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Chapter 1

Propositional Logic

1.1 Statements

A statement or proposition is an assertion which is either true or false, though
you may not know which. That is, a statement is something that has a truth
value.

Example 1.1.1 Fach of the following is a statement.
1. There are no integers a and b so that /2 = 7. (True.)
2. For all integers n > 0, the number n® +n + 41 is prime. (False.)

3. Every even positive integer except 2 is the sum of two prime numbers.
(Goldbach’s Conjecture: unknown.)

Question 1.1.2 Why does each of the following fail to be a statement?
1. Have a good day.
2. Are the Canucks a good team?
3. x> 100.

We usually use (lower case) letters to denote statements. A good way to
think of these letters is as variables that can take the values “true” and
“false”. Variables that can take two possible values are sometimes called
Boolean variables, after the British logician George Boole.

9



10 CHAPTER 1. PROPOSITIONAL LOGIC

1.2 Compound Statements and Logical Con-
nectives

A compound statement is formed by joining other statements together with
logical connectives, several of which are defined below. The statements that
are joined together can themselves be compound statements.

Let p and ¢ be statements.

e The conjunction of p and q is the statement denoted by p A ¢, and read
as “p and ¢”, which asserts that p and g are both true. Notice that the
wedge symbol looks vaguely like the letter “n” in and.

e The disjunction of p and q is the statement denoted by pV ¢, and read
as “p or q¢”, which asserts that either p is true or ¢ is true, or both.
Notice that this is the inclusive sense of the word “or”. Also, the vee

(130}

symbol looks vaguely like the letter “r” in or.

e An implication is the statement denoted by p — ¢, and read as “p
implies ¢” or “if p then ¢”, which asserts that if p is true, then q is also
true. We define that statement p — ¢ to be true when p is false.

e A biconditional, or double implication, is the statement denoted by
p <> ¢, and read “ p if and only if ¢”, which asserts that p and ¢ have
the same truth value. Notice that the assertion being made can also be
phrased as “if p is true then ¢ is true, and if ¢ is true then p is true.”

Example 1.2.1 The following are compound statements.

e < m) A (BT is prime) (False because “(57 is prime)” is false.)
V2 is rational) V (%5 < 2) (True because “(# < 2)7 s true).
52 < 0) — (1 < 2) (True because “(5* < 0)” is false.)

1 <2) — (5% < 0) (False because “1 < 27 is true and “5* < 07 is

5. (1 =2) <> (the number of primes is finite) (True because both (1 = 2)”
and “(the number of primes is finite)” are false.)
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The third and fourth points in the example demonstrate that the statements
p — q and ¢ — p are different. That is, for given truth values of p and g,
the two statements can have different truth values.

In the algebra of real numbers, the order of operations is brackets, exponents,
multiply and divide, add and subtract. Thus —3%(4 x 2+5%) = —9(8+25) =
—9(33) = —297. That is, exponents have precedence over multiplication
and division, which in turn have precedence over addition and subtraction.
Brackets are used for clarity, or to force operations to occur in a particular
order.

In propositional logic there is no precedence among logical connectives. Fx-
pressions are interpreted from left to right. Brackets are used for clarity, or to
force certain connectives to be applied in a particular order. The statement
pVq — ris actually (pVq) — r, though it is far better to simply regard the
unbracketed statement as ambiguous and insist on proper bracketing. It is
good practice to always use brackets for clarity instead of assuming that the
reader is able to interpret the meaning you intend.

1.3 Negation of Statements

The negation of p is the statement denoted by —p, and read as “not p,” which
asserts that p is not true. Sometimes it is helpful to think of —p as asserting
“it is not the case that p is true”. Thus, —p is false when p is true, and true
when p is false.

The negation of —p is the statement with the opposite truth value as —p.
Thus —(—p) is just another name for p.

Notice that “=" is not a logical connective. It does not join two statements
together. Instead, it applies to a single (possibly compound) statement.

Negation has precedence over logical connectives. This means that p V —q is
p V (—q), although it is more common to write p V —¢ than it is to write
pV (—q). It is common practice only use brackets for negation when it is a
compound statement being negated, and not when an individual statement
is being negated, as in =(a — b) A =(c V —d).
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1.4 Truth Tables

A truth table gives the truth values of a statement for all possible combina-
tions of truth values of the other statements from which it is made. Here
and elsewhere, 0 and 1 will represent the truth values “false” and “true”,
respectively.

The following is a truth table for the compound statements defined in the
Section 1.2.

Plq|pNqg|pVq|p—=>q|prq
0(0] O 0 1 1
0/1] 0 1 1 0
10| 0 1 0 0
1(1] 1 1 1 1

And here is a truth table for negation.

=1k

p
1
0

The truth table below demonstrates that the statements p — q and ¢ — p
are different. Since the corresponding entries in the columns under these
statements are not identical, sometimes the two statements can have different
truth values.

plg|p—=q|9—p
0(0 1 1
01 1 0
110 0 1
111 1 1

To make a truth table, start with k£ columns corresponding to the most basic
statements (usually represented by letters). As we will argue below, if there
are k of these you will need 2* rows to list all possible combinations of truth
values for these statements. After listing all 2¥ possible combinations of truth
values of the & most basic statements (how to do this is also described below)
then, working with what’s inside the brackets first (just like algebral), add a
new column for each connective in the expression, and fill in the truth values
using the definitions from before.
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Here is how to see that a truth table that involves k basic statements needs
2% rows. It is clear that two rows are needed when k = 1: one for when the
statement is true and one for when it is false. Now consider the case when
k = 2. When the first statement is true, the second can be true or false,
and when the first statement is false, the second can be true or false. Thus,
when k = 2 there are four rows needed in the truth table. The same sort of
argument applies when k£ = 3: eight rows are needed. Four rows are needed
to cover the situations where the first statement is true, as (from before)
there are four combinations of truth values for the other two statements, and
four more rows are needed to cover the situations where the first statement
is false. Continuing in this way, the numbers of rows needed doubles for each
additional statement, so if there are k statements you will need 2* rows to
list all possible combinations of truth values.

Notice that the argument above tells you how to list all possible truth values
for a collection of statements. A different perspective is to list the rows in
the order they would on a car’s odometer if it had only the digits 0 and 1.
These correspond to the three digit binary (base 2) representations of the
numbers 0 through 7, in order.

Example 1.4.1 Make the truth table for (—p — r) — (g V —r).

Solution

Our table will have 8 rows. Starting with the collection of truth possible values
for p,q and r, we add columns to obtain the truth values of —p, (—p — 1),
-, (¢ V =), and then, finally, the entire statement we want.

plalr|-p|l-p—r|-r|lqgVor|(cp—71)—=(¢Vr)
0(0]0] 1 0 1 1 1
olol1] 1 1 0| 0 0
0[1]/0] 1 0 1 1 1
ol1)1] 1 1 0 1 1
1{0(0] O 1 1 1 1
1/0[1] 0 1 0| 0 0
1/1]/0] 0 1 1 1 1
1/1]1] 0 1 0 1 1

Sometimes only part of the truth table needs to be made. For example,
suppose it is given a and b are false, and c¢ is true. Then the truth value of
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—a V (bV —c) can be found by completing the single row of the truth table
where a,b and ¢ have the given truth values.

If we are given that p is false and ¢ is true, then we can find all possible truth
values of —=(p <> ) — (¢ — s) by completing the four rows of the truth table
where p and ¢ have the truth values given, and all possible truth values for
r and s occur.

Sometimes information about truth values can be given a more indirectly, as
in the next example.

Example 1.4.2 Given that —a — (b <> —c) is false, determine all possible
truth values of (a V b) A (mbV —c).

Solution

The information that given implication is false, lets us conclude that its hy-
pothesis, —a, is true (so a is false), and its conclusion, (b <> —c), is false
(so b and —c have different truth values, that is, b and ¢ have the same truth
value. Hence we need a truth table with only two rows:

alble|=b|=aclaVvb|=bV-c|(aVb)A(=bV-c)

0/0{0] 11 0 1 0

O[1{1] 010 1 0 0
Therefore, if ma — (b <> —c) is false, so is (a V b) A (=bV —c).

1.5 Tautologies and Contradictions

A statement which is always true is called a tautology. A statement which is
always false is called a contradiction.

For example, p A —p is a contradiction, while p V —p is a tautology. Most
statements are neither tautologies nor contradictions.

One way to determine if a statement is a tautology is to make its truth table
and see if the statement is always true.

Example 1.5.1 Show that (p — q) <> (—p V q) is a tautology.

Solution
Since the column of the truth table shown below corresponding to (p — q) <>
(—p V q) contains only the truth value 1, the statement is a tautology.
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plg|-p|-q|p—q|pVqg|(p—q) < (-pVq)
o]0 1|1 1 1 1
ojl1] 10| 1 1 1
tlolo 1] o0 0 1
1l1]o]o]| 1 1 1

Similarly, you can determine if a statement is a contradiction by making its
truth table and seeing if it is always false.

1.6 Logical Equivalence

Two statements s; and s, are logically equivalent if s; <> s is a tautology.

Informally, two statements s; and s, are logically equivalent if they have the
same truth table (up to the order of the rows). This happens exactly when
the statement s; <+ s is a tautology.

We use the notation s; < s9 to denote the fact (theorem) that s; <> so is a
tautology, that is, that s; and sy are logically equivalent. Notice that s; <> s
is a statement and can in general be true or false, and s; < s, indicates the
(higher level) fact that s; and sy always have the same truth value as each
other. It is reasonable to regard logically equivalent statements as being “the
same” in a similar way as we regard 0.25 and 2/8 as being the same.

Logical equivalence plays the same role in logic that equals does in algebra:
it specifies when two expressions are “the same”. In the same way that
equal expressions can be freely substituted for each other without changing
the meaning of an expression, logically equivalent statements can be freely
substituted for each other without changing the meaning of a compound
statement. And, if two statements are each equivalent to the same statement,
they are equivalent to each other.

Since logical equivalence is defined in terms of a statement being a tautology,
a truth table can be used to check if (prove that) two statements are logically
equivalent. Soon we will have other methods to do this as well.

It follows from the work in Example 1.5.1 that p <> ¢ < (p — ¢) A (¢ — p).

Example 1.6.1 Use the definition to arque that —(p A q) is logically equiv-
alent to =p V —q and check your reasoning using a truth table.
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Solution

The negation of p A\ q asserts “it is not the case that p and q are both true”.
Thus, =(p A q) is true exactly when one or both of p and q is false, that is,
when —p is true or —q is true. Therefore =(p A q) < —pV —q.

Our reasoning is confirmed by the truth table below which shows that —(p A
q) <> (mpV —q) is a tautology.

pla|p|—~q|pANg|~(PAg)|PV—q|~(pAg) < (=pV —q)
ol0l 1] 1] O 1 1 1
olt/1]0] o 1 1 1
1lojo] 1] 0 1 1 1
1ltlolo| 1 0 0 1

Question 1.6.2 Use the definition to argue that —(p V q) is logically equiv-
alent to =p A\ =q and check your reasoning using a truth table.

Example 1.6.3 Use the definition to argue that p — q is logically equivalent
to =p V q, and check your work using a truth table.

Solution

From the truth table for implies, the statement p — q is true precisely when
p is false, or p and q are both true. Thus it is true precisely when —p is true
or q 1s true. Therefore, p — q < —pV q.

Our reasoning is confirmed in the truth table below. Since the columns of the
truth table under the statements p — q and —p V q are identical, the double
implication between these statements is a tautology. (Since this is clear, we
have chosen not to show that column).

plal-plp—q|PVg
0[0] 1 1 1
011 1 1
10|l o0o] o 0
110 1 1

Example 1.6.4 Use the definition to argue that —(p — q) is logically equiv-
alent to p A —q, and check your work using a truth table.

Solution
From the definition of implication, the statement p — q is false only in the
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case that p is true and q is false. Thus —(p — q) is true only in the case that
p is true and q is false, that is, when p A —q is true.

Our reasoning is confirmed in the truth table below where, again, the column
corresponding to [=(p — q)] <> [p A —q| is omitted.

plalp|qlp—=q|-(p—=q|PAq
0(0] 1 [ 1] 1 0 0
ol 1 /0] 1 0 0
1lojo|l1] 0 1 1
1/1]o]o| 1 0 0

Example 1.6.4 can be approached in a different way, using logical equiva-
lences. Since locally equivalent expressions can be freely substituted for each
other,

—~(p—=q) & ~(=pVq) & ~(=p) A=g & pA g

where we have used the results of Example 1.6.3 and Question 1.6.2. Using
known logical equivalences to establish new logical equivalences is preferable
to making truth tables, especially if the number of statements involves is
larger that 2. We will develop methods for doing this in Section 1.9

Question 1.6.5 Use the definition to argue that —(p <> q) is logically equiv-
alent to (p A —q) V (=p A q), and check your work using a truth table.

1.7 Converse and Contrapositive of an Impli-
cation

The converse of the implication p — ¢ is ¢ — p.

The converse of the statement “if it is raining, then I don’t go golfing” is “if I
don’t go golfing, then it is raining”. The first statement is true for the people
I play with, while the second one isn’t; there can be many other reasons to
not go golfing, for example work commitments or extreme cold.

Following Example 1.2.1 (and immediately above) we noted that an impli-
cation and its converse can have different truth values. This assertion is
re-confirmed in the truth table below our discussion of the contrapositive.
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Therefore an implication and its converse are not logically equivalent. One
of them can not be used in place of the other.

The contrapositive of the implication p — ¢ is ~g — —p.

For example, when a and b are given integers, the contrapositive of “if a and
b are odd integers then the integer ab is odd” is “if the integer ab is even then
it is not the case that the integers a and b are odd”, or equivalently “if the
integer ab is even then the integer a is even or the integer b is even”.

An tmplication and its contrapositive are logically equivalent. This assertion
is confirmed by the truth table below.

implication | contrapositive | converse
bp|q|—Dp|—q p—q g — P q—p
00 1] 1 1 1 1
0110 1 1 0
110 0|1 0 0 1
1{1] 010 1 1 1

For completeness, we note that the inverse of p — ¢ is the statement —p —
—q. It is the contrapositive of the converse of p — ¢ (or the other way
around).

1.8 Necessary and Sufficient Conditions

Suppose you say “if it is sunny outside, then I will go cycling”, intending
that it be a true statement. (Possibly you will also go cycling if it cloudy
but not windy, but are not saying that.) Then you are saying that the truth
of the statement “it us sunny outside” is enough to guarantee the truth of
the statement “I will go cycling”. Most people would go cycling even if it
were not sunny (maybe you are one of them), so the two statements are not
logically equivalent.

The phrase p is a sufficient condition for q, or more briefly p is sufficient
for q, is translated into symbols as the implication p — ¢. The same is
true of any equivalent phrasing that that suggests that doing p is enough to
guarantee that q is also done, that is, if p happens, then ¢ happens.

Now consider the (true) statement “In order to get a Math degree, you must
take Math 122”. It says that taking Math 122 is necessary for getting a
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Math degree, that is, you need to do it. This is equivalent to the implication
“if you get a Math degree, then you have taken Math 122”. Most people
take Math 122 and don’t get a Math degree so the two statements are not
logically equivalent.

The phrase a is necessary for b is translated into symbols as b — a (note
which is the hypothesis of the implication and which is the conclusion!). The
same is true of any equivalent phrasing that that suggests if you are going
to to b, then you need to do a along the way, or that b happens only if a
happens.

Example 1.8.1 Write the following statements in symbols:

1. you must be at least four feet tall in order to ride the roller-coaster

2. a square 1s a rectangle
Solution

1. Let f be the statement “you are at least 4 feet tall”, and let r be the
statement “you can ride the roller-coaster”. The given statement is
saying that being at least 4 feet tall is a necessary condition for being
able to ride the roller-coaster. Hence the statement is v — f. (If you
rode the roller-coaster, then you must have been at least 4 feet tall. Note
that being 4 feet tall is definitely not a sufficient condition for being able
to ride the roller-coaster, for example you also need to not be afraid of

heights.)

2. Let s is the statement “this shape is a square” and c is the statement
“this shape is a rectangle”. The given statement is saying that being a
square 1s a sufficient condition to guarantee. That is, if a shape is a
square, then it is a rectangle. Hence the statement is s — c. (Note that
there are plenty of rectangles that are not squares, so being a square is
not necessary for being a rectangle.)

Combining the above, what does it mean to say that p is a necessary and
sufficient condition for ¢? The statement “p is sufficient for ¢” is rendered
symbolically as p — ¢. The statement “p is necessary for ¢” is rendered
symbolically as ¢ — p. Thus, “p is a necessary and sufficient condition for



20 CHAPTER 1. PROPOSITIONAL LOGIC

7

q” is the same as (¢ — p) A (p — ¢), which (as we have seen) is logically
equivalent to p <+ ¢, or “p if and only if ¢”.

Example 1.8.2 The statement “this triangle is equilateral” it is necessary
and sufficient for the statement “this triangle has three equal interior angles”.
FEvery equilateral triangle has three equal interior angles, so that the condition
is sufficient. And every triangle with three equal interior angles is equilateral,
so that the condition is necessary. Thus, the statements “this triangle has 3
equal interior angles” and “this triangle is equilateral” are logically equivalent
and can be used interchangeably.

1.9 The Laws of Logic

We now set out to develop an algebra of propositions. To do so, we need
some basic operations (logical equivalences) that can be used. Each of the
following can be verified (proved) with a truth table. In some cases we have
already done that. It is a good idea to memorize them, so that they are at
your fingertips when needed.

In what follows, 1 denotes a statement that is always true (i.e., a tautology),
and 0 denotes a statement that is always false (i.e., a contradiction).

When we refer to “The Laws of Logic”, we are referring to the following
collection of logical equivalences.

e Idempotence: pVp<p, pAp&SDp

e Commutative: pAqg< qgAp, pVgsqgVp

e Associative: (pAg)Ar<pA(gAT), (PV@VTr<=pV(gVr)

e Distributive: pV (gAr) < (pVg)A(pVr), pA(gVr)< (pAq)V(pAT)
e Double Negation: —(—p) < p

e DeMorgan’s Laws: =(pV q) < —pA—-q, —(pAq)< —pV g

e Identity: pAl<p, pVO&Sp

e Dominance: pAO0 <0, pV1lsl



1.9. THE LAWS OF LOGIC 21
The following are some other useful logical equivalences.

e p—qg&pVyg
epqge P A(g—p) e (=pVg AV g

It is apparent that the Laws of Logic come in pairs. The dual of a statement
is obtained by replacing V by A; A by V; 0 by 1; and 1 by 0, wherever they
occur. It is a theorem of logic that if s; is logically equivalent to ss, then the
dual of s is logically equivalent to the dual of s,.

Example 1.9.1 Use the Laws of Logic and other known logical equivalences
to show that

peqge (pAgV(—pA-g)

Solution.

perq
& (-pVag) A(pV—q) Known L.E.
& (pAPV ) V(g (pV—g)) Distributive
< [(-pAp)V(=pA—9)]VI[(gApP)V(gA—g)  Distributive (twice)
& [0V (=pA-q)]VigAp)VO Known contradictions
< (-pA=q)V(gAD) Identity
< (pAq)V(—pA—q) Commutative (2 x )

There are two other forms of the Distributive Laws. These can be derived
from the versions given above.

Example 1.9.2 Use the Laws of Logic and other known logical equivalences
to show that

(qAT)Vp<e(gVp)A(rVp)

Solution.
(gAT)Vp
< pVi(gAr) Commutative
< (pVag A(pVr) Distributive
< (¢Vp)A(rVvp) Commutative (twice)
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Question 1.9.3 Use the Laws of Logic and other known logical equivalences
to show that

(qVr)Ap< (gAp)V(rAp)

The Laws of Logic can be used in several other ways. One of them is to
prove that a statement is a tautology without resorting to a truth table.
This amounts to showing it is logically equivalent to 1.

Example 1.9.4 Use the Laws of Logic and other known logical equivalences
to show that —q V (p — q) is a tautology.

Solution.
—qV (p—q)
& gV (-pVyq) Known L.E.
& —qV(gV-p) Commutative
& (—qVaq)V-p Associative
& 1V -p Known tautology
s 1 Dominance

Therefore =q V (p — q) is a tautology.

Similarly, a statement is proved to be a contradiction when it is shown to be
logically equivalent to 0.

Another use of the Laws of Logic is to “simplify” statements. While the term
“simplify” needs to be explained (quantified somehow) to be meaningful,
or so we know when we are done, sometimes it is clear that an equivalent
expression found is simpler than the one that was started with.

Example 1.9.5 Use the Laws of Logic and other known logical equivalences
to simplify the expression —(—p — q) V (p A =q).

Solution.
~(p—=q)V(pAq)
& (= p V) V(pA—q) Known L.E.
& =(pVaq) V(pA—q) Double Negation
< (-pA—q)V(pA—q) DeMorgan
& (pV-p)A—g Dist've (from right to left)
& 1A—q Known tautology
& g Identity



1.10. USING ONLY AND, OR, AND NOT 23

Thus —q is a simpler form of =(—p — q)V(pA—q) which is logically equivalent
to at.

Example 1.9.6 Use the Laws of Logic and other known logical equivalences
to show that

(PA@Al(gA=T)V(pAT)] S =(p— —q)

Solution.
Use LHS to denote the expression on the left hand side. Then

LHS

s [(pAgAN@A=T)]V(PAG A(pAT)] Distributive
< [((pAg AN A=)V ((pAg) Ap) Ar)] Associative
< [(pA(gNh@) A=)V ((pAp)Ag)Ar)] Commutative, Associative
s [((pAg A=r)VIpAg) AT)] Idempotence
& (pAg) AN (—rVr) Distributive
& (pAg) A1 Known tautology
< (pAq) Identity
< —=(pAgq) Double Negation
& =(=pVq) DeMorgan
& a(p— —q) Known L.E.

1.10 Using Only And, Or, and Not

It turns out that any statement is logically equivalent to one that uses only
— and the connectives A, V. The logical equivalences above allow statements
involving the logical connectives — and <> to be replaced by equivalent
statements that use only A, V, and —.

It is also possible to do this directly from the truth table, as will now be
demonstrated.

Example 1.10.1 Let s be the statement involving p and q for which the
truth table is given below.

—_—_ 0 o3
— O = O
— O = —|®»
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Find a statement logically equivalent to s that uses only — and the connectives
A, V.

Solution.

First, for each row of the truth table where the statement s is true, write a
statement that’s true only when p and q have the truth values in that row.
This statement will involve the logical connective “and”. For the truth table
above:

e Row 1: - p A\ —q
e Row 2: =pAq

e Row 4: pAgq

Now, to get an expression that’s logically equivalent to s, take the disjunction
of these statements: it will be true exactly when the truth values of p and q
correspond to a row of the truth table where s is true (row 1 or row 2 or row
4). Thus s < (=p A =q) V (=p Aq) V (p A q).

The process is exactly the same for any statement given by a truth table, if
there are more than two statements involved.

There is some terminology and an important fact (important in computer
science) associated with what we have done. The expression associated with
each row of the truth table — a conjunction of variables or their negations
— is called a minterm. The compound statement derived using the process
consists of the disjunction of a collection of minterms (that is, they are all
joined together using “or”). It is called the disjunctive normal form of the
statement s. Since every statement has a truth table, and every truth table
leads to a statement constructed as above, a consequence of the procedure
just described is the theorem that every statement is logically equivalent to
one that is in disjunctive normal form.

It can be observed directly from the truth table that

5 & p—yq
< —pVq Known L.E.

The principle that things that are logically equivalent to the same statement
are logically equivalent to each other now implies it should be true that that
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(-pA=q)V(=pAq)V (pAq) < —pVq. This can be shown with the Laws
of Logic.

Question 1.10.2 Use the Laws of Logic and other known logical equivalences
to show that

(pA=q)V(~pAq)V(pAq) & pVyg

It is possible to go beyond writing statements so they involve only A, V, and
—. With careful use of DeMorgan’s Laws, really only V and —, or A and —,
are needed.

Example 1.10.3 Find an expression logically equivalent to p <> q that uses
only V and —.

Solution.. We know p <» ¢ < (—pV q) A (-q V p). By DeMorgan’s Law,

(=pV @) A (=g Vp) & =(=(=pVa) V(=g Vp)), soprqg& =(=(-pVa)V
—(—g \/p)). The latter statement uses only \V and —.

If you use DeMorgan’s Law in a different way, then you can get an expression
for p <+ ¢ than involves only A and —.

Question 1.10.4 Find an expression logically equivalent to p <> q that uses
only N\ and —.

Omne can go a bit farther and introduce the logical connective “nand” (not
and), so that “p nand ¢” is the statement —(p A ¢). It transpires that any
proposition can be expressed (in a possibly complicated way) using only
“nand”. The same thing applies to “nor”, where “p nor ¢” is the statement

=(pVq).

1.11 Logical Implication

We say p logically implies ¢ when p — ¢ is a tautology.

Informally, a statement p logically implies a statement ¢ if the truth of p
guarantees the truth of q. This happens exactly when p — ¢ is a tautology.
Note that we are not concerned about what happens if p is false. This is
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because of the truth table for implies: p — ¢ is true (by definition) when p
is false.

We use the notation p = ¢ to denote the fact (theorem) that p — ¢ is a
tautology, that is, that p logically implies q. Notice that p — ¢ is a statement
and can in general be true or false, and p = ¢ indicates the (higher level)
fact that the truth of p guarantees the truth of q.

Example 1.11.1 Argue that (a A b) = a.

Solution.

We need to argue that (a ANb) — a is a tautology. By the definition of
implication, the statement is true whenever the hypothesis a A b is false.
Suppose that a \b is true. Then a and b are both true. Therefore, (a Ab) — a
is true. It follows that (a Ab) — a is a tautology.

The example above could have also been done by making a truth table to
verify that (a A b) — a is a tautology.

By the example above, if in the midst of an argument, we were to discover
that a A b is true, we would be entitled to conclude (infer, or deduce) that a
is true (and the same for b). In the next section we will develop a collection
of basic rules for making inferences.

In what follows we argue that the logical equivalence p < q is the same as
the two logical implications p = q and ¢ = p. Suppose p < ¢q. Then p <> ¢
is a tautology. Since p +» ¢ < (p — q) A (¢ — p), the latter statement is also
a tautology. By Example 1.11.1, each of (p — ¢) and (¢ — p) is a tautology.
Therefore p = ¢ and ¢ = p (the latter could also be written as p < ¢; the
intended meaning of the notation is obvious). In the same way, if both p = ¢
and p < ¢, then p & q.

1.12 Valid Arguments and Inference Rules

An argument is an implication (p1 Apa A --- A p,) — ¢. The statements
D1, D2, - - -, P are called premises, and the statement ¢ is called the conclusion.
Put differently, an argument is an assertion. Since the truth table for implies
says that an implication is true when its hypothesis is false, and since the
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hypothesis is the conjunction of all of the premises, the assertion being made
is that of the premises are all true, then so is the conclusion.

An argument is called wvalid if the implication is a tautology (i.e., if the
premises logically imply the conclusion, so that the conclusion is guaranteed
to be true when all of the hypotheses are true), otherwise it is invalid.

To show that an argument is invalid, it needs to be demonstrated that the
implication is not a tautology. From the truth table for implies, this amounts
to describing a single row of a truth table where each premise is true and the
conclusion is false. Such a collection of truth values is called a counterezample
to the argument.

Arguments are usually presented in the tabular format shown below for the
example [(p — —¢) A (—-r — p) A q] — —r. The premises are listed first, and
then the conclusion is listed below a separating line.

pP—q
T —=p
q

o

Example 1.12.1 Show that the argument above is invalid.

Solution. We need to give a counterexample: a truth value assignment for
p,q and r such that the premises are all true and the conclusion is false. It
s best to start by determining what’s needed for the conclusion to be false,
and then figure out what’s needed for the premises to all be true.

In order for the conclusion to be false, —r must be false, hence r must be
true.

When —r is false, the second premise is true no matter if p is true or false
(this one is free!). The truth of third premise gives us that q must true.
Finally, we want to choose a truth value for p so that the first premise is
true. When p is false, the implication p — —q is true. (And since —q is
false, this is the only possible truth value assignment to p that makes the first
premise true.) Thus, if p,q,r have the truth values 0,1,1, respectively, the
premises are all true and the conclusion is false. Therefore, the argument is
not valid.

A truth table can, in principle, be used to show an argument is valid or
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invalid. But, if the number of premises involved is large, so is the table. A
better way is to give a proof: a chain of logical equivalences and implications
involving the premises (which are assumed to be true because an implication
is true when its hypothesis is false). The idea is that every statement you
write down is true, and is either a premise, or an allowed additional hypoth-
esis, or is derived from statements known to be true via logical equivalences
and implications.

Our ultimate goal is to write mathematical proofs in words. Proving logical
implications using inference rules and logical equivalences is a step towards
that goal. When we write proofs in words we will use the same basic frame-
work: write down the premises, and then make a sequence of true state-
ments which are either known from before, allowed additional hypotheses.
or derived from statements known to be true via logical equivalences and
implications, until the desired conclusion is finally reached.

The two following inference rules are each a logical implication. They are
just common sense, but can be formally proved with a truth table. These
will get used frequently in arguments and hence need to be at your fingertips,
so they should be memorized.

e Modus Ponens: (p — ¢) Ap=gq
e Chain Rule (Law of Syllogism): (p = ¢) A (¢ —71)=p—r
We use these inference rules to prove some other rules. The rules above are

worth memorizing. The rules in the examples and question below are easy
consequences of them and need not be remembered.

Example 1.12.2 Prove the rule Modus Tollens: [(p — q) A —q] = —p.
Proof.

1. p—q Premise
2. .q—>—-p LE. tol
3. —q Premise
4. . —p 2,3, M.P.

Question 1.12.3 Prove the rule Disjunctive Syllogism: [(p V q) A —p| = q.
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Example 1.12.4 Prove the rule Resolution: [(pV r)A(qV —r)] = pVq.

Proof.

N TU W

pVr Premise
-p = L.E. to1
qV —r Premise
-rVg 3, Commutative
r—gq L.E. to 4
-p —q 2,5, Chain Rule
pVq L.E. to 6

29

Here are two more inference rules which are clearly true, and which can be
formally proved with a truth table.

e Disjunctive Amplification: p = pV q

e Conjunctive Simplification: p A g = p

Question 1.12.5 Argue in words that the rules Disjunctive Amplification

and Conjunctive Simplification hold (i.e., that the corresponding implications

are tautologies), and then verify your work with a truth table.

Example 1.12.6 Use inference rules and logical equivalences to establish the

validity of the argument:

Proof.

XN DO W

P g

P g
g =T
p

(=p = @) N (g — —p)

q—p
p—q
—q —r
p—T

p
r

Premise
LE tol

2, Conjunctive Simplification
3, Contrapositive

Premise

4,5, Chain Rule

Premise

6,7, M.P.
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The validity or invalidity of argument which is given in words can estab-
lished as before. Before doing that, the argument needs to be translated into
symbolic form.

Example 1.12.7 Determine whether the argument below is valid or invalid,
and give a proof or counterexample as appropriate.

If I run, then my ankle does not hurt
If I am not injured, then I run
My ankle hurts

I am injured

Solution. Let p,q, and r denote the statements “I run”, “My ankle hurts”,
and “I am ingured”, respectively. Then the argument is:

p—q
T = p
q

If we try to construct a counterexample in the same way as in Example 1.12.1,
then we will not be able to find a way to assign truth values so that the
conclusion s false and all premises are true. This suggests that the argument
is valid (unlike most stories about sports injuries). We can prove it using
inference rules.

1. p— —q Premise
2. r—=p Premise
3. -r— g 2,1, Chain Rule
4. qg—r 3, Contrapositive
5. q Premise
6. .7 4,5, M.P.

We conclude this section with two more inference rules that can be proved
with a truth table, and then some discussion about them.



1.12. VALID ARGUMENTS AND INFERENCE RULES 31

e Proof by Contradiction: (—p — 0) = p

e Proof by Cases: (p = r)A(¢q—71r)=(pVgqg) —r

Question 1.12.8 Argue in words that the rules Proof by Contradiction and
Proof by Cases hold (i.e., that the corresponding implications are tautologies),
and then verify your work with a truth table.

The idea behind “Proof by Contradiction” is that one should only be able
to obtain true statements when starting with true statements, and using
logical equivalences and logical implications. Hence, if falsity of the desired
conclusion leads to a statement that is never true (that is, a contradiction),
then the conclusion can not be false. Here, we illustrate the use of this rule in
a proof of the type above by giving a second proof of the rule “Resolution”.

Example 1.12.9 Use Proof by Contradiction to establish the validity of the
rule Resolution.

Proof.
1. =(pVq) Negation of conclusion, for proof by contradiction
2. —pA—gq 1, DeMorgan
3. —p 2, Conjunctive Simplification
4. —q 2, Conjunctive Simplification
5. pVr Premise
6. —-p—r L.E. to 5
7. r 3,6, M.P.
8. qV-r Premise
9 g7 L.E. to 8
10. - 4,9, M.P.
11. rA-r (& 0) Known contradiction from 7,10
12. pVygq 1,11, Proof by Contradiction

The rule “Proof by Contradiction” is better illustrated by a proof in words.
An example will be given in Section 2.4.

The intuition behind “Proof by Cases” is simple enough. If the truth of p
guarantees the truth of a conclusion, r, and the truth of ¢ guarantees the
truth of r, and one of p and ¢ must be true, then r must be true. The
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way this rule is applied is that if one of several cases must arise, and the
desired conclusion holds in each case, then the premises logically imply the
conclusion. This rule is also best illustrated by by a proof in words. An
example will be given in Section 2.4.

1.13 Proving Implications

Consider the following (valid) argument

u—>r
(rAs)— (pVt)
q— (uAs)

-t

q—p

If you go about trying to prove the validity of this argument using the infer-
ence rules in the previous section, then it is quite likely to end in frustration.
The question is how do we establish the validity of an argument whose con-
clusion is an implication?.

When the conclusion is an implication like ¢ — p, we can approach proving
validity of the validity of the argument using proof by cases. The statement
q is either false or true. When ¢ is false, the desired conclusion ¢ — p is true
by the definition of implication (we don’t even need to use the premises!).
Thus it remains to show the desired conclusion holds when ¢ is true. That
means we can add the additional premise that ¢ is true. And if we do that,
then proving that ¢ — p is true is equivalent to proving p is true because if
q is true and p is true, then ¢ — p is true. Once we’ve shown that ¢ — p is
true in the two possible cases that can arise, then we can use Proof By Cases
to conclude that the argument is valid. It is common in mathematics to not
even mention the case where ¢ is false, and simply take ¢ as an addition
premise (i.e., assume it is true), and then argue that p must be true.

The discussion in the previous paragraph comes down to the logical equiva-
lence a — (b —¢) & (aNb) — c.

Question 1.13.1 Use known logical equivalences to show that a — (b —
c) < (aNb) = c.
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With respect to the argument given at the start of the section, let a be the
conjunction of its premises. Then the argument is a — (¢ — p). By Question
1.13.1, this statement is locally equivalent to (a A b) — ¢. Therefore, the
argument a — (¢ — p) is valid (i.e., the implication is a tautology) precisely
when the argument (a A b) — ¢ is valid. Hence the validity of the given
argument can be established by establishing the validity of the argument:

uU—r
(rAns)— (pVt)
qg— (uAs)

-t

q

p

Question 1.13.2 FEstablish the validity of the argument immediately above.

1.14 Exercises

1. If the statement g Ar is true, determine all combinations of truth values
for p and s such that the statement (¢ — [-p V s]) A [-s — 7] is true.

2. Suppose —[(p — q) <> (¢ — p)] is false. Can p <> ¢ have both possible
truth values? Explain.

3. Is (p — q) = [(p = q) — q] a tautology? Why or why not?

4. Show that [(pV¢)A(rV—q)] — (pVr)]is a tautology by making a truth
table, and then again by using an argument in words that considers the
two cases “q is true” and “q is false”.

5. Show that the two statements (p A ¢) — r and (p — ) A (¢ — r) are
not logically equivalent.

6. Consider the statement “if the goods are unsatisfactory, then your
money will be refunded”. This was an advertising slogan of the T.
Eaton Company. Is the given statement logically equivalent to “goods
satisfactory or money refunded”? What about to “if your money is not
refunded, then the goods are satisfactory”? And what about to “if the
goods are satisfactory, then your money will not be refunded”.
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7. Write each of the following statements, in English, in the form “if p,
then ¢”.
(a) I go swimming on Mondays.

(b) In order to be able to go motorcycling on Sunday, the weather
must be good.

Eat your vegetables or you can’t have dessert.
(d

)

) You can ride a bicycle only if you wear a helmet.
(e) Polynomials are continuous functions.

)

(c
(f) A number n that is a multiple of 2 and also a multiple of 3 is a

multiple of 6.
(g) You can’t have any pudding unless you eat your meat.
8. Write in English the converse, contrapositive and negation of each
statement.
(a) If T had $1,000,000, I'd buy you a fur coat.
(b) If it is not raining and not windy, then I will go running or cycling.

(¢) A day that’s sunny and not too windy is a good day for walking
on the waterfront.

(d) If 11 pigeons live in 10 birdhouses, then there are two pigeons that
live in the same birdhouse.

(e) If every domino covers a black square and a white square, then

the number of black squares equals the number of white squares.

9. Determine if each statement below is true or false, and explain your
reasoning.

(a) It is possible for an implication and its contrapositive to have
different truth values.

(b) If the statement ¢ is true, then, for any statement p, the statement
p — q is true.

(c) If s; — sy is a contradiction, then so is its contrapositive.

(d) There are truth values for p and ¢ such that p — ¢ and ¢ — p are
both false.
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(e) (=pVq)A—=(—pVq) is a contradiction.

(f) If the statement P is a contradiction, then, for any statement g,
the statement P — ¢ is a tautology.

(g) If two statements are logically equivalent, then so are their nega-
tions.

10. A sign posted outside of Tokyo says “In order to attack the city, you
must be green and related to Godzilla. If you are not green and not
related to Godzilla, then you can not attack the city”.

(a) Render the two statements on the sign in symbols. Start with: Let
a be the assertion “you can attack the city”, and carry on from
there.

(b) Argue that the two statements on the sign are not logically equiv-
alent, contrary to what the author probably intended. Which is
more restrictive on who can attack Tokyo?

(c) Correct the second statement so that it is logically equivalent to
the first one.

11. Use known logical equivalences to show that (—a — b) A (=bV (—aV—b))
is logically equivalent to —(a <> b).

12. Use known logical equivalences to show that —(p < ¢) is logically
equivalent to (pV ¢) A (p — —q).

13. Find an expression logically equivalent to —(p <+ ¢) that involves only
— and V.

14. Let s be the statement whose truth table is given below.

el ===k
——_0 O == O O
—_ O = O = O = O
O O OO = O W
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(a) Express the statement s in terms of p, ¢ and r in such a way that
only negation (—) and the logical connectives V and A are used.
(b) Find an equivalent formulation of s that uses only = and V.

(c) Find an equivalent formulation of s that uses only — and A.
15. Define the logical connective “nand” (not and) by p A ¢ < =(p A q).

(a) Find a representation of each of the following statements using
only the logical connective nand.

1. —p
ii. pAgq
iii. pVgq
iv. p—>¢q
V. prgq
(b) Explain why every statement has a representation using only the
logical connective nand.

16. (a) Argue that “logically implies” has the property (called transitiv-
ity) that if a,b and ¢ are statements such that a = b and b = ¢,
then a = c.

(b) Suppose a,b,c and d are statements such that a = b, b = ¢,
¢ = d, and d = a. Argue that any two of these statements are
logically equivalent.

17. Determine whether each statement is true or false, and briefly explain
your reasoning.

(a) If an argument is valid then it is possible the conclusion to be false
when all premises are true.

(b) If the premises can’t all be true, then the argument is valid.
(¢) If p< g and g & r, then p & 7.

18. Show that the argument

p<<q
q—r
rV s
s = q
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19.

20.

21.

22.

23.

is invalid by providing a counterexample.

Use basic inference rules to establish the validity of the argument

p— q
qVr
pVu

-r
U

Use any method to show the following argument is valid.

p
q

Show that the following argument is not valid.

pVrT

pVyg
qVvr

Write the argument below in symbolic form. If the argument is valid,
prove it. If the argument is not valid, give a counterexample:

If T watch football, then I don’t do mathematics
If I do mathematics, then I watch hockey
If T don’t watch hockey, then I watch football

Write the argument below in symbolic form. If the argument is valid,
prove it. If the argument is not valid, give a counterexample:

If you are pregnant or have a heart condition,
then you can not use the hot tub

You do not have a heart condition

You can use the hot tub.

You are not pregnant
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24. If the argument below is valid, then use any method to prove it. Oth-
erwise, give a counterexample to show that the argument is invalid.

-r =P
q—p
—(rVvit) = g




Chapter 2

Quantifiers and Written Proofs

In this chapter we make the transition from writing symbolic proofs to writing
convincing arguments (i.e. proofs) in English. A number of tools for proving
mathematical statements will be introduced, and then others will be added
to our toolkit as time goes by. (Note: no one gets to know for sure which
tool will work in a given situation, but experience can help make it possible
to know which ones are likely to work, and in which order various methods
should be tried.) Each proof strategy will make use of the logic and structure
developed in the previous chapter.

2.1 Open Statements

An open statement is an assertion that contains one or more variables. When
the context is clear, we will drop the qualifier “open”, and refer to assertions
that contain one or more variables as statements.

An example of an open statement is “z is a root of 2% — 5x + 6”. It is not
possible to know the truth value of this statement until you know the value
of x. This statement is true if x = 3, and false if x = 1. It is never true if x
is required to be a negative real number, and (as we’ve seen) can be true if
x is required to be a positive real number.

The universe of a variable is the collection of allowed replacements for the
variable.

Depending on the universe, a statement could be true sometimes and false

39
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sometimes, or always true, or never true. An example is 22 = 2. If 2 can
be any real number, then this statement is true when z = /2 and when
r = —/2. If z must be an integer, then it is never true.

It is also possible that a statement does not make sense for a given universe.
For example the statement “n < 5”7 does not make sense if n is a complex
number. We will assume that statements make sense for the universe under
consideration.

The point to remember about open statements is that once the variables are
assigned values (from the universe), then the resulting statement has a truth
value.

Before the variables have values, we only have a chance to know if an open
statement is (i) always true (no matter which allowed values are assigned to
the variables), (ii) always false (no matter which allowed values are assigned
to the variables), or (iii) sometimes true and sometimes false (depending on
which of the allowed values are assigned to the variables).

The Laws of Logic and other logical equivalences apply to open statements
wnvolving variables because they apply in exactly the same way each time
allowed values are given to the variables. Thus, for example, if p(x) and
q(z) are open statements involving the variable z, then for every allowed
replacement x, for z, p(zo) and ¢(z¢) are statements as in Chapter 1 — each
of them is either true or false — and —(p(xg) V ¢(zo)) has the same truth value
as —p(xo) A—q(zo). Thus we say the open statement —(p(x)V ¢(z) is logically
equivalent to the open statement —p(x) A—g(x). Similarly, the contrapositive
of the open statement p(z) — ¢(x) is the open statement —q(z) — —p(x),
and so on.

Question 2.1.1 Let p(x) and q(x) be open statements involving the variable
x, with respect to some given universe. Use the Laws of Logic and other
known logical equivalences to show that =(p(x) — q(x)) is logically equivalent

to p(z) A —q(x).

2.2 Quantifiers

When we make an assertions like “if 22 +324+2 =0 thenx = —1 orax = —27,
the intention is to convey that the assertion holds for every real number x.
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That is, a complete specification of the assertion is “For every real number
x,if 22 +3x+2=0 then x = —1 or x = —2.” Notice that this statement
has a truth value.

Similarly, an assertion like “some rectangles are squares” is intended to con-
vey that at least one rectangle is a square. Thus a more precise specification
of the assertion is “There ewist rectangles which are squares.” Again, notice
that this statement has a truth value.

The existential quantifier, 3, asserts that there exists at least one allowed
replacement for a variable for which the given statement is true. Think of
the backwards “E” as representing “exists”. Synonyms for “there exists”
include “there 1s”, “there are”, “some”, and “at least one”.

Example 2.2.1 FExpress the statement “there exists an integer n such that
n squared minus n plus one equals zero” using an existential quantifier, and
determine its truth value.

Solution.
A symbolic representation of this statement is In,n* —n + 1 = 0, where the
universe of n is the integers.

This statement is false. The equation n®> —n+1 = 0 has no solutions in the

real numbers, so it has no integer solutions.

The comma following an existential quantifier is best read as “such that”, as
in the textual representation of the statement in the example above.

Question 2.2.2 FEzxpress the statement “there exists an integer n such that
2 to the power of n is greater than n cubed” using an existential quantifier,
and determine its truth value.

Example 2.2.3 Suppose the universe of x is the real numbers. Fxpress that
statement Iz, x? > x® in English, without symbols except for x, and determine
its truth value.

Solution.
The statement is “There exists a real number x such that x squared is greater
than x cubed.”.

This statement is true. When v = —2 we have (—2)*> =4 > (=2)3 = —8.
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Question 2.2.4 Suppose the universe of n is the integers. FExpress the state-
ment An, 2n > 3n in English, without symbols except for n, and determine
its truth value.

Question 2.2.5 Suppose the universe is the integers. Explain why the state-
ment In, (n > 10) — (0 = 1) is true.

An existential quantifier is like the logical connective “or”. For example, if
the universe of n is the positive integers and p(n) is an open statement, then
dn, p(n) is asserting that p(n) is true when n = 1, or it is true when n = 2
or when n = 3, and so on.

Example 2.2.6 Suppose the universe consists of the integers 1, 2, 3. Write
a statement logically equivalent to dx,x < 3 which does not involve a quan-
tifier, and determine its truth value.

Solution.
The quantified statement is logically equivalent to

(1<3)v(2<3)Vv(3<3)

which is true because (for example) 1 < 3 is true.

Question 2.2.7 Suppose the universe consists of the integers 1, 2, 3. Write
a statement logically equivalent to 3x, x? = 2z + 3 which does not involve a
quantifier, and determine its truth value.

The universal quantifier, V, asserts that the given statement is true for all
allowed replacements for a variable. Think of the upside-down “A” as rep-
resenting “All”. Synonyms for “for all”, include “all”, “every” and “for
each”.

Example 2.2.8 Fxpress the statement “for all positive integers n, the in-
teger 10n is greater than n” using a universal quantifier, and determine its
truth value.

Solution.
A symbolic representation of this statement is VYn,10n > n, where the uni-
verse of n s the positive integers.

The statement is true. Ifn is a positive integer, then so is 10n, and 10n—n =
9n > 0 since n > 0.
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The comma following a universal quantifier is best read as a pause, as it is
in the textual representation of the statement.

Question 2.2.9 Ezxpress the statement “for all real numbers x, 2 times x is
greater than or equal to x 7 using a universal quantifier, and determine its
truth value.

Example 2.2.10 Suppose the universe of x is the non-zero real numbers.
Ezpress the statement Va:,% < x in English, without symbols except for num-
bers and x, and determine its truth value.

Solution.

The statement is “For every non-zero real number x, the fraction 1 over x is
less that x.” The statement is false. If x = % then % = 2, and 2 is not less
than 5.

Question 2.2.11 Suppose the universe is the integers. Express the state-
ment Vx,x? # x in English, without symbols except for numbers and x and
without using the word “not”, and determine its truth value.

A universal quantifier is like the logical connective “and”. For example, if
the universe of n is the positive integers and p(n) is an open statement, then
Vn,p(n) is asserting that p(n) is true when n = 1, and when n = 2, and
when n = 3, and so on.

Example 2.2.12 Suppose the universe of x consists of the integers 1, 2, 3.
Write a statement logically equivalent to Vx,x > 1 which does not involve a
quantifier, and determine its truth value.

Solution.
The quantified statement is logically equivalent to

I>1)A2>1)AB>1),
which s false because 1 > 1 is false.
Question 2.2.13 Suppose the universe of x consists of the integers 1, 2, 3.

Write a statement logically equivalent to Vx,2x # 8 which does not involve a
quantifier, and determine its truth value.
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When quantifiers are nested, they are read in order from left to right. For
example, if z and y are understood to be real numbers, “Va, Jy,z+y = 0" is
read as follows: for all z, the statement “Jy,x +y = 07 is true. It is saying
that no matter which real number x is chosen, once it is known there is a
real number y such that = + y = 0. This is true because the number y can
be chosen to be the negative of x. Hence, dy,z +y = 0 is true for any =z.
Consequently, Vz, dy, x +y = 0 is true.

By contrast, dy,Vz,z + y = 0 is saying that there is a number y such that
for every number x, the sum z + y is zero. This is false. One of the options
for « is y?> + 1. For this choice of x, we have z +y = y? + y + 1, so that
xr+y =0 if and only if y?> + y + 1 = 0. The latter equation has no solutions
in the real numbers.

The lesson to be learned is that the order of quantifiers is important. Re-
versing the order of the quantifiers completely changes the assertion being
made.

Question 2.2.14 Suppose the universe is the non-zero real numbers. Trans-
late each of the statements Vx,dy, xy = 1 and Jy,Vx,xy = 1 into English,
and determine the truth value of each one.

Example 2.2.15 Use quantifiers to express the statement “for all integers
n, the integer n(n + 1) is even” symbolically.

Solution.

We need the precise definition of an even integer. An integer k is even when
there is an integert such that k = 2t. Symbolically, k is even when 3t, k = 2t,
where the universe of t is the integers. With this in mind, the statement to
be translated becomes “n,3t,n(n+1) = 2t".

Example 2.2.16 Suppose the universe consists of the integers 1, 2. Write
a statement logically equivalent to Vx, Jy, xy = 2 that does not involve quan-
tifiers, and determine its truth value.

Solution.

When x = 1, the statement Jy,xy = 2 is precisely (1 -1 =2)V (1.2 = 2),
which is true. When x = 2, the statement Jy,zy = 2 is precisely (2 -1 =
2)V(2-2=2), which is true. Thus, Vx,3y,xy = 2 is precisely the statement

(1-1=2)V(1-2=2)]A[2-1=2)V(2-2=2)].
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The first expression in square brackets corresponds to the statement Iy, vy =
2 when x = 1, the second one corresponds to this statement when x = 2, and
we are taking the conjunction of these statements because of the universal
quantifier. The given statement is true.

Question 2.2.17 Suppose the universe consists of the integers 1, 2. Write
a statement logically equivalent to Jy, YV, xy = 2 that does not involve quan-
tifiers, and determine its truth value.

Example 2.2.18 Suppose the universe is the integers. Determine the truth
value of the statement YV, Jy, x +y < 10.

Solution.

The first quantifier s “for all”, and it applies to x. Thus, the quantified
statement is going to be true only if the statement that follows, dy, x+y < 10,
is true no matter what x in the universe is used. The next quantifier is “there
exists’, and it applies to y This quantified statement is going to be true only
if there is at least one y in the universe so that v 4+ y < 10 is true.

Given any integer x, if we choose y to be —x then x +y = x + (—x) = 0.
Therefore, for any x, there exists y such that x+vy < 10. Thus, the statement
Ve, dy, x +y < 10 is true.

Question 2.2.19 Suppose the universe is the integers. Determine the truth
value of the statement dx, Iy, vy = 4.

Question 2.2.20 Suppose the universe is the integers. Determine the truth
value of the statement Jx,Vy, x +y < 10.

Let s(x) denote a statement involving the variable x. Observe that if Vz, s(x)
is true, then so is Jz, s(x), provided the universe contains a non-zero number
of elements: if an assertion is true for every element of the universe, then
it is true for at least one element of the unverse (provided there is one). If
the universe contains no elements, then Vz, s(z) is true, and 3z, s(x) is never
true (why?). Of course, the truth of 3z, s(x) tells us nothing about the truth
of Vx, s(x). Why?

Both universal and existential quantifiers can be (unintentionally) hidden.
An example is the statement “if (a # 0) and (ax® + bz + ¢ = 0) then

b= Vb? — 4dac

2a

T



46 CHAPTER 2. QUANTIFIERS AND WRITTEN PROOFS

which is meant to apply to all real numbers x. If the universal quantifier
were made explicit, it would read “for all real numbers z...”. Similarly,
the statement “a real number can have more than one decimal expansion”
is intended to assert the existence of one or more such numbers. If the
existential quantifier were made explicit, it would read “there is a real number

x such that x has more than one decimal expansion”.

Question 2.2.21 According to Robert Plant, the original first line of the
Led Zepplin song Stairway to Heaven was “There’s a lady who knows all is
glitters, is gold, and she is buying a stairway to heaven.” Ezplain why, when
this statement is written in symbols, either 3 or 4 quantifier appears, and the
two formulations are logically equivalent.

Logical equivalence of open statements was discussed towards the end of Sec-
tion 2.1. For example, =(p(z) V ¢(z)) is logically equivalent to —p(z) A —q(z),
the contrapositive of p(x) — ¢(x) is —q¢(z) — —p(x), and the converse
of p(z) — q(x) is ¢(x) — p(z). Recall that logically equivalent state-
ments can be freely substituted for each other without changing the truth
value of any expression in which they are involved. This reasoning also
applies to statements involving quantifiers. In particular, the contraposi-
tive of VYx,p(x) — q(z) is Va,~q(x) — —p(x) because the contrapositive of
p(x) — q(x) is =q(z) — —p(z). Similarly, the converse of Iz, p(x) — q(x) is
dz,q(x) — p(x) because converse of p(x) — ¢(x) is q(z) — p(x).

Question 2.2.22 What is the contrapositive of Jz,p(x) — q(x)? Why?
What is the converse of Vx,p(x) — q(x)? Why?

2.3 Negating Statements Involving Quanti-
fiers

Being able to read and write statements involving quantifiers, especially
nested quantifiers, is an important skill. Another important skill is to be
able to figure out what is needed for a quantified statement to be true, or
to be false. A related skill which is crucial in mathematics is to be able to
properly negate a quantified statement.
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Intuitively, the negation of an existentially quantified statement should be an
universally quantified statement because if it is not the case that a statement
is true for at least one allowed replacement from the universe, then it is
false for all allowed replacements. Similarly, the negation of a universally
quantified statement should be an existentially quantified statement because
if it is not the case that a statement is true for all allowed replacements
from the universe, then it is false for at least one allowed replacement. Let’s
formalize this intuition.

We first determine the negation of an existentially quantified statement.

Proposition 2.3.1 For any universe, the negation of 3x,p(x) is Va, —p(x).

Proof. We need to argue that Vx,—p(z) has the opposite truth value as
dz, p(x). We consider two cases, depending on the truth value of 3z, p(z).

Suppose first that 3z, p(z) true. Then there is some element z in the universe
such that p(zy) is true, and so Vz, —p(z) is false.

Now suppose 3z, p(x) is false. Then there is no z( in the universe for which

p(xo) is true, and so Vz, —p(x) is true.

Therefore -3z, p(x) < Vo, —p(z). O

Example 2.3.2 Suppose the universe is the integers. Write the negation
of the statement In, (2n = 6) — (n = 0) in symbols, without any negated
quantifiers and without any negated mathematical symbols, and determine its
truth value.

Solution.
By Proposition 2.3.1 we have

—3dn,(2n=6) - (n=0) < VYn,~((2n=6) — (n=0))
& Vn,(2n=6) A (n #0)
& Yn,2n=6)A((n<0)V (n>0))
sincen #0 < (n <0)V(n>0). Thus the desired statement is ¥Vn, (2n =

6) A ((n<0)V(n>0)). Itis false because, for example, when n = 0 the
statement (2n = 6) A ((n < 0)V (n > 0)) is false. (Note: we could have seen



48 CHAPTER 2. QUANTIFIERS AND WRITTEN PROOFS

that the statement is false by noting that the statement (2n = 6) — (n = 0)
is true when n = 0, for example, because 2n = 6 is false for that replacement
for n, and hence 3n, (2n = 6) — (n = 0) is true.)

Question 2.3.3 Suppose the universe is the real numbers. Write the nega-
tion of the statement Jx,x, 2> — 10 < 9 in symbols, without any negated
quantifiers and without any negated mathematical symbols, and determine its
truth value.

We now determine the negation of a universally quantified statement.

Proposition 2.3.4 For any universe. the negation of Vx,q(x) is Iz, —q(x).

Proof. We need to argue that 3z, —~¢(x) has the opposite truth value as
YV, q(x). We consider two cases, depending on the truth value of Vz, ¢(z).

Suppose first that Vz, ¢(z) is true. Then ¢(z) is true for every zp in the
universe. Thus —q(zg) is false for every element x, of the universe, and so
dz, =q(x) is false.

Now suppose Vz, ¢(x) is false. Then ¢(zy) is false for some element z of the
universe. That means —q(z) is true, and so 3z, -¢q(z) is true.

Therefore, —=Vz, ¢(x) < Jz, ~q(x). O
A different proof of Proposition 2.3.4 uses Proposition 2.3.1. We have

dz, ~q(z) & ——Jz, ~q(z) & Vo, —q(z) &V, q(z).

Example 2.3.5 Suppose the universe is the real numbers. Write the nega-
tion of the statement Vx, v x? = x in symbols, without any negated quantifiers
and without any negated mathematical symbols, and determine its truth value.

Solution.
By Proposition 2.3.4 we have
Wz, Va2l =z & Jz,~(Va?=2z)
& Tz Va4
& (Va2 <z)Vv (Va2 > x)
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This the desired statement is 3x(vVa? < x) V (Va? > x). It is true because,
for example, when © = —2 we have V2 = \/(—=2)%2 = 2 > =2 (since /-

denotes the positive square root of its arqgument).

Question 2.3.6 Suppose the universe is the integers. Write the negation
of the statement ¥n, (2" = 2n) <> (n = 2) in symbols, without any negated
quantifiers and without any negated mathematical symbols, and determine its
truth value.

It is important to note that the statements p(x) and ¢(x) in Propositions
2.3.1 and 2.3.4, respectively, may themselves be quantified statements, and
so the process of replacing negated quantifiers may need to be repeated over
and over.

Example 2.3.7 Write the statement —=[3a,3b,§ = V2] in symbols without
any negated quantifiers.

Solution.
By Proposition 2.3.1,

ﬁ[aa,ab,% —V2] & Va, ﬂ[ﬂb,% = V7]

& Va, Vb, ﬁ[% ~ V2]

PN Va,Vb,% £ /2

Therefore the desired statement is Va,Vb, § # V2.

(Notes: (1.) We will prove in the next section that this statement is true
when the universe is the integers, that is, \/2 is irrational.

(2.) To reinforce that the truth value of a quantified statement can depend on
the universe, note that if the universe is the real numbers, then the statement

Va, Vb, # V2 is false. That’s demonstrated by taking a = /2 and b = 1.)

Question 2.3.8 Suppose the universe is the real numbers. Write the state-
ment —[3x, Yy, xy # 1] in symbols without any negated quantifiers, and de-
termine its truth value. Is the truth value different when the universe is the
non-zero real numbers?
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2.4 Some Examples of Written Proofs

Suppose you want to write a proof in words for a statement of the form
“if p then ¢”. That is, you wish to establish the theorem p = ¢. There
are many techniques (methods) that can be tried. There is no guarantee of
which method will work best in any given situation. Experience is a good
guide, however. Once a person has written a few proofs, they get a sense of
the best thing to try first in any given situation.

To use the method of direct proof to show p logically implies ¢, assume
p is true and then use definitions, known implications, and known logical
equivalences to arque that ¢ must be true. The reason for assuming p is true
comes from the definition of logical implication. In this case the first line of
the proof is “Assume p.” and the last says, essentially, “q is true’. What
comes in between depends on p and gq.

In the following example of a direct proof, we use the definition of an even
integer: An integer n is even if there exists an integer k so that n = 2k. Put
differently, the integer n is even if it leaves remainder 0 on division by 2. An
integer n is odd if it leaves remainder 1 on division by 2, that is, if n = 2k +1
for some integer k. Every integer is either even or odd, and not both.

Proposition 2.4.1 If the integer n is even, then n? is even.

Proof. Suppose that the integer n is even. Hence, there exists an an integer
k so that n = 2k. Then, n? = (2k)? = 4k? = 2(2k?). Since 2k? is an integer,
n? is even. O

It is customary in mathematics to use a box to indicate the end (or absence)
of an argument.

Another proof technique is to prove the contrapositive. That is, assume ¢ is
false, and argue using the same things as above that p must also be false.
This works since p — q¢ < —¢ — —p. In this case the first line of the proof
is “Assume —q.” and the last is, essentially, “—p s true’. This method
is sometimes called giving an indirect proof. The motivation for the name
comes from the fact that the logical implication is proved indirectly, by its
contrapositive.

Proposition 2.4.2 If the integer n® is even, then n is even.
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Proof. We will prove the contrapositive that if n is not even, then n? is not
even.

Suppose that the integer n is not even, that is, it is odd. We want to show
that n? is odd. Since n is odd, there exists an an integer k so that n = 2k+1.
Then, n? = (2k +1)? = 4k* + 4k + 1 = 2(2k? + 2k) + 1. Since 2k* + 2k is an
integer, n? is odd. O

Yet another technique is proof by contradiction. The method comes from the
inference rule with the same name in Section 1.12. A proof by contradiction
that p implies ¢ begins by assuming ¢ is false and proceeding as above until
deriving a statement which is a (logical) contradiction. Doing so enables you
to conclude that ¢ is true. In such a situation, the first line of the proof is
“Suppose —¢.” and the proof ends with “We have obtained a contradiction.
Therefore ¢.”

Here is a classic example of proof by contradiction. It uses the definition of
a rational number: a number x is rational if there exist integers a and b so
that = a/b. A number is irrational if it is not rational.

Put slightly differently, x is rational if it is a ratio of two integers. There
are many ratios of integers that equal a given number. In particular, there
is always one where the fraction a/b is in lowest terms, meaning that a and
b have no common factors other than one.

Proposition 2.4.3 V2 is not rational.

Proof. Suppose v/2 is rational. Then there exist integers a and b so that
V2 = a/b. The integers a and b can be chosen so that the fraction a/b is
in lowest terms, so that a and b have no common factor other than 1. In
particular, a and b are not both even.

Since v/2 = a/b, we have that 2 = (a/b)? = a?/b>. By algebra, 2b*> = a2.
Therefore a? is even. By Proposition 2.4.2, a is even. Thus there exists an

integer k so that a = 2k. It now follows that 20* = a? = (2k)? = 4k?, so that
b? = 2k?. Therefore b? is even. By Proposition 2.4.2, b is even.

We have now derived the contradiction (@ and b are not both even) and (a
and b are both even). Therefore, /2 is not rational. [J
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Sometimes the hypotheses lead to a number of possible situations, and it is
easier to consider each possibility in turn. In the method of proof by cases,
one lists the cases that could arise (being careful to argue that all possibilities
are taken into account), and then shows that the desired result holds in each
case. It could be that different cases are treated with different proof methods.
For example, one could be handled directly, and another by contradiction.

In the following example we make use the fact that every integer n can be
uniquely written in the form 3k + r, where k is an integer and r equals 0,
1, or 2. When the remainder, r, equals 0 we have n = 3k, so that n is a
multiple of 3.

Proposition 2.4.4 If the integer n? is a multiple of 3, then n is a multiple
of 3.

Proof. We prove the contrapositive: if n is not a multiple of 3, then n? is not
a multiple of 3. Suppose n is not a multiple of 3. Then the remainder when
n is divided by 3 equals 1 or 2. This leads to two cases:

Case 1. The remainder on dividing n by 3 equals 1.

Then, there exists an integer k so that n = 3k + 1. Hence n* = (3k + 1)* =
9k% 4+ 6k + 1 = 3(3k* 4+ 2k) + 1. Since (3k? + 2k) is an integer, the remainder
on dividing n? by 3 equals 1. Therefore n? is not a multiple of 3.

Case 2. The remainder on dividing n by 3 equals 2.

Then, there exists an integer k so that n = 3k + 2. Hence n? = (3k +2)? =
9k* + 12k + 4 = 3(3k* + 4k + 1) + 1. Since (3k% + 4k + 1) is an integer, the
remainder on dividing n? by 3 equals 1. Therefore n? is not a multiple of 3.

Both cases have now been considered. In each of them, we have shown that
n? is not a multiple of 3. It now follows that if n is not a multiple of 3, then

n? is not a multiple of 3. This completes the proof. (]

2.5 Exercises

1. Suppose the universe for the variables is the integers. Let p(n) be “n
is even” and q(n) be “n is odd”. Determine the truth value of each
statement and provide a brief explanation of your reasoning.
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(a) Vn,p(n) Vv q(n)

(b) [Bn, p(n)] A [Bn, q(n)]
(¢) In,p(n) — q(n)

(d) [¥n, p(m)] A [vn, q(n)]
Vn,dm,n+m =0
In,Vm,n+m =0

e

)
)
)
)
(e)
(f)
2. Suppose the universe contains at least one element.
(a) Explain why Vz, p(x) A g(x) is logically equivalent to [V, p(z) A
[V, q(z)].
(b) Explain why 3z, p(z) V q(z) is logically equivalent to [z, p(x) V
Bz, q(x)].

3. Use the example where the universe is the integers, and the statements
in Question 1 to:

(a) Explain why Vz, p(2)Vq(x) is not logically equivalent to [Vz, p(x)] V
[V, q()].

(b) Explain why 3z, p(x)Aq(z) is not logically equivalent to [3z, p(z)] A
Bz, q()]-

4. Write each statement in plain English. Do not use any symbols except
the letters that denote elements of the universe.

(a) Vz,Vy, (r # —y) — (z +y) # 0, where the universe is the real
numbers.

(b) 3s,Vt,p(s) A [(t # s) — —p(t)], where the universe of s and ¢ is
the collection of all students who completed Math 122 last fall,
and p(s) is the assertion “s got 100% on the final exam”.

5. Suppose that the collection of allowed replacements for the variable
p is {Gary, Christi} and the collection of allowed replacements for
the variable ¢ is { Whitehorse, Ottawa, Halifax}. Let v(p,c) be the
statement “p has visited ¢”. Write each statement in symbolic form
without quantifiers.

(a) Christi has visited every city.
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(b) There is a city Gary has not visited.

(¢) For every person there is a city which they have visited.

. Determine if each statement below is true or false, and explain your

reasoning.
(a) The negation of “Ewvery golf shot is a hook or a slice” is “Some
golf shots are hooks and slices”.

(b) The negation of “All enforcers skate slowly and pass badly” is
“Some enforcers skate fast and pass well”.

. Suppose the universe of m and n is {—1,0,1}. For each of the following

statements,

(1) write a compound statement involving neither quantifiers nor vari-
ables that is logically equivalent to the given quantified statement,

(77) determine the truth value, and

(73i) write the negation of the quantified statement in symbols, with
quantifiers, and without using negation (=) or any negated mathemat-
ical symbols like # or £.

(a) Vn,n3—n =0

(b) In,Vm,n+m < 1.

. Determine if each statement below is true or false, and explain your

reasoning.
(a) When the statement “There is no largest integer.” is written is
symbols, both of the quantifiers V and 3 appear.
(b) For the universe of real numbers, Vz, 3y, zy = 1 is false.
(c) For the universe of integers, 3z, (z? < 0) — (z > 10) is true.

(d) For the universe of real numbers, the contrapositive of “Jy, Vz.(xy <
r+y)— (y=0)"1is Vy,Jz.(y #0) = (zy > x +y).”

9. Let L be a given real number. We say that a sequence aq,as,... of

real numbers has limit L if, for every real number € > 0 there exists an
integer N such that |L — a,| < € for all n > N.
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(a) Write the criteria above for a sequence ay, as, ... of real numbers
to have limit L in symbols. Don’t forget to specify the universe
for each variable.

(b) Write the negation of the criteria in symbols.

(c¢) Explain in words how the negation of the criteria tells you when
you can conclude a sequence ag, as, ... of real numbers does not
have limit L.

(d) Apply the negation of the criteria to show that the sequence
ai,as, ..., where a,, = (—1)", does not have limit 0.

10. Consider the following (correct) argument in which all variables repre-
sent integers.
Suppose n and k are odd.
Then n =2t + 1 for some integer t, and k = 20 + 1 for some integer £.
Hence, nk = (2t +1)(20+ 1) = 4t0 + 2t + 20 + 1.
Therefore, nk is odd.

(a) Write the implication proved by the argument in plain English.
(b) Write the contrapositive of the implication in plain English. Is it
also proved by the argument?

(c) Write the converse of your statement in (a). Is it also proved by
the argument?

11. Consider the following. All variables represent integers.

Proposition: If n? is a multiple of 8, then n is a multiple of 8.
Proof: Let n = 8m. Then n? = 64m? = 8(8m?), which is a multiple of

8, as desired. [l

Why does the given argument not prove the proposition? Either give a
correct proof, or give an example to show that the proposition is false.

12. (a) Let m be in integer. Explain what is wrong with the following
argument which “shows” that if n is a multiple of 2 and a multiple
of 3, then n is a multiple of 6.

Suppose n is a multiple of 6. Then n = 6k for some integer k.
Since 6 = 2 x 3, we have that n = 2 x (3k), so it is a multiple of 2,
and n = 3 x (2k), so it is a multiple of 3. O
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(b) Give a correct proof of the assertion.

13. Suppose that m and n are integers. It is claimed that the argument
below proves that if mn is odd, then m and n are both odd. Does it?
Explain your reasoning.

Suppose that the integers m and n are both even. Then there exists
an integer k such that m = 2k, and there exists an integer { such that
n = 2¢. Thus,

mn = (2k)(20) = 2(2k¢).

Since 2kl is an integer, mn is even.

14. Suppose that the integer a is a multiple of 3, and the integer b is a
multiple of 4. Give a direct proof that ab is a multiple of 12.

15. Prove that:

The sum of two even inters is even.
b

)
)

(¢) The sum of two odd integers is even.
)

(a
(

The sum of an even integer and an odd integer is odd.

(d) The product of two even integers is even. Further, it is a multiple
of 4.

(e) The product of an even integer and an odd integer is even.
(f) The product of two odd integers is odd.

(g) If @ and b are integers such that a + b is even, then a and b are
both even or both odd.

(h) If a and b are integers such that a + b is odd, then a is even and
b is odd, or a is odd and b is even.

(i) If a and b are integers such that ab is even, then a is even or b is
even.

(j) If a and b are integers such that ab is odd, then a and b are both
odd.

16. Prove that /3 is irrational. (Hints. Use Proposition 2.4.4, and, in the
proof that v/2 is irrational, read the phrase “is even” as “is a multiple
of 27, and then try using the same argument with 2 replaced by 3.)
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17. Prove that if the integer n? is a multiple of 5, then the integer n is a

multiple of 5. (Hint: prove the contrapositive using a proof by cases;
there are 4 cases.)

18. Prove that v/5 is irrational. (See the hint for Question 16, and also use
the result in Question 17.)
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Chapter 3

Set Theory

3.1 What is a Set?

A set is a well-defined collection of objects called elements or members of the
set.

Here, well-defined means accurately and unambiguously stated or described.
Any given object must either be an element of the set or not be an element of
the set. There is no concept of partial membership and there is no possibility
of being a member more than once.

The barber paradozr gives an example of a set that is not well-defined: There
is only one barber in a certain town. He is male. He lives in the town. All
of the men in the town are clean-shaven. The barber shaves all and only
the men in the town who do not shave themselves. Who shaves the barber?
Now, if the barber shaves himself, then since the barber only the men who do
not shave themselves, he does not shave himself. Furthermore, if he does not
shave himself, then since he shaves all of the men who don’t shave themselves,
he shaves himself. Hmmm. One explanation for this paradox is that the set,
S, of men in the town who are shaved by the barber is not well-defined, as
the barber must simultaneously be a member of the set and not be a member
of the set.

The collection of objects that are not members of a given set X is itself a
set. It is called the complement of X and denoted by X¢. However, the set
X¢ is only well-defined if we know which objects are allowed to be members

29



60 CHAPTER 3. SET THEORY

of the sets we’re talking about.

The universe (of discourse) is the set of objects that are allowed to be mem-
bers of the sets we are talking about. The universe is itself a set and is
typically denoted by U.

We may not always explicitly mention the universe — for example, what we're
talking about might make sense no matter what the universe is — but we will
always assume it exists.

3.2 Describing Sets

Sets can be described in several ways. One way to describe a set is to write
a description of the set in words, as in “the set of all integers that can be
written as the sum of two squares”. There are three main ways of describing
a set using mathematical notation.

1. Ezplicit listing: list the elements between braces (i.e. curly brackets), as
in {2,3,5,7}. The elements of a set that’s described by explicit listing are
exactly the (different) objects in the list obtained when the outer brackets
are erased.

Example 3.2.1 What are the elements of {car,m, {X}}?

Solution.
They are car,m, and {X}.

Question 3.2.2 What are the elements of {—1,{3}}?

2. Implicit listing: list enough its elements to establish a pattern and use an
ellipsis “...”.

Proper use of the ellipsis requires that at least two elements be listed so that
the pattern is established. (It could be that more elements must be listed
before the pattern is apparent.) The elements of a set that’s described by
implicit listing are those that follow the pattern, and respect any limits set.

Example 3.2.3 Use the method of implicit listing to describe the set of non-
negative even integers less than or equal to 120, and the set of odd integers.
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Solution.
The two sets are {0,2,4,...,120} and {...—3,—1,1,3,...}. (Note: there is
more than one way to describe the set of of integers using this method.)

Question 3.2.4 Use the method of implicit listing to describe the set of in-
tegers which are multiples of 7, and the set of integers between —5 and 30,
inclusive.

3. Set-builder notation: specify the set of the collection of all objects of a
particular type that satisfy a given condition. The elements of a set described
using set-builder notation are those objects of the given type that make the
stated condition true for the universe U.

Example 3.2.5 Use set-builder notation to describe the (i) set of prime
numbers less that 10, and (i) the set of all positive even integers.

Solution.
The two sets are {z : (z is prime) A (z < 10)} and {2k : k=1,2,...}.

Question 3.2.6 Use set-builder notation to describe the set of even positive
integers less than 100.

Example 3.2.7 Describe the elements of the set
{a/b: a and b are integers, and a/b = 0.25}

in plain English.

Solution.

The members of this set are exactly the fractions whose numerical value is
0.25. (There are infinitely many of these including 1/4,3/12, and —5/(—20).)

Question 3.2.8 Describe the elements of the set
{n :n is an integer and is a multiple of 2 and a multiple of 3}

wn plain English.
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3.3 Special Sets

Some sets are well-known, and are denoted by special symbols.

e The set of natural numbers is N ={1,2,3,...}. Some people include 0
as an element of this set. It is always wise to check the definition that
a particular author is using.

e The set of integers Z = {...,—2,—1,0,1,2,...}, The use of the symbol
Z, can be traced back to the German word zdhlen.

e The set of rational numbers is Q = {a/b: a,b € Z, and b # 0}. The
symbol Q is used because these are quotients of integers.

e The set of real numbers, denoted by R, has as elements all numbers
that have a decimal expansion.

e The set of complex numbers is C = {a+bi : a,b € R, and i* = —1}.

3.4 Set Membership Set Equality, and Set
Complement

If z is a member of the set S, we write x € S, and if z is not a member of
the set S, we write x & S.

Example 3.4.1 Let X = {1,{2},{1,{2}}}. Is2 € X? What about {1,2}?
And what about {1}7

Solution.

The elements of X are exactly 1,{2}}, and {1,{2}. Thus none of 2, {1,2}
and {1} is an element of X : an element of X must be identical to one of the
objects in the list of elements of X. None of these are.

Question 3.4.2 Let A = {{a,b},c,{a,b,c}}. Isa € A? What about {a,c}?

Sets are defined in terms of the objects they contain. We say sets A and B
are equal, and write A = B if they have exactly the same elements. That is,
A=Bwhenxe€e A<z e Bforallx eU.
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By the definition of equality of sets, it does not matter how a set is described;
what matters is which elements it contains. Any particular object either
belongs to the collection or it doesn’t. All of {1,2,2,3},{1,2,3,3} {3,2,3,1}
and {1,2,3} all describe the same set because they all have the same three
elements: 1, 2, and 3.

Throughout mathematics, vertical bars are used to denote a measure of size.
For instance, when x is a real number, the absolute value, |z|, measures the
size of x in terms of its distance from 0 on the number line.

When a set X has a finite number of elements, we use the symbol | A| to denote
the number of elements of the set A. For example, |{1,2,2,3,3,3}| = 3.

As mentioned in Section 3.1, the complement of the set X is the set X¢ =
{r : o ¢ X}. It is clear that the set X° depends on the universe U.
If U = {1,2,3}, then {1} = {2,3}, whereas if U = Z, then {1}° =
{...,=1,0,2,3,...}.

Proposition 3.4.3 Let A and B be sets. Then A = B if and only if A° =
Be.

Proof. (=) Suppose A = B. Then, for all x € U we have (z € A) &
(x € B). Therefore, for all x € U we have (v ¢ A) < (¢ ¢ B). Therefore
A° = B

(<) Suppose A¢ = B°. Then, for all x € U we have (z ¢ A) & (¢ € B).
Therefore, for all z € U we have (z ¢ A) < (v ¢ B). Therefore A = B.

The proof is now complete. []

Note: mathematicians usually indicate the end of a proof with a hollow box,
as in “[J”7, or a filled black box. Other indicators have been used, and continue
to be used. Euclid used the letters QED (quod erat demonstrandum — that
which was to be demonstrated) for proofs, and QEF (quod erat faciendum —
which was to be done) for constructions.

3.5 The Empty Set

It is certainly possible for a collection to have nothing in it. A good example
would be the collection of years after 1967 in which the Toronto Maple Leafs
have won the Stanley Cup.
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The empty set is the set that has no elements, that is {}. It is commonly
denoted by 0.

The following sets are all equal to §: {z € R: 2?41 =0}, {n € Z:n*~1 =T}
and {a/b € Q:a/b=+/2}.

The empty set is a perfectly legitimate object, and as such can occur as an
element of a set. Notice that () is different from {@}. The former set has no
elements, while the latter set has one element, (). The set {0, {0}, {{0},0}}
has three elements: (), {0}, and {{0},0}}.

3.6 Subsets

We say that a set A is a subset of a set B if every element of A is an element
of B (ie, v € A= x € B). If Ais asubset of B we write A C B, and
otherwise we write A € B.

Example 3.6.1 NCZ, Z CQ, and Q CR. Also, {1,3,5} C{1,3,5}, and
{2,4} Z {4,5,6}.

Sometimes confusion arises in making the distinction between € and C. The
first one makes the assertion that a particular object belongs to a set; the
second one says that every element of one set is an element of another set.

Notice that every set is a subset of itself (why?), that is X C X for every set
X.

A more subtle point is that () is a subset of every set. To see this, let A be
an arbitrary set. According to the definition, the statement () is the same as
the logical implication = € ) = = € A. In turn, this statement is the same
as the implication (z € §)) — (z € A) being a tautology. The implication has
only the truth value “true” because its hypothesis, z € 0, is false for any z.
A different way to say it is that every element in the collection of members
of the empty set — there aren’t any — is a member of A.

Example 3.6.2 Let A = {1,2,{1,2}}. Answer each question true or false,
and briefly explain your reasoning.

1. {2} € A
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2. {2,{1,2}}C 4
3. 0eA
4.0 C A
5. A =2.

Solution.
The elements of A are 1,2, and {1,2}. Therefore:

1. False, {2} is not among the list of elements of A.
2. True, both 2 and {1,2} are elements of A.

3. False, () is not among the list of elements of A.
4. True, O is a subset of every set.

5. False, A is 3 elements so |A| = 3.

Question 3.6.3 Let A ={a,c,{a,b},{a,c}}. Answer each question true or
false, and briefly explain your reasoning.

1. P C A.
2.0cA

3.be A

B

. Aa,c} € A

v

. A{a,c} CA

6. |A| =3

=

{a,b,c} C A
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How many subsets does {a, b} have? Let’s count the options. Any particular
subset either contains a or it does not. In both situations, there are two

further options: the subset either contains b or it does not. Thus there are
four possibilities {a, b}, {a}, {0}, {}.

The above reasoning can be extended to show that a set with n elements has
exactly 2™ subsets.

In the following we show that the subset relation is transitive, that is, if A
is a subset of B, and B is a subset of C, then A is a subset of C. (There is
a more general meaning for the word “transitive”. It will arise later in the
course.) Before beginning the proof, it is useful to identify the statement
to be proved, and the hypotheses that can be used in the argument. The
statement to be proved is “A is a subset of C”. That is, it needs to be
argued that every element of A is an element of C'. Equivalently, it needs to
be argued that an arbitrary element of A is an element of C'. The hypotheses
that can be used in the argument are: “A is a subset of B”, and “B is a
subset of C”. Constructing the proof involves using these to help argue that
an arbitrary element of A must be an element of C.

Proposition 3.6.4 Let A, B and C be sets. If A C B and B C C, then
ACC.

Proof. Take any x € A. Since A C B, the element x € B. Since B C C, the
element x € C. Therefore, if x € A then x € C. That is, A C C'. [J

Recall that if p and ¢ are statements, then the logical equivalence p < ¢
is the same as the two logical implications p = ¢ and ¢ = p. The logical
equivalence is proved once the two logical implications are proved.

Proposition 3.6.5 Let A and B be sets. Then A = B if and only if A C B
and B C A.

Proof. (=) Suppose A = B. Then every element of A is an element of B,
and every element of B is an element of A. Thus, A C B and B C A.

(<) Suppose A C B and B C A. Then every element of A is an element of
B (because A C B), and every element of B is an element of A. This means
A and B have exactly the same elements, so A = B. [J
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3.7 Proper Subsets

The word “proper” occurs frequently in mathematics. Each time it has
essentially the same meaning, roughly “and not equal to the whole thing”.

A set A is a proper subset of a set B if A C B and A # B. That is, A is a
proper subset of B when every element of A belongs to B (so A C B) and
there is an element in B which is not in A (so A # B).

Three common ways to denote that A is a proper subset of B are A C B,
A C B, and A ; B. The last two of these are clear. The first one is,
unfortunately, used by some authors to denote that A is a subset of B.
While we we not do that, this is yet another reminder that it is always wise
to check what the notation means instead of assuming.

Example 3.7.1 We know that 7Z ; Q because Z C Q, and 1/2 € Q but
1/2 ¢ Z.

Question 3.7.2 Ezplain how we know that Q ; R.

From above, a set X with n elements has 2" subsets. All but one of them is
a proper subset.

Proposition 3.7.3 Let A, B and C be sets. If A C B and B ; C, then
ACC.
=

Proof. Two things need to be shown: (i) A C C, and (ii) A # C. Since
B G C implies that B C C, statement (i) is true by Proposition 3.6.4.

To show statement (ii) we must find an element C' which is not an element
of A. Since B ; C, there exists x € C such that x ¢ B. Since every element
of A is an element of B, x can not be an element of A. Therefore A # C.

Both statements have been shown, and the proof is now complete. []

Question 3.7.4 Prove that if A S B and B € C, then A G C. (The
arqument is essentially the same as the one above.)
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3.8 The Power Set

The power set of a set A is the set whose elements are the subsets of A. The
notation P(A) is commonly used to denote the power set of A.

The name “power set” comes from the fact that a set with n elements has
exactly 2" subsets. Thus, there are 2" elements in the power set of a set with
n elements.

Example 3.8.1 Let A = {a,b}. What set is P(A)?

Solution.

We know that A has four subsets, {a, b}, {a}, {b},{}, so that P(A) = {{a, b},
{a}. {0}, {}}.

Question 3.8.2 Explain why P(0) = {0}. Is P(0) non-empty?
The following facts are important to remember. For any set X:

e P(X) is a set.
e The elements of P(X) are sets (to00).
e AcP(X)«< ACX (this is the definition of the power set).

e By the previous point, ) € P(X) and X € P(X).

The following proposition is included because its proof forces us to think
about power sets and their elements.

Proposition 3.8.3 Let A and B be sets. Then A C B if and only if P(A) C
P(B).

Proof. (=) Suppose A C B. We need to show that P(A) C P(B).

Take any X € P(A). Then X C A. Since A C B, we have by Proposition
3.6.4 that X C B. Therefore X € P(B). Therefore P(A) C P(B).

(<) Suppose P(A) C P(B). We need to show that A C B.

Since A C A, A € P(A). Since P(A) C P(B), A € P(B). By definition of
P(B), AC B. O
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3.9 Venn Diagrams

Informally, a Venn diagram is a picture that shows all possible memberships
between elements of the universe and a finite collection of sets. They are
named after the British mathematician John Venn.

Let A and B be sets. For any element of the universe, there are four mutually-
exclusive possibilities, where mutually exclusive means only one possibility
can hold at a time.

1. it belongs to A and not to B;
2. it belongs to both A and B;
3. it belongs to B and not to A;

4. it belongs to neither A nor B.

Notice how these four possibilities correspond to the four rows of a truth
table for the statements z € A and x € B. They also correspond to the four
regions in the Venn diagram below (the region number matches the statement
number).

A B

It is possible to draw a Venn diagram for any number of sets. If there are n
sets, Ay, Ay, ..., A,, then there will be 2" regions, one corresponding to each
collection of truth values for the n statements x € A;,x € A,, ...,z € A,.
A Venn diagram for the three sets A, B, C' is shown below.
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A B

Question 3.9.1 Match each region on the Venn diagram above to the cor-
responding truth values for the statements x € A,x € B,x € C.

3.10 Set Operations

Let A and B be sets.

e The union of A and B is the set AUB = {z: (x € A)V (x € B)}.
This is the set of elements that belong to A or to B.

e The intersection of A and B is the set ANB = {z: (x € A)A(z € B)}.
This is the set of elements that belong to A and to B.

e The set difference of A and B is the set A\B ={z:2 € Aand x ¢ B}.
This is the subset of A obtained by deleting from A all of the elements
that are also in B. For this reason, the notation A— B is also commonly
used.

e The symmetric difference of A and B is the set A®B = (A\B)U(B\A).
This is the set of elements that belong to exactly one of the sets A and
B

Y
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Set union and intersection correspond to the logical operations V and A,
respectively. Notice that the set union symbol looks vaguely like the symbol
for the logical connective “or”, and the set intersection symbol looks vaguely
like the symbol for the logical connective ‘and”. Indeed, union is defined
using “or”, and intersection is defined using “and”.

The operation of set difference can be seen to correspond to the logical con-
nective implication. We know x € A\ B < (x € A) — (z € B).

The operation of symmetric difference corresponds to the logical connective
“exclusive or”. If p and ¢ are statements, then p exclusive or q is the state-
ment p V ¢ which is true when exactly one of p and ¢ is true. That is

PN g —(p )
By definition z € A ® B if and only if (z € A) V (x € B) is true.

The set operation that corresponds to the logical operation negation is com-
plement. We have =(z € A) & (z € A°).

As in the situation for logical connectives, there is no precedence among set
operations, except that complements are done first. The moral of the story is
that one should always use brackets for clarity.

With reference to the Venn diagram below,

e AU B is represented by regions 1, 2, and 3;

e AN B is represented by region 2;

A\ B is represented by region 1;

B\ A is represented by region 3;

A @ B is represented by regions 1 and 3;

A€ is represented by regions 3 and 4;

B¢ is represented by regions 1 and 4;
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A B

Notice that the diagram suggests various set relationships. For example, it
suggests A\ B=ANB° and A= (A\ B)U(AN B). Both of these are true.
We will see how to prove them, and other relationships between sets, in the
next section.

3.11 The Laws of Set Theory

For each Law of Logic there is a corresponding Law of Set Theory.

Commutative: AUB=BUA, ANB=BNA.
Associative: AU(BUC) = (AUB)UC, ANn(BNnC)=(AnB)NnC

Distributive: AU(BNC) = (AUB)N(AUC), An(BUC) =
(ANB)U(ANCQC)
and also on the right: (BNC)UA = (BUA)N(CUA), (BUC)NA=
(BNA)U(CNA)

Double Complement: (A°)°= A

DeMorgan’s Laws: (AU B)®=A°NB° (ANB)*=A°UB*
Identity: UA=A, UNA=A

Idempotence: AUA=A, ANA=A

Dominance: AUU =U, AND=10
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Arguments that prove logical equivalences can be directly translated into
arguments that prove set equalities. As an example, we prove one of the as-
sociative laws. The proof amounts to using set builder notation and demon-
strating that the sets on each side of the equals sign are described by logically
equivalent conditions.

Proposition 3.11.1 Let A, B and C be sets. Then (AUB)UC = AU(BUC).

Proof.

(AUB)UC = {z:(x€ AUB)V (ze€ ()} Definition
{z:((x€eA)V(reB))V(reC)} Definition

= {z:(z€A)V((xeB)V(xel))} Associative

= {z:(zr€eA)V(@xeBUC)} Definition

= AU(BUCQO) Definition

g

A proof for each of the Laws of Set Theory can be carried out similarly to
the above. (Exercise: do some!)

Question 3.11.2 Prove that A\ B = AN B°.

DeMorgan’s Laws for set theory can be proved using the same method is
Proposition 3.11.1. They can also be proved by showing that LHS C RHS
and RHS C LHS. For the purposes of illustration, we choose the latter
method.

Proposition 3.11.3 (DeMorgan’s Laws) Let A and B be sets. Then

e (AUB)*= AN B°; and
e (ANB)*= AU B“.

Proof. We prove only the first statement. The proof of the second statement
can be done in a similar way.
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(LHS C RHS) Let x € (AUB)°. Thenx ¢ AUB. Thus, 2 ¢ A and z ¢ B.
That is, € A®and « € B°. Therefore z € A°“NB¢, and so (AUB)¢ C A°NB°.

(RHS C LHS). Let © € AN B° Then z € A° and x € B°. Thus,
r & Aand x € B. Therefore, z ¢ AU B, that is, x € (AU B)°. Hence,
ANB°C (AuB).. O

A careful look at the argument reveals that the second part of the proof,
(RHS C LHYS), is really the same steps as in the first part in the reverse
order. That’s because each step is actually an equivalence rather than (just)
an implication. These are the same equivalences that would be used if the
statement were proved using the Laws of Logic. The same thing happens
frequently proofs about set equality. Once half of a proof is constructed, it
pays to think about whether the other half is already in hand.

Each of the Laws of Set Theory can (also) be proved using the method in
the proof of Proposition 3.11.3. (Exercise: do some!). Most mathematicians
would regard this as the “go to” method for proving set equalities.

There are ways in which the universe plays a similar role in set theory as a
tautology does in logic. Similarly, the empty set can be seen to play a similar
role in set theory as a contradiction does in logic. The following proposition
is the set theory version of the logical equivalences:

e pV-pel;

e pA-p=0;
Proposition 3.11.4 Let A be a set. Then

e AUA=U;
e AN A°=1(;

Proof. To see the first statement, recall that every element z is either in A
or in A¢ so that AU A° = U. To see the second statement, note that, by
definition, no element x can be in both A and A¢, so that AN A¢ = (. O

The proposition below corresponds to the logical equivalence p V ¢ < (pV
q) N —(p A q). The proof of the set equality looks a lot like the proof of the
corresponding logical equivalence. We now have enough Laws of Set Theory
to write the proof using them.
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Proposition 3.11.5 Let A and B be sets. Then A@ B = (AUB)\ (AN B)

Proof.

A®B = (A\B)U(B\A4) Definition
= (ANB°)U (BN A9 Known equality
= (ANBYUB)N((AN B U A9 Distributive
= [(AUB)N(B°UB)|N[(AUA®) N (B°U A°)] Distributive
= [(AuB)NU]N[UN(B°U A%)] Known equality
= (AUB)N(B°UA° Identity
= (AUB)N(ANB)° DeMorgan
= (AUB)\ (AN B) Known equality

U

Question 3.11.6 Use the Laws of Set Theory and other known set equalities
to show that (A\ B)U (AN B) = A.

3.12 Investigating Set Relationships with Venn
Diagrams

The Venn diagram below suggests that, in general, A\ B # B\ A because
A\ B is represented by region 1, while B\ A is represented by region 3.
(They may be equal for certain sets A and B, for instance if both sets are
empty.) To confirm that these sets are not in general equal, we need to give
an example of a universe and sets A and B such that A\ B # B\ A.

Fortunately, this is easy to do directly from the Venn diagram. Let the
universe be the set of region numbers, and let each set be the collection of
region numbers it contains in the diagram. Here, U = {1,2,3,4}, A = {1, 2}
and B = {2,3}, then A\ B = {1} and B\ A = {3}.

We thus have an important principle: If two sets are represented by different
collection of regions in a Venn diagram, then an example showing the sets
are not equal can be obtained directly from the diagram.
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Venn diagrams can also provide intuition about equality between sets. As a
first example, let’s investigate whether AU B is equal to (A \ B) U B. Using
the diagram from before, we have:

Set Represented by Regions
A 1,2
B 2,3
AUB 1,2,3
A\ B 1
(A\B)UB 1,2,3

Since both sets are represented by the same collection of regions, we expect
that they are equal. There are several different ways to construct a proof.

e Construct a truth table to show that the statement r € AU B <«
r € (A\ B)U B is a tautology. To do that, one has to express the
memberships on each side in terms of compound statements, as in
[te AVzeB] < [(re AN—(x € B))Vx € BJ.

e Use the definition of the two sets and show they are described by logi-
cally equivalent conditions.

e Write a proof in words, showing LHS C RHS and RHS C LHS. The
written proofs tend to follow the flow of logic used in constructing the
set of regions that represent a set, except in the reverse order. In this
example:
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(LHS C RHS) Take any x € AUB. Thenz € A orxz € B. We
consider two cases, depending on whether x € B. If v € B, then
BU(A\ B)=(A\B)UB. Ifx ¢ B, then x must be in A since it is
in AUB. Thus x € A\ B, and hence z € (A\ B)U B. In either case,
x € (A\ B)UB. Therefore AUB C (A\ B)UB.

(RHS C LHS) Take any x € (A\ B)U B. Then either x € A\ B
orx € B. Ifx € A\ B, thenx € A sox € AUB. Ifz € B,
then x € BUA = AU B. In either case, x € AU B. Therefore
(A\B)UBC AUB. O

Venn diagrams can also give insight into other types of relationships between.
An example is the statement A C B < AU B = B. It is clear that if A C B
then AU B = B. What follows is not a proof, but will prove to be quite
easy to turn into a proof. The condition A C B says that every element
of A is in B so, referring to the Venn diagram, no elements of A would be
located in region 1. When region 1 contains no points of A, the set AU B is
(actually) represented by regions 2 and 3, so AUB = B. For the other logical
implication, in the Venn diagram above, AU B is represented by regions 1, 2,
and 3, while B is represented by regions 2 and 3. The condition AU B = B,
says that there are no elements of A that would be located in region 1 of the
diagram. When this happens, A is (actually) represented by region 2 and,
since B is represented by regions 2 and 3, this means A C B.

We now transform the observations in the preceding paragraph into a proof.
There are two things so show:

(AC B= AUB = B) The goal is to prove that AUB = B. By definition of
union, B C AU B. It remains to argue that AUB C B. Take any x € AUB.
Then x € Aor x € B. If x € B there is nothing to show. If z € A, then
since A C B, x € B. This completed the proof that AU B = B.

(AUB = B = A C B) The goal is to prove that A C B. Take any = € A.
Then, by definition of union, x € AUB. Since AUB = B, x € B. Therefore
ACB. O

Because the definition of union involves the logical connective “or”, it is
important to remember that proofs of set relationships where one set involves
the operation of union often use the method of proof by cases.

Let’s use a diagram above to investigate whether AU (B N (') equals (AU
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B)nC
C
8
A B
Set Represented by Regions
A 1,2,5,6
B 2,3,4,5
C 4,5,6,7
BNnC 4,5
AU (BNCQO) 1,2,4,5,6
AUB 1,2,3,4,5,6
(AuB)NC 4,5,6

As before, the regions correspond to the sets that would arise if we performed
the set operations using U = {1,2,...,8},4A = {1,2,5,6},B = {2,3,4,5}
and C' = {4,5,6,7}. Hence, when the sets in question are represented by
different regions, these sets provide a counterexample. Doing so for the the
example above, AU (BN C) = {1,2,4,5,6} and (AU B)NC = {4,5,6}.
Therefore the two expressions determine different sets in general.

The Venn diagram suggests (AU B)NC C AU (BNC). Proving it would
be a good exercise.
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3.13 Counting sets and subsets

A set is called finite if it is empty, or | X| = n for some positive integer n.

A set that isn’t finite is called infinite. We will study infinite sets in a later
chapter.

Recall our argument that if X is a set and |X| = n, then X has exactly 2"
subsets: Imagine constructing a subset of X. For each of the n elements of
X there are two options: either it belongs to the subset or it doesn’t. Each
collection of n choices leads to a different subset.

Example 3.13.1 Let X = {xy,xs,...,2,}. Determine the number of

~

. subsets of X;

2. proper subsets of X ;

3. non-empty subsets of X;

4. nmon-empty proper subsets of X ;

5. subsets of X that contain x;;

6. subsets of X that do not contain x;

7. subsets of X that contain xs and x4, but not xs.
Solution.

1. 2™, from abowve.
2. 2" — 1; only the set X itself is not a proper subset of X.
3. 2" —1; all subsets of X except ) are non-empty.

4. Provided X # (), the number is 2" — 2, all subsets of X except X and ()
are non-empty and proper. If X = () then X has no non-empty proper
subsets.
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5. Any subset of X that contains xy is the union of {x1} and a subset of
X\ {1}, so that there 27! such subsets.

Another point of view is count the number of ways to construct a subset
of X that contains x1. We can do it as a sequence of n steps. First,
put xq1 into the subset This choice is forced, so there is only one option
of what to do. Then, for each of the remaining elements, xq, T3, ..., Ty,
decide whether it is in the subset of not. Different choices lead to dif-
ferent subsets. Since the outcome chosen at each step does not affect
the number of options available at each subsequent step, the number of
different outcomes of the construction is 1 x 2"~1. Since each outcome
leads to a different subset of X that contains x1, the number of subsets
of X that contain x, equals 2" 1.

6. 2" L; the reasoning is as above.

7. 2"73; there is one option for what to do with each of xs, x4 and x5, and
two choices for each of the other elements (it is in the subset, or not
in the subset).

3.14 Inclusion - Exclusion

It is a bit tricky to count the number of subsets of X = {z1,xs,...,z,} that
contain xy or xo. It isn’t the number that contain x; plus the number that
contains xs because subsets that contain both z; and zy are included twice.
We could consider 3 cases: (i) subsets that contain x; and not x9; (ii) subsets
that contain zs and not x;; and (iii) subsets that contain x; and z5. This
leads to the answer 2772 4+ 272 4 272 = 3.27""2_ An alternative method
uses the Principle of Inclusion and Exclusion, which is discussed below.

Let A and B be finite sets. Referring to the Venn diagram below, let’s
calculate |AU B|. The number |A|+ |B| counts each element in A\ B exactly
once, each element in B\ A exactly once, and each element in AN B exactly
twice. Therefore, |A|+|B|—|ANB| counts each element of the union exactly
once.

The size of each single set is included and then the size of the intersection is
excluded.
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Let’s go back to the example of computing the number of subsets of S =
{x1,x9,...,2,} that contain z; or xy. Let A be the collection of subsets
of S that contain x;, and B be the collection of subsets of S that contain
x9. The subsets we want to count are exactly the elements of AU B. By
the Principle of Inclusion and Exclusion, |[AU B| = |A| + |B| — |AN B| =
gn-t g gn=l _9n=2 — 3.9n=2 which agrees with our previous calculation.

For sets A, B and C, a similar argument gives that

JAUBUC| =|A|+|B|+|C|—|ANB|—|ANnC|—|BNC|+|ANnBNC|.

The size of each single set is included, the size of each intersection of two of
the sets is excluded, and then the size of the intersection of all three sets is
included.

The argument can be extended beyond three sets. The resulting theorem is
called the Principle of Inclusion and Ezclusion (PIE). It says that the number
of elements of the union of n finite sets can be computed by including the
number of elements in each single set, excluding the number of elements in
all possible intersections of two sets, including the number of elements in all
possible intersections of three sets, excluding the number of elements in all
possible intersection of four sets, and so on.
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A B

Example 3.14.1 Suppose that in a group of 200 students, there are 150
taking Math 122, 100 taking Math 101, and 50 taking both of these classes.

1. How many of these students are taking neither Math 122 nor Math
1017

2. How many of these students are taking exactly one of Math 122 and
Math 1017

Solution.

We will use PIE. Let A be the set of students taking Math 122, and B be
the set of students taking Math 101. The information given is that U =
200, |A| = 150, |B| = 100, and |[AN B| = 50. We can work backwards
and fill in the number of elements in the 4 regions of the Venn Diagram:
fill the diagram in starting with the region corresponding to intersection of
all sets, and working “outwards” to the region corresponding to the elements
not in any of the sets. It is given that |A N B| = 50. Since |A| = 150,
and |A N B| = 50, it follows that |A\ B| = 150 — 50 = 100. Similarly,
|B\ A| =100 — 50 = 50. Therefore |AU B| =50 4 100 + 50, the sum of the
numbers in the 3 regions of the Venn Diagram that comprise AU B. Finally
U\ (AU B)| =200 — (50 + 100 + 50) = 0.
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The answer to the questions is therefore:

1. This is |(AUB)?| = U\ (AU B)| = 0.

2. This is |[(A\ B) U (B \ A)| = 100 + 50 = 150. Notice that the sets
associated with corresponding regions of the Venn Diagram regions are
disjoint (their intersection is empty), so that the number of elements
in their union 1s just the sum of the elements in the sets.

Question 3.14.2 Suppose that in a group of 50 motorcyclists, 30 own a
Triumph and 32 own a Honda. If 15 motorcyclists in the group own neither
type of motorcycle, how many own a motorcycle of each type?

The same can be done for three (or more) sets.

Example 3.14.3 Suppose that, of 250 programmers, 75 can program in Ada,
47 can program in Basic, and 60 can program in C++. There are 30 who
can program in both Ada and Basic, 22 who can program in both Basic and
C++, 7 who can program in both C++ and Ada, and 5 who can program in
all three languages.

1. How many can program in at most one of them?

2. How many can program in Ada and exactly one of the other two lan-
quages?
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Solution.

Let A, B and C be the set of programmers who can program in Ada, Basic
and C++, respectively. Filling in the regions of a Venn Diagram as above
leads to the picture below.

122

A B

The answers to the questions can then be read directly from the picture.

1. We want |(AUBUC)|+|A\ (BUC)|+|B\ (AUC)|+|C\(AUB)| =
122 4+ 434+ 0+ 36 = 201

2. Wewant [(ANB)\C|+ [(ANC)\ B| =25+2=2T.

Since a Venn diagram for n sets has 2" regions, 2" pieces of information are
needed to completely fill in the diagram. The Principle of Inclusion - Exclu-
sion relates the number of elements in of the union of the sets corresponding
to the various regions of the diagram which are “internal” to the union of
the sets involved. The region corresponding to the collection of elements
that belong to none of the sets is determined by subtracting the umber of
elements in the union of the sets (which can be computed by PIE) from the
size of the universe. (Note that this requires that the universe be a finite
set. Everything else requires only that the sets involved in the union all be
finite.) It follows that if a piece of information is missing, say the size of the
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intersection of all of the sets, then one can solve for it using PIE and / or the
relationship between the size the the universe and the size of the complement
of the union of the sets.

3.15 Exercises

1. Let A ={1,2,{1,2}}. Answer each question true or false, and briefly
explain your reasoning.

(a) {2t €A

(b) {1,2} G A

(c) {2.{1,2}} c A
(d) heA

(e) ANP(A) =0

2. Answer each question true or false, and briefly explain your reasoning.

(a) If A, B, C are sets, then (AUB)UC = (CUB) U A.

(b) If AN B is not empty, then A\ B is a proper subset of A.
(c) If x € A, then {z} € P(A).

(d) {0} has two different subsets.

3. Let A and B be sets. Prove that any two of the following statements
are (logically) equivalent.
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10.

11.

12.
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Note: by a result from the Logic questions, it suffices to establish a
cycle of 6 implications, for example (a) = (b) = --- = (f) = (a). On
the other hand, it is good practice to prove directly that any pair of
statements are equivalent.

. Let A and B be sets. Prove that AUB=ANB < A= B.

Let A = {0,{z},B,{1,{z}}}, and B = {1,2}. Answer each question

true or false, and briefly explain your reasoning.

. Prove that if A ; B and B C C, then A ; C.

. Prove or disprove each of the following statements about sets.

(a) f ANB C C, then (ACC)A (B CQ)).
(b) A\ B =(B\A)",

. Prove that for all sets A, B and C, if A C B and BN C = 0, then

AN C = (. Hint: Proof by contradiction.
Prove that for all sets A and B, (A\B) U (AN B) = A.
Give a counterexample to each statement.
(a) (A\B)NC =(ANC)\ B¢, for all sets A, B, and C.
(b) (A\B)UC*=(AUB)\C, for all sets A, B, and C.

Let A, B and C be sets. Prove that A\ (B\ C) = (A\ B)U(A\ C°)
without using set-builder notation and showing that the two sides are
determined by logically equivalent expressions. Hint: an easy way uses
the Laws of Set Theory.

Prove the same statement as in the previous question by showing LHS
C RHS and RHS C LHS.
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13.

14.

15.

16.

17.

18.

19.
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Prove or disprove: For all sets A, B and C, (A\B)U (B\C) = A\C.
Let A, B,C be sets. Prove that (AN BN C)° = (A°U B°U C°) by:

(a) using the Associative Law to insert brackets and then DeMorgan’s
Law;

(b) Showing LHS C RHS and RHS C LHS;
(c) using set-builder notation and showing the LHS and RHS are de-

fined by logically equivalent expressions

Repeat Question 14 for the equality (AUBUC)¢ = (A°NB°NC*), and
then state, but do not prove, the corresponding laws for any number
of sets.

Let A and B be sets. Prove that the following statements are all
(logically) equivalent.

(a) A=1B

Prove that for all sets A, B and C, A\ (BUC) = (A\ B)N(A\C) by
using set-builder notation and showing the LHS and RHS are defined
by logically equivalent expressions.

Repeat the previous question but use the Laws of Set Theory instead
of set-builder notation.

Prove that for all sets A, B and C, if BNC C A, then
(C\A)N(B\ A) =0.

by using set-builder notation and using the fact that the hypothesis
corresponds to the logical implication that for any x, (x € B) A (z €
C)= (xeA).
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23

24.

25.

26.

27.
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. Repeat the previous question but use the Laws of Set Theory instead
of set-builder notation.

. Prove that for all sets A and B, if B C A°, then AN B = ().

. Let A, B,C be sets. Prove that if ANB =0, then ANBNC =0. Is
the converse true? Explain.

. Let X ={a,b,c,...,z}. Determine the number of subsets 7 C X that:

(a) contain z;

(b) do not contain a, e, 1, 0, u;
(c) are such that {w,z,y} & T;
(d)
(e)
(f) contain at least one of p, q,r;
(g) are such that {f,g,h} L T.

contain a and b but not c;

contain m or do not contain n;

Determine the number of sets X such that {1,2,3} € X & {1,2,3,4,5,6}.
Explain your reasoning.

Two sets X and Y are called disjoint if X NY = 0.

(a) Prove that if X and Y are disjoint finite sets, then | X UY| =
X1+ Y]

(b) Prove that if A, B,C are pairwise disjoint finite sets (i.e., finite
sets such that any two of them are disjoint), then |[AU BUC| =
[ Al +|B] +|C].

Suppose that in a group of 50 motorcyclists, 30 own a Triumph and
32 own a Honda. If 15 motorcyclists in the group own neither type of
motorcycle, how many own a motorcycle of each type?

In a group of 35 ex-athletes, 17 play golf, 20 go cycling, and 12 do yoga.
Exactly 8 play golf and go cycling, 8 play golf and do yoga, 7 go cycling
and do yoga, and 4 do all three activities. How many of the ex-athletes
do none of these activities?
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Induction and Recursion

4.1 Recursive definitions

The word “recursive” originates from the Latin word recurs, which means
“returned”, and which arises from a verb that means “go back”. Informally,
we will call a process “recursive” if it refers back to itself. In mathematics, a
process is recursive if successive results depend on previous ones. In order to
avoid an infinite regression of self-references, some basic outcomes (results,
values) must be explicitly known without any self-reference.

We will start with recursively defined sequences.

A recursive definition of a sequence consists of two parts:

1. one or more base cases that explicitly state one or more terms of the
sequence, and

2. a recursion that gives other terms of the sequence in terms of those
already known.

For example, the Fibonacci numbers is the sequence fi, fo,... recursively
defined by f1 = 17 f2 = ]_, and fn+1 = fn + fn—l-

The definition can be applied over and over to compute as many terms of the
sequence as desired. It begins 1,1,2,3,5,8,13,21,34,55,89,144,.... The
Fibonacci sequence has many wild and wonderful properties. Every third
Fibonacci number is even, every fourth is a multiple of three, every fifth is a

39
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multiple of 5, every sixth is a multiple of 8. In general, every n-th Fibonacci
number is a multiple of f,,. Another remarkable fact is that
f n— =

sl -]

This is even more stunning when you stop to think that f,, is an integer! Just
for the sake of interest, let’s look at the right hand side a bit more closely.

1—v5 1—v5 "
2 2

as n grows. Because of this, it turns out that f,, is the nearest integer to

1

The quantity is less than one, so ( converges to zero (quickly)

n
\/ig (1+2\/5> , i.e., the integer that arises from rounding.

Example 4.1.1 Let ag,aq,... be the sequence recursively defined by ag =
2, a1 =5 and a,, = 5a,_1 — 6a,_o forn > 2. Compute as.

Solution.
We have ag = 2 and a; = 5. Therefore,

az = da; —6ay = 5-5—-6-2 = 13
as = dag—6a; = 5-13—-6-5 = 35
ay = daz—06ay = 5-35—-6-13 = 97
as = dSa4—6az = 5-97—-6-35 = 275

It turns out that a, = 2" + 3". This can be proved using methods from later
in this chapter.

Question 4.1.2 Let by, b, ... be the sequence recursively defined by by = 2,
and b, = 3b,_1 + 5 for n > 2. Compute bg.

We now turn our attention to writing recursive definitions of sequences. the
key to doing this is to give the first few terms explicitly, then imagine that
all terms up to the n-th are of the correct form, and then to describe how to
get the (n + 1)-st term from those already defined. How many terms should
be given explicitly? It needs to be at least as many terms as are needed to
apply the recurrence. In Example 4.1.1 the recurrence requires the previous
two terms, so the first two terms of the sequence were given explicitly. For
some sequences more than the minimum number of initial terms need to be
given, but we won’t come across any of them.
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Example 4.1.3 Give a recursive definition of:

1. The sequence 1,2,4,8,...,2" ...
2. The sequence —5,—2,1,4,...,3n—5, ...

3. The sequence ay,as,... where a, =1+24+---+n.
Solution.

1. ag =1, and an+1 = 2a,, for alln > 0.
2. ap = —5 and a1 = a, + 3 for alln > 0.

3. a1=1, and apy1 = a, + (n+1).

We now generalize Example 4.1.3, part 1. A geometric progression (or geo-
metric sequence) is a sequence a, ar, ar?, ar®,. .., where a,r € R. (Remember
that a = ar?, so the sequence can also be written as ar®, ar, ar®, ar?,....) Ge-
ometric progressions (with common ratio r) have the property that the ratio
of each term to the one immediately before it is (the same number) r. These

sequences can be recursively defined by gy = a, and g,,11 = rg, for all n > 0.

We now generalize Example 4.1.3, part 2. An arithmetic progression (or
arithmetic sequence) is a sequence a,a+d,a+2d,a+3d, ..., where a,d € R.
Arithmetic progressions are sequences such that the difference between any
term and the one after it is (the common difference) d. These sequences can
be recursively defined by by = a, and b, = b,, + d for all n > 0.

Other things besides sequences can also be recursively defined. As with the
example of sequences, a recursive definition consists of two parts:

1. one or more bases cases that explicitly describe some of the basic items,
and

2. a recursion that gives other items in terms of those already known.

Example 4.1.4 Give a recursive definition of the quantity n! = 1 x 2 x

- X n, where n is a non-negative integer. (An empty product equals 1.
Why? Because you can multiply any number by a product with no terms and
the value should not change.)
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Solution.
Ol=1landnl=nx(n—-1), n>1.

Example 4.1.5 Suppose you are given numbers xi,xs,...,x,. Give a re-
cursive definition of the sum x1 + xo + -+ + x,,.

Solution.
For1<i<mn,letS;=x1+x9+---+x;. Then Sy =x1, and Sy, = Sip_1+ xx
for 2 < k <n. The desired sum is \S,,.

(Notice that this corresponds to the way you add n numbers on a calculator.)

Other (associative) operations like multiplication, set union, set intersection,
conjunction of logical propositions, and disjunction of logical propositions
can be recursively defined in a similar way.

Example 4.1.6 Let X be the set of all positive integers that can be written
as a sum of threes and fives. Give a recursive definition of the set X.

Solution.
3,beX,and ifv e X, thenx+3€ X andx+5¢€ X.

4.2 Induction: An introduction

This section is intended as an introduction to The Principle of Mathematical
Induction (PMI): a theorem that establishes the validity of the proof method
which goes by the same name. There is a particular format for writing the
proofs which makes it clear that PMI is being used. We will not explicitly
use this format when introducing the method, but will do so thereafter.

Here is the first of the two introductory examples that will be discussed in
this section: tiling punctured grids.

Suppose you are given a large supply of L-shaped tiles as shown on the left
of the figure below. The question you are asked to answer is whether these
tiles can be used to exactly cover the squares of an 2" x 2™ punctured grid
—a 2™ x 2" grid that has had one square cut out — say the 8 x 8 example
shown in the right of the figure.

In order for this to be possible at all, the number of squares in the punctured
grid has to be a multiple of three. By direct calculation we can see that it is
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true when n = 1,2 or 3, and these are the cases we're interested in here. It
turns out to be true in general; this is easy to show using congruences, which
we will study later, and also can be shown using methods in this chapter.
But that does not mean we can tile the punctured grid. In order to get some
traction on what to do, let’s try some small examples. The tiling is easy to
find if n = 1 because 2 x 2 punctured grid is exactly covered by one tile.
Let’s try n = 2, so that our punctured grid is 4 x 4. By rotating, we can
assume the missing square is in the upper left quadrant, say as illustrated

below.

Imagine the punctured grid partitioned into four 2 x 2 grids, one of which has
a square missing, as shown on the left of the figure below. As shown on the
right of the figure, we can astutely place one tile to transform our problem
into four 2 x 2 problems, each of which we know how to solve.

8

It is clear that this method works no matter which square in the upper left
quadrant has been removed. Hence, if we can cover any 2 x 2 punctured grid,
then we can cover and 4 x 4 punctured grid. Now we can see what to do to
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cover the 8 x 8 punctured grid: partition it into four 4 x 4 grids, one of which
has a square removed, then astutely place a tile to transform the problem
into four 4 x 4 problems we know how to solve because of our previous work.

There is nothing special about the numbers 4 and 8 in the previous examples.
Once we know how to cover all possible punctured grids of size 2 x 2, 4 x 4,
and 8 x 8, we can use the same method on any 16 x 16 punctured grid. And
we can keep going. Once we know how to cover all punctured grids of size
2x2, 4x4, ...,2F x 2% we can use the same method to reduce the problem
of covering a 281 x 28+1 grid to four smaller problems we know how to solve
because of previous work. Therefore, for any n > 1, the squares of a 2" x 2"
punctured grid can be exactly covered by L-shaped tiles.

The previous example illustrates the strong form of the Principle of Mathe-
matical Induction (PMI). One meaning of the word induction is “the act of
bringing forward”. Above, we brought forward our knowledge of how to solve
smaller instances of the problem to solve all instances of the next possible
size. Notice also that the solution can be obtained recursively. For example,
to cover an 8 X 8 punctured grid, we cover four 4 x 4 punctured grids, and
each of these is covered via covering four 2 x 2 punctured grids. This is
illustrated in the figure below. Completing the tiling of each 2 x 2 punctured
grid gives the tiling of the 8 x 8 punctured grid.
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We now turn to our second informal introductory example. The Towers of
Hanoi is a puzzle that begins with n > 1 rings, each with a different diameter,
stacked in decreasing order of size on one of three towers. An example with
five rings is shown below. The objective is to move the rings one at a time
so that they are eventually stacked in the same order on one of the other
towers. At no point in time may a larger ring rest on top of a smaller one.

It is easy to directly check that a solution exists when there are 1 or 2 rings.
To obtain a solution when there are 3 rings, first use the 2-ring solution to
move the top 2 rings to one of the unused towers. Then move the bottom
(largest) ring to the remaining unused tower. Finally, use the 2-ring solution
again to move the 2 smaller rings to the tower containing the largest ring.
It does not matter if, at any point in this process, any of the other rings is
placed on top of the largest one (since it is largest).

Suppose we can solve the puzzle when n is any of the integers 1,2,... k,
where k > 3. Let’s try to “bring forward” this knowledge to obtain a solution
when there are k£ + 1 rings. We can proceed as in the 3-ring case. First, use
the k-ring solution to legally move the k£ smallest rings to one of the other
towers. Leaving the large ring in place will not cause the constraint that a
larger ring may not rest atop a smaller one to be violated. Second, move the
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largest ring to the empty tower. Finally, use the k-ring solution to legally
move the k smallest rings so that they are on top of the largest one.

Since we know how to solve the puzzle when there are 1, 2, and 3 rings, it
follows that we can also solve it when there are 4 rings. Using this, we can
also solve it when there are 5 rings. Repeating as often is needed, we can
eventually obtain a solution for any integer n > 1. Therefore, for any n > 1
there is a solution to the Towers of Hanoi puzzle when there n rings.

It is possible go a bit farther and show that with n rings, the solution uses
2™ —1 moves. The argument proceeds similarly as above. Legend has it that
the end of the world would come before a person could complete the solution
to the puzzle with 64 rings. By the above, it would take 254 —1 moves. There
are 60 x 60 x 24 x 365 = 31536000 ~ 2**Y seconds in a year, ignoring leap
years. Hence, if a person could move one ring per second, then solving the
puzzle would take about 23 years.

4.3 PMI — The Principle of Mathematical In-
duction

The Principle of Mathematical Induction (PMI) is a theorem that gives a
method for establishing the truth of statements quantified over all integers
greater than or equal to some given integer. An example of such a statement
is “For anyn > 1, a 2" x2"™ punctured grid can be exactly covered by L-shaped
tiles”. Another is “The sum of the first n positive integers is n(n + 1)/27.

In computer science, statements like these regularly arise in the analysis
of algorithms. But not only that, proofs by induction also tend to imply
recursive algorithms for solving the problem at hand. Further, PMI is a
main tool in proving the correctness of recursive algorithms. Witness the
L-shaped tiles example in the previous paragraph.

Whenever you need to prove a statement that is quantified over all integers
greater than of equal to some given integer, then one tool you should consider
trying to use is PMI. (As usual, it may or not be successful to complete the
task at hand.)

It turns out that there are two forms of PMI — a so-called strong form and
a so-called weak form — but they are of identical expressive power. In other
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words, any statement that can be proved by one of them can be proved by
the other. However, it is often true that a proof using one form (usually the
strong form) involves a lot less writing than a proof using the other form.
The choice of which to use is really a matter of mathematical aesthetics, and
sheer laziness (wanting to write less, or wanting the writing to be easier). We
will begin our discussion of PMI with the strong form of induction, and come
to the weak form later. We'll discuss the qualifier “strong” at that time.

Theorem 4.3.1 (Strong Form of PMI) Let S(n) be a statement whose
truth depends on the integer n. If the following two conditions hold:

1. the statement S(n) is true when n is any of the integers no, no+1, ..., t,
for some t > ny;

2. for any integer k > t, the truth of the statement S(n) for all of the
integers ng,no + 1, ...,k logically implies the truth of S(n) when n =
k+1;

then, the statement S(n) is true for all integers n > ny.

The strong form of PMI is commonly referred to as strong induction or
sometimes just induction. The theorem implies a proof method. It says we
can prove S(n) is true for all n > ng by doing two things:

1. Directly check that S(n) is true for the first few possible values of n,
say n =mng,n =ng+ 1,...,n =t, where t > ng. (It turns out that the
size of t depends on what you're trying to prove.) This is called the
Basis because it is the foundation that the rest of the argument rests
on.

2. Prove that if S(n) is true for all possible values of n from ny up to k,
where k > t, then it is also true when n = k + 1. This is called the
Induction because we use (bring forward) the truth of S(n) for smaller
values of n to prove that S(n) is true for the next possible value of n.
Usually the induction is separated into two parts.

In the Induction Hypothesis one assumes there is an integer k£ > t such
that the statement S(n) is true when n = ng,n =ng + 1,...,n = k.
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(Note: k must be at least as large as the last value checked in the
Basis.)

In the Induction Step one uses this information to show that S(n) is
also true when n =k + 1.

Having completed these steps, we can conclude that S(n) is true for all
n > ng.

Why does an argument like this imply the conclusion we want? The Basis
says the statement S(n) is true for all values of n from ny up to ¢. Using
this, the Induction Hypothesis (with & = ¢) and Induction Step show that
the statement S(n) is also true when n = t+1. So, now, we have that S(n) is
true or all values of n from ng up to t+1. But using the Induction Hypothesis
(with £ =t + 1), we get that S(n) is true or all values of n from ny up to
t + 2. This procedure can be repeated over and over. For any particular
integer ¢ > ny, after enough applications of the procedure we have that the
statement S(n) is true when n = ¢. But ¢ is an arbitrary integer which is
greater than or equal to ng. Hence, we can conclude that S(n) is true for
any given integer n > ny.

A proof using PMI has four components: (i) a Basis; (ii) an Induction Hy-
pothesis; (iii) an Induction Step; and (iv) a Conclusion. It is customary to
carry out these four steps in clearly labelled sections.

In carrying out a proof by PMI, it is important to carry out all four of the
steps. The only two that require any real work are checking that the Basis
holds (in enough cases so that the Induction Step works), and then proving
that the logical implication needed for the Induction Step. The other two
steps are important, however, especially for communication; it is definitely
worth making an effort to clearly state the Induction Hypothesis.

We illustrate the steps described above with two examples.

Example 4.3.2 Suppose you want to know which positive integers can be
written as a sum of 3s and 5s. Clearly 1 and 2 can’t, 3 can, 4 can’t, 5 and 6
can, 7 can’t, and 8,9,10,11,...15 all can. Based on this data it seems like
every positive integer n > 8 can be written as a sum of 3s and 5s. Prove that
this is true.

The statement that we want to prove is “for all n > 8, the integer n can be
written as a sum of 3’s and 5’s”.
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Proof.

Basis. Since 8§ = 5+3, 9 = 3+3+3, and 10 = 5+, each of 8, 9, and 10 can
be written as a sum of 3s and 5s.

Induction Hypothesis. Suppose there is an integer k > 10 such that each of
8,9,10, ...,k can be written as a sum of 3’s and 5’s.

Induction Step. We want to show that k + 1 can be written as a sum of 3’s
and 5’s. Since k > 10, k+1—3 > 8, so by the Induction Hypothesis, k+1—3
can be written as a sum of 3’s and 5’s But then adding 3 to this sum gives
k+1 as a sum of 3’s and 5’s, which is what we wanted.

Conclusion. Therefore, by the strong form of PMI, any integer n > 8 can be
written as a sum of 3’s and 5’s. [

Problems like Example 4.3.2 are called postage stamp problems because they
date back to the days when stamps came in denominations like 1 cent, 3
cents, 5 cents, and so on. People often kept a supply of stamps of various
values, and then tried to combine them to make whatever postage was needed
at the time. This is the same problem as writing a given positive integer as
a sum of various other given positive integers, if possible.

The related problem of finding the largest integer that can not be written at
the sum of two given positive integers m and n is known as the Frobenius
Coin Problem. Its solution, that if m and n have no common factors then
the number is mn — m — n is known as the Chicken McNugget Theorem.
Why? Originally, McDonald’s sold its Chicken McNuggets in packs of 9 and
20. Math types were curious to figure out the largest number of nuggets
that could not have been bought with these packs. It turns out to be 151 =
9-20—-9—20.

Example 4.3.3 Let ag,a, ... be the sequence recursively defined by ag = 0,
and a, = 2a,_1+ 1 forn > 1. Prove that a, = 2" — 1 for alln > 0.

Proof.

Basis. By definition, ag =0=2"—1,a,=1=2' -1, anday =3 = 2% — 1.
Therefore, the statement that a,, = 2" — 1 is true when n = 0,1 or 2.

Induction Hypothesis. Suppose there is an integer k > 2 such that a,, = 2" —1
form=0,1,... k.
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Induction Step. We want to show that the statement is true whenn =k+1,
that is, that apy, = 2" — 1. Look at apy,. Since k > 2 we know k +1 > 3
and so

apy1 = 2a,+1 (by the recursive definition)
= 22" -1)+1 (since ar = 2% — 1 by the induction hypothesis)
| (since 2% - 2F = 2k+1)
= oM 1 s wanted.

Conclusion. Therefore, by induction, a, =2" — 1 for alln > 0. O

4.4 PMI and the Well Ordering Principle

The Well-Ordering Principle (WOP) is the following self-evident theorem:

Theorem 4.4.1 (Well Ordering Principle) Let X be a non-empty set of
integers that is bounded below (ie. every integer in the set is at least as big
as some constant ng € Z). Then X has a smallest element.

Let ng be the constant in the statement of the WOP. If ng € X, then it is the
smallest element of X. Otherwise, since X is not empty and each integer has
a successor (the successor of £ is £+ 1), there is a first integer after ny which
belongs to X (remember that infinity is not an integer!), and this integer is
the smallest element of X.

We now explain how the WOP implies PMI. The proof is by contradiction.
Suppose assertions (1) and (2) of PMI hold, but the conclusion that S(n)
is true for all n > ng is false. Then, the set X of integers greater than or
equal to ng for which S(n) is false is not empty. By assertion (1), none of
the values ng,ng + 1,...,t belong to X. Hence X is bounded below by ny.
By the WOP, the set X has a smallest element, call it k£ + 1. Note that
k+12>t+1,sothat k > t. Since k + 1 is the smallest element in X, the
statement S(n) is true when n is any of the integers ng,no + 1, ..., k, where
k > t. But then, by assertion (2) of PMI, the statement S(n) is true when
n = k + 1, a contradiction to k + 1 being the smallest integer n for which
S(n) is false. Hence S(n) must be true for all n > ny.
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It transpires that if one assumes the truth of PMI, then one can use that
assumption to prove the truth of the WOP. The WOP and PMI are regarded
as equivalent in the sense that each logically implies the other.

4.5 Examples Involving Multi-term Recursively
Defined Sequences

In this section we give examples of using PMI to prove statements about
recursively defined sequences.

Example 4.5.1 Let a,, be the sequence recursively defined by ag = 1, a3 = 2,
and forn > 2, a, = 3a,_1 — 2a,_o. Show that a, = 2" for all n > 0.

Proof.

Basis. When n = 0 we have ag = 1 = 2° and when n = 1 we have a; = 2 =
2. Hence the statement is true when n =0 and n = 1.

Induction Hypothesis. Suppose there is an integer k > 1 such that a, = 2"
form=0,1,... k.

Induction Step. We want to show that ay, = 25

Consider ayy1. Since k+ 1> 2 we have
U1 = 3ap — 2a_1 = 3 x 2" — 2 x 2F1
by the Induction Hypothesis. The RHS of this expression equals 3 x 28 — 2k =

28(3 — 1) = 2 as needed.
Conclusion. Therefore, by PMI, a, = 2" for alln > 0. U

Example 4.5.2 Show that every third Fibonacci number is even.
Proof.

Let’s first translate the problem. We want to show that, for alln > 1, f3, is
even.

Basis. We have fsq = f3 = 2, which is clearly even. Thus, the statement is
true when n = 1.
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Induction Hypothesis. Suppose there is an integer k > 1 such that f3;, is even
form=1,2,... k.

Induction Step. We want to show that fsui1) = farss is even.

Consider fsy3. Since k > 1, 3k+3 > 6 so we can use the recursion to write

fak+s = fakto + farrr = (fasr + fox) + faerr = fox + 2fs611-

Now, the last term on the RHS is even because it is multiplied by 2, and
the first term on the RHS is even by the Induction Hypothesis. Therefore,
fax + 2fsps1 = fares is even, as desired.

Conclusion. Therefore, by PMI, for all n > 1, f3, is even. [J

Much more is true. Every fourth Fibonacci number is a multiple of 3, every
fifth one is a multiple of 5, every sixth one is a multiple of 8, and in general
every n-th Fibonacci number is a multiple of f,,. All of these statements can
be proved similarly as above.

Example 4.5.3 Prove that f, < 2" ! for any natural number n > 1.
Proof.

Basis. We have fi =1 < 2° and fo = 1 < 2'. Thus the statement is true
when n =1 and when n = 2.

Induction Hypothesis. Assume there is an integer k > 2 such that f, < 271
forn=1,2,..., k. That is, assume f; <20, fo <21 ..., f <2F°1L

Induction Step. We want to prove that fiq, < 2+D)=1 = 2k
Consider friq. Since k+1 > 3 we have
Jevr = Jo+ fimr (by definition of fri1)
S 2k71 _{_2(1971)71 (by [H)
= 22(2+41) (algebra)
< k=292 (because 3 < 4 = 2?)
= 2k as wanted.

Conclusion. Therefore, by PMI, f, < 2" ! for all natural numbers n > 1. [

It is worth emphasizing the importance of having two cases in the Basis. In
the Induction Step we want to take fi,1 and replace it by fr + fr_1. The
recursive part of the definition can only be applied when k + 1 is at least 3.
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By using a bit more algebra, better upper bounds are possible. For example,
for all integers n > 1, f, < (7/4)" 1.

4.6 The Weak Form of Induction

Among the induction examples we have done so far, in Examples 4.3.3 and
4.5.2, completing the Induction Step required only that we assume the state-
ment S(n) to be true when n = k (and not all values from ng up to k). In
the others, it required the truth of S(n) for several values between ng and k.

Mathematicians care about aesthetics, and so we do not like to assume more
than we need. If completing the Induction Step requires only that S(n) be
true when n = k, we don’t want to assume any more than that. It is also
true that some proofs become easier to write if we only need this (weaker)
assumption because it is much easier to state the Induction Hypothesis. (The
assumption is considered weaker because not as much is being assumed; in
Strong Induction we’re assuming more, in particular that S(n) is true for all
values of n from ny up to k.)

Theorem 4.6.1 (Weak Form of PMI) Let S(n) be a statement whose truth
depends on the integer n. If the following two conditions hold:

1. the statement S(n) is true when n = ny;

2. for each k > nq, the truth of the statement S(n) for n = k, logically
implies the truth of S(n) when n =k +1;

then, the statement S(n) is true for all integers n > ny.

The reason the conclusion holds is the same as before. We know that the
statement is true for ng. The induction (assertion (2)) then allows us to
conclude that the statement is true for nyg + 1. Using this, the induction
(assertion (2)) then allows us to conclude that the statement is true for ng+2.
And so on, until finally we can reach any integer x > ng. Thus, as before,
the only reasonable conclusion is that the statement is true for all integers
n > ng. Note, also, that by the time we have applied assertion (2) enough
times to know the statement is true when n = k, we have actually proved
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that it is true for all integers between ng and k (identical to the assumption
in the strong form of induction).

The proof of the weak form of PMI is virtually identical to the proof given for
the strong form. It is a good exercise to write it out and see the underlying
logic for yourself.

The weak form of induction can be imagined as the following logical argument
where, for simplicity, we will use 1 in place of ng. Suppose

e S(1) is true,

e for each k > 1, the logical implication S(k) = S(k + 1) holds

and you want to verify that S(5) holds. By the second bullet point, you know
that

S(1) = S(2) = S(3) = S(4) = S(5)

so that S(1) = S(5). By the first bullet point you know that S(1) is true.
Therefore, S(5) is true. The same argument works with any integer n in
place of 5, so S(n) is true for all n > 1.

How do you know which form to use? Sometimes you don’t until after com-
pleting the Induction Step and seeing the smaller values for which you need
the truth of the statement. It is always safe to use the strong form of PMI,
but your proofs might look a lot prettier (and you might look more aware of
what’s being assumed) with the weak form.

4.7 Examples Involving Summations

The key point in using PMI to prove summation identities occurs in the
Induction Step: remember the meaning of the ellipsis “. ..”, and substitute
the assumed value from the Induction Hypothesis for the first k terms in the
sum (don’t forget to keep the (k + 1)-st term!) then do algebra to get what

you want.

Example 4.7.1 Suppose that you are mathematically doodling and notice
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that:
1 =1
143
14345 = 9

1+3+5+7 = 16

and are led to guess that the sum of the first n odd positive integers equals
n?. Let’s prove that is true.

Proof.

The statement to be proved is “for all integers n > 1, the sum 1 4+ 3+ --- +

on—1=n2"

Basis. Since 1 =12, 1+3=2214+3+5=3%2and 1 +3+5+7 =42, the
statement is true forn =1,2,3,4.

Induction Hypothesis. Suppose there is an integer k > 4 such that 1 + 3 +
2k —1 =K.

Induction Step. We want to show that 1+3+---+2(k+1)—1= (k+1)%
Look at the LHS,

143+ +2k+1)—-1 = 1434+ +2k—-1)+2(k+1)—1
= K4+20k+1)—1 (byIH)
= K +2k+1
= (k+1)* as wanted.

Conclusion. Therefore. by PMI, for anyn >1,1+3+---+2n—1=n% 0O

Example 4.7.2 Prove that, for any natural numbern > 1, 14+2+---4n =
n(n+1)

2
Proof.

Basis. When n =1, we have LHS=1 and RHS= 1(1+1)/2 = 1. Thus the
statement is true when n = 1.

Induction Hypothesis. Suppose there is an integer k > 1 such that 1 + 2 +
34+ +k=k(k+1)/2.
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Induction Step. We want to prove that 1+2+3+---+(k+1) = (k+1)((k+
D+1)/2=(k+1)(k+2)/2.
Consider the LHS:
IL+24---4+(k+1)
=142+4---+k+(k+1) (meaning of the elipsis)
=k(k+1)/24+2(k+1)/2 (by IH, and getting a common denominator)
=(k+1)(k+2)/2 as desired.

Conclusion. Therefore, by induction, 1 +2+4+34+---+n =n(n+1)/2 for all
n>1.0

There are a number of sums that arise frequently. You should both memorize
them, and know how to prove each one. Induction always works, though there
can be other proofs as well.

1. For any natural number n > 1,

n(n—i—l).

1424... —
+2+--+n 5

2. For any natural number n > 1,

1)(2 1
12+22+___+n2:n(”+ )(2n + )

6
3. For any natural number n > 1,
13+23+...+n3:M
1 )

It is a fluke that the RHS is the square of the first identity above. The
pattern does not continue.

4. (Sum of a geometric series.) For any natural number n > 1 and any
real number r # 1,

7””+1 -1

L+r4r4+. "=
r—1
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4.8 Examples Involving Inequalities

The key to proving inequalities with induction is this: in the induction step,
start on a side where you can see you to use the induction hypothesis some-
how. After doing that, gradually change what you have until it is possible to
see how to get what you need. If you are proving a less than inequality, then
you can do anything you want that increases what you have, so long as the
change does not make it exceed the upper bound you are trying to achieve.
Similar considerations apply to other inequalities.

Example 4.8.1 Prove that n! > 3" for alln > 7.
Proof.

Basis. When n = 7 we have n! = 7! = 5040 and 3" = 37 = 2187. Hence the
statement to be proved is true when n = 7.

Induction Hypothesis. Suppose there exists an integer k > 7 such that k! >
3*.
Induction Step. We want to show that (k+ 1)! > 3F+1,

Consider the RHS. We have 3** = 3-3% < 3-k! by the Induction Hypothesis.
Now, since k > 7 we have 3 <8 < k+1, so that 3-k! < (k+1)k! = (k+1)!,
as wanted.

Conclusion. Therefore, by PMI, n! > 3™ for allm > 7. [J

There is a fairly established hierarchy of the growth rates of functions, and it
is used all the time when comparing the performance of algorithms on inputs
of given size (for example, algorithms that operate on n items usually use
a number of steps proportional to n?, or to nlogy(n); when n is large, this
difference matters in terms of how long it takes for the task to be completed).
What that means is that for all large enough values of the input (and maybe
not for small ones), functions at a higher level in the hierarchy have function
values that are much larger that those at a lower level. Constants are at
the bottom of the hierarchy, then logs. And then polynomials. The higher
the degree, the faster the growth. Exponential functions always eventually
become greater than any polynomial, and factorials always eventually become
larger that exponentials. Finally, functions like n™ eventually become larger
than factorials. Inequalities between functions at the various levels of this
hierarchy can be proved with induction.
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Before moving to an example involving polynomials, we illustrate a useful
technique. The following sort of argument arises all the time in proving
inequalities where one “side” is a polynomial. We will demonstrate how to
argue that n® + 4n? + 5n + 3 < 2n® when n > 6. Suppose n > 6. Then we
can change the right hand 3 to n, that is

4 An® +5n+3<nd+4n® +5n+n =n+ 4n® + 6n.

In the same way, replacing 6n by n? only makes the expression larger (because
n > 6). Thus,

n® +4n? 4+ 6n < n® + 4n? + n? = n3 + 5n’.
And, doing the same again to replace 5n* by n® (because n > 6) gives
nd +5n% < n®+ns.

Putting this all together, we have just shown that if n > 6, then n3 + 4n? +
5n + 3 < 2n3. We use this method in the example below.

Example 4.8.2 Prove that for alln > 5, 2" > n?.
Proof.

Basis. When n = 5, 2" = 2° = 32 and n®> = 5% = 25. As 32 > 25 the
statement is true for n = 5.

Induction Hypothesis. Suppose there is an integer k > 5 such that 28 > k2.
Induction Step. We want to show 281 > (k + 1)2.

Consider (k+1)?=k>+2k+1<k*+2k+Fk (ask>5>1)=k*+3k <
K>+ k(k) (ask > 5> 3)=2k? < 2(2%) (by the induction hypothesis) = 2F+1,
as wanted.

Conclusion. Therefore, by the Principle of Mathematical Induction, for all
n>5,2">n? O

4.9 Finding Formulas for Sequences (Gener-
ated by 1-Term Recurrences

For our work in this section it is important to know the value of the sum of the
terms of a finite geometric progression , that is, of the sum a+ar+ar?+-- -+
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ar™, for any integer n. Since a+ar+ar?+---+ar” = a(l+r+---+r"), it is
enough to know the value of the bracketed sum. Suppose S = 1+r+---47r".
Then rS = r + 12 +--- + " so that rS — S = "t — 1. All other terms
cancel. Therefore, factoring the left hand side, S(r — 1) = r"*! — 1 so that
S = ”n:_ll_l if r#1;if r =1, then S = n+ 1 as each of the n 4+ 1 terms in
the sum is a 1.

Let aq, as, . .. be the sequence recursively defined by a; = 2 and a,, = 7a,,_1+2
for n > 2. We now demonstrate a method that will make it possible to guess
(conjecture) a formula for a,, that valid for all n > 1. We will then prove our
conjecture is correct using PMI.

If we compute directly, we get

a, = 2
o = 7@1 +2=16
a3 = Tag+2=114

ay = Taz+2=2800

Computing the exact values in this way does not help find a formula for the
n-term of the sequence unless you happen to have amazing powers of obser-
vation. The best way to obtain formula is to write out the computation for
the first few cases, but don’t perform any additions or multiplications (except
for collecting exponents with the same base), and then try to recognize what
you have as something you know. If there is a pattern, it is typically fairly
apparent after working out enough cases that the calculation is routine and
boring — typically that means working out about j cases.

ap = 2
ay = Ta1+2=T7-2+2
az; = Tag+2=T(7T-2+2)+2=T7T"-2+47-2+42
as = Taz+2=T7(7""247-2+42)+2="7"-2+47-2+4+7-2+2
as = Tag+2="7(7-24+7°-247-2+2)+2
24T 247247242
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At this point it seems reasonable to conjecture that

™1 71

n=2T TR 1) =2 =
a ( + +--4+1) 1 3

for all n > 1. We can prove the conjectured formula is correct using PMI.
The statement to prove is a,, = % for all n > 1.

Basis. When n = 1 we have a1 = 2 = E, as desired. Thus the statement

3
is true when n = 1.

Induction Hypothesis. Suppose there is an integer £ > 1 such that a; = %

7(k+1) _q

Induction Step. We want to show that ay1 = ——

Since k41 > 2 we can use the recursion to write ag,1 = 7Tai+2 = 7(7163_1)—1-27
7k+31*7 § = 7k+31*1, as wanted.

Conclusion. Therefore, by PMI, a,, = % foralln > 1. O

by the Induction Hypothesis. Hence agy 1 =

Example 4.9.1 Let ag,aq,... be the sequence recursively defined by ag = 0
and a, = a,_1 + 3n? for n > 1. Find, with proof, a formula for a, for all
n > 0.

Solution.

We first use computation without simplification to look for a pattern so we
can conjecture a formula.

a = 0

ar = ap+3-12=0+3-12

ag = a;+3-22=0+3-12+3.2?

ag = ax+3-3*=0+3-12+3-2243-3°

ay = a3+3-42=0+3-124+3-2243-3>+3-42

At this point is seems reasonable to conjecture that a,, = 3(1% 4 2%+ - - +n?)
for all n > 0. The bracketed expression is a known sum, so our conjecture
really is that a,, = 3n(n+1)(2n+1)/6 =n(n+ 1)(2n + 1)/2 for alln > 0.

We now prove the conjecture by induction. The statement to prove is a, =
n(n+1)(2n+1)/2 for alln > 0.



4.10. A SUBTRACTION GAME 111

Basis Whenn = 0 we have a, = ay = 0 and n(n+1)(2n+1)/2 = 0(1)(1)/2 =
0. Thus the statement is true when n = 0.

Induction Hypothesis. Suppose there is an integer k > 0 such that ap =
k(k+1)(2k+1)/2.

Induction Step. We want to show that aj 1 = (k+1)((k+1)+1)(2(k+1) +
1)/2 = (k+1)(k+2)(2k + 3)/2. Look at ajyy. Since k+ 1> 1, we can use
the recursion to write

a1 = ap+3(k+1)°

_ k(k+1)(2k+1) 81y

2
k(k+1)(2k+1)  6(k+1)?
2 2

~—

+

where, in the last two steps, we used the Induction Hypothesis, then got a
common denominator. Now,

k(k+1)(2k + 1) N 6(k+ 1) (k+1)[k(2k+1)+6(k + 1)]
2 2 2
(k +1)[2k* + Tk + 6]
2
(k+1)(k +2)(2k + 3)
5 )

as wanted.
Conclusion. Therefore, by PMI, a, =n(n+ 1)(2n+1)/2 for alln > 0. O

4.10 A subtraction game

Subtraction games are two-player games in which there is a pile of objects, say
coins. There are two players, Alice and Bob, who alternate turns subtracting
from the pile some number of coins belonging to a set S (the subtraction set).
Alice goes first. The first player who is unable to make a legal move loses.

For example, suppose the initial pile contains 5 coins, and each player can,
on his turn, remove any number of coins belonging to the set S = {1, 2, 3}.
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Who wins? Alice goes first. On her turn she removes 1, 2, or 3 coins from
the pile. If she removes 3, then the game reduces to a 2-coin game with Bob
going first. Bob wins on his next move. Similarly, if she removes 2, then the
game reduces to a 3-coin game with Bob going first, and Bob wins on his
next move. But, if she removes 1, then the game reduces to a 4-coin game
with Bob going first, and no matter what move Bob makes, Alice wins on
her next move.

In any subtraction game, the winner can be determined if we know how many
coins are in the pile, and which player is next to play. Suppose there are n
coins in the pile. If the player next to play can take some coins and leave a
position from which the opponent (who becomes the player next to play) has
no winning strategy, then he can win. If he can not do this, then every legal
move leaves a position from which the opponent has a winning strategy, and
so the player whose turn it is can not win.

In the table below, we enter N if the player next to play has a winning
strategy, and O if the opponent has a winning strategy. The discussion above
says that the n-th entry is N whenever there is a legal move so that the entry
in the corresponding position is O, and otherwise (the entry corresponding
to every legal move is N) it is O.

For the game at hand, we can summarize the winner for each value of n in a
table.

n | 1]12|3/4]5[6|7|8[]9]10]11]12
Who [ NININ|JOIN|N|[NJ]O|N|N|NJO

In making the table (do it!), a pattern of who wins for which values of n
becomes apparent.

Proposition 4.10.1 In the subtraction game with n > 1 coins and S =
{1,2,3}, if n is not a multiple of 4 then the next player to play has a winning
strategy, and if n is a multiple of 4 then the opponent has a winning strategy.

Proof.
Basis. If n = 1,2 or 3, then the next player to play can win on their move

by taking all of the coins. Thus the statement to be proved is true when
n=1,2 or3.
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Induction hypothesis. Suppose that the statement to be proved is true when
n is any of 1,2,... k, where k > 3. That is, in each of these situations, if
the number of coins in the pile is not a multiple of 4, then the next player
to play has a winning strategy, and if the number of coins in the pile is a
multiple of 4 , then the opponent has a winning strategy.

Induction step. Suppose the pile has n = k + 1 coins. There are 2 cases to
consider.

If k41 is a multiple of 4, then any legal move leaves a pile in which the number
of coins is not a multiple of 4. By the induction hypothesis, from each of
these positions the next player to play has a winning strategy. Hence, in this
case, the position in which there are k 4 1 coins is such that the opponent
has a winning strategy.

If £+ 1 is is not a multiple of 4, then the next player can remove 1,2 or 3
coins, as needed, so that the number of coins remaining in the pile will be
a multiple of 4. By the induction hypothesis, the opponent has no winning
strategy from resulting position. Hence, in this case, the position in which
there are k + 1 coins is such that the next player to play wins.

Conclusion. By the Principle of Mathematical Induction, for any n > 1, if
n is not a multiple of 4 then the next player to play has a winning strategy,
and if NV is a multiple of 4 then the opponent has a winning strategy. [

Games with other subtraction sets can be analyzed similarly. It is a fact that
the pattern of Os and Ns is eventually periodic; repeating pattern may not
start for a while, depending on the size of the numbers in the subtraction set
and the gaps between them.

4.11 Induction Analogies and Fallacies

Some people draw an analogy between PMI and climbing as high as you want
on a really tall ladder, starting from rung ng. The induction says that if there
is k£ > t such that you have climbed up the steps ng,ng + 1, ..., k then you
can climb up to step k + 1. By itself, this does not matter much. You have
to be able to get on the ladder and complete the steps n + 0,n9 4+ 1,...,1t,
otherwise you can’t climb the ladder. Thus the Basis is of crucial importance
in the argument.
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Other people draw an analogy between PMI and toppling dominoes. Sup-
pose you have an infinite line of dominoes that are arranged close together,
but that dominoes ng,ng + 1,...,t are exceptionally hard to topple. The
induction says that if there is a £k > t such that you can make dominoes
ng,no+1, ...,k fall over, then domino k41 is guaranteed to fall over. Push-
ing over domino ng alone won’t help if domino ng+1 is so heavy that it won’t
fall over when struck by domino ng. And pushing over the first few dominoes
won’t help if the the next domino is also hard to topple. The only thing to
do is make sure you push over each of the dominoes ng,ng + 1,...,t. After
you do that, you can conclude from your argument that all of the dominos
will fall over.

A classical example of needing both the Basis and Induction is the fallacious
argument that in any group of n > 1 people, all people in the group have
the same hair colour. Certainly it is true that in any group of 1 people, all
people in the group have the same hair colour. Suppose there is an integer
k > 1 such that in any group of 1 to k people, all people in the group have
the same hair colour. Now consider a group of k + 1 people. We want to
use this Induction Hypothesis to argue that all people in this group have the
same hair colour. Consider any member of the group. Call her Anna. By the
Induction Hypothesis, all £ members of the group who are not Anna have
the same hair colour. Now consider any other member of the group. Call
him Bill. By the Induction Hypothesis, all £ members of the group who are
not Bill have the same hair colour. But now Anna and Bill each have the
same hair colour as all the remaining members of the group, and so all £+ 1
members of the group have the same hair colour. Therefore, by PMI, in any
group of n > 1 people, all people in the group have the same hair colour.

Now, the statement “proved” in the previous paragraph is certainly not true,
and so there must something wrong with the argument. In the Basis we
checked only up to n = 1. (Had we checked up to n = 2, and been the least
bit alert, there would have been trouble.) So this means the first application
of the Induction Step is supposed to take us from the truth of the statement
for all values of n from 1 up to 1, to the truth of the statement for all values
of n from 1 up to 2. But the argument does not work as there are no group
members besides Anna and Bill. In saying that they each have the same hair
colour as all members the rest of the group we are assuming that there is at
least one more person in the group. There isn’t. Thus the argument given
to establish the Induction Step is wrong, as it does not work when k =1. A
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different way to view the problem with the argument is that the Induction
Step is a valid argument only when k£ > 2, but no Basis supports the truth
of the Induction Hypothesis in that case.

4.12 Exercises

1. Prove that any integer greater than or equal to 35 can be written as a
sum of 5’s and 6’s.

2. Prove by induction that the number of binary sequences (sequences of
0s and 1s) of length n is 2", for any n > 1.

3. Prove by induction that, for any n > 1, the number of binary sequences
of length n with an even number of ones equals the number of binary
sequences of length n with an odd number of ones.

4. The binary sequences of length 1 can be listed so that consecutive
sequences in the list, including the first and last, differ in exactly one
place. One such list is L; = 0, 1. The binary sequences of length 2 can
also be listed so that consecutive sequences in the list, including the first
and last, differ in exactly one place. One such list is L, = 00,01, 11, 10.
The list L is constructed from L, in several steps. First, let 0- Ly be the
list constructed from L; by adding a 0 to the left end of every sequence
in Lq, so that 0- Ly = 00,01. The list 1 - L is constructed similarly.
Then L, consists of the sequence 0 - L; followed by the sequence 1 - Ly
in reverse order (say Lo = 0- Ly, reverse(1 - Ly)).

(a) Show, by producing the list, that the binary sequences of length
3 can be listed so that consecutive sequences in the list, including
the first and last, differ in exactly one place.

(b) Prove that, for any n > 1, the binary sequences of length n can
be listed so that consecutive sequences in the list, including the
first and last, differ in exactly one place.

5. Prove by induction that if n > 1 distinct dice are rolled, then the
number of outcomes where the sum of the faces is an even integer
equals the number of outcomes where the sum of the faces is an odd
integer.
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Consider the sequence ag, ai, as, ... of integers defined by ay = 10 and
a, = 2a,_1, n > 1. Prove that a, = 2"10 for all n > 0.

. Prove that 4" — 1 is a multiple of 3 for any n > 0. Hint: 4! —1 =

3-4% + (4F —1). (Note that 4" — 1 is the numbers of squares in the
punctured grid from the example at the start of the chapter.)

. Let f, denote the n-th Fibonacci number. Prove that for all n > 6,

fo > (3/2)"

. Prove that every fifth Fibonnacci number is a multiple of 5.

Let f, denote the n-th Fibonacci number. Prove that fi+ fo+--- f, =
frnio — 1 foralln > 1.

Let by, by, ... be the sequence recursively defined by by = 1,b; = 4 and
b, = 8b,,_1 — 16b,,_5 for n > 2. Prove that b,, = 4™ for all n > 0.

Let g, t1, . .. be the sequence recursively defined by tg = 1,¢; = —4 and
tp, = —4t,_1 — 4t,_o for n > 2. Prove that t,, = (—2)" + n(—2)" for all
n > 0.

Let sq, s1, ... be the sequence recursively defined by sq = 1,s; = 6 and
Sp = BSp_1 — 68,_9 for n > 2. Prove that s, = 4-3" — 3 -2" for all
n > 0.

Find, with proof, the least integer ng such that n! > 3-2" for all n > ny.

Find, with proof, the least integer ng such that 5" > (n + 1)3 for all
n,zjn@

Guess and prove a formula for 1 —2+3 —4+---+ (—=1)""'n (i.e., one
that works for any n > 1; there will be different expressions for the
cases n even and n odd).

Prove that for all m > 1, 1(2) +2(3) +3(4) +-- -+ n(n+ 1) = n(n +
1)(n+2)/3.

Prove that for all n > 1, 13 +23 + 3% + ... +n3 = n?(n + 1)%/4.

rntl_g
r—1 7

Suppose 7 # 1. Use induction to prove that 14+r+r2+4- - -4r" =
for all n > 0.
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Provethatforallnzl,L+ﬁ+...+;:

1(2) n(n+1) nL—&-l :

Prove that for all n > 1, 1(1!) +2(2!) +--- +n(n!) = (n+ 1)! — 1.

Prove by induction that for any integer n > 1, n® + (n+1)3 + (n +2)3
is a multiple of 9.

Let ag,aq,... be the sequence recursively defined by ag = 3 and a,, =
2a,_1 + 3 for n > 1. Find a formula for a, and prove it is correct by
induction.

Let ag, aq, ... be the sequence recursively defined by ag = 2 and a,, =
an—1+2(n—1) for n > 1. Find a formula for a, and prove it is correct
by induction.

Consider the subtraction game with S = {1,2}. A pile of coins is places
on a table. There are two players, Alice and Bob, who alternate moves.
Alice moves first. A legal move consists of removing one or two coins
from the pile. The player who takes the last coin wins. Prove that
Alice has a winning strategy if the number of coins in the pile is not a
multiple of 3, and Bob has a winning strategy of the number of coins
in the pile is a multiple of 3.
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Chapter 5

Number Theory

The material in this chapter offers a small glimpse of why a lot of facts that
you’ve probably known and used for a long time are true. It also offers some
exposure to generalization, that is, of taking some specific examples that are
true and finding a general statement that includes these as specific cases.

5.1 Floors and Ceilings

For z € R, the floor of x is the largest integer that is less than or equal to
x, and is denoted by |z|. If z is an integer, then |x| = z, and otherwise it
is the nearest integer to the left of x on the number line.

Correspondingly, for © € R, the ceiling of x is the smallest integer that is
greater than or equal to x, and is denoted by [z]. If z is an integer, then
[x] = x, and otherwise it is the nearest integer to the right of x on the
number line.

Proposition 5.1.1 Let x be a real number. Then
o v — 1< |z|] <z;and

o < [x]<z+l.

Proof. We prove the first statement. The proof of the second statement
is similar. By definition, |z| < z. If x is an integer, then |xz] = z, so

119
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r—1< |z| <z If zis not an integer, then there is an integer n so that x
belongs to the open interval (n,n+1). In this case z < n+1. Rearranging this
inequality and using the definition of the floor of z gives x—1 < n = |z| < x.

O

This section concludes with an example of proving a statement about the
ceiling operation.

Proposition 5.1.2 Let x,y € R. Then

(2] + [y] > [z +y].

Proof. Since [x] > x and [y] > y, addition of inequalities gives [z]| + [y]| >
x +y. Thus, [z] + [y] is an integer that is greater than or equal to = + y.
By definition [x + y] is the smallest integer that is greater than or equal to
x +y. Consequently, [z +y]| < [z] + [y]. O

5.2 The Division Algorithm

Something everyone learns in elementary school is that when one integer is
divided by another there is a unique quotient and a unique remainder. For
example, when 65 is divided by 17 the quotient is 3 and the remainder is 14.
That is, 656 = 3 x 17+ 14. What about when 65 is divided by —177 We have
65 = (—3) x (—17) + 14, and we also have 65 = (—4) x (—17) — 3. Should
the remainder be 14 or —37 The convention is that the remainder is always
non-negative when dividing by a negative number.

The fact that there is a unique quotient and a unique remainder is a theorem.
It bears the name “The Division Algorithm” because the proof tells you how
to find the quotient and the remainder when an integer a is divided by
an integer b — keep subtracting multiples of b from a until what’s left is a
number 7 between 0 and [b| — 1 (inclusive). The total number of times b was
subtracted from a is the quotient, and the number r is the remainder. That
is,a=bg+r, 0<r<lb.

Theorem 5.2.1 The Division Algorithm Let a,b € Z, with b # 0. Then
there exist unique integers q and r so that a = bq+1r and 0 < r < |b|.
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The integers ¢ and 7 in The Division Algorithm are the quotient and remain-
der when a is divided by b, respectively. The integer b is the divisor, and
(for completeness we will note that) the integer a is the dividend.

Instead of proving the Division Algorithm, we illustrate the proof with the
example below below where 2024 is divided by 75. First, ten 75s are sub-
tracted, leaving 1274. Then, ten more 75s are subtracted, leaving 524. From
this number five 75s are subtracted, leaving 149. And finally, one 75 is sub-
tracted leaving 74 (the remainder). The quotient is the total number of 75s
subtracted, which is 26. Thus 2024 = 26 x 75 + 74.

75) 20241 10
—750
1274110
—750

524 5
—375
149 1
—75
7426

Suppose, for the moment, that a and b are both positive. The quotient when
a is divided by b is the largest integer ¢ such that bg < a. This is the floor of
a/b: if a = bg+r with 0 < r < b then |a/b] = [(bg+71)/b] = ¢+ (r/b)] = q.
The same thing happens when a is negative (notice that the quotient is a
negative number).

Now suppose a is positive and b is negative. Again, the quotient when a
is divided by b is the largest integer ¢ such that bg < a. (Such a ¢ is
negative!) This is the ceiling of a/b: if @ = bg + r with 0 < r < |b| then
[a/b] = [(bg + 7)/b] = [q+ (r/b)] = ¢, where the last equality follows
because b is negative and so r/b is in the interval (—1,0]. The same thing
happens when a is negative.

We state the observations just made formally, and also indicate a different
proof.

Proposition 5.2.2 Let a,b € Z, with b # 0. If q and r are integers such



122 CHAPTER 5. NUMBER THEORY

that a = bg+r, 0 <r < |b|, then

_ ) la/b] if b>0, and
Y ito<o.

Proof. We give the proof when b > 0. The proof when b < 0 is similar.
By Proposition 5.1.1, (a/b) — 1 < [a/b] < a/b. Multiplying through by
the positive number b and simplifying gives a — b < bla/b] < a. Let r =
a — bla/b]. Then a = bla/b|] + r. Rearranging the right hand inequality
gives, 0 < a — bla/b] = r. Rearranging the left hand inequality gives r =
a —bla/b] < b. Therefore, by The Division Algorithm, r is the remainder
when a is divided by b, and |a/b] is the quotient. [J

5.3 Representing Numbers in Base b

When we use the symbol 5374 to represent the integer five thousand, three
hundred and seventy four, we understand the notation to mean 5 x 10 + 3 x
102 + 7 x 10! +4 x 10°. Every place in the notation has a value that is a
power of ten, the base of the system. The number 5 is in the thousands place,
3 is in the hundreds place, 7 is in the tens place and 4 is in the ones place.
(Aside: if there were a decimal point, then the places to the right of it would
be the tenths, hundredths, and so on because 1/10 = 107!, 1/100 = 1072,
etc.) If the digits 0,1,...9 are used in the various places, then every integer
can be uniquely represented (in base 10). It turns out that there is nothing
special about 10, any integer b > 1 can be used in its place, as can integers
b < —1, though we will not consider this case.

Let b > 1 be an integer. A base b digit is one of the numbers 0,1,...,b— 1.
If di,dy—1,...,do are all base b digits, then the notation (dgdy_1 ...d1dp)p is
shorthand for dj, x b* 4+ dj,_1 x bF "1+ +d; x b' +dy x b°. Notice that every
place in the notation has a value that is a power of the base: the value of the
i-place from the right is b"~! (the value of the rightmost place is 0° = 1).

For an integer n > 0, if n = dj, x b¥ +dj_1 x b* 1+ +dy x b' +dy x b° and
dr # 0, then (dpdy_1 ...dydy), is called the base b representation of n. By

analogy with what happens in base 10, if n > 0 then the base b representation
of —n is —(dkdk,1 c dldo)b.
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For example, (234)s5 is the base 5 representation of the integer 2 x 52 + 3 x
5+4 =69 (in base 10).

Every integer has a unique base b representation. We illustrate the proof
that a representation exists with an example.

Example 5.3.1 Find the base 5 representation of 69.
Solution. We need to find base 5 digits dy,dq, ... so that

69 =dp x5 +d,_1 x5 4+ 4 dy x5+ dy x 5.

Rearranging the right hand expression gives
69 = (dp x 5" 1+ dj_y x 5" 24+ dy) x5+ dy

so that the ones digit, dy is the remainder when 69 is divided by 5, that is, 4.
Furthermore, the quotient is the number (69 — 4)/5 = 13, which equals

dp x5 P4 d x5 24+ 4+ dy

and hence has base 5 representation (dydg—1 ...d1)s. (Notice the absence of
do in this representation.) Repeating what was just done, the ones digit of this
number, that is dy, is the remainder on dividing the 13 by 5. Hence di = 3
and, continuing in this way (induction!), dy is the remainder on dividing the
new quotient of (13—3)/5 =2 by 5 (so dy = 2). Repeating again gives d; =0
for all j > 2. Hence 69 = (234)5, as above.

Why is the representation unique? Because of The Division Algorithm. It
says that the quotient and remainder are unique. Since the base 5 digits are
remainders on dividing a uniquely determined number by 5, there can be
only one representation.

The argument given above generalizes to give the proof of the following the-
orem.

Theorem 5.3.2 Ifb > 1, then every integer n has a unique base b represen-
tation.
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Proof. Since 0 = (0),, and —n has a representation if and only if n has a
representation — it is the negative of the representation of n — it suffices to
prove the statement when n > 1. Use The Division Algorithm to define the
numbers qq, dy, q1,d1, . .. as follows:

n = quO—I—dO 0§d0<b
o = bxqg+d 0<d;<b
@1 = bxg+dy 0<dy<b

We claim that this process terminates, that is, eventually some quotient
gr = 0, and then ¢; = d; = 0 for all j > k. To see this, notice that b > 1
and n > 0 implies n/b < n, so 0 < gy = |n/b] < n. If ¢ > 0 then the same
argument applies to give n > qg > ¢; > 0, and so on. The process must
reach zero in at most n steps, which proves the claim.

Now, each number d; is a base b digit, and
n = qoX b+ do

= (C]1Xb—|—d1)><b+d0 = q1><b2+d1><b+d0
= <QQXb+d2)Xb2+d1Xb+d0 = QQng+d2Xb2+d1Xb+do

= dp x b +dp_y x4+ 44,
Hence n = (dydg_1 . . . didp)y.

Uniqueness of the representation follows from The Division Algorithm. The
digit dy is the remainder when n is divided by b, and is uniquely determined.
The digit d; is the remainder when the integer (n—dp) /b is divided by b, and is
uniquely determined. Continuing in this way, the entire base b representation
is uniquely determined. [J

The proof of Theorem 5.3.2 tells us how to find the base b representation of
a natural number n.

o The ones digit is the remainder when n s divided by b.

e When the quotient resulting from the previous division is divided by b,
the remainder is the next digit to the left.

e The process stops when the quotient and remainders from a division by
b are 0.
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If the base is bigger than 10, then we need to use other symbols to represent
the digits. For example, in hezadecimal (base 16), the letters A, B, C, D,
E, and F stand for 10 through 15, respectively. The hexadecimal number
(A3F)16 = 10 x 16% + 3 x 16 + 15.

To convert between bases, say to convert (A3F)js to binary (base 2), one
could first convert it to base 10 using the meaning of the notation, and then
to base 2 as above. However, the fact that 2* = 16 offers a shortcut. We
know (A3F )16 =10 x 162+ 3 x 16 +15 = 10 x 28 4+ 3 x 2* + 15. Now replace
each multiplier by its base 2 representation, inserting leading zeros if needed
to get 4 binary digits, to get (A3F )1 = (1 x23+0x22+1x2+0) x 28+
(O0x22+0x224+1x2+1)x 2+ (1 x234+1x22+1x2+1). Multiplying
everything out gives the binary representation: (A3F)ys = (101000111111)s.
The representation on the right is obtained by replacing each hexadecimal
digit by its representation as a 4-digit binary number (possibly having leading
zeros).

One can similarly use the fact that 2* = 16 to convert from binary to hex-
adecimal. Consider the number:

(1010111101),
=1-2240-2241-2"40-264+1-2°4+1-24+1-224+1-2240-21 41
=(1-2'4+0)- 284+ (1-224+0-2241-2'+1)- 2+ (1-23+1-22+0-2' +1)
=2.28411-24+13

=2.1624+11-16+ 13

= (2BD)1s.

This is the number obtained by adding leading zeros so the number of binary
digits is a multiple of 4 and then starting at the right and replacing each
sequence of 4 binary digits by its hexadecimal equivalent. (We use 4 digits at
a time because 16 = 24.)

The same sort of argument applies to convert between any two bases b and
bt, for example between binary and octal (base 8).

5.4 The number of digits

How many digits are there in the base 10 representation of n € N7 Numbers
from 1 to 9 have one digit, numbers from 10 to 99 have 2 digits, numbers
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from 100 to 999 have three digits, and so on.

The number of digits in the base 10 representation of n is one greater than
in the base ten representation of n — 1 whenever n is a power of 10. That is,
the smallest base ten number with k& + 1 digits is 10¥, and the largest base
10 number with k digits is 10¥ — 1. Thus, if 107! < n < 10*, then the base
10 representation of n has k digits.

For every n such that 10! < n < 10¥ we have k — 1 < log;o(n) < k. The
number of digits in the base 10 representation of n equals k, and [log,,(n)] =
k — 1. Thus k = |logyy(n)| + 1.

There is nothing special about 10 in this discussion. In any base b > 1, if
VPl < n < V¥, then the base b representation of n has k digits. It follows as
above that k (the number of digits in the base b representation of n) equals
|log,(n)] + 1 (recall that log,(n) = = < b* = n).

As an aside, we note that logarithms to different bases differ only by multipli-
cation by a constant. To see that, start with the fact that, for a,b > 0 and real
number = we have a'°%:(®) = g = pl°8(@) Therefore, since the function a¥ and
log, () are inverses, log,(z) = log,(a'*%®) = log, (b'°&®)) = log,(x) log, (b).
Since log,(b) is a constant that is does not depend on x, we have that, for
any x, log,(x) is a constant multiple of log,(x). The same statement is true
with a and b reversed: either repeat the calculation with a and b exchanged,
or just divide through by the non-zero number log,(b).

5.5 Divisibility

If @ and b are integers, we say that a divides b, and write alb, if there is an
integer k such that ak = b.

When the statement a|b is true, we also say:
e a is a divisor of b,
e b s divisible by a, or
e b is a multiple of a.

Equivalently, if a # 0, then a divides b when the remainder when b is divided
by a equals 0. Thus b is a times some other integer. There is no discussion of
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fractions here (and there will not be one) even though it is true that if a and
b are non-zero integers and a divides b then b/a is an integer. It is important
to recognize alb is not a number, it is a statement that’s either true or false.

According to the definition,

5|30 because 5 x 6 = 30,

(=7)|28 because (—7) x (—4) = 28,

10](—100) because 10 x (—10) = —100 and

(—4)|(—12) because (—4) x 3 = 12.

Example 5.5.1 Which numbers divide zero?

Solution.
If a is any integer, then a x 0 =0 so al0. In particular, 0]0.

Question 5.5.2 Ezplain why 0 is the only number that’s divisible by 0.

It is clear from the definition that, for any integer b, we have 1|b (because
1 x b =), and also b|b (because b x 1 = b).

Divisibility is defined in terms of the existential quantifier “there exists” (the
definition requires that there exists k such that . ..), so proofs of divisibility
involve demonstrating how such an integer k£ can be found. This is what
was happening in the previous paragraph, and also what will happen in the
proofs of the propositions below.

We know, for example, that 6|12 (because 6 x 2 = 12). Hence any multiple of
12, say 12k, is also a multiple of 6 because 12k = 6 x (2k). There is nothing
special about the numbers 6 and 12. The same factoring argument works
when 6 and 12 are replaced by any two numbers a and b such that alb.

Proposition 5.5.3 Let a,b,c € Z. If a|b and b|c, then alc.

Proof. Suppose a|b and blc. We want to find an integer k so that ak = c.
Since alb, there is an integer m so that am = b. Since b|c, there is an integer
n so that bn = ¢. Therefore, ¢ = bn = amn = a(mn). Since mn € Z, we
have that alc. O
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In a manner similar to what’s above, we know that since 6|12 and 6|18, then
for any integers x and y we have 6|12z+18y = 6x (2x)+6 x 3y = 6 x (2x+3y).
As before, this factoring argument works whenever 6, 12 and 18 are replaced
by numbers a, b and ¢ such that a|b and alc.

Proposition 5.5.4 Let a,b,c € Z. If alb and alc, then albx + cy for any
integers x and y.

Proof. Suppose a|band alc. Let z,y € Z. We want to find an integer k so that
ak = bx+cy. Since alb, there is an integer m so that am = b. Since alc, there
is an integer n so that an = c¢. Therefore, bx+cy = amx+any = a(mx+ny).
Since mz + ny € Z, we have that a|bx + cy. O

By taking y = 0 in the proposition above, we obtain the result that if a
divides b, then it divides any integer multiple of b.

The previous proposition can be generalized so that bx + cy is replaced by a
sum involving more than two terms, each of which has a factor divisible by
a.

What could we say about the integers a and b if we have both a|b and bla?
Let’s look at an example. Take b = 6. If a|6, then a is one of the numbers
+1,4+2,4+3,£6. The only numbers in this collection that are also divisible
by 6 are —6 and 6. After checking out a couple more examples, one is led to
the next proposition.

Proposition 5.5.5 Let a,b € Z. If a|b and bla, then a = +b.

Proof. Since a|b, there is an integer m so that am = b. Since b|a, there is
an integer n so that bn = a. Therefore, a = bn = amn, so that a = 0 or
mn = 1.

If a = 0, then since a|b it follows that b = 0.

If mn = 1, then since m and n are integers, eitherm =n=1orm =n = —1.
If n =1 then a = b and if n = —1 then a = —b. [

5.6 Prime numbers and unique factorization

An integer p > 1 is called prime if its only positive divisors are 1 and itself.
An integer n > 1 which is not prime is called composite.
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That is, an integer n is composite if there are integers a and b with 1 < a <
b < n such that n = ab.

The integer 1 is neither prime nor composite. It is just a unit. The Greeks
thought of numbers as lengths. Every length n > 1 is made up of n unit
lengths. A length was regarded as prime if it was not a multiple of some
length other than the unit, and composite if it was.

The following theorem asserts two things: existence, i.e., that every integer
can be written as a product of primes, and uniqueness, i.e., that there is only
one such product up to rearranging its factors.

Theorem 5.6.1 (Fundamental Theorem of Arithmetic). Every integer n >
1 can be written as a product of primes in exactly one way, up to the order
of the factors.

Proof (of existence of the factorization). The proof is by induction on n.
Both 2 and 3 can be written as a product of primes (the product has only
one term). Hence the statement is true when n = 2 and when n = 3. Suppose
there is an integer k such that each of 2,3, ...,k can be written as a product
of primes. We now want to argue that k + 1 can be written as a product of
primes. There are two cases. If k + 1 is prime, then it can be written as a
product of primes (containing one factor), as wanted. If k£ + 1 is composite,
then there are integers a,b such that 1 <a < k+1, 1 <b < k+ 1 and
k + 1 = ab. By the induction hypothesis, a can be written as a product
of primes, say a = p1ps---p,, and b can be written as a product of primes,
say b = q1q2---qs. Then ab = pips - prq1q2 - - - qs, a product of primes, as
wanted. Therefore, by induction, every integer n > 1 can be written as a
product of primes. [

The proof of uniqueness of the factorization requires some results from later
in the chapter.

The Fundamental Theorem of Arithmetic is also known as the Unique Fac-
torization Theorem. It implies that every integer n > 1 has exactly one
prime factorization (or prime power decomposition) as n = pi'pg*...pF,
where p; < pa < -+ < pi are different primes and e; > 1, 1 <1 < k.

The Fundamental Theorem of Arithmetic has some very basic consequences

that one does not realize until thinking about them — that’s why it is the
“fundamental” theorem. Here are some examples.
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Example 5.6.2 Every integer n > 1 has a prime divisor (which could be
itself ).
Proof.

By the Fundamental Theorem of Arithmetic, we can write n = pi'ps* ... p~,
where py < pg < -+ < pg are different primes and e; > 1, 1 < i < k. Then

P1 X p‘flflp? ...pyF and the term on the right hand side is at least one, so the
e1—1_eo

prime py|n. (If pi* ps? ... pF =1, that is, if k =1 and e; = 1, then n = p;
is prime.) O

Example 5.6.3 Show that if p is prime and p|a®, then pla.
Proof.

The prime factorization of a® has the same primes as the prime factorization
of a — the exponents are doubled. Hence, in fact, p*|a®. O

Example 5.6.4 Suppose ak = b. FExplain why the two numbers ak and b
have ezxactly the same prime factorization.

Solution. By definition of equality, the expressions ak and b equal the same
number. Thus, by the Fundamental Theorem of Arithmetic, ak and b have
the same prime factorization. Therefore, if the prime p appears to the power
e in the prime factorization of b, then p must appear a total of exactly e times
in the prime factorizations of a and k.

Example 5.6.5 Suppose n has the prime factorization pi*ps? ... p¥. Prove
that the divisors of n are the numbers p‘flng . .pZ’“ where 0 < d; < e;.

Proof. Suppose d|n. Then there is an integer ¢ such that d{ = n. By
Ezample 5.6.4 the numbers dl and n have ezactly the same prime factoriza-
tion. Therefore the prime factorization of dl is pi'ps* ... pF. It follows that
d = pihpgl2 . .pz"’ where 0 < d; < e; (some exponents may be 0 as perhaps

some prime factors of n are not prime factors of d.). O

5.7 Using the FTA in Proofs of Irrationality

The Fundamental Theorem of Arithmetic can be used in proofs of irrational-
ity. For example, let’s show that log,,(7) is irrational. The proof is by
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contradiction. Suppose there are integers a and b such that log,,(7) = a/b.
Then 10%* = 7 or 10* = 7°, contrary to the Fundamental Theorem of Arith-
metic (a number can not be factored as 2¢5% and also as 7°). As a second
example, we generalize our previous result that v/2 is irrational by character-
izing the non-negative integers n such that y/n is irrational. We first prove
the useful lemma that if two numbers have a common divisor greater than
one, then they have a common prime divisor.

Lemma 5.7.1 Let a,b € Z. If there is a positive integer d > 1 such that d|a
and d|b, then there is a prime number p such that pla and plb.

Proof. Suppose there is a positive integer d > 1 such that d|a and d|b. If d
is prime, then there is nothing to prove. Suppose, then, that d is not prime.
Then, by the result of Example 5.6.2, there is a prime number p such that
pld. Tt follows from Proposition 5.5.3 that p|a and plb. O

In Section 2.4 we showed that /2 is irrational, and in the exercises for that
chapter we showed that /5 is irrational. With enough patience and per-
sistence, essentially the same argument can be used to prove that /p is
irrational for any prime p, and much more. The Fundamental Theorem of
Arithmetic makes it possible to determine exactly when the square root of
an integer is irational.

Theorem 5.7.2 Let n > 0 be an integer. Then /n is irrational unless n is
the square of an integer.

Proof. We show that if \/n is rational, then n is the square of an integer.
Suppose there are integers a and b so that v/n = a/b. Since n > 0 we may
assume that @ > 0 and b > 1 . Further, we may take the fraction a/b to be
in lowest terms, so that a and b have no common prime factor.

Squaring both sides gives n = a?/b%, so that nb?> = a®. If b > 1 then it has
a prime divisor, say p. Then p|b?, so p must be a divisor of a* and hence of
a. But a and b have no common prime factors. Therefore b = 1 and n = a?,
the square of an integer. [
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5.8 There are Infinitely Many Primes

The Greeks knew that there were infinitely many prime numbers. There is
a remarkable proof in Euclid’s Elements, published about 320BC. There is
a temptation to think of this book only as a classic treatise on geometry
(which it is). But, it also contains some very nice results in number theory.
Euclid’s argument uses proof by contradiction to show that there are more
than n primes for any integer n; hence there are infinitely many primes.

Theorem 5.8.1 (Euclid, 320BC) There are infinitely many prime num-
bers.

Proof. Suppose not, and let py, po, ..., p, be the collection of all prime num-
bers. Consider the number N = pyps...p, + 1. The number N has a prime
divisor (possibly itself). But none of py,ps,...,p, divide N: each leaves a
remainder of 1 when divided into N. Therefore there is a prime number not
in the collection, a contradiction. [

While it is tempting to thing that the number N in Euclid’s proof is prime,
this is not always true. The number 2 x 3 x5 x 7 x 11 x 13+ 1 is composite:
it is divisible by 59.

5.9 The Sieve of Eratosthenes

The Sieve of Eratosthenes is a method for generating all of the prime numbers
less than or equal to n.

1. Write the numbers 2,3,4,...,n in a line. Circle the number 2.

2. Cross out all multiples of the number just circled. Circle the first
number in the list which is neither circled nor crossed out. If the
number just circled is less than /n, repeat this step using the newly
circled number.

3. If the number just circled is greater than y/n, then circle all remaining
numbers that are neither already circled nor crossed out.

4. The set of circled numbers is the set of primes less than or equal to n.
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So why does this work? The first number to be circled is prime, and each
subsequent number circled in step 2 is not a multiple of a smaller prime,
hence it must be prime. It remains to explain why the process can be “short
circuited” after a number greater than y/n has been circled. That’s because
of the proposition below.

Proposition 5.9.1 Ifn > 1 is composite, then it has a prime divisor p such
that 2 < p < /n.

Proof. Suppose n > 1 is composite. Then there are integers a and b such
that 1 < a <b < n and n = ab. If both a and b are greater than y/n, then
n = ab > \/ny/n = n, a contradiction. Thus a < y/n. Any prime divisor of
a is both less than or equal to a (and hence \/n) and a divisor of n (because
pla and a|n). Thus n has a prime divisor p such that 2 < p < /n. O

5.10 The gecd

If a and b are integers which are not both zero, the greatest common divisor
of a and b is the largest integer d such that d|a and d|b. It is denoted by
ged(a,b).

A number that divides both a and b is a common divisor of a and b. The
number ged(a, b) is the greatest number in this collection. Since 1 is always
a common divisor of a and b, the collection isn’t empty and ged(a, b) > 1.

Why is there a greatest number in the collection of common divisors of a and
b? Since the numbers are not both zero, one of them is largest in absolute
value, say b. No divisor of b can be greater that |b|, hence no common divisor
of a and b can be larger than |b|. So ged(a,b) is the largest integer d with
1 < d < |b| that divides both a and b.

Why is there the restriction that a and b can not both be zero? Any number
n is a divisor of zero (because n x 0 = 0). Hence any integer n is a common
divisor of 0 and 0, and there is no greatest such integer.

Since a number and its negative have the same divisors, gcd(a, b) = ged(|al, |b]).
For this reason it is common to let a and b be non-negative numbers when
computing ged(a, b).
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Proposition 5.10.1

1. If a is a positive integer, then ged(a,0) = a.

2. If a is any integer, then ged(a, 1) = 1.

Proof. The first statement is true because a divides 0. The second statement
is true because 1 is the only positive divisor of 1. [J

Ifa > 1and b > 1, then ged(a, b) can be found using the prime factorizations
of a and b. Before proving this is possible, we do an example that illustrates
the proof.

Example 5.10.2 Suppose a = 235411 and b = 227811%. Find gcd(a, b).
Solution.

First, rewrite these in modified form so that the same primes appear in each

decomposition. To do this, we need to allow exponents to be zero. Written
in this modified form, a = 235*7°11' and b = 225978114,

The positive divisors of a are the numbers 2°5°7¢11¢ with 0 < a < 3,0< b <
4,0<¢<0,0<d<1.

The positive divisors of b are the numbers 2°5°7°11% with0 < a <2, 0< b <
0,0<c<8,0<d<4.

Hence the positive common divisors of a and b are the numbers 2°5°7¢11¢
with 0 < a < min{3,2}, 0 < b < min{4,0}, 0 < ¢ < min{0,8}, 0 < d <
min{1,4}.

The largest number in this collection is 225°7°11%, so it must be the gcd.

Theorem 5.10.3 If a = pi'p5* -+ pi* and b = p{lp§2 e pi’“, where e; > 0
and f; >0 fori=1,2,... k, then

ged(a, b) = plflln{ehfl}pglm{ez,fz} p?m{ek’f’“},

Proof. The positive divisors of a are the numbers p‘flp? e pi’“ where

0 <d; <efori=1,2,...,k. The positive divisors of b are the num-
bers p@pd2 ... p‘,i’“ where 0 < d; < f; for i = 1,2,..., k. Hence the positive
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common divisors of a and b are the numbers pflp;b e pzk where 0 < d; <
min{e;, f;} for i = 1,2,... k. The largest number in this collection is the

greatest common divisor, hence ged(a, b) = prlnin{el’f l}pgﬂn{‘”’f 2} L pznin{e’“’f 23

g

5.11 The lem

If a and b are integers, neither of which is 0, then the least common multiple
of a and b is the smallest positive integer ¢ such that a|¢ and b|¢. It is denoted
by lem(a,b).

That is, lem(a, b) is the smallest ¢ > 1 number which is a common multiple
of a and b.

Why can’t a or b be zero? Because there are no positive multiples of zero.

Why do we require that the least common multiple be positive instead of
just non-negative? (We could then allow a or b to be zero) Because zero is a
common multiple of any two numbers, so the least common multiple would
always be zero.

Since |a| - |b] is a positive common multiple of @ and b, there is a smallest
positive integer among the collection of common multiples of a and b.

Since lem(a, b) = lem(|al, |b]), it is customary to take a and b to be positive
when computing the lcm.

The least common multiple of a and b can be computed using the modified
prime factorizations of @ and b in a similar way as the ged. We first illustrate
the method with an example.

Example 5.11.1 Suppose a = 235411 and b = 227811%. Find lem(a, b).
Solution.

By the Unique Factorization Theorem, the prime factorization of any positive
multiple of a contains 254117 with ¢ >3, d > 4, f > 1.

Similarly, the prime factorization of any positive multiple of b contains 27611/
withc>2,e>8, f > 4.

Hence, the prime factorization of any positive common multiple of a and
b contains 2°5%7°117 with ¢ > max{3,2}, d > max{4,0}, e > max{0,8},
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f > max{1,4}. The Os arise because the prime factorization does not contain
7, and the prime factorization of b does not contain 5.

The smallest number in this collection is 235*7811%, so it must be the lem.

The following theorem is proved similarly to the corresponding result for the
ged.

Theorem 5.11.2 Ifa = pi'p5’ -+ pi* and b = p{lpg2 e pi’“, where e; > 0
and f; >0 fori=1,2,...,k, then

lem(a, b) = prlnax{ehfl}pglax{e%fﬂ .. p;naX{emfk}'

Together, Theorems 5.10.3 and 5.11.2 give the following.

Corollary 5.11.3 Let a and b be positive integers. Then ged(a, b)lem(a, b) =
ab.

The corollary says that if you know one of gcd(a, b) and lem(a, b), then you
can compute the other one by division.

5.12 The Euclidean Algorithm

In the previous section we saw that the gcd and lem of two numbers can be
computed using their prime factorizations. While the prime factorization is
relatively easy to find for fairly small numbers, large numbers are notoriously
difficult to factor, that is, a lot of computation is required. It is precisely this
difficulty that lies at the heart of many cryptosystems.

By 300BC, the Greeks had an efficient algorithm for computing the ged: the
Fuclidean Algorithm. Efficient? Finding the prime factorization of a by test-
ing if each of 1,2,...,a/2 is a divisor, dividing it out, and then repeating
the same process with the quotient requires a number of arithmetic opera-
tions that is proportional to a. Similarly for . Hence finding ged(a,b) by
finding their prime factorization using this method takes a number of steps
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proportional to the larger of @ and b. (Better algorithms for finding the prime
factorization are known, however.) Lamé proved in 1844 that the Euclidean
Algorithm requires a number of arithmetic operations proportional to the
logarithm of the smaller of the two numbers.

To put Lamé’s Theorem into perspective, imagine a and b each have 200
digits, that is, are approximately 10?°. Using the method based on the
prime factorization requires roughly 10?° operations. If it were possible to
do 1,000,000,000 of these per second, then about 10'°! seconds would be
required for the computation (there are 31,536,000 seconds in a year, so the
computation would take about 24 years). Using the Euclidean Algorithm,
about 200 operations are required.

The main idea behind the Euclidean Algorithm is to successively replace the
two numbers a and b by two smaller numbers in such a way that both pairs
of numbers have the same gcd. The following proposition is the key to the
method.

Proposition 5.12.1 Ifa,b € Z, not both zero, and a = bg+r, then ged(a,b) =
ged (b, r).

Proof. We claim that d divides both a and b if and only if it divides b and r.
If d divides a and b, it divides a — bg = r; hence it divides b and r. Similarly,
if d divides both b and r, it divides bg + r = a; hence it divides a and b.

By the claim, the set of divisors of a and b is the same as the set of divisors
of b and r. Therefore, ged(a,b) = ged(b,r). O

Before describing the Euclidean Algorithm, we illustrate it with an example.
We will compute ged(834,384). The idea is to repeatedly apply Proposition
5.12.1 until arriving at a situation where one of the numbers involved is zero.

834 = 384 x 2+ 66 . ged(834,384) = ged (384, 66)
384 = 66 x5 54 = gcd(66,54)

66 = 54x1+12 = ged(54,12)

54 = 12x4+6 = gcd(12,6) = 6

12 = 6x240 = ¢cd(6,0) =6

. gcd(834,384) =6

Suppose a and b are non-negative integers with a > b. The Euclidean Algo-
rithm is the following process.
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1. Let ap = a and by = b. Set 7 = 0.
2. Use the division algorithm to write a; = b;q; +1r;, 0 < r; < b;.
3. If r; # 0 then

o Let Aiy1 = bz and bz‘—i—l =T;.

e Replace i by i + 1 and go back to step (2).

Otherwise ged(a,b) = b; (the last non-zero remainder).

Why does this work? By Proposition 5.12.1, ged(ag, by) = ged(ay,by) = -+ =
ged(ag, b;) = ged(b;,0) = b;. Hence, if the process terminates, then the ged
is found. The process terminates because, for any ¢ we have b = by > rg =
by >riy =by >1ry =0b3>--->r; > 0. That is, the sequence of remainders
is a decreasing sequence of non-negative integers. Any such sequence must
eventually reach zero.

5.13 Integer Linear Combinations

If x and y are integers, what integers arise as values of the sum 6x + 4y?
Certainly only even numbers can arise because 2|4z + 6x for all x,y € Z.
Can we get them all?

e ( by taking x =y =0,

e 2 by taking z =1 and y = —1; —2 by taking z = —1 and y = 1,
e 4 by taking z = 0 and y = 1; —4 by taking x =0 and y = —1,
e (6 by taking x = 1 and y = 0; —6 by taking z = —1 and y = 0,

e and so on.

It seems reasonable to believe that all multiples of 2 arise. That this is true
actually follows from the second bullet point. Since 2 = 6 x 1 +4 x (—1),
multiplying through by an integer k£ gives 2k = 6 X k + 4 x (—k). Thus all
even integers can arise (remember that & can be negative).
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We have just done an example of the next theorem, which says that for any
integers a and b, not both zero, the numbers that can arise as an integer
linear combination ax + by are precisely the multiples of gcd(a, b).

We now generalize the previous paragraph, replacing 4 and 6 by any integers
a and b. The question is which integers arise as values of the sum ax + by ?.
It turns out that for any integers a and b, not both zero, the numbers that
can arise as an integer linear combination ax + by are precisely the multiples

of ged(a,b).

Since ged(a,b)|a and ged(a,b)|b, we have ged(a,b)|ax + by for any x and y.
Hence only multiples of ged(a,b) can arise as integer linear combinations of
a and b.

In order to show that every multiple of the ged can arise, it is enough to
show that there are integers zy and gy, such that azy + byg = gcd(a,b); then,
the multiple k x ged(a, b) = a(kxo) + b(kyo).

To find ¢ and ¥, use the computation arising from the Euclidean Algorithm
from bottom to top: the second to last line tells you you to write the gcd,
r;_1, as a difference a;_1 — ¢;_1b;,_1. That is, as a difference involving the
smallest pair of numbers in the ged computation. Each line above gives a
substitution that allows the ged to be expresses in terms of the next largest
pair, until finally it is expressed in terms of a and b. We illustrate by writing
6 = gcd(834,384) as an integer linear combination of 834 and 384.

6 = H54—12x4 because 54 — 12 x4 =6
= 54— (66—54x1)x4 because 66 — 54 x 1 =12
= 54x5—-66x4

(384 — 66 x 5) x 5 —66 x 4 because 384 — 66 x 5 = 54
384 x 5 — 66 x 29

384 x 5 — (834 — 384 x 2) x 29 because 834 — 384 x 2 = 66
384 x 63 — 834 x 29

= 834 x (—29) + 384 x (63) S o= —29 and yy = 63

We summarize our work in this section in the following theorem.

Theorem 5.13.1 Let a and b be integers which are not both 0, and let d € 7.
There exist integers x and y such that ax + by = d if and only if ged(a,b)|d.
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5.14 Relatively prime integers

Integers a and b are called relatively prime if gcd(a,b) = 1. The name can be
thought of originating from “prime relative to each other” — if the gcd equals
1 then a and b have no common prime factors.

When there are integers = and y such that ax + by = d, then (from the
discussion at the end of the last section) we know that d is a multiple of
ged(a,b), so that ged(a, b) is one of the positive divisors of d. The case d = 1
is exceptional because there is only one possible positive divisor, namely 1,
so it must be the ged.

Corollary 5.14.1 Let a,b € 7Z, not both zero. There are integers x and y
so that ax + by = 1 if and only if ged(a,b) = 1.

Proof. («<)By Theorem 5.13.1 if ged(a,b) = 1 then there are integers x and
y so that ax + by = 1.

(=) Suppose here are integers z and y so that axr + by = 1. We know
ged(a,b)|ax + by = 1. Thus ged(a,b) < 1. Since ged(a, b) is always at least
1, it follows that gcd(a,b) = 1. O

It is sometimes said that anything that can be proved about relatively prime
integers follows from the above proposition. Here are three examples, the
last of which is designated as a Proposition.

Example 5.14.2 Prove that, for any integer a, ged(a,a+ 1) = 1.
Proof.
Since (a + 1) —a = 1, the result follows from Corollary 5.14.1. O

Example 5.14.3 Suppose gcd(a,b) = d. Prove that ged(a/d,b/d) = 1.
Proof.

By Theorem 5.13.1 there are integers x and y so that ax + by = d. Divide
both sides by d to obtain (a/d)x + (b/d)y = 1. The result now follows from
Corollary 5.14.1. [J

Proposition 5.14.4 Let a,b, and ¢ be integers such that albe. If ged(a,b) =
1, then alc.
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Proof. Since ged(a,b) = 1, there are integers z and y so that az + by = 1.
Multiply both sides by ¢ to get acz+bcy = c. Since alac and albe, the integer
alacx + bey = ¢. O

Notice that the statement in the above proposition is not true without the
hypothesis that ged(a,b) = 1. That is, it is not true that if albc then alb or
alc. For example 64 x 15 but 6 f4 and 6 f 15.

By the Fundamental Theorem of Arithmetic, if p is a prime number, then
the possibilities for ged(p, a) are 1 and p: either p appears in the prime fac-
torization of a or it doesn’t. Both the Fundamental Theorem of Arithmetic,
and the proposition above, can be used to show the following (compare the
comment in the previous paragraph — it is important that p is prime).

Proposition 5.14.5 If p is prime and p|ab, then pla or p|b.

Proof. Suppose p|ab. If p|a there is nothing to prove. Otherwise ged(p,a) =
1, and hence p|b. O

5.15 Modular Arithmetic (Congruences)

Most of us can tell time on a 24 hour clock. The time 15:00 is 3PM, 22:00
is 10PM and so on. Forgetting about AM and PM for a moment, the time
on a 12 hour clock is obtained by subtracting 12 from 24 hour times that
are greater than 12. That is, it is the remainder on division by 12. We can
extend this idea. When it is 38:00 the 12 hour clock time should be 2 (the
remainder when 38 is divided by 12), and when it is —45:00 the time should
be 3. (Notice how the remainder being positive is important here.)

Our work in this section arises from deeming two integers to be “the same”
with respect to division by m (we will say that they are the same “modulo
m”) when they have the same remainder on division by m. We first show
that two integers leave the same remainder on division by m if and only if
their difference is a divisible by m.

Proposition 5.15.1 Let m € N. Two integers a and b leave the same re-
mainder on division by m if and only if m|a — b.
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Proof. (=) Suppose a and b leave the same remainder on division by m.
Then there exist integers ky, ko and r such that a = kym+r and b = kom+r.
Therefore a — b = m(k; — ko). Since ky — ks is an integer, m | a — b.

(<) Suppose m|a —b. Then a — b = km for some integer k, or equivalently
a = b+ km. By the Division Algorithm, we can write b = gm +r, 0 <
r<m-—1. Then a = b+ km = gm +r+ km = (¢ + k)m + r. Since the
quotient and remainder guaranteed by the division algorithm are unique, a
and b leave the same remainder on division my m. [

If a,b € Z, and m € N, we say that a is congruent to b modulo m, and write
a = bmod m if a and b leave the same remainder on division by m.

Example 5.15.2

e 10=24mod 7 (and 7|10 — 24).
e —15=12mod 9 (and 9| — 15 —12).
e 442 =2 mod 10 (and 10442 — 2).

o Any multiple of m is congruent to zero modm.

The proposition above can be restated in the language of congruence modulo
m.

Proposition 5.15.3 Let m € N. For any integers a and b, a = b mod m <
m|a—b.

Although the definition of congruence is in terms of remainders, it is some-
times easier to use Proposition 5.15.3 when proving statements about con-
gruences.

In many programming languages there is a function mod. If m € N, then
a mod m is the unique number among 0,1,2,...,m — 1 to which a is con-
gruent modulo m. That is, it is the remainder (as in the division algorithm
- that’s why its unique) when a is divided by m.

You can think of the integers modm as the hours on a circular clock with
m hours, where “noon” is 0. The number of times you go around the circle
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and return to your starting point makes no difference to where you end
up. What matters is the number of places you move when it is no longer
possible to make it around the circle any more, and this number is one of
0,1,2,...,m — 1. These are the possible remainders on division by m.

Another perspective is to take the number line and wrap it around the circular
clock just mentioned so that 0 coincides with 0, and the positive direction is
wrapped clockwise around the circle. Every integer then coincides with the
member of {0,1,2,...,m — 1} to which it is congruent.

The universe of integers modm really only consists of the numbers 0,1, 2,

..,m—1. As in the previous paragraph, modulo m any other integer is just
one of these with another name (in the same way that 3/6 is another name
for 1/2). The expression a = b mod m says that a and b are two names for
the same position on the “number circle” with m positions.

A point that is worth special attention is any multiple of m leaves remainder
0 when divided by m, so m|n if and only if n = 0 mod m.

We will show that congruence modm has a lot in common with our usual
notion of equality of integers. In particular (leaving out the mod m in an
attempt to make the similarity more obvious):

e Every number is congruent to itself.
e If a is congruent to b then b is congruent to a.

e If a is congruent to b and b is congruent to ¢, then a is congruent to ¢
(numbers congruent to the same thing are congruent to each other).

Proposition 5.15.4 Let m € N. Then,

(1) For all integers a we have a = a mod m.
(2) For all integers a and b we have a = b mod m < b = a mod m.

(3) For all integers a,b, and ¢, if a = bmod m and b = ¢ mod m, then
a = cmod m.

Proof. We prove (3). The proofs of (1) and (2) are similar. Suppose a =
bmod m and b = ¢mod m. Then a and b leave the same remainder on
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division by m, and so do b and c¢. Thus, a and c leave the same remainder
on division by m. That is, a = ¢ mod m. This completes the proof of (3). O

The following theorem is important because it tells you how to calculate
modm. It says that at any point in any calculation you can replace any
number by one it is congruent to and not change the answer.

Theorem 5.15.5 Let m € N. For any integers a,b,c and d, if a = b mod m
and ¢ = d mod m, then,

(1) a+c=b+ dmodm,
(2) a—c=b—dmodm,
(3) ac = bd mod m.

Proof. We will use Proposition 5.15.3. Suppose a = bmod m and ¢ =
d mod m. Then m|(a —b) and m|(c —d), so that a = b+ km and ¢ = d+ {m
for some integers k and /.

Thus, a +c=b+km+d+Im=>b+d+ (k+ {)m, so m|[(a+c) — (b+ d)]
and we have a + ¢ = b+ d mod m. Similarly, a — ¢ = b — d mod m. Finally,
ac = (b+ km)(d + fm) = bd + blm + dkm + kfm?* = bd + m(bl + dk + kfm).
Therefore, m|ac — bd, so that ac = bd mod m. O

We illustrate the use of Theorem 5.15.5 with two examples.

Example 5.15.6 Find the integer n such that7 <n < 14 andn =15-17—
19 mod 7.

Solution.

By Theorem 5.15.5, 15-17—19=1-3—-5= —2=5mod 7. The integer n
such that 7 <n <14 and n =5 mod 7 s 12.

Let n = (dgdg_1 -+ - do)10. We saw before that dy is the remainder on division
by 10. The same sort of argument shows that (d;dy)io is the remainder on
division by 100, that (d2didp)10 is the remainder on division by 1000, and so
on. That is, n = dy mod 10, n = (dy1dy)1p mod 100 and so on. In general
the last t digits of the base 10 representation of n are the remainder when
n is divided by 10°, so for t > 1, every integer n = (dpdg_1---do)io =
(dy_1dy_o - - dg)1o mod 10°.
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Example 5.15.7 Find the last digit of 7%°.
Solution.

We need to evaluate 7°° mod 10. Since 7> = 49 = —1 mod 10 we have 7%° =
(77 = (=1)Y7 = =7 =3 mod 10. Thus the last digit is 3.

In the previous example we could have used the fact that 49 = 9 mod 10
and worked from there. Using —1 rather than 9 made the calculation easier.
The lesson is that, among the many possible replacements for a number, you
should choose one that’s convenient to work with.

Notice that if ac = bec mod m, then it may not be true that a = b mod m.
(That is, you can’t necessarily cancel the c.) For example 2 x 3 = 6 X
3mod 12, but 2 # 6 mod 12. The statement is true when ¢ and m are
relatively prime. The following is a translation of Proposition 5.14.4.

Proposition 5.15.8 Let a,b,c and m be integers such that ac = bc mod m.
If ged(e,m) =1, then a = b mod m.

5.16 Testing for divisibility by 3 and by 9

We can use properties of congruence to prove the (familiar) rule that an
integer is divisible by 3 if and only if the sum of its decimal digits is divisible
by 3. The key is to observe that 10 = 1 mod 3 and so by Theorem 5.15.5
you can change 10 to 1 wherever it occurs. Remember that 3|n if and only
if n =0 mod 3.

Proposition 5.16.1 Suppose n = (dgdi_1 ...d1dy)10. Then 3 divides n if
and only if 3 divides the sum of the digits in the base-10 representation of n.

Proof. We have

3ln & n=0mod3
& dy x 10" +dpq x 105714+ 4 dy x 101 4+ dy x 10° = 0 mod 3
o dx1F+de x4+ oo4d x1'+dy x1°=0mod 3
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which is what we wanted. O

One interesting thing about this criterion is that it can be applied recursively.
For example, 3|123456789 if and only if 3|(1 + 2+ --- +9) = 45 if and only
if 3|(4+5) = 9. If the criterion is applied enough times, then it always ends
with testing whether some one digit number is divisible by 3. So, in some
sense it is not necessary to know the multiplication table for 3 beyond 3 x 3.

Question 5.16.2 Suppose n = (dpdg_1 ...d1dy)10. Prove that n = dj +
dr—1+ -+ dy +dymod 3. (Hint: eliminate part of the proof of Proposition
5.16.1.)

Since 10 = 1 mod 9, almost exactly the same argument shows that an integer
is divisible by 9 if and only if the sum of its decimal digits is divisible by 9.

Question 5.16.3 Suppose n = (dpdg_1 ...dydy)19. Prove that n = dy +
dk_1+"'+d1+d0 HlOd 9

Question 5.16.4 Suppose n = (dydy_1 ...d1do)10. Then 9 divides n if and
only if 9 divides the sum of the digits in the base-10 representation of n.
(Hint: it is easy if you use the result of Question 5.16.3).

Only a small change to the argument needed to show that (dxdg_; ... d1do)10

is divisible by 11 if and only if dy — dx_1 4+ dx_o — --- £ dy is divisible by
11. That is, 11|n if and only if 11 divides the alternating sum of the decimal
digits of n. The alternating sum arises because 10 = —1 mod 11.

More complicated, but similar, tests for divisibility can be similarly devised
for any divisor that is relatively prime to 10.

5.17 Exercises
1. Let z,y € R. Prove that
lz] + ly] < |z +y).

2. Indicate whether each statement is true or false, and briefly justify your
answer.
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(a) The integer n is odd if and only if 2 x [2] = 1= n.
(b) If z € R\ Z, then |z| = [z] — 1.
Let n be an integer. Prove that n is even if and only if 2|n/2] = n.

Now, recall that n is even if and only if 2| n. Complete the following
statement, and then prove that your assertion is true: “n is a multiple

of k if and only of ...”

Find the base 16 representation of 262 139.

. Is it true that (121), is a square in any base b7 Why or why not?

Find a base b such that (122), = 101.
Find z if (123), = z5.

Show that a number in base 3 is even if and only of the sum of its digits
is even. In which other bases is this true?

Let a,b,c,d € Z. Prove that if a|b and c|d, then ac|bd.
Let a,b,d € Z. Prove that if d|a and d|b, then d?|ab.

Let a,b,c,d € 7Z, and suppose that a + b = ¢. Prove that if d divides
and two of a, b, ¢, then it also divides the third of these.

Prove that if a|b, then §|b. Make sure you are using the definition of
the statement “a divides b”.

Explain why the Fundamental Theorem of Arithmetic implies that
there are no positive integers a and b such that 2¢ = 3°.

Let n be a positive integer. Prove that log,(n) is irrational unless n is
a power of 2.

For a positive integer n, recall that n factorial is the integer n(n —
(n—2)---1.

(a) Suppose 1 < k < n. What are the quotient and remainder when
N =n!+ 1 is divided by k7

(b) Explain why part (a) implies that N has a prime divisor greater
than n.
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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(c¢) Explain why part (b) implies that there are infinitely many prime
numbers. (Note that of there are only finitely many prime num-
bers, then there is a largest prime.)

Find the prime factorization of 16!. (Note that it is not necessary to
compute 16! first.

Let q1,q2 and g3 be different primes. Prove that if p is prime and
plq1g2g3, then p € {q1, 42, g3}

Prove that the integer n is a perfect square if and only if every exponent
in its prime factorization is even. State the corresponding result for
perfect k-th powers, k > 2.

Find the smallest natural number that is divisible by 2 and by 3, and
which is simultaneously the fourth power of an integer, and the sixth
power of an integer. Answer the same question when 2 is replaced by

4.

Let n be a positive integer. Is it possible for a prime p to divide both
n and n 4+ 17

Suppose ged(a, b) = 4. Explain why the possible values of gcd(9a, b) are
4, 12, and 36. For each of these values, d, give an example of integers
a, b such that ged(a,b) =4 and ged(9a,b) = d

Use the prime factorizations of 25 - (24)3 and 10! to find the prime
factorizations of ged(25 - (24)%,10!) and lem(25 - (24)3,10!).

How many positive divisors does 2°3%5% have?

Suppose that a and b are integers such that ab = —27385%7% and
ged(a,b) = 23315, Is it possible that a = 2°3*5? Why or why not?
What is lem(a, b)?

Let a and b be positive integers such that ged(a,b) = 1. Prove that
lem(a,b) = ab.

Use the Euclidean Algorithm to find gcd(8288,15392). Use your work
to find

(a) lem(8288,15392);
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27.

28.

29.

30.

31.

32.

33.

34.

35.

(b) Integers x and y such that 8288x + 15392y = gcd (8288, 15392);

(c) For k € Z, integers xy and y; such that 8288z + 15392y, =
k - gcd(8288,15392).

Suppose ¢ is a common divisor of a and b, that is ¢|a and ¢|b. Prove
that c¢| ged(a, b).

Suppose that there are integers x and y so that ax + by = 2. Suppose
d is an odd divisor of a such that d|bc. Prove that d|c.

Suppose there are integers x and x such that ax + by = 12. What are
the possibilities for ged(a,b)? Why?

Prove that ged(n,n + 1) =1 for all n € Z. What are the possibilities
for ged(n,n + 2), ged(n,n + 3) and ged(n,n +4)7

Let a € Z and k € N. Prove that one of the numbers a,a +1,...,a +
(k — 1) is divisible by k.

(a) Let n € Z and m € N. The least residue of n modulo m is
the unique integer among 0,1, ..., m — 1 to which n is congruent
modulo m. For k € Z, which numbers can be the least residue of
k? modulo 47

(b) Prove that no integer which is congruent to 3 modulo 4 can be
written as a sum of two squares. That is, if n = 3 (mod 4), then
there are no integers z and y such that n = z? + y?. (Hint: the
contrapositive.)

(a) Given that k = 2 (mod 4), determine the remainder when 5k 4 13
is divided by 4.

(b) Given that k =1 (mod 4), determine the remainder when 7k333 +
11 is divided by 4.

Use congruences to prove that 13 | 19" — 6" for any n > 0. More
generally, prove that if ¢ and b are integers, then d = a — b divides
a™ — b" for any n > 0.

Show that every odd prime is congruent to 1 or 3 modulo 4. If p > 3
is prime, to what can p be congruent to modulo 67
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36. Use congruences to find the last digit of 43*3, and the last two digits of
747,
37. (a) Let b > 1 be an integer, and n = (dpdy_1 ...d1dpy),. Show that
(b—l) ’ n < (b—l) ‘ do+dy +do+ - - - + dy.
(b) Let n = (dkdk,1 R dldo)lo. Show that 11 | n < 11 ‘ do — di +
dy — -+ + (=1)*dy. (Hint: 10 = (1) (mod 11)).
(c) Part (a) is a generalization of the familiar statement that 9|n if

and only if it divides the sum of the digits of n. State a similar
generalization of the result in part (b).



Chapter 6

Cartesian Products and
Relations

6.1 Cartesian Products

If A and B are sets, the Cartesian product of A and B is the set
Ax B={(a,b):a€ Aand b€ B}.
The following points are worth special attention:
e The Cartesian product of two sets is a set.
e The elements of that set (the Cartesian product) are ordered pairs.

e In each ordered pair, the first component is an element of A, and the
second component is an element of B.

In plane analytic geometry, we associate the set of points in the (Cartesian)
plane with the set of all ordered points (z,y), where z and y are both real
numbers, that is, by the elements of the set R x R. This explains why the
plane, together with this coordinate system, is referred to as R?, and also the
similar terms used to describe its higher dimensional analogues.

Example 6.1.1 Let A ={1,2,3} and B = {a,b}. Then,
Ax B = {(17 CL), (17 b)> (27 G), (27 b)a (37 a)a (3a b)}

151
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and
B x A={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}.

Note, in particular, that A x B # B x A: these two sets have different
elements. (Two ordered pairs (x1,y1) and (xe,y2) are equal when x; = x5
and y1 = Yz, that is, when the first components are equal, and the second
components are equal. )

Suppose A has m elements and B has n elements. Then, each element of
A is the first component of n ordered pairs in A x B: one for each element
of B. Thus the number of elements in A x B equals m x n, the number of
elements in A times the number of elements in B. This is one way in which
the “x” symbol is suggestive notation for the Cartesian product.

Example 6.1.2 Let A be a set. What set is A x (7

Solution.
By definition, A x () is the set of all ordered pairs (a,b) where a € A and
b € 0. There are no such pairs, as there are no elements b € (). Hence

Ax()=0.
Question 6.1.3 Let B be a set. Explain why () x B = ().

When is it true that A x B = B x A? We have seen in Example 6.1.2 that
the equality does not hold for all sets A and B. It is certainly true that if
A= B,then AxB=AxA=BxA. By Example 6.1.2 and Question
6.1.3,if A=0 or B=0, then Ax B=0 = B x A. It turns out that these
are the only circumstances under which A x B = B x A.

Proposition 6.1.4 Let A and B be sets. Then A x B = B x A if and only
if A=B, or A=0, or B=.

Proof. (=) We prove the contrapositive. Suppose A and B are non-empty
sets such that A # B. Then one of them has an element which does not
belong to the other. Suppose first that there exists z € A such that = € B.
Since B # (), the set A x B has an ordered pair with first component x,
whereas B x A has no such ordered pair. Thus A x B # B x A. The
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argument is similar in the other case, when there exists y € B such that
y & A.

(<) fA=Bthen AXxB=AxA=BxA IfA=0,then AxB=10=
B x A. The case where B = () is similar. (J

The set A x (BUC) is the set of all ordered pairs where the first component
is an element of A, and the second component is an element of BU C. That
is, the second component is an element of B or an element of C'. This is the
same collection that would be obtained from the union (A x B) U (A x O,
which is made from the union of the set of all ordered pairs where the first
component is an element of A and the second component is an element of B,
and the set of all ordered pairs where the first component is an element of
A, and the second component is an element of C'. This is the outline of the
proof of the following proposition.

Proposition 6.1.5 Let A, B and C be sets. Then, Ax (BUC) = (Ax B)U
(AxC).

Proof. (LHS C RHS) Let (z,y) € Ax(BUC). Thenx € Aand y € (BUC).
That is, y € B or y € C. This leads to two cases. If y € B, then (z,y) €
Ax B, and so (z,y) € (Ax B)U(Ax (). If y € C, then (z,y) € Ax C, and
so (z,y) € (Ax B)U(A x C). Therefore, Ax (BUC) C (Ax B)U(AxC).

(RHS C LHS) Let (z,y) € (A x B)U(Ax C). Then (z,y) € A x B or
(x,y) € A x C. This leads to two cases. If (z,y) € A X B, then x € A
and y € B. Since y € B, we have y € BUC, so (z,y) € Ax (BUC). If
(x,y) € Ax C, then x € Aand y € C. Since y € C, we have y € BUC, so
(x,y) € Ax (BUC). Therefore, (Ax BJU(AxC)C Ax (BUC). O

The proposition above can also be proved using set builder notation and
showing that the two sets are described by logically equivalent expressions.
One hint that this is so is in the informal proof outline that precedes the
proposition. Another one is in the proof of the proposition: the second part
of the proof above is essentially the first part written from bottom to top.
Each step is an equivalence rather than just an implication.

The same methods can be used to prove the following similar statements:

e Ax (BNC)=(AxB)N(AxC);
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e (AUB)xC=(AxC)U(Bx(C);

e (ANB)xC=(AxC)N(BxC).

It is a good exercise to investigate, then prove or disprove as appropriate,
similar statements involving the Cartesian product and operations like set
difference, A\ B, and symmetric difference, A & B.

6.2 The Definition of a Relation

A binary relation from a set A to a set B is a subset R C A x B. A binary
relation on a set A is a subset of R C A x A.

The word “binary” arises because the relation contains pairs of objects.
Ternary relations (on A, say) would contain triples of elements, quaternary
relations would contain quadruples of elements, and in general n-ary relations
would contain ordered n-tuples of elements. We will only consider binary re-
lations, so we will drop the adjective “binary”. When we talk about relations,
we mean binary relations. We will focus almost exclusively on relations on a
set A.

Example 6.2.1 Suppose A is the set of all students registered at UVic this
term, and B is the set of all courses offered at UVic this term.

Then Ax B is the set of all ordered pairs (s, c), where s is a student registered
at UVic this term, and c is a course offered at UVic this term. It represents
all possible registrations by a current student in a current course.

Let R C A x B be the subset consisting of the ordered pairs (s,c) where the
course ¢ is in Science and the student s is actually registered in the course.
Then R is a relation from A to B.

Similarly, if D C A x B is the subset consisting of the ordered pairs (s, c)
where completion of course ¢ would make student s eligible to receive a degree
from the Faculty of Fine Arts (i.e. c is the last course needed to complete the
requirements for the degree).

Other relationships between the elements of A and the elements of B can be
represented by other subsets of A X B.
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Example 6.2.2 Let A ={1,2,3,4}. Let R C Ax A be

R={(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4)}.

Then R is a relation on A.

It can be observed that (a,b) € R if and only if a | b, that is, R is the
divisibility relation on A.

A relation may or may not express a particular type of relationship between
its elements. The definition says that a relation is simply a subset. Any
subset. If an ordered pair (x,y) belongs to a relation, it could be that the
only relationship between x and y is that (z,y) is in the subset. Subsets like
Ri =0 and Ry, = A x A are perfectly good relations on A.

On the other hand, familiar things can be seen as relations. As a sample:

1. Equality between integers is represented by the relation R on Z where
(z,y) € R if and only if z = y.

2. FEquivalence of fractions is represented by the relation £ on Q where
(%, 5) € €if and only if § = §, that is, the fractions represent the same
number.

3. Strictly greater than between real numbers is represented by the relation
S on R where (z,y) € S if and only if x > y.

4. The property of being a subset is represented by the relation C on P(U)
where (X,Y) e Cifand only if X C Y.

5. Logical implication between statements p and ¢ is represented by the
relation Z on the set of all statements (say involving a certain set of
Boolean variables) where (p,q) € Z if and only if p = q.

Because of these examples, and many others like them involving common
mathematical symbols (that express particular relationships), infix notation
is used: sometimes we write xRy instead of (x,y) € R, and say that x is
related to y (under R).

13 2

Frequently a symbol like “~” is used to denote a relation instead of a letter
like R. The letter R has the advantage that it emphasizes that relation is
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a set. A symbol like “~” looks familiar when infix notation is used: =z ~ y
seems to look less awkward than xR y. It also had the advantage of empha-
sizing that many familiar mathematical properties (as above, for example)
can be seen as relations.

6.3 Properties of Relations: An Introduction
The relation “=” on the set of real numbers has the following properties:

1. Every number is equal to itself.
2. If x is equal to y, then y is equal to z.

3. Numbers that are equal to the same number are equal to each other.
That is, if x = y and y = 2, then x = 2.

The relation “<” on the set of all propositions (in a finite number of vari-
ables) has properties that look strongly similar to these.

1. Every proposition is logically equivalent to itself.
2. If p is logically to ¢, then ¢ is logically equivalent to p.

3. Propositions that are logically equivalent to the same proposition are
logically equivalent to each other to each other. That is, if p < ¢ and
q <, then p & r.

The relation “<” on the set of real numbers has the following properties:

1. z < x for every x € R.
2. If x <yandy <z, then x = y.

3. Ifxr <yandy <z then x < z.
The relation “C” on the the power set of a set .S has similar properties:

1. X C X for every X € P(S5).
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2. f X CYandY C X, then X =Y.

3. fXCYandY C Z, then X C Z.

The relation “=" on the set of all propositions (in a finite number of vari-
ables) looks to have the same properties as the previous two, so long as we
accept “<” playing the role of “=". There is, however, something subtle
and beyond the scope of this discussion, going on in the second bullet point

7

because we use “&” instead of “=".

1. p = p for every proposition x.
2. If p=qand ¢ = p, then p & q.

3. lf p=qand ¢ =r, then p=r.

It may or may not be clear that point 1. in each of the above five collections
of three points describes the same abstract property. And the same for the
third point. The middle point describes the same abstract property in the
first two collections and in the first two of the last three, but these two
properties are fundamentally different.

1. The first property in the five collections above is “reflexivity”. The
dictionary defines “reflexive” as meaning “directed back on itself”. In
a relation, we interpret that as meaning every element is related to
itself. Thus, each of the relations described above is reflexive.

2. The second property in the first two collections, but not the last three,
is “symmetry”: if x is related to y, then y is related to x.

3. The third property in all five collections is “transitivity”: if = is related
to y, and y is related to z, then x is related to z.

4. The second property in collection three and four is “anti-symmetry”:
if x is related to y and y is related to z, then x is the same as y. Later,
we will see that being anti-symmetric is very different from being not
symmetric. We will also get a hint of the origin of the (unfortunate)
term “anti-symmetric”.
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Relations that are reflexive, symmetric, and transitive behave a lot like
“equals”: they partition the set A into disjoint collections of elements that are
“the same” (equivalent) with respect to whatever property is used to define
the relation. These are called equivalence relations, and will be considered in
more detail later in this chapter.

Relations that are that reflexive, anti-symmetric, and transitive behave a
lot like “less than or equal to” in the sense that they imply an ordering of
some of the elements of A. To interpret this for the subset relation, think of
X C Y as reading “X precedes or equals Y (there are some pairs of sets
for which neither “precedes or equals” the other). These are called partial
orders. They will not be considered further in this course.

6.4 Reflexive Relations

A relation R on a set A is reflexive if (z,x) € R for every x € A. (Written
in infix notation, the condition is xRz for every z € A.)

The property of being reflexive is informally described as “every element of
A is related to itself”.

Example 6.4.1 Let Ry be the relation on A = {1,2,3} given by
R1=A{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3)}.

Is Rq reflexive?

Solution.
Yes. Since A = {1,2,3}, by definition Ry is reflexive when (1,1),(2,2) and
(3,3) all belong to Ry. They do.

Question 6.4.2 Ezplain why Ry = () and Rs = {(1,1),(1,2),(2,1),(3,3)}
are not reflexive relations on A = {1,2,3}.

Question 6.4.3 Let A be a set. Is A X A a reflexive relation on A?
Example 6.4.4 Let R4 be the subset relation on P(S), the set of all subsets

of S = {1,2,3,4}. That is, let Ry be defined by (X,Y) € Ry if and only
X CY. Prove that Ry is reflexive.
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Solution.

We need to explain why (X, X) € Ry for every X € P(S). Consider any
X € P(S). Then, X is a set (which is a subset of S). Since X C X (every
set is a subset of itself) we have (X, X) € Ry. Therefore Ry is reflezive.

Question 6.4.5 Let R be the relation on Z where (a,b) € Rs if and only
of a | b. Prove that Rs is reflexive.

Question 6.4.6 Let Rg be the relation on R defined by (z,y) € Re if and
only if xy > 0. Is R¢ reflexive?

6.5 Symmetric Relations

A relation R on a set A is symmetric if (y,z) € R whenever (z,y) € R, for
all z,y € A. (Written in infix notation, the condition is if 2Ry then yRx ,
for all z,y € A.)

The property of being symmetric is informally described as “whenever x is

related to vy, it is also true that y is related to x”.

Example 6.5.1 Let Ry be the relation on A = {1,2,3} given by
Ri={(1,1),(2,2),(3,3),(1,2),(2,1),(2,3)}.

Is Ry symmetric?

Solution.

No, (2,3) € Ry but (3,2) &€ Ry. Therefore, Ry is not symmetric.

Question 6.5.2 Ezplain why Ry = 0 and Rz = {(1,1),(1,2),(2,1),(3,3)}

are symmetric relations on A = {1,2,3}.
Question 6.5.3 Let A be a set. Is A X A a symmetric relation on A?

Example 6.5.4 Let Ry be the subset relation on P(S), the set of all subsets
of S = {1,2,3,4}. That is, let Ry be defined by (X,Y) € Ry if and only
X CY. Explain why R4 is not symmetric.

Solution.

Let X = {1} and Y {1,2}. Then X,Y € P(S), and (X,Y) € Ry (because
X CY). SinceY £ X, (Y, X) & Ry. Therefore, Ry is not symmetric.
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Question 6.5.5 Let R be the relation on Z where (a,b) € Rs if and only
of a | b. Explain why Rs is not symmetric.

Example 6.5.6 Let ~ be the relation on N defined by m ~ n if and only if
m + 3n is even. Is ~ symmetric?

Solution.

Let’s first try a few examples:

1 ~ 3 because 1 + 3 - 3 s even, and also 3 ~ 1 because 3+ 3 -1 is even.

2 ~ 4 because 2 + 3 - 4 is even, and also 4 ~ 2 because 4 + 3 - 2 s even.

3 ~ 5 because 3+ 3 -5 is even, and also b ~ 3 because 5+ 3 - 3 is even.
Based on this information it seems likely that ~ is symmetric. Let’s prove
that it is.

Let a,b € N. Suppose m ~ n. Then m+3n is even. If m is even then m—+3n
is even only if n is even, and in this case n + 3m is also even. If m is odd
then m + 3n is even only if n is odd, and in this case n+ 3m is also odd. In
either case n ~ m. Therefore ~ is symmetric.

Question 6.5.7 Let Rg be the relation on R defined by (x,y) € Re if and
only if xy > 0. Is Rg symmetric?

6.6 Transitive Relations

A relation R on a set A is transitive if (z,z) € R whenever (z,y), (v, 2) € R,
for all z,y,z € A. (Written in infix notation, the condition is if xRy and
YRz, then xRz, for all x,y,z € A.)

The property of being transitive is informally described as “whenever x is
related to y, and y is related to z, it is true that x s related to z”.

Example 6.6.1 Let Ry be the relation on A = {1,2,3} given by
R1=A{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3)}.

Is R, transitive?

Solution.
No, (1,2),(2,3) € Ry but (1,3) € R1. Therefore, Ry is not transitive.
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Question 6.6.2 Ezplain why Ry = () is a transitive relation on A = {1,2, 3},
but Ry = {(1,2),(2,1),(3,3)} is not.

Question 6.6.3 Let A be a set. Is A x A a transitive relation on A?

Example 6.6.4 Let Ry be the subset relation on P(S), the set of all subsets
of S = {1,2,3,4}. That is, let Ry be defined by (X,Y) € Ry if and only
X CY. Explain why Ry is transitive.

Solution.
Let X,Y,Z € P(S). Then X,Y and Z are all subsets of S Suppose (X,Y),
(Y, Z) € Ry. Then X CY andY C Z. Therefore, X C Z. Hence (X,Z) €

Ry, and Ry is transitive.

Example 6.6.5 Let ~ be the relation on N defined by m ~ n if and only
if the sum of the digits of m equals the sum of the digits of n (for example
123 ~ 51 because 1 +2+3 =5+ 1). Is ~ transitive?

Solution.

Yes. Let x,y,z € N. Suppose x ~ y and y ~ z. Then the sum of the digits
of x equals the sum of the digits of y, and the sum of the digits of y equals
the sum of the digits of z. Therefore, the sum of the digits of x equals the
sum of the digits of z, so that x ~ z. Therefore, ~ is transitive.

Question 6.6.6 Let R5 be the relation on Z where (a,b) € Rs if and only
if a | b. Explain why Rs is transitive.

Question 6.6.7 Let R¢ be the relation on R defined by (x,y) € Rg if and
only if xy > 0. Is Rg transitive?

6.7 Anti-symmetric Relations

A relation R on a set A is anti-symmetric if (z,y) € R and (y, z) € R implies
x =y, for all x;y € A. (Written in infix notation, the condition is if 2Ry
and yRx, then z =y, for all z,y € A.)

The property of being anti-symmetric is informally described as “the only
time we can have both x related to y and y related to x is when x = y”. This
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informal description is better for understanding than the definition, which is
better for proofs.

Example 6.7.1 Let Ry be the relation on A = {1,2,3} given by

721 = {(17 1)7 (27 2)7 (37 3)? (17 2)7 (27 1)7 (27 3)}

Is R1 anti-symmetric?

Solution.
R, is not anti-symmetric because (1,2),(2,1) € Ry but 1 # 2.

Example 6.7.2 Let A be a set. Is Ry = 0 an anti-symmetric relation on
A?

Solution.
Yes, Ro = 0 is anti-symmetric because the condition (x,y), (y,z) € Ry is
never true, so the implication in the definition always holds.

Question 6.7.3 Ezxplain why R3 = {(1,2),(2,3),(3,3)} is an anti-symmetric
relation on A = {1,2,3}.

Question 6.7.4 Let A be a set. Is A x A an anti-symmetric relation on A?

Example 6.7.5 Let Ry be the subset relation on P(S), the set of all subsets
of S = {1,2,3,4}. That is, let Ry be defined by (X,Y) € Ry if and only
X CY. Prove that Ry is anti-symmetric.

Solution.

Let X, Y € P(S). Then X andY are all subsets of S Suppose (X,Y), (Y, X) €

Ry. Then X C Y and Y C X. Therefore, X =Y Hence Ry is anti-
symmetric.

Question 6.7.6 Let R; be the relation on Z where (a,b) € Rs if and only
of a | b. Ezplain why Rs is not anti-symmetric. Is it an anti-symmetric
relation on N?

Question 6.7.7 Let Rg be the relation on R defined by (z,y) € R¢ if and
only if xy > 0. Is Rg anti-symmetric?
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Notice that “anti-symmetric” is different from “not symmetric”. It is possible
for a relation to be both anti-symmetric and symmetric, for example the
relation {(1,1),(2,2),(3,3)} on the set A = {1,2,3}.

On the one hand, the name “anti-symmetric” is a bit unfortunate because
it suggests something that isn’t always true. On the other hand, it does
mean what the name suggests when the elements  and y in the respective
definitions are different. Let R be a relation on a set A. Suppose (z,y) € R.
If R is symmetric, then (y,x) € R (no matter whether or not z = y). If R
is anti-symmetric and x # y, then (y,z) € R.

6.8 Relations and Matrices

Let R be a relation on the set A = {ay,as,...,a,}. We can use an n x n
array M(R) to record which ordered pairs belong to R. The entry in row i
and column j of M(R) is the truth value of the statement (a;,a;) € R, that
is, it is 1 if the ordered pair (a;,a;) € R and 0 otherwise.

If R is the relation {(1,3),(2,1),(3,2),(3,3)} on the set A = {1,2,3}, then

M(R) =

— O O

1
0
1

S = O

From the definitions we see that the matrix of a relation describes a

1. reflexive relation when every entry on the main diagonal equals 1,

2. symmetric relation when it is symmetric about the main diagonal: the
(1, 7)-entry equals the (j,7)-entry, and an

3. anti-symmetric relation when there is no ¢ # j such that the (7, j)-entry
and the (j,7)-entry are both equal to 1. (Entries on the main diagonal
don’t matter, and it acceptable for the (7, j)-entry and the (j,4)-entry
to both equal 0.)

It is not easily possible to look at the matrix and see if the relation is tran-
sitive.
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Example 6.8.1 Suppose R is a relation on {1,2,3,4} which is reflexive,
anti-symmetric, and transitive. Suppose also that (1,2),(2,3),(3,4),(1,4) €
R. What else must be in R?

Solution.

We will use a 4 x 4 array to record information, and write x for any entries
not (yet) determined. Since R is reflexive, (1,1),(2,2),(3,3),(4,4) € R. At
this point our array is:

1 % % x

* 1 *x x

* % 1 =%

* % ok 1
We are given that (1,2),(2,3),(3,4),(1,4) € R. Since R is anti- symmetric,
we must have (2,1),(3,2),(4,3),(4,1) € R. The updated array is:

1 1 % 1

01 1 =

* 01 1

0 « 0 1

Since (1,2),(2,3) € R, transitivity implies (1,3) € R. Anti-symmetry gives
(3,1) € R. Similarly, since (2,3),(3,4) € R we have (2,4) € R by transitiv-
ity, and then (4,2) € R by anti-symmetry. The updated array is:

1 1

S O = =
— = = =

0 1
0 1
0 0

Thus, R must also contain (1,1),(2,2),(3,3), (4,4), (1,3) and (2,4). In this

case we can also infer that no other ordered pairs can be in R, so that the
relation R s completely determined by the given conditions.

Question 6.8.2 Let R be a relation on A = {1,2,3} which is symmetric
and transitive. Show that if (1,2),(3,2) € R, then R = A x A.

6.9 Equivalence Relations

An equivalence relation on a set A is a relation on A that is
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1. reflexive;
2. symmetric; and

3. transitive

113 2

Relations with these three properties are similar to “=". Suppose R is an
equivalence relation on A. Instead of saying “(z,y) € R” or “x is related
to y under R”, for the sake of this discussion let’s say “x is equivalent to
y”. The reflexive property then says everything in A is equivalent to itself.
The symmetric property says if x is equivalent to y, then y is equivalent to
x. And the transitive property says things that equivalent to the same thing
are equivalent to each other.

Example 6.9.1 The following are examples of equivalence relations:

1. logical equivalence on the set of all propositions;
2. the relation R on 7Z defined by xRy if and only if x — y is even;

3. the relation T on{0,1,...,24} defined by hyT hs if any only if hy hours
18 the same time as hy hours on a 12-hour clock;

4. the relation § on the set of all computer programs defined by p1Spo if
and only if p1 computes the same function as ps;

5. the relation € on the set of all mathematical expressions in x defined
by p(x) € q(x) if and only if p(x) = q(x) for every real number x. For
example, if p(z) = 2> — 1 and q(z) = (x + 1)(z — 1), then p(x) € q(x).

It is a useful exercise to convince yourself that each of the relations in Ex-
ample 6.9.1 is an equivalence relation.

Every equivalence relation “carves up” (mathematicians would say “parti-
tions”) the underlying set into collections (sets) of “equivalent” things (things
that are “the same”), where the meaning of “equivalent” depends on the def-
inition of the relation. In Example 6.9.1:

1. logical equivalence partitions the universe of all statements into collec-
tions of statements with the same logical meaning, and that can be
freely substituted for each other;
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2. 'R partitions the integers into the even integers and the odd integers;

3. T partitions {0,1,...,24} into collections of hours that represent the
same time on a 12-hour clock;

4. S partitions the set of all computer programs into collections that do
the same thing;

5. &€ partitions the set of all algebraic expressions into collections that give
the same numerical value for every real number z, and hence can be
freely substituted for each other when manipulating equations.

Each of these collections of “equivalent” things is an example of what is called
an “equivalence class”.

Let R be an equivalence relation on A, and z € A. The equivalence class of
x is the set [x] = {y : yRa}.

Example 6.9.2 Let R be the relation on {1,2,...,20} where aRb if and
only if a = b (mod 4). Given that R is an equivalence relation, find [1], 2]
and [6].

Solution By definition, [x] is the set of elements that are related to x. Thus

[1] = {17 57 97 137 17}7 and [2] = {27 6’ 10’ 14’ 18} - [6]

Question 6.9.3 For the same relation as in Example 6.9.2, find (3], [5] and
8]

6.10 Equivalence Relations and Partitions

Let A be a set. A partition of A is a collection of disjoint, non-empty subsets
whose union is A. That is, it is a set of subsets of A such that

1. the empty set is not in the collection; and

2. every element of A belongs to exactly one set in the collection.
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Each set in the collection is called a cell, or block, or element of the partition.
Note that a partition may contain infinitely many subsets.

Example 6.10.1 Let A = {a,b,c,d,e}. The following are all partitions of
A:

1. {{a},{b,e}, {c,d}};

2. {A};

3. {{a,c,e}, {b,d}};

4. {{a}, {b},{c}. {d}. {e}}.

Question 6.10.2 Let A = {a,b,c,d,e}. Ezxplain why each of the following
is not a partition of A.

1. {{a}, {b. e}, {c, d}, 0};
2. {{a,c, e}, {d}};
3. {{a}, {0} {c} {a, d}, {e}};

Technically, {a}, {b},{c}, {d},{e} isn’t a partition of A = {a,b,c,d,e}. Tt
isn’t a set, hence it can’t be a partition. But this is just a technicality —
mathematicians frequently write partitions in this way. This point is raised
to make sure you're aware of what happens sometimes, and what is intended
when it does.

Equivalence relations and partitions are actually two sides of the same coin.
This is the main consequence of the two theorems below. The first theorem
says that the collection of equivalence classes is a partition of A (which is
consistent with what we observed above). The second theorem says that
for any possible partition of A there is an equivalence relation for which the
subsets in the collection are exactly the equivalence classes.

Theorem 6.10.3 Let R be an equivalence relation on A. Then

1. x € [z];
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2. if vRy then [x] = [y|; and

3. if x is not related to y under R, then [z] N [y] = 0.

Proof. The first statement follows because R is reflexive.

To see the second statement, suppose 2Ry. If z € [z] then (by definition of
equivalence classes) zRx. By transitivity, 2zRy. That is z € [y|. Therefore
[z] C [y]. A similar argument proves that [y] C [z], so that [z] = [y].

To see the third statement, we proceed by contradiction. Suppose z is not
related to y under R, but [z] N [y] # 0. Let z € [z] N [y]. Then 2Rz and
2Ry. By symmetry, xRz. And then by transitivity, xRy, a contradiction.
Therefore, [z] N [y] = 0. O

Part 1 of the above theorem says that the equivalence classes are all non-
empty, and parts 2 and 3 together say that every element of X belongs to
exactly one equivalence class. Parts 2 and 3 also tell you how to determine
if two equivalence classes are the same: [x] = [y] if and only if z is related to
y (equivalently, since R is symmetric, y is related to x).

Part 2 of Theorem 6.10.3 is worth special attention. By definition, [z] is the
set of all elements which are related to x, and [y] is the set of all elements
which are related to y. If [z] = [y], then every element which is related to «
is related to y, and every element related to y is related to x.

Similarly, part 3 of Theorem 6.10.3 says that if = is not related to y, then no
element related to z is related to y, and no element related to y is related to
x.

Example 6.10.4 Suppose R is the relation on R defined by xRy if and only
if © rounds to the same integer as y. Prove that R is an equivalence relation
and describe the partition of R it determines. How many of the equivalence

classes [1], [v/2], [V/3], 2], [e], [7] are different?

Solution.
We must show that R is reflexive, symmetric, and transitive.

(reflexive) Let x € R. Then x rounds to the same integer as itself, so xRz,
and R is reflexive.
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(symmetric) Let x,y € R. Suppose xRy. Then x rounds to the same inte-
ger y. Therefore y rounds to the same integer as x. Thus yRx, and R is
symmetric.

(transitive) Let x,y,z € R. Suppose tRy and yRz. Then x rounds to the
same integer y, and y rounds to the same integer z. Therefore x rounds to
the same integer as z. Thus xRz, and R s transitive.

Therefore, R is an equivalence relation.

The partition of R determined by R is {[n — 0.5,n + 0.5) : n € Z}, where
each half-open interval [n — 0.5,n 4 0.5) ={z:n+ 0.5 <z <n -+ 0.5}.

We know two equivalence classes [x] and [y] are identical if and only if © is
related to y. Among [1], [v2], [V/3],[2], [e], [x] there are exactly three different
equivalence classes because

o 1 s related to /2 and not to any of 2,/3,e,7;
o 2is related to /3 and not to any of 1,v/2,e,7;

e ¢ is related to ™ and not to any of 1,v/2,2v/3.

Therefore the different equivalence classes among those given are [1] = [v/2]; [V/3] =
2], and [¢] = [x].

Question 6.10.5 Let R be the relation on R defined by xRy if and only if
[x] = [y]. Prove that R is an equivalence relation and describe the partition
of R it determines.

Question 6.10.6 Let m > 2 be an integer, and let ~ be the relation on Z de-
fined by a ~ b if and only if a = b (mod m). Which Theorem in Section 5.15
implies that ~ is an equivalence relation? How many different equivalence
classes are there in all?

Theorem 6.10.7 Let I1 = {X1, Xs,...} be a partition of a set A. Then

1. the relation R on A defined by xRy if and only if x belongs to the same
cell of 11 as y is an equivalence relation; and

2. 11 is the partition of A determined by the set of equivalence classes of
R.
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Proof. The argument that shows R is an equivalence relation is left as an
exercise.

We argue that II is the partition of A determined by the set of equivalence
classes of R. That is, it must be shown that, for any x € A, the equivalence
class of x equals the cell of the partition that contains .

Take any = € A, and suppose z € X;. We need to show that [z] = X.
On the one hand, if y € X; then yRz by definition of R. Hence, y € [z].
Therefore, X; C [z]. On the other hand, if y € [z] then yRz. By definition
of R, the element y belongs to the same cell of II as x. That is, y € Xj.
Therefore [z] C X;. It now follows that [z] = X;. [

Example 6.10.8 Find an equivalence relation F on [0,00) for which the
partition of R determined by F is {{n,n+1):n € NU{0}}.

Solution.

By Theorem 6.10.7, we define xFy if and only if there exists n € NU {0}
such that x,y € [n,n + 1).

Now, looking at the definition of F we see that xFy if and only if the integer
part of x (the part before the decimal point) is the same as the integer part
of y. Equivalently, xFy if and only if |z] = |y].

Question 6.10.9 Let R be an equivalence relation on A = {1,2,3,4} that
determines the partition {{1,3},{2,4}}. Write R as a set of ordered pairs.

6.11 Exercises

1. Answer each question true or false, and briefly explain your reasoning.

(a) Cartesian product is commutative on sets: A x B = B x A for all
A, B.

(b) 0 is a binary relation on any set A.

(¢) If Ax B = B x A then either A =10 or B = ().
2. Let A, B and C be sets. Prove that Ax (BNC) = (Ax B)N(Ax ().
3. Let A, B and C be sets. Prove that Ax (BUC) = (Ax B)U(AxC).
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4. Prove that for all sets A, B, C' and D, if ANC = &, then (A x B)N
(CxD)=w.

5. Let A= {1,2,3}. Give an example of a relation on A (that is, list the
ordered pairs in your example) that is:

(a) reflexive, but neither symmetric nor transitive;
(b) symmetric, but neither reflexive nor transitive;
(c) reflexive and transitive, but not symmetric;
(d) antisymmetric and transitive;

)

(e) neither symmetric nor antisymmetric.
6. Answer each question true or false, and briefly explain your reasoning.

(a) If |A| = 4, then there are exactly 2'¢ relations on A.

(b) If R is an anti-symmetric relation on Z and (1,2) ¢ R, then
(2,1) e R.

(c) For any set A, there is exactly one relation on A which is reflexive,
symmetric, transitive and anti-symmetric.

(d) The relation ~ on {2, 3}, defined by x ~ y if and only if zy is odd,
is reflexive.

(e) The set of all relations from A to B is P(A x B).

(f) For the set A = {1,2, 3}, if the relation R on A is anti-symmetric
and (1,3) € R, then R is not symmetric.

(g) For any set A, there is a relation R on A that is both symmetric
and anti-symmetric.

7. Let ~ be a reflexive, symmetric and transitive relation on A = {1,2,3}
such that 2 ~ 3 and 1 £ 2. Write ~ as a set of ordered pairs.

8. Suppose R is a symmetric and transitive relation on A = {1,2,3,4}
such that (3,1),(3,2),(2,4) € R. Must R = A x A?

9. (a) Suppose A is a non-empty set and R is a symmetric and transitive
relation on A. Suppose further that each element x € A appears
in some ordered pair in R (as either the first coordinate or the
second coordinate). Prove that R is reflexive.
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10.

11.

12.

13.

14.

15.

16.
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(b) Why is the statement in part (a) true if A = (7

Let R be the relation on Z defined by (a,b) € R if and only if a—b < 1.
Determine, with a proof or counterexample as appropriate, whether R
is (i) reflexive, (ii) symmetric, (iii) anti-symmetric, (iv) transitive.

Let A = {1,2,3,4}. Determine, with proof, whether each statement
below is True or False.

(a) If a relation R on A is anti-symmetric, then R can not be sym-
metric.

(b) If a relation R on A is symmetric and transitive, and (1, 2), (1, 3),
(1,4) € R, then R is reflexive.

Suppose that R and S are relations on a non-empty set A. Determine
if each of the following statements is true or false. Prove each true
statement. For each false statement, give a counterexample using A =
{1,2,3}.

(a) If R and S are both anti-symmetric, then R\ S is anti-symmetric.

(b) If neither R nor § is symmetric, then R U S is not symmetric.
(¢) If R and S are both equivalence relations, then sois R N S.

Let C' be the set of all circles drawn in the plane with centre at (0,0).
Let R be the relation on C' defined by ¢;Res if and only if the radius of
c1 is at least as large as the radius of c. Prove that R is anti-symmetric.

Let ~ be the relation on N = {1,2,...} defined by x ~ y if and only if
x/y is an integer. Prove that ~ is anti-symmetric.

Let R be the relation on N defined by (a,b) € R if and only if b
is a multiple of a, that is, b = ak for some integer k. Prove that
R is reflexive, anti-symmetric and transitive. Which of these three
properties would no longer hold if the relation R were on Z instead?

Let &€ be the relation on Q defined by (a/b,c/d) € £ if and only if
ad = be.

(a) Show that & is reflexive, symmetric and transitive, but not anti-
symmetric.
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(b) What can you say about the fractions a/b and ¢/d if (a/b,c/d) €
E?7 And why?

Let S be a set that contains at least two different elements. Let R be
the relation on P(S), the set of all subsets of S, defined by (X,Y) € R
if and only if X NY = (). Determine whether R is reflexive, symmetric,
antisymmetric, or transitive. Why is it important that S has at least
2 different elements? Would any of the answers change if S was empty
or had only one element?

Repeat the previous question using the relation R defined by (X,Y) €
R if and only if X G V.

Let ~ be an equivalence relation on A = {v, w, x,y, z} with three equiv-
alence classes. Suppose v ~ y and z € [z], where [z] denotes the equiv-
alence class of . Write ~ as a subset of A x A and find the partition
of A determined by the equivalence classes.

Let ~ be an equivalence relation on the set A = {1,2,...,8}, and
denote the equivalence class of x € A by [x].

(a) Suppose that 1 € [3],4 € [2], and 2 € [1]. Prove that [4] = [3].

(b) Ignore part (a) and suppose now that ~ has 3 equivalence classes.
If [1] has 2 elements, [2] has 3 elements, 1 ~ 6, 2 ~ 5, and 7 ~ 5,
then

i. Write ~ as a set of ordered pairs.
ii. Find the partition of A determined by ~.

Let T be a equilateral triangle with each side having length 1. Imagine
T in a fixed position in the plane, say with the bottom side on the z-axis
and the opposite angle above it. Let S be the set of coloured triangles
obtainable from T by painting each side with one of the colours red
and blue. Any combination of colours is allowed, for example all sides
could have the same colour. Note that S has 8 elements: for example
the bottom side being red and all other sides being blue is a different
painting than the leftmost side being red and all other sides being blue.

Define a relation R on S by s; R s, if and only if s; can be rotated so
that the rotated coloured triangle is identical to s5. Prove that R is an
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equivalence relation and find the equivalence classes. (The elements of
your sets can be pictures of the coloured triangles.)

22. Let ~ be the relation on T' = {10, 11,...,99} defined by a ~ b < a
has the same first digit as b (that is, the same leftmost digit as b).
Prove that ~ is an equivalence relation.

23. Take it as given that the relation R on A = {1,2,...,46} defined by
xRy if and only if © — y is a multiple of 10 is an equivalence relation.

(a) How many of the equivalence classes [6], [13], [16], [28], [38], [46] are
different? Why? Explain in at most two sentences.

(b) How many subsets belong to the partition of A determined by R?
Why?



Chapter 7

Functions

The goal of this chapter is to talk about functions from a set A to a set B by
generalizing the corresponding concepts from real valued functions of a real
variable to this slightly different setting.

One description of a real-valued function of a real variable is that it is a
rule that associates exactly one (output) real number y = f(x) with every
(input) real number = for which the function is defined. Sometimes “way of
associating” is used in place of “rule that associates”. But this isn’t great.
What, exactly, is a rule? And what is the “way”? We will get there by
regarding a function as a collection of ordered pairs.

A function y = f(x) corresponds to curve in the z-y plane that passes the
vertical line test: for any real number x, the vertical line passing through z
meets the curve in at most one point. If it does, then the domain of f is
the set of all points x where the vertical line passing through x meets the
graph (exactly once). This is the set of all numbers x at which the function
is defined. The range of f is the set of all points y where the horizontal
line passing through y meets the graph at least once. This is the set of
all numbers y that occur as a value of the function, that is, are such that
y = f(x) for some x.

The graph of the function f is the set of all points (x, f(x)), where z is in
the domain of f. Passing the vertical line test is equivalent to the graph of
f containing exactly one ordered pair with first component x, for every x in
the domain. This collection of points completely describes the function: the
domain is the set of all numbers x that occur as the first component of an

175
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ordered pair in the collection, and the range is the set of all values that occur
as the second component of an ordered pair in this collection. Further, this
set of points explicitly gives the association between each x in the domain
and the corresponding value f(z) in the range.

7.1 The Definition of a Function and Some
Related Terminology

Let A and B be sets. A function f from A to B, denoted f: A — B, is a
subset f C A x B in which, for every a € A, there exists exactly one b € B
such that (a,b) € f.

Here are some points worth remembering.

e A function from A to B is a special kind of subset of A x B.

e Each element a € A is the first component of exactly one ordered pair
in the function. Thus (for finite sets) the number of ordered pairs in
the function equals the number of elements of A.

e There are no restrictions on how elements of B occur as the second
components of ordered pairs in a function. In particular, there is no
guarantee that any given element of B appears as the second component
of any ordered pair.

The main focus in the definition of a function from A to B is on what
happens with the elements of A. There must be exactly one ordered pair in
the function for each element of A; the second component of each of these
ordered pairs is an element of B.

Example 7.1.1 Let A ={1,2,3,4} and B = {a,b,c}. Why does the relation
fi={1,a),(2,a), (3,b),(4,b),(1,b)} fail to be a function?

Solution.
It contains two ordered pairs with first component 1, contrary to the defini-
tion.

Question 7.1.2 Let A = {1,2,3,4} and B = {a,b,c}. Why does the rela-
tion fo ={(2,a),(4,b),(1,b)} fail to be a function?
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If |A| = 4 and |B| = 3, a function from A to B is a set consisting of exactly
four ordered pairs; {(1,_),(2,_),(3,_),(4,_)}, where each blank is filled in
with some element of B. Let’s count the number of functions from A to B
for these sets A and B. There are 3 options for the element of B to put in
the first blank. For each of there, there are three options for the element
of B to put in the second blank. For each of these nine options, are three
options for the element of B to put in the third blank. And for each of these
27 options, reasoning in the same way gives that there are 81 = 3* functions
from A to B.

If A has m elements and B has n elements, then similar reasoning gives that
there are n" functions from A to B.

Let f : A — B be a function. Here is some notation and terminology that is
commonly used so that it is possible to communicate ideas about functions.

e The set A is called the domain of f. To the extent that the elements
of A are regarded as inputs and the elements of B are regarded as
outputs, the domain is where the inputs live.

e The set B is called the target (or, more commonly, the co-domain).
The term target is suggestive if you remember that it is where the
arrow is pointed.

o If (a,b) € f, then the element b is called the image of a under f, or
the value of f at a, and is denoted by f(a). The element a is called

a preimage of b. Notice that it is “a” preimage, not “the” preimage; b
could be f(a) for several elements of a.

e The range of f is the set range(f) of elements of B that are values
of f. That is, range(f) = {b € B : b = f(a) for some a € A}. It is
easy to remember the term “range” if you think of it as suggesting the
values of f range over the elements in this set. The notation f(A) is
sometimes used to denote the range of f.

Example 7.1.3 Let A be the set of all faculty and students at UVic, and
let B be the set of all amounts of money in dollars and cents. Let f be the
relation from A to B where (a,b) € f < person a € A owes amount b to the
library.
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Since for every person a € A there is a unique amount of money that they
owe to the library (possibly $0), f is a function. The domain of f is A, its
target is B, and its range is the set of all amounts of money that are owed
(each by at least one person).

If (Gary, 31.59) € f, then f(Gary) = $1.59, the image of Gary is $1.59, a
pre-image of $1.59 is Gary, and the amount $1.59 belongs to the range of
f. (Note: any person who owes $1.59 to the library is also a pre-image of
$1.59.)

7.2 Equality of functions

Recalling the definition of a function as a set of ordered pairs, it makes sense
that two functions should be equal if they are described by the same set of
ordered pairs. This means that they have the same domain, A (because there
is one ordered pair corresponding to each element of the same domain) and,
for each a € A, they have the same value at a. However, we can only have a
relation from a set A to a set B if the set B is also known. This leads to the
following definition.

Two functions f and g are equal if

1. they have the same domain,
2. they have the same target, and

3. f(z) = g(x) for every x in the domain.

Thus, according to the definition, the following pairs of functions are not
equal:

e f:R — Zdefined by f(x) = |x], and g : Z — Z defined by g(z) = |z].
e f:R — Rdefined by f(z) = |z], and g : R — Z defined by g(z) = |z].

e f:R — Rdefined by f(x) = |z],and g : R — R defined by ¢g(z) = [z].
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7.3 1-1 Functions

Let f : A — B be a function. Then f is called one to one, or 1-1, or injective,
if every element of B is the second component of at most one element of an
ordered pair in f.

Informally, a function f is called one to one, or 1-1, if different inputs produce
different outputs, or if each output value arises from a unique input value.
Notice that the property of being 1-1 is determined by what happens in the
target B: if there exists b € B which is the image of two different elements
of A, then the function is not 1-1, and otherwise it is.

The definition is equivalent to the statement that if x; # x5, then f(z1) #
f(z2). Tt is also equivalent to the contrapositive of this statement: if f(x;) =
f(x2) then z1 = 5. The latter statement is useful in determining whether a
function is 1-1. Throughout mathematics, a common method used to show
something is unique is to assume there are two and arque that they must
actually be the same. Here we would be assuming that the same output
arises from two different inputs and arguing that those inputs are actually
the same (so there is only one).

Example 7.3.1 Let f : R — R be defined by f(x) =2z + 5. Show that f is
1-1.

Solution.
Suppose f(x1) = f(xg). Then 2x1 + 5 = 2x9 + 5. Therefore 2x1 = 24, and
consequently x1 = xo. Therefore f is 1-1.

Question 7.3.2 Let [ : (0,00) — (1,00) be defined by f(x) =L+ 1. Prove
that f is 1-1.

If it is not possible to show a function f is not 1-1 by easily identifying
elements z; and x5 in the domain so that f(x1) = f(x3), then a good way to
proceed is to start trying to prove that f is 1-1. If f isn’t 1-1, then the proof
will break down at some point, and this will lead to the required elements.

Example 7.3.3 Let f : R — R is defined by f(x) = (v +4). It turns out
that f is not 1-1 because, for example, f(0) = f(—8), but suppose we did not
see that and, instead, tried to prove that f is 1-1.



180 CHAPTER 7. FUNCTIONS

Suppose f(x1) = f(x2). Then (x1 4+ 4)* = (x2 + 4)?, so that |z, + 4| =
\/($1+4) = \/($2+4) = ‘ZL’Q+4|

The presence of the absolute value is a clue that there may be more than
one value in the domain corresponding to a particular value in the range.
Here, if we let x1 = 0 (note that xy is in the domain) then we get 4 =
|xo + 4|. Checking the two cases in the definition of absolute value gives the
two solutions xs = 0 (in the case x5 > 0) or x9 = —8 (in the case xo < 0).
Both of these values are in the domain, and substituting them into the formula
for f shows f(0) = f(—8). Therefore, f is not 1-1.

There is nothing special about the choice of 0 except that it is possible to see
up front that choosing it will serve our purposes.

Question 7.3.4 Let f : R\ {0} — R be defined by f(z) = % + 3. Prove
that f is not 1-1.

Suppose A and B are sets such that |A| = m and |B| = n. Let’s count the
number of 1-1 functions from A to B. Notice that if m > n then this number
is zero because there are more ordered pairs in f than there are elements of
B, so some element of B must appear in two of them. Suppose, then, that
m < n. There are n choices for the image of the first element of A, then
n—1 choices for the image of the second element of A, and so on until, finally,
there are n — (m — 1) choices for the image of the last element of A. This
the number of 1-1 functions from A to B is
(mn—m)in—m-—1)---1 n!

n(n—l)(n—Q)"'(”_(m_l))'(n—m)(n—m—l)"'l: (n —m)!’

To close this section, we note that if a function is not 1-1, then it is always
possible to restrict its domain to get a new function that is 1-1. Further, it is
possible to do so in such a way that the new function has the same range as
the old one. In Example 7.3.3, if the domain is replaced by [—4,00) = {z :
x > —4}, then the new function f : [—4,00) — R, defined by f(z) = (z+4)?,
is 1-1. To see this, suppose f(z1) = f(x2). Then (z1 + 4)* = (29 + 4)2, so
that |y + 4| = |xe +4|. But 1,29 € [-4,00), 80 1 +4 > 0 and 25+ 4 > 0.
Hence z1 + 4 = 29 + 4. It now follows that xy = x5 and this function f is
1-1.
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7.4 Onto Functions

Let f: A — B be a function. Then f is called onto, or surjective, if for every
b € B there is an a € A such that (a,b) € f.

The property of a function f being onto is determined by what happens with
elements of the target B. If each of them is the image of at least one element
of A, then f is onto. If there is an element of B which is not the image of an
element of A, then f is not onto.

The best way to prove a function f is onto is constructive. Given b € B,
somehow use the information given to find a € A such that f(a) =b. When
f is given by a formula giving b as the value of an expression involving a,
this usually amounts to solving the equation b = f(a) for a.

Example 7.4.1 Let f : R — R be defined by f(x) = 2x+5. Prove that f is
onto.

Solution.
Take any y € R. If y = f(x) then y = 2x + 5 and, after some algebra,

= (y—5)/2.

Therefore, if y is f(x), then x must equal (y —5)/2. For any y € R we have
x=(y—>5)/2 €R and, further f((y —5)/2) =2(y —5)/2+5=1y. Hence f
15 onto.

Example 7.4.2 Let f : (0,00) — (0,00) be defined by f(x) = =27+ (x+3)3.
Prove that f is onto.

Solution.

Take any y € (0,00). Then f(z) =y & 2T+ (z+ 3P =y & (x +3)° =
y+27 & x+3 = y+27. (Every number has a unique cube root.) We
must verify that this x belongs to the domain. Since y € (0,00) we have
y+ 27 > 27 and /y + 27 > 3. Therefore —3 + /y +27 € (0,00). Hence,
if = =3+ Yy +27, then f(z) = =9+ ((—3+ Jy+27) 4+ 3) = =27+
(Yy +27)* =y, and so f is onto.

Question 7.4.3 Let f: R — [1,00) be defined by f(z) = (x—1)*+1. Prove
that f is onto.

The function f in Example 7.4.1 is not onto when the domain and target
are replaced by Z. To see this, argue as before to get that y = f(z) implies
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x = (y—>5)/2. But it is possible to choose y in the target so that (y —5)/2 is
not in the domain. For example, if y = 6 then (y — 5)/2 = 1/2 ¢ Z. Hence
there is no x € Z to that f(z) = 6, and this function f is not onto.

To prove that a function is not onto you must find an element b € B which
is not f(a) for any a € A. How you do this depends on f. In general, it is
useful to try to prove that f is onto. If it isn’t onto, then you will reach a
point where either you can’t solve for a in terms of b, or you will succeed in
doing this but the only possibilities you find are not elements of A. In either
case you are done as it will have been shown that the assumption f is onto
leads to (logically implies) a contradiction. Thus by the inference rule Proof
by Contradiction it must be that the assumption that f is onto is false, that
is, f is not onto.

Example 7.4.4 Let f : R — R be defined by f(x) = (x + 4)*. It turns out
that f is not onto. We can observe that f(x) > 0 for all x, thus there can’t
be an x for which f(x) = —1. Suppose we did not notice that and, instead,
tried to prove that f is onto

Take any y € R. If y = f(x), then y = (x +4)?, so that \/y = |x +4|. The
left hand side of this expression is not defined for all y € R: no real number
is the square root of a negative number. Hence, if y < 0, then there is no real
number x for which f(x) =y, and this function f is not onto.

Question 7.4.5 Let f : [0,00) — R be defined by f(x) = —2 + \/x. Prove
that f is not onto.

In contrast to 1-1 functions, we note that there is no way to count the number
of functions from a set A onto a set B using the methods we have available.
However, if A has fewer elements than B, then no function f from A to B
can be onto. There are fewer ordered pairs in f than there are elements of
B, some element of B must not appear in any of them.

To close this section, we note that if a function is not onto, the new function
obtained by replacing the target by the range is onto. In Example 7.4.4 the
function f : R — [0,00) defined by f(z) = (z + 4)? is onto. To see this,
argue as before. Take any y € [0,00). If y = f(z), then y = (z +4)?, so that
VY = |r 4+ 4]. Since y > 0, the square root of y exists. If z +4 > 0 we have
r=—4+,/y,and if x +4 < 0 we have z = —4 — /y. Since both —4 + ,/y
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and —4 — /y are in the domain (though we only need one of them to be in
the domain) and f(—4+ /y) = f(4 — /y) = y, this function f is onto.

7.5 Bijections

A function that is both injective (1-1) and surjective (onto) is sometimes
called bijective, or a bijection. Another term for a bijection is a 1-1 corre-
spondence.

How can you remember injective, surjective, and bijective? Functions that
are 1-1 go “in” to the target in separate places, the French word for on is
“sur”, and a bi-jection enjoys both properties.

The following two propositions establish important properties of bijections
and make it possible to count the number of bijections from a finite set A to
a finite set B.

Proposition 7.5.1 Let A and B be finite sets. There exists a bijection f :
A — B if and only if |A| = |B|.

Proof. (=) Suppose there exists a bijection f : A — B. Since f is 1-1 we
have |A| < |B|. Since f is onto we have |A| > |B|. Therefore, |A| = |B].

(<) Suppose |A| = |B|. Let A = {aj,a9,...,a,} and B = {by,ba,...,b,}.
Let f : A — B be defined by f(a;) = b; for i = 1,2,...,n. Then f is 1-1
because if a; # a; then f(a;) = b; # b; = f(b;). And f is onto because, for
1 =1,2,...,n, the element b; is the image of a;. Therefore f is a bijection.
O

Proposition 7.5.1 is the starting point for taking about “sizes” of infinite
sets. Infinite sets A and B are defined to have the same cardinality (“size”)
if there is a 1-1 correspondence (bijection) f : A — B. We will consider the
cardinality of infinite sets in Chapter 8

Proposition 7.5.2 Let A and B be finite sets such that |A| = |B|. A func-
tion f: A — B is 1-1 if and only if it is onto.

Proof. Let A and B be finite sets such that |A| = |B| = n,andlet f : A — B
be a function. Then f is a set of n ordered pairs such that for each a € A
there is exactly one ordered pair in f with first component a.
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Suppose that f is 1-1. Then no two of the n ordered pairs in f have the same
second component. Since |B| = n, it follows that every element of B appears
as the second component of an ordered pair in f. Therefore f is onto.

Suppose that f is onto. Then every element of B appears as the second
component of an ordered pair in f. Since |B| = n, it follows that no two of
the n ordered pairs in f have the same second component. Therefore f is
1-1.

The proof is now complete. [

Let A and B be finite sets. Let’s count the number of bijections f : A —
B. By Proposition 7.5.1, there are none unless |A| = |B|. If |A] = |B|,
then by Proposition 7.5.2, the number of bijections equals the number of 1-1
functions, which is n!.

7.6 Function composition

Let A, B, and C be sets, and f : A — B and g : B — C be functions. The
composition of f and g is the function go f : A — C defined by go f(a) =
g(f(a)), for every element a in A.

Example 7.6.1 Suppose A = {1,2,3}, B = {a,b,d,e} and C = {w, z}.
Let f : A — B be f = {(1,0),(2,¢),(3,a)}, and g : B — C be g =
{(a,w), (b, 2),(d, z),(e,2)}. Then go f: A — C is defined.

The value go f(1) = g(f(1)) = f(b) = z. Similar reasoning for 2 and 3 gives

that go f = {(1,2),(2,2),(3,w)}. Notice that f o g is not defined because
g(x) is an element of C' and f applies to elements of A.

Order matters in function composition. This is clear in Example 7.6.1 be-
cause g o f is defined and f o g is not defined. Even in cases where both are
defined, they are usually different functions.

Example 7.6.2 Let [ : Z — Z be defined by f(x) = 2> and g : Z — Z be
defined by g(x) = = + 3.

Both go f and f o g have domain Z and target Z. But they don’t have the
same values: since g o f(z) = g(f(x)) = g(2?) = 2> + 3 and f o g(x) =
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flg(x)) = fx +3) = (x +3)? = 2% + 62+ 9, we have go f(0) = 3 and
fog(0)=9. Thus, go f # fog.

We conclude this section by describing what happens when a function is a
composition of 1-1 and onto functions.

Proposition 7.6.3 If f : A — B and g : B — C are both 1-1 and onto,
then go f is 1-1 and onto.

Proof. We first show that g o f is 1-1. Suppose go f(a;) = go f(as). Then
g(f(a1)) = g(f(az)). Since f(a1) and f(az2) are elements of B and ¢ is 1-1,
f(ay) = f(a2). Now, since f 1-1, a; = ay. Therefore, go f is 1-1.

We now show that g o f is onto. Take any ¢ € C. Since g is onto, there
exists b € B such that g(b) = ¢. Since f is onto, there exists a € A such that
f(a) =b. For this a we have go f(a) = g(f(a)) = g(b) = c¢. Therefore, go f
is onto. [

The proof shows the following two facts, which together give the proposition.

e If f: A— Band g: B — C are both 1-1, then go f is 1-1.

e If f: A— Band g: B — C are both onto, then g o f is onto.

It is natural to wonder if the converse of Proposition 7.6.3 holds. That is, if
go fis 1-1 and onto, must both f and g be 1-1 and onto. It doesn’t, as we
now demonstrate.

Example 7.6.4 Suppose f: A— B and g : B — C are functions such that
go f is 1-1 and onto. Prove that g is onto and f is 1-1.

Proof.
The function g must be onto because an element which is not in the range of
g can not be in the range of go f.

The function f must be 1-1 because if there exist different elements ay,ay € A

such that f(ay) = f(az), then go f(ay) = go f(as).

Question 7.6.5 Let A = {1}, B = {1,2}, and C = {2}. Find functions
f:A— B and g: B — C such that go f is 1-1 and onto but f is not onto
and g is not 1-1.
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7.7 The identity function

In the arithmetic of real numbers, 0 is an identity for addition: x + 0 = x
for all real numbers x (adding zero does not change anything). Further,
the additive inverse of x (i.e. its negative) is the number —z such that
x4 (—z) = 0 (the sum is the additive identity). Similarly, 1 is an identity
for multiplication: 1x = x for all real numbers x. The multiplicative inverse
of a non-zero number z (i.e. its reciprocal) is the number 1/x such that
z(1/x) =1 (the product is the multiplicative identity).

In this section we describe an identity for function composition. If there is
such a function, it should have the property that it changes nothing when its
operation (function composition) is applied, just like identities for addition
and multiplication in real numbers. That is, we want an “identity function”
to have the property that the result of composing it with a function f is
the function f. In the next section we will relate this identity to inverses of
functions.

Let A be a set. The identity function on A is the function 14 : A — A defined
by ta(a) = a for every a € A. (Note: the symbol ¢ is the Greek letter iota.)

The identity function does absolutely nothing in the sense that it sends every
element of A to itself. It is an easy exercise to check that ¢4 is 1-1 and onto.

Proposition 7.7.1 Let A and B be sets, and f : A — B a function. Then
foita=fandipo f=Ff.

Proof. We prove only the first statement. The proof of the second statement
is similar. Since t4 : A — A, we have fots : A — B, so this function has
the same domain and target as f. It remains to show it has exactly the same
values. Take any a € A. Then fouy(a) = f(ta(a)) = f(a). This completes
the proof. [

Two different identity functions appeared in the previous proposition because
otherwise the function composition is not defined.
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7.8 Inverse functions

By analogy with additive inverses and multiplicative inverses for real numbers
(see the discussion at the start of the last section), an inverse for a function
f A — B should be a function g : B — A such that go f = 14. That
is, the function g should have the property that f(a) = b < g(b) = a. If
this happens, then f should also be an inverse for g, and so we should have

f 0g=1lp.
Formally, we define functions f : A — B and g : B — A to be inverses if

f(a) =b< g(b) = a. Equivalently, f: A — B and g: B — A are inverses if
gof=14and fog=1p. A function is called invertible if it has an inverse.

Hidden in the definition is the condition that if f and g are inverses, then
that the target of f is the domain of g, and the domain of f is the target of
g.

The equivalent statement of the definition gives a method for checking if
functions f and g are inverses: show that go f = 14 and fo g = ip.
It is important that both go f = 14 and f o g = tp hold. To see that,
take A = {1,2} and B = {w,y,z}, and let f = {(1,w),(2,2)} and g =
{(w, 1), (y,1),(2,2)}. Then go f =14. But f and g are not inverses: g maps
y to 1 but f maps 1 to w. That is, f o g # tp.

When does a function f : A — B have an inverse, g7 If g exists, then
(remembering the definition of f as a set of ordered pairs) by the definition
of inverses it must be that g = {(b,a) : (a,b) € f}. For this to be a function,
there must be exactly one ordered pair with first component b for each b € B.
Therefore, f must map exactly one element of A to each element of B. Since
“exactly one” implies “at most one”, f must be 1-1. And since “exactly
one” implies “at least one”, f must be onto. We have just proved half of the
theorem that characterizes (completely describes) the functions that have an
inverse.

Theorem 7.8.1 A function f : A — B has an inverse g : B — A if and
only if it is 1-1 and onto.

Proof. We have already seen (above) that if f has an inverse, then f is 1-1
and onto. It remains to prove the converse implication. Suppose f is 1-1
and onto. Then every element of B is the image of exactly one element of
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A (at most one because f is 1-1, and at least one because f is onto). Hence
g={(b,a) : (a,b) € f} is a function. By the definition of inverses, it is the
inverse of f. [J

It follows from the definition that if g is the inverse of f, then f is the inverse
of g. Hence g is also 1-1 and onto.

The inverse of a function f : A — B is commonly denoted by f~!. It is
a function with domain B and target A. (Remember that the inverse here
is with respect to function composition, so this is neither the negative of
f nor the reciprocal of f.) Since the inverse of the inverse is the original
function (that is, if the inverse of f is g, then the inverse of ¢ is f), we have
(fH=! = f. Further, f'of=14and fo ft=up.

7.9 Exercises

1. For each of the following, if the statement is true then prove it, and if
it is false then give an example or explanation demonstrating it is false.
(a) The function f: Q — R defined by f(z) = x is invertible.
(b) The function f :Z — Z defined by f(z) = 3z — 2 is onto.
(¢) The function f: R — R defined by f(z) =7z + 9 is 1-1.
2. List all of the functions from {a,b,c} to {a,b} and identify the ones

that are (i) one-to-one, (ii) onto, (iii) both one-to-one and onto, (iv)
neither one-to-one nor onto.

3. (a) Give an example of a function from N to Z that is onto. Is your
function also 1-17
(b) Give an example of a 1-1 function from Z to N. Is your function
also onto?

4. Let a and b be integers, with a # 0.

(a) Is the function f : R — R, where f(z) = ax + b, 1-1 and onto?

(b) When is the function f : Q — Q, where f(z) = ax + b, 1-1 and
onto?

(¢) Repeat part (b) with Q replaced by Z.
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5. Suppose that f is a function from A to B. Let g = {(y,x) : (x,y) € f}.
Explain why ¢ being a function from B to A implies that f is 1-1 and
onto (hint: the definition of function).

6. Let f and ¢ be the functions from {a,b,c,d,e, f} to {a,b,c,d,e, f}
given in the following table:

T = blcld|el|f
fle)y=1c|d el flb
glx)=|b|c|a fld

(a) Find fogand go f.
(b) Show that g~! = ¢ The notation g?> means g o g. In general, ¢g"
means gogog - - -og, where g appears n times (n— 1 compositions).
(c) Find f2 and f* = (f%)2. What does this tell you about f=1?
7. Let f: A— B and g: B — C be functions with A = {a,b,c,d}, B =

{1,2,3}, C ={w,z,y,z} such that go f = {(a,y), (b,x), (c,w), (d,w)}
and g = {(1,y), (2,w), (3,z)}. Find f.

8. Let f: A— B and g: B — C be functions. Prove:

(a) If g o f is one-to-one and f is onto, then g is one-to-one.
(b) If go f is onto and g is one-to-one, then f is onto.

(c) Give an example to show that, in (a) and (b) above, f need not
be onto and g need not be one-to-one.

(d) Let A= {1,2} and B = {a,b,c}. Let the functions f and g be

f= {(1,@),(2,[))} and g = {(avl)v(b’ 2)’(0’1)}'

Verify that g o f = 14, and then explain why ¢ is not the inverse

of f.

9. Indicate whether each statement is true or false, and briefly justify your
answer.

(a) The relation {(z,y) : y* = (x —2)*+4} is a function from R to R.

(b) Suppose |A| > 6. Every function f : A — {1,2,3,4,5,6} that is
onto contains exactly six ordered pairs.
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(c¢) If f:{a,b,c,d} —{1,2,3} and g: {1,2,3} — {a,b,c,d} are such
that fog(x) = x for every x € {1, 2,3}, then g is the inverse of f.

(d) Let f: A— Bandg: B— C. If go f is a 1-1 correspondence,
then g o f has an inverse and |A| = |C/|.
10. Let a and b be integers, with a # 0.

(a) Is the function f: R — R, where f(x) = ax + b, 1-1 and onto?

(b) When is the function f : Q — Q, where f(z) = ax + b, 1-1 and
onto?

(c) Repeat part (b) with Q replaced by Z.



Chapter 8

Cardinality of sets

8.1 1-1 Correspondences and Cardinality

A 1-1 correspondence from a set A to a set B is a bijection f : A — B, that
is, a function from A to B which is 1-1 and onto.

If f is a 1-1 correspondence between A and B, then f associates every element
of B with a unique element of A (at most one element of A because it is 1-1,
and at least one element of A because it is onto). That is, for each element
b € B there is exactly one a € A so that the ordered pair (a,b) € f. Since f
is a function, for every a € A there is exactly one b € B such that (a,b) € f.
Thus, f “pairs up” the elements of A and the elements of B.

Proposition 8.1.1 Let ~ be the relation on the collection of all subsets of
the universe U defined by A ~ B if and only if there is a 1-1 correspondence
from A to B. Then ~ is an equivalence relation.

Proof. Let A be a set. The identify function ¢4 is a 1-1 correspondence from
A to A. Therefore A ~ A and ~ is reflexive.

Suppose A and B are sets such that A ~ B. Therefore, there is a 1-1
correspondence f from A to B. Since the function f is invertible and f~! is
a 1-1 correspondence from B to A, we have B ~ A, and ~ is symmetric.

Suppose A, B and C' are sets such that A ~ B and B ~ C. Then there are
1-1 correspondences f : A — B and g : B — (. By Proposition 7.6.3 the

191
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function go f is a 1-1 correspondence from A to C' we have A ~ C, and ~ is
transitive.

Therefore, ~ is an equivalence relation. [

As in the proof of Proposition 8.1.1, if there is a 1-1 correspondence from
A to B, then there is also a 1-1 correspondence from B to A. Thus, where
there is a 1-1 correspondence from A to B (and hence also from B to A),
then we say that A and B can be put into 1-1 correspondence.

Let’s think a bit about the the equivalence classes of the equivalence relation
in Proposition 8.1.1. If |A| = n, then we know from Proposition 7.5.1 that
A can be put into 1-1 correspondence with a set B if and only if |B| = n.
Therefore, if A is a finite set, then the equivalence class [A] consists of the
sets with the same number of elements as A. If we extend this thinking to
infinite sets, then we arrive at a way to talk about the “size” of infinite sets.

We say that sets A and B have the same cardinality, and write |A| = | B,
if A and B can be put into 1-1 correspondence. If A can be put into 1-1
correspondence with a subset of B (that is, there is a 1-1 function from A to
B), we write |A| < |B|.

8.2 Cardinality of finite sets

A set is called finite if it can be put into 1-1 correspondence with {1,2,... n}
for some integer n > 0. (Note that {1,2,...,n} = () when n =0.)

The cardinality (size) of a finite set X is the number | X| defined by |X| =n
if X can be put into 1-1 correspondence with {1,2,... n}.

When we count the number of objects in a collection (that is, set), say
1,2,3,..., n, we are forming a 1-1 correspondence between the objects in
the collection and the numbers in {1,2,...,n}. The same is true when we
arrange the objects in a collection in a line or sequence. The first object in the
sequence corresponds to 1, the second to 2, and so on. Thus an equivalent
definition of the cardinality of a finite set X is that |X| = n if and only
if there is a sequence of n terms in which each element of the set appears
exactly once.
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8.3 Cardinality of infinite sets

A set is infinite if it is not finite.

The definition of “infinite” is worth a closer look. It says that a set is infinite if
it is not empty and can not be put into 1-1 correspondence with {1,2,...,n}
for any n € N. That means it has more than n elements for any natural
number n.

Strange and wonderful things happen when the definition of two sets having
the same cardinality is applied to infinite sets.

Example 8.3.1 The function f: N — {12,223 ...} defined by f(n) = n?
is a 1-1 correspondence between N and the set of squares of natural numbers.
Hence these sets have the same cardinality.

Example 8.3.2 The function f : 7 — {...,—2,0,,2,4} defined by f(n) =
2n is a 1-1 correspondence between the set of integers and the set 27, of even
integers. Hence these sets have the same cardinality.

The notation 27 is used in the previous example because its elements are
obtained by multiplying each element of Z by 2. For an integer k£ > 1, the
set kZ is the set whose elements are obtained by multiplying each element

of Z by k.
Question 8.3.3 Prove that |Z| = |kZ)|.

Question 8.3.4 Prove that |N| = |Z| by proving that f : N — Z defined by
f(n) = (=1)"|n/2] is a 1-1 correspondence.

Theorem 8.3.5 Any non-empty open interval of real numbers has the same
cardinality as R.

Proof. Every non-empty open interval of real numbers is of the form (a,b),
or (a,00), or (00,b), where a,b € R.

We first show any two non-empty open intervals of finite length have the
same cardinality as (0,1). Let a,b € R such that a < b. Since the function
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f:(0,1) — (a,b) defined by f(z) = a+ (b — a)x is a 1-1 correspondence
between (0,1) and (a,b) (exercise: verify this), we have |(0,1)| = |(a,b)|.
Now let a € R and consider the open interval (a,00). Since the function
g:(0,1) = (a,00) defined by g(z) = 2 + (a — 1) is a 1-1 correspondence
between (0, 1) and (a,00) (exercise: verify this), we have |(a,00)| = |(0,1)].
Similarly, |(—oo, b)| = |(0,1)].

We complete the proof by showing that [(0,1)] = |R|. Since |(0,1)] =
|(—1,1)], it is enough to describe a 1-1 correspondence between (—1,1) and
R. The function h : (—=1,1) — R defined by

0 ite=0
hx)=q¢—-1+1/x ifz>0
1+1/x ifz<0

is a 1-1 correspondence between the open interval (—1,1) and R (exercise:
verify this). Therefore, |R| = |[(—1,1)| = |(0, 1)].

The proof is now complete. [J

Notice, for example, that

but

(0, )] = 1(0,2)] = -- - (0, 00)| = [R].

It will turn out that N and R do not have the same cardinality (R is “bigger”,
in fact so is (0,1)). Some theory must be developed before this statement
can be made meaningful.

8.4 Countable Sets and Sequences

A set X is countably infinite if there is a 1-1 correspondence between N and
X. A set X is countable if it is finite, or countably infinite.

According to the examples in the previous section, the set of squares of
natural numbers is a countably infinite set, and so are Z and 27Z. It will turn
out that any infinite subset of the integers is countably infinite, and there are
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lots of other countably infinite sets. Surprisingly, perhaps, the set of rational
numbers is also countably infinite. The argument used to prove that rests
on the principles that follow.

We mentioned before that if a set is finite then its elements can be arranged in
a sequence. When this happens we're actually forming a 1-1 correspondence
with {1,2,...,n}. Something similar happens with countably infinite sets.

If there is a 1-1 correspondence f : N — X, then there is a sequence of ele-
ments of X that contains every element of X exactly once: f(1), f(2), f(3),....
The converse is also true. A sequence x1,xs,... that contains every element
of X exactly once is the same as a 1-1 correspondence f : N — X: define
f(n) = x,, the n-th element of the sequence.

We can drop the condition that every element of X be contained in the
sequence exactly once and, instead, require only that every element of X be
guaranteed to appear somewhere in the sequence. Why? If such a sequence
exists, then we can get a sequence that contains every element of X exactly
once by deleting elements that have appeared earlier in the sequence (that
is, there is a subsequence in which every element of X appears exactly once).
This gives our main tool for proving that sets are countable.

Theorem 8.4.1 A set X is countable if and only if there is a sequence in
which every element of X appears (at least once).

Proof.

(=) The implication is easy to see if X is a finite set. If X is countably
infinite, then there is a 1-1 correspondence f : N — X, and the sequence
f(1), f(2), £(3),... contains every element of X.

(<) Suppose there is a sequence z1, Ts, . .. that contains every element of X
(at least once). Define f(1) to be the first element of the sequence that
belongs to X (such an element exists because X # (). For n > 2 let
f(n) be the first element of X in the sequence that is not an element of
{f(1), f(2),..., f(n — 1)} (such an element exists because X is countably
infinite). Then f is 1-1 by its construction. To see that f is onto, take
any y € X. Then y appears somewhere in the sequence. Suppose x; is the
first element of the sequence that equals y. Then, by the description of f,
y = f(n) for n =1+ [{z1,29,...,2,-1}|. Hence f is onto. Since f is also
1-1, it is a 1-1 correspondence. []
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Theorem 8.4.1 suggests a really good way to think about countable sets. A
countable set is a set whose elements can be systematically listed so that every
element eventually appears. Since every element of the set appears in the list,
if we go far enough along the list we will eventually find any element we're
looking for.

8.5 Examples of Countably Infinite Sets

We will now explore some amazing consequences of Theorem 8.4.1. Notice
that the sequence in the statement can contain elements that are not in X.

Corollary 8.5.1 Any subset of Z is countable.

Proof. Let X be a subset of Z. The sequence 0,—1,1,2,—2,... contains
every integer exactly once. The result follows from Theorem 8.4.1. [

Almost exactly the same argument that proves Corollary 8.5.1 can be used
to prove a stronger result.

Question 8.5.2 Prove that any subset of a countable set is countable.

It can come as quite a shock that the set of rational numbers is countable.
We have all of the tools to prove it, but first will illustrate the argument by
showing that N x N is countable. For reasons that will become evident, the
method of proof is called “diagonal sweeping”.

Theorem 8.5.3 The set N x N s countable.

Proof. It suffices to describe a sequence in which every element of N x N
is guaranteed to appear. The elements of N x N are the coordinates of the
lattice points (points with integer coordinates) in the first quadrant of the
Cartesian plane. The sequence is illustrated by the arrows in Figure 8.1. It is
clear that every element of N x N eventually appears: the components in the
ordered pairs on subsequent diagonals sum to 2, 3, .... Therefore the ordered
pair (a,b) appears on diagonal a + b, and the elements on this diagonal all
appear in the list when it is “swept out”. [
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(3,2)
(1,1) — (2,1)  (3,1) — (4,1)

Figure 8.1: Using diagonal sweeping to list the elements of N x N

Theorem 8.5.4 The set, Q, of rational numbers is countable.

Proof. List the rationals as shown in Figure 8.2. The first row consists of
the rational numbers with denominator 1, the second row consists of those
with denominator 2, and so on. In each row, the numerators appear in the
order 0,—1,1,—2,2,.... Every rational number appears because its sign (+
or —) can be associated with its numerator. [J

Notice that, on the diagonals in the figure, the sum of the absolute value of
the numerator and the absolute value of the denominator is constant. The
sum of these numbers on the ¢-th diagonal is 7. Hence, a rational number
a/b appears in the list when the elements on diagonal |a| + |b| are listed.

Almost exactly the same argument — make an array and systematically sweep
it out — proves a more general theorem.

Question 8.5.5 The union of any countable number of countable sets is
countable.

The cardinality of N is often denoted by Yy (pronounced aleph-naught or
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N

0/4 ~1/4
\ \ \
0/3 ~1/3
1 \ \ \
0/2 —1/2
0/1 —— —1/1 11— —2/1 -

Figure 8.2: Using diagonal sweeping to list the rational numbers

aleph-zero; aleph is a letter in the Hebrew alphabet). Thus the cardinality
of any countably infinite set is Nj.

8.6 Proving Sets are Countable

From the preceding section we have the following methods of demonstrating
that a set is countable. Show that:

e it is finite; or
e it is a subset of a countable set; or

e there is a sequence in which each of its elements is guaranteed to appear
at least once (the list may be made by “diagonal sweeping”); or

e it can be put into 1-1 correspondence with a set that’s known to be
countable; or

e it is the union of countably many countable sets.
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8.7 Uncountable Sets

A set is uncountable if it is not countable.

What does it mean for a set to be uncountable? According to the definitions,
it means the set is infinite, and can not be put into 1-1 correspondence with
N. That means that there is no sequence that contains all of its elements.

To show that a set like (0, 1) is uncountable (which it is), proceed by contra-
diction. Assume that it is countable. That means there is a list (sequence)
that contains each of its elements. Then, use the description of the list to
show that there is something that should be in the list, but isn’t. This is
a contradiction, so the negation of the hypothesis that the set is countable
must be true.

In the proof below, we use the fact that the real numbers are exactly the
numbers that have an infinite decimal expansion. The real numbers that
have a terminating decimal expansion have two of these: one ends in an
infinite sequence of zeros, and the other ends in an infinite sequence of nines.
Every other real number has a unique decimal expansion.

Theorem 8.7.1 The set (0, 1) is uncountable.

Proof. Suppose (0,1) is countable. Then there is a sequence that contains
at least one infinite decimal expansion of each of its elements.

1. O.Qdudlg ce
2. 0.d21@d23 Ce
3. 0.d31d32@. ..

Each d;; is a decimal digit, that is, a number between 0 and 9 inclusive.

We now describe a real number = € (0, 1) which is not in the sequence above.
The infinite decimal expansion of x is x = 0.x12923 ... where, for 1 = 1,2, ...

5 ifdy; =6
€T; =
6 otherwise

Then z € (0,1). Notice that the number x has a unique decimal expansion.
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We claim that x can not appear anywhere in the sequence. Suppose to the
contrary that it appears in position ¢, that is, x = 0.d;1d; . . .. Since x has a
unique decimal expansion, we must have z; = d;; for j = 1,2,.... But, by
definition, x; # d;; (that is, these numbers differ in the i-th digit after the
decimal point), a contradiction. This proves the claim.

We now have that x appears in the sequence above, and that x does not ap-

pear in the sequence above, a contradiction. Therefore, (0, 1) is uncountable.
O

The proof method is called “Cantor diagonalization” after Georg Cantor, and
because the number z is constructed by changing the value of the “diagonal”
digits d;. The numbers 5 and 6 were used because they are not 0 and 9,
that is, by using 5 and 6 we could not inadvertently construct a decimal
expansion of a number that is in the list because it has a second, different,
decimal expansion.

The same proof shows, for example, that the set of infinite sequences of Os
and 1s is uncountable.

Question 8.7.2 Show that the set of infinite sequences of Os and 1s is un-
countable.

Question 8.7.3 Show that the set of finite sequences of 0s and 1s is count-
able. (Hint: systematically list the sequences of length 0, then those of length
1, and so on.)

8.8 Proving Sets are Uncountable

So far, we have two methods to prove that a set is uncountable. We add a
third to the list, and provide a justification for the second and third methods.

e Cantor diagonalization.
e Show there is a 1-1 correspondence with a set known to be uncountable.

e Show it contains an uncountable subset.



8.9. OTHER CARDINALITIES 201

To justify the second bullet point, suppose X is uncountable. By definition
of uncountability, X can not be put into 1-1 correspondence with a countable
set. Therefore, any set that can be put into 1-1 correspondence with X is
uncountable. This leads to the following corollary of Theorem 8.7.1.

Corollary 8.8.1 The set R of real numbers is uncountable.
Proof. We know |R| =(0,1)|. Since |(0,1)| is uncountable, so is R.

Question 8.8.2 Prove that any non-empty open interval of real numbers is
uncountable.

To justify the third bullet point, notice that the contrapositive of the state-
ment “if X is countable then every subset of X is countable” is “If X has an
uncountable subset then X is not countable”.

We illustrate the method in the proof from the third bullet point by giving
another argument that shows R is uncountable: If R were countable, then
(0,1) would be a subset of a countable set and would be countable. Since (0,1)
is not countable, the result follows.

Sometimes the cardinality of the real numbers is denoted by ¢, where the
choice of letter is intended to convey that it is the cardinality of “the contin-
uum”. Since N C R, we have N < ¢.

Cantor’s Continuum Hypothesis (1878) asserts that there is no set X such
that Ry < |X| < ¢. The truth or falsity of this hypothesis is unknown, but
results of Godel and Cohen imply that its truth can not be settled using the
standard axioms of set theory. (That is, we can’t prove it in our logic, but
we can prove that we can’t prove it.)

8.9 Other cardinalities

The only result in this section says that, for any set X, there is a set with
cardinality larger than |X|, namely its power set. The function f : X —
P(X) defined by f(z) = {x} for each x € X is 1-1, so (since replacing the
target of this function by its range gives a 1-1 correspondence between X
and a subset of P(X)) the cardinality of P(X) is “at least as big” as the
cardinality of X.



202 CHAPTER 8. CARDINALITY OF SETS

Theorem 8.9.1 No set can be put into 1-1 correspondence with its power
set.

Proof. Let X be a set, and f : X — P(X) a function. We claim that f is
not onto. Consider the set Y defined by Y = {x € X : x ¢ f(z)}. Then
Y € P(X). Suppose there exists z € X such that Y = f(z). If z € Y, then
by definition of Y, x ¢ Y, and if x € Y, then by definition of Y, z € Y.
Both possibilities lead to a contradiction. Therefore there is no x € X such
that Y = f(z), and hence f is not onto. [J

As a matter of interest, it turns out that |[P(N)| = |R| = «¢.

8.10 Exercises

1. Give a reason to explain why each set is countable.

(a) {reR:2?=1}

(b)

(c) {2n+1:n e Z}yu{3*: k e N}.
)
)

The set P of prime numbers.

(d) The set of rational numbers with numerator between —3 and 5.

(e) The set of years since 1970 that the Vancouver Canucks have won
the Stanley Cup.

2. Let A = {aj,as,...} and B = {by,bs,...} be countably infinite sets.
Prove that A x B is a countable set. (Hint: use the same idea as was
used to prove N x N is countable. Explain why this implies that Z x Z
is countable.

3. Prove that N x N x N is countable. Does your argument generalize to
the Cartesian product of k copies of N, where £ is a positive integer?

4. Show that if A = {ay,aq,...,a,} is a finite set, then the set of all
infinite length sequences of elements of A is uncountable.

5. Prove that any non-empty half-open interval of real numbers, [a,b) is
uncountable. (Note: [a,b) = {xr € R:a <z < b}.) Do the same for
any non-empty half-closed interval (a, b].
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6. Prove that any closed interval of real numbers with positive length is
uncountable. What happens if the length is not positive?

7. Let T = R\ Q be the set of irrational numbers. Explain why the fact
that R is uncountable, and the fact that QQ is countable, together imply
that T # (). More generally, explain why I must be uncountable. (Note:
R=QUL)

8. Classify the given set as countable or uncountable, and supply a brief
justification for your answer.

(a) QN (0,1).
(

b) The closed interval of real numbers, [0, 2].

d) The set of all prime factors of 1000!.

(e) The set of all integers with at most 2'% digits in their base 16
representation.

)

)
(¢) The set C of complex numbers.
(d)

)

(f) The power set of the set of natural numbers.

(g) 0.
(h) N x R.

9. Let F={f:N—{0,1}}. Prove that F is uncountable. Explain why
this implies that the set of all functions from Z to Z is uncountable.



