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1 Introduction.

In modelling several natural phenomena, reaction-diffusion equations arise that have

steady states of the form

ε2∆v − f(v) = 0 , (1)

where f is an odd function with vf ′′(v) > 0 for v 6= 0, f ′(0) < 0 and f(±vs) = 0 for some

vs > 0. For example,

vt = ε2∆v − f(v) . (2)

with reaction term of the form described above is variously known as an Allen-Cahn

equation or a Ginzburg-Landau equation and models the kinetics of phase transitions. A

typical reaction term is

f(v) = λ(v3 − v) . (3)

Such equations are known to form sharp transition layers between positive and negative

regions quite rapidly, but these are metastable and eventually collapse, approaching an

equilibrium that is constant in space [2,3,4,14,15].

In continuous space approximations of neural network models [5,6,8,9], similar equa-

tions arise of the form

vt =
γ

G′(v)

[

ε2
τ

2
∆v + τ0v −

G(v)

γ

]

, (4)

where τ, τ0, ε and γ are positive constants. Here, G(v) is the inverse of a sigmoidal function,

g. This g has range (−1, 1) and describes the dependence of the firing rate of a neuron on
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its membrane potential. It is an increasing function and therefore so is G. Without loss

of generality, we may take G′(0) = 1. These properties are summarized as

G(v) = −G(−v), v ∈ (−1, 1)

|G(v)| → ∞ as |v| → 1 (5)

G′(v) > 0, G′(0) = 1 .

In the theory of [9], equation (4) is shown to be a good approximation to a class of neural

networks for ε small and γ large. It also has equilibria of the form (1), taking

f(v) =
2

τ

(

G(v)

γ
− τ0v

)

. (6)

If these equations are discretized in space via a central difference scheme with ε as the

step size, systems of ordinary differential equations are obtained of the form:

v̇i =
∑

j∼i

vj − 2dvi − f(vi) (7)

for (2) or

v̇i =
γ

G′(vi)





τ

2





∑

j∼i

vj − 2dvi



+ τ0vi −
G(vi)

γ



 (8)

for (4), where
∑

j∼i means the sum over nearest neighbours of i, and d is the number of

spatial dimensions. In either case the equilibrium equations corresponding to (1) are

∑

j∼i

vj − 2dvi − f(vi) = 0 , (9)

or more simply

∑

j∼i

vj = q(vi) , (10)
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with

q(v) = f(v) + 2dv . (11)

Systems of ODE’s of this form arise independently in other contexts. For example,

the Ising model for spins of ferromagnetic paricles, lattice gasses, binary alloys, etc. with

Glauber dynamics [10] and a mean field approximation, takes the form [7]

v̇i = −vi + tanh



K
∑

j∼i

vj



 , (12)

where K is a parameter (inversely) related to temperature. Equilibria of this system can

be written in the form

∑

j∼i

vj −
1

K
tanh−1(vi) = 0 , (13)

which is again like (10) with

q(vi) =
1

K
tanh−1(vi) . (14)

Discrete versions of the Allen-Cahn equation itself are used as models of binary alloys, for

example [1]. In both of the above cases, the phenomena modelled are spatially discrete by

nature.

It is known that reaction-diffusion equations of the form (2) in one spatial dimension

and with natural boundary conditions (Neumann or periodic) have no stable steady states

other than those which are constant in space (i.e. no stable patterns) [3,11,13]. This also

holds for (4). In fact, both forms have the same energy functional (see below) as well as

the same equilibria so their dynamics are essentially the same.
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One might expect that the finite-difference approximations would demonstrate similar

dynamics, especially when ε is small, or at least not be so dissimilar as to allow stable

patterns. This expectation turns out not to be justified. This is somewhat surprising

since it implies that high energy states can be stable. Intuitively, it results from the

step size in the discretization being of the same order as the width of transition layers.

Finer discretizations would be expected to follow the behaviour of the reaction-diffusion

equations more closely. But the spatially discrete systems are of interest in their own right.

In this paper, we show how elementary methods may be used to demonstrate the

existence of stable patterns for systems of ODE’s of the forms (7), (8) or (12) above, for

some functions f(v). These stable patterns can exist on a whole range of scales (from the

microscopic to the macroscopic) but are more likely to be stable at larger scales. We use

periodic boundary conditions throughout, though we expect that the results will also hold

for Neumann boundary conditions. We carry out the calculations in one spatial dimension

for the most part, but indicate at the end how they can be extended to more than one

dimension.

In one spatial dimension equations (2) and (4) become

vt = ε2vxx − f(v) . (15)

and

vt =
γ

G′(v)

[

ε2
τ

2
vxx + τ0v −

G(v)

γ

]

(16)
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respectively. The corresponding systems of ODE’s, (7) and (8), become

v̇m = vm+1 − 2vm + vm−1 − f(vm) (17)

and

v̇m =
γ

G′(vm)

[

τ

2
(vm+1 − 2vm + vm−1) + τ0vm −

G(vm)

γ

]

=
γ

G′(vm)

[

τ

2
(vm+1 + vm−1) + (τ0 − τ)vm −

G(vm)

γ

]

,

(18)

respectively, and (12) becomes

v̇m = −vm + tanh [K (vm−1 + vm+1)] . (19)

The equilibrium equations for these systems of ODE’s all become

vm+1 + vm−1 = q(vm) = f(vm) + 2vm, (20)

with appropriate choice of f or q, from (3), (6), (14).

2 Lyapunov functional.

We first note that equations (15) and (16) have the same Lyapunov functional, namely,

E[v] =

∫ (

ε2

2
v2x + F (v)

)

dx , (21)

where

F ′(v) = f(v)

or

F (v) = Q(v)− v2
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so that

Q′(v) = q(v) .

For (16),

Q′(v) = q(v) =
2

τ

[

G(v)

γ
− (τ0 − τ)v

]

, (22)

so that (18) is

v̇m =
γ

G′(vm)

τ

2
[vm+1 + vm−1 − q(vm)] .

These are not difficult to prove, but we concentrate on the discrete space equations.

The spatial discretization, with v = (vm), has the analogous Lyapunov functional

E[v] =
∑

j

Q(vj)−
1

2

∑

j

vj(vj+1 + vj−1) . (23)

Lemma 1 E[v] in (23) is a Lyapunov functional for equation (18) with periodic

boundary conditions.

Proof To show that (23) is a Lyapunov functional, it is necessary to show that

equilibria are critical points of the energy surface and that energy decreases with time.

Note that equation (20) is the equilibrium equation for (18) with q given by (22). First,

d

dvj
E[v] = q(vj)− (vj−1 + vj+1) ,
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which is clearly zero at equilibria. Second,

Ė[v] =
∑

j

q(vj)v̇j −
1

2

∑

j

[vj v̇j+1 + vj+1v̇j + vj v̇j−1 + vj−1v̇j ]

=
∑

j

q(vj)v̇j −
1

2

∑

j

[(vj+1 + vj−1) v̇j ]−
1

2

∑

k

vk+1v̇k −
1

2

∑

ℓ

vℓ−1v̇ℓ

=
∑

j

[q(vj)− (vj+1 + vj−1)] v̇j

= −
∑

j

2G′(vj)

γτ
v̇2j ≤ 0 ,

since τ , γ, and G′(vj) ≥ 0, and where we have used (22).

E[v] is also an energy functional for (17) and (19), and the proofs are similar.

Thus, equilibria for the three equations are the same as are their stability properties.

We can therefore focus our attention on equations (20) and (23) to obtain results for the

discretizations of the neural network equation (16) or the Ginzburg-Landau (or Allen-

Cahn) equation (15) or for the Ising model equations (19). We remark here that in the

Ginzburg-Landau equation with f defined by (3), |f(v)| → ∞ as |v| → ∞. In the neural

network theory we have f given by (6) which has the property that |f(v)| → ∞ as |v| → 1.

However, as long as initially v ∈ [−vs, vs], where vs is the positive solution to f(v) = 0,

the solutions remain in this interval, so the behaviour of f for |v| > vs is irrelevant. Thus,

this f(v) is also of the type studied by Carr and Pego, for example [2,3].

In the remainder of this paper we will use two examples of the general q. The form

given by (22), which comes from the neural field model, we will refer to as q1 and the

corresponding f from (11) as f1. Note that the Ising model equations (19) also have q in

this form with τ = τ0 = 2, γ = K and G = tanh. For comparison we also use the form
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given by (3) and (11), which is typical for the Ginzburg-Landau equation (15), and we will

refer to this f as f2, so that

q2(v) = (2− λ)v + λv3 . (24)

It is sometimes convenient to work with f(v) and sometimes with q(v) and we shall use

both as appropriate.

3 Stability of flat equilibria.

We wish to establish that there exist stable patterns for these dynamical systems; i.e.

that there are stable equilibria that are not constant in space. We examine equations that

have equilibria given by (20) and energy functional given by (23). In these equations we

will allow f(v) to be any smooth function satisfying the conditions

f(−v) = −f(v), i.e. f odd, so f(0) = 0 ,

vf ′′(v) > 0 for v 6= 0 .

(25)

From (11) it is clear that the same conditions must also apply to q(v). These conditions

hold for f(v) given by (6) and q(v) by (22) if G satisfies conditions (5). They hold for the

example in (3) or (24) if λ > 0. In addition, after this section we will require that

∃vs > 0 such that f(±vs) = 0 . (26)

Then, f ′(0) < 0 and f is of the form considered by Carr and Pego [2,3]. For convenience,

we continue to assume periodic boundary conditions.

First, we examine the stability of the trivial equilibrium, v ≡ 0.
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Proposition 3 The trivial solution to (20), v ≡ 0, is asymptotically stable for q′(0) ≥

2 and unstable for q′(0) < 2.

Proof The result is easy to see if we rewrite the energy functional (23) in the form

E[v] =
∑

j

Q(vj)−
∑

j

v2j +
1

4

∑

j

[

(vj+1 − vj)
2
+ (vj−1 − vj)

2
]

(27)

which can be shown to be equivalent under periodic boundary conditions. Now it is clear

that the last term, which gives a contribution from interactions, can only increase as any

constant equilibrium is perturbed and the first two terms contain no interactions and so

may be treated separately for each vj . Letting F (v) = Q(v)− v2, we have that F ′(0) = 0

by (25) and F ′′(0) = q′(0) − 2. Thus, if q′(0) > 2, then F ′′(0) > 0 and F (v) > 0 for v

near 0, so the 0 equilibrium is asymptotically stable. If q′(0) = 2, then F ′′(0) = 0 and

F ′′′(0) = q′′(0) = 0, since q is an odd function, but F (4)(0) = q′′′(0) > 0, since q′′(v) < 0

for v < 0 and q′′(v) > 0 for v > 0. Thus, the 0 equilibrium is still asymptotically stable

for q′(0) = 2. If q′(0) < 2, then F ′′(0) < 0 and F (v) < 0 for v near 0. A perturbation that

is constant in space will decrease the energy, so the 0 equilibrium is unstable.

The proposition is illustrated by our two examples:

Example 1 For q1(v) from (22), the condition q′(0) < 2 for instability of the trivial

equilibrium becomes τ0 > 1
γ . (Recall that G

′(v) ≥ G′(0) = 1).

Example 2 For q2(v) given by (24), the trivial solution is unstable if λ > 0.

We are really only interested in the case f ′(0) < 0 (q′(0) < 2), so that the constant

space solutions (vj = vs for all j or vj = −vs for all j) exist and the zero solution is
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unstable. These constant-space solutions are always stable.

Proposition 4 The two solutions vj = vs for all j, and vj = −vs for all j, where

vs is the positive solution to f(v) = 0 when f satisfies conditions (25) and (26), are

asymptotically stable.

Proof As before, use the energy functional in the form (27). Again the last term

cannot decrease when a constant equilibrium is perturbed and the first two terms may be

treated separately for each vj . With F (v) = Q(v)− v2, we have

F ′(±vs) = q(±vs)∓ 2vs = f(±vs) = 0,

and

F ′′(±vs) = f ′(±vs) > 0 .

Therefore, the energy is greater for perturbations of this equilibrium and it is asymptoti-

cally stable.

4 A stable equilibrium of period 6.

Now we demonstrate the existence, under certain conditions on q(v), of stable equi-

libria that are not constant in space. Consider a period 6 equilibrium, v∗, of the form

v1 = v4 = 0; v2 = v3 = −v5 = −v6 = B > 0, (28)

where B is a constant.
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Proposition 5 An equilibrium of the form (28) exists if and only if

q′(0) < 1, i.e. f ′(0) < −1. (29)

Proof An equilibrium must satisfy (20) at every point. Here, we always have v3+v5 =

q(v4) = q(0) = 0, by (25), so the equilibrium exists exactly when it is possible to find a B

such that B = v2+v4 = q(v3) = q(B) (the other cases are taken care of by the symmetries

in (28) and in q). That is, the equilibrium exists when q′(0) < 1, by (25) applied to q.

Also, B = q(B) is equivalent to B = 2B + f(B) or f(B) = −B, which has a positive

solution when f ′(0) < −1.

Example 1 (continued) Condition (29) implies τ0 − τ
2 > 1

γ for q1(v) as in (22),

which is not possible if 2τ0 ≤ τ since γ > 0, so the condition for existence of this period 6

equilibrium is in this case 2τ0 > τ and γ > 1
τ0−τ/2 .

Example 2 (continued) Condition (29) implies λ > 1 for q2(v) as in (24).

We can determine the stability of this equilibrium from the energy functional (23) by

means of the matrix of second derivatives ∂2E
∂vi∂vj

. The equilibrium v∗ is asymptotically

stable if and only if this matrix evaluated at v∗ is positive definite, since this ensures

that the energy is greater in a neighbourhood of the equilibrium (for Lyapunov’s stability

theorem, see, e.g. [12]). This matrix is

P =
∂2E

∂vi∂vj
[v∗] =















q′(−B) −1 0 0 0 −1
−1 q′(0) −1 0 0 0
0 −1 q′(B) −1 0 0
0 0 −1 q′(B) −1 0
0 0 0 −1 q′(0) −1
−1 0 0 0 −1 q′(−B)















. (30)
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Proposition 6 P is positive definite if and only if

q′(0) > 0 (31)

and

q′(±B)−
2

q′(0)
− 1 > 0. (32)

Proof Let x be an arbitrary vector in R6. Then

xtPx = q′(−B)
[

x2
1 + x2

6

]

+ q′(B)
[

x2
3 + x2

4

]

+ q′(0)
[

x2
2 + x2

5

]

− 2 [x6x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6] .

Now if q′(0) < 0 then we can take x1 = x3 = x4 = x6 = 0 and x2 = x5 6= 0 to make

xtPx < 0 so P is not positive definite. If q′(0) = 0 then we may take x1 = x3 = x4 =

x6 = 1, say, and x2 = x5 > q′(B)−1
2 so that

xtPx = 2q′(−B) + 2q′(B)− 2 [4x2 + 2] = 4 [q′(B)− 1− 2x2] < 0

and again, P is not positive definite. If q′(0) > 0, we can rewrite xtPx as

xtPx = q′(0)

[

x2 −
1

q′(0)
(x1 + x3)

]2

+ q′(0)

[

x5 −
1

q′(0)
(x4 + x6)

]2

+ (x3 − x4)
2
+ (x1 − x6)

2
+

1

q′(0)

[

(x1 − x3)
2
+ (x4 − x6)

2
]

+

[

q′(−B)−
2

q′(0)
− 1

]

[

x2
1 + x2

6

]

+

[

q′(B)−
2

q′(0)
− 1

]

[

x2
3 + x2

4

]

(33)

to see that P is positive definite when q′(±B) − 2
q′(0) − 1 > 0. If this quantity is ≤ 0, we

can take x1 = x3 = x4 = x6 and x2 = x5 = 2
q′(0)x1 to make xtPx ≤ 0 for x 6= 0, so P is

not positive definite.
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Note that exactly the same approach works for multiple periods (where there are extra

degrees of freedom in the perturbation vector x). The vectors are in R6m for m periods

and xtPx will contain more terms of the same form so that the conditions for stability do

not change.

Thus the period 6 equilibrium exists and is asymptotically stable exactly when 0 <

q′(0) < 1 and q′(±B)− 2
q′(0) − 1 > 0. In terms of f , conditions (31) and (32) are

1 + f ′(±B) >
2

2 + f ′(0)
, (34)

f ′(0) > −2 . (35)

Example 1 (continued) For equation (18), we have seen that the period 6 equilibrium

exists only when τ0 −
τ
2
> 1

γ
and stability requires at least the equivalent of (31), which is

τ0 − τ < 1
γ
. Thus, a necessary condition for the existence of a stable period 6 equilibrium

for large γ (i.e. as γ → ∞) is

τ

2
< τ0 ≤ τ .

If we consider the case τ0 = τ = 2, as for the Ising model, (31) is automatically satisfied

and (32) becomes

G′(B)

γ
− 1 > 2γ . (36)

Since, by definition, q1(B) = B, we have (with τ0 = τ = 2) f1(B) = −B or G(B)
γ = B

so that γ = G(B)
B and B goes from 0 to 1 as γ goes from 1 to ∞. Hence, with these

parameters, we may express (36) as

BG′(B)

G(B)
− 1 >

2G(B)

B
.
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If G(v) = tanh−1 v, again as for the Ising model, this condition becomes

1

1−B2
>

tanh−1 B

B
+ 2

(

tanh−1 B

B

)2

,

and it can be shown by asymptotic analysis [7] that this is true for large enough B (or γ).

A numerical calculation shows that it is true for γ > 1.8576.

Example 2 (continued) For q2(v) given by (24), condition (34) and (35) becomes

1 + λ
(

3B2 − 1
)

>
2

2− λ
, λ < 2 .

In this case, we can find B in terms of λ as follows:

q2(B) = B ⇒ f2(B) = −B ⇒ λ
(

B3 −B
)

= −B ⇒ B3 =

(

1−
1

λ

)

B

⇒ B2 = 1−
1

λ
.

Using this, our stability condition becomes

2λ− 2 >
2

2− λ
,

where the denominator on the right is positive since λ < 2. Thus,

(2− λ)(λ− 1) > 1

or

λ2 − 3λ+ 3 < 0 .

But this quadratic inequality is not satisfied for any real λ, showing that the period 6

equilibrium is never stable for f2.
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5 Large scale stable patterns.

The existence of a stable period 6 equilibrium for some q(v) is of limited interest in

itself, since we want to consider ε to be small, and as ε → 0, the grid shrinks and the

period 6 equilibrium oscillates at very high frequency (and thus, in a sense, consists only

of transition layers). However, there can also exist stable equilibria of arbitrarily large

period, for appropriate q(v). This is demonstrated by the following series of propositions.

Proposition 7 If 0 < q′(0) < 2 and q satisfies (25) then there exists a periodic

solution to (20) of period N for all even N ≥ 6,

N >
2π

cos−1
(

q′(0)
2

) . (37)

Proof Let N ≥ 6 be even. Let φ(n) = sin
(

2πn
N

)

. We carry out the proof by an

iteration. Define an initial vector (of period N) as

v(0)n = δφ(n) for n = 0, 1, . . . , N − 1, (38)

where the constant δ > 0 is to be chosen.

Now iterate according to

v(m+1)
n = q−1

(

v
(m)
n+1 + v

(m)
n−1

)

, (39)

where we have used the fact that q′(0) > 0 to ensure that q is strictly increasing so that

q−1 exists and is also increasing. If v
(m)
n ≥ v

(m−1)
n for all n, then

v(m+1)
n ≥ q−1

(

v
(m−1)
n+1 + v

(m−1)
n−1

)

= v(m)
n
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for all n. So an initially increasing sequence must continue to increase. Similarly, an

initially decreasing sequence must continue to decrease. Now, for the initial vector in (38),

the points v
(m)
n where n = kN

2 , i.e. multiples of N/2, will be zero and will remain zero due

to the symmetries in the vector and the iteration. Thus, we need only show that in the

positive parts of the initial vector, each point increases on the first iteration (and in the

negative parts each point decreases) to get a monotone increasing (monotone decreasing)

sequence of points for each n. That is, we need

v(0)n = δφ(n) ≤ q−1 (δ (φ(n− 1) + φ(n+ 1))) = q−1
(

v
(0)
n−1 + v

(0)
n+1

)

= v(1)n .

I.e.

q [δφ(n)] ≤ δ (φ(n− 1) + φ(n+ 1)) .

There exists a δ such that this relation is satisfied as long as the slope of the function on

the right hand side, considered as a function of δ, is greater than the slope of the function

on the left at δ = 0. That is, the inequality can be satisfied if

q′(0)φ(n) < φ(n− 1) + φ(n+ 1) .

Now expanding the sine functions gives

φ(n− 1) + φ(n+ 1) = 2φ(n) cos

(

2π

N

)

,

so the condition becomes

q′(0) < 2 cos

(

2π

N

)

,
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or equivalently,

N >
2π

cos−1
(

q′(0)
2

) .

If this is satisfied, we get a monotone increasing sequence v
(m)
n for each n, 0 < n < N

2 .

Recall that q(vs) = 2vs, where vs is the positive solution to f(v) = 0 (see (25) and (11)).

So vs = q−1(2vs). Since q and therefore q−1 are increasing functions, we have by the

iteration scheme (39) that
∣

∣

∣
v
(m+1)
n

∣

∣

∣
< vs as long as

∣

∣

∣
v
(m)
n−1

∣

∣

∣
< vs and

∣

∣

∣
v
(m)
n+1

∣

∣

∣
< vs. Thus,

if we take δ small enough so that
∣

∣

∣
v
(0)
n

∣

∣

∣
< vs for all n, then

∣

∣

∣
v
(m)
n

∣

∣

∣
< vs for all n and m.

Then each monotone increasing sequence must converge (to vn, say). For N
2

< n < N ,

each sequence is monotone decreasing and converges to vn = −vN−n. The resulting vector

v∗ satisfies the equilibrium equation (20) at every point and is therefore a solution.

We will require some properties of these equilibria. First, it is evident by the method

of construction that these equilibria have symmetries. In particular,

v0 = vN
2

= vN = 0,

vn = −vN
2
+n,

and

vn = vN
2
−n.

Now define the second difference,

∆2vi ≡ vi−1 + vi+1 − 2vi .

From equation (20), it is clear that for any equilibrium,

∆2vi = q(vi)− 2vi = f(vi),
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which is negative for 0 < vi < vs and positive for −vs < vi < 0. Thus, an equilibrium must

be concave down where it is positive and concave up where it is negative. This concavity

also implies that the equilibria found in Proposition 7 increase to a maximum and decrease

to zero again from v0 to vN
2

. Thus,

vn ≥ v1

for 0 < n < N
2 and in particular

v2 > v1

for even N ≥ 8.

Furthermore, we know that f has a unique minimum on (0, vs), say at v = η, by (25)

and since f ′(0) < 0 (i.e. q′(0) < 2). For vi ≥ η, f(vi) is an increasing function of vi. Thus,

for an equilibrium, vi > vj ≥ η implies f(vi) > f(vj) and therefore

∆2vi > ∆2vj .

Proposition 8 The solution to (20) of period N ≥ 8 given by Proposition 7 exists

and is stable if

0 < q′(0) < 2 cos

(

2π

N

)

(40)

and

q′(v∗1) >
2

q′(0)
+ 1 . (41)

Proof As for the period 6 equilibrium, stability is demonstrated by showing that

the matrix of second partial derivatives, P = ∂2E
∂vi∂vj

[v∗], where v∗ is the equilibrium, is
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positive definite. The matrix will be similar to that in (30), having q′(v∗i ) on the diagonal

in the ith position and -1 in adjacent positions. Letting x be an arbitrary vector in RN ,

we have

xtPx =

N−1
∑

i=0

q′(v∗i )x
2
i − 2

N−1
∑

i=0

xixi+1 . (42)

In order to see when this must be positive, we need to express it as a sum of squares with

positive coefficients, as in (33). The interaction terms in the last sum can be handled by

including terms like (xi − xi+1)
2
for each adjacent pair, and then the extra 2x2

i for each

point will have to be subtracted from q′(v∗i )x
2
i . However, this will not work for the points

where v∗i = 0, i.e. when i = kN
2
, for some integer k, since the equilibrium only exists for

0 < q′(0) < 2 cos
(

2π
N

)

< 2, so that (q′(0)− 2)x2
i < 0. Thus, we handle the points i = kN

2

and their interactions with adjacent points separately to get the equivalent expression

xtPx =
∑

i= kN
2

∑

j∼i

q′(0)

2

[

xi −
2

q′(0)
xj

]2

+
1

2

∑

i6= kN
2

∑

j∼i

j 6= kN
2

[xi − xj]
2

+
∑

i= kN
2

∑

j∼i

[

q′(v∗j )−
2

q′(0)
− 1

]

x2
j +

∑

|v∗
i
|>|v∗

1
|

[q′(v∗i )− 2]x2
i ,

(43)

where the sums over j ∼ imean sums over the immediate neighbours of i. Thus, the second

sum above is over all adjacent pairs where neither is a zero point and the last sum is over

all points aside from the zero points and those adjacent to them. Now by (25), vq′′(v) > 0,

so that q′(v) increases with |v| and so (43) is positive if (41) is satisfied and q′(v∗2) > 2.

This last condition follows from (40) and (41), however. Note that q′(v∗2) > q′(v∗1) since

|v∗2 | > |v∗1 |, which is a property of the equilibria from the discussion following Proposition
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7. So, using (40) again,

q′(v∗2) > q′(v∗1) >
1

cos
(

2π
N

) + 1 ≥ 2 .

Thus, conditions (40) and (41) give the result.

Note that multiple periods can again be handled in exactly the same way.

Example 1 (continued) For q1(v) given by (22) with τ = τ0 = 2, conditions (40) and

(41) become

0 <
1

γ
< 2 cos

(

2π

N

)

, (44)

G′(v∗1)

γ
− 1 > 2γ . (45)

The first of these (44) is always true with γ > 1, say (for N ≥ 6).

In order to establish the existence of these stable patterns for this example, it is

necessary to show that (45) can also be satisfied. We do this with the help of some earlier

results from [7]. First, we look at the difference between two equilibria, i.e. two solutions

to (20). Recall that f has a minimum at v = η.

Lemma 9 Let u and v be solutions of (20) and let z = u − v. Suppose um, vm ≥ η

and zm ≥ 0 for some m, then zm+1 ≥ 2zm − zm−1.

Proof From the properties of equilibria discussed after Proposition 7, zm ≥ 0 implies

that ∆2um > ∆2vm. That is, um+1 + um−1 − 2um ≥ vm+1 + vm−1 − 2vm, which when

rearranged, gives the desired result.

Lemma 10 Let u and v be solutions of (20) and let z = u−v. Suppose u1, . . . , um ≥
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η, v1, . . . , vm ≥ η and z1, . . . , zm ≥ 0. Then

zm+1 ≥ (m+ 1)z1 −mz0 .

Proof Let k be an integer such that 1 ≤ k ≤ m − 1. Note that from Lemma 9, we

have −zm ≥ −1
2zm+1 −

1
2zm−1. Using this,

(k + 1)zm − kzm−1 ≥ (k + 1)zm −
k

2
zm −

k

2
zm−2 =

(

k

2
+ 1

)

zm −
k

2
zm−2

and then using Lemma 9 again on the first term,

(k + 1)zm − kzm−1 ≥

(

k

2
+ 1

)

(2zm−1 − zm−2)−
k

2
zm−2 = (k + 2)zm−1 − (k + 1)zm−2.

Now apply this result m−1 times to zm+1 ≥ 2zm−zm−1, with k = 1, 2, . . . , m−1, in turn

to get the result.

Corollary 11 If z1 ≥ 0 and z0 = 0 in Lemma 10, then z2, . . . , zm ≥ 0 is automatic,

since zk+1 ≥ (k + 1)z1 for each k, 1 ≤ k ≤ m − 1. Therefore, the result holds for zm+1,

i.e.

zm+1 ≥ (m+ 1)z1 .

Now suppose that we have two solutions to (20), one of even period M , call it u, and

one of larger even period, say N > M , call it v. Suppose also that u0 = v0 = 0. We claim

that v1 > u1 and therefore, that v1 is an increasing function of N , at least when u1, v1 ≥ η.

Proposition 12 Let u and v be solutions to (20) of even period M and N respectively,

with 6 ≤ M < N . Let u0 = v0 = 0. Suppose u1, v1 ≥ η. Then v1 > u1.
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Proof Since u1 ≥ η and u has even period M , we have ui ≥ η for 1 ≤ i < M
2 (this is

a property of the equilibria from the discussion following Proposition 7). Similarly, vi ≥ η

for 1 ≤ i < N
2 . Now suppose that u1 ≥ v1, so that z1 = u1 − v1 ≥ 0. Then we can apply

Corollary 11 with m = M
2 − 1, to show that zM/2 ≥ M

2 z1 ≥ 0. However, uM/2 = 0 and

vM/2 > 0 so zM/2 < 0 and we have a contradiction. Thus u1 < v1 and since this is true

for arbitrary even periods M,N ≥ 6, v1 is an increasing function of the period, N .

This result can be applied to stability of periodic equilibria as follows. Since q′(v) is

an increasing function for positive v (25), q′(v∗1) is an increasing function of the period

N by Proposition 12. Thus, if for some N , condition (41) is satisfied, then it will also

be satisfied for all larger N . Also, increasing N increases the upper bound on q′(0) in

condition (40). So if, for a particular q, the existence of a stable equilibrium of even period

N can be established, then the equilibria of larger even period also exist and are stable.

Example 1 (continued) For q1 as given by equation (22), with τ = τ0 = 2, conditions

(40) and (41) become (44) and (45) but these are true for period N = 6 as shown in the

previous section. Thus the equilibria for all even periods N ≥ 6 exist and are stable for

this q.

Example 2 (continued) For q2 given by (24), there was no stable period 6 equilibrium

so it would be necessary to find one of larger period to get the large scale stable patterns

in this case. Numerical experiment indicates that no matter how large the period, the

conditions (40) and (41) cannot both be satisfied for this q. However, note that Proposition

7 gives only a sufficient condition for existence of stable patterns. Only for the period 6
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case did we have a necessary and sufficient condition.

6 Patterns in d-dimensions.

The above results can be extended to two or more dimensions without much difficulty.

There is, of course, a larger choice of patterns that can be examined for stability. For

example, we can obtain a d-dimensional analogy to Proposition 7, for 0 < q′(0) < 2d

either by starting with an initial function

φ(n) =
d
∏

r=1

sin

(

2πnr

N

)

(46)

for n a grid point with coordinates nr, which in 2 dimensions will produce a checkerboard

pattern of positive and negative square regions, or with

φ(n) = sin

(

2π
∑d

r=1 nr

N

)

, (47)

which in 2 dimensions will produce a pattern of diagonal ridges and valleys. In either case

the condition for existence of this equilibrium is

q′(0) < 2d cos

(

2π

N

)

or N >
2π

cos−1
(

q′(0)
2d

) .

In the case of (47), the condition for stability of the equilibrium (denoted v∗) is that the

following be positive for all non-zero x ∈ R(Nd).

xtPx =
∑

i

q′(0)x2
i − 2

∑

i

∑

j∼i

xixj

=
∑

v∗
i
=0

∑

j∼i

q′(0)

2d

[

xi −
2d

q′(0)
xj

]2

+
1

2

∑

v∗
i
6=0

∑

j∼i

v∗
j
6=0

[xi − xj ]
2

+
∑

|v∗
i
|=|v∗

1
|

[

q′(v∗i )−
2d

q′(0)
− d

]

x2
i +

∑

|v∗
i
|>|v∗

1
|

[q′(v∗i )− 2d]x2
i .
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This is analogous to (33) and (43). So a sufficient condition for stability is that the

equilibrium exists and

q′(v∗1) >
2d

q′(0)
+ d ,

q′(v∗2) > 2d .

Again, for large N we expect these conditions to be satisfied for some q. Other types of

patterns are, of course, possible.

7 Discussion.

The reaction-diffusion equations we started with are approximations in continuous

space to systems of ordinary differential equations, some of which have large scale stable

patterns as we have shown. The error in the ε2vxx term is O(ε4). This suggests that for

small ε solutions to the reaction-diffusion equations approximate solutions to the systems

of ODEs very closely for some time. (This type of approximation is made more rigorous

for the neural network equation in [9]). So we expect that solutions to the PDEs that start

near a stable pattern of the corresponding system of ODEs should stay near it for some

time though such a pattern cannot be stable for the reaction-diffusion equation. This is of

course suggestive of the metastability that occurs in the analysis of the Ginzburg-Landau

or Allen-Cahn type of equation as studied in [2,3,4,14,15]. Random initial conditions even

for the discrete space equations may, however, lead to metastable patterns of transition

layers since the stable patterns seem to depend on equal spacing of layers.



27

Furthermore, the stable patterns that exist for the reaction term of the Ising model

equations and of the neural network equations are of arbitrarily high energy. We may take

as many multiples of a period N equilibrium as we like and the equilibrium is still stable.

For m multiples of the period,

E[v] = m





N
∑

j=1

Q(vj)−
1

2

N
∑

j=1

vj(vj+1 + vj−1)



 ,

which can be made arbitrarily large by making m large. Thus, despite the known lack

of stable patterns for the reaction-diffusion equations, stable patterns of arbitrarily high

energy can exist for their spatial discretizations, even when the diffusion coefficient is very

small. Of course, if the step size of the discretization were much smaller than ε, which

is the scale of the transition layer widths, these stable patterns should be lost, but the

spatially discrete systems studied here model phenomena of interest independent of the

continuous space equations.
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