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[1] The recent explosion in sub-meter resolution airborne
LiDAR data raises the possibility of mapping detailed chan-
ges to Earth’s topography. We present a new method that
determines three-dimensional (3-D) coseismic surface dis-
placements and rotations from differencing pre- and post-
earthquake airborne LiDAR point clouds using the Iterative
Closest Point (ICP) algorithm. Tested on simulated earth-
quake displacements added to real LiDAR data along the San
Andreas Fault, the method reproduces the input deformation
for a grid size of �50 m with horizontal and vertical accu-
racies of �20 cm and �4 cm, values that mimic errors in the
original spot height measurements. The technique also mea-
sures rotations directly, resolving the detailed kinematics of
distributed zones of faulting where block rotations are com-
mon. By capturing near-fault deformation in 3-D, the method
offers new constraints on shallow fault slip and rupture zone
deformation, in turn aiding research into fault zone rheology
and long-term earthquake repeatability. Citation: Nissen, E.,
A. K. Krishnan, J. R. Arrowsmith, and S. Saripalli (2012), Three-
dimensional surface displacements and rotations from differencing
pre- and post-earthquake LiDAR point clouds, Geophys. Res. Lett.,
39, L16301, doi:10.1029/2012GL052460.

1. Introduction

[2] Large continental earthquakes produce complex pat-
terns of ground displacements that help reveal the geometry
of the causative faulting and spatial variations in fault slip.
Modern satellite geodetic techniques such as radar interfer-
ometry (InSAR) and sub-pixel optical matching can map
components of this deformation to high precision and over
wide areas [e.g., Bürgmann et al., 2000; Leprince et al.,
2008], but fall short of providing full three-dimensional (3-D)
surface displacements. These methods are further hindered
by variable coherence, with InSAR often suffering gaps in
coverage close to surface faulting. This near-fault deforma-
tion is driven by shallow fault slip, the distribution of which
is crucial for understanding fault zone rheology, interpreting
long-term paleoseismic or geomorphic offsets, and charac-
terizing seismic hazard.

[3] Differencing repeat airborne Light Detection and
Ranging (LiDAR) datasets could potentially complement
these satellite-based methods by imaging fault zone defor-
mation in 3-D, especially in the near field (�1 km) of the
rupture zone. An aircraft-mounted pulsed laser scanning
system and kinematic GPS receiver are used to measure spot
elevations at sub-meter intervals along saw-tooth patterned
scan lines. These spot height data form irregular “point
clouds”, with shot densities that usually exceed �1 points/
m2 and vertical and horizontal root mean square (RMS)
errors that are typically 5–10 cm and 10–25 cm, respectively
[e.g., Shrestha et al., 1999; Toth et al., 2007]. The past
decade has seen an explosion in aerial LiDAR surveying
along active faults in the western United States [e.g., Hudnut
et al., 2002; Bevis et al., 2005; Prentice et al., 2009], pro-
viding a baseline against which to compare future LiDAR
topography collected in the aftermath of future large earth-
quakes along these faults. Because the sub-meter LiDAR
point spacing is finer than the scale of slip in large earth-
quakes, 3-dimensional, near-fault ground displacements
should be resolvable.
[4] The 2010 El Mayor-Cucapah (Mexico) earthquake is

the only complete rupture for which pre- and post-event
LiDAR data are available. A simple differencing of the
gridded Digital Elevation Models (DEMs) revealed spec-
tacular images of fault zone deformation[Oskin et al., 2012],
providing a tantalizing glimpse of the potential offered by
differential LiDAR. However, as this approach neglects
lateral motions, the resulting elevation changes do not cor-
respond directly to surface displacements. A pair of recent
studies outlined potential ways of obtaining 3-D deformation
from multi-temporal LiDAR. Leprince et al. [2011] use
image coregistration and sub-pixel correlation techniques
[e.g., Leprince et al., 2008] to obtain horizontal offsets from
gridded LiDAR DEMs, which are then back-slipped and
differenced to reveal the vertical displacements. Borsa and
Minster [2012] use a set of harmonic basis functions to
produce a smoothed surface through the pre-earthquake
point cloud, onto which sub-sets of the post-earthquake
points are translated using a least-squares minimization
scheme. Both approaches include scope for incorpotating
LiDAR return intensities as well as elevations, but they also
require gridding or smoothing of one or both datasets, an
additional step which could potentially introduce biases or
artifacts in the resulting displacements.
[5] In this paper, we describe a method that overcomes

these problems by directly determining 3-D surface dis-
placements from raw LiDAR point clouds using the Iterative
Closest Point (ICP) algorithm [Besl and McKay, 1992; Chen
and Medioni, 1992]. ICP is a technique for registering 3-D
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images which is widely used in medicine as a way of
aligning and comparing multi-temporal scans of a subject’s
body [e.g., Hill et al., 2001] as well as in computer graphics
[e.g., Levoy et al., 2000]. In the Earth sciences, it has been
implemented for landslide monitoring using terrestrial laser
scanning datasets [Teza et al., 2007], but it has not yet been

adopted for mapping tectonic deformation. Here, we sum-
marize the ICP algorithm and outline new adaptations for its
use on paired LiDAR data. Next, we simulate pre- and post-
earthquake point clouds using real LiDAR data deformed
with synthetic earthquakes, allowing us to explore the
accuracy of the method at a range of grid sizes and input

Figure 1
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point cloud densities. Finally, we compare the method
against alternative methods [Leprince et al., 2011; Borsa
and Minster, 2012] and discuss its outlook.

2. Method

[6] The Iterative Closest Point (ICP) algorithm aims to
bring into alignment two corresponding sets of three
dimensional points which sample the same object — some-
times termed the ‘source’ and ‘target’ clouds — by iterating
three steps (Figure 1a). (1) For each point in the source cloud,
the closest point in the target cloud is identified. (2) We
compute the motion (a rigid body transformation comprising
a translation and a rotation) which minimizes the mean
square error (MSE) between all paired points. (3) This
transformation is applied to the source cloud and the MSE is
updated. These steps repeat until a local minimum in closest
point distances is reached, determined when the reduction in
MSE falls below some threshold.
[7] Because coseismic surface displacements will vary

spatially, depending on the distance to the fault and the sense
and magnitude of slip, pre- and post-event LiDAR point
clouds were first split into a grid of square sub-areas, which
we term ‘windows’. The ICP algorithm was then run sepa-
rately on each window, with pre-event LiDAR points
representing the source cloud and post-event points repre-
senting the target cloud (Figure 1a). We included target
points from within a 10 m-wide margin outside the edge of
the pre-event window, to ensure that features in the pre-
earthquake topography were contained within the post-event
window. For each window, the translations tx, ty and tz
summed over all iterations correspond to the E–W, N–S and
vertical coseismic displacement for that window (Figure 1a).
[8] There are several variants to the ICP algorithm which

differ in the ways points are selected and matched, closest
point pairs are weighted or rejected, and how the error is
defined and minimized [Rusinkiewicz and Levoy, 2001].
Applied to pre- and post-earthquake airborne LiDAR point
clouds, we find that the point-to-plane ICP [Chen and
Medioni, 1992] yields the most accurate results. In this
case, rather than defining the error as the squared sum of the
distances between closest points, it is defined as the squared
sum of the distances between each source point pi and the
tangential plane at its target point qi (Figure 1b). In other
words, we minimize

E ¼
X
i

jj fpi � qið Þ � niÞjj2 ð1Þ

where f is the rigid body transformation and ni is the normal
to the tangent plane at qi. Low [2004] showed that when the
relative orientation of two point clouds is similar, the rota-
tion terms can be simplified using the approximations sin q =
q and cos q = 1 and the non-linear optimization problem can
be substituted by a linear least squares one which is easier to
solve. Here,

f ¼
1 �g b tx
g 1 �a ty
�b a 1 tz
0 0 0 1

0
BB@

1
CCA ð2Þ

where tx, ty and tz are the translation in the x, y and z direc-
tions, and a, b and g are the rotations in radians about the x,
y and z axes.
[9] Some aspects of our methodology, such as the sub-

division of point clouds into windows and the choice of
point-to-plane ICP, are similar to those used by Teza et al.
[2007] in their study of landsliding using terrestrial LiDAR
datasets. For our analysis we used the implementation of
ICP in the open source Point Cloud Library [Rusu and
Cousins, 2011]. In the following section we describe the
experimental design and results in detail, preliminary results
having been presented at a conference [Krishnan et al.,
2012]. The programs and experimental data we use are
available for download from the website http://robotics.asu.
edu/projects/3d-registration/.

3. Experimental Set-up and Results

[10] For our test area, we chose a �2 km-long section
of the San Andreas Fault near Coachella, part of �700 km
of the southern San Andreas and San Jacinto faults mapped
in the May 2005 “B4” LiDAR survey [Bevis et al., 2005].
This area encompasses parts of the jagged Mecca Hills as
well as flatter alluvial deposits in Painted Canyon and the
eastern Coachella Valley, allowing us to test the method
for a mix of relief types over a generally sparsely-vegetated
area (Figure 1c). Data were downloaded as ASCII files
from the open access OpenTopography portal (http://www.
opentopography.org). The B4 LiDAR strip is �1.4 km wide
but actually comprises five distinct, parallel swaths, each col-
lected on a separate flight pass and labelled 2–6 in the ASCII
file (Figure 1d). Individual swaths are �450 m wide and
contain on average �2 points per square meter. There are
significant overlaps between adjacent swaths such that the
middle �900 m of the overall strip is in most places covered
by two swaths with a combined �4 points/m2. Comparisons

Figure 1. (a) A cross-sectional illustration of how the Iterative Closest Point (ICP) algorithm can be used to align pre- and
post-earthquake topography. (b) In point-to-plane ICP, we miminize the square of (fpi � qi) � ni summed over all closest
point pairs [Chen and Medioni, 1992]. The tangential plane is the best fit plane through k closest points to qi in the target
point cloud; after experimentation, we use k = 10. (c) The test area for our simulated earthquake experiments on the southern
San Andreas Fault (dashed line). Topography is a 1 m-resolution DEM constructed from B4 LiDAR [Bevis et al., 2005] and
illuminated from the NE, and x- and y-axes show UTM zone 11 coordinates in meters. (d) B4 LiDAR coverage separated by
flight number, with swaths 2 and 4 in yellow, swaths 3, 5 and 6 in pink, and areas covered by both sets of swaths in orange.
The synthetic fault used in our experiments is plotted as a dashed line. (e) Results of our first ICP analysis on synthetic earth-
quake data: white and black arrows show input and output horizontal displacements, respectively, and coloured circles
show output vertical displacements. The synthetic fault is plotted in yellow. (f) Results of our second experiment, in which
pre- and post-event point clouds are taken from separate LiDAR swaths. (g) Results for a reduced window size of 50 m.
(h) Results for the elastic dislocation model described in the text for a window size of 50 m. In this panel coloured circles
represent vertical axis rotations (clockwise in red and anticlockwise in green).
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with ground control points suggest that mean horizontal
errors are �25 cm and mean vertical errors are �6 cm [Toth
et al., 2007], although atmospheric path delays in the kine-
matic GPS positioning of the aircraft may have caused an
additional vertical uncertainty of�15 cm [Shan et al., 2007].
[11] For our first experiment, we combined data from

swaths 2 and 4, which cover the middle �900 m of the B4
strip and contain in total �4.3 million points (Figure 1d).
The unfiltered point cloud was used as a pre-event dataset,
and we deformed these exact same points using a simple,
simulated right-lateral earthquake to form a post-event
dataset. The planar and vertical synthetic fault strikes NW
through the center of the dataset, close to the real surface
trace of the SAF (Figure 1d); all post-event points NE of the
fault were shifted 2 m towards the SE, and points SW of the
fault were moved 2 m towards the NW. In order to test
vertical displacement detection, we also raised points on the
NE of the fault by 1 m. The total slip magnitude is similar to
that expected for a shallow continental earthquake of Mw 7–
7.5. This approach is similar to that of Borsa and Minster
[2012], though their test area was smaller (�800 m �
400 m) and flatter, containing little variation in landscape
type.
[12] Results for an initial square window size of 100 �

100 m are displayed in Figure 1e. Displacements are plotted
at the weighted center of each point cloud window, with
white arrows showing the input horizontal motions, black
arrows showing retrieved horizontal motions, and coloured
circles showing retrieved uplift or subsidence. Retrieved
rotations are negligible, as expected, and so these are not
plotted. Windows containing the fault encompass points
moving in opposite directions, and correspondingly show
small overall motions. Away from the fault, input displace-
ments are reproduced very well, with >90% of window
results agreeing with the input displacements to better than
1 cm in all three (E-, N- and vertical) components. However,
small patches of flat-lying ground in the Coachella Valley
and Painted Canyon show anomalous displacements, high-
lighting the fact that low-relief areas probably contain sev-
eral local minima in the error function, with ICP not always
converging on the correct one.
[13] This first experiment is not a realistic test of differ-

ential LiDAR techniques, because the exact same points —
collected from the same flight passes and along the same
scan lines — were used as the basis for both pre- and post-
event datasets. In reality, pre- and post-earthquake datasets
will have been captured on separate flights with different
scan line patterns and point distributions on the ground. For
a more realistic test of our method, we therefore conducted a
second experiment in which we differentiated pre- and post-
earthquake points by splitting the original data according to
flight pass number. Swaths 2 and 4 still form the pre-event
topography, but swaths 3, 5 and 6 were used as the basis for
the post-event data and deformed in the same way as in the
first experiment. Pre- and post-event datasets both have
average point cloud densities of �2 points/m2, with a few
small areas containing double this amount (�4 points/m2).
The post-event dataset also contains a few thin gaps (shown
in yellow in Figure 1d) where outer swaths 5 or 6 do not
fully overlap the central swath 3. In total, there are �4 mil-
lion points within the overlapping parts of each dataset.
[14] Displacement results for a window size of 100 �

100 m are shown in map view in Figure 1f and in histogram

form in the top line of Figure 2. At this grid size, ICP
analysis took�1 hour to run on a standard desktop computer
(Figure 2). As before, windows encompassing the fault have
small overall displacements; in addition, those which include
patches with no post-event points produce anomalous
results, which we removed. Elsewhere, there is a good match
between input and output horizontal and vertical displace-
ments, even in flat-lying areas. Root mean square (RMS)
errors are �13 cm and �15 cm for E- and N-displacements,
�4 cm for vertical displacements, and �5� for displacement
azimuths, values that mimic estimated errors in the original
B4 data [Toth et al., 2007]. In some areas, small mismatches
are spatially correlated; these errors reverse in sense when
the swaths used for pre- and post-event data are switched,
hinting that they are caused by geo-referencing discrep-
ancies between different flight lines in the original dataset
[Shan et al., 2007].
[15] We repeated the analysis using progressively smaller

window dimensions of 50 m (Figure 1g), 25 m and 15 m. As
the window size is reduced, processing times increase and
accuracies diminish (Figure 2). RMS errors in E–W and N–S
displacements are 21–22 cm for 50 m windows and 30–
39 cm for 25 m windows, while vertical errors remain
�4 cm for 50 m windows but increase to �16 cm for 25 m
windows. At 15 m resolution, we find that the method
breaks down altogether and is unable to reproduce input
displacements. This may reflect a threshold of around 500–
1000 in the number of points required for ICP to yield
accurate results with these data.
[16] We also repeated these experiments using pre- and

post-event point clouds with sparser densities, created by
removing data on a point by point basis from the original
cloud. With both datasets reduced to �0.25 points/m2 (one
eighth of the original density), and with window dimensions
of 100 � 100 m, RMS errors increase to �40 cm for E- and
N-displacements, �12 cm for vertical displacements, and
�16� for azimuth. Similar errors were obtained when only
the pre-event point cloud density was reduced. This implies
that the accuracy of our method depends on sparser of the
two datasets, but it also shows that ICP works well even with
large mismatches in point cloud density — an important
consideration given that modern LiDAR point cloud densi-
ties may exceed those of older datasets by several orders of
magnitude [e.g., Oskin et al., 2012]. These results also
suggest that in the future, when LiDAR surveys may exceed
10 points/m2 as standard, ICP could resolve displacements at
grid sizes much finer than 25 m.
[17] Observed earthquake surface displacements are much

more heterogeneous than those in our initial, simple model.
Point cloud windows are likely to accommodate small
amounts of internal strain and some windows may also
rotate. As a fourth and final experiment, we investigate
whether ICP can detect more realistic, spatially heteroge-
neous displacements, using a dislocation in an elastic half-
space [Okada, 1985] to simulate the complex pattern of
deformation expected at the end of a strike-slip rupture. Our
synthetic rupture again strikes NW, but its north-western end
lies in the center of the dataset (Figure 1d). To form the post-
earthquake dataset, we place 4 m of right-lateral slip along
this fault, compute the resulting x, y and z surface displace-
ments at each point in swaths 3, 5 and 6 and add these dis-
placement to the point co-ordinates. Results for a window
size of 50 � 50 m are shown in Figure 1h. The smooth
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pattern of strain at the end of the fault is reproduced well,
with overall RMS errors of �17 cm, �18 cm and �4 cm for
E-, N- and vertical displacements. The results also include direct
measurements of small clockwise rotations (<0.01 radians)
at the NW end of the dislocation which are shown as coloured
circles in Figure 1h.

4. Discussion and Conclusions

[18] We have described an adaptation of the ICP algorithm
that calculates 3-D coseismic surface displacements
from pre- and post-earthquake LiDAR topography. The
method works at acceptable speeds even on a standard
desktop computer, and can recover complex patterns of
deformation at grid sizes of �25–50 m for point cloud
datasets with �2 points/m2. For 50 m window dimensions,
horizontal and vertical errors are �20 cm and �4 cm
respectively, values that mimic and are probably related to
errors in the raw LiDAR spot elevations. Accuracies are

highest in windows containing rugged topography but the
method is mostly successful even in low-relief areas. Our
analysis does not take into account the potential effects of
ground shaking, erosion and deposition, vegetation growth
or infrastructure development, but as long as these processes
occur on shorter length-scales than the ICP grid size they are
unlikely to impact the results. While we concentrate on its
application to faulting, ICP could potentially be applied to
other displacing processes such as glaciers or deep-seated
landsliding [e.g., Teza et al., 2007].
[19] Although alternative methods achieve somewhat finer

resolutions — Leprince et al. [2011] and Borsa and Minster
[2012] cite pixel dimensions of �5 m and �15 m, respec-
tively — our method utilizes only the original point clouds
and is thus free from artifacts or biases that might arise from
representing the topography with a smoothed surface model
or gridded DEM. ICP is well suited to handling very large
datasets and works well even when there are large mis-
matches in the density of the two point clouds, eliminating

Figure 2. Histograms of ICP results for the synthetic earthquake in Experiment 2, for a variety of window sizes. From top to
bottom, these show results for window dimensions of 100 m, 50 m, 25 m and 15 m; processing times are plotted next to the
window size (we used a Quad Core Intel 2.6 GHz processor with 4 GB of RAM). From left to right, they show E–Wdisplace-
ments and N–S displacements (both with bin widths of 0.1 m), vertical displacements (bin widths of 0.05 m), and displace-
ment azimuths (bin widths of 5�). Histogram y-axes show number of windows within each bin, with black bars representing
windows NE of the fault and grey bars showing those SW of the fault; windows containing the fault itself are excluded. Over-
all root mean square errors (RMSE) are shown above each histogram, with mean values and 1 s uncertainties plotted sepa-
rately for results on either side of the fault. The expected (input) values are marked by vertical dashed lines.
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the need to downsample the denser dataset. A final, unique
aspect of our method is that it can measure rotations directly,
thus providing important new kinematic data in areas of
distributed faulting where block rotations may be important.
In the future, ICP should be able to obtain smaller grid sizes
and improved precisions using higher point cloud densities
and with further advances in survey geo-referencing. We also
note the potential for incorporating LiDAR intensity data —
using ICP, sub-pixel correlation or particle image veloci-
metry [Aryal et al., 2012] — as an additional, independent
constraint on horizontal displacements in flat regions.
[20] Applied to future earthquakes spanned by repeat

LiDAR datasets, ICP will provide a wealth of near-fault
displacement data to complement existing geodetic or field-
based observations. These displacements will help constrain
the slip distribution and rheology of the shallow part of the
fault zone, which are crucial for interpreting paleoseismic
and geomorphic offsets and will inform studies of long-term
earthquake behavior. When coupled with satellite-based
measurements such as InSAR, differential LiDAR will also
offer the means to explore relations between surface rup-
turing and deeper fault zone processes. Finally, the devel-
opment of this method provides further impetus to efforts at
expanding the range of active faults mapped with LiDAR.
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