Set Operations and the Laws of Set Theory

- The union of sets A and B is the set $A \cup B=\{x: x \in A \vee x \in B\}$.
- The intersection of sets A and B is the set $A \cap B=\{x: x \in A \wedge x \in B\}$.
- The set difference of A and B is the set $A \backslash B=\{x: x \in A \wedge x \notin B\}$. Alternate notation: $A-B$.
- The symmetric difference of A and B is $A \oplus B=(A \backslash B) \cup(B \backslash A)$.

Note: $A \oplus B=\{x:(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)\}$.

The universe, \mathcal{U}, is the collection of all objects that can occur as elements of the sets under consideration.

- The complement of A is $A^{c}=\mathcal{U} \backslash A=\{x: x \notin A\}$.

For each Law of Logic, there is a corresponding Law of Set Theory.

- Commutative: $A \cup B=B \cup A, \quad A \cap B=B \cap A$.
- Associative: $A \cup(B \cup C)=(A \cup B) \cup C, \quad A \cap(B \cap C)=(A \cap B) \cap C$
- Distributive: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C), \quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and also on the right: $(B \cap C) \cup A=(B \cup A) \cap(C \cup A), \quad(B \cup C) \cap A=(B \cap A) \cup(C \cap A)$
- Double Complement: $\left(A^{c}\right)^{c}=A$
- DeMorgan's Laws: $(A \cup B)^{c}=A^{c} \cap B^{c}, \quad(A \cap B)^{c}=A^{c} \cup B^{c}$
- Identity: $\emptyset \cup A=A, \quad \mathcal{U} \cap A=A$
- Idempotence: $A \cup A=A, \quad A \cap A=A$
- Dominance: $A \cup \mathcal{U}=\mathcal{U}, \quad A \cap \emptyset=\emptyset$

Arguments that prove logical equivalences can be directly translated into arguments that prove set equalities.

Set equalities of note:

- $A \backslash B=A \cap B^{c}$
- $A \oplus B=(A \cup B) \backslash(A \cap B)$

