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Abstract. We present a method for determining 3-dimensional, local ground
displacements caused by an earthquake. The technique requires pre- and post-
earthquake point cloud datasets, such as those collected using airborne Light
Detection and Ranging (Lidar). This problem is formulated as a point cloud
registration problem in which the full point cloud is divided into smaller win-
dows, for which the local displacement that best restores the post-earthquake
point cloud onto its pre-earthquake equivalent must be found. We investigate
how to identify the size of window to be considered for registration. We then
present an information theoretic approach that classifies whether a region
contains an earthquake fault. These methods are first validated on simulated
earthquake datasets, for which the input displacement field is known, and
then tested on a real earthquake. We show results and error analyses for a
variety of different window sizes, as well as results for our fault detection
algorithm.
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1 Introduction

Continental earthquakes occur within wide networks of faults which pose a
serious hazard to local populations, yet most of these faults remain unmapped
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or poorly documented [4]. To better understand the tectonics of these regions
and to help constrain the likely timing and magnitude of future seismicity,
it is crucial to map earthquake-related surface deformation, and from this,
calculate the distribution and sense of slip on the causative faulting. Satellite
radar interferometry (InSAR) has proved a powerful method for measuring
far-field earthquake displacements, but the technique often breaks down close
to the fault rupture (due to ground disruption) and is insensitive to North-
South motions (because of its viewing geometry). Sub-pixel correlation of
optical images helps solve these problems, but can only determine lateral
displacements, leaving the important vertical component unresolved.

Sub-meter resolution topographic data derived from airborne Lidar offer
huge potential for complementing these existing techniques by providing 3-
dimensional, near-fault surface displacements and fault slip. Such datasets
are rapidly becoming widespread; in California, for instance, Lidar data have
been collected along most of the key active faults over the past decade, in-
cluding the full length of the onshore San Andreas Fault [2, 7]. Were a future
earthquake to occur on one of these faults, a repeat Lidar scan of the fault
would enable differential analysis of dense, pre- and post-earthquake topo-
graphic data. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in
northern Mexico is currently the only earthquake rupture with both pre- and
post-event Lidar coverage. A simple differencing of gridded Digital Elevation
Models (DEMs) generated from these point clouds revealed spectacular im-
ages of surface faulting and complex off-fault deformation [6]. However, these
maps do not account for lateral displacements and so cannot be directly
equated to any single component of the 3-D displacement field.

Computing the full 3-D surface displacements following an earthquake
could potentially revolutionize our understanding of rupturing processes and
would greatly aid research on faulting and tectonics in earthquake-prone re-
gions. The objectives of this work are to devise a method to compute full 3-D
displacements from pre- and post-earthquake Lidar datasets, and in doing so
identify the causative faulting and its sense and magnitude of slip.

2 Problem Statement

The problem can be formulated as follows. Given pre- and post-earthquake
Lidar point clouds (each containing a scattered distribution of points), find
the 3-dimensional displacement (with rotation and translation components)
that has best shifted the post-earthquake point cloud from its pre-earthquake
equivalent. These shifts will vary spatially, depending on the distance to the
fault, the sense and magnitude of slip and secondary effects such as lands-
liding. For this reason, the area must be divided into separate windows and
the best local transformation identified for each one. To complicate matters,
post-event windows which contain surface faulting will not be related by a
rigid body transformation to their pre-event equivalents.
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A few things must be considered in this problem statement. Firstly, how do
we decide upon an appropriate window size for splitting the data? Secondly,
without any prior knowledge, how do we identify whether a particular window
contains the fault, or lies away from the fault and has been shifted?

3 Data Description

We began our experiments usign a synthetic earthquake dataset, before
moving on to real earthquake displacements. The synthetic post-earthquake
dataset was generated by adding displacements of known magnitude and
sense to a real point cloud (the ‘target cloud’), to be tested against an-
other, unaltered point cloud representing the pre-earthquake ground surface
(the ‘source cloud’). This way, we were able to identify an approach which
best reproduced the known input displacements. We used publicly available
“B4” Lidar data [2] covering a ∼2 × 2 km section of the San Andreas Fault
(SAF) near Coachella, CA, collected on five separate, parallel flight lines
with ∼50% overlap between adjacent swaths. In the realistic case, pre- and
post-earthquake datasets would utilize different Lidar scan lines, so we split
the original dataset by flight line, using the 1st, 3rd and 5th swaths for the
source cloud and adding synthetic earthquake displacements to the 2nd and
4th flight lines for the target cloud. Both datasets have average point cloud
densities of ∼2 points/m2. Our synthetic fault strikes North-West through
the center of the target cloud, close to the real surface trace of the SAF. To
simulate a vertical, right-lateral rupture, we displaced points North-East of
the fault 2 m towards the South-East, and displaced points South-West of the
fault 2 m towards the North-West. To evaluate our ability to detect vertical
motions, we also raised points on the North-East of the fault by 1 m. After
investigating the synthetic case, we go on to test the method using real pre-
and post-earthquake data from part of El Mayor-Cucapah earthquake rup-
ture in Mexico [6]. Here, the pre- and post-earthquake point cloud densities
are on average 0.013 points/m2 and ∼9 points/m2, respectively.

4 Algorithm

We use the Iterative Closest Point (ICP) algorithm [1] with a point to plane
metric [8] for point cloud alignment. ICP operates by finding the correspond-
ing point qi in the target cloud for every point pi in the source cloud, and
determines the rigid body transformation that minimizes the distances be-
tween these points. It is an iterative process where the correspondences and
the errors are computed at every iteration and the rigid body transforma-
tion is applied to the source cloud repeatedly until it aligns with the target
cloud. With the point to plane error metric, the objective is to minimize the
distance between the source point (pi) and the tangent plane at the corre-
sponding target point (qi). The error metric can be written as follows
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E =
∑

i

‖ (φpi − qi) · ni) ‖2 (1)

where φ is the rigid body transformation that minimizes the error metric and
ni is the normal to the tangent plane at qi. The transformation matrix consists
of a translation component and a rotation component. φ = T (tx, ty, tz) ·
R(α, β, γ). A linear approximation [5] can be made to the rotation matrix
where θ ≈ 0 and the new transformation matrix is of the form below.

φ =

⎛

⎜⎜⎝

1 −γ β tx
γ 1 −α ty
−β α 1 tz
0 0 0 1

⎞

⎟⎟⎠ (2)

We explain how the computed transformation is validated in section 6.

5 Approach

We began by choosing an arbitrary window size in the source cloud (e.g.
200 m × 200 m). For each of these windows, the corresponding window in
the target data is identified based on x and y coordinates. This target window
is then enlarged (e.g. by 10%) such that the displacements that we are trying
to quantify are fully accommodated. Next, we computed the rigid body trans-
formation between the source and target windows using the ICP algorithm.
This window is split into four smaller windows of equal size and the rigid
body transformation is computed on every child window. The transforma-
tion is validated after each split (explained in section 6) and the associated
error computed. Based on the differences in error after consecutive splits,
we decide whether further splitting is necessary. We verified experimentally
that we cannot have small errors for very small window sizes (∼10 m) given
the point cloud densities and input displacements. An analysis of this error
indicates when to stop splitting.

After running ICP using a good window size, each window is then con-
sidered for a fault analysis. The curvature of the local surface is computed
at every point in the transformed source windows (obtained by applying the
computed transformation on the source window i.e. φpi) and target windows
(qi) and the curvature distribution is estimated by assigning the curvature
computed at each point to different bins of an histogram (ranging from max-
curvature to min-curvature) and then computing the probability mass func-
tion from this histogram. If there is no rigid body transformation (in case of
windows containing the fault) the source and target curvature distributions
will not be the same. An information theoretic measure is used to detect this
inconsistency in the curvature distributions. The information gain between
the transformed source cloud (X) and the target cloud (Y ) is given by
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I(X ;Y ) = H(X) +H(Y )−H(X,Y ) (3)

where H is the entropy of the curvature distribution. H(X,Y ) is computed
on the curvature distribution of the merged clouds X and Y . When the right
window size is used on regions related by a rigid body transformation, the
information gain should be maximum. If the estimated transformation is sub-
optimal (i.e. if ICP converges to a local minima) or if the considered region is
not related by a rigid body transformation (in the case of windows containing
faulting) the information gain should be minimal. Hence thresholding based
on information gain highlights which windows contain the fault, along with a
few false positives where ICP results may be different from the ground truth.
It is important to choose the right window size. If a window containing the
fault is too large, then points lying away from the fault will dominate the
curvature distribution and the fault detection mechanism will be affected.

Various non-rigid body transformation methods are available in medical
imaging literature [3] and can be considered for this problem. Our goal is not
only to get the best alignment possible, but also to identify regions containing
the fault. A rigid body transformation estimation followed by a transforma-
tion validation achieves both the objectives, whereas the second objective is
not met by non-rigid body transformation estimation methods.
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Fig. 1 (a) Height difference map of the Mexico earthquake, before global ICP, with
x and y coordinates in meters. Height changes across the fault are clear. (b) Height
difference map after global ICP, with height differences reduced.
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6 Transformation Validation

We validate the transformations by randomly choosing N points per iteration
in the transformed source window (φpi) and finding the closest point in the
target window (qi). The error for the kth iteration is computed as Ek =∑

i ‖ φpi − qi ‖2 and the standard deviation of this error is calculated over k
iterations. For a good alignment the standard deviation should be minimal.
Figure 7 shows the standard deviation of errors for different window sizes. It
can be seen that the standard deviation increases gradually as the windows
become smaller (part a of the figure shows plots for window sizes of 75 m,
50 m and 25 m). However, at a particular point (for our data, a window
size of 10 m) the standard deviation jumps markedly, as shown in part b
(note the difference in y-axis scales between a and b). If this happens, it is
because the computed transformation for that window is wrong. To discard
these invalid transformations, we use a thresholding based on the change in
standard deviation as a stopping criteria for window splitting (whereby the
standard deviation should not exceed 1/m times that of the previous step).

(a) Top view of data split into
multiple windows, the thick line
shows the line along which the
fault was defined

(b) Top view of windows contain-
ing the fault, there a few false
positives - these are places where
ICP converges to a locally opti-
mal solution

Fig. 2 Window split and fault detection

7 Results

Figure 1a shows a simple height differencing of the raw Mexico earthquake
data, with clear positive height changes West of the fault and negative
changes East of the fault. After a global registration, these height differ-
ences are reduced with similar height changes on both sides, as seen by the
red shading in Figure 1b. This is because ICP has minimized the least square
error over the entire point cloud, including both those regions that contain
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Fig. 3 Displacement vectors for different window sizes. The approximate length
of the displacement vectors is 2 m. Notice the change in vector directions on both
sides of the fault. x and y values are in meters.

Fig. 4 Our Autonomous Helicopter platform

the fault and those that are displaced. The alignment occurring as a result
of this least square minimization is not sensitive to the local displacements
that we are trying to quantify, and hence a global registration is not suitable
for this problem.

Figure 2(a) shows the data split up into multiple, randomly coloured win-
dows with the thick black line showing the synthetic fault line, either side of
which artificial displacements were added (as described in section 3).

Figures 3(a) and 3(b) show the displacement vectors (∼2m in length) ob-
tained for different window sizes for the synthetic earthquake dataset. The
change in the direction of the displacement vectors either side of the fault
(shown by the red line) are obvious. However, the displacement vectors for
windows along the fault are inconsistent. These are windows that are not
related by a rigid body transformation and ICP finds the transformation
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Fig. 5 3D model of Las Cruces test site (400 x 100 m) generated from UAV flights
at approximately 50m AGL

Fig. 6 3D model of Las Cruces test site with UAV position and attitude inferred
from photogrammetric process

that minimizes the least squares error. Reducing window sizes beyond this
point did not satisfy our transformation validation criteria and hence further
splitting of windows was stopped.

Figure 2(b) shows the results of our fault detection method, which filters
out windows based on information gain as described in section 5. Compared to
figure 2(a), only those windows which fall below the information gain thresh-
old are now shown, including a North-West trending sequence of windows
along the fault. In addition, there are a few false positives, mostly along the
edges where window splitting has left few data points in one of the datasets.
We hypothesise that ICP converges to a local minima in these windows.

Figure 7 shows the standard deviation plots discussed in the previous
section. Figure 8 shows the displacements calculated for the synthetic earth-
quake overlaid on the actual topography (we used a DEM derived from pub-
licly available “B4” Lidar data). Black arrows are horizontal displacements
and coloured circles denote vertical displacements. The differences in these
displacements are clear on either side of the fault. Finally results on a real
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Fig. 7 Standard deviations by window number, for different window sizes. (a)
shows the plot for window sizes of 75 m (red), 50 m (green) and 25 m (blue).
In (b), we also plot standard deviations for window size of 10 m (purple), with an
enlarged y-axis scale such that the standard deviations for the 75 m, 50 m and 25 m
window sizes are barely visible. There is a huge increase in standard deviation when
the window size is reduced from 25 m to 10 m, suggesting that window splitting
should be stopped at 25 m.
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Fig. 8 Results for the simulated earthquake. Horizontal displacements (black ar-
rows) and vertical displacements (coloured circles) can clearly be seen to change
markedly either side of the fault. x and y axes show UTM Zone 11 coordinates, in
meters.

earthquake dataset (for the 2010 Mexico earthquake) can be seen in Figure
9. Again, differences in the horizontal and vertical displacements on opposing
sides of the fault are clear.
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Fig. 9 Results for the real earthquake. The thin lines show the earthquake surface
faulting, as observed by geologists, with E-facing scarps in green and W-facing
scarps in blue. Again, the horizontal and vertical displacements clearly change
markedly across the fault. x and y axes show UTM Zone 11 coordinates, in meters.

8 Conclusions and Future Work

We have demonstrated a technique for determining local displacements
caused by an earthquake. Our technique uses a windowing approach to de-
termine the correct displacements and an information theoretic approach for
determining the regions where these local displacements are present. We have
demonstrated the efficacy and accuracy of our technique on datasets collected
using airborne lidar. We are able to discern displacements of 1.4 m over an
area of 2×2 km in our synthethic earthquake experiments and around 1 m
over 2×2 km in the real earthquake experiment. Currently our technique de-
pends on the pre and post LIDAR data obtained using expensive airborne
LIDAR. We plan on using the pre data obtained from airborne LIDAR but
post data obtained using Structure from Motion techniques. We propose to
use an autonomous helicopter equipped with a downward looking Canon
5D as our platform for obtaining these post point clouds. Our autonomous
helicopter is shown in Figure 4. This platform has been outfitted with a vi-
bration isolating camera mount to which the main SFM camera (a Canon
5D) is attached. Figure 5 shows a typical 3D terrain model obtained from
our UAV. Figure 6 shows the attitude and position of the UAV calculated
using SFM, as the images were taken. This was generated in Las Cruces,
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New Mexico, for an area approximately 400 x 100 m. The model has a res-
olution of 10cm/pixel and an accuracy of 20 cm. This has been determined
using pre-surveyed points using a Total Station. In the future we plan on
using such dense 3D models created from SFM techniques as our post point
clouds. Using such models combined with registration techniques will enable
us to determine local displacements accurately. We plan on demonstrating
this in the near future.
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