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We study interactions between general topology and the model theory of real-valued logic. This thesis

includes both applications of topological ideas to obtain results in pure model theory, and a model-

theoretic approach to the study of compacta via their rings of continuous functions viewed as metric

structures.

We introduce an infinitary real-valued extension of first-order continuous logic for metric structures

which is analogous to the discrete logic Lω1,ω, and use topological methods to develop the model theory

of this new logic. Our logic differs from previous infinitary logics for metric structures in that we allow

the creation of formulas infn ϕn and supn ϕn for all countable sequences (ϕn)n<ω of formulas. Our

more general context allows us to axiomatize several important classes of structures from functional

analysis which are not captured by previous logics for metric structures. We give a topological proof

of an omitting types theorem for this logic, which gives a common generalization of the omitting types

theorems of Henson and Keisler. Consequently, we obtain a strengthening of a result of Ben Yaacov

and Iovino concerning separable quotients of Banach spaces. We show that continuous functions on

separable metric structures are definable in our Lω1,ω if and only if they are automorphism invariant.

The second part of this thesis develops the model theory of the C*-algebras C(X), for X a compact

Hausdorff space. We describe all complete theories of these algebras forX a compact 0-dimensional space.

We show that the complete theories of C(X) (for X of any dimension) having quantifier elimination are

exactly the theories of C, C2, and C(2N), and that if the theory of C(X) is model complete and X

is connected then X is co-elementarily equivalent to the pseudoarc. We use model-theoretic forcing to

answer a question of P. Bankston by showing that the pseudoarc is a co-existentially closed continuum.
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Chapter 1

Introduction

This thesis is concerned with real-valued logic, that is, with a kind of logic where “truth values” lie in R,

rather in than in a two-element set as in traditional logic. Logics with more than two truth values were

formalized by  Lukasiewicz in the 1920’s for three truth values [80] and later infinitely many truth values

[81]. Pavelka added rational constant connectives to the real-valued version of  Lukasiewicz logic and

proved a completeness theorem for the resulting  Lukasiewicz-Pavelka logic [92, 93, 94]. Later, Hájek,

Paris, and Shepherdson proved that  Lukasiewicz-Pavelka logic is a conservative extension of  Lukasiewicz

logic [58]. The reader interested in a survey of  Lukasiewicz logic and its variants can consult [59].

Our interest is in using many-valued logic to study mathematical structures arising from functional

analysis. The logic we will be using has the same expressive power as  Lukasiewicz-Pavelka logic (see

[25, Proposition 1.18]), though it is formally different and was motivated by different concerns. Initial

applications of mathematical logic in analysis came by way of the ultrapower construction, which was

first used by Krivine in his 1967 thèse d’état [72]. The ultrapower of a Banach space can be seen as a

special case of the nonstandard hull construction of Luxemburg [82], which also applies to metric spaces

in general. Ultrapowers of Banach spaces were later used by Dacunha-Castelle and Krivine to study

Orlicz spaces [30] and more general Banach spaces and Banach algebras [31]; at approximately the same

time, McDuff considered ultrapowers of tracial von Neumann algebras [84]. We recall here the definition

of the ultrapower of a Banach space; a more general definition of ultraproducts of metric structures,

which includes the von Neumann algebra case and many others, appears as Definition 2.1.7 below.

Definition 1.0.1. Let X be a (real or complex) Banach space, and let U be an ultrafilter on a set I.

Let `∞(X) = { (xi)i∈I : supi∈I ‖xi‖ <∞}, and let cU(X) = { (xi)i∈I ∈ l∞(X) : limi→U xi = 0 }. The

ultrapower of X by U is defined to be the Banach space obtained as the quotient:

XU = `∞(X)/cU(X).

Krivine, and later Stern, used ultrapowers to solve a variety of problems arising in functional anal-

ysis; see, for example, [75], [77], and [103]. Krivine also introduced a real-valued logic, and described

connections between model theory and Banach spaces, in the papers [73], [74], and [76].

In 1966 Chang and Keisler [27] introduced a general framework for studying logics with truth values

taken in a fixed compact Hausdorff space K. The motivating example for Chang and Keisler’s work

was the case K = [0, 1]. In another direction, in 1976 Henson [62] introduced the notion of approximate

1



Chapter 1. Introduction 2

satisfaction of positive bounded formulas for structures based on Banach spaces (see [63] for a survey of

this approach). Recently there has been a considerable amount of activity in a [0, 1]-valued logic called

continuous first-order logic, introduced by Ben Yaacov and Usvyatsov [16]. Continuous first-order logic

is a reformulation of Henson’s logic in the framework of Chang and Keisler, and is the basic logic we

will be using throughout this thesis.

One significant difference between continuous first-order logic and the continuous logic of Chang and

Keisler is that the latter used traditional structures with a distinguished equality relation, while the

former considers structures without equality, but instead equipped with a distinguished metric. More

precisely, the semantic objects for continuous first-order logic are metric structures, that is, bounded

metric spaces with distinguished uniformly continuous functions and predicates (see Definition 2.1.1

below for the precise definition). The formulas are defined recursively in a manner analogous to the

definition of formulas in first-order logic, but we allow as connectives all continuous functions f : [0, 1]n →
[0, 1], and we take inf and sup as replacements for the quantifiers ∃ and ∀. In this setting each formula

defines a uniformly continuous [0, 1]-valued function on each metric structure, and this uniform continuity

of formulas is closely related to the real-valued version of the compactness theorem of first-order logic.

We give precise definitions and theorem statements for the results we will use from continuous first-order

logic in Chapter 2, and we refer to [13] for a survey.

Throughout the thesis we focus on areas of interaction between topology and the model theory of

continuous first-order logic and its extensions. These interactions manifest in two ways. First, in Chapter

3, we develop an infinitary extension of continuous first-order logic. Our main results in this section are

purely model-theoretic statements, but we use tools from general topology in the proofs. On the other

hand, Chapter 4 concerns the model theory of commutative unital C*-algebras. Such algebras arise as

algebras of continuous complex-valued functions on compact Hausdorff spaces, so we view this study as

an indirect model theory of compacta.

The first major goal of this thesis is to extend continuous first-order logic to an infinitary logic

analogous to the classical logic Lω1,ω. In the discrete setting, the logic Lω1,ω extends first-order logic

by allowing as formulas the infinitary conjunction
∧
i<ω ϕi and infinitary disjunction

∨
i<ω ϕi, whenever

the ϕi are Lω1,ω formulas with a total of finitely many free variables. Amongst logics extending first-

order, the logic Lω1,ω has the most successfully developed model theory – see [69]. The model theory of

this logic is significantly different from first-order model theory, in large part due to the failure of the

compactness theorem.

A version of Lω1,ω for metric structures, which extends continuous first-order logic, was introduced by

Ben Yaacov and Iovino [14]. In their logic formulas of the form supi<ω ϕi and infi<ω ϕi are permitted,

provided that the total number of free variables remains finite, and the formulas ϕi have a common

modulus of uniform continuity. Given the connection between uniform continuity and compactness,

and the fact that an infinitary logic cannot be expected to satisfy the compactness theorem, it appears

somewhat unnatural to insist on a common modulus of uniform continuity when creating infinitary

formulas. In Chapter 3 we define a new candidate for Lω1,ω which does not have any restriction on the

moduli of continuity of the constituents of an infinitary formula. A consequence of this is that formulas

no longer necessarily define continuous functions on all metric structures, and structures need not be

elementary substructures of their metric completions. The model theory of our logic therefore tends to

have two aspects. First, we obtain results which are closely analogous to those in the classical setting.

Second, we observe that if the formulas involved happen to lie in a continuous fragment of our Lω1,ω,
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then we can state versions of our results for metric structures based on complete metric spaces. The

following theorem, which is the main result of Section 3.3, is a good illustration. The notion of principal

types is an adaptation of the corresponding notion from discrete logic (see Definition 3.3.3).

Theorem 1.0.2. Let T be a theory in a countable fragment L of Lω1,ω. For each n < ω, let Σn be

a type consistent with T that is not principal over T . Then there is a separable model of T that omits

every Σn.

If L is a continuous fragment, and the types have the stronger property of not being metrically

principal, then the separable model omitting each Σn can be taken to be complete.

Consequences of our Omitting Types Theorem include a description of when an Lω1,ω theory has

prime models (Corollary 3.4.10), and the following version of Keisler’s two-cardinal theorem (Theorem

3.4.4):

Theorem 1.0.3. Let S be a two-sorted metric signature, and let L be a countable fragment of Lω1,ω(S).

Let T be an L-theory and let M = 〈M,V, . . . 〉 be a model of T where M has density κ and V has density

λ, with κ > λ ≥ ℵ0. Then there is a model N = 〈N,W, . . . 〉 ≡L M with N of density ℵ1 and W of

density ℵ0. Moreover, there is a model M0 = 〈M0, V0, . . . 〉 such that M0 �L M,M0 �L N, and V0 is

dense in W .

One of the most important features of the discrete Lω1,ω is Scott’s theorem that every countable

discrete structure is determined up to isomorphism by a single sentence. The analogous statement for

Lω1,ω for metric structures is also true (with “countable” replaced by “separable”), as was shown by

Ben Yaacov, Nies, and Tsankov [15]. In fact, the Scott sentence for a complete metric structure can be

found in the earlier continuous version of Lω1,ω. Nevertheless, we describe in Section 3.5 why our more

general logic is needed to prove the following version of Scott’s definability theorem (Theorem 3.2.3).

Theorem 1.0.4. Let M be a separable complete metric structure. For any continuous function P :

Mn → [0, 1], the following are equivalent:

1. There is an Lω1,ω formula ϕ(~x) such that for all ~a ∈Mn,

ϕM (~a) = P (~a).

2. P is fixed by all automorphisms of M .

We include in Chapter 3 a comparison of the various infinitary [0, 1]-valued logics, as well as the

framework of Metric Abstract Elementary Classes. Finally, in Section 3.6 we describe various important

classes of Banach spaces which can be axiomatized in Lω1,ω, and give the following application of Keisler’s

two-cardinal theorem to separable quotients of Banach spaces, which improves a result of Ben Yaacov

and Iovino.

Theorem 1.0.5. Let X and Y be infinite-dimensional Banach spaces with density(X) > density(Y ).

Let T : X → Y be a surjective bounded linear function. Let L be a countable continuous fragment

of Lω1,ω(S), where S is a two-sorted signature, each sort of which is the signature of Banach spaces,

together with a symbol to represent T . Then there are Banach spaces X ′, Y ′ with Y ′ separable and X ′ of

density ℵ1, and a surjective bounded linear function T ′ : X ′ → Y ′, such that (X,Y, T ) ≡L (X ′, Y ′, T ′).
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Chapter 4, which contains material from the joint papers [38], [39], and [40], is devoted to developing

the model theory of commutative unital C*-algebras. In this chapter we work primarily in continuous

first-order logic, though we also make brief use of the logic developed in Chapter 3. As mentioned

above, the material of this chapter can be seen as an indirect model theory of compacta. Several other

approaches to the model-theoretic study of compacta have been successfully used in the past, as we

describe in Section 4.1.

In the particular case where the space X is 0-dimensional we show that many model-theoretic prop-

erties of the algebra CL(X) of clopen subsets of X translate to C(X). For example, in Section 4.2

we show that there are exactly ℵ0 distinct complete theories of C(X), corresponding to the complete

theories of Boolean algebras in discrete logic.

Theorem 1.0.6. Let X and Y be 0-dimensional compact Hausdorff spaces. Then C(X) ≡ C(Y ) in

continuous first-order logic if and only if CL(X) ≡ CL(Y ) in discrete first-order logic. In particular,

for any infinite ordinal α, C(α+ 1) ≡ C(βω). Moreover, if α is a countable limit ordinal then C(2ω) ≡
C(βω \ ω) ≡ C(βα \ α).

We show that saturation properties of the Boolean algebra CL(X) translate to C(X). For gen-

eral 0-dimensional spaces we do not obtain a complete transfer, but rather show that when CL(X) is

ℵ1-saturated then C(X) is quantifier-free ℵ1-saturated. On the other hand, when X has no isolated

points, the correspondence is perfect, even when ℵ1-saturation is weakened to the notion of degree-1

ℵ1-saturation (see Definition 4.4.1). In Section 4.4 we prove results which imply:

Theorem 1.0.7. Let X be a compact 0-dimensional space without isolated points. The following are

equivalent:

• C(X) is ℵ1-saturated,

• C(X) is quantifier-free ℵ1-saturated,

• C(X) is degree-1 ℵ1-saturated,

• CL(X) is ℵ1-saturated.

A key step in the above proof is showing that the continuous first-order theory of C(2N) has quantifier

elimination. In Section 4.3 we go further and completely characterize those theories of commutative

unital C*-algebras with quantifier elimination.

Theorem 1.0.8. The theories of commutative unital C*-algebras with quantifier elimination are exactly

the complete theories of C, C2, and C(2N).

Studying quantifier elimination also sheds light on the existentially closed models of various theories of

commutative unital C*-algebras. In dual form, questions of this form had been considered by Bankston,

who in particular asked if the pseudoarc is a co-existentially closed continuum. Rephrased in terms of C*-

algebras, this question asks if C(pseudoarc) is an existentially closed model of the theory of commutative

unital C*-algebras without minimal projections. We answer this question in the affirmative in Corollary

4.3.16.

Theorem 1.0.9. The pseudoarc is a co-existentially closed continuum.

As a consequence, we show that if there are any model complete theories of algebras C(X), where

X is a connected compact Hausdorff space, then the only such theory is the theory of C(pseudoarc).



Chapter 2

Continuous first-order logic for

metric structures

This chapter is primarily an exposition of continuous first-order logic for metric structures. We do not

attempt to be exhaustive, but rather provide a self-contained introduction containing the material we

will need in the future chapters. Most of this chapter consists of well-known facts from model theory

which were adapted to the metric setting in [13]. Some of the results of Section 2.3 are straightforward

adaptations of well-known results from discrete logic, but to the best of our knowledge no explicit proofs

have appeared in print. We take this opportunity to provide proofs of those results, though we claim

originality of neither the results nor the methods of proof. Section 2.4 is the only section of this chapter

containing new material.

2.1 Definitions

The basic semantic objects we will be considering throughout this thesis are metric structures1. Our

definition of metric structures agrees with that of [16], except that we do not require the underlying

metric spaces to be complete.

Definition 2.1.1. A metric structure is a bounded metric space (M,dM ), together with:

• A set (fMi )i∈I of uniformly continuous functions fi : Mni →M ,

• a set (PMj )j∈J of uniformly continuous predicates Pj : Mmj → [aj , bj ] for some aj < bj ∈ R,

• a set (cMk )k∈K of distinguished elements of M .

We place no restrictions on the index sets I, J , and K. We usually write metric structures as tuples

(M,dM , (fMi )i∈I , (P
M
j )j∈J , (c

M
k )k∈K), and we often write M for both the structure and the underlying

metric space.

1In fact, much of the model theory of real-valued logic can be developed with under somewhat weaker conditions than
“metric”; specifically, instead of being based on metric spaces the structures used can be based on uniform spaces where
the uniformity is generated by a fixed family of pseudometrics. This approach is considered in [55]. For the applications
we have in mind “metric” is sufficient, so we will not pursue the more general setting in this thesis.

5



Chapter 2. Continuous first-order logic for metric structures 6

Various special classes of metric structures have been considered in the literature. For example, metric

structures with 1-Lipschitz functions and predicates are the structures used in  Lukasiewicz-Pavelka logic

[59]. In many treatments of continuous logic, such as [16], attention is restricted to metric structures

based on complete metric spaces.

Many classes of structures from functional analysis can be described in the framework of metric

structures, although often some work is necessary since most such structures are not bounded metric

spaces. For structures based on Banach spaces, including Banach lattices, Banach algebras, C*-algebras,

and von Neumann algebras, one can either restrict attention to the unit ball or use many-sorted structures

with a sort for each closed ball of integer radius centred at 0. For our purposes it is largely unimportant

which approach we choose, but for concreteness we adopt the convention that when we consider structures

based on Banach spaces we are considering them as many-sorted structures.

When considering metric structures in general we assume that M has diameter 1 and all predicate

symbols take values in [0, 1], for notational simplicity. If M is a metric structure then the uniform

continuity of the distinguished functions and predicates on M ensures that they can be extended to the

metric completion of the underlying metric space of M . We denote the resulting structure by M , and

call it the completion of M . Similarly, we call a metric structure complete if the underlying metric space

is complete.

We have the natural notions of a metric structure N being a substructure of another metric structure

M of the same signature, denoted N ⊆ M . An isometric function f : N → M is an embedding if the

image of N is a substructure of M .

Metric structures are the semantic objects we will be studying. On the syntactic side, we have

metric signatures. By a modulus of continuity for a uniformly continuous function f : Mn → M we

mean a function δ : Q ∩ (0, 1)→ Q ∩ (0, 1) such that such that for all a1, . . . , an, b1, . . . , bn ∈M and all

ε ∈ Q ∩ (0, 1),

sup
1≤i≤n

d(ai, bi) < δ(ε) =⇒ d(f(ai), f(bi)) ≤ ε.

Similarly, δ is a modulus of continuity for P : Mn → [0, 1] means that for all a1, . . . , an, b1, . . . , bn ∈M ,

sup
1≤i≤n

d(ai, bi) < δ(ε) =⇒ |P (ai)− P (bi)| ≤ ε.

Definition 2.1.2. A metric signature consists of the following information:

• A set (fi)i∈I of function symbols, each with an associated arity and modulus of uniform continuity,

• a set (Pj)j∈J of predicate symbols, each with an associated arity and modulus of uniform continuity,

• a set (ck)k∈K of constant symbols.

When no ambiguity can arise, we say “signature” instead of “metric signature”.

When S is a metric signature and M is a metric structure, we say that M is an S-structure if the

distinguished functions, predicates, and constants of M match the requirements imposed by S. Given a

signature S, the terms of S are defined recursively, exactly as in the discrete case.

Definition 2.1.3. Let S be a metric signature. The S-formulas of continuous first-order logic are

defined recursively as follows.

1. If t1 and t2 are terms then d(t1, t2) is a formula.
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2. If t1, . . . , tn are S-terms, and P is an n-ary predicate symbol, then P (t1, . . . , tn) is a formula.

3. If ϕ1, . . . , ϕn are formulas, and f : [0, 1]n → [0, 1] is continuous, then f(ϕ1, . . . , ϕn) is a formula.

4. If ϕ is a formula and x is a variable, then infx ϕ and supx ϕ are formulas.

We think of the (3) as constructing formulas by using connectives, and (4) as adding quantifiers.

In particular, we say that an appearance of a variable in a formula is free if it is not under the scope

of a sup or inf, and is bound otherwise. We write ϕ(x1, . . . , xn) to emphasize that the free variables

appearing in the formula ϕ are a subset of {x1, . . . , xn}. We often write ~x for a finite tuple of variables

when the length is unimportant. Following model-theoretic convention, when M is a metric structure

and ~a = (a1, . . . , an) is a tuple from M , we often write ~a ∈M instead of ~a ∈Mn, particularly when we

do not wish to specify the length of ~a.

Given an S-structure M , an S-formula ϕ(~x), and a tuple ~a ∈M , there is a natural way to recursively

define the value of ϕ in M when evaluated at ~a, denoted by ϕM (~a). We have ϕM (~a) ∈ [0, 1].

Remark 2.1.4. Given an S-structure M and an S-formula ϕ(x1, . . . , xn), we have a function ϕM : Mn →
[0, 1] given by ~a 7→ ϕM (~a). Since S specifies a modulus of uniform continuity for each symbol, and

the connectives are uniformly continuous, this function is uniformly continuous, and the modulus of

uniform continuity depends only on ϕ, not on M . In Chapter 3 we will consider an extension of the

logic described here in which formulas no longer define uniformly continuous functions.

We write M |= ϕ(~a) to mean ϕM (~a) = 0. A substructure N of a structure M is an elementary

substructure, written N �M , if for all formulas ϕ(~x) and all ~a ∈ N , we have ϕN (~a) = ϕM (~a). Because

of the inclusion of continuous functions as connectives, it is equivalent to ask only that N |= ϕ(~a) if

and only if M |= ϕ(~a). An embedding f : N → M is an elementary embedding if the image of f is an

elementary substructure of M .

It is useful to note that we can express weak inequalities as formulas. Particularly, suppose that ϕ(~x)

and ψ(~y) are formulas in a common signature S. Then for any S-structure M , and any ~a,~b ∈ M0, we

have

M |= min{ψ(~b)− ϕ(~a), 0} ⇐⇒ ϕM (~a) ≤ ψM (~b).

In light of this observation, we write ϕ ≤ ψ as an abbreviation for min{ψ−ϕ, 0}. Being able to express

inequalities as formulas will be particularly useful when either ϕ or ψ is the constant formula r for some

r ∈ R.

We see that M |= min{ϕ,ψ} if and only if M |= ϕ or M |= ψ, so we think of min as ∨, and

occasionally write ϕ ∨ ψ instead of min{ϕ,ψ}. For similar reasons we write ϕ ∧ ψ for max{ϕ,ψ}. We

note that the usage of ∨ for min is opposite to the meaning of ∨ in the context of lattices, but since

we will not perform any lattice calculations in this thesis, we trust that no confusion will arise. The

quantifier supx behaves as ∀x, in that M |= supx ϕ if and only if M |= ϕ(x) for all x ∈M . The quantifier

infx is not precisely ∃, for M |= infx ϕ if and only if for every ε > 0 there is x ∈M such that ϕM (x) < ε.

Unlike the other connectives from discrete logic, there is no connective in continuous logic which

corresponds to negation. That is, given a formula ϕ, there may not exist a formula ψ such that for every

metric structure M and ~a ∈ M , M |= ψ(~a) if and only if M 6|= ϕ(~a). When a metric structure is based

on a discrete metric space we can take 1−ϕ to mean ¬ϕ, but in general this is not a classical negation.

An important special case of this observation is that we can always express equality of two elements (or

tuples) in a metric structure, since a = b if and only if M |= d(a, b), but we usually cannot express a 6= b.
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Remark 2.1.5. Given any structure in the sense of classical first-order logic, we can equip the structure

with the discrete metric and identify distinguished relations with their characteristic functions to obtain

a (complete) metric structure. There is then a natural way to associate a formula ϕ̃ of continuous logic

to each first-order formula ϕ:

• If ϕ is t1 = t2 then ϕ̃ is d(t1, t2),

• if ϕ is R(t1, . . . , tn) then ϕ̃ is also R(t1, . . . , tn),

• if ϕ is ¬ψ then ϕ̃ is 1− ψ̃,

• if ϕ is ψ ∧ θ then ϕ̃ is max{ψ̃ ∧ θ̃},

• if ϕ is ∃xψ then ϕ̃ is infx ψ̃.

A straightforward induction on formulas, using that M has the discrete metric, shows that for any

discrete formula ϕ(~x) and any ~a ∈ M we have M |= ϕ(~a) (as a discrete structure) if and only if

M |= ϕ̃(~a) (as a metric structure). This translation from discrete to continuous logic is already present

(in a slightly different setting) in [27], and is also discussed in detail in [13].

We adopt notation and terminology from the discrete setting. In particular, we call a formula univer-

sal (respectively, existential) if it is of the form sup~x ϕ(~x) (respectively, inf~x ϕ(~x)) where ϕ is quantifier-

free. We denote by T∀ (respectively, T∃) the set of universal (respectively, existential) consequences of a

theory T . When T = Th(M) we write T∀ = Th∀(M).

Remark 2.1.6. One unfortunate consequence of our definition of formulas is that even if S = ∅ there are

2ℵ0 S-formulas, due to clause (3) of the definition. For some results, such as the Downward Löwenheim-

Skolem theorem, it is important to have that the number of S-formulas is |S|+ℵ0, as it is in discrete logic.

To accomplish this we will implicitly assume that instead of taking all continuous f : [0, 1]n → [0, 1] as

connectives, we instead assume that for each n we have chosen some (fixed but unspecified) countable

subset of these functions which is uniformly dense in the set of all continuous f : [0, 1]n → [0, 1]. In fact

such countable dense sets can be generated from very few functions; see [16] and [25] for examples. For

our purposes we will simply assume that whenever we explicitly write a formula the connectives it uses

are in our fixed dense set.

We will make use of the ultraproduct of metric structures. The definition generalizes the definitions

of ultraproducts of Banach spaces (given in Chapter 1), C*-algebras, and von Neumann algebras, when

each of these types of spaces are viewed as metric structures. The metric ultraproduct also generalizes

the classical discrete ultraproduct, which is obtained as the special case where all the structures are

based on discrete metric spaces. Recall that if X is a topological space, I is an index set, (ai)i∈I and a

are elements of X, and U is an ultrafilter on I, then we say that a is the ultrafilter limit of (ai)i∈I along

U, denoted a = limi→U ai, if for all open sets O around a we have {i ∈ I : ai ∈ O} ∈ U.

Definition 2.1.7. Fix a metric signature S, an index set I, and an ultrafilter U on I. For each i ∈ I,

let Mi be an S-structure. The ultraproduct of the Mi’s, denoted
∏

UMi, is the metric structure whose

underlying set is
∏
i∈IMi/ ∼, where (ai) ∼ (bi) if and only if limi→U d(ai, bi) = 0. The operations on∏

UMi are defined as follows:

• For any sequences (ai) and (bi), the distance between their equivalences classes [ai] and [bi] is

computed as

d([ai], [bi]) = lim
i→U

d(ai, bi).
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• For each n-ary function symbol f ,

f
∏

UMi([ai]) = [bi] ⇐⇒ lim
i→U

d(fMi(ai), bi) = 0.

• For each n-ary predicate symbol P ,

P
∏

UMi([ai]) = lim
i→U

PMi(ai).

• For each constant symbol c,

c
∏

UMi = [(cMi)].

It follows from the fact that all of the structures are S-structures (and, in particular, that all of the in-

terpretations of each function or predicate symbol satisfy a common modulus of uniform continuity) that

the operations defined above are well-defined. The above definition also satisfy the uniform continuity

restrictions imposed by S, so the ultraproduct of a sequence of S-structures is again an S-structure.

Remark 2.1.8. The ultraproduct of a sequence of metric structures along a countably incomplete ul-

trafilter is always based on a complete metric space, even if the index models are not. In fact, for any

sequence (Mi)i∈I of metric structures, and any ultrafilter U on I, we have∏
U

Mi =
∏
U

M i.

One inclusion is clear. For the other, suppose that (ai)i∈I is a sequence from
∏
i∈IM i. Let I = I0 ⊇

I1 ⊇ · · · be sets in U whose intersection is not in U. For each i ∈ In such that i 6∈ In+1, pick bi ∈ Mi

such that d(ai, bi) <
1
i in M i. Then

lim
i→U

d(ai, bi) = 0,

so [ai]U = [bi]U, and [bi]U ∈
∏

UMi.

2.2 Basic model theory

Most of the main theorems of first-order model theory extend to the metric context, with the measure

of size of a structure being its density, that is, the least cardinality of a dense subset. We limit our

discussion to those results that will be useful for us in the following chapters. In the present setting it

is straightforward to verify that for any metric structure M we have M � M , so in all of the model-

construction theorems that follow we can take the resulting structure to be complete; this will not be

true in Chapter 3.

Convention 2.2.1. For a metric structure M , we denote by |M | the cardinality of the metric space M ,

and by ‖M‖ the density of M .

To start, we have a version of  Loś’ theorem for metric ultraproducts.

Theorem 2.2.2 ( Loś). Let S be a metric signature, and let (Mi)i∈I be S-structures. For any ultrafilter

U on I, any S-formula ϕ(~x), and tuples ~ai ∈Mi,

ϕ
∏

UMi([~ai]) = lim
i→U

ϕMi(~ai).
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In particular, it follows that the diagonal embedding a 7→ [a, a, . . .] of a structureM into its ultrapower

MU is an elementary embedding. If M is based on a compact metric space then the diagonal embedding

is easily seen to be surjective, and in fact in this case M is the unique complete model of Th(M).

Next, we have the metric version of the compactness theorem.

Theorem 2.2.3 (Compactness). For any set of sentences T , the following are equivalent:

1. T is consistent,

2. every finite subset of T is consistent,

3. for every finite ∆ ⊆ T , and every ε > 0, there is a structure M such that for all σ ∈ T , σM < ε.

As in the discrete case, the compactness theorem implies the Upward Löwenheim-Skolem theorem.

Theorem 2.2.4 (Upward Löwenheim-Skolem). Every metric structure M which is not totally bounded

has an elementary extension of density κ for every κ ≥ ‖M‖.

We also have the Downward Löwenheim-Skolem theorem, which we will generalize in Theorem 3.1.8.

Theorem 2.2.5 (Downward Löwenheim-Skolem). Let S be a metric signature, and M an S-structure.

For any countable A ⊆ M there is an S-structure N � M with A ⊆ N and |N | = |A| + |S| + ℵ0. We

may also take N to be complete, in which case N �M and ‖N‖ = |A|+ |S|+ ℵ0.

Detecting elementarity can be done using the Tarski-Vaught test.

Proposition 2.2.6 (Tarski-Vaught Test). Let S be a metric signature, and M ⊆ N be S-structures.

The following are equivalent:

• M � N ,

• For every S-formula ϕ(~x, y), and every ~a ∈M ,

inf
b∈N

ϕN (~a, b) = inf
c∈M

ϕN (~a, c).

The concept of a type is defined exactly as in first-order logic, and as in that case the compactness

theorem shows that if M is a structure and Σ is a type over a subset of M then there is some elementary

extension of M which realizes Σ. For a cardinal κ we say a structure M is κ-saturated if M realizes

all types over sets A ⊆ M with |A| < κ. Again, the same arguments as in the discrete case show that

every structure has a κ-saturated elementary extension for every κ. One easy consequence of saturation

is that when M is ℵ0-saturated the quantifier inf behaves exactly as ∃, rather than only approximately

as described earlier. Of particular use to us later is that most ultraproducts, including all those where

the ultrafilter is countably incomplete, have some saturation.

Theorem 2.2.7. Let S be a metric signature, and (Mi)i∈I be a sequence of S-structures. For any

countably incomplete ultrafilter U on I, the ultraproduct
∏

UMi is ℵ1-saturated.

We will need some results concerning preservation of certain classes of structures by algebraic opera-

tions. Particularly, we will use the following standard facts. The first statement is proved in [13], while

the other two appear in [45].
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Lemma 2.2.8. Let K be a class of S-structures for a fixed metric signature S.

• If K is elementary then K is closed under unions of elementary chains.

• K is universally axiomatizable if and only if it is elementary and closed under substructures.

• K is ∀∃-axiomatizable if and only if it is elementary and closed under unions of chains.

2.3 Quantifier elimination and model companions

We consider inf and sup as the analogues of the quantifiers ∃ and ∀, respectively. As in the discrete case,

it is often the case that formulas without quantifiers are significantly easier to analyse than formulas

with quantifiers. If a formula ϕ can be uniformly approximated by quantifier-free formulas then ϕ is

essentially quantifier-free, so we take this as our definition of quantifier elimination.

Definition 2.3.1. An S-theory T has quantifier elimination if for every S-formula ϕ(~x) and every ε > 0

there is an S-formula ψε(~x) such that

T |= |ϕ(~x)− ψε(~x)| ≤ ε.

The standard tests for quantifier elimination from discrete logic apply in the metric setting as well.

The only test we will need in this thesis is the following from [13, Proposition 13.6].

Proposition 2.3.2. Let S be a metric signature, and T an S-theory. The theory T has quantifier elim-

ination if and only if for every M,N |= T (with ‖M‖ ≤ |S|), and every finitely generated A ⊆ M , for

each embedding f : A→ N there is an elementary extension R of M and an embedding i : N → R such

that the following diagram commutes:

A

N M

R

f ⊆

i �

	

An equivalent statement is obtained if the elementary extension R is required to be an ultrapower of M .

Definition 2.3.3. A theory T is model-complete if whenever M,N |= T then every embedding of M

into N is an elementary embedding.

It is clear that quantifier elimination implies model-completeness, and by Lemma 2.2.8 model com-

pleteness implies ∀∃-axiomatizability. A particularly important kind of model-complete theory is one

which is the model companion or completion of another theory. The results about model companions

that we describe below are well-known to experts in the area (see, for instance, [43], [53], [54]), though

to the best of our knowledge they have not appeared explicitly, so we take this opportunity to provide
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proofs. In fact, the proofs we provide are only slight modifications of the arguments used in the discrete

case; see [28, Section 3.5].

Definition 2.3.4. Let T and T ∗ be theories in the same signature. We say that T ∗ is the model

companion of T ∗ if the following two conditions hold:

1. T ∗ is model-complete,

2. every model of T embeds into a model of T ∗, and every model of T ∗ embeds into a model of T .

We say that T ∗ is the model completion of T if it is the model companion of T and the following

additional property holds:

3. For every M |= T , T ∗∪∆M is a complete theory in the signature of M augmented with a new con-

stant symbol for each element ofM , where ∆M = {ϕ(~a) : ϕ is quantifier-free, ~a ∈M , and M |= ϕ(~a) }

By Lemma 2.2.8, statement (2) in the definition of model companion is equivalent to saying T∀ =

(T ∗)∀.

Lemma 2.3.5. If a theory has a model companion then that companion is unique up to logical equiva-

lence.

Proof. Suppose that T ∗ and T ∗∗ are model companions of T , and pick a model A0 |= T ∗. Then by part

(2) of the definition of model companion we can form a chain A0 ⊆ B0 ⊆ A1 ⊆ B1 ⊆ · · · , where each

Ai |= T ∗ and Bi |= T ∗∗. Let M be the union of this chain, which is also the union of the chain of Ai’s

and the union of the chain of Bi’s. Since T ∗ and T ∗∗ are model complete the chains of Ai’s and Bi’s are

both elementary, so we have on the one hand that A0 �M , and on the other that M |= T ∗∗. Therefore

every model of T ∗ is a model of T ∗∗. Interchanging the roles of T ∗ and T ∗∗ completes the proof.

In Chapter 4 we will apply model companions and completions in the context where T is ∀∃-
axiomatizable. In this case model companions are closely related to existentially closed structures,

which we now define.

Definition 2.3.6. A structure M is existentially closed in another structure N if M ⊆ N and for every

existential ϕ(~x) and every ~a ∈ M , ϕM (~a) = ϕN (~a) (equivalently, for all existential ϕ(~x) and ~a ∈ M ,

M |= ϕ(~a) ⇐⇒ N |= ϕ(~a)). A structure M is existentially closed for T if M is existentially closed in

every model of T which contains it. Finally, M is an existentially closed model of T if M is existentially

closed for T and M |= T .

Lemma 2.3.7. For any structures M ⊆ N , the following are equivalent:

1. M is existentially closed in N ,

2. there is a structure M ′ with M �M ′ and N ⊆M ′.

Proof. First assume (1). Let eldiagM denote the elementary diagram of M , that is, the collection of all

ϕ(~a) in the language expanded with constants for each element of M , such that ~a ∈M and M |= ϕ(~a).

Let T = eldiagM ∪∆N . It suffices to show that T ′ is consistent, for then a model of T ′ is the desired

M ′. If T ′ is inconsistent then by compactness there is some formula ϕ(~a,~b) ∈ ∆N (here ~a ∈ M and
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~b ∈ N \M) and an ε > 0 such that eldiagM |= ϕ(~a,~b) ≥ ε. As eldiagM is a theory in a language without

constants for ~b, this is equivalent to eldiagM |= sup~y ϕ(~a, ~y) ≥ ε. Define

σ := inf
~y

(1− ϕ(~a, ~y)).

The above argument shows that σM ≤ 1− ε. On the other hand, N |= ϕ(~a,~b), so σN = 1, contradicting

that M is existentially closed in N .

For the other direction, we only need recall that the value of an existential formula can only decrease

when computed in a larger model. Thus for any existential ϕ(~x), and any ~a ∈M , we have

ϕM
′
(~a) ≤ ϕN (~a) ≤ ϕM (~a) = ϕM

′
(~a).

Lemma 2.3.8 (Robinson’s Test). For any theory T , the following are equivalent:

1. T is model complete,

2. every model of T is existentially closed for T ,

Proof. (1) implies (2) is clear from the definitions. For (2) implies (1), suppose that M0 ⊆ N0 are models

of T . By Lemma 2.3.7 there is an elementary extension M1 of M0 such that N0 ⊆M1. The hypothesis

(2), together with Lemma 2.3.7, applied to N0 and M1 produces an elementary extension N1 of N0 such

that M1 ⊆ N1. Continuing in this way, we produce a chain

M0 ⊆ N0 ⊆M1 ⊆ N1 ⊆ · · · ,

where each Mi � Mi+1 and Ni � Ni+1. Let R be the union of the chain. Then R =
⋃
i<ωMi, so

M0 � R. Similarly, N0 � R. Then for any formula ϕ(~x), and any ~a ∈M , we have

ϕM0(~a) = ϕR(~a) because M0 � R

= ϕN0(~a) because N0 � R

So M0 � N0 as required.

In discrete logic a theory T is model complete if and only if every formula is equivalent, modulo

T , to a universal formula, and this characterization of model completeness is often used to prove the

discrete version of Lemma 2.3.8. The standard proof of this equivalence, for example as found in [28],

does not appear to adapt well to the [0, 1]-valued setting. In fact we do not know if model completeness

of a continuous theory T is equivalent to every formula being, modulo T , uniformly approximable by

universal formulas.

Lemma 2.3.9. If T is ∀∃-axiomatizable then every model of T can be extended to an existentially closed

model of T .

Proof. Fix M |= T , and let (σβ)β<κ be an enumeration of all existential sentences with parameters from

M . Form a chain M = M0 ⊆ M1 ⊆ · · · of length κ of models of T such that if there is a model of T

extending Mβ which satisfies σβ , then Mβ+1 |= σβ . At limit stages take unions, which again gives a
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model of T by Lemma 2.2.8. Let N1 =
⋃
α<κMα, and note that N1 has the property that any existential

sentence with parameters from M which is satisfied by a model of T extending N1 is already satisfied by

N1. Repeat this process ω times to form a chain M = N0 ⊆ N1 ⊆ · · · , and let R =
⋃
j<ω Nj . Again by

Lemma 2.2.8 we have R |= T . Any existential sentence with parameters from R in fact has parameters

from some Nj , and hence if it is satisfied in some model of T extending Nj then it is satisfied in Nj+1,

and hence in R. Therefore R is the desired existentially closed model of T extending M .

Lemma 2.3.10. If M is existentially closed in N then for every ∀∃-sentence σ, σM ≤ σN . In particular,

M |= Th∀∃(N).

Proof. Let σ = sup~x ϕ(~x), where ϕ is existential. For each ~a ∈M we have ϕM (~a) = ϕN (~a) by definition

of M being existentially closed in N . Therefore

σM = sup
~x∈M

ϕM (~x)

= sup
~x∈M

ϕN (~x)

≤ sup
~x∈N

ϕN (~x)

= σN .

The above lemma implies, in particular, that for ∀∃-axiomatizable theories being existentially closed

for T is the same as being an existentially closed model of T , so the following characterization of the

model companion of a ∀∃-axiomatizable theory could be equivalently stated for the class of models

existentially closed for T , instead of the class of existentially closed models of T .

Proposition 2.3.11. Let T be a ∀∃-axiomatizable theory. Then T has a model companion if and only

if the class of existentially closed models of T is the class of models of a theory T ∗, in which case T ∗ is

the model companion of T .

Proof. Let K denote the class of all existentially closed models of T . Suppose that T has a model

companion T ∗; we first show that in this case K is the class of models of T ∗. Given any M ∈ K, find

N |= T ∗ and R |= T such that M ⊆ N ⊆ R. Then M is existentially closed in R, and hence also in

N . In particular, M |= Th∀∃(N) by Lemma 2.3.10. As we observed earlier, model complete theories are

∀∃-axiomatizable, so this implies that M |= T ∗.

It remains to be shown that if K is the class of models of a theory T ′ then T ′ is the model companion

of T . By Lemma 2.3.10 every model of T ′ is a model of T . Lemma 2.3.9 implies that every model of

T can be extended to an existentially closed model of T , i.e., a model of T ′, so condition (1) of the

definition of model companion is satisfied. Since models of T ′ are also models of T , we have that every

model of T ′ is an existentially closed model of T ′. It then follows by Robinson’s test (Lemma 2.3.8) that

T ′ is model complete.

The extra condition making a model companion into a model completion is thought of as saying

that there is a kind of uniqueness to the ways models of T can be embedded into models of T ∗. As in

the discrete case, we have the following useful description of model completions, which we will use in

Chapter 4.
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Proposition 2.3.12. Let T be a theory with model companion T ∗. The following are equivalent:

1. T ∗ is the model completion of T ,

2. T has the amalgamation property, i.e., whenever A,B,C |= T and f : A→ B and g : A→ C are

embeddings, then there exist D |= T and embeddings r : B → D and s : C → D such that rf = sg.

Conditions (1) and (2) are implied by the following condition, which is also an equivalence if T is

universally axiomatizable:

3. T ∗ has quantifier elimination.

Proof. Suppose that (1) holds, and let A,B,C |= T , f : A→ B, and g : A→ C be as in the hypothesis

of the amalgamation property. Find B′, C ′ |= T ∗ such that B ⊆ B′ and C ⊆ C ′. Then (B′, f(a))a∈A

and (C ′, g(a))a∈A are each models of T ∗ ∪∆A, which is a complete theory by definition of T ∗ being the

model completion of T . Since complete theories have joint embedding, there is (A′, aA
′
)a∈A |= T ∗ ∪∆A

which extends (B′, f(a))a∈A and (C ′, g(a))a∈A. Let h : A→ A′ be the map a 7→ aA
′
; we have that h an

embedding, and there are maps r : B → A′ and s : C → A′ such that rf = sg = h. Also, A′ |= T ∗, so

there is D |= T such that A′ ⊆ D, and this D, together with the maps r and s, shows that T has the

amalgamation property.

Now suppose that (2) holds, and let A |= T . Let (B, f(a))a∈A and (C, g(a))a∈A be models of T ∗∪∆A.

Find B′, C ′ |= T such that B ⊆ B′ and C ⊆ C ′, and then use the amalgamation property to find A′ |= T

and embeddings f ′ : B′ → A′ and g′ : C ′ → A′ which amalgamate B′ and C ′ over A. Now extend A′ to

some D |= T ∗. By the model completeness of T ∗, the embeddings of B and C into D are elementary,

and so (B, f(a))a∈A ≡ (C, g(a))a∈A. That is, we have shown that T ∗ ∪∆A is a complete theory.

Suppose that (3) holds; we show (1). For any A |= T , it is clear that any two models of T ∗ ∪ ∆A

satisfy the same quantifier-free sentences. By quantifier elimination for T ∗ such models satisfy all the

same sentences, and hence T ∗ is the model completion of T .

Finally, suppose that T is universally axiomatizable and (2) holds. To show that T ∗ has quantifier

elimination we use the quantifier elimination test of Proposition 2.3.2. So suppose that we have M,N |=
T ∗, and ~a ∈M , and let A be the substructure of M generated by ~a. Fix an embedding f : A→ N . Since

T ∗ is the model companion of T we have that M,N |= (T ∗)∀ = T∀, and T is universally axiomatizable,

so M,N |= T . Also A ⊆ M so A |= T∀, and hence A |= T as well. By (2) we obtain C |= T and

embeddings of M and N into C; extending C to a model R |= T ∗, we have the following commutative

diagram:
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A |= T

N |= T ∗ M |= T ∗

C |= T

R |= T ∗

f ⊆

	

�

By model completeness of T ∗ the embedding ofM into R is elementary, so we have satisfied the conditions

of the quantifier elimination test.

2.4 Saturation of ultraproducts

To conclude this chapter we consider when ultraproducts of separable structures have higher degrees of

saturation than is given by Theorem 2.2.7. This section is the only section of the chapter containing

original material.

In the discrete setting, an ultrafilter U on ω is called saturating if given any countable sequence

(Mi)i<ω of countable discrete structures of the same signature S with |S| < 2ℵ0 , the ultraproduct
∏

U Mi

is 2ℵ0-saturated (see [50]). It is well-known that if the Continuum Hypothesis holds then every non-

principal ultrafilter on ω is saturating. The existence of saturating ultrafilters under Martin’s Axiom

was proved by Ellentuck and Rucker in [41]. Fremlin and Nyikos [50] gave neccessary and sufficient

conditions for the existence of saturating ultrafilters. By cov(meagre) we denote the covering number of

the meagre ideal, i.e., the least cardinal κ such that R is the union of κ meagre sets.

Theorem 2.4.1 ([50, Theorem 6]). There exists a saturating ultrafilter if and only if cov(meagre) =

2<c = c.

We will show that the same ultrafilters which are saturating for discrete structures are also saturating

for metric structures.

Definition 2.4.2. An ultrafilter U is metric saturating if given any countable sequence (Mi)i<ω of

separable metric structures in a signature of size < 2ℵ0 , the ultraproduct
∏

UMi is 2ℵ0-saturated.

We will use the following combinatorial description of saturating ultrafilters.

Theorem 2.4.3 ([49, A3D]). Let π1 : ω × ω → ω be the projection onto the first coordinate. Let U

be a non-principal ultrafilter on ω. Then U is saturating if and only if whenever B ⊆ ω × ω is such

that |B| < 2ℵ0 and for all F ∈ [B]<ℵ0 π1[
⋂
F ] ∈ U then there exists a function f : ω → ω such that

π1[f ∩B] ∈ U for every B ∈ B.

Theorem 2.4.4. An ultrafilter on ω is saturating if and only if it is metric saturating.
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Proof. Suppose that U is metric saturating, and let (Ai)i<ω be a sequence of discrete countable structures

in a common signature S with |S| < 2ℵ0 . Let M be the ultraproduct of the Ai’s; since each Ai is discrete

it does not matter whether we use the metric or classical definition of ultraproduct, and the resulting

metric on M is again discrete. It then follows immediately from the 2ℵ0 -saturation of M as a metric

structure and Remark 2.1.5 that M is also 2ℵ0-saturated as a discrete structure.

Now suppose that U is saturating, and let (Mi)i<ω be a sequence of separable metric structures in

a signature of cardinality < 2ℵ0 . Since the ultraproduct of a sequence of structures is the same as the

ultraproduct of their metric completions, we may assume that each Mi is countable; we also assume

that each Mi has ω as its underlying set. Let Σ(x) be a type over < 2ℵ0 parameters from M =
∏

UMi.

Since the signature also has size < 2ℵ0 we have |Σ| < 2ℵ0 . Without loss of generality we may assume

that Σ is closed under finite conjunctions (i.e., maxima).

For each n < ω and ϕ ∈ Σ, define

Bn(ϕ) =

{
(i, a) ∈ ω × ω : ϕMi(a) <

1

n

}
.

Let B = {Bn(ϕ) : ϕ ∈ Σ, n < ω }, and note that |B| < 2ℵ0 . Our first task is to show that for all

finite B0 ⊆ B we have π1[B0] ∈ U, where π1 : ω × ω → ω is projection on the first coordinate. Let

B0 = {Bn0
(ϕ0), . . . , Bnk

(ϕk) }, and n = max{n0, . . . , nk}. Then
⋂
B0 ⊇ Bn(ϕ0∧ · · · ∧ϕk). Letting ψ =

ϕ0∧· · ·∧ϕk, it is sufficient to show that π1[Bn(ψ)] ∈ U. But π1[Bn(ψ)] =
{
i < ω : ∃a ∈ ω(ψMi(a) < 1

n )
}

,

and Σ is finitely satisfiable in M , so we have, in particular, that M |= infx ψ(x). By  Loś’ Theorem

(Theorem 2.2.2) we obtain π1[Bn(ψ)] ∈ U.

By Theorem 2.4.3 we obtain a function f : ω → ω such that { i < ω : (i, f(i)) ∈ B } ∈ U for all

B ∈ B. Therefore for all n < ω and all ϕ ∈ Σ we have
{
i < ω : ϕMi(f(i)) < 1

n

}
∈ U; it follows from

 Loś’ Theorem that the image of (f(i))i<ω in the ultraproduct M realizes Σ.

Corollary 2.4.5. A metric saturating ultrafilter exists if and only if cov(meagre) = 2<c = c.



Chapter 3

Infinitary [0, 1]-valued logic

This chapter is devoted to the development of the model theory of an infinitary [0, 1]-valued logic

analogous to the discrete logic Lω1,ω. In fact, several such logics have previously been introduced by

a variety of authors (see [88], [14], and [99], as well as an early version of [29]) so after developing the

model theory of our logic we include a discussion of how it compares to these other infinitary logics for

metric structures. The chapter ends with applications of our infinitary logic to the study of Banach

spaces.

The logic described in this chapter was introduced by the author in [36], which also contains the

results of Sections 3.3, 3.4.1, and 3.6. Sections 3.2, 3.4.2, and 3.5 contain material which has not

appeared elsewhere.

3.1 Definitions and basic properties

Our goal is to develop an infinitary logic for metric structures which is analogous to the discrete logic

Lω1,ω. Recall from Chapter 2 that in first-order logic for metric structures the connectives max and min

behave as ∧ and ∨, respectively. To add infinitary conjunctions and disjunctions we therefore allow the

formation of supn ϕn and infn ϕn as formulas whenever each ϕn is a formula.

Definition 3.1.1. Let S be a signature for metric structures. We define the formulas of Lω1,ω(S)

recursively, as follows:

1. All first-order formulas for the signature S are Lω1,ω(S) formulas,

2. whenever ϕ1, . . . , ϕn are Lω1,ω(S) formulas and f : [0, 1]n → [0, 1] is continuous then f(ϕ1, . . . , ϕn)

is an Lω1,ω(S) formula,

3. for every sequence (ϕn)n<ω of Lω1,ω(S) formulas we have Lω1,ω(S) formulas supn ϕn and infn ϕn,

4. for any Lω1,ω(S) formula ϕ, we have the Lω1,ω(S) formulas supx ϕ and infx ϕ.

As in Chapter 2 we tacitly assume that a countable set of continuous functions from [0, 1]n to

[0, 1] which is dense in the topology of uniform convergence has been fixed, so that clause (2) of the

definition does not increase the number of formulas. We will refer to these continuous functions as

finitary continuous connectives. Keeping with the notation of Chapter 2, we sometimes denote supn ϕn

by
∧
ϕn and infn ϕn by

∨
ϕn.

18
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Remark 3.1.2. While it may seem that we have added only an approximate infinitary disjunction of

formulas by adding infn ϕn, we can in fact recover exact disjunction. Suppose that ϕn(~x) are formulas

in the same finite tuple of free variables. Define

θ(~x) = inf
n<ω

sup
R∈N

min{1, Rϕn(~x)}.

Then in any structure M , for any tuple ~a, we have

M |= θ(~a) ⇐⇒ M |= ϕn(~a) for some n.

Using the actual disjunction, we can also show that our logic has a negation, making it much more

expressive than finitary continuous logic. Given any formula ϕ(~x), define

¬ϕ(~x) =
∨
n<ω

(
ϕ(~x) ≥ 1

n

)
,

where
∨

is the exact disjunction described above. Then for any structure M , and any ~a ∈M ,

M |= ¬ϕ(~a) ⇐⇒ (∃n < ω)M |= ϕ(~a) ≥ 1

n

⇐⇒ (∃n < ω)ϕM (~a) ≥ 1

n

⇐⇒ ϕM (~a) 6= 0

⇐⇒ M 6|= ϕ(~a)

Unlike the formulas of first-order continuous logic, the formulas of Lω1,ω need not define continuous

functions on structures. One consequence of this fact is that there are examples of structures which

are not Lω1,ω-elementary substructures of their metric completions. In fact, we give an example of of a

structure which is not even Lω1,ω-elementarily equivalent to its metric completion.

Example 3.1.3. Let S be the signature consisting of countably many constant symbols (qn)n<ω. Consider

the formula

ϕ(x) = inf
n<ω

sup
R∈N

min{1, Rd(x, qn)}.

For any a in a structure M we have M |= ϕ(a) if and only if a = qn for some n. In particular, if M is a

countable metric space which is not complete, and (qn)n<ω is interpreted as an enumeration of M , then

M |= sup
x
ϕ(x) and M 6|= sup

x
ϕ(x).

3.1.1 Fragments of Lω1,ω

It will be useful to consider subsets of the full set of Lω1,ω formulas, especially when they are sufficiently

rich to be used as logics in their own right.

Definition 3.1.4. Let S be a metric signature. A fragment of Lω1,ω(S) is a set L of Lω1,ω(S) formulas

with the following properties:

1. every first-order formula is in L,
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2. L is closed under finitary continuous connectives,

3. L is closed under supx and infx,

4. L is closed under subformulas,

5. L is closed under substituting terms for free variables.

It is clear that for any set K of Lω1,ω formulas there is a smallest fragment L such that K ⊆ L.

Moreover, with our conventions regarding finitary continuous connectives in place, this smallest fragment

satisfies |L| = |K|+ ℵ0. In particular, every formula of Lω1,ω generates a countable fragment.

We extend the basic definitions from model theory to arbitrary fragments of Lω1,ω. For structures M

and N of the appropriate signatures we write M ≡L N to mean that σM = σN for all σ ∈ L. Likewise

we write M �L N to mean M ⊆ N and ϕM (~a) = ϕN (~a) for every ϕ(~x) ∈ L and ~a ∈M . When we write

≡ or � without specifying a fragment, we mean the first-order fragment. To determine when M �L N ,

it is useful to have a version of the Tarski-Vaught test. We omit the proof, which is a routine induction

on the complexity of formulas.

Proposition 3.1.5. Let S be a metric signature, and L a fragment of Lω1,ω(S). For any S-structures

M and N , the following are equivalent:

1. M �L N ,

2. M ⊆ N , and for every L-formula ϕ(~x, y), and every ~a ∈M , infb∈M ϕM (~a, b) = infc∈N ϕ
M (~a, c).

Some fragments of Lω1,ω contain only formulas which define continuous functions on all structures.

Definition 3.1.6. A fragment L of Lω1,ω(S) is continuous if for every formula ϕ(x1, . . . , xn) ∈ L and

every S-structure M , the function ϕM : Mn → [0, 1] is continuous.

Our main use of the notion of continuous fragment comes from the following easy observation.

Proposition 3.1.7. For any metric signature S, and any continuous fragment of Lω1,ω(S), every S-

structure is an L-elementary substructure of its metric completion.

Proof. Let M be an L-structure with completion M . For any L-formula ϕ(~x, y) and any ~a ∈ M , it

follows from the continuity of ϕ and the density of M in M that we have

inf
b∈M

ϕ(~a, b) = inf
c∈M

ϕ(~a, c).

This completes the proof by the Tarski-Vaught test (Proposition 3.1.5).

The next result is a Downward Löwenheim-Skolem theorem for countable fragments of Lω1,ω. In

addition to being quite useful, its statement exemplifies a theme that will be present several times in

the remainder of this chapter: In arbitrary fragments models of a certain kind can be constructed, and

if the fragment is continuous the model may additionally be chosen to be complete.

Proposition 3.1.8 (Downward Löwenheim-Skolem). Let L be a countable fragment of Lω1,ω(S), and

let M be an S-structure. For any countable set A ⊆ M there is a countable L-structure N such that

A ⊆ N �L M . If the fragment L is continuous then we may choose A ⊆ N �L M with N separable and

complete.
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Proof. The proof of the first statement is the same as the proof in the first order fragment, which is

itself a straightforward modification of the proof from discrete logic; see [16, Proposition 7.3].

Now let us see that the second statement follows from the first. Indeed, suppose we have a countable

L-structure N such that A ⊆ N �L M , and the fragment L is continuous. Then M �L M , and

N �L M , from which it follows that N �L M ; the model N is then the desired separable complete

elementary substructure of M .

In Chapter 4 we will make use of the fact that satisfaction of formulas for Lω1,ω is not changed by

forcing (in the sense of set theory). The following result appears in [40]. Our conventions for forcing

agree with those of [78], except that we call the ground model V .

Proposition 3.1.9. Let M be a metric structure, ϕ(~x) be an Lω1,ω formula, and ~a ∈M . Let P be any

notion of forcing. Then the value ϕM (~a) is the same whether computed in the ground model V or in the

forcing extension V [G].

Proof. We first observe that M remains a metric structure in V [G]. Indeed, the distance function on M

remains a real-valued function on M satisfying the properties of being a metric, so (M,d) is still a metric

space in the forcing extension. A uniformly continuous function on Mn (taking values either in M or

R) remains uniformly continuous in the forcing extension because the definition of uniform continuity

is equivalent to the version where ε and δ are rational, and forcing preserves Q. We note that even if

M is complete in V it may not be complete in V [G], since some partial orders P will add new Cauchy

sequences to M . However, in this thesis we have taken a relaxed definition of “metric structure” which

does not require completeness, so the above is sufficient to see that M is still a metric structure in V [G].

The remainder of the proof is by induction on the complexity of formulas; the key point is that we

consider the structure M in V [G] as the same set as it is in V . The base case of the induction is the

atomic formulas, which are of the form P (~x) for some distinguished predicate P . In this case since the

structure M is the same in V and in V [G], the value of PM (~a) is independent of whether it is computed

in V or V [G].

The next case is to handle the case where ϕ is f(ψ1, . . . , ψn), where each ψi is a formula and

f : [0, 1]n → [0, 1] is continuous. By induction hypothesis each ψMi (~a) can be computed either in V or

V [G], and so the same is true of ϕM (~a) = f(ψM1 (~a), . . . , ψMn (~a)). A similar argument applies to the case

when ϕ is supn ψn or infn ψn.

Finally, we consider the case where ϕ(~x) = infy ψ(~x, y) (the case with sup instead of inf is similar).

Here we have that for every b ∈ M , ψM (~a, b) is independent of whether computed in V or V [G] by

induction. In both V and V [G] the infimum ranges over the same set M , and hence ϕM (~a) is also the

same whether computed in V or V [G].

The above Proposition shows only that the value of formulas is not changed by forcing. It is, however,

possible for forcing to produce new formulas. Indeed, if P adds a new sequence (ϕ1, ϕ2, . . .) of formulas,

then the formula infn ϕn will exist in the forcing extension but not in the ground model.

3.1.2 The logic topology

We describe a topological space associated to each fragment of Lω1,ω. This topology will be used heavily

in Section 3.3 below. In fact, most of the material in this section can be carried out in the more general

setting of abstract model theory; see [12, Chapters I and II] for abstract model theory, and [22], [23],
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[24] for uses of topology in that setting. Definitions from abstract model theory were adapted to the

real-valued context in [25]. For our purposes it will be sufficient to remain in the context of fragments

of Lω1,ω.

Definition 3.1.10. Let S be a metric signature, and L a fragment of Lω1,ω(S). We denote by Str(S)

the class of all S-structures. For any L-theory T we denote by ModL(T ) the class of S-structures M

such that M |= T . When σ is an L-sentence we write ModL(σ) for ModL({σ}).
The (L-)logic topology is the topology on Str(S) whose closed classes are given by ModL(T ).

It is straightforward to verify that the definition above does define a topology on StrL, and that the

classes of the form ModL(σ), for σ an L-sentence, form a base of closed classes.

Remark 3.1.11. Our definition of Str(S) raises certain foundational issues. The logic topology is defined

as a collection of proper classes, and thus is problematic from the point of standard axiomatizations of

set theory, such as ZFC. There are two natural ways to overcome this difficulty. The first is to replace

the class of all L-structures by the set of all complete L-theories. Informally, this is equivalent to working

with the quotient Str(S)/ ≡L. This approach also makes the logic topology Hausdorff, which is not the

case for the definition given above (see Proposition 3.1.12 below). An alternative approach is to notice

that in all of our uses of this topology we only need to consider structures of cardinality at most 22
ℵ0

. We

could therefore use Scott’s trick (see e.g. [67, 9.3]) to select one representative from each isomorphism

class of S-structures of cardinality at most 22
ℵ0

, and then replace the class of all S-structures by the set

of these chosen representatives. In this thesis we will use Str(S) as originally presented, as the reader

will have no difficulty translating our arguments into either of these two approaches.

Proposition 3.1.12. For every fragment L, the L-logic topology on Str(S) is completely regular, but

not T0.

Proof. To see that the logic topology is not T0, we need only note that two structures M and N are

topologically indistinguishable if and only if M ≡L N .

Now we prove that the logic topology is completely regular. For any L-sentence σ, the function from

Str(S) to [0, 1] defined by M 7→ σM is continuous. This is because for each r ∈ Q ∩ (0, 1) we have that

σ ≤ r and r ≤ σ are conditions expressible as L-sentences. We therefore have σ−1([r, s]) = Mod(σ ≥
r∧σ ≤ s) for every r, s ∈ Q∩ [0, 1]. It follows immediately from the definition of the logic topology that

functions defined by sentences in this way are sufficient to separate points from closed classes.

Call a fragment L of Lω1,ω compact if whenever every finite subset of an L-theory has a model then

the whole theory has a model. Then we have:

Proposition 3.1.13. A fragment L is compact if and only if the L-logic topology on Str(S) is compact.

Proof. Suppose the logic topology is compact, and let T be an L-theory such that every finite subset

of T has a model. Define F = {ModL(∆) : ∆ is a finite subset of T }. The intersection of any finite

subcollection of F is again a member of F, and by hypothesis is non-empty. The compactness of the

logic topology then implies that there is some M ∈
⋂

F; this M is a model of T .

Conversely, suppose that L is compact, and that F is a centred family of closed classes. Let F′ be a

set of L-theories such that F = {ModL(Σ) : Σ ∈ F′ }, and let T =
⋃

F′. Since F is centred every finite

subset of T has a model, and hence T also has a model. Any model of T is a member of
⋂
F.
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We note that the above proposition gives a straightforward topological proof of the compactness

theorem for the first-order fragment (Theorem 2.2.3). Indeed,  Loś’ theorem shows that for any family

(Mi)i∈I of S-structures and any ultrafilter U on I, the ultraproduct
∏

UMi is the ultrafilter limit of

the Mis along U in the logic topology for the first-order fragment. In particular, all ultrafilter limits

exist, so the logic topology for the first-order fragment is compact. This proof of compactness should be

compared with the proof of the Omitting Types Theorem for arbitrary countable fragments, Theorem

3.3.4 below, in which only some ultrafilter limits exist (see, in particular, Claim 3.3.11.1).

Proposition 3.1.13 is included only to illustrate how topological properties of StrL relate to model-

theoretic properties of L. In fact, Caicedo [21] has shown a Lindström-type theorem characterizing the

first-order fragment as the maximally expressive logic for metric structures satisfying the Downward

Löwenheim-Skolem and Compactness theorems.

3.2 Scott Isomorphism and Definability

The most striking feature of the discrete logic Lω1,ω is the theorem of Scott [98] that every countable

discrete structure is determined up to isomorphism by a single sentence of Lω1,ω. A sentence which

determines a structure up to isomorphism is known as a Scott sentence for that structure. Scott’s

immediate use of his isomorphism theorem was to prove a definability theorem, namely that a relation

on a countable discrete structure is automorphism invariant if and only if it is Lω1,ω-definable.

In this short section we prove a definability theorem for metric structures which is analogous to

Scott’s definability theorem. The existence of Scott sentences for metric structures was first observed

in several infinitary logics different from the one presented here; we will define these logics precisely

in Section 3.5 below. The first proof of the existence of Scott sentences for metric structures was by

Sequeira in [99], in a continuous infinitary logic with an extra distinguished operation ρ. Subsequently

Coskey and Lupini in [29] obtained Scott sentences in the logic introduced by Ben Yaacov and Iovino

in [14], for structures whose underlying metric space is the Urysohn sphere and where all symbols in

the language have a common modulus of uniform continuity. Very soon after, Ben Yaacov, Nies, and

Tsankov [15] proved the existence of Scott sentences for general separable complete metric structures.

Theorem 3.2.1 ([15, Corollary 2.2]). For each separable complete metric structure M there is an Lω1,ω

sentence σ such that for every other separable complete metric structure N of the same signature,

σN =

0 if M ∼= N

1 otherwise

We can reformulate this result to apply to incomplete metric structures, but then we obtain unique-

ness only at the level of the completion.

Corollary 3.2.2. For each separable metric structure M there is an Lω1,ω sentence σ such that for

every other separable metric structure N of the same signature,

σN =

0 if M ∼= N

1 otherwise
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Proof. Let σ be the Scott sentence for M , as in Theorem 3.2.1. Theorem 3.2.1 was proved in the logic

of [14], which is a continuous fragment of Lω1,ω (see Section 3.5 below). Therefore structures and their

completions agree on the value of σ, and so

σN = σN =

0 if M ∼= N

1 otherwise
.

The existence of Scott sentences is the basis for our definability theorem.

Theorem 3.2.3. Let M be a separable complete S-structure for some fixed countable signature S. For

any continuous function P : Mn → [0, 1], the following are equivalent:

1. There is an Lω1,ω(S) formula ϕ(~x) such that for all ~a ∈Mn,

ϕM (~a) = P (~a).

2. P is fixed by all automorphisms of M .

Proof. The direction (1) =⇒ (2) being clear, we prove (2) =⇒ (1).

Fix a countable dense subset D ⊆M . For each ~a ∈ D, let θ~a(~x) be the formula obtained by replacing

each occurrence of ~a in the Scott sentence of (M,~a) by ~x. The Scott sentence is obtained from Theorem

3.2.1. Observe that this formula has the following property, for all ~b ∈Mn:

θM~a (~b) =

0 if there is Φ ∈ Aut(M) with Φ(~b) = ~a

1 otherwise

For each ε > 0, define:

σε(~x) = inf
~y

max

 d(~x, ~y), inf
~a∈Dn

P (~a)<ε

θ~a(~y)

 .

Each σε(~x) is a formula of Lω1,ω(S).

Claim 3.2.3.1. Consider any ε ∈ Q ∩ (0, 1) and any ~b ∈Mn.

(a) If M |= σε(~b) then P (~b) ≤ ε.

(b) If P (~b) < ε then M |= σε(~x).

Proof. (a) Suppose that M |= σε(~b). Fix ε′ > 0, and pick 0 < δ < 1 such that if d(~b, ~y) < δ then∣∣∣P (~b)− P (~y)
∣∣∣ < ε′. This exists because we assumed that P is continuous. Now from the definition

of M |= σε(~b) we can find ~y ∈Mn such that

max

 d(~b, ~y), inf
~a∈Dn

P (~a)<ε

θ~a(~y)

 < δ.

In particular, we have that d(~b, ~y) < δ, so
∣∣∣P (~b)− P (~y)

∣∣∣ < ε′. On the other hand, inf ~a∈Dn

P (~a)<ε
θ~a(~y) <

δ, and θ~a(~y) ∈ {0, 1} for all ~a ∈ Dn, so in fact there is ~a ∈ Dn with P (~a) < ε and θ~a(~y) = 0. For
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such an ~a there is an automorphism of M taking ~y to ~a, and hence by (2) we have that P (~y) < ε

as well. Combining what we have,

P (~b) =
∣∣∣P (~b)

∣∣∣
≤
∣∣∣P (~b)− P (~y)

∣∣∣+ |P (~y)|

< ε′ + ε

Taking ε′ → 0 we conclude P (~b) ≤ ε.

(b) Suppose that P (~b) < ε, and again fix ε′ > 0. Using the continuity of P , find δ sufficiently small

so that if d(~b, ~y) < δ then P (~y) < ε. The set D is dense in M , so we can find ~y ∈ Dn such that

d(~b, ~y) < min{δ, ε′}. Then P (~y) < ε, so choosing ~a = ~y we have

inf
~a∈Dn

P (~a)<ε

θ~a(~y) = 0.

Therefore

max

 d(~b, ~y), inf
~a∈Dn

P (~a)<ε

θ~a(~y)

 = d(~b, ~y) < ε′,

and so taking ε′ → 0 shows that M |= σε(~b).

a - Claim 3.2.3.1

Consider now any ~a ∈Mn. By (a) of the claim P (~a) is a lower bound for { ε ∈ Q ∩ (0, 1) : M |= σε(~a) }.
If α is another lower bound, and α > P (~a), then there is ε ∈ Q ∩ (0, 1) such that P (~a) < ε < α. By (b)

of the claim we have M |= σε(~a) for this ε, contradicting the choice of α. Therefore

P (~a) = inf { ε ∈ Q ∩ (0, 1) : M |= σε(~a) } .

Now for each ε ∈ Q ∩ (0, 1), define a formula

ψε(~x) = max

{
ε, sup
m∈N

min {mσε(~x), 1 }
}
.

Then for any ~a ∈Mn,

ψMε (~a) =

ε if σMε (~a) = 0,

1 otherwise.

Let ϕ(~x) = infε∈Q∩(0,1) ψε(~x). Then

ϕM (~a) = inf
{
ε : σMε (~a) = 0

}
= P (~a).

The theorem immediately yields a version where parameters from a countable set are allowed in the

definitions:
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Corollary 3.2.4. Let M be a separable complete S-structure for some fixed countable signature S, and

fix a countable A ⊆M . For any continuous function P : Mn → [0, 1], the following are equivalent:

1. There is an Lω1,ω(S) formula ϕ(~x) with parameters from A such that for all ~a ∈Mn,

ϕM (~a) = P (~a),

2. P is fixed by all automorphisms of M that fix A pointwise,

3. P is fixed by all automorphisms of M that fix A pointwise,

Proof. The equivalence of (2) and (3) follows from the fact that AutA(M) = AutA(M). For the equiva-

lence of (1) and (2), apply Theorem 3.2.3 to the structure obtained from M by adding a new constant

symbol for each element of A.

Our definability theorems are unusual in that they are results about complete separable metric

structures and continuous functions, but the proofs make considerable use of formulas which are not

continuous. In fact, as we will see in Section 3.5 below, the use of discontinuous formulas is in a certain

sense necessary for these results.

3.3 Omitting Types

In this section we consider methods for constructing models. We do not have the compactness theorem in

infinitary logic, but the main result of this section shows that we do have an omitting types theorem. Our

proof is topological, using the logic topology described in Section 3.1.2. In particular, a comparison of

this proof with the topological proof of the compactness theorem (see Proposition 3.1.13) shows that this

omitting types theorem is a weakening of the compactness theorem in the same way that for topological

spaces, satisfying the Baire Category Theorem is weaker than being compact. To state our Omitting

Types Theorem, we need some definitions. In the following definitions T is an L-theory, where L is a

fragment of Lω1,ω(S) for some metric signature S.

Definition 3.3.1. A type of T is a set Σ(~x) of L-formulas with a common finite set of free variables

such that there is M |= T and ~a ∈M with ϕM (~a) = 0 for all ϕ ∈ Σ.

Definition 3.3.2. Let Σ(~x) be a type of T . We say that a model M |= T realizes Σ if there is ~a ∈ M
such that ϕM (~a) = 0 for all ϕ ∈ Σ; in the same situation we say that ~a realizes Σ in M . If a model M

does not realize Σ, then we say M omits Σ.

Definition 3.3.3. A type Σ(~x) of T principal over T is there is an L-formula ϕ(~x), terms t1(~y), . . . , tn(~y)

(where n is the length of ~x), and r ∈ Q ∩ (0, 1) such that the following hold:

• T ∪ {ϕ(~y) } is satisfiable, and

• T ∪ {ϕ(~y) ≤ r } |= Σ(t1(~y), . . . , tn(~y)).

In this case we say that ϕ and r witness the fact that Σ is principal over T .

The rest of this section is devoted to proving:
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Theorem 3.3.4. Let S be a metric signature, and let L be a countable fragment of Lω1,ω(S). Let T

be an L-theory. For each n < ω, let Σn be a type of T that is not principal over T . Then there is a

separable model of T that omits every Σn.

3.3.1 Topological preliminaries

The proof of Theorem 3.3.4 is topological, so we recall here some notions from general topology.

The most important notion from topology for us is the notion of Baire category. Recall that if X

is a topological space and A ⊆ X, then A is nowhere dense if int(A) = ∅. A space X is Baire if

whenever (An)n<ω is a sequence of closed nowhere dense subsets of X, then X \
(⋃

n<ω An
)

is dense in

X. The classical Baire Category Theorem states that locally compact Hausdorff spaces and completely

metrizable spaces are Baire. The logic topology is neither locally compact nor metrizable, but we will

see that a relevant subspace has a more general property, which we shall now describe.

Definition 3.3.5. Let X be a completely regular space. A complete sequence of open covers of X is a

sequence 〈Un : n < ω 〉 of open covers of X with the following property: If F is a centred family of closed

subsets of X such that for each n < ω there is Fn ∈ F and Un ∈ Un such that Fn ⊆ Un, then
⋂

F 6= ∅.
A completely regular space X is Čech-complete if there exists a complete sequence of open covers of

X.

If the space X is completely regular and Hausdorff then X is Čech-complete if and only if X is a

Gδ subspace of some (equivalently, every) compactification. For metrizable spaces, being Čech-complete

is equivalent to being completely metrizable. It follows from these two facts that if X is either locally

compact Hausdorff or completely metrizable then X is Čech-complete. The following result states the

two key facts about Čech-complete spaces that we will use in the proof of Theorem 3.3.4. These facts

are stated and proved in [42] for completely regular Hausdorff spaces, but the proof does not use the

Hausdorff condition.

Lemma 3.3.6. Let X be a completely regular space.

1. If X is Čech-complete then X is Baire.

2. If X is Čech-complete and F ⊆ X is a closed subspace, then F is Čech-complete.

Remark 3.3.7. Under additional set-theoretic and topological assumptions, the first part of Lemma 3.3.6

can be improved, as follows. For an infinite cardinal κ, a space X is κ-Baire if the intersection of

fewer than κ dense open subsets of X is dense in X. In this terminology our previous definition of

Baire corresponds to ℵ1-Baire. Recall that a space X has the countable chain condition if every family

of pairwise disjoint open subsets of X is at most countable. Tall [104, Theorem 2.3] observed that

Martin’s Axiom implies that Čech-complete spaces with the countable chain condition are 2ℵ0-Baire.

Essentially the same proof shows that Martin’s Axiom restricted to countable partial orders implies that

any Čech-complete space with a countable base is 2ℵ0 -Baire. See [49] for details about Martin’s Axiom.

The proof in [104] assumes the Hausdorff condition, but the result for Čech-complete Hausdorff spaces

implies the same result for arbitrary Čech-complete spaces. If X is a Čech-complete space and ≡ is the

relation of topological indistinguishability, then X/ ≡ is a Čech-complete Hausdorff space. It is routine

to check that for any cardinal κ, if X/ ≡ is κ-Baire then so is X.
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3.3.2 Conventions

We fix, for the entirety of this section, a metric signature S and a countable fragment L of Lω1,ω(S). If

C is any set of new constant symbols, we denote by LC the smallest fragment of Lω1,ω(S∪C) containing

L. Note that if C is countable then LC is a countable fragment of Lω1,ω(S ∪ C). The sentences of LC

are exactly those sentences of the form ϕ(~c) for some ~c ∈ C and ϕ(~x) ∈ L. If D is a set of constant

symbols with C ⊆ D and T is an LC-theory, we write ModLD
(T ) = {M ∈ Str(S ∪D) : M |= T } and

ModLC
(T ) = {M ∈ Str(S ∪ C) : M |= T } when necessary to avoid ambiguity. If M is an S-structure

and ~a = { ai : i < ω } is a set of elements of M , then the (S ∪ C)- structure obtained from M by

interpreting ci as ai is denoted by 〈M,~a 〉.
We now fix a countable set C = { c0, c1, . . . } of new constant symbols and an enumeration {ϕ0(x), ϕ1(x), . . . }

of the LC-formulas in exactly one free variable x. We will primarily work in the following subspace of

Str(S ∪ C):

W =
⋂
i<ω

⋂
r∈Q∩(0,1)

ModLC

(
inf
x
ϕi(x) > 0

)
∪
⋃
j<ω

ModLC
(ϕi(cj) < r)

 .

The following remark states the main property of W that we will use.

Remark 3.3.8. If 〈M,~a 〉 ∈ W and M |= infx ϕ(x), then for each ε ∈ Q ∩ (0, 1) there is j < ω such

that 〈M,~a 〉 |= ϕ(cj) ≤ ε. More generally, it follows from the fact that we can express inequalities

in our formulas that if (infx ϕ(x))〈M,~a 〉 < r then there exists r′ ∈ Q ∩ (0, r) and j < ω such that

〈M,~a 〉 |= ϕ(cj) ≤ r′.

Lemma 3.3.9. If 〈M,~a 〉 ∈W, then M � 〈~a 〉 �L M , where M � 〈~a 〉 is the substructure of M generated

by ~a.

Proof. Immediate from Remark 3.3.8 and Proposition 3.1.5.

We note that W is non-empty, since given any countable S-structure M we may interpret C as an

enumeration ~a of M to obtain 〈M,~a 〉 ∈W.

There are two parts to the proof of the Omitting Types Theorem. First, in Section 3.3.3 we show

that W is Čech-complete. Then in Section 3.3.4 we relate the model-theoretic notion of principal types

to Baire category in W, and use this to prove the Omitting Types Theorem.

3.3.3 Čech-completeness of W

Fix an enumeration {σ0, σ1, . . . } of the LC-sentences such that σ0 is an atomic sentence. To prove that

W is Čech-complete we must show that it has a complete sequence of open covers (see Definition 3.3.5).

In fact there are many such sequences; the following lemma gives the existence of a sequence with the

properties we will need. By an open rational interval in [0, 1], we mean an interval I ⊆ [0, 1] with rational

endpoints that is open in the subspace topology on [0, 1].

Lemma 3.3.10. There exists a sequence 〈Un : n < ω 〉 of open covers of W with the following properties:

1. For every n and every ε > 0 there is l ≥ n such that for each U ∈ Ul there is a rational open

interval IU with length(IU ) ≤ ε such that for all N ∈ U , σN
n ∈ IU .
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2. For every n, if k ≤ n is such that σk = infi<ω χi, then for each U ∈ Un there is a rational open

interval I in [0, 1], and a j < ω, such that for all N ∈ U , (infi<ω χi)
N ∈ I and χN

j ∈ I.

3. For every n, if k ≤ n is such that σk = infx ϕ, then for each U ∈ Un there is a rational open

interval I in [0, 1] and a j < ω such that for all N ∈ U , (infx ϕ)N ∈ I and ϕ(cj)
N ∈ I.

Proof. We first define a sequence (In)n<ω of open covers of [0, 1], the nth of which corresponds to

splitting [0, 1] into n rational open intervals in [0, 1] with small overlap. To do this, for each n < ω let

εn = 1
2n+2 . For each n, define an open cover of [0, 1] as follows:

In =

{[
0,

1

n+ 2
+ εn

)
,

(
1

n+ 2
− εn,

2

n+ 2
+ εn

)
, · · · ,

(
n+ 1

n+ 2
− εn, 1

]}
.

For a sentence σ and a rational open interval I ⊆ [0, 1], we temporarily abuse notation to write

Mod(σ ∈ I) =
{
M ∈W : σM ∈ I

}
.

We construct the sequence 〈Un : n < ω 〉 recursively, so that the following properties hold:

(a) Each Un is an open cover of W,

(b) Each U ∈ Un is of the form U =
⋂
OU , where OU is a finite collection of open classes such that:

(i) Each element of OU is of the form Mod(θ ∈ J), where θ is a sentence and J ∈ In,

(ii) For each k ≤ n there is Jk ∈ In such that Mod(σk ∈ Jk) ∈ OU ,

(iii) If Mod (infi<ω χi ∈ J) ∈ OU , then there exists j < ω such that Mod(χj ∈ J) ∈ OU ,

(iv) If Mod (infx ϕ) ∈ OU then there exists j < ω such that Mod(ϕ(cj) ∈ J) ∈ OU .

It is clear that a sequence 〈Un : n < ω 〉 satisfying (a) and (b) will satisfy (1) – (3).

For the base case, define

U0 = {Mod(σ0 ∈ I) : I ∈ I0 } .

Since the intervals in I0 are open, U0 is an open cover, and the conditions in (b) are satisfied trivially.

Suppose that Un is defined satisfying (a) and (b). We first refine Un to a cover Ũn as follows. For

each function f : In → In+1, and each U ∈ Un, let OfU = {Mod(θ ∈ f(J)) : Mod(θ ∈ J) ∈ OU }, and let

Uf =
⋂
OfU . Then let

Ũn =
{
Uf : U ∈ Un, f : In → In+1

}
.

If σn+1 is not an infinitary disjunction and is not of the form infx ϕ, then define

Un+1 =
{
U ∩Mod(σn+1 ∈ I) : U ∈ Ũn, I ∈ In+1

}
.

Note that Un+1 is a cover of W since Ũn is a cover of W and In+1 is a cover of [0, 1]. If σn+1 is the

infinitary disjunction infi<ω χi, then define

Un+1 =
{
U ∩Mod(σn+1 ∈ I) ∩Mod(χj ∈ I) : U ∈ Ũn, I ∈ In+1, j < ω

}
.
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Finally, if σn+1 is of the form infx ϕ, define

Un+1 =
{
U ∩Mod(σn+1 ∈ I) ∩Mod(ϕ(cj) ∈ I) : U ∈ Ũn, I ∈ In+1, j < ω

}
.

It is easy to see that (b) is preserved, so we only need to observe that Un+1 is a cover of W. This

follows from Remark 3.3.8 and the fact that Ũn is a cover.

Proposition 3.3.11. The space W is Čech-complete.

Proof. Let 〈Un : n < ω 〉 be a sequence of open covers as given by Lemma 3.3.10. Let F be a centred

family of closed sets such that for each n < ω there is Fn ∈ F and Un ∈ Un such that Fn ⊆ Un. To

show that 〈Un : n < ω 〉 is a complete sequence of open covers, we must show that
⋂

F 6= ∅. It is easy

to check, using (1) from Lemma 3.3.10, that
⋂
F =

⋂
n<ω Fn.

For each n < ω, choose Mn ∈ F0 ∩ · · · ∩ Fn. Let D be a non-principal ultrafilter on ω. We will show

that
∏

DMn ∈W ∩
⋂
n<ω Fn.

Claim 3.3.11.1. For any LC-sentence σ, σ
∏

DMn = limn→D σMn .

Proof of Claim 3.3.11.1. The proof is by induction on the complexity of σ. The case where σ is an atomic

sentence follows directly from the definition of the ultraproduct (Definition 2.1.7), and the case where σ

is the result of applying a finitary connective follows from the continuity of the finitary connectives and

the definition of ultrafilter limits, so we only need to deal with the infinitary disjunction and infx ϕ cases.

σ = infi<ω χi:

It is sufficient to show that for each a ∈ Q ∩ (0, 1), a > σ
∏

DMn if and only if
{
n < ω : σMn < a

}
∈ D.

Suppose a > σ
∏

DMn . Then

inf
i<ω

χ
∏

DMn

i < a.

Hence there is some j < ω such that

χ
∏

DMn

j < a.

So by the inductive hypothesis, limn→D χMn
j < a. That is,{
n < ω : χMn

j < a
}
∈ D.

We have χMn
j ≥ σMn for each n, so

{
n < ω : σMn < a

}
⊇
{
n < ω : χMn

j < a
}

, and hence

{
n < ω : σMn < a

}
∈ D.

Now assume
{
n < ω : σMn < a

}
∈ D. Note that, by the inductive hypothesis, it suffices to find

j < ω such that
{
n < ω : χMn

j < a
}
∈ D. Find l < ω such that σ = σl. Find k ≥ l such that σMk < a

and for all N ∈ Uk, σN < a (by (1) of Lemma 3.3.10). By (2) of Lemma 3.3.10, there is some j < ω such

that for all N ∈ Uk, χN
j < a. In particular, for all n ≥ k, χMn

j < a. Thus for cofinitely many n we have

χMn
j < a, and j is as desired.

σ = infx ϕ(x).

Suppose that
{
n < ω : (infx ϕ)

Mn < a
}
∈ D. As in the previous case, by (1) of Lemma 3.3.10 we can



Chapter 3. Infinitary [0, 1]-valued logic 31

find k < ω such that (infx ϕ)N < a for all N ∈ Uk. By (3) of Lemma 3.3.10 we get j < ω such that

ϕ(cj)
N < a for all N ∈ Uk. For all n ≥ k we have ϕ(cj)

Mn < a, and hence limn→D ϕ(cj)
Mn < a. By the

inductive hypothesis we have ϕ(cj)
∏

DMn < a, and therefore (infx ϕ)
∏

DMn < a as well.

Now suppose that
{
n < ω : (infx ϕ)

Mn < a
}
6∈ D. In order to prove that (infx ϕ)

∏
DMn ≥ a, we

consider two cases. The case
{
n < ω : (infx ϕ)

Mn > a
}
∈ D is handled in the same way as the previous

paragraph. For the other case, suppose that
{
n < ω : (infx ϕ)

Mn = a
}
∈ D. Then for each ε ∈ Q∩(0, 1)

such that ε < min { a, 1− a }, we also have{
n < ω :

(
inf
x
ϕ
)Mn

∈ (a− ε, a+ ε)

}
∈ D.

As in the preceding cases, this implies that (infx ϕ)
∏

DMn ∈ (a− ε, a+ ε) for each such ε. Taking ε→ 0

we obtain (infx ϕ)
∏

DMn = a.

a – Claim 3.3.11.1

For each F ∈ F, let TF be a theory such that F = Mod(TF ). Then Claim 3.3.11.1 implies that∏
DMn |= TFm

for every m < ω, so it only remains to check that
∏

DMn ∈W. The proof is essentially

the same as the last case of the claim. Suppose that ϕ(x) is an LC-formula in one free variable, and that

(infx ϕ)
∏

DMn = 0. Fix r ∈ Q ∩ (0, 1). We need to find j such that ϕ(cj)
∏

DMn < r. By Claim 3.3.11.1

we have limn→D (infx ϕ)
Mn = 0, so {

n < ω :
(

inf
x
ϕ
)Mn

< r

}
∈ D.

Using (1) and (3) of Lemma 3.3.10 we can find k and j such that ϕ(cj)
N < r for all N ∈ Uk. Hence{

n < ω : ϕ(cj)
Mn < r

}
∈ D, and by Claim 3.3.11.1 we have ϕ(cj)

∏
DMn < r.

Corollary 3.3.12. Let T be a consistent L-theory. Then W ∩ModLC
(T ) is non-empty and is Baire.

Proof. Since T is consistent it has a countable model M , by Downward Löwenheim-Skolem (Proposi-

tion 3.1.8). If ~a is an enumeration of M , then 〈M,~a 〉 ∈W∩ModLC
(T ) 6= ∅. The fact that W∩ModLC

(T )

is Baire follows immediately from Lemma 3.3.6 and Proposition 3.3.11.

3.3.4 Proof of Omitting Types

We now connect the model-theoretic notions in the statement of Theorem 3.3.4 to the topology of the

space W. The connection between Baire spaces and the Omitting Types Theorem in classical logic is

well-known. We give a proof in our [0, 1]-valued setting which closely follows the arguments of [25]. For

simplicity we present the details of the proof in the case where the signature S contains no function

symbols. After the proof is complete we will describe the modifications necessary for the general case.

When S has no function symbols, the definition of a type of T being principal (Definition 3.3.3) takes

the following simplified form:

Definition 3.3.13. Let T be an L-theory in a signature without function symbols. A type Σ(~x) of T

principal over T is there is an L-formula ϕ(~x) such that T ∪ϕ(~x) is satisfiable, and for some r ∈ Q∩(0, 1)

we have T ∪ {ϕ(~x) ≤ r } |= Σ(~x).

We can now give the connection between principality of types and Baire spaces.
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Lemma 3.3.14. Let Σ(~x) be a type of an L-theory T , and let ~c be new constant symbols. Then Σ(~x) is

principal if and only if ModL~c
(T ∪ Σ(~c)) has nonempty interior in ModL~c

(T ).

Proof. Assume that Σ(~x) is principal, and let ϕ(~x) ∈ L and r ∈ Q ∩ (0, 1) witness the principality

of Σ. Then T ∪ {ϕ(~x) } is satisfiable, and hence ModL~c
(T ∪ ϕ(~c)) 6= ∅. If r′ ∈ Q ∩ (0, r), then

ModL~c
(T ) ∩ModL~c

(ϕ(~c) < r′) is a nonempty open subclass of ModL~c
(T ∪ Σ(~c)).

Conversely, suppose that ModL~c
(T ∪Σ(~c)) has nonempty interior in ModL~c

(T ), so it contains a basic

open class. That is, there is an L~c-sentence ϕ(~c) such that

∅ 6= ModL~c
(T ) ∩ModL~c

(ϕ(~c) < 1) ⊆ ModL~c
(T ∪ Σ(~c)).

It follows that there exists s ∈ Q ∩ (0, 1) such that T ∪ {ϕ(~x) ≤ s } is satisfiable. Our choices of ϕ and

s give us that

T ∪ {ϕ(~x) ≤ s } |= T ∪ {ϕ(~x) < 1 } |= Σ(~x).

It is easy to check that if r ∈ Q ∩ (s, 1) then the formula max{s − ϕ, 0} and the rational 1 − r witness

that Σ is principal.

Lemma 3.3.15. Let T be an L-theory. For any i = 〈 i1, i2, . . . , in 〉 ∈ ω<ω, let RT,i : W∩ModLC
(T )→

ModL{ ci1
,...,cin }

(T ) be the natural projection defined by

〈M,~a 〉 7→ 〈M,ai1 , . . . , ain 〉 .

Then RT,i is continuous, open, and surjective.

Proof. To keep the notation as simple as possible, we will give the proof only in the case where i = 〈 0 〉
– the general case is similar. To see that RT,i is continuous, observe that if σ is any Lc0-sentence then σ

is also an LC-sentence, and the pre-image of the basic closed class ModLc0
(σ) under RT,i is the closed

class ModLC
(σ).

Now suppose that ϕ(c0, . . . , cm) is an LC-sentence (with possibly some of the ci’s, including c0, not

actually appearing). Define the Lc0-sentence θ(c0) by

sup
x1

· · · sup
xm

ϕ(c0, x1, . . . , xm).

To finish the proof it suffices to show that RT,i maps (W ∩ModLC
(T )) \ ModLC

(ϕ(c0, . . . , cm)) onto

ModLc0
(T ) \ModLc0

(θ(c0)).

Suppose that 〈M,~a 〉 ∈ (W ∩ModLC
(T )) \ModLC

(ϕ(c0, . . . , cm)). Then

〈M,~a 〉 6|= ϕ(c0, . . . , cm), so there is r ∈ Q ∩ (0, 1) such that

〈M,~a 〉 |= ϕ(c0, . . . , cm) ≥ r.

Then clearly

〈M,a0 〉 |= θ(c0) ≥ r.

It follows that 〈M,a0 〉 ∈ ModLc0
(T ) \ModLc0

(θ(c0)).

Now suppose that 〈M,a0 〉 ∈ ModLc0
(T ) \ModLc0

(θ(c0)). As above, find r ∈ Q ∩ (0, 1) such that

〈M,a0 〉 |= θ(c0) ≥ r, and pick r′ ∈ (0, r). Then by definition of θ there are elements a1, . . . , am ∈ M
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such that

〈M,a0, a1, . . . , am 〉 |= ϕ(c0, c1, . . . , cm) ≥ r′.

By Downward Löwenheim-Skolem (Proposition 3.1.8) we can find a countable M0 �L M containing

a0, a1, . . . , am. Using the remaining constant symbols to enumerate M0 as ~a, we have

〈M,~a 〉 ∈ (W ∩ModLC
(T )) \ModLC

(ϕ(c0, . . . , cm)),

and RT,i(〈M,~a 〉) = 〈M,a0 〉.

We now have all of the ingredients necessary to prove Theorem 3.3.4.

Theorem 3.3.16 (Omitting Types). Let T be an L-theory and let {Σj(~xj) }j<ω be a countable set of

types of T that are not principal over T . Then there is a model of T that omits each Σj.

Proof. For each j < ω, write ~xj = (x0, . . . , xnj−1). Then for i ∈ ωnj , define

CT,j,i = R−1T,i

(
ModL{

ci0
,...,cinj−1

}(T ∪ Σj(ci0 , . . . , cinj−1
))

)
⊆W ∩ModLC

(T ).

By Lemmas 3.3.14 and 3.3.15, each CT,j,i is closed with empty interior. Hence
⋃
j<ω,i∈ωnj CT,j,i is meagre

in W ∩ModLC
(T ). Since W ∩ModLC

(T ) is Baire (Lemma 3.3.12), there exists

〈M,~a 〉 ∈ (W ∩ModLC
(T )) \

⋃
j<ω,i∈ωnj

CT,j,i.

For such 〈M,~a 〉 we have by definition of the CT,j,i’s that for every j < ω no subset of ~a is a realization

of Σj . Since we are in the case where there are no function symbols, ~a is the universe of a structure M0.

By Lemma 3.3.9, M0 �L M . Thus M0 |= T and omits every Σj .

The preceding proof generalizes in a straightforward way to the case where the signature contains

function symbols, but it is necessary to give a stronger definition of principal type. The only difficulty

is that when there are function symbols present not every subset of a structure is the universe of a

substructure, so in the proof of Theorem 3.3.4 we need to take M0 to be M � 〈~a 〉. The proof of

Lemma 3.3.9 works even with function symbols present, so we still have that M0 �M , but we now need

to prove that no subset of M � 〈~a 〉 realizes any of the Σj . For this we need the more general definition

of principality given in Definition 3.3.3, which we recall here.

Definition 3.3.17. Let T be an L-theory. A type Σ(~x) of T principal over T is there is an L-formula

ϕ(~x), terms t1(~y), . . . , tn(~y) (where n is the length of ~x), and r ∈ Q∩ (0, 1) such that the following hold:

• T ∪ {ϕ(~y) } is satisfiable, and

• T ∪ {ϕ(~y) ≤ r } |= Σ(t1(~y), . . . , tn(~y)).

The modification of principality to include terms was used by Keisler and Miller [68] in the context of

discrete logic without equality, in [88] for an infinitary logic for metric structures (see Section 3.5), and

independently by Caicedo and Iovino [25] for [0, 1]-valued logic. Taking Definition 3.3.17 as the definition

of principality, we may assume that whenever Σ(~x) is a type we wish to omit, and t1(~y), . . . , tn(~y) are
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terms, then Σ(t1(~y), . . . , tn(~y)) is also one of the types to be omitted. Then we have that no subset of

M � 〈~a 〉 realizes any of the types we wish to omit since elements of M � 〈~a 〉 are obtained from ~a by

applying terms.

Remark 3.3.18. By assuming additional set-theoretic axioms it is possible to extend Theorem 3.3.4 to

allow a collection of fewer than 2ℵ0 non-principal types to be omitted. To do this, observe that W has

a countable base, so Martin’s Axiom restricted to countable partial orders implies that W is 2ℵ0 -Baire

(see Remark 3.3.7). Then the same proof as above can be applied to a collection of fewer than 2ℵ0

non-principal types. If T is a theory in a countable fragment L of Lω1,ω then there are at most 2ℵ0

types of T . There are theories in which every model realizes a non-isolated type (see [28, Example 2.3.1]

for an example in the discrete case), so it is not generally possible to omit 2ℵ0 non-prinicipal types.

Thus under the Continuum Hypothesis it is not always possible to omit ℵ1 non-principal types. These

observations show that the extension of Theorem 3.3.4 to omitting ℵ1 non-principal types is undecidable

on the basis of ZFC. In fact, similar observations show that in ZFC it is possible to omit < cov(meagre)

non-principal types.

3.3.5 Omitting Types in Complete Structures

In applications of [0, 1]-valued logics it is sometimes desirable to be able to produce metric structures

based on complete metric spaces. There are two issues that need to be addressed in order to be able to

take the metric completion of the structure obtained from Theorem 3.3.4. First, there are some types

that may be omitted in a structure but not in its metric completion (such as the type of the limit of a

non-convergent Cauchy sequence), so we need a stronger notion of principal type. Second, because of

the infinitary connectives, it may not be the case that every structure is elementarily equivalent to its

metric completion.

To resolve the first issue, we use the notion of metrically principal types from [25]. If Σ(x1, . . . , xn)

is a type, then for each δ ∈ Q ∩ (0, 1) we define:

Σδ =

 inf
y1
. . . inf

yn

∧
k≤n

d(xk, yk) ≤ δ ∧ σ(y1, . . . , yn)

 : σ ∈ Σ

 .

We think of Σδ as a thickening of Σ, since if M is a structure and a1, . . . , an ∈M realize Σ, then every

n-tuple in the closed δ-ball around (a1, . . . , an) realizes Σδ.

Definition 3.3.19. We say that a type Σ(~x) of T is metrically principal over T if for every δ > 0 the

type Σδ(~x) is principal over T .

Proposition 3.3.20. Let L be a countable fragment of Lω1,ω(S), and let T be an L-theory. For each

n < ω, suppose that Σn is a type that is not metrically principal over T . Then there is M |= T such that

the metric completion of M omits each Σn.

Proof. For each n < ω, let δn > 0 be such that Σδnn is non-principal. Using Theorem 3.3.4 we get M |= T

that omits each Σδnn . Fix n < ω; we show that M , the metric completion of M , omits Σn. Suppose

otherwise, and let ~a ∈M be a realization of Σn in M . By definition of the metric completion there are

~a1,~a2, . . . from M converging (coordinatewise) to ~a. For k sufficiently large we then have that ~ak is in



Chapter 3. Infinitary [0, 1]-valued logic 35

the δn-ball around ~a. As we observed earlier, this implies that ~ak satisfies Σδnn , contradicting that Σδnn

is not realized in M .

The final problem to be resolved in order to have a satisfactory Omitting Types Theorem for complete

structures is that we may not have M ≡L M (see Example 3.1.3). This problem arises because if ϕ(x)

is a formula of Lω1,ω and M is a structure, then the function from M to [0, 1] given by a 7→ ϕM (a) may

not be continuous. Recall that a fragment L of Lω1,ω(S) is continuous if a 7→ ϕM (a) is a continuous

function for every S-structure M and every L-formula ϕ. Applying Proposition 3.3.20 we therefore have:

Theorem 3.3.21 (Omitting Types for Complete Structures). Let L be a countable continuous fragment

of Lω1,ω, and let T be a satisfiable L-theory. For each n < ω let Σn be a type that is not metrically

principal. Then there is M |= T such that M is based on a complete metric space and M omits each Σn.

3.4 Applications of Omitting Types

In this section we apply the Omitting Types Theorem to obtain a [0, 1]-valued version of Keisler’s two-

cardinal theorem (see [69, Theorem 30]). We then discuss the existence of prime models of theories in

countable fragments.

3.4.1 Keisler’s two-cardinal theorem

We begin with an easy lemma about metric spaces.

Lemma 3.4.1. Let (M,d) be a metric space of density λ, where λ has uncountable cofinality. Then

there is R ∈ Q ∩ (0, 1) and a set D ⊆ M with |D| = λ such that for all x, y ∈ D, d(x, y) ≥ R, and for

all x ∈M there exists y ∈ D with d(x, y) < R.

Proof. Build a sequence {xα : α < λ } in M recursively, starting from an arbitrary x0 ∈ M . Given

{xα : α < β }, with β < λ, we have that {xα : α < β } is not dense in M . Hence there exists xβ ∈ M
and Rβ ∈ Q∩(0, 1) such that d(xβ , xα) ≥ Rβ for all α < β. Then since cof(λ) > ω there is R ∈ Q∩(0, 1)

and S ∈ [λ]λ such that R = Rα for every α ∈ S. Then D = {xα : α ∈ S } can be extended to the desired

set.

The above lemma does not always apply if the condition that λ has uncountable cofinality is dropped,

as the following example (pointed out to us by Daniel Soukup) shows.

Example 3.4.2. Let M = ℵω. For each n < ω let An = [ωn, ωn+1), with A0 = [0, ω), so M =
⋃
n<ω An.

Define a metric on ℵω as follows, for distinct α, β ∈M :

d(α, β) =

 1
n+1 if α, β ∈ An,

1 otherwise.

This metric induces the discrete topology on M , so the density of M is λ = ℵω. Given any set D ⊆ M

of cardinality ℵω there are arbitrarily large n such that |D ∩An| ≥ 2, and so there is no n such that

d(α, β) ≥ 1/n for all α, β ∈ D.

It will be important for us that certain predicates take values only in {0, 1}, and that this fact can be

expressed in our logic. For any formula ϕ(x), we define the formula Discrete(ϕ) to be min{ϕ, 1− ϕ}. It
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is clear that if M |= ∀xDiscrete(ϕ(x)), then ϕM(a) ∈ {0, 1} for every a ∈M; in this case we say that ϕ

is discrete in M. Note that if ϕ(x) is discrete in models of a theory T then we can relativize quantifiers

to {x : ϕ(x) = 0 } in models of T . We emphasize that discreteness of ϕ only means that ϕ takes values

in {0, 1}, not that the metric is discrete on {x : ϕ(x) = 0 }.

Definition 3.4.3. If S is a metric signature with a distinguished unary predicate U , and κ, λ are infinite

cardinals, then we say that an S-structure M = 〈M,U, . . . 〉 is of type (κ, λ) if the density of M is κ and

the density of { a ∈M : U(a) = 0 } is λ.

Theorem 3.4.4. Let S be a metric signature with a distinguished unary predicate symbol U , and let L be

a countable fragment of Lω1,ω(S). Let T be an L-theory such that T |= ∀xDiscrete(U(x)), and let M =

〈M,V, . . . 〉 be a model of T of type (κ, λ) where κ > λ ≥ ℵ0. Then there is a model N = 〈N,W, . . . 〉 ≡L
M of type (ℵ1,ℵ0). Moreover, there is a model M0 = 〈M0, V0, . . . 〉 such that M0 �L M,M0 �L N, and

V0 is dense in W .

Proof. By Downward Löwenheim-Skolem, we may assume that M is of type (κ+, κ) for some κ ≥ ℵ0.

Our first step is to expand M into a structure in a larger language that includes an ordering of a dense

subset of M in type κ+. To do this we expand the signature S to a new signature S′ by adding a unary

predicate symbol L, a binary predicate symbol E, a constant symbol c, and a unary function symbol

f . Let M ′ be the disjoint union of M and κ+. Extend the metric d from M to a metric d′ on M ′ by

making d′ the discrete metric on κ+ and setting d′(m,α) = 1 for every m ∈ M,α ∈ κ+. We interpret

L as L(x) = 0 if and only if x ∈ κ+. Interpret c as κ, and let E be the characteristic function of the

ordinal ordering on κ+, and arbitrary elsewhere.

Find D ⊆ M of size κ+, and R ∈ Q ∩ (0, 1), as in Lemma 3.4.1. Define f : M ′ → M ′ so that below

κ the function f is an enumeration of a dense subset of V , from κ to κ+ f is an enumeration of D, and

f is arbitrary otherwise. This gives a metric structure M′ = 〈M ′, V, . . . , κ+,E, κ, f 〉.
Now let M′0 = 〈M ′0, V0, . . . , L0,E0, c0, f0 〉 be a countable elementary substructure of M′. Add

countably many new constant symbols dl, l ∈ L, and another constant symbol d∗. Let T be the

elementary diagram of M′0, together with the sentences { dl / d∗ : l ∈ L }. Define

Σ(x) = {L(x) } ∪ {U(f(x)) } ∪ { d(x, dl) = 1 : l / c } .

We note that a model of T that omits Σ corresponds to a elementary extension of M′0 in which V0 is

dense in the interpretation of U . The extension is proper because the interpretation of d∗ will satisfy

d(f(d∗), f(dl)) ≥ R for every l, and f(d∗) 6∈ L, while every m ∈M ′0 \L satisfies d(m, dl) < R for some l.

We have V0 dense in the interpretation of U because the image of f on elements of L below c is dense

in U , and omitting Σ ensures that no new such elements are added.

Claim 3.4.4.1. Σ(x) is non-principal over T .

Proof. We note first that if t is a term that is not a variable symbol or a constant symbol then T |=
∀x¬U(t(x)). It therefore suffices to show that if ψ(x) is a formula consistent with T and r ∈ Q ∩ (0, 1),

then T ∪ {ψ(x) ≤ r } 6|= Σ(x).

Now suppose that ψ(x) is consistent with T . Let us write ψ(x, d) to emphasize that the new constant

symbol d may appear. If either ψ(x, d)∧¬L(x) or ψ(x, d)∧L(x)∧¬U(f(x)) is consistent with T then by
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definition of Σ, T ∪{ψ(x, d) } 6|= Σ(x) and we are done. So we may assume that ψ(x, d)∧L(x)∧U(f(x))

is consistent with T . It follows from the definition of T that

M′0 |= ∀z ∈ L inf
y∈L

inf
x∈L

(z E y ∧ U(f(x)) ∧ ψ(x, y)).

By elementary equivalence, M′ is also a model of this sentence. Pick q ∈ Q ∩ (0, r). For each α ∈ κ+,

find xαq ∈ κ+ such that

M′ |= inf
y∈L

(α E y ∧ U(f(xαq )) ∧ ψ(xαq , y)) ≤ q.

This implies that M′ |= U(f(xαq )), so by our choice of f we have that xαq < κ. Since κ+ is regular there

exists xq such that for all sufficiently large α, xq = xαq . We thus have

M′ |= ∀z ∈ L inf
y∈L

(z E y ∧ U(f(xq)) ∧ ψ(xq, y)) ≤ q.

By elementary equivalence,

M′0 |= inf
x∈L
∀z ∈ L inf

y∈L
(z E y ∧ U(f(x)) ∧ ψ(x, y)) ≤ q.

Now pick r′ ∈ Q ∩ (0, 1) such that q < r′ < r. Then there exists xr′ such that

M′0 |= ∀z ∈ L inf
y∈L

(z E y ∧ U(f(xr′)) ∧ ψ(xr′ , y)) ≤ r′.

This implies that M′0 |= U(f(xr′)) = 0, so there is some l such that xr′ = dl E c0. Thus, using that the

metric d is discrete in L0,

M′0 |= ∀z ∈ L inf
y∈L

(z E y ∧ inf
x∈L

(ψ(x, y) ≤ r′ ∧ d(x, dl) = 0).

We therefore have that ψ(x, d) ≤ r′ ∧ d(x, dl) = 0 is consistent with T . Since d(x, dl) = 1 appears in Σ,

this shows that ψ(x, d) ≥ r′ 6|= Σ(x), and hence ψ(x, d) ≤ r 6|= Σ(x).

a – Claim 3.4.4.1

By Claim 3.4.4.1 and the Omitting Types Theorem (Theorem 3.3.4) there is M′1 |= T that omits Σ.

Repeating the above argument ω1 times we get an elementary chain (M′α)α<ω1
. For each α < ω1 let Mα

denote the reduct of M′α to S. Then N =
⋃
α<ω1

Mα is the desired model.

We note that instead of using a discrete predicate U , we could instead have used a two-sorted

language, with only notational differences in the proof. We give an application of the two-cardinal

theorem to separable quotients of Banach spaces in Section 3.6.

3.4.2 Prime Models

We use the Omitting Types Theorem for Lω1,ω to give conditions for the existence of prime models.

Throughout the section we fix a metric signature S, a countable fragment L of Lω1,ω(S), and a (not

necessarily complete) L-theory T .

Definition 3.4.5. A model of T is prime if it L-elementarily embeds into every model of T .
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The key to producing prime models is the notion of complete conditions.

Definition 3.4.6. Let ϕ(~x) be an L-formula. For r ∈ Q ∩ (0, 1), we say that the condition ϕ(~x) ≤ r

is complete (with respect to T ) if ϕ(~x) is consistent with T , and for every L-formula ψ(~x) and every

s ∈ Q ∩ (0, 1), either

T ∪ {ϕ(~x ≤ r } |= ψ(~x) ≤ s,

or

T ∪ {ϕ(~x ≤ r } |= ψ(~x) ≥ s.

In the terminology of Definition 3.3.3 this says that ϕ ≤ r isolates a complete type.

Lemma 3.4.7. Suppose that ϕ(~x) ≤ r is a complete condition. Then T ∪ {ϕ(~x) ≤ r } |= ϕ(~x) = 0.

Proof. For any q ∈ Q∩(0, 1) we cannot have T ∪{ϕ(~x) ≤ r } |= ϕ(~x) ≥ r, since this would contradict the

assumption that ϕ is consistent with T . By completeness we therefore have T ∪{ϕ(~x) ≤ r } |= ϕ(~x) ≤ q
for all q ∈ Q ∩ (0, 1)

Lemma 3.4.8. For a complete type Σ(~x), the following are equivalent:

1. Σ is non-principal,

2. Σ contains no complete conditions,

3. for each complete condition ϕ(~x) ≤ r, there exists ε > 0 such that Σ does not contain ϕ(~x) ≤ r+ ε.

Proof. If Σ contains the complete condition ϕ(~x) ≤ r, then the complete type isolated by ϕ(~x) ≤ r must

be Σ, so Σ is principal. This shows (1) implies (2).

For (2) implies (3), if there is a complete condition ϕ(~x) ≤ r such that for every ε > 0 we have

(ϕ(~x) ≤ r + ε) ∈ Σ, then by the completeness of Σ, (ϕ(~x) ≤ r) ∈ Σ.

Finally, suppose that (3) holds and that Σ is principal. Then there is a formula ϕ(~x) consistent

with T , and an r ∈ Q ∩ (0, 1), such that T ∪ {ϕ(~x) ≤ r } |= Σ. By the completeness of Σ we have

(ϕ(~x) ≤ r + ε) ∈ Σ for every ε > 0, so ϕ(~x) ≤ r cannot be complete by (3), contradicting the fact that

ϕ(~x) ≤ r isolates a complete type.

Theorem 3.4.9. Let T be a complete L-theory. A model M |= T is prime if and only if M is countable

and every finite tuple of elements of M satisfies a complete condition in M .

Proof. Suppose that M is prime. By the Downward Löwenheim-Skolem theorem there is a countable

model of T , so M must be countable. Consider any finite tuple ~a ∈ M , and let Σ = tpML (~a). If Σ

contains no complete conditions then by Lemma 3.4.8 Σ is non-principal, so by Theorem 3.3.4 there is

a model of T which omits Σ. The model M cannot be L-elementarily embedded into such a model,

contradicting the assumption that M is prime. Therefore Σ contains a complete condition, and hence ~a

satisfies a complete condition in M .

Now suppose that M is countable and every finite tuple satisfies a complete condition. Pick any

model N |= T . Enumerate M = {an : n < ω}, and for each n < ω let ϕn(x0, . . . , xn) ≤ rn be a complete

condition satisfied by (a0, . . . , an). By Lemma 3.4.7 we actually have ϕM0 (a0) = 0, so T |= infx0
ϕ0(x0).

Let b0 ∈ N be such that ϕN0 (b0) ≤ r0/2. Now T ∪{ϕ0(x0) ≤ r0 } |= infx1
ϕ1(x0, x1) by the completeness

of ϕ1 and Lemma 3.4.7. Choose b1 ∈ N such that ϕN1 (b0, b1) ≤ r1/2. Continue in this manner to
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produce a sequence (bn)n<ω in N such that for all n, ϕNn (b0, . . . , bn) ≤ rn/2. Since each ϕn ≤ rn is a

complete condition, this implies tpML (a0, . . . , an) = tpNL (b0, . . . , bn) for all n < ω, so the map an 7→ bn is

an L-elementary embedding of M into N .

Corollary 3.4.10. A complete L-theory T has a prime model if and only if there are no incompletable

conditions with respect to T .

Proof. Suppose first that T has a prime model M , and the condition ϕ(~x) ≤ r is incompletable with

respect to T . Since T is complete there is ~a ∈ M such that ϕM (~a) ≤ r. By Theorem 3.4.9 ~a satisfies a

complete condition, contradicting that ϕ ≤ r is incompletable.

Now suppose that there are no incompletable conditions with respect to T . For each n < ω, define

Φn(x1, . . . , xn) =
{
ϕ(x1, . . . , xn) ≥ r

2
: ϕ ≤ r is a complete condition

}
.

If we construct a model omitting each Φn then in that model every tuple will satisfy a complete condition,

and hence be prime by Theorem 3.4.9. By Theorem 3.3.4 it suffices to show that each Φn is nonprincipal.

Suppose that T ∪ {ψ(~x) ≤ s } |= Φn(~x), where ψ is consistent with T . By hypothesis the condition

ψ ≤ s is completable, so let ϕ(~x) ≤ r be a complete condition such that T ∪ {ϕ(~x) ≤ r } |= ψ(~x) ≤ s.

Then T ∪ {ϕ(~x) ≤ r } |= Φn(~x). By definition we have (ϕ ≥ r
2 ) ∈ Φn, so T ∪ {ϕ ≤ r } |= ϕ ≥ r

2 ,

contradicting Lemma 3.4.7.

3.5 Comparison of infinitary [0, 1]-valued logics

As mentioned above, the logic Lω1,ω presented in this chapter is not the only infinitary logic for metric

structures that has been considered in the literature. Here we define the other infinitary logics for metric

structures which have been proposed, and compare their properties. The names we give to these logics

are not standard.

The first infinitary logic for metric structures appears to be the infinitary logic LA considered by

Ortiz in his thesis [88]. Ortiz’s work was inspired by Keisler (and later Fajardo and Keisler)’s use of

infinitary logic in the study of neocompact families (see [70] for an overview of this work). The logic LA

is an extension of Henson’s logic of positive bounded formulas with approximate satisfaction, and hence

is not precisely an infinitary generalization of the [0, 1]-valued continuous logic presented in Chapter 2.

Since we have not presented Henson’s logic in this thesis, we will give a somewhat informal discussion

of LA.

The logic LA is formed from the positive bounded formulas by allowing the operations of countable

conjunction and disjunction, negation, and the use of countable strings of quantifiers. Remark 3.1.2 shows

that our Lω1,ω is at least as expressive as the part of LA which uses only finite strings of quantifiers. In

[89] Ortiz shows the full logic LA satisfies a compactness theorem. Hence the finite quantifier part of

LA is not equivalent to our Lω1,ω.

One of the main results of [88] (and also, in an expanded form with applications to Banach spaces,

[91]) is an omitting types result for LA. This omitting types theorem gives conditions under which a

sentence σ of LA has a model satisfying

∀~yϕ(~y),
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where ~y is a finite tuple of variables, and ϕ(~y) is of the form

∀~xθ(~x),

with ~x a (possibly infinite) tuple of variables, and θ quantifier-free. There are no restrictions on the

quantifier complexity of σ. While our omitting types theorem does not apply to formulas involving

infinitely many variables, it does apply to formulas of higher quantifier complexity than the formula ϕ

above.

We now turn our attention to [0, 1]-valued logics which extend continuous first-order logic.

Definition 3.5.1 ([14]). The logic LCω1,ω is defined in the same manner as our Lω1,ω, except that when

forming supn ϕn and infn ϕn it is required that the formulas ϕn satisfy a common modulus of uniform

continuity.

We note that LCω1,ω is an example of a continuous fragment of our Lω1,ω.

Definition 3.5.2 ([99]). The logic LCω1,ω(ρ) is obtained from LCω1,ω by the addition of a new symbol ρ,

which is interpreted in a structure M as

ρM (x, ϕ) = inf{d(x, y) : ϕM (y) = 0}.

The main theorem of [14] is an omitting types theorem for LCω1,ω, proved using the framework of

model-theoretic forcing. Our omitting types theorem (Theorem 3.3.4 above) yields this omitting types

theorem as a special case, and indeed our work in this area was initially inspired by [14].

In [99] Sequeira proves the existence of Scott sentences for complete separable metric structures in

LCω1,ω(ρ). The proof is an adaptation of the classical Scott analysis (see, for example, [69, Chapter 1]).

The main result of [15] is a metric version of the López-Escobar theorem characterizing the isomor-

phism invariant bounded Borel functions on a space of codes for structures as exactly those functions

of the form M 7→ σM for an LCω1,ω-sentence σ. The existence of Scott sentences in LCω1,ω for complete

separable metric structures (see Theorem 3.2.1 above) is a corollary of this López-Escobar theorem. As

a consequence, we obtain the unexpected result that the logics Lω1,ω,L
C
ω1,ω, and LCω1,ω(ρ) all have the

same elementary equivalence relation for complete separable metric structures.

Proposition 3.5.3. Let S be a metric signature. For any complete separable S-structures M and N ,

the following are equivalent:

1. M ∼= N ,

2. M ≡Lω1,ω
N ,

3. M ≡LC
ω1,ω

N ,

4. M ≡LC
ω1,ω(ρ) N ,

Proof. It is clear that (1) implies each of the other statements. Since each LCω1,ω formula is also an Lω1,ω

formula and an LCω1,ω(ρ) formula we have that (2) and (4) each imply (3). Finally, the implication from

(3) to (1) is due to the existence of Scott sentences in LCω1,ω.
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Our proof of Theorem 3.2.3 relied on the fact that our logic Lω1,ω has the desirable property that

whenever ~c is a finite tuple of constant symbols, the formula obtained from an Lω1,ω formula by replacing

every occurrence of ~c by new variables ~x is again an Lω1,ω formula. We note that this is not true in

LCω1,ω or LCω1,ω(ρ):

Example 3.5.4. Let M be a complete separable metric structure with an element a such that the Aut(M)-

orbit Oa of a is not all of M . Let θa(x) be the Lω1,ω formula obtained by replacing a by x in the Scott

sentence of (M,a). Then for any b ∈ X,

θMa (b) =

0 if b ∈ Oa,

1 otherwise.

Since M is connected and the image of θMa is {0, 1}, the function θMa is not continuous. Therefore θa is

not an LCω1,ω formula or an LCω1,ω(ρ) formula.

A consequence of this observation is that the method used in our proof of the Scott definability the-

orem does not obviously generalize to either of the other infinitary logics. Any version of Theorem 3.2.3

for LCω1,ω will require the stronger hypothesis that the predicate to be defined is uniformly continuous,

since the formulas of that logic always define uniformly continuous functions.

For discrete structures the most prominent generalization of infinitary logic is Shelah’s framework

of abstract elementary classes (see [100]). A corresponding notion of metric abstract elementary classes

was introduced by Hirvonen and Hyttinen in [66].

Definition 3.5.5. Let S be a metric signature (possibly with only continuous, rather than uniformly

continuous, functions and predicates), and let K be a class of complete S-structures. Let �K be a binary

relation on K. The pair (K,�K) is called a metric abstract elementary class if it satisfies the following

properties:

1. K and �K are closed under isomorphism,

2. �K is a partial order refining the substructure relation,

3. if M,N,R ∈ K, M �K R, N �K R, and M ⊆ N , then M �K N ,

4. if (Mα)α<γ is a �K-increasing chain in K then
⋃
α<γMα ∈ K, and Mα �K

⋃
α<γMα for all α < γ,

5. there is a cardinal LS(K) such that if M ∈ K and A ⊆ M then there is N ∈ K with A ⊆ N ,

|N | = |A|+ LS(K), and N �K M .

The basic example of an abstract elementary class of discrete structures is the class of models of

a first-order theory with the first-order elementary substructure relation, and the analogous statement

is also true of metric abstract elementary classes. In the discrete setting an important example of an

abstract elementary class is the class of models of an Lω1,ω sentence σ, with the L-elementary equivalence

relation, for L a countable fragment containing σ. In the metric setting the (complete) models of an

Lω1,ω sentence σ do not always form a metric abstract elementary class. Condition (4) of the definition

can fail, because while the union of an L-elementary chain of models of σ is again a model of σ, taking the

completion does not always result in an elementarily equivalent structure (see Example 3.1.3). We note

that this issue can arise only when the indexing ordinal of the models has cofinality ω, since otherwise

the union of a chain of complete structures is already complete.
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Discrete abstract elementary classes can be described in terms of the infinitary logics Lκ,ω. Indeed,

Shelah’s Presentation Theorem from [100] shows that given an abstract elementary class K, there is an

expansion S′ of the signature of K such that K is the class of reducts of a model of a first-order S′-theory

omitting certain types. By the well-known fact that the property of omitting a type can be written as a

sentence of infinitary logic, it follows that every discrete abstract elementary class is the class of reducts

of an Lκ,ω(S′) sentence for some κ.

In the metric case it still true that every metric abstract elementary class is the class of reducts of a

continuous first-order theory omitting certain types (see [105, Theorem 1.2.7]). It is possible to express

type omission in our Lω1,ω (or the natural generalization to higher Lκ,ω). The presentation theorem for

metric abstract elementary classes, due to Zambrano in [105], relied on functions which are continuous,

but possibly not uniformly continuous, but very recently Zambrano improved this result in [106] to show

that only uniformly continuous functions are necessary. He also asked whether our Lω1,ω can be used to

give a direct proof of the result of Boney [18] that metric abstract elementary classes have Hanf numbers.

In general, it seems that the following question, originally asked of us by Boney, has not been completely

resolved:

Question 3.5.6. What is the precise relation between metric abstract elementary classes, Lω1,ω, and

LCω1,ω (as well as their natural generalizations to Lκ,ω for other uncountable κ)?

3.6 Applications to Banach spaces

To conclude this chapter we illustrate the use of Lω1,ω with connections to Banach spaces. First, we

give a partial list of classes of Banach spaces of interest in analysis which can be axiomatized in Lω1,ω.

• All classes of structures axiomatizable in finitary continuous logic. In the signature of lattices the

class of Banach lattices isomorphic to Lp(µ) for a fixed 1 ≤ p <∞ and measure µ is axiomatizable,

by results from [20], [31]. The class of Banach spaces isometric to Lp(µ) is also axiomatizable in

the signature of Banach spaces (see [62]), as is the class of Banach spaces isometric to C(K) for a

fixed compact Hausdorff space K (see [61]). Further examples are described in [63, Chapter 13].

More recent examples include subclasses of the class of Nakano Banach spaces (see [96], [97]).

• In any signature with countably many constants (ci)i<ω, the statement that the constants form a

dense set can be expressed by the following sentence:

∀x
∨
i<ω

(d(x, ci) = 0).

In particular, this sentence implies that the structure is separable, and hence this example cannot be

expressed in the first-order fragment, because the Upward Löwenheim-Skolem theorem (Theorem

2.2.4) implies that every separable infinite-dimensional Banach space has elementary extensions of

arbitrarily large density.

• In the signature of normed spaces with countably many new constants (ci)i<ω, the following formula

ϕ(x) expresses that x ∈ span { ci : i < ω }:

ϕ(x) :
∨
n<ω

∨
a0∈Q∩(0,1)

· · ·
∨

an−1∈Q∩(0,1)

(∥∥∥∥∥x−∑
i<n

aici

∥∥∥∥∥ = 0

)
.
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We can express that (ci)i<ω is a λ-basic sequence for a fixed λ with the sentence σλ:

σλ :
∧
N<ω

∧
a0∈Q∩(0,1)

· · ·
∧

aN−1∈Q∩(0,1)

max
n≤N

∥∥∥∥∥∥
n∑
j=1

ajcj

∥∥∥∥∥∥ ≤ λ
∥∥∥∥∥∥
N∑
j=1

ajcj

∥∥∥∥∥∥
 .

We can therefore express that (ci)i<ω is a Schauder basis:

(∀xϕ(x)) ∧
∨
λ∈Q

σλ.

Note that this cannot be expressed in the first-order fragment of Lω1,ω, since having a Schauder

basis implies separability.

The same ideas as in the above example allow us to express that X (or equivalently, X∗) is not

super-reflexive – see [95, Theorem 3.22].

• In the signature of normed spaces with an additional predicate |||·|||, we can express that ‖·‖ and

|||·||| are equivalent by the axioms for |||·||| being a norm, plus the sentence:∨
C∈Q

∨
D∈Q
∀x (C ‖x‖ ≤ |||x||| ≤ D ‖x‖) .

• In the signature of Banach spaces augmented with two new sorts Y,Z for closed (infinite-dimensional)

subspaces, the following expresses that Y and Z witness the failure of hereditary indecomposability

(see [2, Proposition 1.1]): ∨
δ∈Q∩(0,1)

∀y ∈ Y ∀z ∈ Z (‖y − z‖ ≥ δ ‖y + z‖) .

• Failures of reflexivity can be expressed as follows. Beginning with a two-sorted signature, each sort

being the signature for Banach spaces, add countably many constants (ci)i<ω to the first sort, and

(c∗i )i<ω to the second sort. Let S be the signature obtained by then adding a relation symbol F

for the natural pairing on X ×X∗. Then in structures (X,X∗), the following expresses that the

constants witness the non-reflexivity of X (see [95, Theorem 3.10]):

∨
θ∈Q∩(0,1)

∧
j<ω

∧
i<j

F (ci, c
∗
j ) = 0

 ∧
 ∧
j≤i<ω

F (ci, c
∗
j ) = θ

 .

This example cannot be expressed in the first-order fragment of Lω1,ω, since it is known that there

are reflexive Banach spaces with non-reflexive ultrapowers.

• The failure of a Banach space to be stable, in the sense of Krivine and Maurey [77], can be

axiomatized in the signature of normed spaces with constants (ci)i<ω and (di)i<ω as follows:∨
ε∈Q∩(0,1)

∨
j<ω

∨
i<j

|‖ci − dj‖ − ‖cj − di‖| ≥ ε.
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More generally, we may replace ‖x− y‖ with any formula ϕ(x, y) to express that ϕ is not stable

(see [16]). It is well-known that stability is not first-order axiomatizable.

Several of the examples above show that negations of well-known properties in Banach spaces can be

expressed as single sentences of Lω1,ω. In light of 3.1.2, the positive versions can also be expressed as

Lω1,ω sentences. Many of the sentences above are expressed in language including constant symbols for

the elements of a fixed sequences. We could avoid changing the language if we allowed infinite strings of

quantifiers in our logic - such a logic would be the analogue of Lω1,ω1 for metric structures (this approach

is taken by Ortiz in [88]).

We give an application of the two-cardinal theorem from Section 3.4.1 to separable quotients of

Banach spaces. The well-known separable quotient problem asks whether every infinite-dimensional Ba-

nach space has an infinite-dimensional separable quotient; equivalently, whether whenever X is infinite-

dimensional there is an infinite-dimensional separable Y and a surjective bounded linear map from X to

Y . This conjecture has been verified in several cases - see [87] for a survey. More recent results include

that every dual space has a separable quotient [1], and that it is consistent with ZFC that every Banach

space of density ≥ ℵω has a separable quotient [34].

While we do not give any new answer to the separable quotient problem, we do show that in a sense

countable continuous fragments of Lω1,ω cannot distinguish between arbitrary quotients and separable

ones, so any property of a space which implies it does not have a separable quotient cannot be expressed

in such a fragment. Our result generalizes a theorem of Ben Yaacov and Iovino [14] for the first-order

fragment. We will need the following lemma from [14]; the proof sketched there has an error1, so for the

convenience of the reader we provided a detailed proof here.

Lemma 3.6.1 ([14, Proposition 5.1]). Let X,Y,X ′, Y ′ be Banach spaces, and let T : X → Y and

T ′ : X ′ → Y ′ be bounded linear functions such that (X,Y, T ) ≡ (X ′, Y ′, T ′). Then T is surjective if and

only if T ′ is surjective.

Proof. Throughout the proof we write BA(r) to denote the open ball in the space A centred at 0 and of

radius r. We actually prove that T is surjective if and only if the following statement holds:

(∃δ > 0) (∀ε > 0) (∀y ∈ BY (δ)) (∃x ∈ BX(1)) ‖T (x)− y‖ ≤ ε. (3.6.1)

For a fixed δ, the remaining part of Statement 3.6.1 can be expressed as a sentence of (finitary)

continuous logic, so proving that surjectivity is equivalent to Statement 3.6.1 is sufficient.

Suppose that T is surjective. By the Open Mapping Theorem T is an open map, so in particular

there is a δ > 0 such that BY (δ) ⊆ T [BX(1)], which clearly implies Statement 3.6.1.

Now for the converse direction we will show that T is an open map. Surjectivity then follows because

T [X] will be a subspace of Y containing a ball around 0. By the linearity of T it actually suffices just

to show that there is an open ball around 0 included in T [BX(1)].

We first note that Statement 3.6.1 implies that there is an r > 0 such that BY (r) ⊆ T [BX(1)].

Indeed, set r = δ/2, and pick y ∈ BY (r). Then 2y ∈ BY (δ), so by hypothesis we have x ∈ BX(1) with

‖T (x)− 2y‖ ≤ ε/2. We have x
2 ∈ BX(1), and∥∥∥T (x

2

)
− y
∥∥∥ =

1

2
‖T (x)− 2y‖ ≤ ε/2,

1Specifically, their version of Statement 3.6.1 had δ depending on ε, while ours gives a uniform δ.
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so the ε-neighbourhood of T [BX(1)] includes BY (r). It follows that BY (r) ⊆ T [BX(1)].

The remainder of the proof is exactly a portion of the proof of the Open Mapping Theorem, which

we reproduce here almost verbatim from [48].

By the linearity of T we have BY (r2−n) ⊆ T [BX(2−n)]. Suppose we are given y ∈ Y with ‖y‖ < r/2.

Then y ∈ T [BX(1/2)], so there is x1 ∈ BX(1/2) such that ‖y − T (x1)‖ < r/4. Repeating this process

we find xn ∈ BX(2−n) such that
∥∥∥y −∑n

j=1 T (xj)
∥∥∥ < r2−n−1. The completeness of X implies that

the series
∑∞
j=1 xj converges to some x ∈ X. Then ‖x‖ <

∑∞
j=1 2−n = 1, and y = T (x). Therefore

BY (r/2) ⊆ T [BX(1)].

Theorem 3.6.2. Let X and Y be infinite-dimensional Banach spaces with density(X) > density(Y ).

Let T : X → Y be a surjective bounded linear function. Let L be a countable continuous fragment

of Lω1,ω(S), where S is a two-sorted signature, each sort of which is the signature of Banach spaces,

together with a symbol to represent T . Then there are Banach spaces X ′, Y ′ with Y ′ separable and X ′ of

density ℵ1, and a surjective bounded linear function T ′ : X ′ → Y ′, such that (X,Y, T ) ≡L (X ′, Y ′, T ′).

Proof. By Theorem 3.4.4 we get normed linear spaces X̃, Ỹ and a bounded linear map T̃ : X̃ → Ỹ with

the desired properties. Since L is a continuous fragment we may take completions to get the desired

spaces X ′, Y ′ and function T ′. Surjectivity of T ′ follows from Lemma 3.6.1 and the fact that every

fragment contains the finitary part of Lω1,ω.

We note that if the space Y in the statement of Corollary 3.6.2 is already separable then the Downward

Löwenheim-Skolem Theorem suffices to obtain a stronger result:

Proposition 3.6.3. Fix a continuous countable fragment L of Lω1,ω. Then every infinite-dimensional

separable quotient of a non-separable Banach space X is also a quotient of a Banach space X ′, where

X ′ has density ℵ1, and X ′ �L X.

Proof. Let D ⊆ Y be countable and dense, and use Downward Löwenheim-Skolem to find (X ′, Y ′, T ′) �L
(X,Y, T ) of density ℵ1 with D ⊆ Y ′. By the continuity of the fragment L, we may assume that X ′ and

Y ′ are complete. It therefore suffices to observe Y ′ = Y . Indeed, we have D ⊆ Y ′ ⊆ Y , with D dense in

Y , so Y ′ is also dense in Y . Since Y ′ is complete it is closed in Y , and hence Y ′ = Y .



Chapter 4

Model theory of commutative

C*-algebras

This chapter contains applications of the continuous first-order logic described in Chapter 2 to the study

of commutative unital C*-algebras. By the Gelfand-Naimark theorem (Theorem 4.1.2 below) our present

work can be viewed as a model-theoretic approach to the study of compact Hausdorff spaces (see Section

4.1.1 below for a discussion of previous model-theoretic approaches to compact spaces). The results of

this chapter were obtained in collaboration with several co-authors, and appear in the preprints [38],

[39], and [40]. For brevity we refer to compact Hausdorff spaces as compacta, and connected compacta

as continua.

4.1 Commutative C*-algebras

We recall here some notions from the theory of C*-algebras that will be useful later in the chapter. We

also describe how C*-algebras can be viewed as metric structures in the sense of Definition 2.1.1.

Definition 4.1.1. A commutative unital C*-algebra is a complex Banach space A together with a

commutative multiplication · : A2 → A making A into an associative algebra with multiplicative unit 1,

and an adjoint operation ∗ : A→ A, such that the following hold for all a, b ∈ A:

• ‖ab‖ ≤ ‖a‖ ‖b‖,

• (a∗)∗ = a,

• (a+ b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗

• for all λ ∈ C, (λa)∗ = λa∗,

• a ∈ A, ‖aa∗‖ = ‖a‖2.

C*-algebras being, by definition, based on complete metric spaces, throughout this chapter we con-

sider only metric structures based on complete metric spaces. We will be working in first-order continuous

logic, so we will not encounter any of the complications that arose in Chapter 3 regarding taking metric

completions.

46
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The primary notion of morphism between unital C*-algebras is the (unital) *-homomorphism, that

is, an algebraic homomorphism which also preserves the multiplicative unit and the adjoint operation.

Such morphisms are automatically 1-Lipschitz, and are isometric if they are injective (see [32, Theorem

1.5.5]). By a *-isomorphism we mean a bijective *-homomorphism.

Given a compact Hausdorff space X, it is straightforward to see that C(X), the set of continuous

complex-valued functions on X, is a commutative unital C*-algebra with the operations of pointwise

sum, multiplication, scalar multiplication, and complex conjugation, and equipped with the supremum

norm. The converse to this statement is the following well-known theorem of Gelfand and Naimark.

Theorem 4.1.2 ([32, Theorem I.3.1]). Every commutative unital C*-algebra is *-isomorphic to C(X) for

some compact space X. The association between X and C(X) is a contravariant equivalence of categories

from the category of compact Hausdorff spaces with continuous maps to the category of commutative

unital C*-algebras with *-homomorphisms.

Remark 4.1.3. In general topology it is more common to study rings of real-valued functions than

the complex-valued functions we use here. There are two reasons for our choice to use complex-valued

functions. The first is that the Gelfand-Naimark theorem provides a convenient abstract characterization

of those Banach algebras which are isometrically isomorphic to C(X) for some compact X. An abstract

characterization also exists in the real-valued setting (see [65, Theorem 6]), but we will benefit from the

fact that an appropriate framework for studying commutative unital C*-algebras in continuous logic has

already been developed, beginning in [46]. The second reason for preferring complex-valued functions

is that there has recently been considerable interest in the general model-theoretic study of C*-algebras

(see [45]), and our present work is a contribution to the commutative case of this larger project.

An element f ∈ C(X) is self-adjoint if f∗ = f , equivalently, f [X] ⊆ R. The function f is positive

if there is a g ∈ C(X) such that f = g∗g, equivalently, f [X] ⊆ [0,∞). Importantly, a projection is a

function f ∈ C(X) such that f = f∗ = f2, or equivalently, f [X] ⊆ {0, 1}. A projection is non-trivial if

it is neither identically 0 nor 1, that is, if f [X] = {0, 1}. Projections are exactly the indicator functions

of clopen subsets of X. A minimal projection is the indicator function of a connected clopen set.

In order to treat model-theoretic aspects of commutative C*-algebras, we must view these objects

as metric structures. In [46] a modified version of continuous first-order logic was presented for use

with C*-algebras, based on their notion of domains of quantification. This is essentially equivalent to

our convention of viewing a C*-algebra as a many-sorted structure, with a sort for each closed ball of

rational radius centred at 0. Each sort is equipped with addition, multiplication, scalar multiplication,

and adjoint functions with appropriate sorts as the codomains. Inclusion maps between the sorts are

also included in the language.

The class of C*-algebras “should” be universally axiomatizable, since it is closed under ultraproducts

and substructures. Unfortunately, in the framework described above, some ∀∃-axioms are required to

ensure that in each structure the interpretations of the sorts are as intended. This problem can be

overcome by adding predicate symbols for each formula of the form ‖P (~x)‖, where P is a ∗-polynomial.

As these predicates were already given by formulas, this change is harmless. See [46] for details.

In the appropriate language, then, the class of C*-algebras is universally axiomatizable. Commuta-

tivity of multiplication is clearly expressed by the universal sentence supx,y ‖xy − yx‖. We will later be

interested in those algebras of the form C(X) where X is a continuum. The space X is a continuum if
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and only if C(X) has no non-trivial projections, and this can be expressed by the universal axiom

sup
‖f‖=1

(
‖1− ff∗‖ ≤ 1

2

)
∨
(∥∥ff∗ − (ff∗)2

∥∥ ≥ 1

4

)
.

To see this, first note that if p is a non-trivial projection, then ‖p‖ = 1, p = pp∗, ‖1− p‖ = 1 and∥∥p− p2∥∥ = 0, so the above sentence is not satisfied. Conversely, if X is connected and f ∈ C(X)

with ‖f‖ = 1 satisfies ‖1− ff∗‖ > 1/2, then the minimum of the image of ff∗ is less than 1/2, while

‖ff∗‖ = ‖f‖2 = 1 implies that the maximum of the image of ff∗ is greater than 1/2. In particular,

ff∗ attains the value 1/2, and so
∥∥ff∗ − (ff∗)2

∥∥ ≥ 1/4 as required.

We let Tcmpt denote the theory whose models are exactly the commutative C*-algebras, and Tconn

denote the theory whose models are exactly the commutative C*-algebras without non-trivial projections.

As we have seen above, both of these theories are universally axiomatizable.

4.1.1 Connections to prior work

We view the model-theoretic treatment of commutative unital C*-algebras as an indirect model theory of

compacta, via the Gelfand-Naimark theorem. The earliest work in model-theoretic topology used discrete

structures as replacements for topological spaces, so that the methods of first-order model theory could

be applied (see [64]). Another approach, introduced by Bankston, develops a model theory for compacta

by directly “dualizing” model-theoretic notions. Since we will make use of results which were stated

and proved in this framework, we include here a description of how Bankston’s terminology translates

to ours. The central notion of Bankston’s model theory of compacta is the following ultracoproduct of

compact spaces.

Definition 4.1.4 ([6]). Let (Xi)i∈I be compacta, and let U be an ultrafilter on the index set I. Let

Y =
⋃
i∈I(Xi × {i}) be the topological disjoint union of the Xi, so Y is a locally compact space. Let

q : Y → I be the projection onto the second coordinate, and extend q to the Stone-Cěch compactification

of Y , q : βY → βI. The ultracoproduct
∑
i∈I Xi is then defined to be∑
i∈I

Xi = q−1({U}).

When Xi = X for all i, we speak of the ultracopower, and denote it by XU.

The most important fact for us is that this ultracoproduct construction exactly corresponds to the

(metric) ultraproduct of the corresponding C*-algebras.

Fact 4.1.5 ([57]). For any compacta (Xi)i∈I , and any ultrafilter U on I,

C

(∑
U

Xi

)
∼=
∏
U

C(Xi).

In ordinary model theory there is a canonical diagonal embedding from a structure to its ultrapower.

In the topological setting, there is the co-diagonal surjection ∇U,X : XU → X, defined to be the

restriction to XU of the Stone-Čech lifting of the projection X × I → X. From this description it is

clear that ∇U,X is a continuous surjection, and the dual map from C(X) to C(X)U is the diagonal

embedding.



Chapter 4. Model theory of commutative C*-algebras 49

Definition 4.1.6 ([6]). Compacta X and Y are co-elementarily equivalent if there is an ultrafilter U on

some index set I such that XU is homeomorphic to YU.

Fact 4.1.5, together with the Keisler-Shelah theorem for metric structures, immediately implies the

following.

Fact 4.1.7. Compacta X and Y are co-elementarily equivalent if and only if C(X) and C(Y ) are

elementarily equivalent as metric structures.

A number of interesting topological properties are known to be preserved by co-elementary equiva-

lence – see Section 4.2 below.

Definition 4.1.8 ([6], [8]). Let X and Y be compacta. A function f : X → Y is co-elementary if there

is an ultrafilter U, and a homeomorphism H : XU → YU, such that ∇U,Y ◦H = f ◦ ∇U,X .

The function f is co-existential if there is a compactum Z, a co-elementary map g : Z → Y , and a

continuous surjection h : Z → X, such that g = f ◦ h.

Co-elementary and co-existential maps are clearly continuous surjections. It is also clear from the

definition that the co-diagonal map ∇U,X : XU → X is co-elementary. The well-known characterization

of elementary and existential maps which inspired the above definition shows:

Fact 4.1.9. A map f : X → Y is co-elementary (resp. co-existential) if and only if the dual map

f̃ : C(Y )→ C(X) is elementary (resp. existential).

Recall that a metric structure M is a existentially closed model of a theory T if M |= T and

whenever N |= T every embedding of M into N is existential (i.e., preserves the values of ∃-formulas).

The corresponding notion for compacta is a co-existentially closed member of a class K of compacta.

Definition 4.1.10 ([9]). Let K be a class of compacta. A space X ∈ K is a co-existentially closed

member of K if whenever Y ∈ K and f : Y → X is a continuous surjection, then f is a co-existential

map. Particularly, when K is the class of all compacta we say X is a co-existentially closed compactum,

and when K is the class of continua we say X is a co-existentially closed continuum.

The expected translation to C*-algebras follows from Fact 4.1.9

Fact 4.1.11. A space X is a co-existentially closed compactum (resp. continuum) if and only if C(X)

is an existentially closed model of Tcmpt (resp. Tconn).

As mentioned above, another frequently used technique in the model theory of compacta is to use

discrete structures as stand-ins for the compact spaces, so that the usual methods of first-order model

theory can be applied. In the special case where the spaces are 0-dimensional this approach works

perfectly, thanks to Stone duality, with Boolean algebras used as the discrete counterpart to the 0-

dimensional spaces. There is no such duality between general compact spaces and discrete structures in

any finite language (see [3]), but it has nevertheless been fruitful to consider lattice bases of closed sets.

The relevant result for our purposes is the following.

Fact 4.1.12 ([6]). Let X and Y be compacta, and let L and L′ be lattices which are bases for the closed

sets of X and Y , respectively. If L and L′ are elementarily equivalent as lattices, then X and Y are

co-elementarily equivalent.
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In [5] Bankston shows that the converse to the above fact is false – co-elementarily equivalent spaces

can have non-elementarily equivalent lattice bases of closed sets.

As an example of how lattices can be used in the study of compacta, in [35] Dow and Hart use

lattices and a saturating ultrafilter to show that under cov(meagre) = 2<c = c there exists a surjectively

universal compactum and a surjectively universal continuum of weight 2ℵ0 . We can obtain the same

result by applying Theorem 2.4.4 to take an ultrapower of C(2N) (respectively, C([0, 1])) by a metric

saturating ultrafilter, and then applying Gelfand-Naimark duality; Fact 4.1.5 shows that this method

obtains the same spaces as in [35], namely the ultracopowers (2N)U and ([0, 1])U, respectively.

4.2 Elementary properties

In this section we describe some of the properties of the space X which are reflected in the first-order

continuous theory of C(X), as well as properties of elements which can be detected from their types. In

the case where X is 0-dimensional we give a full description of all possible complete theories of C(X).

Many interesting topological properties have been shown to be preserved by co-elementary equiva-

lence.

Theorem 4.2.1 ([6], [7], [11]). Let X and Y be compacta with X ≡ Y . Then:

1. X is a continuum if and only if Y is continuum,

2. if X and Y are locally connected and metrizable, the X is an arc if and only if Y is an arc and X

is a simple closed curve if and only if Y is a simple closed curve,

3. X is a decomposable (resp. indecomposable, hereditarily indecomposable) continuum if and only if

Y is a decomposable (resp. indecomposable, hereditarily indecomposabl) continuum,

4. X and Y have the same number of isolated points as counted in N ∪ {∞}

5. X and Y have the same Lebesgue covering dimension.

Among properties not preserved by co-elementary equivalence we clearly have metrizability and

weight. More surprisingly, hereditary decomposability is not preserved by co-elementary equivalence

[11, Proposition 4.3]

We will later need to know what information is captured by the type of an element of C(X). For

quantifier-free types the situation is particularly simple.

Lemma 4.2.2. Let X be any compactum. For any f, g ∈ C(X), qftp(f) = qftp(g) if and only if

f [X] = g[X].

Proof. If f [X] = g[X], then the C*-algebras generated by (1, f) and (1, g) are isomorphic by a map

sending f to g [32, Corollary I.3.2], from which it follows that qftp(f) = qftp(g).

Conversely, suppose that qftp(f) = qftp(g). Note that the function |f | : X → C is quantifier-free

definable from f , since |f | is the unique function satisfying |f |2 = ff∗. Let N ∈ N be sufficiently large
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so that N > |f(x)| , |g(x)| for all x ∈ X. Then for any λ ∈ C with |λ| < N , we have:

λ ∈ f [X] ⇐⇒ there is x ∈ X such that |N1− |f(x)− λ1|| = N

⇐⇒ ‖N1− |f − λ1|‖ = N

⇐⇒ ‖N1− |g − λ1|‖ = N since qftp(f) = qftp(g)

⇐⇒ λ ∈ g[X]

Lemma 4.2.3. There is a formula ϕ(x) such that for any compactum X, C(X) |= ϕ(f) if and only if

f is a minimal projection.

Proof. Let P denote the set of projections in C(X). The set P is definable (in the sense of [13] – see

the remarks following Lemma 2.1 in [26]), and hence we can relativize quantifiers to P. The necessary

formula is

(
‖x− x∗‖ =

∥∥x− x2∥∥ = 0
)
∧ (‖x‖ = 1) ∧ (‖1− x‖ = 1) ∧

(
sup
q∈P

(‖q − p‖ = 1) ∨ ‖q‖ = 0

)
.

4.2.1 Complete theories for 0-dimensional X

As we saw in the previous section, the covering dimension of a compactum X can be detected from the

continuous first-order theory of C(X). When X is 0-dimensional we have two algebras associated to X,

namely the Boolean algebra CL(X) of clopen subsets of X and the C*-algebra C(X). By the Stone

and Gelfand-Naimark dualities, respectively, each of these algebras determine X up to homeomorphism.

The connection between the discrete first-order theory of the Boolean algebra and the continuous metric

theory of the C*-algebra is similarly complete. The results of this subsection appear in [40].

Theorem 4.2.4. Let X and Y be 0-dimensional compacta. Then C(X) ≡ C(Y ) if and only if CL(X) ≡
CL(Y ).

Proof. This follows from Fact 4.1.7 and results of [6], but we give a direct proof that avoids co-elementary

equivalence. Let U be an ultrafilter on some set I, and let M be either a metric or discrete structure. For

each a ∈ U, let Ma =
∏
i∈aM . Then the ultrapower MU is the colimit of the collection of Ma’s along

the partial order category (U,⊆)op. Let F be the functor from Boolean algebras to commutative unital

C*-algebras given by F (A) = C(St(A)), where St(A) is the Stone space of A. This functor is an equiv-

alence of categories when the codomain is restricted to algebras of the form C(X) for X 0-dimensional.

Equivalences of categories preserve products and colimits, so the above discussion shows that for any

Boolean algebra A, F (AU) ∼= F (A)U. That is, for any compactum X, C(X)U ∼= C(St(CL(X)U)). The

proof is then complete by applying the Keisler-Shelah theorem.

It is interesting to note that the above result fails when C(X) is considered only as a discrete ring

(see [4, Section 2]).

Corollary 4.2.5. There are exactly ℵ0 distinct complete theories of C*-algebras of the form C(X) for

X a 0-dimensional compactum.
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Proof. There are exactly ℵ0 distinct complete theories of Boolean algebras; see [28, Theorem 5.5.10] for

a description of these theories.

Corollary 4.2.6. If X and Y are infinite, compact, 0-dimensional spaces both with the same finite

number of isolated points or both having a dense set of isolated points, then C(X) ≡ C(Y ).

In particular, let α be any infinite ordinal. Then C(α + 1) ≡ C(βω). Moreover, if α is a countable

limit, C(2N) ≡ C(βω \ ω) ≡ C(βα \ α).

Proof. GivenX,Y as in the hypothesis, again by [28, Theorem 5.5.10] we have that CL(X) ≡ CL(Y ).

The results above give a complete description of the theories of C(X) when X is compact and 0-

dimensional. Every compact space is the perfect image of a 0-dimensional compactum, and perfect maps

are known to preserve many interesting topological properties, so it might be hoped that the general

model theory of algebras C(X) could be reduced to the case where X is 0-dimensional, at least in some

cases. We do not presently know of any applications of this sort, but we point out that if f : Y → X is a

perfect map then the dual map f∗ : C(X)→ C(Y ) is an embedding, but not an elementary embedding,

since the property of Y being 0-dimensional can be expressed as a sentence of first-order continuous

logic.

4.3 Quantifier elimination

We consider the question of which complete theories of commutative unital C*-algebras have quantifier

elimination. The main result is:

Theorem 4.3.1. The complete theories of commutative unital C*-algebras which have quantifier elimi-

nation are exactly the theories of C,C2, and C(2N).

This result was originally obtained in several stages with a variety of co-authors. Our presentation

here is a simplification and synthesis of arguments found in [38], [39], and [40]. Before beginning the

proof we point out that in the non-commutative setting we show in [38] that only one further theory

of C*-algebras with quantifier elimination exists, namely the theory of M2(C) (the algebra of 2 × 2

matrices over C). As this thesis is focusing on the case of commutative C*-algebras, we will not prove

this statement about non-commutative algebras, which uses techniques significantly different from the

primarily topological ones we will need in the commutative case.

4.3.1 Algebras with quantifier elimination

We begin with the positive results. Two finite-dimensional algebras were shown to have quantifier

elimination in [38].

Proposition 4.3.2. The theories of C and C2 have quantifier elimination.

Proof. We show the proof for C2, the proof for C being similar and easier. Since C2 is finite-dimensional,

it is the unique (up to isomorphism) model of its first-order theory. We use the quantifier elimination

test of Proposition 2.3.2. After identifying isomorphic algebras, the diagram takes the form
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B

C2 C2

C2

f ⊆

i j

	

Here B is a subalgebra of C2, so is either isomorphic to C or C2. Again identifying B with one of

these two algebras, elementary linear algebra shows that f and the inclusion map are conjugate by an

automorphism of C2. Conjugating j by the same automorphism produces the required embedding i.

To show quantifier elimination for C(2N), we give a detailed version of the proof from [39], which

also shows that Th(C(2N)) is the model completion of Tcmpt. A direct proof of quantifier elimination,

due to Farah and Hart, is presented in [40]. The results about model companions and completions that

we use here are described in Section 2.3.

Proposition 4.3.3. The theory of C(2N) is the model completion of Tcmpt, and hence has quantifier

elimination.

Proof. We first show that the theory of C(2N) is the model companion of Tcmpt. In [8] Bankston shows

that the co-existentially closed compacta are exactly the 0-dimensional compacta without isolated points.

By the translations described in Section 4.1.1, together with Theorem 4.2.4, this is equivalent to saying

that the existentially closed models of Tcmpt are exactly the algebras elementarily equivalent to C(2N).

It follows that Th(C(2N)) is the model companion of Tconn.

Next, we see that Tcmpt is the model completion of Tconn. It suffices to show that Tcmpt has the

amalgamation property. Phrased in terms of compacta, we must show that whenever X, Y , and Z are

compacta and f : X → Z and g : Y → Z are continuous surjections, there is a compactum W and

continuous surjections r : W → X and s : W → Y such that f ◦ r = g ◦ s. It is not difficult to see that

we can take W = { (x, y) ∈ X × Y : f(x) = g(y) }, and let r and s be the projections onto the first and

second coordinates, respectively.

Finally, Th(C(2N)) has quantifier elimination, because it is the model completion of the universally

axiomatizable theory Tcmpt (see Proposition 2.3.12).

The fact that the algebra C(2N) is one of few C*-algebras to possess desirable model-theoretic prop-

erties can be explained in several ways. We have just shown that its theory is the model completion of

Tcmpt. One can also construct C(2N) as the Fräıssé limit of the class of finite-dimensional commutative

C*-algebras (in an appropriate context for understanding Fräıssé limits of C*-algebras, as developed in

[37]).

4.3.2 Topological consequences of quantifier elimination

Towards showing that our current list of theories of commutative C*-algebras with quantifier elimination

is complete, we show some consequences for X of Th(C(X)) having quantifier elimination. The reduction

to the connected case that we prove in this subsection appeared in [38].
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Lemma 4.3.4. Suppose that Th(C(X)) has quantifier elimination. If X has a non-trivial connected

clopen subset then every non-trivial clopen subset of X is connected.

Proof. Immediate from quantifier elimination, Lemma 4.2.2, and Lemma 4.2.3.

Lemma 4.3.5. If Th(C(X)) has quantifier elimination and X is 0-dimensional with at least three points

then X has no isolated points.

Proof. If x ∈ X is isolated then by Lemma 4.3.4 X \ {x} is connected. Since X is 0-dimensional and

compact it is totally disconnected, so X \ {x} is a singleton.

Proposition 4.3.6. If Th(C(X)) has quantifier elimination and X has at least three points then either

X is connected or C(X) ≡ C(2N).

Proof. Suppose that X has at least three points, is not connected, and Th(C(X)) has quantifier elimina-

tion. As finite compacta are discrete, Lemma 4.3.5 implies that X is infinite. Without loss of generality

we may assume that C(X) is separable, so that X is metrizable.

Let ∅ 6= C ⊆ X be clopen, and suppose for a contradiction that C is connected. Then by Lemma

4.3.4 X \C is also connected. Let f, g ∈ C(X) be such that f [C] = [0, 1], f [X \C] = {0}, g[C] = [0, 1/2],

and g[X \ C] = [1/2, 1]. It follows from Lemma 4.2.2 and quantifier elimination that tp(f) = tp(g). On

the other hand, there is a projection q such that fq = q, but for any projection q we have ‖gq − q‖ ≥ 1
2 ,

giving the desired contradiction.

Now by repeatedly splitting each clopen subset of X into two clopen subsets we obtain a continuous

surjection X → 2N, and hence an embedding C(2N) → C(X). On the other hand, 2N is a surjectively

universal compact metric space, so there is a surjection of 2N onto X, and hence an embedding of

C(X)→ C(2N). We therefore have a chain of embeddings:

C(2N)→ C(X)→ C(2N)→ C(X)→ · · ·

Let A be the union of this chain. Then A is the union of a chain of structures isomorphic to C(X), and

by the assumption of quantifier elimination this chain is elementary, so A ≡ C(X). The algebra A is also

the union of a chain of algebras isomorphic to C(2N), and this chain is also elementary by Proposition

4.3.3, so A ≡ C(2N). Therefore C(X) ≡ C(2N).

4.3.3 Quantifier elimination and continua

In light of the work done above, the remainder of the proof of Theorem 4.3.1 concerns the model theory

of algebras C(X), where X is a continuum. We will be interested only in non-degenerate continua,

that is, continua with more than one point, so for brevity we say “continuum” for “non-degenerate

continuum”. We call a theory a theory of continua if all of its models are of the form C(X) for X a

continuum. Recalling that C(X) is finite-dimensional if and only if X is finite, we see that a theory

of continua is any consistent extension of Tconn whose models are infinite-dimensional. Importantly,

C(X) is infinite-dimensional if and only if the unit ball of C(X) is not totally bounded, and this can be

expressed by a ∀∃-theory. The material of this subsection appears in [39]. The next proposition should

be compared with the situation for Tcmpt, Proposition 4.3.3.

Proposition 4.3.7. Tconn does not have a model completion.
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Proof. If Tconn has a model completion then the class of models of Tconn has the amalgamation property.

As in Proposition 4.3.3, we state the amalgamation property in terms of topological spaces, rather than

C*-algebras. In terms of continua, the amalgamation property states that whenever X, Y , and Z are

continua and f : X → Z and g : Y → Z are continuous surjections, there is a continuum W and

continuous surjections r : W → X and s : W → Y such that f ◦ r = g ◦ s. We give an example, pointed

out to us by Logan Hoehn, to show that the class of continua does not enjoy this property.

Let X = Y = [0, 1], and let Z be the circle S1, which, for convenience, we view as the subset of C
consisting of complex numbers eiθ. Let f : X → Z be f(x) = e2πix and g : Y → Z be g(y) = eπi(2y+1).

Suppose that W, r, s complete the amalgamation, in the above sense. Let A = r−1([0, 1/2])∩s−1([1/2, 1])

and B = r−1([1/2, 1])∩s−1([0, 1/2]), both of which are closed inW . It is easy to see that A∪B = W . Now

suppose that w ∈ A∩B. Then r(w) = s(w) = 1/2, so f(r(w)) = eπi 6= e2πi = g(s(w)), contradicting the

assumption that f◦r = g◦s. Therefore A∩B = ∅, and so W is disconnected, yielding a contradiction.

We are now in a position to complete the proof of Theorem 4.3.1, by showing that no theory of

continua can have quantifier elimination. We will need the following important fact about theories of

continua.

Lemma 4.3.8. If X and Y are any two continua, then Th∀(C(X)) = Th∀(C(Y )).

Proof. By the Downward Löwenheim-Skolem theorem (Theorem 2.2.5) we may assume that C(X) and

C(Y ) are separable, that is, that X and Y are metrizable. In [60, Proposition 3.1] Hart shows that there

exists a metrizable continuum Z such that:

• Y is a continuous image of Z, and

• X and Z have lattice bases of closed sets which are elementarily equivalent in the discrete first-order

language of lattices.

(1) implies that C(Z) ⊆ C(Y ). By Facts 4.1.7 and 4.1.12 condition (2) implies that C(X) ≡ C(Z). We

therefore have C(X) ≡ C(Z) ⊆ C(Y ), so Th∀(C(Y )) ⊆ Th∀(C(X)). Interchanging the roles of X and

Y we obtain the conclusion.

Corollary 4.3.9. No theory of continua has quantifier elimination.

Proof. If a theory of continua had quantifier elimination then, by Lemma 4.3.8, that theory would be

the model completion of Tconn, contradicting Proposition 4.3.7.

The combination of Propositions 4.3.2, 4.3.3, and 4.3.6, and Corollary 4.3.9 completes the proof of

Theorem 4.3.1. Before turning to the question of whether there are any theories of continua which are

model complete, we pause to observe that Lemma 4.3.8 implies that every theory of continua has the

maximum possible number of separable models.

Proposition 4.3.10. Every theory of continua has 2ℵ0 non-isomorphic separable models.

Proof. Let T be a theory of continua. Let C be a family of non-homeomorphic metrizable continua such

that each X ∈ C has C(X) |= T , and every complete separable model of T is isomorphic to C(X) for

some X ∈ C. We first observe that every metrizable continuum is the continuous image of a continuum

in C. Let X be any metrizable continuum, and let Y be a metrizable continuum such that C(Y ) |= T . By

Lemma 4.3.8 there is a continuum Z such that C(Y ) ≡ C(Z), and C(X) embeds in C(Z); it follows from
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the Downward Löwenheim-Skolem theorem that C(Z) can be chosen to be separable, so Z is metrizable.

This completes the claim.

It is shown in [83, Section 20] that there is a family K of metrizable continua such that |K| = 2ℵ0

and no metrizable continuum maps onto uncountably many members of K. In particular, the continua

in C can together map onto at most |C| · ℵ0 of the continua in K. As we have just shown that every

continuum in K is the image of a continuum in C, we must have |C| = |K| = 2ℵ0 .

4.3.4 Model completeness and the pseudoarc

Having shown that no theory of continua has quantifier elimination, it is natural to ask about the weaker

property of model completeness. To conclude our discussion of topics related to quantifier elimination,

we prove that the only possible theory of continua which is model complete is Th(C(P)), where P is the

pseudoarc. The material of this section appears in [39].

Lemma 4.3.11. There is at most one model complete theory of continua; if there is one, it is the model

companion of Tconn.

Proof. Immediate from Lemma 4.3.8.

In fact, we can obtain more information from Lemma 4.3.8, though we will not make further use of

the following observation.

Lemma 4.3.12. There is at most one complete ∀∃-axiomatizable theory of continua.

Proof. Suppose that T and T ′ are complete ∀∃-axiomatizable theories of continua. Given A0 |= T , by

Lemma 4.3.8 there is A1 |= T ′ such that A0 embeds in A1. Then again by Lemma 4.3.8 there is A2 |= T

such that A1 embeds in A2. Continuing in this way we produce a chain A0 ⊆ A1 ⊆ · · · , with even

indices models of T and odd indices models of T ′. The union A of this chain is the union of the chain of

odd-indexed models, and so is the union of a chain of models of the ∀∃-axiomatiable theory T . By the

standard preservation result it follows that A |= T . Similarly we have A |= T ′.

If Tconn has a model companion then that model companion is the theory of the existentially closed

models of Tconn, by Proposition 2.3.11. We therefore wish to know which models of Tconn are existentially

closed, or, equivalently, which continua are co-existentially closed. The most natural candidate is the

pseudoarc, and indeed in [10] Bankston asked if the pseudoarc is a co-existentially closed continuum.

We answer this question in the affirmative.

The pseudoarc is a continuum originally discovered independently by Knaster [71] and Möıse [86].

Rather than give a construction of this space here, we instead describe two properties which characterize

the pseudoarc up to homeomorphism.

Definition 4.3.13. A continuum is chainable if every open cover can be refined to a finite open cover

(Un)n<N such that Un ∩ Um 6= ∅ if and only if |n−m| ≤ 1.

A continuum is indecomposable if it cannot be written as the union of two proper subcontinua, and

hereditarily indecomposable if every subcontinuum is indecomposable.

The abstract characterization of the pseudoarc, due to Bing [17], is that the pseudoarc is the unique

non-degenerate, hereditarily indecomposable, chainable continuum. It is one-dimensional, and is homeo-

morphically embedded in R2. For more on the pseudoarc, see [79]. Bankston [11, Corollary 4.13] showed



Chapter 4. Model theory of commutative C*-algebras 57

that a co-existentially closed continuum is necessarily one-dimensional and hereditarily indecomposable,

motivating his question of whether the pseudoarc is co-existentially closed.

Following the terminology of [45] (see also [47]), we say that a class K of separable models of Tconn

is definable by a uniform sequence of universal types if there are existential formulas (ϕm,n(~xm))m,n∈N

such that a model C(X) of Tconn belongs to K if and only if, for all m ∈ N, we have

C(X) |= sup
~xm

inf
n
ϕm,n(~xm).

Theorem 4.3.14. The class of models C(X) of Tconn with X chainable is uniformly definable by a

sequence of universal types.

Proof. Consider the following quantifier-free formulae:

• ϕk(~f) = |‖
∑
f∗i fi‖ − ‖(‖

∑
f∗i fi‖ −

∑
f∗i fi)‖|

• ψl,m1 (~g, w) := d((g∗1g1 + · · ·+ g∗mgm)− 1
l · 1, w

∗w)

• ψm2 (~g) := max|i−j|≥2 ‖gigj‖

• ψk,m3 (~f,~g,~h) := maxj mini d(f∗i fi − g∗j gj , h∗ijhij)

Let σk(~f) denote

inf
(m,l)

inf
~g

inf
~h

inf
w

min(ϕk,max(ψl,m1 , ψm2 , ψ
k,m
3 )).

We show that a metrizable continuum X is chainable if and only if, for all k, we have(
sup
~f

σk(~f)

)C(X)

= 0.

We start with the “if” implication: pick a finite open cover (Ui) of X and take a sequence (fi) from

C(X) with ‖fi‖ = 1 and such that Ui = {x ∈ X : fi(x) 6= 0}. (This is possible for, in a metrizable

compact space, every closed set is the zeroset of a continuous function.) It follows that
∑
f∗i fi is

invertible, so ϕk(~f) 6= 0, and hence there is m and functions g1, . . . , gm with
∑
g∗i gi invertible. Setting

Vi = {x ∈ X | gi(x) 6= 0}, we have the required refinement.

For the converse, note that ϕk(~f) = 0 if and only if 0 is in the spectrum of
∑
f∗i fi if and only if

Ui := {x ∈ X | fi(x) 6= 0} is not an open cover for X. Given the refinement provided by chainability

of X, the construction of the appropriate gi’s is immediate from the aforementioned fact that in a

metrizable compact space every closed set is a zero set.

By a condition we mean a finite set of expressions of the form ϕ(~x) < r where ϕ(~x) is a quantifier-free

formula and r ∈ R+. If A is a C*-algebra and ~a is a tuple from A, we say that ~a satisfies the condition

p(~x) if ϕ(~a)A < r for all expressions ϕ(~x) < r belonging to p(~x).

Fact 4.3.15 ([54, Appendix A]). Suppose that K is a class of separable models of Tconn that is uniformly

definable by a sequence of universal types as witnessed by the formulas (ϕm,n(~xm)). Further suppose that,

for every ε > 0, every m ∈ N and every satisfiable condition p(~x) there is a model C(X) of Tconn and
~f ∈ C(X) that satisfies p(~x) and for which infn ϕm,n(~f)C(X) < ε. Then there is a separable existentially

closed model of Tconn that belongs to the class K.
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Corollary 4.3.16. There is a separable existentially closed model of Tconn that is chainable, which is

thus necessarily isomorphic to C(P).

Proof. Suppose that p(~x) is a condition that is satisfied in C(X) for some continuum X. By embedding

C(X) into C(Y ) with C(Y ) ≡ C(P), we see that p(~x) is satisfied in C(Y ) and hence in C(P). In

particular, for any m, k ≥ 1, we have ~f ∈ C(P) such that ~f satisfies p(~x) and σk(~f) < 1
m . Thus, we can

apply Fact 4.3.15 and Theorem 4.3.14 to obtain a separable existentially closed model of Tconn that is

chainable.

Remark 4.3.17. It is known that P is generic in the descriptive set-theoretic sense, that is, in the space

of subcontinua of [0, 1]N, the set of those continua homeomorphic to P is a dense Gδ set. One can view

Corollary 4.3.16 as the statement that the pseudoarc is also model-theoretically generic, as it arises as

the generic model constructed using model-theoretic forcing in the proof of Fact 4.3.15.

Corollary 4.3.18. The following are equivalent:

1. Th(C(P)) is model complete,

2. there is a nondegenerate continuum X such that Th(C(X)) is model complete,

3. Tconn has a model companion.

If these equivalent conditions hold, then Th(C(P)) is the model companion of Tconn, and so Th(C(P)) is

the unique theory of continua which is model complete. If the conditions do not hold, then there is no

model complete theory of continua.

Proof. The implication (1) implies (2) is obvious, and (2) implies (3) is Lemma 4.3.11.

Suppose that T ∗ is the model companion of Tconn. Since Tconn is universally axiomatizable T ∗ is

the theory of existentially closed models of Tconn, so by Theorem 4.3.16 C(P) |= T ∗. Suppose that X is

another continuum such that C(X) |= T ∗. By Lemma 4.3.8 there is a continuum X ′ such that C(X) ≡
C(X ′) and C(P) embeds in C(X ′); since C(X ′) and C(P) are models of the model complete theory T ∗,

we see that the embedding of C(P) into C(X ′) is elementary, and in particular C(P) ≡ C(X ′) ≡ C(X).

Therefore T ∗ = Th(C(P)), and Th(C(P)) is model complete.

The final assertions in the statement follow immediately from Lemma 4.3.11

The main issue left unresolved in this section is whether or not the equivalent conditions of Corollary

4.3.18 hold.

Question 4.3.19. Is Th(C(P)) model complete?

A useful first step to answering this question would be to understand other models of Th(C(P)).

Many such separable models exist, by Proposition 4.3.10.

Question 4.3.20. Give a concrete description of the metrizable continua X not homeomorphic to P such

that C(X) ≡ C(P).

Answering the question above would also be a useful step towards determining whether or not

Th(C(P)) has a prime model. Since C(P) is the only model of its theory which is chainable, and

we saw above that for separable models of Tconn chainability can be described as omitting a certain

family of types, we have:

Proposition 4.3.21. If Th(C(P)) has a prime model, then that prime model is C(P).

Question 4.3.22. Does Th(C(P)) have a prime model?
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4.4 Saturation

In this final section of the chapter we concern ourselves with how the ℵ1-saturation of an algebra C(X)

relates to the topology of the compactum X. We will also consider two weakenings of ℵ1-saturation.

The contents of this section are from [40].

Definition 4.4.1. Let Φ be a set of formulas in the language of C*-algebras. We say that a C*-algebra

A is Φ-ℵ1-saturated if A realizes all Φ-types over countable parameter sets.

Of particular interest are the cases where Φ is the set of all quantifier-free formulas, in which case

we speak of quantifier-free ℵ1-saturation, and the case where Φ is the set of formulas of the form ‖P (~x)‖
where P is a degree-1 ∗-polynomial, in which case we speak of degree-1 ℵ1-saturation. As usual, when

Φ contains all formulas we speak simply of ℵ1-saturation.

Clearly ℵ1 saturation implies quantifier-free ℵ1-saturation, which in turn implies degree-1 ℵ1-saturation.

Degree-1 ℵ1-saturation was introduced by Farah and Hart in [44], where it was shown that a variety

of important properties of (generally non-commutative) C*-algebras follow from this weak version of

saturation. It may be expected that there is a hierarchy of saturation properties between degree-1

ℵ1-saturation and quantifier-free ℵ1-saturation, but it was shown in [44] that degree-2 ℵ1-saturation is

already equivalent to quantifier-free ℵ1-saturation.

When X is finite the algebra C(X) is finite-dimensional, and hence has compact unit ball. It follows

that in this case C(X) is the only model of its continuous first-order theory, and hence is ℵ1-saturated

(and, in fact, κ-saturated for every κ). We will therefore only be interested in algebras of the form C(X)

for X an infinite compactum. It will be useful to know when saturation can be witnessed by particular

kinds of functions.

Lemma 4.4.2 ([44, Lemma 2.1]). In a degree-1 ℵ1-saturated C*-algebra, if a type can be finitely approx-

imately satisfied by self-adjoint elements then it can be realized by self-adjoint elements, and similarly

with “self-adjoint” replaced by “positive”.

The first limiting conditions for the weakest degree of saturation are given by the following Proposi-

tion. Recall that a compactum X is sub-Stonean if pairs of disjoint open σ-compact sets have disjoint

closures, and is Rickart if open σ-compact sets have open closures. Rickart spaces are sub-Stonean: If

X is Rickart, and A and B are disjoint open σ-compact sets, then A ⊆ (X \B)◦ = X \B, and this latter

set is closed because B is open, so A ⊆ X \B. The converse is false, with βN \N being an example of a

space which is sub-Stonean but not Rickart. For more about both sub-Stonean and Rickart spaces, see

[56].

Proposition 4.4.3. Let X be an infinite compactum, and suppose that X satisfies one of the following

conditions:

1. X has the countable chain condition;

2. X is separable;

3. X is metrizable;

4. X is homeomorphic to a product of two infinite compacta;

5. X is not sub-Stonean;
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6. X is Rickart.

Then C(X) is not countably degree-1 saturated.

Proof. We have 3 implies 2 which implies 1, so let us begin by showing that 1 implies that C(X) is not

degree-1 ℵ1-saturated. Assume X has the countable chain condition and C(X) is degree-1 ℵ1-saturated.

The countable chain condition for X translates to the statement that in C(X) every family of positive

elements of norm 1 whose pairwise products are 0 must be countable. Using Zorn’s lemma, find a subset

Z of the positive elements of the unit ball of C(X) which is maximal (under inclusion) with respect to

the property that if f, g ∈ Z and f 6= g, then fg = 0. By hypothesis, the set Z is countable; list it as

Z = {fn}n∈N.

For each n ∈ N, define Pn(x) = fnx, and let Kn = 0. Let P−1(x) = x, and K−1 = 1. The type

{ ‖Pn(x)‖ = Kn : n ≥ −1 } is finitely satisfiable. Indeed, by definition of Z, for any m ∈ N and any

0 ≤ n ≤ m we have ‖Pn(fm+1)‖ = ‖fnfm+1‖ = 0, and ‖fm+1‖ = 1. By degree-1 ℵ1-saturation and

Lemma 4.4.2 there is a positive element b in the unit ball of C(X) such that ‖Pn(b)‖ = 0 for all n ∈ N.

This contradicts the maximality of Z.

If C(X) is degree-1 ℵ1-saturated then by [44, Proposition 2.7] C(X) is a SAW∗-algebra; all we need

to know of this property is that the main result of [51] states that such algebras cannot be written

as the tensor product of two infinite-dimensional C*-algebras. For commutative C*-algebras we have

C(Y )⊗ C(Z) ∼= C(Y × Z), from which the claim for 4 follows.

In the following two cases it will be useful to observe that for self-adjoint a, b ∈ C(X), if ‖a− b− 1‖ ≤
1 then b ≤ a. Indeed, for each x ∈ X we have either 0 ≤ |a(x)− b(x)− 1| = a(x) − b(x) − 1, in which

case 1 ≤ a(x)− b(x), so b(x) ≤ a(x), or else |a(x)− b(x)− 1| = 1 + b(x)− a(x) ≤ 1, in which case again

b(x) ≤ a(x). The consequence of this observation is that we can use expressions of the form b ≤ a for

self-adjoint elements in degree-1 types.

We now consider 5. It is shown in [101, Theorem 4.6] that X is sub-Stonean if and only if C(X)

has the property that whenever (xn)n∈N and (yn)n∈N are sequences of self-adjoint elements in C(X)

such that xn ≤ xn+1 ≤ · · · ≤ yn+1 ≤ yn for all n, then there is a self-adjoint z ∈ C(X) such that

xn ≤ z ≤ yn for all n. Suppose we are given such sequences in a degree-1 ℵ1-saturated algebra C(X),

and by renormalizing if necessary, assume that ‖y1‖ = 1. Let Σ(z) be the type over {xn, yn : n ∈ N}
consisting of all formulas expressing xn ≤ z and z ≤ yn. Any finite subset of Σ is satisfied in the unit

ball of C(X) by a sufficiently large xn, which is self-adjoint, so by degree-1 ℵ1-saturation and Lemma

4.4.2, Σ is realized in the unit ball of C(X) by a self-adjoint z, and hence X is sub-Stonean. A more

general version of this argument appears in [44, Proposition 2.6].

It remains to consider 6. Let X be Rickart. The Rickart condition can be rephrased as saying that

any bounded increasing monotone sequence of self-adjoint functions in C(X) has a least upper bound

in C(X) (see [56, Theorem 2.1]).

Consider a sequence (an)n∈N ⊆ C(X) of positive elements of norm 1 whose pairwise products are 0,

and let bn =
∑
i≤n ai. Then (bn)n∈N is a bounded increasing sequence of positive functions, so it has a

least upper bound b. Since ‖bn‖ = 1 for all n, we also have ‖b‖ = 1. The type consisting of ‖x‖ = 1,

1 ≤ ‖b− x‖ ≤ 2, ‖b− x− 1‖ = 1, and x ≥ bn for n ∈ N is consistent, with partial solution bn+1 for the

first three formulas and the remaining ones up to n. If C(X) is degree-1 ℵ1-saturated then this type has

a positive solution y, but in that case y ≥ bn for all n ∈ N, yet b > y, showing that X is not Rickart.

Note that the preceding proof shows that the existence of a particular increasing bounded sequence
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that is not norm-convergent but does have a least upper bound (a condition apparently weaker than

being Rickart) is sufficient to prove that C(X) does not have degree-1 ℵ1-saturation. We also note that

for any countably incomplete ultrafilter U we have that C(XU) ∼= C(X)U is ℵ1-saturated, so Proposition

4.4.3 generalizes [6, Proposition 2.3.1], which states that XU does not have the countable chain condition.

The remaining results of this section compare the saturation of C(X) with the saturation of the

clopen algebra CL(X), where the latter is viewed as a discrete structure in the signature of Boolean

algebras.

Theorem 4.4.4. Let X be a 0-dimensional compactum. Then

C(X) is ℵ1-saturated⇒ CL(X) is ℵ1-saturated

and

CL(X) is ℵ1-saturated ⇒ C(X) is quantifier-free ℵ1-saturated.

Theorem 4.4.5. Let X be a 0-dimensional compactum, and assume further that X has a finite number

of isolated points. If C(X) is countably degree-1 saturated, then CL(X) is countably saturated. Moreover,

if X has no isolated points, then degree-1 ℵ1-saturation and countable saturation coincide for C(X).

4.4.1 Proof of Theorem 4.4.4

One direction of Theorem 4.4.4 is straightforward, namely showing that if C(X) is ℵ1-saturated then

so is CL(X). Indeed, we have that CL(X) is isomorphic (as a Boolean algebra) to the algebra of

projections in C(X), and the set of projections in C(X) is definable. Using the same translation from

discrete to continuous logic as appeared in the proof of Theorem 2.4.4, and relativizing all quantifiers to

the projections, we see that saturation of C(X) implies saturation of CL(X).

The other direction will require more effort. To start, we will to need the following Proposition,

relating elements of C(X) to certain collections of clopen sets:

Proposition 4.4.6. Let X be a 0-dimensional compactum, and let f ∈ C(X) have norm at most 1.

Then there exists a countable collection of clopen sets Ỹf = {Yn,f : n ∈ N} which completely determines

f , in the sense that for each x ∈ X, the value f(x) is completely determined by {n : x ∈ Yn,f}.

Proof. Let Cm,1 = { j1+
√
−1j2
m : j1, j2 ∈ Z ∧

∥∥j1 +
√
−1j2

∥∥ ≤ m}.
For every y ∈ Cm,1 consider Xy,f = f−1(B1/m(y)). We have that each Xy,f is a σ-compact

open subset of X, so is a countable union of clopen sets Xy,f,1, . . . , Xy,f,n, . . . ∈ CL(X). Note that⋃
y∈Cm,1

⋃
n∈NXy,f,n = X. Let X̃m,f = {Xy,f,n}(y,n)∈Cm,1×N ⊆ CL(X).

We claim that X̃f =
⋃
m X̃m,f describes f completely. Fix x ∈ X. For every m ∈ N we can find a

(not necessarily unique) pair (y, n) ∈ Cm,1 such that x ∈ Xy,f,n. Note that, for any m,n1, n2 ∈ N and

y 6= z, we have that Xy,f,n1
∩Xz,f,n2

6= ∅ implies |y − z| ≤
√

2/m. In particular, for every m ∈ N and

x ∈ X we have

2 ≤ |{y ∈ Cm,1 : ∃n(x ∈ Xy,f,n)}| ≤ 4.

Let Ax,m = {y ∈ Cm,1 : ∃n(x ∈ Xy,f,n)} and choose ax,m ∈ Ax,m to have minimal absolute value. Then

f(x) = limm ax,m so the collection X̃f completely describes f in the desired sense.
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The above proposition will be the key technical ingredient in proving the second implication in

Theorem 4.4.4. We will proceed by first obtaining the desired result under the Continuum Hypothesis,

and then showing how to eliminate the set-theoretic assumption.

Lemma 4.4.7. Assume the Continuum Hypothesis. Let B be an ℵ1-saturated Boolean algebra of cardi-

nality 2ℵ0 = ℵ1. Then C(S(B)) is ℵ1-saturated.

Proof. Let B′ � B be countable, and let U be a non-principal ultrafilter on ω. By the uniqueness of

ℵ1-saturated models of size ℵ1, and the continuum hypothesis, we have (B′)U ∼= B. We therefore have

C(S(B)) ∼= C(S(B′))U, and hence C(S(B)) is ℵ1-saturated.

Theorem 4.4.8. Assume the Continuum Hypothesis. Let X be a 0-dimensional compactum. If CL(X)

is ℵ1-saturated as a Boolean algebra, then C(X) is quantifier-free ℵ1-saturated.

Proof. Let Σ = { ‖Pn‖ = rn : n < ω } be a collection of conditions, where each Pn is a 2-degree ∗-
polynomial in x0, . . . , xn, such that there is a collection F = {fn,i}n≤i in the unit ball of C(X) with the

property that for all i we have rn − 1
i < ‖Pn(f0,i, . . . , fn,i)‖ < rn + 1

i for all n ≤ i.
For any n, we have that Pn has finitely many coefficients. Consider G the set of all coefficients of

every Pn, and L the set of all possible 2-degree ∗-polynomials in F ∪ G. Note that for any n ≤ i we

have that Pn(f0,i, . . . , fn,i) ∈ L and that L is countable. For any element f ∈ L consider a countable

collection X̃f of clopen sets describing f , as in Proposition 4.4.6.

Since CL(X) is ℵ1-saturated, and 2ℵ0 = ℵ1, we can find an ℵ1-saturated Boolean algebra B ⊆ CL(X)

such that ∅, X ∈ B, for all f ∈ L we have X̃f ⊆ B, and |B| = ℵ1. Then B is isomorphic to an

ultrapower, and hence C(S(B)) is also isomorphic to an ultrapower, and hence is ℵ1-saturated. By

Stone and Gelfand-Naimark dualities we have that C(S(B)) ⊆ C(X). Our choice of B ensures that

C(S(B)) has all of the functions necessary to describe the type Σ, and by ℵ1-saturation Σ is realized in

C(S(B)). The assumption that Σ is a quantifier-free type implies that the realization of Σ in C(S(B))

is also a realization in C(X).

To remove the Continuum Hypothesis from Theorem 4.4.8 we will show that the result is preserved by

σ-closed forcing. The proof is based on the general absoluteness result for satisfaction of Lω1,ω formulas,

Proposition 3.1.9.

Proposition 4.4.9. Let P be a σ-closed notion of forcing. Let M be a metric structure, and let Φ be

a set of (finitary) formulas. Then M is ℵ1-Φ-saturated in V if and only if M is ℵ1-Φ-saturated in the

forcing extension V [G].

Proof. First, observe that since P is σ-closed, forcing with P does not introduce any new countable set.

In particular, the set of types which must be realized for M to be countably Φ-saturated are the same

in V and in V [G].

Let Σ(~x) be a set of instances of formulas from Φ with parameters from a countable set A ⊆M . Add

new constants to the language for each a ∈ A, so that we may view Σ as a type without parameters.

Define

ϕ(~x) = inf{ψ(~x) : ψ ∈ Σ}.

Note that ϕM (~a) = 0 if and only if ~a satisfies Σ in M . This ϕ is an Lω1,ω formula, so by Proposition

3.1.9, for any ~a from M we have that ϕM (~a) = 0 in V if and only if ϕM (~a) = 0 in V [G]. As the same

finite tuples ~a from M exist in V and in V [G], this completes the proof.
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Finally, we return to the proof of Theorem 4.4.4. All that remains is to show:

Lemma 4.4.10. The Continuum Hypothesis can be removed from the hypothesis of Theorem 4.4.8.

Proof. Let X be a 0-dimensional compactum such that CL(X) is ℵ1-saturated, and suppose that the

Continuum Hypothesis fails. Let P be a σ-closed forcing which collapses 2ℵ0 to ℵ1 (see [78, Chapter

7, §6]). Let A = C(X) and B = CL(X). Observe that since P is σ-closed we have that A remains a

complete metric space in V [G], and by Lemma 3.1.9 A still satisfies the axioms asserting that A = C(Y )

for a compact 0-dimensional space Y . Also by Lemma 3.1.9 we have that B remains a Boolean algebra,

and the set of projections in A in both V and V [G] is B. We note that it may not be true in V [G] that

X = S(B), or even that X is compact (see [33]), but this causes no problems because it follows from the

above that A = C(S(B)) in V [G]. By Proposition 4.4.9 B remains ℵ1-saturated in V [G]. Since V [G]

satisfies the Continuum Hypothesis we can apply Theorem 4.4.8 to conclude that A is quantifier-free

ℵ1-saturated in V [G], and hence also in V by Proposition 4.4.9.

With the continuum hypothesis removed from Theorem 4.4.8, we have completed the proof of Theo-

rem 4.4.4. It would be desirable to improve this result to say that if CL(X) is ℵ1-saturated then C(X)

is also ℵ1-saturated. We note that if we could choose C(S(B)) � C(X) in the proof of Theorem 4.4.4

then the same proof would give the improved conclusion.

4.4.2 Proof of Theorem 4.4.5

We now turn to the proof of Theorem 4.4.5.

Proposition 4.4.11. If X is a 0-dimensional compactum with finitely many isolated points such that

C(X) is degree-1 ℵ1-saturated, then the Boolean algebra CL(X) is ℵ1-saturated.

Proof. Assume first that X has no isolated points. In this case we get that CL(X) is atomless, so it is

enough to see that CL(X) has the property that for two countable directed sets Y, Z ⊆ CL(X) with

Y < Z, there is c ∈ CL(X) such that Y < c < Z (see [85, Theorem 2.7]).

Assume for the moment that both Y and Z are infinite. Passing to a cofinal increasing sequence in

Z and a cofinal decreasing sequence in Y , we can suppose that Z = {Un}n∈N and Y = {Vn}n∈N, where

U1 ( . . . ( Un ( Un+1 ( . . . ( Vn+1 ( Vn ( . . . ( V1.

If
⋃
n∈N Un =

⋂
n∈N Vn then

⋃
n∈N Un is a clopen set, so by the remark following the proof of Lemma

4.4.3, we have a contradiction to the degree-1 ℵ1-saturation of C(X).

For each n ∈ N, let pn = χUn and qn = χVn , where χA denotes the characteristic function of the set

A. Then

p1 < . . . < pn < pn+1 < . . . < qn+1 < qn < . . . < q1

and by degree-1 ℵ1-saturation there is a positive r such that pn < r < qn for every n. In particular

A = {x ∈ X : r(x) = 0} and C = {x ∈ X : r(x) = 1} are two disjoint closed sets such that
⋃
n∈N Un ⊆ C

and X \
⋂
n∈N Vn ⊆ A. We want to find a clopen set D such that A ⊆ D ⊆ X \ C. For each x ∈ A pick

Wx a clopen neighborhood contained in X \ C. Then A ⊆
⋃
x∈AWx. By compactness we can cover A

with finitely many of these sets, say A ⊆
⋃
i≤nWxi

⊆ X \C, so D =
⋃
i≤nWxi

is the desired clopen set.

Essentially the same argument works when either Y or Z is finite. We need only change some of the

inequalities from < with ≤, noting that a finite directed set has always a maximum and a minimum.
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If X has a finite number of isolated points, write X = Y ∪ Z, where Y has no isolated points and

Z is finite. Then C(X) = C(Y ) ⊕ C(Z) and CL(X) = CL(Y ) ⊕ CL(Z). The above proof shows that

CL(Y ) is ℵ1-saturated, and CL(Z) is saturated because it is finite, so CL(X) is again ℵ1-saturated.

Recall that when X has no isolated points then C(X) ≡ C(2N) (Theorem 4.2.4), and that the theory

of C(2N) has quantifier elimination (Proposition 4.3.3). The proof of Theorem 4.4.5 is therefore complete

by combining Theorem 4.4.4 and Proposition 4.4.11.

Remark 4.4.12. Throughout this chapter we have focused either on the case where the space X is

0-dimensional, or where the space is connected. Rather little is known about the model theory of

C*-algebras associated to other spaces.

We have also focused entirely on the case of compact spaces. When X is locally compact but not

compact we can consider the non-unital C*-algebra C0(X) consisting of continuous complex-valued

functions on X that vanish at infinity. A version of the Gelfand-Naimark theorem shows that every

non-unital commutative C*-algebra is of this form. The main reason that we have not considered

this more general setting is that even when the Xi’s are only locally compact their ultracoproduct is

compact. More precisely, when (Xi)i∈I is a sequence of locally compact spaces and U is an ultrafilter

on I, the ultracoproduct
∑

UXi is homeomorphic to the ultracoproduct
∑

U βXi of the Stone-Cěch

compactifications of the Xi’s – see [4, Lemma 3.1]. Nevertheless, it remains possible that future model-

theoretic study of C0(X) may yield interesting information about locally compact spaces.
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algébras de Banach. Studia. Math., 41:315–334, 1972.

[32] K. Davidson. C*-algebras by example. Fields institute monographs. American Mathematical Soci-

ety, Providence, RI, 1996.



Bibliography 67

[33] R. R. Dias and F. D. Tall. Indestructibility of compact spaces. Topology Appl., 160:2411–2426,

2013.

[34] P. Dodos, J. Lopez-Abad, and S. Todorcevic. Unconditional basic sequences in spaces of large

density. Advances in Mathematics, 226:3297–3308, 2011.

[35] A. Dow and K. P. Hart. A universal continuum of weight ℵ. Trans. Amer. Math. Soc., 353:1819–

1838, 2001.

[36] C. J. Eagle. Omitting types in infinitary [0, 1]-valued logic. Annals of Pure and Applied Logic,

165:913–932, 2014. doi:10.1016/j.apal.2013.11.006.

[37] C. J. Eagle, I. Farah, B. Hart, B. Kadets, V. Kalashnyk, and M. Lupini. Fräıssé limits of C*-
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