is clear by checking possible roots that

f is irreducible. Let α be a symbol representing a root of f , so that α satisfies α2 = α+1.

Now put K = F2[x]/(x2 + x + 1) ∼= F2(α) = {0, 1, α, α + 1}. Then K is a splitting field

for f since f(x) = (x− α)(x− α− 1) in K[x], and yet is irreducible over the only proper

subfield. Note that in this case F2(α) ∼= F2(α + 1).

Applying induction to Corollary 1.34 gives uniqueness of splitting fields. Details are

omitted.

Theorem 1.36. Any two splitting fields for f ∈ F[x] over F are isomorphic (via an

isomorphism which fixes the ground field F).

Multiplicity of zeros

If α ∈ K is a zero of f(x), then (x − α) | f(x) in K[x]. There exists a largest integer k

such that (x− α)k | f(x). This k is the multiplicity of α, and α is simple if k = 1.

Definition 1.37. A polynomial f ∈ F[x] is separable if and only if, in the splitting field

K of f , f(x) has no multiple zeros.

To characterize the separable polynomials, we introduce the notion of formal derivative

D : F[x] → F[x]. The operator D acts just as ordinary differentiation of polynomials,

where

D : a0 + a1x+ · · ·+ anx
n 7→ a1 + 2a2x+ · · ·+ nanx

n−1.

14 CHAPTER 1. INTRODUCTION

It is easy to see that D is a linear transformation on F[x] and, after an induction argument,

that the product rule holds. One usually writes f ′ instead of D(f).

An important property is that the formal derivative tests for separability of polynomials

without the need to explicity produce a splitting field.

Theorem 1.38. f ∈ F[x] is separable if and only if gcd(f, f ′) = 1.

Proof. Suppose f ∈ F[x] is separable and let K be its splitting field. Then every zero of f ,

say α ∈ K is simple. We have f(x) = (x− α)g(x) where g(α) 6= 0. By the product rule,

f ′(x) = g(x) + (x − α)g′(x) and so f ′(α) = g(α) 6= 0. It follows that f has no common

linear factors with f ′ and gcd(f, f ′) = 1.

On the other hand, suppose f(x) = (x − α)2g(x) for some g(x) ∈ K[x]. Then f ′(x) =

(x− α)[2g(x) + (x− α)g′(x)], so that x− α | gcd(f, f ′).

Whether a polynomial is separable depends on the characteristic of the ground field.

Example 1.39. In R[x], f(x) = x2 + 1, since, over its splitting field C, f factors as

(x+ i)(x− i), and these are distinct linear factors.

On the other hand, in F2[x], f(x) = x2 + 1 is not separable, since f(x) = (x+ 1)2. In this

case, 1 is a zero of multiplicity two. Note f ′(x) = 2x = 0, giving gcd(f, f ′) = f 6= 1.

Freshman’s dream

We now investigate an important property of polynomials in characteristic p.

Definition 1.40. For a nonnegative integer t and real number x,(
x

t

)
=
x(x− 1) · · · (x− t+ 1)

t!
.

(Note: if t = 0, the product in the numerator is empty and
(
x
0

)
= 1.)

Theorem 1.41. If p is prime and 0 < t < p, then
(
p
t

)
≡ 0 (mod p).

Proof. t! 6≡ 0 (mod p), so t! has a multiplicative inverse in Fp. Therefore,(
p

t

)
≡ (t!)−1p(p− 1) · · · (p− t+ 1) ≡ 0 (mod p).

1.5. EXISTENCE OF FINITE FIELDS 15

Corollary 1.42. In characteristic p, (x+y)p = xp+yp. And, more generally, (x+y)p
r

=

xp
r

+ yp
r
.

We now have the background required to construct finite fields of any prime power order.

Incidentally, although Galois is credited with this (after his death) it took about another

50 years before the notion of ‘field’ was made precise! But the proof idea is essentially

the same as Galois used.

Main result

Theorem 1.43 (Galois, 1846). For any prime p and positive integer n, there exists a

unique finite field of order q = pn.

Proof. Let K be the splitting field of f(x) = xq − x over Fp. Since f ′ = pnxq−1 − 1 = −1,

it follows by Theorem 1.38 that f is separable. So there are q distinct zeros of f in K.

If α and β are zeros of f , then from Corollary 1.42,

(α + β)q − (α + β) = αq − α + βq − β = 0,

(αβ)q − (αβ) = (αq − α)(βq − β) + (αq − α)β + α(βq − β) = 0,

and

(α−1)q − α−1 = α−q−1(α− αq) = 0.

So the zeros of f are closed under sum, product, and inverse. It follows that they form a

field with q elements, and so this is K itself.

To see the uniqueness, any Fq contains such a splitting field K, since xq−x is satisfied by

all elements of Fq. Being of size q, we have Fq ∼= K, which is unique by Theorem 1.36.

Refer again to Example 1.35 and the operation tables therein.

Subfield structure and algebraic closure

To understand the subfield structure of Fq, we use a simple fact about polynomial divisi-

bility.

16 CHAPTER 1. INTRODUCTION

Lemma 1.44. xm − 1 | xn − 1 in Z[x] if and only if m | n.

Proof. If n = km, then xn − 1 = (xm − 1)(1 + xm + x2m + · · · + x(k−1)m). Conversely,

take the derivative of xn − 1 = (xm − 1)f(x) and use the product rule to obtain nxn−1 =

mxm−1f(x) + (xm − 1)f ′(x). Substituting x = 1, we have n = mf(1). Since f(x) has

integral coefficients, it follows that m | n.

Theorem 1.45. Fpm is a subfield of Fpn if and only if m | n.

Proof. We have [Fpn : Fp] = [Fpn : Fpm] · [Fpm : Fp], and so [Fpn : Fpm] = n/m. Conversely,

if m | n, then pm − 1 | pn − 1 and so

xp
m−1 − 1 | xpn−1 − 1.

Therefore, the splitting field of xp
m−x is contained in the splitting field of xp

n−x. Given

uniqueness of splitting fields, the proof is complete.

Example 1.46. We have the following lattice of subfields of F212 .

F21

F22

F24

F212

F26

F23

The algebraic closure of Fp can be explicitly built as a direct limit of the chain of field

extensions

Fp ⊂ Fp2 ⊂ Fp6 ⊂ · · · ⊂ Fpn! ⊂ · · · → Fp.

(This is simply the infinite union, where multiplication and addition of two elements take

place in a common field containing them.)

Exercises

1. (a) Explain why the unique prime subfield of F equals the intersection of all sub-

fields of F.

1.5. EXISTENCE OF FINITE FIELDS 17

(b) Find, with proof, two subfields of R such that neither of them is Q but their

intersection is Q.

2. (a) Prove that if {a1, . . . , am} is a basis of L over K and {b1, . . . , bn} is a basis of

K over F, then {aibj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of L over F.

(b) Find a basis of Q(3
√

2, i) over Q.

3. Let Fq be a field of order q. Compute (a)
∑
a∈F+

q

a and (b)
∏
a∈F×q

a.

4. Prove that an irreducible polynomial f is separable over K if and only if its derivative

f ′ is nonzero. But show how non-constant polynomials, say in Fp[x], can have zero

derivative; characterize all such polynomials.

5. Find a prime p so that the smallest generator (i.e. primitive root) of F×p is 6.

Justify that 6 is smallest possible. You are encouraged to use a computer for both

the research and calculation.

6. Let a and b be elements of F2n , n odd. Prove that a2+ab+b2 = 0 implies a = b = 0.

7. Show that in a finite field, every element is a sum of two squares. (Hint: More than

half of the elements in Fq are squares!)

8. (a) Prove that −1 is a square in Fq if and only if q 6≡ 3 (mod 4).

(b) When q ≡ 1 (mod 4), give an explicit decomposition of every element a ∈ Fq
as a sum of two squares.

9. Suppose f ∈ Fp[x] and α ∈ Fpn . If f(α) = 0, prove that mα(x) | f(x).

10. The trace function Tr maps Fqn to Fq and is defined by Tr(β) = β+βq + · · ·+βq
n−1

.

(a) Prove that Tr(β) actually does belong to Fq for any β ∈ Fqn .

(b) Prove that Tr(β) = 0 if and only if β = αq − α for some α. (Hint: For the

“only if” direction, begin by computing ap − a, where

a = β + (β + βp) + · · ·+ (β + βp + · · ·+ βp−2).)

11. Consider the finite field F27.

(a) Express it in the form Fp[x]/〈f(x)〉 for some polynomial f .

(b) Express its additive and multiplicative groups using various Z/nZ and ⊕ only.

18 CHAPTER 1. INTRODUCTION

(c) Find a polynomial g(x) with the property that, for α ∈ F27, g(α) = 0 if and

only if α is not a generator.

12. (a) Show that x5 + x3 + 1 ∈ F2[x] is irreducible.

(b) Is there an irreducible polynomial in F2[x] with exactly four nonzero terms?

13. Let p be an odd prime, and let q = p2. Give the subfields of the field of order qq,

and describe the structure of inclusions.

14. Consider the irreducible polynomial f(x) = x4 + x3 + x2 + x+ 1 over F2. Let α be

a root of f , and let F = F2[x]/〈f(x)〉.

(a) Regard the field element x + 〈f〉 ∈ F as α. Multiply all elements of F by α.

What is α−1?

(b) Show that α is not a generator of F×.

(c) Find a generator β of F, and a degree 4 polynomial g(x) with g(β) = 0.

Chapter 2

Polynomials

2.1 Minimal and primitive polynomials

The splitting field construction for finite fields is theoretically convenient, but lacks some

concreteness. We do know that Fp[x]/〈f(x)〉 is a field of order pn when f(x) is irreducible

of degree n. From this next section, we are able to conclude that irreducibles of every

possible degree over Fp do exist (and see how to find nice ones).

Definition 2.1. The Frobenius automorphism θ : Fq → Fq is defined by θ(x) = xp, where

q = pn.

It’s clear that θ(xy) = θ(x)θ(y). Additivity θ(x + y) = θ(x) + θ(y) is another form of

Corollary 1.42. Also, observe that the fixed points of θ are precisely the elements of the

prime field Fp; this follows from xp − x having exactly p zeros in Fq.

We have θn(x) = xp
n

= x, for all x ∈ Fq; hence, θn is the identity on Fq. In fact, θ

generates the (cyclic) group of all automorphisms of Fq fixing Fp.

Definition 2.2. Let β ∈ F×pn . The least degree nonzero monic polynomial f ∈ Fp[x] with

f(β) = 0 is called the minimal polynomial of β, usually denoted mβ(x).

It is clear (but deserves mentioning) that mβ is unique, since the difference of two minimal

polynomials of β can only be zero. Furthermore, an easy consequence of the (polynomial)

division algorithm is that mβ divides any polynomial which annihilates (evaluates to zero

19

20 CHAPTER 2. POLYNOMIALS

at) β. The minimal polynomial of an element represented as a polynomial in Fp[x]/〈f(x)〉
can be found by solving a system of linear equations.

Since β is a zero of mβ(x) ∈ Fp[x], it follows that its Frobenius iterates β, βp, βp
2
, . . . are

also zeros; these are also called the conjugates of β. In fact, the zeros of mβ are precisely

the conjugates of β.

Theorem 2.3. Let β ∈ F×pn such that βp
r

= β for the least positive r. Then its minimal

polynomial is

mβ(x) = (x− β)(x− βp) · · · (x− βpr−1

).

Proof sketch. Put q = pn. Extend the Frobenius automorphism θ to an (algebra) auto-

morphism θ̂ : Fq[x]→ Fq[x] by

θ̂ : a0 + a1x+ · · ·+ akx
k 7→ θ(a0) + θ(a1)x+ · · ·+ θ(ak)x

k.

Since this mapping simply cycles the factors of the asserted mβ(x), that polynomial is

fixed by θ̂. It follows that it has coefficients in Fp. Moreover, no polynomial in Fp[x] of

smaller degree can annihilate β, due to the choice of r.

Corollary 2.4. Suppose α is a generator of F×pn. Then mα is an irreducible polynomial

of degree n in Fp[x].

Proof. That mα has degree n follows from α being a generator. Consider the irreducibility

claim. If mα were to split in Fp[x], each factor would have to be invariant under the Frobe-

nius automorphism θ. But the zeros of those factors would partition {α, αp, . . . , αpn−1},
and no such partition is invariant under θ.

When α is a generator of F×pn , the finite field presentation Fpn ∼= Fp[x]/〈mα(x)〉 has the

extra feature that it is (multiplicatively) generated by x. This leads to another associated

definition.

Definition 2.5. For a polynomial f(x) ∈ Fp[x] with f(0) 6= 0, the order of f is the least

positive integer e such that f | xe − 1. If f is monic, irreducible of degree n, and order

pn − 1, then it is said to be primitive.

Note that the order of any degree n polynomial f is well defined: since the quotient

Fp[x]/〈f(x)〉 has pn− 1 nonzero elements, it follows that the powers of x must eventually

repeat. In fact, ‘order’ of irreducible polynomials is related to ‘order’ of F×q group elements.

2.2. CYCLOTOMIC POLYNOMIALS 21

Lemma 2.6. The order of α ∈ F×q equals the order of mα(x) as a polynomial in Fp[x].

Proof. Suppose mα(x) | xe − 1. Then, since mα(α) = 0, it follows that αe = 1. On the

other hand, suppose αe = 1. Then, apply Frobenius to get θ(α)e = 1. It follows that

every zero of mα(x) is also a zero of xe − 1, and we obtain that mα(x) | xe − 1.

We summarize our most important findings in the next result.

Theorem 2.7. Given a prime p and positive integer n, there exists a primitive polynomial

g of degree n in Fp[x]. Moreover, Fpn ∼= Fp[x]/〈g(x)〉 has x as a (multiplicative) generator.

Example 2.8. Consider g(x) = x3 + x+ 1 in F2[x]. Note g is irreducible over F2 since it

is of degree 3 and has no zeros in F2. Consider powers of x in F2[x]/〈g(x)〉:

x0 = 1, x1 = x, x2 = x2, x3 = x+ 1, x4 = x2 + x, x5 = x2 + x+ 1, x6 = x2 + 1,

x7 = 1, . . .

This gives a representation of the finite field F8. We have

F8 = {0, 1, α, α + 1, α2, α2 + 1, α2 + α, α2 + α + 1},

where polynomial addition and polynomial multiplication (mod 2,g) are the operations.

Now consider α + 1. Since α + 1 = α3, its conjugates under θ are α6 = α2 + 1 and

α12 = α5 = α2 + α + 1. we have

mα+1(x) = (x− α3)(x− α6)(x− α5) = x3 + x2 + 1.

This is the other primitive polynomial of degree 3 in F2[x], and its quotient furnishes an

isomorphic copy of F8.

Generating elements in a group are sometimes also known as primitive elements. What

we have seen is that primitive elements in F×pn (together with their conjugates) are in

correspondence with primitive polynomials of degree n in Fp[x].

2.2 Cyclotomic polynomials

Given the importance of primitive polynomials over Fp[x] for presenting/constructing

finite fields, the problem of finding such polynomials deserves a closer look. For this, we

venture briefly back to characteristic zero.

22 CHAPTER 2. POLYNOMIALS

0, 1

α

α + 1

γ

γ2

γ + 1

γ2 + 1

γ3 + 1

γ3 + γ2 + 1

γ3 + γ2 + γ

γ3 + γ + 1

γ3

γ3 + γ2

γ3 + γ2

+γ + 1

γ3 + γ

Figure 2.1: The finite field F16, its subfields, and Frobenius automorphisms

Recall that in C, the Nth roots of unity are the N powers of ζ = e2πi/N . When gcd(k,N) =

1, one says that ζk is primitive; these are generators for the cyclic group of all Nth roots

of unity. It follows that there exist φ(N) primitive Nth roots of unity, where φ is the

Euler-phi function.

Definition 2.9. The Nth cyclotomic polynomial is

ΦN(x) = (x− ζ1)(x− ζ2) · · · (x− ζφ(N)),

where ζ1, . . . , ζφ(N) are the primitive Nth roots of unity.

Fact 2.10.

xN − 1 =
∏
d|N

Φd(x).

Proof idea. Any Nth root of unity (primitive or not) is a primitive dth root of unity for

some d | N .

This immediately allows us to calculate certain cyclotomic polynomials. The case when

N = p, a prime, is easiest; in that case, every pth root of unity is primitive, except 1 of

course.

2.2. CYCLOTOMIC POLYNOMIALS 23

C

e2πi/10

Figure 2.2: Complex tenth roots of unity, with primitive roots circled

Lemma 2.11.

Φp(x) =
xp − 1

x− 1
= 1 + x+ x2 + · · ·+ xp−1.

Extending to prime-power indices is not much harder.

Lemma 2.12.

Φpm(x) =
xp

m − 1

xpm−1 − 1
= 1 + xp

m−1

+ x2p
m−1

+ · · ·+ x(p−1)p
m−1

.

We can also conclude that the coefficients are integers.

Theorem 2.13. The cyclotomic polynomial ΦN(x) has integer coefficients.

Proof. We use induction on N and prove the stronger claim that the gcd of coefficients

of ΦN(x) equals 1. This is true for N = 1, since Φ1(x) = x − 1. Now suppose the claim

is true for all indices less than some N ≥ 2. We have

xN − 1 = ΦN(x)
∏

d|N,d6=N

Φd(x).

By a lemma of Gauss, the product of polynomials having relatively prime coefficients is

another such polynomial. Take the smallest positive integer d such that ΦN(x) ∈ 1
d
Z[x].

Then d times the left side is a polynomial with relatively prime coefficients, yet d times

the right side has gcd of coefficients equal to d. It follows that d = 1.

24 CHAPTER 2. POLYNOMIALS

Remark. ΦN(x) is irreducible in Z[x]. We omit the proof.

Here are the first few cyclotomic polynomials.

N φ(N) ΦN(x)

1 1 x− 1

2 1 x+ 1

3 2 x2 + x+ 1

4 2 x2 + 1

5 4 x4 + x3 + x2 + x+ 1

6 2 x2 − x+ 1

Applying Mobiüs inversion to Fact 2.10, we have

ΦN(x) =
∏
d|N

(xN/d − 1)µ(d),

where µ(1) = 1, µ(p1p2 · · · pt) = (−1)t for distinct primes pi, and µ(m) = 0 if m has any

square prime divisor.

Example 2.14. Let N = 15. Then

Φ15(x) =
(x15 − 1)(x− 1)

(x5 − 1)(x3 − 1)
= x8 − x7 + x5 − x4 + x3 − x+ 1

can be found using geometric series and long division.

Remark. It is tempting to guess that the coefficients of ΦN are always in {−1, 0, 1};
however, Φ105 breaks the pattern with a coefficient of −2. In general, coefficients of ΦN

can get arbitrarily large in magnitude.

As in the characteristic zero case, a root α ∈ Fp of xN − 1 = 0 is called an Nth root of

unity with respect to Fp. When viewed in Fp[x], we may just take ΦN to have coefficients

mod p.

Although ΦN is irreducible in Z[x], it often reduces in Fp[x]. Here is an important factor-

ization in the case N = pn − 1.

Proposition 2.15. In Fp[x],

Φpn−1(x) =
∏

f∈Fp[x] primitive,

deg(f)=n

f(x).

2.3. FACTORING VIA IDEMPOTENTS IN CHARACTERISTIC TWO 25

Proof. Both sides are monic and contain precisely the same zeros (generators of Fpn), the

right side being organized according to minimal polynomials of these elements.

Corollary 2.16. There are exactly 1
n
φ(pn−1) primitive polynomials of degree n in Fp[x].

Beware that in this context we actually care about ΦN(x) for N = pn − 1, not pn. So

Lemma 2.12 is usually not of much (direct) use. There are, however, coincidences such as

Mersenne primes in which such ΦN(x) are easy to compute.

Example 2.17. Recall the two primitive cubic polynomials in F2[x] from Example 2.8.

We have

(x3 + x+ 1)(x3 + x2 + 1) = x6 + x5 + x4 + x3 + x2 + x+ 1 = Φ7(x).

To summarize, finding primitive polynomials of a given degree n over Fp is equivalent to

factoring cyclotomic polynomials Φpn−1(x). Equivalently, one can factor xp
n−1 − 1 and

discard those factors which are of order < pn − 1. By Fact 2.10, Φpn−1(x) (hence all

primitive polynomials) will occur in this factorization.

2.3 Factoring via idempotents in characteristic two

We now turn our attention to the problem of factoring xn − 1 over F2. (Some warnings:

(1) this n takes the role of N in the previous section; (2) this method can be extended to

other polynomials and odd characteristics, but the generalization is deeper and we will

get to it after refreshing some linear algebra; (3) we will here prefer to write polynomials

with ascending exponents, such as 1 + xn for xn − 1. Don’t forget that subtraction is

actually addition here too!)

Note that since the characteristic is two, we have p(x)2 = p(x2) for any polynomial

p(x) ∈ F2[x]. So if n = 2rs for r a nonnegative integer and s odd, then

1 + xn = (1 + xs)2
r

.

So it suffices to consider factoring 1+xn for n odd. To this end, we introduce a definition.

Definition 2.18. Let n be a fixed positive integer. A polynomial i(x) ∈ F2[x] is idempo-

tent if i(x)2 ≡ i(x) (mod 1 + xn).

26 CHAPTER 2. POLYNOMIALS

Example 2.19. With n = 7, one idempotent is i(x) = x+ x2 + x4. We have

i(x)2 = i(x2) = x2 + x4 + x8 ≡ x2 + x4 + x (mod x7 + 1).

Check that the set of idempotent polynomials with respect to a given n is a vector space

(actually an algebra) over F2. The idempotents include zero and are closed under addition.

Theorem 2.20. Let n be odd. For every divisor g(x) of 1 + xn in F2[x], there exists a

unique idempotent polynomial i(x) (mod 1 + xn) such that gcd(1 + xn, i(x)) = g(x).

Proof. Write 1 + xn = g(x)h(x). Since n is odd, the derivative of 1 + xn is xn−1. It

follows that 1 + xn is separable over F2, and hence has no repeated factors. Therefore,

gcd(g(x), h(x)) = 1.

We first show the existence of i(x). Take a, b ∈ F2[x] such that a(x)g(x) + b(x)h(x) = 1.

Define i(x) = a(x)g(x) = 1 − b(x)h(x). We have gcd(1 + xn, i(x)) = g(x), since this gcd

is clearly relatively prime with h(x). Moreover,

(i(x))2 = i(x)− a(x)b(x)g(x)h(x) ≡ i(x) (mod 1 + xn).

For uniqueness, suppose i(x) and j(x) both satisfy the given property. Then g(x) | i(x)

and j(x), so g(x) | i(x) + j(x). On the other hand, h(x) | 1 + i(x) since i(x)(1 + i(x)) ≡ 0

(mod 2, 1 + xn). Likewise, h(x) | 1 + j(x) and, taken together, h(x) | i(x) + j(x). Since

g, h are relatively prime, i(x) + j(x) ≡ 0 (mod 2, gh = 1 + xn). This means i(x) ≡ j(x),

as desired.

In light of this result, we would now like to classify all idempotent polynomials; that is,

all polynomials whose “exponent set” is invariant under doubling (mod n). For n odd,

take the partition of Z/nZ according to the orbits of the map a 7→ 2a (mod n). Let these

orbits be C0 = {0}, C1 = {1, 2, . . . , 2r−1}, where r is the multiplicative order of 2 mod n,

and more generally Ci = {i, 2i, . . . } is the orbit containing i.

Now define the polynomial

ci(x) =
∑
j∈Ci

xj.

By definition ci(x) is idempotent. In fact, the span of the cis is the set of all idempotents

with respect to n. The idempotents are therefore in correspondence with the distinct

factors of 1 + xn.

2.4. LINEAR ALGEBRA OVER FINITE FIELDS 27

Corollary 2.21. The number of irreducible factors of 1 + xn in F2[x] equals the number

of orbits of the doubling map a 7→ 2a in Z/nZ.

Example 2.22. Let n = 9. The partition of Z/9Z into orbits under a 7→ 2a is C0∪C1∪C3,

where C0 = {0}, C1 = {1, 2, 4, 5, 7, 8} and C3 = {3, 6}. So we have c0(x) = 1, c1(x) =

x+ x2 + x4 + x5 + x7 + x8 and c3(x) = x3 + x6. By taking the gcd of various idempotents

with 1 + x9, we get all irreducible factors of 1 + x9. For example, c0 + c3 = 1 + x3 + x6

divides 1 + x9 and is an irreducible factor.

It is worth mentioning that factoring any polynomial is a finite problem in Fq. In partic-

ular, to see if a polynomial of degree 2 or 3 is irreducible, we only need to check at most

q possible zeros. Although, this method fails for degrees greater than 4, there are always

just a finite number of possible factors (< q1+n), where n = deg f .

Exhausting all these possible factors takes exponential time in n. On the other hand, the

computationally intensive part of the factoring procedure we presented here involves just

a handful of polynomial gcd calculations, and these take just polynomial time in n using

the Euclidean algorithm.

2.4 Linear algebra over finite fields

Here, we very briefly consider vectors and matrices whose elements come from the finite

field Fq. Rather than a comprehensive reference, this material is meant to highlight a

few important similarities and some key differences with the ‘familiar’ case of ground

fields of characteristic zero. Since these entries form a field, the set Fdq of vectors with d

coordinates furnishes a vector space of dimension d. Vector sum and scalar products are

computed componentwise, but with arithmetic in Fq.

As usual, linear independence of S = {v1, . . . ,vk} means that the only linear combination

of the vi which vanishes is the trivial combination. And the span of S is

〈S〉 = {α1v1 + · · ·+ αkvk : αi ∈ Fq}.

Definition 2.23. A set B of vectors in a vector space V is a basis if it is linearly inde-

pendent and spanning. Alternatively, B is a basis if 〈B〉 = V but 〈S〉 6= V for any proper

subset S of B.

Any element in a vector space with basis B has a unique representation as a linear

combination in 〈B〉.

28 CHAPTER 2. POLYNOMIALS

Theorem 2.24. If a vector space V over Fq has a finite basis, say of size d, then every

basis of V has size d and V ∼= Fdq. In particular, |V | = qd.

In fact, Fdq can be regarded as Fqd , but where multiplication in this field extension is

ignored.

As in characteristic zero, matrix elimination steps can be used to solve linear systems over

Fq.

Example 2.25. Over F3, the matrix A shown below is singular, since each of its rowsums

is zero. The reduced row-echelon form of A is R, showing that A has rank 2, and providing

a basis for its row space (the two nonzero rows in R) and null space ({(−2,−2, 1)} =

{(1, 1, 1)}). Since A is symmetric, the column space and left null space are, respectively,

the same.

A =

 0 1 2

1 2 0

2 0 1

→
 1 0 2

0 1 2

0 0 0

 = R.

Compare with the fact that A is invertible over Q.

Vector dot product is also naturally extended to general fields, and gives rise to the

familiar matrix multiplication. But some counter-intuitive phenomena can occur when

arithmetic is done in Fp.

Example 2.26. In characteristic two, a vector v ∈ Fn2 having an even number of ones is

‘orthogonal’ to itself, in the sense that v · v = 0.

More generally, it is possible that a subspace U of Fdq might have nontrivial intersection

with (or even equal) its own orthogonal complement U⊥. So certain projection relations

and dimension formulas that you are used to in characteristic zero may become invalid.

Calculating the determinant of a matrix is done in the usual way; this can lead to the

characteristic polynomial χA(x) and shows that a matrix over Fq has an (algebraically)

full set of eigenvalues in the closure Fq. The eigenspace of A at eigenvalue λ is, as usual,

the null space of A− λI.

Recall that the Cayley-Hamilton Theorem says that the characteristic polynomial χA(x)

evaluated at A equals zero. Here is an interesting consequence.

Theorem 2.27. Let A be a nonsingular n × n matrix over Fq. Then AN = I for some

positive integer N , and in particular, if the characteristic polynomial of A is irreducible

over Fq, then Aq
n−1 = I.

2.5. FACTORING VIA BERLEKAMP’S ALGORITHM 29

Proof. This follows from our work in Chapter 2, since χA(x) | xN−1 for some N , provided

x is not a factor. Likewise, every irreducible of degree n divides xq
n−1 − 1.

Counting subspaces

Theorem 2.28. The number of different subspaces of Fnq with dimension k equals[
n

k

]
q

:=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Proof. There are (qn − 1)(qn − q) · · · (qn − qk−1) ways to pick an ordered list of k linearly

independent vectors in Fnq . Now, on the other hand, each k-dimensional subspace has

(qk − 1)(qk − q) · · · (qk − qk−1) ordered bases. The count follows by dividing and some

cancellation of powers of q.

Remark. The quantity
[
n
k

]
q

is called the (Gaussian) q-binomial coefficient. It is not hard

to see that (regarding q as a real parameter)

lim
q→1+

[
n

k

]
q

=

(
n

k

)
.

2.5 Factoring via Berlekamp’s algorithm

In Section 2.3, we saw how to factor xn − 1 over F2[x]. Here, let’s generalize both the

characteristic and the polynomial we’re factoring. Let p be the characteristic; in fact,

often q = p but we can allow extensions in the most general case. And suppose f ∈ Fq[x]

(monic) is given for factorization.

Similar to before, we can reduce to the case when f is squarefree using its formal derivative.

Observation 2.29. Suppose f is given for factorization in characteristic p. Let d =

gcd(f, f ′) and suppose d 6= 1.

• If d = f , then f ′ = 0 and hence f(x) = g(xp) for some g of smaller degree.

• If d 6= f , then d is a nontrivial factor of f .

30 CHAPTER 2. POLYNOMIALS

Otherwise d = 1 and f has distinct irreducible factors.

In what follows we will take for granted another useful fact, namely that the Chinese

Remainder Theorem extends to polynomial rings over Fq. That is, if f = f1 . . . fr with

distinct irreducible factors, then

Fq[x]/〈f〉 =
r⊕
i=1

Fq[x]/〈fi〉.

The next result parallels the use of idempotents for q = 2.

Proposition 2.30. Suppose hq ≡ h (mod f). Then f =
∏

s∈Fq
gcd(f, h− s).

Proof. It is clear that each factor on the right divides f . Since the h− s, s ∈ Fq, are all

coprime, the given product divides f .

On the other hand, we have
∏

s∈Fq
(h−s) = hq−h ≡ 0 (mod f). It follows that f divides∏

s∈Fq
gcd(f, h− s).

It remains to find polynomials h with hq ≡ h (mod f). Earlier, we used orbits of the

doubling map on Z/nZ. Here, we make use of an n × n matrix Q = (aki), indexed

0 ≤ k, i < n, whose kth row is the coefficient list of xqk (mod f):

xqk ≡ ak0 + ak1x+ · · ·+ ak,n−1x
n−1 (mod f).

In this way, the desired polynomials h have coefficient lists which are in the left nullspace

of Q − I. (These are solutions v to v(Q − I) = 0.) One solution will always be v(1) =

(1, 0, 0, . . . , 0). If the nullity of Q− I is r, there will be qr such polynomials. On the other

hand, there are also qr possible choices for (s1, . . . , sr) to yield unique solutions h ≡ si
(mod fi) via the CRT.

To implement a factorization algorithm along these lines, it is enough to observe: (1) the

Fq-rank of Q− I being n− 1 tests for irreducibility of f ; and (2) if this rank is less than

n− 1, a nontrivial factor of f can be obtained. Either recursive application to factors or

computation of several gcds with f yields the complete factorization.

Example 2.31. Suppose we wish to factor f(x) = x5 + 2x4 + 2x3 + 2x2 + 2x+ 2 ∈ F3[x].

After checking that gcd(f, f ′) = 1, it turns out that f is squarefree.

To make the matrix Q, we must compute exponents of x (mod 3,f). Since x5 ≡ 1 + x +

· · · + x4 (mod f), we can reduce powers of x by iteratively right-shifting the coefficient

2.5. FACTORING VIA BERLEKAMP’S ALGORITHM 31

list, and ‘carrying’ 11111 or 22222, according to the excess ternary digit that falls off after

the shift.

+1 01 01 01 01 1 x4

1 1 1 1 1 x5

1 2 2 2 2 x6

2 0 1 1 1 x7

1 0 1 2 2 x8

2 0 2 0 1 x9

1 0 1 0 1 x10

1 2 1 2 1 x11

1 2 0 2 0 x12

We have

Q =


1 0 0 0 0

0 0 0 1 0

1 2 2 2 2

2 0 2 0 1

1 2 0 2 0

 ,

where rows are indexed by the first 5 nonnegative powers of x3, and columns are indexed

by coefficients of 1, x, x2, x3, x4. For the factoring algorithm, we need the left nullspace of

Q− I. A reduced row-echelon form calculation gives

(Q− I)> →

 0 1 0 1 0

0 0 1 2 0

0 0 0 0 1

 ,
where two zero rows have been omitted. Therefore, a basis for the left nullspace is

{(1, 0, 0, 0, 0), (0, 2, 1, 1, 0)}, corresponding to polynomials h(1)(x) = 1 and h(2)(x) = 2x+

x2 + x3.

The next step in the algorithm tells us to compute, for s ∈ F3, the gcd of h(2)− s with f .

s gcd(h(2) − s, f)

0 x2 + x+ 2

1 1

2 x3 + x2 + 2x+ 1

We see irreducible factors as indicated, and this gives the required factorization of f .

32 CHAPTER 2. POLYNOMIALS

Exercises

1. Prove that xn + a cannot be primitive for n > 1.

2. Find a primitive quadratic g(x) over F5 and construct F25 using g(x).

(a) Reduce the first 12 nonnegative exponents of x (mod 5, g(x)).

(b) What happens for the next 12 exponents?

3. Prove the following facts about cyclotomic polynomials.

(a) ΦN(0) = 1, if n ≥ 2.

(b) If N = pq for distinct primes p, q, then ΦN(1) = 1.

4. (a) Write a computer program to find, given n, the orbits of the doubling map in

Z/nZ.

(b) Use your code from (a) to write a factoring procedure for xn + 1 in F2[x].

5. Find a polynomial p(x) ∈ F2[x] of degree 14 such that p(x)2 ≡ p(x) (mod x17 − 1).

6. (a) Let p be an odd prime. Prove that g(x) = 1 + x + ... + xp−1 is irreducible in

F2[x] if and only if 2 is a primitive root mod p.

(b) What happens for g(x) = 1 + x + · · · + xn−1 when n is not prime and 2 is a

primitive root mod n?

7. Solve problem A4 of the 2011 Putnam competition by using matrix row operations

over F2.

For which positive integers n is there an n× n matrix with integer

entries such that every dot product of a row with itself is even,

while every dot product of two different rows is odd?

8. Prove that there exists a p-dimensional subspace W of F2p
p satisfying W⊥ = W if

and only if −1 is a square (mod p).

9. Show that x9+x+1 is irreducible in F2[x] by analyzing the matrix Q in Berlekamp’s

algorithm.

Chapter 3

Applications

In this chapter, we survey a few of the main applications of polynomials over finite fields.

3.1 Lagrange interpolation and secret sharing

Given a polynomial f ∈ Fq[x], its evaluation map sends a to f(a) for each a ∈ Fq. We

begin with an observation on the evaluation maps of polynomials.

Theorem 3.1. Every function f : Fq → Fq is the evaluation map of some polynomial in

Fq[x].

Proof. Consider the polynomial

δ(x) = 1− xq−1 =

{
1 if x = 0,

0 otherwise.

It follows that the job is done by

f(x) =
∑
a∈Fq

f(a)δ(x− a).

The task of computing a polynomial (often with the aim of minimizing the degree) which

agrees with a given function on some set of inputs is called interpolation.

33

34 CHAPTER 3. APPLICATIONS

Let a1, . . . , an be distinct elements of some field F. Their Vandermonde matrix V =

V (a1, . . . , an) ∈ Fn×n has ij-entry Vij = ai−1j . (Some authors ‘transpose’ the definition.)

Note: if one of the chosen elements is 0, we use 00 = 1.

An important fact is that V is nonsingular. In fact, the determinant can be computed by

row operations and induction.

Proposition 3.2.

detV (a1, . . . , an) =
∏

1≤i<j≤n

(ai − aj).

Vandermonde matrices are useful for interpolation.

Example 3.3. Suppose we wish to find a polynomial f(x) ∈ F5[x] whose evaluation map

sends (0, 1, 2, 3, 4) to (1, 2, 4, 3, 0). Using δ-functions, we have that

δ(x) + 2δ(x− 1) + 4δ(x− 2) + 3δ(x− 3)

does the job. Alternatively, we can solve for the coefficient vector f in fV = b, where

b = (1, 2, 4, 3, 0) and

V = V (0, 1, 2, 3, 4) =


1 1 1 1 1

0 1 2 3 4

0 1 4 4 1

0 1 3 2 4

0 1 1 1 1

 .

It is easy to check that f = (1, 0, 0, 1, 0) is a solution, corresponding to f(x) = x3 + 1.

Polynomial interpolation has a nice cryptographic application to so-called secret sharing

schemes. In these scenarios, an organization wishes to distribute ‘partial keys’ to some

secret among q individuals. Any one individual has insufficient information to obtain the

secret. However, any collection of n or more people can access the secret by using their

partial keys together. One very standard way to set this up is to distribute the evaluations

f(0), f(1), . . . to the individuals, and keep a polynomial f(x) unknown of degree n − 1.

The polynomial (it’s coefficient list, say) unlocks the secret.

A polynomial whose evaluation map gives a permutation of the elements of Fq, as in the

previous example, is called a permutation polynomial. These are useful in transmitting

data in applications where some average modulation is to be achieved. For example, in

3.2. LINEAR HOMOGENEOUS RECURRENCES AND M-SEQUENCES 35

modulating frequency over North American power lines, it is important to maintain an

average frequency of 60 Hz.

Permutation polynomials are closed under horizontal and vertical translations, and also

under nonzero scalings.

Proposition 3.4. If f(x) is a permutation polynomial over Fq, then so is af(x− b) + c

for any a ∈ F×q , and any b, c ∈ Fq.

See also §11 of Lidl and Pilz, and the more comprehensive reference Finite Fields, by Lidl

and Niederreiter. In that latter book, a table of permutation polynomials is given.

3.2 Linear homogeneous recurrences and M-sequences

A card trick. A magician has a partial deck of 32 cards, containing A-7 and Q in each

of the 4 suits. The magician shows the cards in a seemingly random order, but can always

tell the top card by looking at the bottom card. Without having a good memory, how

does the magician do this?

Encode each card with a binary string of length 5, say d0d1d2d3d4, where d0 = 1 if and

only if the suit is black, d1 = 1 if and only if the suit is pointy, and with the other three

bits giving the binary representation of the rank (000 ↔ Q, 001 ↔ A, and so on). For

instance,

01110↔
suit︷︸︸︷
01 110︸︷︷︸

rank

↔ 6♥.

The magician has arranged the cards in sequence so that they correspond to windows of

size 5 of the terms of a linear recurrence, where s0 = s1 = s2 = s3 = 0, s4 = 1, and

sn+5 = sn+2 + sn, n ≥ 0

So, for example, the magician can use the fingers from one hand to determine that the

card following 6♥ ↔ 01110 is 6 011101↔ 5♠. Here, the new (underlined) bit is obtained

as the (mod 2) sum of the zeroth and second (bold) bits.

It turns out that this binary sequence is periodic with period 31 = 25−1, and the windows

exhaust all nonzero binary strings of length 5! A full period of the sequence is given below.

36 CHAPTER 3. APPLICATIONS

We see 6♥ as indicated, and in general all 32 cards except Q♦.

00001001011001111100011011101010000...

To understand why this trick works, we must have a more detailed look at recursively

defined sequences over finite fields.

A kth order linear recurring sequence (sn) over Fq is a sequence in Fq whose terms satisfy

sn+k = ak−1sn+k−1 + · · ·+ a1sn+1 + a0sn + a, (∗)

where a, ai ∈ Fq. Usually, initial values s0, s1, . . . , sk−1 are given; then, the case n = 0 in

(∗) explicitly computes the next term sk.

Since linear recurring sequences depend only on the previous k terms, and since there are

only qk possible k-tuples, these sequences must (eventually) repeat. We are interested

in the least period, which is the smallest positive integer P so that sn+P = sn for all

sufficiently large n. We have P ≤ qk.

When a = 0, the recurrence relation (∗) and the sequence are called homogeneous. This

is the case of primary interest for us. Here, the least period is ≤ qk − 1.

Definition 3.5. A homogeneous k-term linear recurring sequence over Fq with maximum

period qk − 1 is called an M-sequence.

The characteristic polynomial of sn+k − ak−1sn+k−1 − · · · − a1sn+1 − a0sn is

f(x) = xk − ak−1xk−1 − · · · − a1x− a0,

and a closed form for sn results in the usual way from the zeros of f and the initial

conditions.

Example 3.6. Consider the Fibonacci sequence (mod p), where F0 = 0, F1 = 1,

and for n ≥ 2, Fn ≡ Fn−1 + Fn−2 (mod p). For p = 2, the sequence proceeds as

0, 1, 1, 0, 1, 1, 0, 1, 1, It is periodic with least period 3 (an M-sequence). The char-

acteristic polynomial x2 − x− 1 is irreducible (primitive, in fact) and has zeros α, α + 1.

So

Fn = αn + (α + 1)n

is a closed form expression for Fn. Check the initial conditions. Note that, even though

Fn is presented as an identity in the extension F4 = F2(α), the values are necessarily in

F2.

3.2. LINEAR HOMOGENEOUS RECURRENCES AND M-SEQUENCES 37

On the other hand, in characteristic 5, we compute the first few terms of (Fn) as

0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, . . .

and the sequence then repeats with least period 20! This shows that the least period

(although it is ≤ qk − 1 = 24) need not be a divisor of qk − 1. This is the case when the

characteristic polynomial is irreducible; however x2 − x− 1 = (x− 3)2 in F5[x].

Theorem 3.7. Suppose {sn} is a homogeneous k-term linear recurring sequence over Fq
with irreducible characteristic polynomial f(x). Then {sn} is periodic and its least period

equals the order of f(x) ∈ Fq[x].

Corollary 3.8. A homogeneous k-term linear recurring sequence over Fq is an M-sequence

if and only if its characteristic polynomial is primitive.

The generating function for {sn} is

G(x) =
∞∑
n=0

snx
n ∈ Fq[[x]].

For periodic sequences, we can express their generating functions as rational functions.

This is because

G(x) = h(x) +
∞∑
n=0

sn+Px
n+P = h(x) + xPG(x),

where sn+P = sn for all n and h(x) =
∑P−1

n=0 snx
n. We see that the denominator of G(x)

as a ‘lowest terms’ rational function divides xP − 1. Seen another way, the denominator

is actually a close relative of the characteristic polynomial.

Theorem 3.9. The generating function for a homogeneous k-term linear recurring se-

quence {sn} with characteristic polynomial f(x) is

G(x) =
h(x)

f ∗(x)
,

where f ∗(x) = xkf(1/x) is the reciprocal polynomial of f and h(x) is a polynomial

computable from the initial conditions s0, s1, . . . , sk−1.

Example 3.10. Let q = 3 and consider the recurrence sn+3 = sn+1−sn, where s0 = s1 = 0

and s2 = 1. The generating function for {sn} satisfies

G(x) = x2 +
∞∑
n=0

sn+3x
n+3 = x2 + (x2 − x3)G(x),

38 CHAPTER 3. APPLICATIONS

or as a rational function

G(x) =
x2

1− x2 + x3
.

Remarks. We need f(0) 6= 0 to define f ∗(x). The coefficient list of f ∗ is simply the reverse

of that of f . The zeros of f ∗(x) are the reciprocals of the zeros of f .

Please refer to §33 of Lidl and Pilz for detailed proofs and, in general, for more on linear

recurrences.

3.3 Orthogonal arrays and finite planes

An orthogonal array OA(t, k, n) is an nt × k array with symbols from an alphabet of size

n having the property that

when restricted to any t columns, each of the nt possible

words appears in exactly one row.

By crossing out columns, it is clear from the definition that the existence of OA(t, k, n)

implies the existence of OA(t, l, n) for t ≤ l < k as well.

Example 3.11. Here is an OA(2, 3, 2).

000

110

101

011

Theorem 3.12. Let q be a prime power and suppose 1 ≤ t < q. Then there exists an

OA(t, q, q), and hence an OA(t, k, q) for any k, t ≤ k ≤ q.

Proof. List the elements of Fq as e1, . . . , eq (in any order) and list the polynomials of degree

< t in Fq[x] by f1, . . . , fqt . Note there are qt such polynomials by choosing coefficients in

a0 + a1x+ · · ·+ at−1x
t−1 arbitrarily. Define the qt × q matrix A by

Aij = fi(ej).

To show this is an OA(t, q, q), it suffices to prove that any qt × t submatrix of A has no

two distinct rows, say indexed by i, i′, that are identical. But since fi−fi′ is a polynomial

of degree at most t− 1, it can have at most t− 1 zeros in Fq.

3.3. ORTHOGONAL ARRAYS AND FINITE PLANES 39

Orthogonal arrays are useful in information-based applications. Two applications which

show the diversity of end-uses are to software testing (where all t-wise combinations of

inputs are covered economically) and numerical integration (where a function can be

averaged on a t-wise balanced ‘mesh’ in k dimensions).

For t = 2, orthogonal arrays connect to some important combinatorial structures. The

existence of an OA(2, k, n) is equivalent to a set of k−2 ‘mutually orthogonal latin squares’

of order n. Each square is an n× n array of n symbols in which every row and column is

a permutation of the symbols, and any two squares, when superimposed, contain all n2

ordered pairs in the n2 entries. A set of two MOLS of order 3 is shown in Figure 3.1 at

left.

Orthogonal arrays with k = n+ 1 are extremal in the sense that k is as large as possible.

In this case, the level sets of the latin squares discussed above produce an ‘affine plane’

of order n on n2 points. In a little more detial, an affine plane is a set system (X,L),

where X is a set of points and L is a set of lines, satisfying the usual incidence axioms

of Euclidean geometry (any two points on exactly one line, together with Euclid’s the

parallel postulate). Finite affine planes are known to exist for n = q a prime power. In

particular, an affine plane of order q can be constructed with points F2
q and lines given

by all affine translates of 1-dimensional subspaces. This construction yields q+ 1 parallel

classes of q lines, each covering q points. Notice that

q(q + 1)

(
q

2

)
=

(
q2

2

)
,

where the left side counts the pairs of points covered by lines, and the right side counts

the total number of pairs of points.

The construction is illustrated for q = 3 in Figure 3.1 at right.

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

Figure 3.1: Orthogonal latin squares and affine plane of order 3

The projective extension of an affine plane is known as a projective plane. For an affine

40 CHAPTER 3. APPLICATIONS

plane on n2 points, its associated projective plane has n2 +n+ 1 points. Finite planes are

used in the construction of combinatorial block designs, which in turn have applications

to the design of statistical experiments and to scheduling problems.

Exercises

1. (a) Let p be an odd prime. Find a polynomial f(x) in Fp[x] so that

f(x) =

{
1 if x is a square in Fp,
−1 otherwise.

(b) Find and simplify a polynomial f(x) ∈ F5[x] with (0, 1, 2, 3, 4) 7→ (1, 2, 1, 2, 0).

2. Find a quadratic in F13[x] using only three of the following pairs (a, f(a)):

(0, 4), (1, 3), (2, 6), (3, 0), (4, 11), (5, 0), (6, 6), (7, 3), (8, 4), (9, 9), (10, 5), (11, 5), (12, 9).

3. Show that x5 ± 2x2 are two permutation polynomials over F7, and use them to

construct 588 different permutation polynomials over F7.

4. Compute the generating function for the linear recurring sequence in F3 defined by

s0 = s2 = 1, s1 = 0, and

sn+3 = sn+2 − sn+1 + sn, n ≥ 0.

5. Calculate the first five terms of (1− 2x+ x3)−1 in F7[[x]].

6. Prove that in an OA(t, k, n), the restriction to any s < t columns contains each of

the ns words exactly nt−s times each. This justifies why the parameter t is often

called the strength of the OA.

7. Construct an OA(2, 3, 3) and an OA(3, 4, 2).

8. Extend the polynomial construction of an OA(t, q, q) to produce an OA(t, q + 1, q).

(Hint : Consider the leading coefficient of polynomials.)

9. Construct the affine plane of order 4 on F2
4.

Part II

Coding Theory

41

Chapter 4

Codes and Hamming Distance

4.1 Introduction

Set-up:

A: a nonempty set called the alphabet

An: tuples or words of length n over A (with A0 = {empty string})
A∗ = ∪n≥0An: the set of words of finite length over A

A code is simply a subset C ⊆ A∗. Elements of C are codewords.

Focus is placed on comparing symbols in different codewords. A “good” code can be used

to detect (or correct) errors, in the sense that codewords perturbed by small errors are no

longer codewords (or are far from other codewords). Errors might occur when information

is transmitted over a noisy channel (e.g. radio waves over the air) or when media gets

damaged (e.g. a scratched DVD) or when information is ambiguous (e.g. converting

handwriting to digital text).

We are interested exclusively in finite alphabets. Normally A = Fq, with q = 2 (binary)

frequently taking centre stage. Apart from a brief encouragement for the reader to in-

vestigate prefix codes or insertion/deletion codes, we are also only interested in the case

when C ⊆ Fnq for a fixed n. These are sometimes called block q-ary codes of length n.

Example 4.1. Let C = {000000, 111000, 000111, 111111}. This is a block binary code of

length 6. If sender and receiver agree on C ahead of time, note that transmission of one

of the four codewords is robust against “mild” errors.

43

44 CHAPTER 4. CODES AND HAMMING DISTANCE

Definition 4.2. For u, v ∈ An, the Hamming distance from u to v is

d(u, v) = |{i : ui 6= vi}|,

the number of positions in which v differs from u.

Fact 4.3. Hamming distance d is a metric on An:

• d(u, v) = 0 iff u = v;

• d(u, v) = d(v, u) for all u, v;

• d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ An.

The first two properties above are obvious. The last item is known as the triangle in-

equality.

Proof of triangle inequality : If A, B, C denote the sets of positions (indices) where,

respectively, u and w differ, u and v differ, v and w differ, then it is clear that A ⊆ B∪C.

So

d(u,w) = |A| ≤ |B ∪ C| ≤ |B|+ |C| = d(u, v) + d(v, w).

This idea of considering sets of positions is useful. With a group structure on A, observe

u − v has zero entries in positions where u and v agree, and nonzero entries where they

disagree.

For w ∈ Fnq , its support is supp(w) = {i : wi 6= 0} and its weight is wt(w) = |supp(w)|.
Note that, using the addition structure on Fnq , we have d(u, v) = wt(u− v).

4.2 Balls, errors, minimum distance

Definition 4.4. For u ∈ Fnq and t ≥ 0, the ball of radius t centred at u is

Bt(u) = {v : d(u, v) ≤ t}.

Alternatively, Bt(u) = {u + w : w ∈ Fnq ,wt(w) ≤ t}, showing that |Bt(u)| = |Bt| is

independent of the centre u.

4.2. BALLS, ERRORS, MINIMUM DISTANCE 45

Fact 4.5. For integers t,

|Bt| =
t∑
i=0

(
n

i

)
(q − 1)i.

Example 4.6. In F4
3, B1(0) = {0000, 1000, 2000, 0100, 0200, 0010, 0020, 0001, 0002}.

The Hamming distance and its balls are designed nicely for error detection and correction.

Definition 4.7. A code C detects the error pattern e ∈ Fnq if u+ e 6∈ C for all u ∈ C. We

say that C is t-error-detecting if t is the maximum integer such that C corrects all error

patterns of nonzero weight ≤ t.

(It helps to agree that any code automatically detects error pattern e = 0.) In terms of

balls, C is t-error-detecting if and only if Bt(u) ∩ C = {u} for all u ∈ C, but that this

fails for balls of radius t+ 1.

Example 4.8. The code C = {000000, 111000, 000111, 111111} ⊆ F6
2 is 2-error-detecting.

Some, but not all, error patterns of weight 3 get detected. For instance, C detects

e = 100110.

Definition 4.9. A code C corrects the error pattern e ∈ Fnq if d(u + e, u) < d(u + e, v)

for all u 6= v ∈ C. Say that C is t-error-correcting if t is the maximum integer such that

C corrects all error patterns of weight ≤ t.

In other words, with a t-error-correcting code, up to t errors (but no more) still leave a

perturbed word closer to the original codeword than to any other codeword. This means

the receiver can assume (and be right) that the smallest possible number of errors occurred

when comparing received words to codewords. This is known as “maximum likelihood

decoding”, where a received word is corrected to the nearest codeword.

Example (cont’d). The code C from before is at least 1-error-correcting, since wlog

100000 is closer to 000000 than any other codeword. But, say,

d(110000, 000000) = 2 6< 1 = d(110000, 111000).

In terms of balls, we can symmetrize the definition with respect to u and v.

Proposition 4.10. A code C is ≥ t-error-correcting if and only if Bt(u) ∩Bt(v) = ∅ for

all u 6= v ∈ C.

46 CHAPTER 4. CODES AND HAMMING DISTANCE

Proof. Consider an error pattern e of weight ≤ t so that u + e ∈ Bt(u). Suppose C fails

to correct e. Then there exists v ∈ C such that d(u + e, v) ≤ d(u + e, u) ≤ t. It follows

that u+ e ∈ Bt(v). In particular, Bt(u) ∩Bt(v) 6= ∅.

Conversely, suppose Bt(u) ∩ Bt(v) 6= ∅. We assert the existence of w ∈ Bt(u) ∩ Bt(v) so

that d(w, u) ≥ d(w, v). The conclusion is then that C fails to detect e = w − u, which of

course has weight ≤ t since w ∈ Bt(u).

It remains to justify the existence of w. Pick w ∈ Bt(u) ∩ Bt(v) so that d(w, v) is

minimized. If the property does not already hold for w, we may pick a position, say the

ith, such that wi = ui but wi 6= vi. If we replace wi by vi in w, the resulting word w̃ is

closer to v but still in the intersection of balls. This is a contradiction.

The capability of a code to both detect and correct errors can be summarized with one

very important parameter.

Definition 4.11. The minimum distance of C ⊆ An is

dmin(C) = min{d(u, v) : u 6= v ∈ C}.

Theorem 4.12.

• C is t-error-detecting iff dmin(C) = t+ 1.

• C is t-error-correcting iff dmin(C) = 2t+ 1 or 2t+ 2.

4.3 Bounds on code sizes

The basic problem in coding theory is to maximize |C| subject to a given length n,

alphabet size q, and required minimum distance ≥ d. Here are some naive bounds on |C|
in terms of the other parameters.

Theorem 4.13 (Hamming bound). If C ⊆ Fnq with dmin(C) = d, then

|C| ≤
|Fnq |
|B d−1

2
|

=
qn∑(d−1)/2

i=0

(
n
i

)
(q − 1)i

.

4.3. BOUNDS ON CODE SIZES 47

Proof. For d = 2t + 1 or 2t + 2, we have seen that C is t-error-correcting. Hence Bt(u),

u ∈ C, are disjoint balls. It follows that

|Fnq | ≥

∣∣∣∣∣⋃
u∈C

Bt(u)

∣∣∣∣∣ =
∑
u∈C

|Bt(u)| = |C| · |Bt|.

Example 4.14. Any binary code of length 6 and minimum distance 3 (i.e. t = 1) has

size

|C| ≤ 26(
6
0

)
+
(
6
1

) =
64

7
≈ 9.14.

Therefore, by integrality, |C| ≤ 9.

Next is a dual lower bound.

Theorem 4.15 (Gilbert-Varshamov bound). There is a code C ⊆ Fnq with dmin(C) ≥ d

and

|C| ≥
|Fnq |
|Bd−1|

=
qn∑d−1

i=0

(
n
i

)
(q − 1)i

.

Proof. Initialize U1 = Fnq as the set of “available” words. For i ≥ 1, choose any ui ∈ Ui,
include it in C, and put Ui+1 = Ui \Bd−1(ui). It is clear that

|Ui+1| ≥ |U1| −

∣∣∣∣∣⋃
j≤i

Bd−1(uj)

∣∣∣∣∣ ≥ qn − i|Bd−1|.

So the process can continue until (at least) the right hand side becomes non-positive; that

is, until i ≥ qn/|Bd−1|. By construction, the words ui chosen are at minimum pairwise

distance ≥ d, since if d(ui, uj) ≤ d−1 for j < i, then ui was removed from being available

at step j.

Example 4.16. There is a binary code of length 6 and minimum distance ≥ 3 guaranteed

by the GV bound of size at least

26(
6
0

)
+
(
6
1

)
+
(
6
2

) =
64

22
≈ 2.9.

Rounding up, we can attain three codewords. But note that applying the algorithm rather

easily gets |C| ≥ 4.

48 CHAPTER 4. CODES AND HAMMING DISTANCE

step # i |Ui| ui
1 64 000000

2 42 111000

3 26 000111

4 ≥ 4 111111

5 0

In fact, there is such a code of size 5. At step 3 there is an intelligent choice: 100110.

One gets

C = {000000, 111000, 100110, 110011, 011111}.

Theorem 4.17 (Singleton bound). If C ⊆ Fnq with dmin(C) = d, then

|C| ≤ qn−d+1.

Proof. Deleting the last d − 1 positions from each codeword in C yields a family of |C|
distinct words in Fn−(d−1)q .

It is not hard to see that the Singleton bound is already implied by the Hamming bound

for q = 2. But in general it may be the stronger bound.

When equality holds in the Hamming bound, C is called perfect. We’ll see these more

later on.

When equality holds in the Singleton bound, C is called maximum distance separable, or

an “MDS code”. It is easy to see that an MDS code with parameters q, n, d is equivalent

to an OA(n− d+ 1, n, q).

Exercises

1. Suppose the code C = {000000, 000111, 111000, 111111} is used over a binary chan-

nel (alphabet F2). Suppose the “reliability” is p = 0.9, so that the probability that

any bit is changed is 0.1.

For each codeword w ∈ C, compute the probability that w was sent, given that

the word 000110 is received. (Your final answer should consist of four probabilities

which sum to 1.)

4.3. BOUNDS ON CODE SIZES 49

2. If a value t does not appear as a distance in C, argue that C detects every error

pattern of weight exactly t. On the other hand, argue that missing distances do not

help for error correction.

3. Show that a binary code can be used to correct any combination of dmin(C) − 1

erasure errors, in which the affected symbols are received as ‘?’ instead of ‘0’ or ‘1’.

4. Let A(n, d) denote the maximum size of a binary code of length n and minimum

distance d. Prove that, for odd d, we have A(n, d) = A(n+ 1, d+ 1).

5. (a) Let Hw be the set of words in Fn2 with weight w. For u ∈ Hw, compute

|Bt(u) ∩Hw|.
(b) A constant weight code C has the property that all of its codewords have the

same weight. Using (a), state and prove an analog of the Hamming bound for

constant weight binary codes of length n, minimum distance d, and weight w.

6. A q-ary code has constant composition if each of its words has the same number of

occurrences of each symbol. Find optimal constant composition ternary codes of

length 6, composition [3, 2, 1], and each possible minimum distance.

7. Find a constant weight binary code of largest possible minimum distance, with

length 13, size 13, and such that every codeword has weight 4. (Hint : Use a

(13, 4, 1)-difference set.)

8. The information rate of a q-ary code C of length n is defined to be 1
n

logq |C|. Prove

that the information rate of a 1 error-correcting code is at most 1− 1
n

logq(n(q−1)+1).

9. Take A = Z/qZ = {0, 1, . . . , q − 1} and define [x] = min(x, q − x) for x ∈ A. Define

a function λ : An × An → Z by

λ(x,y) =
n∑
i=1

[xi − yi].

Prove that λ is a metric.

10. (a) Prove that, for fixed q and d, the Hamming bound is better than the Singleton

bound for sufficiently large n.

(b) With q = 3 and d = 6, for what value of n does the Hamming bound start to

be better than the Singleton bound?

11. Research the Reed-Soloman codes and investigate their performance with respect to

the Singleton bound.

50 CHAPTER 4. CODES AND HAMMING DISTANCE

Chapter 5

Linear Codes

5.1 Preliminaries

Definition 5.1. A code C ⊆ Fnq is linear if it forms a subspace of Fnq . That is, linear

codes are nonempty with

• u+ v ∈ C whenever u, v ∈ C and

• αu ∈ C whenever α ∈ Fq and u ∈ C.

Note that if q is prime, the second condition can actually be dropped, since

ku =

k times︷ ︸︸ ︷
u+ · · ·+ u .

Fact 5.2. In a linear code C, its minimum distance equals the least weight of a nonzero

codeword.

Proof. Suppose u ∈ C has least nonzero weight. Then dmin(C) ≤ d(0, u) = wt(u). On

the other hand, if v, w ∈ C satisfy d(v, w) = dmin(C), then v − w is a nonzero codeword

by linearity, and wt(u) ≤ wt(v − w) = dmin(C).

Remark. In both computational and theoretical settings, it is helpful to know that a code

is linear for computing dmin(C).

51

52 CHAPTER 5. LINEAR CODES

Naturally, the notions of linear independence, span, basis and dimension are used for

linear codes.

Example 5.3. C = {000000, 111000, 000111, 111111} ⊂ F6
2 is linear, of dimension 2, and

any two of the three nonzero codewords form a basis for C.

We usually present a linear code simply by supplying a basis for it. Concretely finding

a basis for C = 〈S〉 given a generating set S can be done in two slightly different ways.

You have already seen this in a first linear algebra course.

Row method

Make a matrix whose rows are the vectors in S, row-reduce to RREF, and take the nonzero

rows as a basis.

Advantage: The resulting basis has ‘pivots’. This gives a certificate for linear independence

and also allows for explicit reading of information bits.

Disadvantage: This basis has possibly no relationship to the given vectors, and so it is

not obvious that it spans the same code.

Example 5.4. Let S = {123, 314, 111, 104} ⊂ F3
5. We have

1 2 3

3 1 4

1 1 1

1 0 4

 −→


1 0 4

0 1 2

0 0 0

0 0 0

 .
It follows that 〈S〉 has basis {104, 012} and dimension 2.

Column method

Make a matrix whose columns are the vectors in S, row-reduce to RREF, and select the

corresponding pivot columns in the original matrix.

Advantage: The resulting basis is a subset of the given set of vectors.

Disadvantage: It is possibly not obvious on inspection that this set of vectors is linearly

independent.

5.2. DUALS AND PARITY CHECK MATRICES 53

Example 5.5. With the same set S, We have 1 3 1 1

2 1 1 0

3 4 1 4

 −→
 1 3 0 4

0 0 1 2

0 0 0 0

 .
It follows that 〈S〉 has basis {123, 111} ⊂ S.

We normally reserve the parameter k for the dimension of a linear code.

Definition 5.6. A generator matrix for a linear code C ⊆ Fnq of dimension k is any k×n
matrix G whose rowspace equals C. Alternatively, the rows of G form a basis for C.

Given a generator matrix G, we have

C = {wG : w ∈ Fkq}.

It is easy to see that, after permutation of the columns if necessary, we can choose a

generator matrix G for C which is in standard form G = [I | X]. In that case,

C = {(w,wX) : w ∈ Fkq},

where codewords are a concatenation of ‘information bits’ w with ‘check bits’ wX.

5.2 Duals and parity check matrices

The dual of a linear code C, denoted C⊥, is the usual vector space orthogonal complement:

C⊥ = {v ∈ Fnq : u · v = 0 for all u ∈ C}.

Although C ∩ C⊥ 6= {0} in general, it is true that dim(C⊥) = n− k when dim(C) = k.

Example 5.7. The linear code over F4 = {0, 1, α, β} with generator matrix

G =

[
1 0 α β

0 1 β α

]
is self-dual.

54 CHAPTER 5. LINEAR CODES

Definition 5.8. A parity check matrix, usually denoted H, for a linear code C ⊆ Fnq is

any generator matrix for the dual code C⊥.

Fact 5.9. A linear code C ⊆ Fnq is the null space of its parity check matrix:

C = {u ∈ Fnq : Hu> = 0>}.

We have H ∈ F(n−k)×n
q and GH> = O. Also, H> can be computed as the ‘nullspace

matrix’ of G.

Proposition 5.10. If G is in standard form, say [Ik | X], then H = [−X>| In−k].

Example 5.11 (The cup game). A magician displays a rectangular grid of cups, some up

and some down. A volunteer flips one cup without the magician looking. The magician is

able to quickly identify which cup is flipped because in his initial arrangement, every row

and every column has an even number of cups in the ‘up’ position. After the volunteer

flips some cup, (only) that row and that column have changed parity.

Let’s represent this game in the case of a 3× 3 arrangement of cups. Each arrangement

corresponds to a 3× 3 binary matrix, which for convenienece we write in vectorized form

(as concatenation of rows); for instance

0 1 1

1 0 1

0 0 0

7→ 011101000.

The magician’s special arrangements in which every row and column have an even number

of ‘1’s comprise a linear code C ⊆ F9
2. Here are two descriptions of C. First, we have four

basis words in C which correspond to the standard basis for upper-left 2× 2 submatrices.

Check bits are added to the right and below. This produces a generator matrix for C as

G =


1 0 1 0 0 0 1 0 1

0 1 1 0 0 0 0 1 1

0 0 0 1 0 1 1 0 1

0 0 0 0 1 1 0 1 1

 .
Columns 1, 2, 4 and 5 of G form a sub-identity matrix I4. Transpose the other columns

(and negate) to build the corresponding parity-check matrix

H =


1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

1 1 0 1 1 0 0 0 1

 .

5.3. MINIMUM DISTANCE FOR LINEAR CODES 55

The description of C via H consists of relations, namely that the first row, second row,

first column, second column, and overall sum is even.

For w ∈ Fnq , its syndrome with respect to C is Hw> ∈ Fn−kq . Syndromes are in correspon-

dence with cosets of (i.e. affine translates of) C in Fnq .

If word w ∈ Fnq is received, we can compute its syndrome Hw> and identify a least weight

representative e = w∗ for the associated coset e+C = w+C. We can make a good guess

that the sent word is u = w − e ∈ C. This is called syndrome decoding.

Example 5.12. Consider the linear code C = {0000, 1011, 0101, 1110} ⊂ F4
2. Its cosets

are listed as rows in the following array, where least weight representative ‘coset leaders’

begin each row.
0000 1011 0101 1110

1000 0011 1101 0110

0100 1111 0001 1010

0010 1001 0111 1100

Observe that the third coset contains a second weight-one word (underlined); conse-

quently, this code fails to correct errors in positions 2 or 4.

5.3 Minimum distance for linear codes

Recall that, for a linear code C, its minimum distance is the least weight of a nonzero

codeword. In terms of a parity check matrix H,

dmin(C) = min{wt(u) : Hu> = 0>, u 6= 0}.

Definition 5.13. For a matrix A ∈ Fm×n its spark is the least integer k such that there

exists a set of k linearly dependent columns in A. (If A has linearly independent columns,

we could define its spark as ∞.)

It is easy to see that the minimum distance of a linear code C equals the spark of its

parity check matrix: dmin(C) = spark(H).

Here is a ‘random’ construction of matrices with elements in Fq having a lower bound on

their spark.

56 CHAPTER 5. LINEAR CODES

Proposition 5.14. Let d ≤ m be positive integers. There exists a matrix in Fm×nq with

spark at least d if

qm >

d−2∑
i=0

(
n− 1

i

)
(q − 1)i.

Proof. We build such a matrix column by column. To get started, the m × m identity

matrix has spark at least d. Now, suppose an m× r matrix of spark ≥ d has been built

for some r ≥ m. It can be extended by an additional column vector in Fmq provided that

vector is not a linear combination of d − 2 or fewer of the already chosen vectors. That

is, we can extend if

qm >

d−2∑
i=0

(
r

i

)
(q − 1)i.

As a polynomial in r, the left side is increasing for r ≥ d. So if the given inequality holds

(with n− 1 in place of r), then our matrix can be enlarged to have n columns.

With m = n − k, it follows that we can build the columns of a parity check matrix H

affording minimum distance d provided

qn−k >
d−2∑
i=0

(
n− 1

i

)
(q − 1)i.

Corollary 5.15 (Gilbert-Varshamov for linear codes). There exists a linear code C ⊆ Fnq
with minimum distance ≥ d and size

|C| ≥ qn−1∑d−2
i=0

(
n−1
i

)
(q − 1)i

.

Remark. Note that this denominator is the size of the (d − 2)-ball in dimension n − 1.

Let’s call this bn−1d−2 .

Proof. We can take |C| to be the power of q satisfying qn−1 ≤ |C| · bn−1d−2 < qn.

Example 5.16. Consider F15
2 with a prescribed minimum distance d = 4. Since(
14

0

)
+

(
14

1

)
+

(
14

2

)
= 106 < 27,

it follows that there exists a code with dimension 8 (= 15− 7) and minimum distance 4.

5.3. MINIMUM DISTANCE FOR LINEAR CODES 57

Example 5.17. With k = n − 2, the largest ball we can take is with radius d − 2 = 1.

This gives 1 + (n− 1)(q − 1) < q2. This is satisfied for n = q + 1 with

H =

[
1 1 0

F×q 0 1

]
,

where the second row of H begins with a listing of the nonzero field elements. Check

that, in H, no column is a multiple of any other. So spark(H) = 3.

Exercises

1. Let X be an abelian group, written additively. Suppose d is a metric on X such that

d(x1, x2) = d(x+ x1, x+ x2) for all x, x1, x2 ∈ X. Define M≥k as the maximum size

of a subset Y ⊆ X where d(y1, y2) ≥ k for all y1 6= y2 in Y . Define M<k analogously.

Prove that

(M≥k)(M<k) ≤ |X|.

2. Let C ⊆ Fnq be a linear code.

(a) Show that the error patterns which C detects are precisely the words in its

complement Fnq \ C.

(b) Show that the number of error patterns which C can correct is at most qn/|C|.

3. Let S = {11000, 01111, 11110, 01010} ⊂ F5
2 and put C = 〈S〉.

(a) Find both a generator matrix and a parity check matrix for C.

(b) What is the dimension of C and of C⊥, the dual code (subspace)?

(c) Determine the minimum distance of C.

4. Let C be the set of all zero-sum vectors in Fnq . Show that C is linear and repeat (a)

through (c) above.

5. Suppose there exists a binary linear code of length n, dimension k, and minimum

distance d. Prove that n ≥
k−1∑
i=0

⌈
d

2i

⌉
.

6. For the linear code C = {u1u2u3u4 ∈ F4
3 : u1 + u2 = u3 + u4 = 0}, find the least

weight representatives for each coset.

58 CHAPTER 5. LINEAR CODES

7. Apply the ‘linear code’ version of the Gilbert-Varshamov bound to find a binary

linear code C of length 9, dimension 2, and distance 5. Can you find a larger

non-linear code?

8. (a) Find a matrix H ∈ F5×7
3 having spark (smallest size of a linearly dependent set

of columns) equal to 5.

(b) Show that the linear code resulting from (a) is optimal with respect to the

Hamming bound.

9. Show that spark(H) > k if and only if every k × k principal submatrix of H>H is

nonsingular.

10. (a) Show that there is a set of n = 1 + b
√

2qc threewise independent vectors in F3
q;

that is, a 3× n matrix with spark at least 4.

(b) Do a bit better than the bound in (a) for q = 5.

(c) What are the parameters of the linear code resulting from your answer to (b)?

11. The weight enumerator of a binary code C of length n is

A(x, y) =
n∑
i=0

wix
iyn−i,

where wi is the number of words in C of weight i.

(a) For the linear code C = {0000, 1111} and its dual C⊥, find the weight enumer-

ators A(x, y) and A⊥(x, y).

(b) Verify in this case the MacWilliams Identity, namely that

A⊥(x, y) =
1

2k
A(y − x, x+ y).

Chapter 6

Perfect Codes

Recall that a code C ⊆ Fnq is perfect if equality holds in the Hamming bound. That is, C

is perfect if it has size |C| = qn/|Bt|, where t = b(dmin(C)− 1)/2c.

There are some trivial examples. First, Fnq is perfect for any n with t = 0 (note that

|B0| = 1). At the other extreme, a code consisting of just one word is perfect if we take

t = ∞ (so that |Bt| = qn). Finally, the two-word binary code {0,1} is perfect for odd

length n = 2t + 1. It is a well-known binomial identity that |Bt| =
∑t

i=0

(
n
i

)
= 2n−1 in

this case.

6.1 The Hamming codes

Let r ≥ 2. A Hamming code is a linear code C ⊆ Fnq , where n = (qr − 1)/(q − 1), with

a parity check matrix consisting of n columns of height r which form representatives for

the 1-dimensional subspaces (lines through 0) in Frq.

When q = 2, we simply have n = 2r − 1 and the columns are all nonzero binary r-

tuples. When q > 2, the columns are all possible “direction vectors”, which can be

assumed normalized of the form (0, . . . , 0︸ ︷︷ ︸
r−1−i

, 1, ∗, . . . , ∗︸ ︷︷ ︸
i

)>. There are qi choices for each i,

and n =
∑r−1

i=0 q
i columns in total.

59

60 CHAPTER 6. PERFECT CODES

Example 6.1. Suppose q = 2. For r = 2, we have

H =

[
1 0 1

0 1 1

]
and C = {000, 111}.

For r = 3, we have n = 23 − 1 = 7,

H =

 1 1 1 1 0 0 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1


and a the resulting Hamming code is sometimes called C7. (Check that |C7| = 16.) Note

that the lower right 2× 3 submatrix appeared above in the case r = 2.

Example 6.2. Consider the Hamming code with q = 3, r = 3. It has length n =

1 + 3 + 32 = 13 and parity check matrix

H =

 1 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 2 2 2 1 1 1 0

0 1 2 0 1 2 0 1 2 0 1 2 1

 .
We see that dimC = n− r, since H is r × n. Therefore, |C| = qn−r.

Regarding the minimum distance, observe that no nonzero linear combination of 2 columns

of H is ever 0 (by construction). It follows that dmin(C) ≥ 3. On the other hand, plenty

of triples of columns of H combine to 0. So in fact dmin(C) = 3. That is, C is 1-error-

correcting.

In fact, Hamming codes are as large as possible with this minimum distance.

Theorem 6.3. The Hamming codes are perfect 1-error-correcting q-ary codes of length

n = (qr − 1)/(q − 1) and dimension n− r.

Proof. The relevant balls have size |B1| = 1 + (q − 1)n = qr. Therefore,

|C| = qn−r =
qn

|B1|
,

achieving equality in the Hamming bound.

6.2. THE GOLAY CODES 61

6.2 The Golay codes

Let N ∈ {0, 1}11×11 defined by

Nij =

{
1 if i− j is a nonzero quadratic residue (mod 11),

0 otherwise.

More explicitly, this is the ‘back-circulant’ matrix

N =



0 1 0 1 1 1 0 0 0 1 0

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 0 1 0 0 1

1 1 1 0 0 0 1 0 0 1 0

1 1 0 0 0 1 0 0 1 0 1

1 0 0 0 1 0 0 1 0 1 1

0 0 0 1 0 0 1 0 1 1 1

0 0 1 0 0 1 0 1 1 1 0

0 1 0 0 1 0 1 1 1 0 0

1 0 0 1 0 1 1 1 0 0 0

0 0 1 0 1 1 1 0 0 0 1



.

There are several elegant structural properties ofN . The first row ofN is the characteristic

vector of the set Q of quadratic residues in F11, indexed from 0. This set Q is a ‘difference

set’: any nonzero element of F11 appears equally often (twice) as a difference between two

elements of Q.

As a related fact, our matrix N is also an incidence matrix for the (11, 5, 2) symmetric

design, or biplane. A diagram of this structure is given in Figure 6.2.

Binary Golay Code

Let B be the 12× 12 matrix over F2 constructed as

B =

[
0 1

1> J −N

]
,

where J is the 11 × 11 all ones matrix and 1 is the 1 × 11 row of all ones. Note that

B = B>, since the same is true for N . Also, from the biplane model of N , we obtain

B2 = BB> ≡ I (mod 2) after a small calculation.

62 CHAPTER 6. PERFECT CODES

4
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

����������
����������
����������
����������

������
������
������

������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������

������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

0

1

3

7

10 6

8 2

95

�
�
�
�

Figure 6.1: The (11,5,2) biplane

Definition 6.4. The extended binary Golay code, C24, is the linear code with generator

matrix G = [I12 | B].

It follows easily from this definition that and the facts above that C24 is self-dual (GG> =

O) with length 24 and dimension 12. We now consider the minimum distance.

Theorem 6.5. The extended Golay code C24 has minimum distance equal to 8.

Proof. We begin by proving that the weight of any codeword u = xG ∈ C24 is a multiple

of 4. This is done by induction on the weight of x. Since every row of G has weight 8 or

12, the result follows for wt(x) ≤ 1.

Now, suppose for some t ≥ 1 that wt(u = xG) ≡ 0 (mod 4) whenever wt(x) = t. Let v

be another row of G. Then

wt(u+ v) = wt(u) + wt(v)− 2(u · v) ≡ 0 (mod 4),

since any two different rows of G are orthogonal.

Since most rows of G have weight 8, it remains to prove that C24 has no codewords of

weight 4. Suppose for contradiction that v ∈ C24 has weight 4. Since B2 = I, it follows

6.2. THE GOLAY CODES 63

that [I | B] and [B | I] are each generator matrices for C24. Therefore

v = [w1 |w2] = w1[I | B] = w2[B | I]

for some w1, w2 6= 0. Now neither of the two halves of v can be identically zero. This

is because of the identity matrices in the generator matrices and also since w1, w2 6= 0.

Further, if either half of v contained only one 1, this would imply that v equalled a row

of either [I | B] or [B | I], but each row has weight at least eight. Therefore each half of

v must contain exactly two ones. This implies that wt(w1) = wt(w2) = 2, but the sum of

two rows of B has weight at least 4. Therefore wt(v) = wt(w1) + wt(w1B) > 2 + 4 > 4, a

contradiction. We have shown no v ∈ C24 has weight 4 and so dmin(C24) = 8.

The binary Golay Code C23 is obtained by a small operation from C24.

Definition 6.6. Puncturing a code means removing the entry in a common position

from every codeword. For example, puncturing with respect to the last position of C

gives C ′ = {u1 · · ·un−1 : u1 · · ·un ∈ C}.

Now C23 is obtained by puncturing C24. It doesn’t matter which bit is removed; equivalent

codes will result. In particular, C23 retains dimension k = 12. Since some words of weight

8 in C24 have been reduced to weight 7 after puncturing, we get dmin(C23) = 7.

Theorem 6.7. The binary Golay code C23 has length 23, dimension 12, and minimum

distance 7. Since |B3| = 1 +
(
23
1

)
+
(
23
2

)
+
(
23
3

)
= 211, this is a perfect code.

Ternary Golay Code

There is a ternary perfect code which is a cousin of C23. Let’s work from N just as before,

except we order the rows of N so that it is forward-circulant (instead of back-circulant as

presented earlier). With a different labelling, N is also a point-line incidence matrix for

the biplane.

Now take the matrix N ′ over F3, where N ′ = 2N + 2I − J (here N is interpreted as a

zero-one matrix over F3). This is just the matrix obtained from N by placing 1s on the

64 CHAPTER 6. PERFECT CODES

main diagonal and changing all other “0”s to “−1”s. Next, put

B′ =

[
−1 −1

−1> N ′

]
=



− − − − − − − − − − − −
− 1 1 − 1 1 1 − − − 1 −
− − 1 1 − 1 1 1 − − − 1

− 1 − 1 1 − 1 1 1 − − −
− − 1 − 1 1 − 1 1 1 − −
− − − 1 − 1 1 − 1 1 1 −
− − − − 1 − 1 1 − 1 1 1

− 1 − − − 1 − 1 1 − 1 1

− 1 1 − − − 1 − 1 1 − 1

− 1 1 1 − − − 1 − 1 1 −
− − 1 1 1 − − − 1 − 1 1

− 1 − 1 1 1 − − − 1 − 1



.

This B′ is a 12 × 12 ‘Hadamard matrix’, which implies that (B′)(B′)> ≡ O (mod 3).

Using this property, it is not hard to show that the rowspace of B′ over F3, which we

call the extended ternary Golay code and denote by C12, is self-dual with dmin(C12) = 6.

(Similar to the analysis for C24, we show that weights of codewords in C12 are multiples of

three, and then rule out the case of weight three using structure of a Hadamard matrix.)

The (ordinary) ternary Golay code C11 is obtained by puncturing C12.

Theorem 6.8. The ternary Golay code C11 has length 11, dimension 6, and minimum

distance 5. Since |B2| = 1 + 2
(
11
1

)
+ 22

(
11
2

)
= 35, this is a perfect code.

6.3 Classification

So far, we have seen three types of perfect codes:

• the trivial codes C = Fnq and C = {00 . . . 0, 11 . . . 1} in F2k+1
2 .

• the Hamming codes of length n = (qr − 1)/(q − 1), which are 1-error-correcting

• the Golay codes C11 and C23, which are 2 and 3-error-correcting, respectively.

It transpires that there are no multiple-error-correcting perfect linear codes besides the

two Golay codes. The following classification was proved in stages by Perko, Tietäväinen

and van Lint.

http://en.wikipedia.org/wiki/Hadamard_matrix

6.3. CLASSIFICATION 65

Theorem 6.9 (Classification of Perfect Codes). For t > 1, the only nontrivial perfect

t-error-correcting codes have the parameters of either C11 or C23.

The proof of Theorem 6.9 is quite technical, so let’s instead have a look at some elementary

aspects of the problem.

First, a perfect code cannot have an even minimum distance: Let C be a code with

minimum distance dmin(C) = 2t+2. Let v ∈ C and change v in t+1 places to obtain a new

word z. Therefore d(v, z) = t+ 1. Let u ∈ C, with u 6= v. Then d(u, v) ≤ d(u, z) + d(z, v)

or d(u, z) ≥ d(u, v)− d(z, v) ≥ 2t + 2− (t + 1) = t + 1. This implies that z has distance

at least t + 1 from every codeword in C. Therefore z is in no ball of radius t centred at

the codewords in C. This contradicts C being perfect.

Also, recall that for a perfect q-ary code of length n and minimum distance 2t + 1, we

must have |Bt| | qn. This rather strong condition is necessary simply for the Hamming

bound to be an integer.

Next, there is an even stronger constraint on perfect codes involving polynomials. The

origins of this come from the theory of association schemes.

Definition 6.10. For parameters q, n, t, the Lloyd polynomial is

Lt(x) =
t∑
i=0

(−1)i(q − 1)t−i
(
n− x
t− i

)(
x− 1

i

)
.

Note Lt(x) is a polynomial of degree t in x, since each term of the sum is a polynomial of

degree t having the same sign (−1)t.

Theorem 6.11 (Lloyd’s Theorem). If C is a q-ary perfect code of length n with dmin(C) =

2t+ 1, then Lloyd’s polynomial Lt(x) has t distinct integral zeros among 1, 2, . . . , n− 1.

With an elementary argument, we can use Lloyd’s theorem to rule out perfect codes in

the case q = 2, t = 2 (binary codes of minimum distance 5). On the other hand, it is

noteworthy that |B2| = 1 + n+
(
n
2

)
sometimes does divide 2n. For instance when n = 90,

1+90+
(
90
2

)
= 212. (That is, a näıve ‘number-theoretic’ argument fails to kill these codes.)

Corollary 6.12. There are no nontrivial perfect 2-error-correcting binary codes.

Proof. First, we compute

L2(x) = 2x2 − 2(n+ 1)x+ 1 + n+

(
n

2

)
.

66 CHAPTER 6. PERFECT CODES

The constant coefficient is |B2|, which must be a power of 2. So we may assume, by

Lloyd’s Theorem, that (x− 2a)(x− 2b) = x2 − (n+ 1)x+ 2s for some integers s, a, b with

0 ≤ a < b and s = a + b. Comparing coefficients of x, we see 2a + 2b = n + 1. Then a

calculation gives

(2a+1 + 2b+1 − 1)2 = (2n+ 1)2 = 8|B2| − 7 = 2a+b+4 − 7.

Suppose a, b ≥ 2. Modulo 16, the left side is (−1)2 = 1 and the right side is −7 = 9. So

it follows that a = 1 and

(2b+1 + 3)2 = 2b+5 − 7.

It is simple to verify that the only solution is b = 2, for which n = 21 + 22 − 1 = 5. This

leads to the trivial repetition code {00000, 11111}.

In a similar spirit, the full proof of Theorem 6.9 involves a careful analysis of the integrality

condition on zeros of Lt(x).

Exercises

1. Verify that {00 · · · 0, 11 · · · 1} is perfect for odd lengths n = 2k + 1.

2. Use C24 to construct a Steiner system S(5, 8, 24). Conclude the existence of S(4, 7, 23)

and S(3, 6, 22).

3. Count the codewords of weight 7 in the Golay code C23. (Hint: Start by proving

that every word of weight 4 in F23
2 is distance 3 from exactly one codeword.)

4. Show that puncturing C24 at different positions results in equivalent codes.

5. Complete the proof that dmin(C12) = 6, and conclude that C11 is a perfect 2-error-

correcting ternary code.

6. Let n, t be fixed integers with n > t ≥ 1. Prove that perfect t-error-correcting q-ary

codes of length n fail to exist for sufficiently large primes q.

7. Show that the constant coefficient of the Lloyd polynomial Lt(x) equals |Bt|.

8. Define the Krawtchouk polynomials

Ki(x) =
i∑

j=0

(−1)j(q − 1)i−j
(
x

j

)(
n− x
i− j

)
.

It turns out that Lt(x) =
∑t

i=0Ki(x). Verify this in the case q = t = 2.

6.3. CLASSIFICATION 67

9. Lloyd’s theorem is proved using a certain algebra of matrices, which we develop here

in the specific case of F3
2 = {000, 001, 010, 011, 100, 101, 110, 111}.

For t = 0, 1, 2, 3, let At be the 8 × 8 zero-one matrix whose rows and columns are

indexed by F3
2 (say in the order as above), where

At(u, v) =

{
1 if d(u, v) = t,

0 otherwise.

It turns out that the subspace of matrices A := spanR({A0, A1, A2, A3}) they gen-

erate is closed under matrix multiplication.

(a) Check that each Ai is symmetric and conclude that A is commutative.

(b) Express A1A2 in the basis {A0, A1, A2, A3}.

(c) Express A2
2 in the basis {A0, A1, A2, A3}.

68 CHAPTER 6. PERFECT CODES

Chapter 7

Cyclic Codes

7.1 Introduction and classification

Definition 7.1. Let w = a0a1 . . . an−1 ∈ Fnq . The cyclic shift of w is

σ(w) = an−1a0a1 . . . an−2.

A code C ⊆ Fnq is cyclic if σ(w) ∈ C whenever w ∈ C.

For example, one presentation C7 of the binary Hamming code of length 7 is cyclic. We

have

C7 = {0000000, 1101000, 0010111, 1111111},
where the lines represent that all 7 cyclic shifts of these codewords are included.

It is easy to see that σ : Fnq → Fnq is a linear transformation. Thus, a linear code is cyclic

if and only if σ(wi) ∈ C for each wi in a generating set for C.

It is convenient to associate w = a0a1 . . . an−1 ∈ Fnq with w(x) = a0+a1x+· · ·+an−1xn−1 ∈
Fq[x]. Note [(u+v)](x) = u(x)+v(x), where arithmetic on coefficients is of course done in

Fq. This polynomial correspondence also has nice properties with respect to cyclic shifts:

[σ(w)](x) = an−1 + a0x+ a1x
2 + · · ·+ an−2x

n−1

= xw(x)− an−1(xn − 1)

≡ xw(x) (mod xn − 1).

69

70 CHAPTER 7. CYCLIC CODES

So in this section, let’s identify Fnq with the vector space Fq[x]/〈xn − 1〉. The latter has

the advantage of a ring (algebra) structure. As usual, arithmetic of polynomials takes

place mod xn − 1.

Lemma 7.2. Let C ⊆ Fq[x]/〈xn − 1〉 be a linear cyclic code. For any v(x) ∈ C and any

a(x) ∈ Fq[x], we have a(x)v(x) ∈ C.

Proof. We have

a(x)v(x) = a0v(x) + a1xv(x) + a2x
2v(x) + . . .

≡ a0v + a1σ(v) + a2σ
2(v) + . . . (mod xn − 1),

which belongs to C since C is linear and cyclic.

Definition 7.3. A (actually the) generator polynomial g(x) of a nontrivial linear cyclic

code C is a nonzero monic polynomial of minimum degree in C. If C = {0}, we take

g(x) = xn − 1 or g(x) = 0 as a special case.

It is not hard to see using linearity and the division algorithm that the generator polyno-

mial is unique. (Refer to the proof below.)

Theorem 7.4. Let C be a linear cyclic code with generator polynomial g(x). Then w(x) ∈
C if and only if g(x) | w(x).

Proof. The “if” part was proved in Lemma 7.2. For the “only if” part, use the division

algorithm. Let w(x) = q(x)g(x) + r(x), with deg(r) < deg(g). Now r(x) = w(x) −
q(x)g(x) ∈ C by linearity, so since g is of minimum degree we must have r(x) ≡ 0.

It follows that C is the ideal generated by g(x). The third isomorphism theorem for rings

lets us identify ideals in the quotient Fq[x]/〈xn−1〉 with ideals in Fq[x] containing 〈xn−1〉,
and these are precisely the ideals of the form 〈g(x)〉 for some divisor g(x) | xn − 1.

Corollary 7.5. If C = 〈g(x)〉 is a linear cyclic code of length n over Fq, then g(x) divides

xn − 1 in Fq[x].

From the above, we can easily determine a basis for linear cyclic codes (viewed as subspaces

only and forgetting that they are ideals).

7.1. INTRODUCTION AND CLASSIFICATION 71

Proposition 7.6. Suppose C = 〈g(x)〉, where deg(g) = t. Then

{g(x), xg(x), . . . , xn−t−1g(x)}

corresponds with a basis for C as a subspace of Fnq . It follows that dim(C) = n− t.

Proof. The given polynomials are clearly independent. Now any codeword v0v1 . . . vn−1
in C must have unique last n− t coordinates (vt . . . vn−1), for otherwise a contradiction to

deg(g) = t would result. Therefore |C| ≤ qn−t, and so the given set of n− t polynomials

span C.

Example 7.7. In the Hamming code C7 from before, we have g(x) = 1 + x + x3 as the

generator polynomial for C. We can verify all of the above by noting

1 + x7 = (1 + x)(1 + x+ x3)(1 + x2 + x3)

in F2[x]. (This factorization shows another possible g(x) for an equivalent code. What is

this code?) Note also that dim(C) = 4 = n − deg(g). A generator matrix G for C has

rows corresponding to g(x), xg(x), x2g(x), x3g(x).

We see that for linear cyclic codes, the generator polynomial encodes the information of

the generator matrix. What about the parity check matrix H? Recall that for linear

codes C, one has w = w0w1 . . . wn−1 ∈ C if and only if wH> = 0. In our present context,

w ∈ C if and only if

w(x) = w0 + w1x+ · · ·+ wn−1x
n−1 ≡ 0 (mod g(x)).

So it follows that a parity check matrix for C = 〈g(x)〉 is given by

H> =

x0 (mod g(x))
...

xi (mod g(x))
...

xn−1 (mod g(x))

,

where by this we mean that the columns of H are coefficient lists of xi, each reduced

modulo g(x). Note that since deg(g(x)) = n − k, the columns have height n − k. And

there is a sub-identity matrix In−k in H from the first n− k nonnegative powers of x. It

follows that the rows of H are linearly independent.

72 CHAPTER 7. CYCLIC CODES

Definition 7.8. The check polynomial of a linear cyclic code C = 〈g(x)〉 of length n is

the polynomial

h(x) =
xn − 1

g(x)
.

Observe that the check polynomial “tests” for membership in C similarly to the parity

check matrix: w(x) ∈ C if and only if

w(x)h(x) = (xn − 1)
w(x)

g(x)
= 0,

since the quotient w(x)/g(x) has no remainder precisely when w(x) ∈ C.

The check polynomial of a linear cyclic code is also related to the generator matrix for

the dual code (which is also cyclic). We leave the proof of the following to the reader.

Theorem 7.9. If C is a nontrivial linear cyclic code with check polynomial h(x) of degree

k, then C⊥ is also linear and cyclic with generator polynomial h∗(x) := xkh(x−1), the

reciprocal polynomial of h.

Proof. Let g(x) = a0 + a1x + · · · + an−1x
n−1 be the generator polynomial of C. Let

h(x) = b0+b1x+ · · ·+bkxk be its check polynomial, so that h∗(x) = bk+bk−1x+ · · ·+b0xk.
The dot product of words corresponding with g(x) and h∗(x) is a0bk +a1bk−1 + · · ·+akb0,

which is simply the coefficient of xk in g(x)h(x) = xn− 1. It follows that h∗ is orthogonal

to g; the rest of the proof follows by linear and cyclic extension.

Example 7.10. The check polynomial for C = 〈1 + x + x3〉 ⊂ F7
2 is h(x) = (1 + x)(1 +

x2 + x3). So the generator polynomial for C⊥ is

x4(1 + x−1)(1 + x−2 + x−3) = 1 + x2 + x3 + x4.

As we’ve seen, classifying all Fq-ary linear cyclic codes of a given length n amounts to

factoring xn − 1 in Fq[x]. Here are a few more details about the correspondence between

linear cyclic codes of length n and factors of xn − 1.

Proposition 7.11. Suppose C1, C2 ⊆ Fq[x]/〈xn−1〉 are linear cyclic codes with generator

polynomials g1, g2, respectively. Then C1 ⊆ C2 if and only if g2 | g1.

Corollary 7.12. If C1 and C2 have generator polynomials g1 and g2, respectively, then

• C1 + C2 has generator polynomial gcd(g1, g2);

• C1 ∩ C2 has generator polynomial lcm(g1, g2).

7.2. BCH CODES 73

1

g1 g2 · · · gt

g1g2 lcm

...

xn − 1

Fnq

C1 C2 · · · Ct

C1 ∩ C2 ∩

...

{0}

Figure 7.1: The lattices of polynomial divisors and cyclic codes

For instance, the first of these claims just follows from the fact that C1 +C2 = {u1 + u2 :

ui ∈ Ci} is the smallest (linear and cyclic) code containing both C1 and C2 and that

gcd(g1, g2) is the largest monic polynomial dividing both g1 and g2.

With xn − 1 = g1g2 . . . gt as a product of irreducible polynomials in Fq[x], we obtain the

following order structure of Fq-ary linear cyclic codes of length n.

Here, Ci = 〈gi(x)〉 are the maximal proper linear cyclic codes.

7.2 BCH codes

So far, we have not said anything about the minimum distance of cyclic codes. The goal

of this section is to present a special class of linear cyclic codes with a decent minimum

distance.

Let Fqr be the finite field of order qr. Recall that, as vector spaces over the ground field,

Fqr ∼= Frq. Let β be a generator of F×qr , and consider the minimal polynomial mβ(x) ∈ Fq[x].

For instance, we have seen that if f(x) is primitive and β = x ∈ Fq[x]/〈f(x)〉, then

β is a generator with mβ(x) = f(x). By the division algorithm, mα(x) divides any

other polynomial p(x) ∈ Fqr [x] with p(α) = 0. In particular, with n = qr − 1, we have

mα(x) | xn − 1.

Definition 7.13. Let n = qr − 1 and 2 ≤ d ≤ n. The BCH code for these parameters is

74 CHAPTER 7. CYCLIC CODES

the cyclic code with generator polynomial

g(x) = lcm(mβ(x),mβ2(x), . . . ,mβd−1(x)),

where β is a primitive element of Fqr .

Note that any two minimal polynomials are either equal or coprime; so the lcm is actually

just a concise way of multiplying the distinct polynomials in the list.

It should be noted that there are generalizations of this definition. There are also impor-

tant special cases. When r = 1, so that n = q − 1, these BCH codes are better known as

Reed-Soloman codes. They are apparently used in DVD encoding and QR codes.

Let’s focus on one other interesting special case. Put q = 2, r ≥ 3 and d = 5. This binary

BCH code has length n = 2r − 1. Since mβ(x) = mβ2(x) = mβ4(x), it follows that the

generator polynomial is simply g(x) = mβ(x)mβ3(x). This leads to codimension 2r.

Later, we will justify that the minimum distance of such a code is indeed ≥ 5.

Example 7.14. Let r = 4 and write F16 = F2[x]/〈1 + x + x4〉. The field element

β = x has minimal polynomial 1 + x + x4. Suppose β3 = x3 has minimal polynomial

a0 + a1x+ a2x2 + Collecting common terms in the expression

0 = a0 + a1x
3 + a2x

6 + a3x
9 + · · · = a0 + a1x

3 + a2(x
3 + x2) + a3(x

3 + x) + . . . ,

we see that mβ3(x) = 1 + x+ x2 + x3 + x4. Multiplying, the generator polynomial of the

length 15, codimension 8 BCH code is g(x) = mβ(x)mβ3(x) = 1 + x4 + x6 + x7 + x8.

A parity check matrix for a general BCH code can be constructed by stacking appropriate

powers of β:

H =


1 β β2 · · · βn−1

1 β2 β4 · · · β2(n−1)

...

1 βd−1 β2(d−1) · · · β(d−1)(n−1)

 .

This is because Hw = 0 if and only if w(β) = w(β2) = · · · = w(βd−1) = 0, where we are

identifying w ∈ Fnq with the polynomial w(x) ∈ Fq[x]/〈xn − 1〉 in the usual way.

Disclaimer: Recall that the minimal polynomials mβi(x), i = 1, . . . , d − 1, in general

contain repetition. It follows that the above H has dependent rows, although they still

generate the dual code 〈g(x)〉⊥.

http://en.wikipedia.org/wiki/QR_code

7.2. BCH CODES 75

Example (cont’d). Weeding out repetition, we have

H =

[
1 β β2 · · · β14

1 β3 β6 · · · β42

]
∈ F2×15

16 .

Concretely, as a matrix in F8×15
2 ,

H =



1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
0 0 1 · · ·
0 1 1 · · ·


,

where for instance the (2, 3)-block entry follows from β6 = β2 + β3 ∈ F16.

Theorem 7.15. The parameter d of a BCH code is a lower bound on minimum distance.

Proof. We show that H has spark at least d. For this, it is enough to use the full (d− 1)-

rowed version of H in Fqr and check that determinants of all square submatrices of order

d− 1 are nonzero. Let S ⊆ {0, 1, . . . , n− 1} be a restriction of the column indices, where

|S| = d− 1. We have

detH|S =

∣∣∣∣∣∣∣∣∣
βi1 βi2 · · · βid−1

β2i1 β2i2 · · · β2id−1

...

β(d−1)i1 β(d−1)i2 · · · β(d−1)id−1

∣∣∣∣∣∣∣∣∣ = β
∑
S detV (βi : i ∈ S)

in terms of the Vandermonde matrix. Recall the determinant of V is, by Proposition 3.2,

detV =
∏
i<j∈S

(βi − βj) 6= 0

since β is a generator of Fqr and n = qr − 1. It follows that the minimum distance is at

least d.

There is a cute explicit verification of this in the case q = 2, d = 5. See the exercises.

Corollary 7.16. Let C be the cyclic code of length 2r − 1 with generator polynomial

g(x) = mβ(x)mβ3(x). Then dmin(C) ≥ 5.

76 CHAPTER 7. CYCLIC CODES

Exercises

1. (a) Let C be a binary cyclic code of length p, where p is prime. Show that |C| ≡ 0, 1

or 2 (mod p).

(b) How does this change when we impose linearity on C?

(c) How does this change for the ternary alphabet?

2. Find, with proof, the smallest length of a binary linear cyclic code with generator

polynomial x7 + x+ 1.

3. Consider C = 〈x5 + 2x3 + x2 + 2x+ 2〉 ⊆ F3[x]/〈x11 − 1〉.

(a) Find a generator matrix for C.

(b) Find a check polynomial for C⊥.

4. Let n = 17, and let ζ be a primitive nth root of unity for F2. The group F×17 can

be partitioned as Q∪Q, the set of quadratic residues and nonresidues, respectively.

The quadratic residue code C has generator polynomial

g(x) =
∏
i∈Q

(x− ζ i).

(Incidentally, this C has minimum distance 5.)

(a) Express g as a polynomial in F2[x]. (There are two possible answers.)

(b) What is the dimension of the cyclic code 〈g〉?

(c) What is a check polynomial h for this code, based on the g from (a)?

5. Show that C = 〈g(x)〉 is self-dual as a linear code if and only if g(x)g∗(x) = xn− 1.

6. What are the binary BCH codes with r = 3? Consider each allowable distance.

7. Prove that the binary BCH code with d = 3 is the Hamming code of length n =

2r − 1.

8. (a) Prove Corollary 7.16 by arguing directly that

βs + βt + βu = 0,

β3s + β3t + β3u = 0,

has no solutions for distinct s, t, u (mod 2r − 1).

7.2. BCH CODES 77

(b) Repeat (a) with extra terms βv and β3v.

(Hint : Let γ1 = βs−t, γ2 = βt−u, γ3 = βu−s, and obtain the relations

γ1γ2γ3 = 1,

γ1 + γ2 + γ3 = γ−11 + γ−12 + γ−13 .)

(c) Conclude that the spark of H is at least 5.

78 CHAPTER 7. CYCLIC CODES

Bibliography

[1] T.W. Hungerford, Algebra, Springer-Verlag GTM 73, New York, 1974.

[2] R. Lidl and G. Pilz, Applied Abstract Albebra, 2nd ed., Springer-Verlag UTM, New

York, 1998.

[3] J.H. van Lint, Introduction to Coding Theory, Springer-Verlag GTM 86, New York,

1982.

79

	I Finite Fields
	Introduction
	Integers modulo n
	Fields
	Prime fields and extensions
	The multiplicative group of a finite field
	Existence of finite fields
	Exercises

	Polynomials
	Minimal and primitive polynomials
	Cyclotomic polynomials
	Factoring via idempotents in characteristic two
	Linear algebra over finite fields
	Factoring via Berlekamp's algorithm
	Exercises

	Applications
	Lagrange interpolation and secret sharing
	Linear homogeneous recurrences and M-sequences
	Orthogonal arrays and finite planes
	Exercises

	II Coding Theory
	Codes and Hamming Distance
	Introduction
	Balls, errors, minimum distance
	Bounds on code sizes
	Exercises

	Linear Codes
	Preliminaries
	Duals and parity check matrices
	Minimum distance for linear codes
	Exercises

	Perfect Codes
	The Hamming codes
	The Golay codes
	Classification
	Exercises

	Cyclic Codes
	Introduction and classification
	BCH codes
	Exercises

	Bibliography

