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Abstract. By utilizing the topological concept of pseudocompactness,
we simplify and improve a proof of Caicedo, Dueñez, and Iovino concern-
ing Terence Tao’s metastability. We also pinpoint the exact relationship
between the Omitting Types Theorem and the Baire Category Theo-
rem by developing a machine that turns topological spaces into abstract
logics.

I. Introduction4

The senior (third) author has often remarked that model theorists use5

topology, but mainly at a rather elementary level. The present work by cur-6

rent and former members of the Toronto Seminar applies more advanced gen-7

eral topology, first to simplify and improve a proof of Caicedo, Dueñez, and8

Iovino [CDI19] concerning Terence Tao’s notion of metastability [Tao08], and9

second to produce and utilize a machine for converting topological spaces10

into abstract logics. This machine is then used to determine the exact re-11

lationship between the Omitting Types Theorem and the Baire Category12

Theorem. Morley’s Categoricity Theorem has been said to be the beginning13

of modern model theory. Morley’s original proof [Mor65] made extensive use14

of topology, especially the Cantor-Bendixson analysis of compact spaces.15

In the years since Morley’s paper appeared there have been some uses of16

topology in model theory, but the topology has been fairly elementary, and17

in many cases combinatorial arguments have come to replace topological18

ones. We hope to encourage model theorists to consider the possible ap-19

plications of more sophisticated topological methods in model theory. Our20

first application illustrates that some rather simple topology—albeit a topic21

likely not covered in the one graduate topology course an average model22
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theorist might have taken—can easily simplify and improve model-theoretic1

arguments. Our second application introduces a machine which converts2

topological spaces into abstract logics, thus giving access to the vast field3

of strange topological spaces while searching for model-theoretic counterex-4

amples.5

Part 1. Pseudocompactness and the Uniform Metastability6

Principle7

II. A Brief Introduction to Metastability8

Definition 2.1. A sampling of ω is a family { ηn : n < ω } ⊆ [ω]<ω such9

that ηn ⊆ ωr n for each n < ω. Let S denote the set of all samplings of ω.10

Let (X, d) be a metric space. A sequence 〈xn : n < ω〉 is metastable if11

for each ε > 0 and each sampling η, there is an m < ω such that (∀i, j ∈12

ηm) (d(xi, xj) < ε).13

It was proved by Tao [Tao08] that a sequence is metastable if and only14

if it is Cauchy. The relevant distinction occurs when one considers uniform15

metastability:16

Definition 2.2. A family A ⊆ Xω, where (X, d) is a metric space, is uni-17

formly metastable if there is a family {Eε,η : ε > 0, η ∈ S } such that when-18

ever η ∈ S and ε > 0, each sequence in A is metastable witnessed by the19

same m < Eε,η. A sequence of functions 〈fn : n < ω〉 in RX is uniformly20

metastable if there is a family {Eε,η : ε > 0, η ∈ S } such that whenever21

η ∈ S and ε > 0, for each x ∈ X the sequence 〈fn(x) : n < ω〉 is metastable22

witnessed by the same m < Eε,η.23

The following examples from an early version of [CDI19] show that uni-24

form metastability is strictly in between uniform convergence and pointwise25

convergence:26

• The family of all eventually 0 sequences in 2ω is not uniformly27

metastable even though each sequence is trivially convergent. To28

see this, take the subfamily of all sequences with arbitrarily long29

initial segments with alternating 0’s and 1’s and ηn = {n, n+ 1 }.30

• The set of all monotonic sequences in 2ω is uniformly metastable31

witnessed by Eε,η = max η0. However, the convergence is not uni-32

form.33

It is a natural to ask when results regarding pointwise convergence of34

functions can be improved to uniform metastability in a way similar to that35

of Tao’s Metastable Dominated Convergence Theorem [Tao08]. In [CDI19],36
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a topological proof is given for the following fact: if X is countably com-1

pact, then on any closed subspace, there is no distinction between pointwise2

convergence and uniform metastability. The converse result is only proved3

in [CDI19] in a model theoretic setting using powerful machinery. We pro-4

duced a topological proof of this converse result using the following fact: a5

countably compact space is a space with every closed subspace pseudocom-6

pact. The model theoretic result follows at once from this topological fact7

and a few basic remarks.8

Definition 2.3. A topological space X is pseudocompact if every continuous9

real-valued function on X has bounded image.10

There is a whole book devoted to pseudocompact spaces [HTMT18]. The11

following basic result can also be found in [Tka15]:12

Proposition 2.4. A completely regular space X is pseudocompact if and13

only if every locally finite family of non-empty open sets (i.e. every point14

of X has a neighbourhood meeting at most finitely many members of the15

family) is finite.16

Proof. Suppose X is pseudocompact and that there is an infinite locally fi-17

nite family of non-empty open sets {Un : n < ω }. Take xn ∈ Un for each18

n < ω. By complete regularity, take a continuous fn : X → R such that19

fn(xn) = n and f � XrUn = 0. Then F =
∑

n<ω fn is continuous since20

{Un : n < ω } is locally finite: given x ∈ X, let Sx = {n < ω : x ∈ Un } ∈21

[ω]ω; the continuity of F at x follows from
⋃
n∈Sx Un =

⋃
n∈Sx Un. Con-22

versely, suppose X is not pseudocompact, then there is an unbounded con-23

tinuous function f : X → R. Since f2 is also continuous and unbounded, we24

can assume f ≥ 0. Let x0 ∈ f [X]; if xn ∈ f [X] has been constructed, take25

xn+1 ∈ f [X] such that f(xn+1) > f(xn) + 1. If we denote the ball of center26

f(xn) and radius 1 by B(f(xn), 1), then B =
{
f−1[B(f(xn), 1)] : n < ω

}
is27

an infinite family of pairwise disjoint non-empty open sets. Now suppose B28

is not locally finite, then there is a point x ∈ X such that every open neigh-29

bourhood of x contains elements with arbitrarily large images, contradicting30

the continuity of f .31

�32

Remark Notice that when pseudocompactness fails, one can get the infi-33

nite locally finite family of open sets to be pairwise disjoint. Also notice that34

complete regularity is unnecessary for the direction “every locally finite fam-35

ily of open sets is finite” implies pseudocompactness. However, regularity is36

required.37

The following proposition follows from a theorem and an exercise in38

[Eng89];39
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Proposition 2.5. A space is countably compact if and only if every closed1

subspace is pseudocompact.2

Proof. If X is countably compact and there is a closed subspace C ⊆ X that3

is not pseudocompact then, as in the proof of Proposition 2.1, C includes a4

closed discrete subspace and so does X, which contradicts countable com-5

pactness. Conversely, if X is not countably compact, it includes a discrete6

closed set C = {xn : n < ω }. Letting f(xn) = n, we obtain a continuous7

unbounded function on C. �8

Now we present the connection between pseudocompactness and uniform9

metastability:10

Proposition 2.6. Let X be a regular topological space. If every sequence of11

continuous real-valued functions 〈fn : n < ω〉 on X that converges pointwise12

is uniformly metastable, then X is pseudocompact.13

Proof. Suppose X is not pseudocompact and let B = {Un : n < ω } be a14

infinite locally finite family of pairwise disjoint non-empty open sets. For15

each n < ω, take xn ∈ Un. Then consider the functions fn : X → R such16

that f(xn) = 1 and f � XrUn = 0. Then the function F =
∑

n<ω fn is con-17

tinuous since B is locally finite. Consider gn =
∑

i≤n fi. Then the sequence18

of continuous functions 〈g0, F, g1, F, g2, F, . . .〉 converges pointwise to F but19

it is not uniformly metastable as it contains all eventually 1 sequences with20

arbitrarily long initial segments of alternating 0’s and 1’s. �21

Definition 2.7. The Topological Uniform Metastability Principle holds for22

a topological space X if whenever a sequence of real-valued continuous func-23

tions converges pointwise on a closed subspace C ⊆ X, it is uniformly24

metastable on C.25

The previous results allow us to characterize the equivalence between the26

topological uniform metastability principle and countable compactness.27

Theorem 2.8. Let X be a completely regular space. Then X is countably28

compact if and only if the topological uniform metastability principle holds29

for X.30

Proof. We reproduce the proof given in an early version of [CDI19] when X31

is countably compact: assume uniform metastability fails and let ε > 0 and32

η ∈ S be witnesses of this fact. Then, for each n < ω, there is x ∈ X such33

that for each k < n, Mx,k = max { |fi(x)− fj(x)| : i, j ∈ ηk } ≥ ε. Then x ∈34 ⋂
k≤nAk where Ak = { z ∈ X : Mz,k ≥ ε } is closed by the continuity of the35

fn’s. Thus {Ak : k < ω } is centred and, by countable compactness, there36

is an x ∈
⋂
k<ω Ak, which contradicts the convergence of 〈fn(x) : n < ω〉.37

Conversely, suppose X is not countably compact. Then, by Proposition 2.2,38
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there is a closed subspace C ⊆ X that is not pseudocompact and so, by1

Proposition 2.3, there is a sequence of continuous real-valued functions on2

X that converges pointwise on C but is not uniformly metastable on C. �3

Remark The current version of [CDI19] proves the previous equivalence4

assuming that X is regular and paracompact. We just showed that the5

paracompactness assumption can be replaced by assuming that X is com-6

pletely regular. Also, [CDI19] points out that the analogue of the uniform7

metastability principle for nets, instead of sequences, is equivalent to X8

being compact.9

III. The Uniform Metastability Principle10

Logics for metric structures are properly presented in [Eag17] and [Cai17].11

Given a logic for metric structures L and a signature τ , recall that the logic12

topology on the space of τ -structures Str(τ) is determined by the basic closed13

sets [ϕ] = {M ∈ Str(τ) : M |= ϕ }. This topology is (up to the quotient14

by elementary equivalence) a special case of the more general framework15

described in Section V.2. We regard τ -sentences as continuous [0, 1]-valued16

functions on the space of τ -structures in the natural way: M 7→ ϕM. In this17

context, we now define the model theoretic analogue of metastability:18

Definition 3.1. Let L be a logic for metric structures and τ a signature.19

Given a τ -theory T , we say that a sequence of τ -sentences 〈ϕn : n < ω〉20

converges pointwise modulo T if and only for for every model M of T , the21

sequence 〈ϕnM : n < ω〉 converges. We say that the sequence is uniformly22

metastable modulo T if the family
{
〈ϕnM : n < ω〉 : M |= ϕ

}
is uniformly23

metastable.24

Definition 3.2. The Uniform Metastability Principle (UMP) for a logic L25

is the following statement: “if τ is a signature and T is an τ -theory, then26

every sequence of τ -sentences 〈ϕn : n < ω〉 that converges pointwise modulo27

T is also uniformly metastable modulo T .”28

In an early version of [CDI19], it was proved that the UMP is equivalent29

to the logic being countably compact. This follows from the following two30

lemmas:31

Lemma 3.3. The logic topology is completely regular.32

Proof. Let C ⊆ Str(τ) and M /∈ C. Then there must be a formula ϕ such33

that ϕM < 1 and (∀N ∈ C) ϕN = 1 (as otherwise M would belong to C by34

the definition of the topology on Str(τ)). Then ϕ is the continuous function35

that separates C and M. �36
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Lemma 3.4. The closed subspaces of the logic topology are completely1

determined by τ -theories, i.e. C ⊆ Str(τ) is closed if and only if there is a2

τ -theory T such that C is the set of τ -structures that are models of T .3

Proof. Suppose C is a closed set in Str(τ); then C is the intersection of4

basic closed sets, say C =
⋂
α<κ[ϕα]. Thus C is the set of τ -structures that5

are models of the theory T = {ϕα : α < κ }. Conversely, each model of a6

τ -theory T belongs to the intersection of all [ϕ] where ϕ ranges over T . �7

Definition 3.5. A logic L is countably compact if and only if given a sig-8

nature τ , the space of τ -structures Str(τ) is countably compact.9

Putting all this together, we easily obtain the main result of the early10

version of [CDI19]:11

Theorem 3.6. Let L be a logic for metric structures. The UMP holds if12

and only if L is countably compact.13

Part 2. Omitting Types and the Baire Category Theorem14

IV. Definitions15

The fundamental topological notion we will consider in this part is that of16

a type-space functor, which is an abstraction of the spaces of complete types17

from first-order logic. A single type-space functor can be thought of as18

capturing the topological content of the model theory of a single signature.19

We then describe how to combine various type-space functors to produce a20

topological logic, which amounts to a topological description of an abstract21

model-theoretic logic.22

IV.1. Type-space functors. To simplify notation, whenever κ is a car-23

dinal and A ∈ [κ]n, we write A = {a0 < . . . < an−1} to mean that24

A = {a0, . . . , an−1} and a0 < . . . < an−1.25

Definition 4.1. A type-space functor S takes each n ∈ ω to a topological26

space Sn, and each f : n → m to a continuous open map Sf : Sm → Sn,27

satisfying the following conditions. Here ik : k → k+ 1 is the inclusion, and28

dm : m+ 1→ m+ 2 is d(j) = j for j < m and d(m) = m+ 1.29

(1) For all f : n→ m and g : m→ k, S(g ◦ f) = (Sf) ◦ (Sg).30

(2) If ιn : n → n is the identity function then Sιn : Sn → Sn is the31

identity function.32

(3) For each m ∈ ω, p ∈ Sm, q ∈ (Sim)−1({p}), and non-empty open33

U ⊆ (Sim)−1({p}, let WAPS(m, p, q, U) be the statement that there34

is an r ∈ Sm+2 such that (Sim+1)(r) = q and (Sdm)(r) ∈ U . We35

require that WAPS(m, q, p, U) holds for all such m, p, q, U .36
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Our definition is based on the one in Knight [Kni07], with some of the1

simplifications introduced in [Kni10]. We differ from Knight in that we2

require each map Sf to be open and we only require a weak version of the3

amalgamation property. The basic example of a type-space functor is when4

each Sn is the set of complete n-types of some first-order theory; see Section5

V for other examples.6

Definition 4.2. Let S be a type-space functor. Define Sω to be the inverse7

limit of the spaces Sn, using each Sιn,m as a bonding map for n < m.8

Concretely,9

Sω = {(an)n<ω ∈
∏
n<ω

Sn : for all n < m, an = (Sιn,m)(am)},

with the subspace topology.10

For each map f : n → ω we have a map Sf : Sω → Sn. To define11

this map, let m be large enough so that the image of f is included in m.12

Then define f ′ : n → m to be f ′(i) = f(i) for all i < n. Finally, define13

Sf : Sω → Sn by (Sf)((aj)j<ω) = (Sf ′)(am).14

In order to view a type-space functor as having model-theoretic content,15

we need a notion of a model, which we take from [Kni07, Definition 2.9].16

Definition 4.3. Let S be a type-space functor, and let κ be a cardinal. A17

model of size κ for S is a function M , whose domain is [κ]<ω, satisfying the18

list of properties below for all A = {a0 < . . . < an−1} ∈ [κ]n.19

(1) M(A) ∈ Sn.20

(2) If B = {b0 < . . . < bm−1} ∈ [κ]m, A ⊆ B, and g : n → m is the21

function satisfying ai = bg(i) for all i, then M(A) = (Sg)(M(B)).22

(3) If U ⊆ (Sιn,m)−1(M(A)) is open, then there is a B = {b0 < . . . <23

bm−1} ∈ [κ]m with A ⊆ B, and a permutation g of m satisfying24

ai = bg(i) for all i < n, such that (Sg)(M(B)) ∈ U .25

Interpreting these conditions in the context of traditional model theory26

may help illuminate their meaning. In that context, condition (1) simply27

says that if M |= T and (a1, . . . , an) ∈ Mn, then tpM (a1, . . . , an) is a com-28

plete n-type of T . Condition (2) corresponds to the fact that if k < n, then29

tpM (a1, . . . , ak) consists of those formulas in tpM (a1, . . . , an) that only use30

the variables x1, . . . , xk. Condition (3) is an analogue of the fact that struc-31

tures are closed under existential quantification. In classical model theory32

condition (3) expresses that if p is a complete n-type, and q is a complete33

m-type with n < m and p ⊆ q, and if (a1, . . . , an) realizes p in a model M ,34

then for any formula ϕ(x1, . . . , xm) ∈ q we can find an+1, . . . , am ∈ M such35

that M |= ϕ(a1, . . . , am).36
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Definition 4.4. Let S be a type-space functor, let M be a model for S1

of size κ, and let (a0, . . . , an−1) be a tuple of length n from κ. Let A =2

{a0, . . . , an−1} = {c0 < . . . < ck−1}. Let g : n→ k be the function such3

that cg(i) = ai for all i < n. Then we define4

M |= p(a0, . . . , an−1) ⇐⇒ p = (Sg)(M(A)).

In this case we also say that (a0, . . . , an−1) realizes p in M . If there is no5

tuple (a0, . . . , an−1) realizing p in M then we say M omits p.6

If A ⊆ Sn, we write M |= A(a0, . . . , an−1) to mean M |= p(a0, . . . , an−1)7

for some p ∈ A.8

IV.2. Topological logics. In abstract model theory one is interested in a9

wide variety of logics, such as logics with infinitely long formulas, or logics10

with non-classical quantifiers . Lindström [Lin69] was the first to give axioms11

unifying the various extended logics that had been studied, which provided12

a fruitful and very general setting for studying non-classical model theory13

(see [BF85] for an extensive survey of this area). In the same paper, Lind-14

ström proved his well-known result that first-order logic is maximal amongst15

compact logics satisfying the downward Löwenheim-Skolem theorem. Our16

type-space functors can be used to produce logics satisfying Lindström’s17

definition, which we now state (following [Vää12]).18

The structures under consideration in abstract model theory are the same19

as those in classical model theory. For our purposes it is harmless to assume20

that our signatures are relational. We recall the definition of (relational)21

signatures and structures from model theory:22

Definition 4.5. A signature is a set of relation symbols, each with an as-23

sociated arity. If τ is a signature, a τ -structure M is a non-empty set M ,24

together with, for each n-ary relation symbol R ∈ τ , a set RM ⊆ Mn. For25

each signature τ , the class of τ -structures is denoted by Strτ .26

Where abstract model theory differs from classical model theory is in27

allowing a very general definition of “sentence” and a similarly general notion28

of “satisfaction” between structures and sentences.29

Definition 4.6. An abstract logic is a pair L = (S, |=), where S is a set,30

and |= is a relation between structures and elements of S, satisfying the31

following closure properties:32

(Isomorphisms): IfM,N are structures andM∼= N , then for any ϕ ∈ S,33

M |= ϕ if and only if N |= ϕ.34

(Renaming): Suppose that τ and τ ′ are signatures, π : τ → τ ′ is a bijection35

that respects arity, and π̂ : Strτ → Strτ ′ is the natural extension of36

τ to the class of τ -structures. Then for any ϕ ∈ S there is a ϕ′ ∈ S37

such that for every τ -structureM,M |= ϕ if and only if π̂(M) |= ϕ′.38
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(Free expansions): Suppose that τ and τ ′ are signatures with τ ⊆ τ ′, and1

ϕ ∈ S. Then there is a ϕ′ ∈ S such that for any τ ′-structure M,2

M |= ϕ′ if and only if M|τ |= ϕ.3

(Negation): For any ϕ ∈ S there is a ¬ϕ ∈ S such that for allM,M |= ¬ϕ4

if and only if M 6|= ϕ.5

(Conjunction): For any ϕ,ψ ∈ S there is a ϕ∧ψ ∈ S such that for allM,6

M |= ϕ ∧ ψ if and only if M |= ϕ and M |= ψ.7

(Existential quantification): Suppose that τ is a signature, and c is a8

constant symbol in τ . For every ϕ ∈ S there is a ϕ′ ∈ S such that9

for any τr {c}-structure M, M |= ϕ′ if and only if there is some10

cM ∈M such that (M, cM) |= ϕ.11

In order to use type-space functors to build abstract logics, we must put12

together several type-space functors in a suitably compatible way.13

Definition 4.7. A topological logic consists of, for each signature τ , a type-14

space functor Sτ , together with a function Cτ with domain τ , such that15

for each n-ary relation symbol R ∈ τ , Cτ (R) is a closed subset of Sτn. For16

each n < ω and each signature τ , we define Bτ,n to be the collection of17

Cτ (R)’s, where R is an n-ary relation symbol, together with the collection18

of preimages of such sets under the maps from Sτn to Sτm induced by the19

inclusion maps i : m → n when m < n. We also impose the following20

requirements:21

• For each signature τ and each n < ω, the space Sτn is 0-dimensional.22

• For each n, the collection Bτ,n is a base of closed sets for Sτn.23

• If τ, τ ′ are signatures, and π : τ → τ ′ is a renaming, then π induces24

an isomorphism of the type-space functors Sτ and Sτ ′ .25

Our notion of topological logic is, in fact, the topological content of ab-26

stract logics.27

Theorem 4.8. Each topological logic determines an abstract logic.28

Proof. Let S be a topological logic. We define an abstract logic L = (S, |=)29

as follows.30

First, we define S by defining that the elements of S are exactly the sets31

that are closed in some Sτn.32

Suppose that M is a τ -structure. Without loss of generality, we may33

assume that the universe of M is a cardinal κ. Define a function f with34

domain [κ]<ω by setting f(a0, . . . , an−1) to be the unique p ∈ Sτn such that35

for all X ∈ Bτ,n, p ∈ X if and only if (a0, . . . , an−1) is an element of M’s36

interpretation of the relation symbol from which X was obtained.37
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We now define the satisfaction relation M |= ϕ(a0, . . . , an−1), where1

ϕ ∈ S and a0, . . . , an−1 ∈ κ. First, if ϕ 6⊆ Sτn, then we declare M 6|=2

ϕ(a0, . . . , an−1). So suppose that ϕ is a closed subset of Sτn. Then we de-3

clare M |= ϕ(a0, . . . , an−1) if and only if f(a0, . . . , an−1) ∈ ϕ.4

Our set of sentences is closed under negation because each Sτn is 0-dimensional.5

It is closed under conjunctions because the closed sets of any space are closed6

under finite intersections. Closure under existential quantification follows7

from the fact that for any signature τ , Sτ∪{c}n
∼= Sτn+1, and the requirement8

that in any type-space functor the maps Sg are continuous and open. Clo-9

sure under renaming is guaranteed by the third point in the definition of a10

topological logic. �11

The converse of Theorem 4.8 is also true. Since we will not make use12

of this fact, we omit the proof. The proof is very similar to the method13

of producing a type-space functor from a first-order theory, described in14

Section V.1 below.15

Theorem 4.9. Each abstract logic determines a topological logic.16

We also note that the above results can be proved without the requirement17

that the spaces involved are all 0-dimensional, provided that the spaces are18

regular and that we work with a suitably adapted notion of “abstract logic”19

for metric structures.20

The discussion above explains our earlier claim that a single type-space21

functor should be thought of as the topological representation of the model22

theory of an abstract logic in one signature. In light of this, and because23

the model-theoretic results we will be interested in are concerned only with24

single signatures, we will focus on individual type-space functors instead of25

topological logics.26

V. Examples27

V.1. First-order type-space functors. The basic example of a type-28

space functor arises from a first-order theory, and indeed the properties of29

type-space functors are designed to abstract the properties of this example.30

Definition 5.1. Let T be a first-order theory. The type-space functor of T ,31

S(T ), consists of the following data. For each n < ω, let Sn be the set of32

all complete n-types of T , considered with the logic topology (that is, the33

topology generated by basic closed sets of the form [ϕ] = {p ∈ Sn : ϕ ∈ p} for34

each n-ary formula ϕ). To each f : n→ m associate the map Sf : Sm → Sn35

defined by (Sf)(p) = {ϕ(x0, . . . , xn−1) : ϕ(xf(0), . . . , xf(n−1)) ∈ p}.36
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We say that a type-space functor is a first-order type space functor if it1

is the type-space functor of some first-order theory T .2

The following proposition follows directly from the definitions, together3

with basic facts from first-order model theory.4

Proposition 5.2. For every first-order theory T , the type-space functor5

of T is a type-space functor. The space Sω is homeomorphic to the logic6

topology on the set of ω-types of T .7

The model theory also agrees with classical model theory in this case.8

Suppose that T is a first-order theory, and S is the corresponding type-9

space functor. Suppose also that M |= T is enumerated as {mα : α < κ}.10

Define M on [κ]<ω by M({i0 < . . . < in−1}) = tpM (m0, . . . ,mn−1). It is11

then routine to verify that M is a model (in the sense of Definition 4.3), and12

that for any p ∈ Sn and any i0, . . . , in−1 ∈ κ,13

M |= p(i0, . . . , in−1) ⇐⇒ M |= p(mi0 , . . . ,min−1).

Conversely, Knight [Kni07, Proposition 2.10] showed that every model of S14

arises in this way from a (classical) model of T .15

V.2. Type-space functors from other logics. The process described16

above for first-order theories can be readily adapted to spaces of types arising17

from more general logics such as Lω1,ω, or indeed any abstract logic. In a18

partial converse to this process, Morley [Mor74] in effect showed that if19

a type-space functor has each Sn a 0-dimensional Polish space, and if a20

stronger amalgamation condition holds, then S arises from a theory in a21

countable fragment of Lω1,ω in the manner described above, and moreover22

the theory obtained is essentially unique. Ben Yaacov [Ben05] showed that23

without the 0-dimensionality assumption it is still often possible to give a24

syntactic presentation of a type-space functor, but the associated logic is25

that of metric structures (see also [BYBHU08]). If one forms the type-space26

functor arising from a signature τ of continuous first-order logic for metric27

structures, then S0 is precisely the quotient space of Str(τ) by the elementary28

equivalence relation (which is the same as the topological indistinguishability29

relation).30

V.3. Type-space functors generated by a space. Our second class of31

examples of type-space functors gives examples that do not come from the-32

ories in classical logics. Examples of this kind are the ones that we will use33

to produce counterexamples.34

Definition 5.3. Let X be any topological space. The type-space functor35

of X, denoted SX , consists of the following data. For each n < ω, define36

Sn = Xn, and to each f : n → m, associate the map (Sf) : Xm → Xn
37

defined by (Sf)(x0, . . . , xm−1) = (xf(0), . . . , xf(n−1)).38
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The following proposition follows directly from the definitions.1

Proposition 5.4. For any topological space X, the type-space functor of X2

is a type-space functor. The space Sω is homeomorphic to the (Tychonoff)3

product topology on Xω.4

VI. Omitting Types5

Proofs of Omitting Types Theorems using the Baire Category Theorem6

have been given for a variety of logics; for some examples, see [Mor74],7

[Poi00], [CI14], [Eag14]. In this section we describe the relationship be-8

tween Baire category properties and omitting types for type-space functors.9

Throughout this section, S denotes a type-space functor.10

Starting from the type-space functor S we will be focusing on a certain11

subspace SW of Sω. The motivation for the following definition is that we12

are defining an analogue of the space of ω-types of the form tp(a0, a1, . . .),13

where (a0, a1, . . .) enumerates a countable model of a theory. In fact, we will14

see in Lemma 6.4 that there is a correspondence between elements of the15

following space, and the models defined in Section V.3 above.16

Definition 6.1. Suppose that σ ∈ Sω. For A ∈ [ω]n, let fA : n→ ω be the17

map sending i to the ith element of A (in increasing order). Then we define18

Mσ(A) = (SfA)(σ).

In the opposite direction, given a countable model M , for each n < ω19

define σn = M({0, 1, . . . , n − 1}), and let σM be the equivalence class of20

(σ0, σ1, . . .) in Sω.21

Lemma 6.2. For each σ ∈ Sω, the map Mσ satisfies conditions (1) and (2)22

of Definition 4.3.23

Proof. Condition (1) is clear from the definition. For (2), suppose that24

A = {a0 < . . . < an−1} ∈ [ω]n, B = {b0 < . . . < bm−1} ∈ [ω]m, A ⊆ B, and25

g : n→ m satisfies ai = bg(i) for all i. Then for each i,26

fB ◦ g(i) = fB(g(i)) = bg(i) = ai = fA(i).

Therefore27

(Sg)(Mσ(B)) = (Sg)((SfB)(σ)) = (S(fB ◦ g))(σ) = (SfA)(σ) = Mσ(A).

�28

In general we cannot expect Mσ to be a model (that is, to satisfy condition29

(3) of Definition 4.3), just as we cannot expect an arbitrary ω-type of a first-30

order theory to specify a witness to every existential formula it implies. We31

define SW to be the set of those σ ∈ Sω for which Mσ is a model. Formally:32
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Definition 6.3. For σ ∈ Sω, we put σ ∈ SW if and only if for every1

n < ω, every A ∈ [ω]n, every m ≥ n, and every open U ⊆ S−1ιn,m({Mσ(A)}),2

there is a B ∈ [ω]m and a permutation g of m such that B ⊇ A, and3

(Sg)(Mσ)(B)) ∈ U .4

Note that in this definition the set U could equivalently be required to5

come from a fixed base for the topology of Sω.6

Lemma 6.4. The map σ 7→ Mσ is a one-to-one correspondence between7

SW and the set of countable models of S, with inverse M 7→ σM .8

Proof. Given σ ∈ SW , it is clear that Mσ satisfies condition (1) of Definition9

4.3. For condition (2), suppose that A = {a0 < . . . < an−1} ∈ [ω]n, B =10

{b0 < . . . < bm−1} ∈ [ω]m, A ⊆ B, and g : n → m satisfies ai = bg(i) for all11

i. Then for each i,12

fB ◦ g(i) = fB(g(i)) = bg(i) = ai = fA(i).

Therefore13

(Sg)(Mσ(B)) = (Sg)((SfB)(σ)) = (S(fB ◦ g))(σ) = (SfA)(σ) = Mσ(A).

The definition of SW exactly ensures that condition (3) is satisfied, so Mσ14

is a model. It is straightforward to check that for any σ ∈ SW we have15

σ = σMσ , and for any model M we have M = MσM . �16

In light of Lemma 6.4, we will sometimes identify a countable model M17

with the sequence σM .18

We define several omitting types properties that S may have. Another19

omitting types property, involving topological games, will appear in Section20

VI.1.21

Definition 6.5. (1) S has the classical omitting types property if for22

every non-empty closed T ⊆ S0, and every sequence (Ej)j<ω such23

that Ej is meagre in (Sι0,j)
−1(T ), there exists a model M |= T such24

that M omits every Ej .25

(2) S has the strong omitting types property if for every non-empty closed26

C ⊆ SW , and every meagre E ⊆ C, there is a model in C omitting27

E.28

Proposition 6.6. The strong omitting types property implies the classical29

omitting types property.30

Proof. Fix a non-empty closed T ⊆ S0. To simplify notation, for α ≤ ω, let31

Aα = (Sι0,α)−1(T ). For each j < ω let Ej ⊆ Aj be meagre. For each j < ω,32

and each i ∈ ωj , let fj,i : j → ω be defined by fj,i(k) = ik, where ik is the33

kth element of i in increasing order. Next, for each j and i, define34

Cj,i = (Sfj,i)
−1(Ej).
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Then each Cj,i is meagre in SW ∩Aω because Sfj,i is continuous, open, and1

surjective. Finally, define2

F =
⋃
j<ω

⋃
i∈ωj

Cj,i.

Then F is meagre in SW∩Aω. By the strong omitting types property we can3

find a model M such that M (or, more precisely, σM ) is in (SW ∩ Aω)rF .4

For such an M we have (Sι0,ω)(M) ∈ T , so M |= T .5

To see thatM omits each Ej , suppose thatA ∈ ωj . WriteA = {a0, . . . , aj−1} =6

{c0 < . . . < ck−1}, and let g : j → k be such that cg(i) = ai for each i < j.7

According to Definition 4.4, to show that M omits Ej we must show that8

in this situation (Sg)(M(A)) 6∈ Ej . Unwinding Definition 6.1, we obtain9

(Sg)(M(A)) = (Sg)(MσM (A)) = (Sg)(SfA)(σM ) = S(fA ◦ g)(σM ).

In the above calculation fA : k → ω sends i to ci, so we have fA ◦ g(i) =10

cg(i) = ai. Letting i = (a0, a1, . . . , aj−1) we therefore have fA ◦ g = fj,i.11

Combining the above calculations, and using that we chose M so that12

(Sfj,i)(σM ) 6∈ Ej , we get13

(Sg)(M(A)) = (Sfj,i)(σm) 6∈ Ej .

�14

Our omitting types properties conclude that certain countable models ex-15

ist, but there are type-space functors with no countable models at all. In16

order to conclude omitting types properties from topological facts about the17

type-space functor S we must also assume that the collection of countable18

models for S is sufficiently rich. For type-space functors coming from count-19

able theories this richness is provided by the downward Löwenheim-Skolem20

theorem. In general, we make the following definition.21

Definition 6.7. Let S be a type-space functor. We say that S has enough22

countable models if SW is dense in Sω.23

Lemma 6.8. Let S be a type-space functor. If S is the functor associated to24

a countable first-order theory, or if S is generated by a separable topological25

space, then S has enough countable models.26

Proof. Suppose first that T is a countable first-order theory. Then a basic27

open set O ⊆ Sω is the set of all ω-types of T containing some particular28

formula ϕ. If O 6= ∅ then there is a model M |= T containing a tuple ~a29

satisfying ϕ, and by Löwenheim-Skolem we may assume M is countable. If30

σ is the type of an enumeration of M in the appropriate order (so that the31

elements of ~a have the same indices as the variables appearing in ϕ), then32

σ ∈ O ∩ SW .33
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Now suppose that X is a space and S = SX . Let O ⊆ Xω be a basic open1

set. Let D ⊆ X be a countable dense set, and let σ ∈ O be such that every2

element of D is listed in σ infinitely many times. We show that σ ∈ W. We3

are given n < ω, m ≥ n, A = {a0 < . . . < an−1} ∈ [ω]n, and a non-empty4

basic open set U ⊆ (S−1ιn,m)(Mσ(A)). Unraveling the definitions, this means5

that there are open sets Vn, Vn+1, . . . , Vm−1 ⊆ X such that elements in U6

are exactly those sequences of the form (x0, . . . , xm−1) where xi = σ(ai) for7

i < n and xi ∈ Vi for n ≤ i < m. Choose B = {b0 < . . . < bm−1} such8

that bi = ai for i < n, and such that σ(bi) ∈ Vi for n ≤ i < m (this is9

possible by our choice of σ). Then Mσ(B) = (σ(b0), . . . , σ(bm−1)) ∈ U (so10

also (Sg)(Mσ(B)) ∈ U where g : m→ m is the identity function). Therefore11

σ ∈ SW , and hence SW ∩O 6= ∅. �12

The topological content of the omitting types theorem for first-order logic13

is captured by the following:14

Theorem 6.9. Let S be a type-space functor with enough countable models.15

If every closed subspace of SW is non-meagre in itself then S has the classical16

omitting types property.17

Proof. The proof is nearly identical to the proof of Proposition 6.6. As in18

that proof, we fix T ⊆ S0 closed, and for α ≤ ω let Aα = (Sι0,α)−1(T ). For19

each j < ω, let Ej ⊆ Aj be meagre. For each j < ω and i ∈ ωj , define20

fj,i : j → ω by fj,i(k) = ik, and define Cj,i = (Sfj,i)
−1(Ej); then each Cj,i is21

meagre in SW ∩Aω (here we use that S has enough countable models, which22

was not necessary in Proposition 6.6). Define23

F =
⋃
j<ω

⋃
i∈ωj

Cj,i.

Then F is meagre in SW ∩Aω, and since SW ∩Aω is non-meagre in itself by24

hypothesis, we can find M ∈ (SW ∩ Aω)rF . This M satisfies T and omits25

each Ej . �26

To characterize the strong omitting types property topologically we will27

need some terminology. A topological space is completely Baire if every28

closed subspace is Baire, and is completely non-meagre if every closed sub-29

space is non-meagre in itself.30

Hurewicz [Hur28] proved that a metrizable space is completely Baire if31

and only if the space does not include a closed copy of the space Q of rational32

numbers. Since Q is meagre in itself, it follows immediately that a metrizable33

space is completely Baire if and only if it is completely non-meagre. For this34

latter claim much weaker assumptions than metrizability are sufficient. The35

one we will use is the following.36
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Definition 6.10. A topological space is quasi-regular if each open set in-1

cludes the closure of an open set. A space is completely quasi-regular if each2

closed subspace is quasi-regular.3

Quasi-regularity is commonly required to prove results about Baire spaces4

(see e.g. [Oxt57]).5

Lemma 6.11. A completely quasi-regular space is completely Baire if and6

only if it is completely nonmeagre.7

Proof. That completely Baire implies completely nonmeagre is immediate.8

For the other direction, let F be a closed subspace of a completely nonmea-9

gre, completely quasi-regular space X. Let {Un}n<ω be a collection of dense10

open subspaces of F . If
⋂
n<ω Un were not dense in F , then there would be11

a V ⊆ F , V open in F , such that V ∩
⋂
n<ω Un = ∅. Let W be open in12

V with W ⊆ V . Then W ∩
⋂
n<ω Un 6= ∅, because W is nonmeagre. This13

contradicts V ∩
⋂
n<ω Un = ∅. �14

We note that regularity of type spaces can serve as a kind of weak nega-15

tion. For example, in continuous first-order logic for metric structures one16

does not have a classical negation, but the connective 1 − x acts as an ap-17

proximate negation, and closure under that connective is also the essential18

ingredient in the proof that the type spaces in continuous logic are regu-19

lar. See [Cai95] for more about the role of topological separation axioms20

in abstract model theory. In our context we are assuming even less than21

regularity, though it is not clear exactly how to translate quasi-regularity22

into logical terms, owing to the difficulty of computing closures in the type23

spaces of traditional logics.24

Theorem 6.12. Let S be a type-space functor with enough countable mod-25

els, and such that SW is quasi-regular. Then the following are equivalent:26

(1) S has the strong omitting types property.27

(2) SW is completely non-meagre.28

(3) SW is completely Baire.29

Proof. (1) → (2): Suppose that C ′ ⊆ SW is meagre in itself, and let C be30

a closed subset of Sω such that C ′ = SW ∩ C. Let En be nowhere dense in31

C ′, such that C ′ =
⋃
n<ω En. Then each En remains nowhere dense in Sω,32

so C ′ is meagre in Sω. The closed set C and the meagre set C ′ contradict33

the statement of the strong omitting types property, because any model in34

C is in C ∩ SW , and therefore does not omit C ′.35

(2)→ (3): Apply Lemma 6.11.36
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(3) → (1): Suppose that every closed subspace of S is Baire, let C ⊆ Sω1

be closed, and let E ⊆ C be meagre. Let C ′ = C∩SW , so C ′ is closed in SW .2

Let E′ = E ∩ SW . By the assumption that S has enough countable models,3

SW is dense in Sω, so E′ is meagre in C ′. Since SW is completely Baire,4

C ′ is Baire, and hence C ′rE′ 6= ∅. Any element of C ′rE′ corresponds to a5

model of C omitting E′ (just as in the proof of Proposition 6.6). �6

It is usually easier to understand the topology of Sω than the topology of7

SW . In concrete situations it is therefore useful to have information about8

how SW sits as a subspace of Sω. Recall that the weight of a topological9

space X is the minimum cardinality of a base for the topology of X. The10

following lemma is very useful, and is also immediate from the definition of11

SW .12

Lemma 6.13. Let S be a type-space functor, and for each n < ω let w(Sn)13

be the weight of Sn. Then SW is the intersection of
∑

nw(Sn)-many open14

subsets of Sω.15

Example 6.14. Many Omitting Types Theorems in the literature can be easily16

derived from Theorem 6.9, after translating our topological statement into17

model-theoretic terminology. We present here just a few examples. The18

spaces in the following examples are Čech-complete; a space X is Čech-19

complete if it is a Gδ in some (equivalently, every) compactification of X.20

Completely metrizable spaces are Čech-complete, as are locally compact21

Hausdorff spaces, and every Čech-complete space is Baire.22

(1) Let T be a first-order theory in a countable language, and let S be23

the associated type-space functor (as described in Section V.1). In24

this context each Sn is a second countable space, so SW is a dense Gδ25

in Sω by Lemmas 6.13 and 6.8. By the compactness theorem, Sω is a26

compact space, and is therefore Čech-complete. Čech-completeness27

is inherited by dense Gδ subspaces, and by closed subspaces, so it28

follows that every closed subspace of SW is Čech-complete, and hence29

Baire. The Omitting Types Theorem for first-order logic then follows30

from Theorem 6.9, together with the observation that a type p ∈31

Sn(T ) is principal if and only if p is an isolated point of Sn(T ) (see32

[Mar02, Section 4.2]).33

(2) The above discussion also works more generally, if T is a theory in a34

countable fragment of Lω1,ω. In this case Sω is not compact, but it is35

Polish, and so is still Čech-complete. We obtain the Omitting Types36

Theorem for countable fragments of Lω1,ω, originally due to Keisler37

[Kei71]. This proof of omitting types for countable fragments of38

Lω1,ω is fundamentally the same as the one given by Morley [Mor74].39
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(3) Similarly, if T is a theory in a countable fragment of the logic1

Lω1,ω for metric structures, then Sω is Čech-complete. Translat-2

ing Theorem 6.9 into model-theoretic terminology gives the Omit-3

ting Types Theorem for (not necessarily complete) metric structures4

from [Eag14].5

Not every omitting types theorem from the literature is a direct conse-6

quence of the topological version presented here. Notably, the omitting types7

theorem for continuous logic [BYBHU08], which requires that the models8

omitting the given types be based on complete metric spaces, does not di-9

rectly follow from our results; see [FM18] for a discussion of the subtleties10

that arise in omitting types in complete metric structures. We note also11

that our topological approach to obtaining omitting types theorems bears12

some resemblance to Keisler’s [Kei73], which develops both omitting types13

and set-theoretic forcing as a result of a more general notion of forcing that14

is closely related to Baire category.15

VI.1. A game version of omitting types. The Banach-Mazur game on16

a topological space X is a game played between two players, called EMPTY17

and NONEMPTY, as follows. The players alternate choosing open sets18

O0 ⊇ O1 ⊇ · · · , with EMPTY choosing first. The player NONEMPTY19

wins if
⋂
n<ω On 6= ∅, otherwise EMPTY wins. The connection between the20

Banach-Mazur game and Baire spaces is the following well-known result.21

Theorem 6.15 (see e.g. [Oxt57]). A topological space X is a Baire space if22

and only if EMPTY does not have a winning strategy in the Banach-Mazur23

game.24

There are examples of spaces X for which the Banach-Mazur game is not25

determined [Oxt57], so asserting that NONEMPTY has a winning strat-26

egy is strictly stronger than asserting that EMPTY does not have one.27

This stronger property was introduced by Choquet [Cho69] who called it28

weakly α-favourable. Weak α-favourability was further investigated by29

H. E. White [Whi75], who, among other results, proved it was preserved by30

topological products — even box products, unlike the usual Baire Category31

Theorem [Fle78].32

In light of Theorems 6.9 and 6.12 it is natural to ask how the Omitting33

Types Theorem is strengthened by using weakly α-favourable spaces instead34

of Baire spaces. By analogy to the case of first-order logic, we will refer to35

a closed subset of Sω as a partial ω-type. It is then convenient to state the36

Banach-Mazur game in dual form.37

Definition 6.16. Let S be a type-space functor, and let C ⊆ Sω be a partial38

ω-type. The omitting types game on C is played by two players, OMIT39

and REALIZE, as follows. The players alternate picking partial ω-types40
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F0 ⊆ F1 ⊆ · · · , with REALIZE playing first, and with each Fi omissible in1

a model realizing C. The player OMIT wins if
⋃
n<ω Fn is omissible in a2

model realizing C, otherwise REALIZE wins.3

We say that S has the game omitting types property if OMIT has a winning4

strategy in the omitting types game on C, for every C.5

We call a space X completely weakly α-favourable if every closed subspace6

of X is weakly α-favourable. The definition of the omitting types game7

immediately gives the following statement, analogous to Theorem 6.12.8

Theorem 6.17. Let S be a type-space functor with enough countable mod-9

els. The following are equivalent:10

(1) S has the game omitting types property.11

(2) SW is completely weakly α-favourable.12

We immediately obtain the following game version of the omitting types13

theorem for countable fragments of Lω1,ω, which to the best of our knowledge14

has not been explicitly stated elsewhere.15

Theorem 6.18. Let T be a theory in a countable fragment of Lω1,ω. Two16

players OMIT and REALIZE play the following game: REALIZE plays first,17

and the players alternate picking a sequence of partial ω-types Σ0 ⊇ Σ1 ⊇ . . .18

(the inclusions being as sets of formulas), such that each Σi is omissible in a19

model of T . Player OMIT has a strategy to ensure that
⋂
n<ω Σi is omissible20

in a model of T .21

Proof. In the type-space functor S of T the space SW is Polish (see [Mor74]),22

and therefore completely weakly α-favourable. It follows that S has the23

game omitting types property. The statement of the game omitting types24

property, together with the definition of the logic topology, give the desired25

conclusion. �26

In many cases of interest it is possible to deduce the game omitting types27

property from the topology of Sω, rather than SW .28

Theorem 6.19. Let S be a type-space functor with enough countable mod-29

els, such that each Sn is separable and metrizable. If Sω is completely weakly30

α-favourable then S satisfies the game omitting types property.31

Proof. In this context Sω is, by definition, a subspace of a product of sepa-32

rable metrizable spaces, and hence is itself separable and metrizable. More-33

over, SW is a dense Gδ in Sω by Lemma 6.13 and the definition of “enough34

countable models”. By Theorem 6.17 it suffices to prove the purely topologi-35

cal claim that if X is a separable metrizable completely weakly α-favourable36

space and Y is a dense Gδ in X, then Y is completely weakly α-favourable.37
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Let Z be a closed subspace of Y , and let Z be the closure of Z in X. Since1

Y is metrizable and Z is closed in Y , Z is a Gδ in Y . Y itself is a Gδ in X,2

so Z is a Gδ in X, and hence Z is a Gδ in Z. On the other hand, Z is weakly3

α-favourable by hypothesis, and of course Z is dense in Z. White [Whi75]4

proved that dense Gδ subspaces of weakly α-favourable regular spaces are5

weakly α-favourable, so Z is weakly α-favourable as required. �6

VII. Distinguishing the omitting types properties7

Our original motivation for this paper was to determine whether or not8

the Omitting Types Theorem is equivalent to the Baire Category Theorem.9

We are now prepared to address this question. It suffices to find a space10

X satisfying the Baire Category Theorem while the type-space functor it11

generates does not satisfy OTT. A Baire X such that Xω is not Baire, and12

hence has no dense Gδ Baire subspaces will suffice, e.g. the Baire X with X2
13

not Baire of Fleissner and Kunen [Fle78] will do the trick. A more nuanced14

example is due to Aarts and Lutzer [AL73]. They construct a completely15

Baire separable metric space with a dense completely metrizable subspace16

such that X2 is not completely Baire. X is actually weakly α-favorable, so17

Xω is as well, so Xω is Baire, but not completely Baire.18

We end by noting that the game version of omitting types is genuinely19

stronger than the strong version.20

Lemma 7.1. Suppose that X is a separable metrizable space X such that21

Xω is completely Baire, but Xω does not include a dense completely metriz-22

able subspace. Then the type-space functor S(X) has the strong omitting23

types property but does not have the game omitting types property.24

Proof. By Proposition 5.4 S(X)ω = Xω, and by Lemmas 6.8 and 6.1325

S(X)W is a dense Gδ in Xω. Medini and Zdomskyy [MZ15] proved that26

every dense Gδ subspace of a completely Baire space is completely Baire,27

so our assumption that Xω is completely Baire implies that S(X)W is com-28

pletely Baire, and hence by Theorem 6.12 S(X) has the strong omitting29

types property.30

Since X is a separable metrizable space so is Xω, and hence also S(X)W .31

Telgársky [Tel87] proved that a separable metrizable space is weakly α-32

favourable if and only if it has a dense completely metrizable subspace.33

Therefore if S(X) had the game omitting types property, then S(X)W would34

have a completely metrizable dense subspace, and hence Xω would also have35

such a subspace, contrary to our hypothesis. So S(X) does not have the36

game omitting types property. �37
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A space satisfying the hypotheses of Lemma 7.1, and hence giving rise1

to a type-space functor which satisfies the strong omitting types property2

but not the game version, was constructed in [TZ19], in response to an3

earlier version of this manuscript which had shown that existence of such an4

example is consistent with ZFC.5
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[CDI19] X. Caicedo, E. Dueñez, and J. Iovino. Metastable convergence and logical17

compactness. arXiv:1907.02398, 2019.18

[Cho69] Gustave Choquet. Lectures on analysis. Vol. I: Integration and topological19

vector spaces. Edited by J. Marsden, T. Lance and S. Gelbart. W. A. Ben-20

jamin, Inc., New York-Amsterdam, 1969.21

[CI14] X. Caicedo and J. Iovino. Omitting uncountable types, and the strength of22

[0, 1]-valued logics. Annals of Pure and Applied Logic, 165:1169–1200, 2014.23

[Eag14] C. J. Eagle. Omitting types in infinitary [0, 1]-valued logic. Annals of Pure24

and Applied Logic, 165:913–932, 2014.25

[Eag17] C. J. Eagle. Expressive power of infinitary [0, 1]-logics. In J. Iovino, editor,26

Beyond first order model theory, pages 3–22. CRC Press, Boca Raton, FL,27

2017.28

[Eng89] R. Engelking. General Topology. Heldermann Verlag, Berlin, 1989.29

[Fle78] W. G. Fleissner. Separation properties in Moore spaces. Fundamenta Math-30

ematicae, 98:275–286, 1978.31

[FM18] I. Farah and M. Magidor. Omitting types in logic of metric structures. Jour-32

nal of Mathematical Logic, 18:1850006–1 – 1850006–58, 2018.33
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