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1 Propositional Logic

Exercise (1). If the statement q A r is true, determine all combinations of truth
values for p and s such that the statement

(¢ = [pVs])Alms =]
18 true.

Solution. We proceed by determining the values of p and s that ensure that the
statement is false. Then, all other truth value pairs (p,s) form the answer to the
question.

Suppose gAr is true. Then both ¢ and r are true. The only way for the statement
to be false is if either ¢ — [-p V s] or =s — r are false. Since r is true, =s — r is
always true. Since ¢ is true, the only way for ¢ — [—p V s] to be false is if —p V s is
false. Observe that —p V s is false only if both p and —s are true.

Altogether, it follows that the statement is false precisely when p is true and s is
false. Otherwise, the statement is always true. Specifically, the statement is true for

(p,s) € {(T,T),(F.T),(F, F)}. -
Exercise (3). Is the statement

(p—=q) = [p—=q —d
a tautology? Why or why not?

Solution. Consider that the only way for this statement to be false is if (p — ¢) is
true and [(p — ¢q) — ¢| is false. Let’s make these assumptions and try to find a
truth assignment for p and ¢ that makes the statement false. Since (p — q) — ¢ is
false, we conclude that p — ¢ is true while ¢ is false. Now, we check to see whether
it can be the case that (p — ¢) is true while ¢ is false. If p is false, then p — ¢ is
true. So, we have discovered that the truth assignment (p, q) = (false, false) causes
(p = q) = [(p = q) — q|] to be false. This implies that the statement is not a
tautology. ]

Exercise (5). Show that the two statements (p A q) — r and (p — 1) A (¢ — r) are
not logically equivalent.

Proof. Consider the truth assignment (p,q,r) = (true, false, false). Then since
(p A q) is false, (p A q) — r is true. However, (p — r) is false, implying that
(p = r) A (¢ — r) is false. Therefore, since the two statements have different truth
values for some truth assignment to p, ¢, and r, it follows that the statements are
not logically equivalent. O



Exercise (7). Rewrite each of the following statements, in English, into the form “if
p, then q”.

(a) I go swimming on Mondays.

(b) In order to be able to go motorcycling on Sunday, the weather must be good.
(c) Eat your vegetables or you can’t have dessert.

(d) You can ride a bicycle only if you wear a helmet.

(e) Polynomials are continuous functions.

(f) A number n that is a multiple of 2 and also a multiple of 3 is a multiple of 6.
(9) You can’t have any pudding unless you eat your meat.

Hint. In a conditional statement p — ¢, ‘p’ can be referred to as a “sufficient condi-
tion for ¢”, and ‘q’ a “necessary condition for p”. So, if you're looking for the state-
ment that takes on the role of ‘q’, look for words that imply necessity like “must”.
Similarly, for statements taking on the role of ‘p’, try to determine if one statement
causes the other statement to occur — if this happens, then the first statement is
probably a “sufficient” condition for the second statement. [

Solution.

(a) If it is Monday, then I go swimming.
(b) If one is able to go motorcycling on Sunday, then the weather is good.
(c) If you don’t eat your vegetables, then you can’t have dessert.

e Equivalently, the contrapositive is “If you can have dessert, then you ate
your vegetables.”

(d) If you can ride a bicycle, then you wear a helmet.

e Notice that you can read the words “only if” as a rightward implication
‘—’. The “only if” phrase indicates that the following statement is a
necessary condition for the preceding statement.

e Conversely, if you see “Statement ¢, if statement p”, then the “if” here
(without the “only” preceding it) indicates that p is a sufficient condition
for q.



e Hence, we often write “p if and only if ¢” to indicate a biconditional
statement p < gq.

(e) If a function f is a polynomial, then f is continuous.

e Even though the original statement was about the plural “polynomials”,
the phrasing in the answer is singular here because we interpret f as a
“generic representative” for the set of polynomial functions.

(f) If a number n is both a multiple of 2 and a multiple of 3, then n is a multiple
of 6.

(g) If you don’t eat your meat, then you can’t have any pudding.

e Equivalently, the contrapositive is “If you can have pudding, then you
have eaten your meat.”

O
Exercise (9).

(a) It is possible for an implication and its contrapositive to have different truth
values.

(b) If the statement q is true, then, for any statement p, the statement p — q is
true.

(c) If s1 — s9 is a contradiction, then so is its contrapositive.
(d) There are truth values for p and q such that p — q and ¢ — p are both false.
(e) (=pV q) AN=(—pVq) is a contradiction.

(f) If the statement P is a contradiction, then, for any statement q, the statement
P — q is a tautology.

(9) If two statements are logically equivalent, then so are their negations.
Solution.

(a) False. An implication statement is always equivalent to its contrapositive.
“Equivalence” here means precisely that the truth values must be equal.



True. The only way for p — ¢ to be false is if the truth of p does not imply
the truth of ¢, and this occurs only when ¢ is false and p is true.

True. s; — s9 is logically equivalent to —sy — —sy.

False. The only truth values that cause p — ¢ to be false are p true and q false;
similarly, if ¢ — p is false, then ¢ is true and p is false. Both of these truth
assignments cannot occur simultaneously.

True. It is impossible for a statement and its negation to both be true.

True. Since P is a contradiction, it is always false. Since implication statements
are always true when the antecedent is false, P — ¢ is a tautology.

True. If s; <> s9, then s7 is true exactly when s, is true. This is the same thing
as saying that s; is false exactly when sy is false, which is the same thing as
saying that —s; is true exactly when —s, is true. ]

Exercise (12). Use known logical equivalences to show that —(p <> q) is logically
equivalent to (pV q) A (p — —q).

Proof. Using the equivalence shown in Example 1.9.1 of the notes, we have that

peqge (pAQV(—pA-g).

So,
~(p < q)
< a((pAq)V(—pA—q)) Logical equivalence
< a(pAg) A=(=p A —q) DeMorgan’s law
< (pVq)A(pVQ) DeMorgan’s law (2x)
S (p——9 N(pVa) Logical equivalence
< (pVa) Ap— —q) Commutativity
Thus =(p <> q) & (pV q) A (p = ). O

Exercise (13). Find an expression logically equivalent to =(p <> q) that involves only
- and V.



Solution. First, notice that p <> ¢ is equivalent to (p — ¢q) A (¢ — p). This conjunc-
tion is equivalent to =(=(p — ¢) V =(¢ — p)). Then p — ¢q, ¢ — p are equivalent
to =p V ¢ and —q V p, respectively. So, an expression that is logically equivalent
to (p <> q) is =(=(=p V q) V =(—q V p)). Prepending the negation to this gives the
following equivalence to —(p <> q):

—(=(=(=p V)V (=g Vp))).
Moreover, the only logical operators used in this expression are ‘=" and ‘V’. O]

Exercise (17). Determine whether each statement is true or false, and briefly explain
Your reasoning.

(a) If an argument is valid then it is possible for the conclusion to be false when
all premises are true.

(b) If the premises can’t all be true, then the argument is valid.
(c) If p<q and g < r, then p < r.
Solution.

(a) False. An argument is valid if the truth of all its premises implies the truth of
its conclusion. That is, if the implication (py Apa A---Ap,) — ¢ is a tautology,
where py, po, ..., p, are the premises and ¢ is the conclusion.

(b) True. If the conjunction of all premises (p; Apa A« Ap,) is always false, then
the implication (py A pa A -+ A p,) — ¢ is true, regardless of the truth value
assigned to q.

(c) True. This follows by the transitivity property of “=" and “<".

O
Exercise (19). Use basic inference rules to establish the validity of the argument

p— q
qVvr
pVu

-r
U



Proof.

l.gvr Premise
2. —r Premise
3. q 1,2, Disjunctive syllogism
4. p— —q Premise
5.q— —p 4, Contrapositive
6. —p 3,5, Modus ponens
7.pVu Premise
8. u 6,7, Disjunctive syllogism
Therefore, the argument is valid. ]

Exercise (21). Show that the following argument is not valid.

pVr
PVg
qVvr

Proof. We construct a counterexample. Suppose ¢ V r is false. Then both ¢ and r
are false. Since the premises p V r and p V ¢ must be true, it follows that p must be
true. We have found a truth assignment (p,q,r) = (true, false, false) that ensures
that the premises are true, but the conclusion is false. Therefore, this argument is
invalid. O]

Exercise (22). Write the argument below in symbolic form. If the argument is valid,
prove it. If the argument is not valid, give a counterexample.

If I watch football, then I don’t do mathematics.
If I do mathematics, then I watch hockey.
If I don’t watch hockey, then I watch football.

Solution. Denote p := “I watch football”, ¢ := “I do mathematics”, and r := “I watch hockey”.
Then the symbolic form of the argument becomes

pP—q
q—r
-r = p.



We show that this argument is invalid by constructing a counterexample. Suppose the
conclusion —r — p is false. Then —r is true and p is false. This implies that r is false.
Therefore, the premise p — —¢q is true regardless of the value of ¢; and, ¢ — r can be
true if ¢ is false.So, there exists a truth assignment (p,q,r) = (false, false, false)
such that the premises p — —¢ and ¢ — r are both true, but the conclusion —r — p
is false. ]

Exercise (24). If the argument below is valid, then use any method to prove it.
Otherwise, give a counterexample to show that the argument is invalid.

- —p
q— P
—(rvit) — —q

Proof. One way to show that an argument is valid is by a proof by contradiction:
suppose its conclusion is false and its premises are all true, then show that at least
one of its premises actually must also be false, which is a contradiction.

Suppose the conclusion =(r V t) — —¢ is false. Then it must hold that —(r V t) is
true and —q is false. So, ¢ is true. Since —(r V t) is true, we have that r \V ¢ is false,
implying that both r and ¢t must be false. So far, we have that ¢ is true, and both
r and t are false. Since ¢ is true and the second premise ¢ — —p is true, we must
have that —p is true, implying that p is false. However, since r is false, —r is true;
but, then the first premise must be false, a contradiction. So, no truth assignment
to p, q,r,t causes both premises to be true and the conclusion to be false. Therefore,
the argument is valid. [



2 Quantifiers and Written Proofs

Exercise (1). Suppose the universe for the variables is the integers. Let p(n) be ‘n
is even” and q(n) be ‘“n is odd”. Determine the truth value of each statement and
provide a brief explanation of your reasoning.

(a) Vn,p(n)V q(n).
(¢) 3n,p(n) = q(n).
(d) [vn,p(n)] A [Vn, q(n)].
(f) 3In,Ym,n+m = 0.
Answer (a). In natural language, we have:

VA"’L p(n) V; q(n)

“For all n in the set of integers, either n is even “or " n is odd.”

This statement is true because for every integer n, there exists an integer £ such that
either n = 2k (definition of an even number) or n = 2k + 1 (definition of an odd
number). O

Answer (c). In natural language:
“There exists an integer n such that, if n is even, then n is odd.”

This statement is true. Consider n = 1. Then n is odd and so the statement “if n is
even, then n is odd” is true. O

Answer (d). Natural language:
“For every integer n, n is even; and, for every integer n, n is odd.”
This statement is false, because it is a conjunction of two false statements. ]
Answer (f). Natural language:
“There exists an integer n such that, for every integer m, the sum n + m equals 0.”

This statement is false. Notice that the order of the existential and universal quan-
tifiers matters here. There does not exist an integer n such that n +m = 0 for all
integers m. Rearranging the equation (by subtracting m from both sides), this would
mean that every integer m would satisfy n = —m, which is definitely false since n
is a fixed integer. O



Remark (For part f). Be sure to compare this question with Question le.

Exercise (3). Use the example where the universe is the integers, and the statements
in Ezxercise 1 to:

(a) Ezplain why Vz,p(x) A q(x) is logically equivalent to [V, p(z)] A [Vz, ¢(x)].
(b) Explain why 3x,p(x) V q(x) is logically equivalent to [3x,p(x)] V 3z, q(z)].

Answer (a). Let A be the statement Vz,p(z) A ¢(z) and let B be the statement
Vz,p(x)] A [Vz,q(x)]. We show that A <> B. Recall that this is equivalent to
showing that that (A — B) A (B — A) is true.

As shown in Chapter 1 (Example 1.9.1 pg 21), this is equivalent to showing that
(AANB)V(—AA—-DB) is true. Since this is a disjunction of two bracketed (conjunction)
statements, it is sufficient for us to only show that the latter conjunction statement
is true.

By Chapter 2 Exercise 1 Part d, B is false, and so =B is true. Notice that A says
that for every integer x, = is both even and odd, which is false. So, = A is also true.
We've shown that (mA A =B) is true, and so A <> B. O

Answer (b). We use a similar argument as in part (a) where we apply the equivalence
from Example 1.9.1 in the notes.

Let A be the statement Jx,p(x) V ¢(x), and let B be the statement [z, p(z)] V
[Fz, ¢(x)]. Recall from our solution to part (a) that it is sufficient to show that
(A A B) is true or (mA A —B) is true. In this case, we’ll show that the former]
conjunction is true.

Notice that the statement in Exercise 1(a) implies that A is true, and the state-
ment in Exercise 1(b) implies that B is true. Therefore (A A B) is true, and thus
A+ B. O

Exercise (5). Suppose that the collection of allowed replacements for the variable
p is {Gary, Christi} and the collection of allowed replacements for the variable ¢
is {W hitehorse, Ottawa, Halifax}. Let v(p,c) be the statement “p has visited ¢”.
Write each statement in symbolic form without quantifiers.

(a) Christi has visited every city.
(b) There is a city Gary has not visited.

(c) For every person there is a city which they have visited.

Léformer” means first thing listed; “latter” means second thing listed.

10



Answer. For ease of reading, set
G = Gary, C := Christi, W := Whitehorse, O := Ottawa, H := Hali faz.
Then we have:
(a) v(C, W) A v(C,0) A v(C, H).
(b) =(G,W) V —u(G,0) vV —u(G, H).
(c) (U(G, W) Vv (G,0) V u(G, H)) A (U«J, W) vV v(C,0) V U(C,H)) 0

Exercise (9). Let L be a given real number. We say that a sequence ay,as, ... of
real numbers has limit L, if for every real number € > O there exists an integer N
such that |L — a,| < € for alln > N.

(a) Write the criteria above for a sequence ay,as, ... of real numbers to have limit
L in symbols. Don’t forget to specify the universe for each variable.

(b) Write the negation of the criteria in symbols.

(¢) Ezplain in words how the negation of the criteria tells you when you can con-
clude a sequence ay,as, ... of real numbers does not have limit L.

(d) Apply the negation of the criteria to show that the sequence ay,as, ..., where
a, = (—1)", does not have limit 0.

Answer (a). In symbols: Let R.q be the set of all positive real numbers, and Z-
the set of all positive integers. Then the definition of the limit L for the sequence
ai,as, ... in symbols is:

Ve € Rog,IN € Z+o,Yn > N,|L — a,| <e. O

Answer (b). In natural language, we want to say “there exists a positive real epsilon
such that for every positive integer NN, it holds that there exists n > N such that
|L —a,| >¢€”

In symbols, we have

Je € Rug, VN € Z+o,In > N,|L — a,| > €. ]

Answer (c). The negation of the criterion tells us how we may find a counter-example
to the sequence having limit L. That is, we may possibly find some real ¢ > 0 such
that for all positive integers N, there is an n > N such that |L — a,| > €. O

11



Answer (d). Observe that the sequence is the alternating sequence of 1s and —1s:
1,—1,1,—1,..., which we know from calculus does not have a limit of 0 (Indeed
lim,,_, o @, does not exist).

Here’s how to prove this: The value € := 1 provides a valid counterexample to the
limit being 0. Using the negation from Part b of this question, we have that for all
integers N > 0, there exists an n > N such that |0 —a,| > 1. Note that [0 —a,| =1
for all n. Since the negation of the limit of a,, as n approaches co being 0 is true, we
can conclude that lim, . a, # 0. H

Exercise (15).

(d) The product of two even integers is even. Further, this product is a multiple of
4.

(9) If a and b are integers such that a + b is even, then a and b are both even or
both odd.

(1) If a and b are integers such that ab is even, then a is even or b is even.

Proof of (d). Let a and b be two even integers. Then we my write a = 2j and b = 2k
for some integers j and k. It follows that

ab= ()2 k) =2 -2-k),
which is a multiple of 2, so a - b is even. Observe that additionally, we have
2j2- k) =225 k) = (22 - k) = 4(jk).
So, a - b is also a multiple of 4. O

Proofs of (g). Direct proof: Let a and b be integers such that a + b = 2j for some
integer j. Then subtracting 2b from both sides, we have a — b = 25 — 2b, which is
equivalent to a —b = 2(j —b). So, a and b have an even difference, which means they
must have the same parity (they are both even or they are both odd). ]

Contrapositive proof: Suppose a and b have different parity (this is the negation
of the consequent “a and b are both even or both odd”). We may assume that a is
even and b is odd (this is because the opposite case, when b is even and a is odd,
can be addressed using the same argument). Write a = 2j and b = 2k + 1 for some
integers j and k. Then

a+b=2+2k+1)=(2j+2k)+1=2(+k)+ 1,

which is an odd number, and so it is not even. O

12



Proof of (i). Suppose a and b are integers such that ab = 25 for some integer j. Since
a, b, and j are integers satisfying ab = 27, the factor of 2 in 25 must divide ab. Since
2 is a prime number, it has exactly one factor (other than 1), and so it cannot be
shared between a and b. So, at least one of a or b must be be a multiple of 2. That
is, either a or b must be even. O

Remark. The key idea behind each of these questions in Exercise 15 is to use the
definitions of even and odd integers, which allow you to express these properties in
terms of elementary arithmetic. Then you can use elementary arithmetic and facts
about integer divisibility to deduce the various conclusions.

Exercise (16). Prove that /3 is irrational. (Hints. Use Proposition 2.4.4, and, in
the proof that /2 is irrational, read the phrase “is even” as “is a multiple of 27, and
then try using the same argument with 2 replaced by 3.)

Proof. Suppose that v/3 is rational. Then we may write v/3 = 7, where a and b are
integers such that b is not 0. We may assume that a and b are chosen so that a/b is a
reduced fraction (lowest terms), which means that a and b share no divisors greater
than 1 (note that if they did, the greatest common divisor would cancel and leave
the fraction value unchanged).

Squaring both sides of v/3 = 7 gives 3 = Z—; Then multiplying both sides by v?
yields a? = 3b2. In other words, a? is a multiple of 3. Moreover, applying Proposition
2.4.4 (from the course notes), we have that a is a multiple of 3. We may then write
a = 3k for some integer k. Now, observe that

a® = 3b* & (3k)? = 3b* < 9k* = 3b* < b? = 3k2

Therefore b? is a multiple of 3, which again by Proposition 2.4.4 implies that b is a
multiple of 3.

However, this contradicts our initial choice of a and b. We chose a and b so that
a/b is a reduced fraction, which means that a and b share no divisors greater than 1.
Yet we have deduced that both a and b share the divisor 3, a contradiction. So, our
initial assumption that v/3 was rational must be incorrect, and so we must conclude
that v/3 cannot be written as a fraction of integers. Therefore, v/3 is irrational. [

13



3 Set Theory

Exercise (1). Let A ={1,2,{1,2}}. Answer each question true or false, and briefly
explain your reasoning.

(b) {1,.2} G A
(c) {2.{1,2}} C A.
(e) ANP(A) = 0.

Answer. Part (b): True. The set A contains both elements ‘1’ and ‘2’, and so the
set {1,2} is a subset of A. Moreover, {1,2} is a proper subset of A because there
exists x € A such that = ¢ {1,2}, namely z = {1, 2}.

Part (c): True. The explanation is similar as in part (b). Note that even though
{1,2} is itself a set, it is still an element of A. Recall that the symbol ‘C’ simply

means “subset of” and so B C A allows for the possibility that B is proper or equal
to A. O

Hint. Part (e): Let’s calculate P(A) and see:

P(A) = {10} {13 (1,2}, {1 {121}, {12, (1,2}, {2} {2, (1,23}, {121} ).
Does there exist an element x € A such that x € P(A)? O
Exercise (2). Answer each question true or false, and briefly explain your reasoning.

(a) If A, B, C are sets, then (AUB)UC = (CUB)UA.
(c) If x € A, then {z} € P(A).

Answer. Part (a): True. We may argue this efficiently using the commutative law
of set theory twice, followed by associativity:

(AUB)UC=CU(AUB)=CU(BUA)=(CUB)UA. O

Hint. Part (c): As with any math problem, the first thing to do is to understand
the definitions of the objects involved in the question. What is A7 It is a set. What
is P(A)? It is the power set of A: the collection (set) of all subsets of A. So, if
x € A, must {x} be a subset of A? O

Exercise (4). Let A and B be sets. Prove that AUB=ANB & A=DB.

14



Proof. (=): Suppose AUB = AN B. Observe that the elements of AU B are either
in both A and B or in exactly one of A and B. More formally, using set-builder
notation, we have

{r:z€eAUB}={z:(r€ANB)V(r € Ad B)}.

Using set theory notation: AUB = (ANB)U(A® B). By assumption, AUB = ANB,
and so there are no elements in exactly one of the sets A and B. That is, A@ B = 0,
meaning that the only elements in A or B are common between them. In other
words, A = B.

(«<): Suppose A = B. Then by assumption and the idempotence laws, we have
AUB=AUA=A,and ANB=ANA=A. Thus AUB=ANB. [

Exercise (6). Prove that if AG B and B C C, then A& C.

Proof. Suppose A ;Cé B and B C C. Recall from Proposition 3.6.4 that the subset
relation is transitive. So, since A is a subset of B, and B is a subset of C, we may
conclude that A is a subset of C. Since A is a proper subset of B, there exists y € B
such that y ¢ A. Since A is a subset of C', we have that y € C. Finally, since y ¢ A,
it follows that A must be a proper subset of C, that is, A ;Cé C. ]

Exercise (9). Prove that for all sets A and B, (A\ B)U (AN B) = A.

Proof. In natural language, we can sub-divide the elements of A into two classes as
follows:

Every element x in A is either also contained in B, or it is not. (1)
Using set-builder notation: The set of elements in A that are also in B is
{r:(re AN(xeB)}=ANB,

¢

where this equation is the definition of set intersection: ‘. The set of elements in

A that are not contained in B is
{z:(zeA)N(x¢B)}=A\B,

where this equation is the definition of set difference: ‘\’. Altogether, Statement
can be expressed using set-builder notation as the union of these two sets:

{z:(ze AN(xeB)}U{x:(xreA)A(z ¢ B)},

which, as we observed by the definitions, is equal to (AN B)U (A \ B). O

15



Exercise (10). Give a counterezample to each statement.
(a) (A\B)NC = (ANC)\ B¢, forall A, B, and C.

Answer. Part (a): Suppose the universe of discourse is U = {1,2,3}. Consider
A=1{1,2}, B=1{2}, and C' = {2,3}. Then

(A\B)NnC ={1}n{2,3} = 0.
However,
(ANC)\ B ={2}\ {1,3} = {2}.
Since ) # {2}, we have shown an example of sets A, B, and C' satisfying (4 \ B) N

C # (ANC)\ B°. Thus, we have successfully disproven the statement by giving a
counterexample. O

Exercise (12). Prove the statement A\ (B\ C) = (A\ B) U (A \ C°) by showing
LHS C RHS and RHS C LHS.

Proof. (LHS C RHS): Recall Question 3.11.2, which states that A\ B = AN B¢,
distributivity, and DeMorgan’s laws. Let z € A\ (B \ C). Then

reAN(B\C)° (Question 3.11.2)
re AN (BNC° (Question 3.11.2)
reAN(B°UC) (DeMorgan’s law)
re(ANBYU(ANC) (Distributivity)
re(A\B)U(A\ CY) (Question 3.11.2)

Thus A\ (B\ C) C (A\ B)U (A\ C°).

(RHS C LHS): The set inclusion steps from the proof of LHS C RHS go both
ways. That is, the proof of RHS C LHS can be obtained from the inclusions above
in reverse order, beginning with the step of supposing x € (A\ B)U (A\ C¢). O

Exercise (16). Let A and B be sets. Prove that the following statements are all
(logically) equivalent.

(a) A=B
(b)) ACB and BC A

16



(c) AA\B=B\ A

(d) Ao B =10
(e) ANB=AUB
(1) A= B

Proof. (a) = (b): Suppose A = B. Then (x € A) < (z € B). So, for every z € A,
x € B, implying A C B; and for every x € B, z € A, implying B C A. Altogether,
Statement holds.

(b) = (c): Suppose A C B and B C A. Then A C B implies that A\ B = 0.
Similarly, B C A implies that B\ A = (). Since the two set differences involving A
and B are equal to the same set, namely (), it follows that A\ B = B\ A. Thus
Statement holds.

(¢) = (d): Suppose A\ B = B\ A. We begin by proving the following claim:
It holds that (A\ B)U (B\ A) = 0. (2)

To prove Claim , we suppose for a contradiction that there exists an element
x € A\ B. Then z is in A, but not in B. However, by assumption, = € B\ A as well,
implying that = is in B, but not in A. This is a contradiction. We obtain a similar
contradiction if we originally supposed x € B\ A. So, Claim holds. Now, by the
definition of the symmetric difference ‘@’, we have A@ B = (A\ B)U(B\ A). Then
by Claim (2), (A\ B)U(B\ A) = 0. Thus, A® B =0, and so Statement [(d)] holds.

(d) = (e): Suppose A @ B = (). By Proposition 3.11.5,
A®B=(AUB)\ (ANB).

Including (A N B) to both the LHS and RHS sets, we obtain
(A®B)U(ANB)=AUB.

Since A® B = () by assumption, it follows that AN B = AU B, and so Statement @
holds.

(e) = (f): Suppose AN B = AU B. Then by Exercise (4), A= B. So, we have the
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following chain of equalities:

A¢={x 1z € A°}
={z:x¢ A}
={z:x ¢ B}
={x:x € B}

Y

where the second and fourth equalities follow from the definition of set complement,
and the third equality by the fact that A = B. Thus A° = B¢, and so Statement
holds.

(f) = (a): Suppose A¢ = B¢ Similar to the previous argument, we have the
following:

A={z:zxe A}
={z:x ¢ A°}
={x:x ¢ B}
={z:2 € B}

where the second and fourth equalities follow from the definition of set complement,
and the third by the assumption A = B¢, Thus A = B, and so Statement @
holds. [

Exercise (21). Prove that for all sets A and B, if B C A, then AN B = ().

Proof. Let A and B be sets, and suppose that B C A°. Then since B C A€, we have
that for every z € B, x € A°. Then by the definition of set complement, we have
{z:xe€ A} ={x: 2z ¢ A}, and so for every z € B, x ¢ A. This implies that there
does not exist x € B such that x € A, and so AN B = (). ]

Exercise (23). Let X = {a,b,c,...,z}. Determine the number of subsets T C X
that:

(a) contain z;
(b) do not contain a, e, i, o, u;

(¢) are such that {w,z,y} G T
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(d) contain a and b but not c;
(e) contain m or do not contain n;

(f) contain at least one of p, q, r;

(g) are such that {f,g,h} L T.

Proof. Setup: Let A,, Ay, ..., A, be the subsets of X that contain a, b, ..., and z,
respectively.

Part (a): We want to count |A,|. There are 26 letters in the alphabet. A subset T'
of X either contains z or it doesn’t. In either case, there are 25 other letters that
could be included into the subset. So, |A,| = |P(X \ {z})| = 2%.

Part (b): Given that we do not include a, e, 7, o, and u, there are 21 remaining
letters to potentially include into subsets. For each of these remaining letters, there
are two options: add to a subset or do not add to a subset. So, there are 22! subsets
that do not contain a, e, 7, o, and wu.

Part (c): The number of subsets that contain the set {w,z,y} is the 2%, but this
counts the subset {w, x, y}, which is not a proper subset of {w, z,y}. So, the answer
to the question is 2% — 1.

Part (d): We want to count (A, N A4p) \ Ac]. By Question 3.11.2, we have (A, N
Ap) \ Ae = (AN Ap) NAS. So, we want to count the number of subsets of X that

contain a and b and do not contain ¢. There are 23 remaining letters to add or not
add to such a subset, so [(A, N Ap) \ A.| = 223,

Part (e): We want to count |A,, U A¢|. By the principle of inclusion and exclusion
(involving two sets), we have

[Am U AL| = [Am| + [A7] = [Am 0 A7
We have |A,,| = |AS| = 2%, and |A,, N AS| = 2%*. So, the answer is 2 - 225 — 224,

Part (f): The collection of subsets that contain p, or ¢, or r is A, U A, U A,. By
the principle of inclusion and exclusion, we have

|ApUAGUA,| = |4+ A+ A4 — (|4 NAg|+ Ay N A+ AN AL ]) +[4,NA N A,
By similar reasoning as in previous parts, we have |[4,UA,UA,| = 3-2% —3.2244.2%3,

Part (g): We count the complement. The set of subsets that contain {f,g,h} is
ArnNA,;NA,. We want to count [P(X)|—|AyNA,NAL|. There are |[A;NA,NA,| = 2%
subsets that contain the set {f, g, h}. There are |P(X)| = 2% total number of subsets
of X. So, the number of subsets that do not contain the set {f, g, h} is 226 — 223 [
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Exercise (25). Two sets X and Y are called disjoint if X NY = (.
(a) Prove that if X and Y are disjoint finite sets, then | X UY| = |X| +|Y].

(b) Prove that if A, B, C are pairwise disjoint finite sets (i.e., finite sets such that
any two of them are disjoint), then |AU BUC| = |A| + |B| + |C].

Proof. Part (a): Suppose X and Y are disjoint finite sets. Then since X and Y
are disjoint, X NY = (). Since X and Y are finite, we may apply the principle of
inclusion and exclusion to obtain

IXUY|=|X|+Y|-]|XNnY]

Since X NY =0, we have | X NY| =0, and so [ X UY| = |X|+|Y].

Part (b): Suppose A, B, and C' are pairwise disjoint finite sets. Since A, B, and C
are pairwise disjoint, we have ANB = ANC = BNC = (). Consider ANBNC. By
associativity of sets, ANBNC = (ANB)NC =0NC =0. Then the finiteness of
A, B, and C allows us to apply the principle of inclusion and exclusion to obtain

|JAUBUC| =|A|+ |B|+|C]—=(|JAnB|+ |AnC|+|BNC|)+|AnBNC].
By the above, all of the intersections are empty, and so we have
|JAUBUC| = |A|+ |B|+|C]. O

Exercise (27). In a group of 35 ex-athletes, 17 play golf, 20 go cycling, and 12 do
yoga. FEzactly 8 play golf and go cyclic, 8 play golf and do yoga, 7 go cycling and
do yoga, and 4 do all three activities. How many of the ex-athletes do mone of these
activities.

Hint. Count the complement using the principle of inclusion and exclusion. O

Answer.

Setup: Let G, C, and Y be the sets of ex-athletes who play golf, go cycling, and do
yoga, respectively. Then from the question, we have that |G| = 17, |C| = 20, and
Y| = 12. Moreover, |GNC|=8,|GNY|=8,|CNY|=7and |GNCNY|=4.

Counting the complement: We are also given that the total number of ex-athletes
is 35. The number of ex-athletes who are in at least one of the sets G, C', or Y,
is |G UCUY|. So, the number of ex-athletes who are in none of these sets is
35 — |G UC UY]|. Therefore, to answer this question, it is sufficient to determine
|GuUCUY].
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Applying inclusion-exclusion: By the principle of inclusion and exclusion and
the information given, we have

IGUCUY|=|G|+|Cl+ Y= (IGNC|+|GNY|+|CNY|)+|GNCNY]|
=17+20+12— (84+8+7)+4
= 30.

Therefore, the number of ex-athletes that do neither golf, cycling, nor yoga is 35 —
30 = 5. O
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4 Induction and Recursion

Exercise (1). Prove that any integer greater than or equal to 35 can be written as a
sum of bs and 6s.

Partial proof. Let X be the set of integers that can be expressed as a sum of bs and
6s. We may write X as follows: X = {5a + 6b : a,b € {0,1,2,...}}. Similarly to
what was shown in Example 4.1.6, X has a recursive definition:

5,6 e X,andifxr € X, thenz+5€ X and x +6 € X. (3)

Note that 35 =5-7+6-0, so 35 € X. Similarly, 36 =5-646-1, and so 36 € X.
Given Statement (3)), what more do we need to show to complete the proof? [

Exercise (3). Prove by induction that, for anyn > 1, the number of binary sequences
of length n with an even number of ones equals the number of binary sequences of
length n with an odd number of ones.

Proof. We proceed by induction on n > 1.

Basis: Suppose n = 1. Then there are two binary sequences, namely (0) and (1) —
the first has an even number of 1s, and the second has an odd number of 1s.

The inductive hypothesis is as follows

Inductive hypothesis: For all 1 < k < n — 1, the number of binary
sequences of length k& with an even number of 1s equals the number of  (4)
binary sequences of length n with an odd number of 1s.

Inductive step: For every t € {1,2,...}, define E; to be the set of binary sequences

of length ¢t with an even number of 1s; and define O, to be the set of binary sequences
of length ¢ with an odd number of 1s. Recall that the number of binary sequences of
length ¢ equals 2. Since every binary sequence of length ¢ either has an even number
of 1s or an odd number of 1s, we obtain the equation: 2° = |Ey| + |Oy|.

Observe that for every binary sequence x = (1, xs, ..., 2,) of length n, the first
n — 1 entries of x form a sequence X' = (21,9, ...,%,_1) such that either X’ € F,_,
or X' € O,_1. Then for every binary sequence x’ of length n — 1 in E,_; and O,,_1,
there are exactly two options for the n-th entry value xz,, either x,, = 0 or x,, = 1.
The only two ways for x to have an even number of 1s are as follows:

1. X' € E,_; and x, = 0. There are |E,_;| - 1 such sequences in E,.

2. x' € 0,1 and z,, = 1. There are |O,_1| - 1 such sequences in E,,.
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Similarly, the only two ways for x to have an odd number of 1s are as follows:
1. x' € O, and z,, = 0. There are |O,,_1]| - 1 such sequences in O,,.
2. X' € E,_y and z,, = 1. There are |E,,_1| - 1 such sequences in O,,.

Thus we obtain recursive formulas for |E,| and |O,|:
|En| = |En1]| +[On-1| and [On] = [On-a| + |En-al.

Now, by the inductive hypothesis (), we have S = |E,_1| = |O,_1|, and so we have
|E,| = 2S = |0,|. This completes the proof by mathematical induction. O

Exercise (5). Prove by induction that if n > 1 distinct (6-sided) dice are rolled,
then the number of outcomes where the sum of the faces is an even integer equals the
number of outcomes where the sum of the faces is an odd integer.

Partial proof. Basis: Suppose n = 1. Then the three odd side sums are 1, 3, and 5;
and the three even side sums are 2, 4, and 6.

The inductive hypothesis is as follows:

Inductive hypothesis: If 1 < k < mn — 1 distinct (6-sided) dice are rolled,
then the number of outcomes where the sum of the faces is an even
integer equals the number of outcomes where the sum of the faces is an
odd integer.

Inductive step: Forevery ¢t € {1,2,...}, suppose t distinct (6-sided) dice are rolled.
Define E; to be the number of outcomes where the sum of the faces is even. Similarly,
define O, to be the number of outcomes where the sum of the faces is odd.

Given this setup, how should we proceed to finish showing the inductive step? [

Hint. The structure of the inductive step argument should resemble the structure of
the inductive step argument shown in the proof of Exercise 3 above. [

Exercise (6). Consider the sequence ag, ay, as, ...of integers defined by ag = 10
and a, = 2a,_1, n > 1. Prove that a,, = 2"10 for all n > 0.

Proof. Basis: Suppose n = 0. Then by assumption ay = 10, and since 2° - 10 = 10,
the basis holds.

The inductive hypothesis is as follows:

Inductive hypothesis: For all 0 < k < n — 1, a; = 2¥10. (5)
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Inductive step: We show that a,, = 2"10. We are given the recurrence formula for
Qn: G, = 2a,_1. By the inductive hypothesis , an—1 = 2" 110, and so we have

an = 2a,_; =2-2"""-10 = 2"10.
Thus by mathematical induction, a,, = 2"10. [

Exercise (8). Let f,, denote the n-th Fibonacci number. Prove that for all n > 6,

fo= (3/2)"7

Proof. Basis: Suppose n = 6. Then the first 6 Fibonacci numbers are 1, 1, 2,
3, 5,8, and so fs = 8. We wish to show that fs2° > 3°. This is true because
fe2° = 232° = 28 = 256 and 3° = 243.

The inductive hypothesis is as follows:

Inductive hypothesis: For all 6 <k <n — 1, fi, > (3/2)*1. (6)

Inductive step: Consider f,. By the definition of the Fibonacci numbers, f,
satisfies the recurrence f,, = f,_1 + fn_2. By the inductive hypothesis @, frno1 >
(3/2)" and f,_o > (3/2)" 2. So, we have that

fn = fn—l + fn—2
> (3/2)" 1+ (3/2)" 7
= (3/2)"*(3/2+1)
= (3/2)"7*(5/2).
Notice that
5/2=(2-5)/(2-2)=10/4 >9/4 = (3/2)2.

So, fn > (3/2)"72(3/2)* = (3/2)", as desired. This concludes the proof by mathe-
matical induction. O

Exercise (9). Prove that every fifth Fibonacci number is a multiple of 5.

Proof. An integer m is a multiple of 5 if there exists some ¢ € Z such that m = 5¢.
Equivalently, 5 divides m: 5 | m. We proceed by induction on n > 5.

Basis: Suppose n = 5. Then since f; =5 =5 -1, the basis holds.

The inductive hypothesis is as follows.

Inductive hypothesis: For all 5 < k < n such that 5 | k, it holds that 5 | fp. (7)
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Inductive step: Let n € {bm € Z : m > 1}; that is, n € {10,15,20,...}. Our
goal is to show that there exists an ¢ € Z such that f,, = 5¢. By the definition of
Fibonacci numbers, f,, satisfies the recurrence f,, = f,,_1 + fn_2. We may apply this
recurrence multiple times as follows:

fn = fn—l + fn—Z
= fa-2 + fn—3 + fn-3 + frn—a
= fa3 + faca + fnea A+ fas + faca + fos + faa

= fnf4 + fn75 + fn74 + fnf4 + fn75 + fn74 + fn75 + fn74
= 5fn—4 + 3fn—5-

By the inductive hypothesis @, there exists r € Z such that f,,_5 = 5r. So, we have
shown that

fn - 5fn—4 + 3(fn—5) = 5fn—4 + 3<5T) - 5(fn—4 + 3T)7

which is a multiple of 5. Thus by mathematical induction, f,, is a multiple of 5 if n
is a multiple of 5. ]

Exercise (12). Let tg, t1, ... be the sequence recursively defined by to =1, t; = —4
and t, = —4t,_1 — 4t,_o for n > 2. Prove that t, = (—2)" +n(—=2)" for alln > 0.

Proof. Basis: Suppose n = 0. Then tq = 1 and (—2)°+0(—2)° = 1. Suppose n = 1.
Then ¢; = —4 and (—2)' + (1)(—2)' = =2+ (—2) = —4. So, the basis holds.

Inductive hypothesis: For all 0 < k <n — 1, t;, = (=2)% + k(-2). (8)

Inductive step: We may assume n > 2, since the cases n = 0 and n = 1 have been
addressed in the basis step. Consider t,, = —4t,,_1 — 4t,,_». Then by the inductive
hypothesis , we have

bty = —At,_1 — 4t o
= —4((=2)"""+ (n = 1)(=2)""") = 4((=2)" 7 + (n = 2)(=2)"?)
—4(=2)"H(—24+1) —4(-2)"*(=2(n — 1) + (n — 2))
—4(=2)"3(—24+1-2(n— 1)+ (n—2))
= —4(=2)"*(=1-n)
= (=2)(=2)(=2)""*(1 +n)
= (=2)" +n(-2)".

So, we have shown by mathematical induction that ¢, = (—2)" + n(—2)". O
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Exercise (15). Find, with proof, the least integer ny such that 5* > (n+ 1)* for all
n > ng.

Proof. Let’s check the first few values. Note that n = 1 and n = 2 don’t work,
because 5 = 5! < (1+ 1) =8 and 25 = 52 < (2+1)® = 27. For n = 3, we have
5% =125 > 64 = (3 + 1)3. We prove that 5" > (n + 1)3 by induction on n > 3. We
have just shown the basis case of n = 3, so we may proceed to the inductive step.

Inductive hypothesis: For all 3 < k < n — 1, it holds that 5% > (k + 1)>. (9)

Inductive step: Consider (n+1)%. Expanding this yields (n+1)% = n3+3n%+3n+1.
Notice that for n > 3, 3n? < n?, 3n < n?, and 1 < n3. So, by the inductive
hypothesis @D, we have

(n+1)P*=n*+3n>+3n+1 <5 45" 45t 45t =457

Since 4 - 5"t < 55" = 5" we have shown that (n + 1)3 < 5" for all n > 3, as
desired. This concludes the proof by mathematical induction. ]

Exercise (16). Guess and prove a formula for 1 —2+3 —4+---+ (=1)""n (i.e.,
one that works for any n > 1; there will be different expressions for the cases n even

and n odd).

Proof. For each n > 1, let a,, denote the n-the value of 1 —2+3—4+---+(—1)""'n.
Look at the first few values and try to find the pattern:

a1:1 :]_,
ag = 1 — 2 = -1,
a3 = 1 — 2 + 3 = 2
ag = 1 — 2 + 3 — 4 = -2,
as =1 — 2 + 3 — 4 + 5 = 3,
ag = 1 — 2 + 3 — 4 + 5 — 6 = =3

It looks like the odd values of n produce the positive integers, and the even values
of n produce the negative integers.
We guess that the formula for a,, is

) —n/2, if n is even;
" (n+1)/2 ifnis odd.

Let’s try to prove this by induction on n > 1.
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Basis: Suppose n = 1. Then a; = 1 = (1 + 1)/2, which works. So, the basis holds.

The inductive hypothesis is as follows:

Inductive hypothesis: For all 1 <k <n—1, ap = —k/2if k is even;
and, ar = (k+1)/2 if k is odd.

(10)

Inductive step: Consider a,, =1 —2+3 —4+---+ (—=1)""'n. We subdivide into
two cases: n is even or n is odd.

Case 1: n is even.

Since n is even, n — 1 is odd. Then by the inductive hypothesis , we have

an=(1-2+4+3—4+ -+ (=)D n—1))+(-1)""'n
=((n—1)+1)/2+(-1)""'n
=n/2—n
= —n/2,

and so a,, = —n/2 when n is even.

Case 2: n is odd.
Since n is odd, n — 1 is even. Then again by the inductive hypothesis , we have

an=(1-2+43—4+ -+ (=)D n—1))+(-1)""'n
=(=(n—=1)/2)+(=1)""'n

—(n—1)/24+n

—n+14+2n

2
n+1

2 I

and so a, = (n + 1)/2 when n is odd. This completes the proof by mathematical
induction. O

Exercise (19). Suppose r # 1. Use induction to prove that
rn—i—l -1

l+r+r24+. 4" =
r—1
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Partial proof. We proceed by mathematical induction on n > 1. Note that we treat
r as a fixed number (not equal to 1), and its value does not depend on n. So, it is
sufficient to prove the statement by induction on n only.

Basis: Suppose n = 0. Then we have

1+1_1 2_12 -1 1
A ST RN UL V(GRS DI
r—1 r—1 r—1

which is equal to 1 + 7] So, the basis holds.
The inductive hypothesis is as follows:

rk+1_1

Inductive hypothesis: Forall 1 <k <n—1,14+7r+72+... 475 = ——1.

Inductive step: How do we proceed from here? O

Hint. Try showing the inductive step similarly to how the inductive step is shown in
Exercise 20 below. [

Exercise (20). Prove that for alln > 1,

LSS S S
1(2)  2(3) nin+1) n+1

Proof. We proceed by induction on n > 1.

Basis: Suppose n = 1. Then —+— = —- and so this case holds.

1(1+1) — 1+
The inductive hypothesis is as follows:

Inductive hypothesis: For all 1 < k <n —1, ﬁ + ﬁ + -+ ﬁ = kiﬂ (11)

Inductive step: Our goal is to prove

LSS SRS S |
1(2)  2(3) nin+1) n+1

Consider the first n — 1 terms on the LHS of this equation:

R D
1(2)  2(3) (n—=1)(n)

2Note the application of difference of squares to factor > — 1 =r? — 12 = (r — 1)(r + 1).
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By the inductive hypothesis , this is equal to "T_l Therefore we have

1 1 I 1
o T _<1(2)+2(3)

1(2) " 2(3) n(n+1)
n—1 1
:( n >+n(n+1)

mn—1(Mn+1)+1

n(n+1)
nn+1)—(n+1)+1

n(n+1)
n(n+1)—n
ST
n

n+1
Where the second equality follows by the inductive hypothesis . This concludes
the proof by mathematical induction. ]

1 ) . 1
(n—1)(n) n(n+ 1)

Exercise (22). Prove by induction that for any integer n > 1, n3+ (n+1)3+ (n+2)3
is a multiple of 9.

Proof. Basis: Suppose n = 1. Then
P+1+1P°+(1+2)°=1+2"+3=1+8+27=36=9-4,
which is a multiple of 9. So, the basis holds.

Inductive hypothesis: For all 1 <k <n —1, k* + (k+ 1) + (k + 2)®
is a multiple of 9.

(12)

Induction step: First, expand the terms in (n — 1)3 + n® + (n + 1)® to obtain the
following;:
n—1P4+n"+(n+1P°=n>-3n*+3n—1+n>+n°+3n*>+3n+1
= 3n® + 6n
By the inductive hypothesis , there exists an £ € Z such that (n — 1)> +n?® +
(n+1)3 = 3n3 4 6n = 9¢. Now consider n3 + (n + 1) + (n + 2)%. Observe
n’+ (n+1)°+ (n+2)° =n+ (n*+ 30> +3n+1) + (n’ + 3(2n%) + 3(4n) + 8)
=3n® +9n° + 150+ 9
= (3n +6n) +9n* +9n +9
=90+ 9" +9n+9
=9l +n*+n+1),
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which is a multiple of 9. Thus we have shown by mathematical induction that
n®+ (n+1)3 + (n + 2)? is a multiple of 9. O

Exercise (23). Let ag, a1, ...be the sequence recursively defined by ag = 3 and
an = 2a,_1+3 forn > 1. Find a formula for a, and prove it is correct by induction.

Hint. Finding the formula: Let’s check the first few values. We have ay = 3,
a1 =9, as = 21, a3 = 45, ay = 93, a5 = 189, and ag = 381. Observe that ag = 3 - 1,
a1 =3-3,a3=3-7,a3=3-15, a4 =3-31, a5 = 3-63, and ag = 3-127. What’s the
pattern? ]

Exercise (24). Let ag, ai, ...be the sequence recursively defined by ay = 2 and
ap = ap_1 +2(n —1) forn > 1. Find a formula for a, and prove it is correct by
induction.

Hint 1. The first few values are
ag=2,a1 = 2,a0 = 4,a3 = 8,a4 = 14, a5 = 22, ag = 32.

Observe that ag = a1 = 2-1, a0 =2-2, a3 =2-4, a4 =27, a5 = 2-11, and
ag = 2 -16. What is the formula for the sequence 1,1,2,4,7,11,16,...7 ]

Hint 2. What is the formula for the sequence 0,1, 3,6, 10, 15,...7 O]

Exercise (25). Consider the subtraction game with S = {1,2}. A pile of coins is
placed on a table. There are two players, Alice and Bob, who alternate moves. Alice
mowes first. A legal move consists of removing one or two coins from a pile. The
player who takes the last coin wins. Prove that Alice has a winning strategy if the
number of coins in the pile is not a multiple of 3. Moreover, prove that Bob has a
winning strategy if the number of coins in the pile is a multiple of 3.

Hint. Idea behind Alice’s strategy: Let n be the number of coins on the table.
Suppose n is not a multiple of 3. Then there exists an ¢ € Z such that n = 3¢ + 1
or n =3¢+ 2. If Alice takes 1 coin if n = 3¢+ 1 and 2 coins if n = 3¢ + 2, then she
always leaves a multiple of 3 coins left over. If n < 3, then Alice wins. If n > 3, then
Bob cannot win after his move since there are at least 3 coins on the table. O

Hint. Idea behind Bob’s strategy: If n = 3/, then since Alice must take coins
first, the number of coins remaining after Alice’s move will not be a multiple of 3. [
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5 Number Theory

Exercise (2). Indicate whether each statement is true or false, and briefly justify
your answer.

(a) The integer n is odd if and only if 2 X [n/2] — 1 =n.
(b) If € R\ Z, then |z| = [z] — 1.

Answer. Part (a): True. We justify using a simple proof. Suppose n is odd. Then
[n/2] = (n+1)/2, and so

2x [n/2]-1=2((n+1)/2) —1=n+1-1=n.
Now, suppose 2 X [n/2] —1 = n. Then rearranging this yields (n 4+ 1)/2 = [n/2],
which can only hold if n is odd, since [n/2] is an integer.
Part (b): True. To see this, notice that we may write = as follows: © = k + «a,
where 0 < a < 1 and k € Z. Observe that
L] =k +a] =k+|a) =k

Moreover,

(2] =[k+a]l=k+[a]l =k+1.
So, |z] = [z] — 1. O
Exercise (4). Find the base 16 representation of 262 139.

Answer. Set n = 262 139. First, we calculate the first few powers of 16 that are at
most n. It’s worth noting that these are all powers of 2, since 16 = 2*. We have

16! = 2% = 16,

16% = 2® = 256,
16° = 2 = 4 096,
16* = 21 = 65 536.

By integer division, we divide n by 164, to get 262 139 = 3 - 16* + 65 531. Applying
integer division again to the remainder and 163 gives 65 531 = 15 - 163 + 4 091.
Similarly, we have 4 091 = 15 - 162 4 251, and 251 = 15 - 16! + 11. If we want, we
can also express 11 = 11 - 16° 4+ 0. To express n in base 16, we need characters to
represent the decimal integers 1019 through 1515. Following the notation from the
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course notes, we use A := 1019, B := 1149, C := 1249, D := 1349, F := 1449, and
F :=1519. That is, the first 16 4+ 1 nonnegative hexadecimal integers are

0,1,2,3,4,5,6,7,8,9,A,B,C,D, E, F, 10.
Note that we have the following expansion of n:
n=3-16"+15-16" +15- 16> + 15 - 16" + 11 - 16".

The in-bold and underlined quotients above indicate the hexadecimal digits of nqg.

So, we write

Exercise (5). Is it true that (121), is a square in any base b? Why or why not?

Proof. Consider the base b expansion of (121),: 1-0* +2-b" +1-0°. Suppose
b> + 2b + 1 = k? for some integer k € Z in base b. Note that if b = 2, then
k? =2242-24+1 =23+2° which is 1001 in base 2, a square of 11 in base 2, namely
(3)2. In general, factoring gives k? = (b+ 1)?, and so k = +(b+ 1) in base b. So, for
all b > 2 (121), is the square of £(b+ 1)p. O

Exercise (8). Show that a number in base 3 is even if and only if the sum of its
digits is even. In which other bases is this true?

Proof. Let n be an even number in base 3. Then since all powers of 3 are odd, n has
a base 3 expansion containing an odd number of terms of the form 1-3?. This means
that there must be an odd number of digits with value ‘1’ in (n)s. Since the only
other possible digits are ‘0’ and ‘2’, the sum of the digits in (n); must be even. Each
step of this proof was bi-directional, so we have proven the ‘if and only if’ statement.

This is true for all odd bases. If b is odd, then there must be an odd number of digits
with values ‘17, ‘3", ..., ‘b—2"in (n),. This holds if and only if the sum of the digits
in (n), is even. O

Exercise (11). Let a,b,c,d € Z, and suppose that a + b = c. Prove that if d divides

any two of a, b, and ¢, then d also divides the other third of these integers.

Proof. First observe that the divisibility relation ignores sign; more formally,
d|zifand only if d | —z. (13)

Suppose d | a and d | b, then there exist r,s € Z such that a = dr and b = ds.
So, d(r + s) = ¢, implying that d | ¢. By rearranging the equation to a — ¢ = —b
and ¢ — b = a, applying Statement as needed, and applying the same argument
again, one can show that (d | a) A (d | ¢) implies d | b and (d | b) A (d | ¢) implies
d| a. O
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Exercise (13). Explain why the Fundamental Theorem of Arithmetic implies that
there are no positive integers a and b such that 2% = 3°.

Proof. By the Fundamental Theorem of Arithmetic, every positive integer has a
unique prime factor decomposition. Since 2* and 3 do not share the same prime
factors, there cannot exist positive integers a and b satisfying 2¢ = 3°, since then this
integer would not have a unique prime factor decomposition. O

Exercise (14). Let n be a positive integer. Prove that logy(n) is irrational unless n
1S a power of 2.

Proof. We may rephrase the statement as: “If log,(n) is rational, then n is a power
of 2.7

Suppose log,(n) is rational. Then there exist integers a and b such that log,(n) = a/b.
Since log,(n) is the exponent of 2 that produces n, we have that 20/ = . Write
n=pi'py?---pp*. Then

bmi  _bmo by,

20 =n" = p\" Py

By the Fundamental Theorem of Arithmetic, this is the unique prime factorization
of n’, and so k = 1 and p; = 2, implying that n® = 2™ . So, 2¢ = 2" Taking the
b-th root of both sides yields 2%/* = 2™ = n. Thus n is a power of 2. ]
Exercise (15). For a positive integer n, recall that n factorial is the integer n(n —
)(n—2)---1.

(a) Suppose 1 < k <mn. What are the quotient and remainder when N =n!+ 1 is

divided by k?
(b) Ezplain why Pcmf implies that N has a prime divisor greater than n?

(c) Ezplain why Part implies that there are infinitely many prime numbers.
(Note that if there are only finitely many prime numbers, then there is a largest
prime.)

Proof. Part (a): Suppose k = 1. Then N has quotient n!+ 1 and remainder 0. Now
suppose k > 2. By the division algorithm, the quotient is
El(n!+1)/k] = k|n!/k+ 1/k]
=k[1-2---(k—1)(k+1)---n+1/k|
=k(1-2--- (k=1 (k+1)---n)+k|1/k]
=n!+k[1/k]

=nl.
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Then the remainder is N less the quotient, which is N —n! = (n! +1) —n! = 1.

Part (b): Since N has non-zero remainder when divided by k for all 2 < k < n, it
follows that IV is not divisible by k. So, no prime at most n can divide V.

Part (c): Suppose there are finitely many primes py, po, ..., p;. Moreover, we may
assume p; < py < --- < p;. Then the integer N = p;! + 1 is not divisible by any
of the primes pq, po,...,p;. But by the fundamental theorem of arithmetic, N has
a unique prime factorization, and so must be divisible by some prime number other
than pi,pa, ..., p:, a contradiction. This implies that there cannot be finitely many
primes. Thus, there are infinitely many primes. O]

Exercise (16). Find the prime factorization of 16!. (Note that it is not necessary to
compute 16! first.)

Proof. Notice that since 16 is the largest factor in the product 16! = (16)(15)--- (1),
no prime greater than 16 occurs in the unique prime factor decomposition of 16!. So,
the easiest way to find the prime factorization is to collect the powers of the primes
2,3,5,7, 11, and 13.

2 =2!
3 =23
4 =22
5=5"
6=2".3
=71
8§ =23
9 =32
10 =25
11 =11t
12 =2%.3!
13 =13
4=27
15=3".5!
16 = 24,

Multiplying all of these together and collecting prime factor exponents gives

16! =2 .35.5%.72. 11 . 134, O
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Exercise (20). Let n be a positive integer. Is it possible for a prime p to divide both
nandn—+ 17

Proof. No. Let f be a positive integer satisfying f | n and f | (n + 1). Then
there exist integers r and s such that n = fr and n +1 = fs. It follows that
(fr)+1=fs< 1= f(s—r), implying that f | 1. Since f is a positive integer, it
follows that f = 1, and so f is certainly not prime.

We could also prove this using the Fundamental Theorem of Arithmetic (FTA).
Suppose p is a prime satisfying p | n. Then by FTA, there is a unique way to express
n as a product of primes: n = p" - p3" - - p/"*, where p = p; for some ¢ € [k]. Since
D1, P2, - - ., Pr are primes, they are all at least 2, and so no prime py, ps,...,pr can
dividen+1=pi" -py?---p*+ 1. Thusp [ (n+1). O

Exercise (21). Suppose ged(a,b) = 4. FExplain why the possible values of d =
ged(9a,b) are 4, 12, and 36. For each of these values for d, give an example of
integers a and b such that ged(a,b) = 4 and ged(9a,b) = d.

Proof. Suppose ged(a, b) = 4. Then the there exist integers r and s such that a = 4r
and b = 4s, where r and s share no divisors. In other words, ged(r,s) = 1. So,
ged(9a, b) = ged(36r, 4s), and since r and s share no divisors, only s may share divi-
sors with 36, or r» with 4. Note that since 36r and 4s both share divisor 4, the value
of ged(36r, 4s) is unaffected by the divisors shared by r and 4; so, only the shared
divisors between s and 36 affect the value of ged(36r,4s). If ged(36,s) € {1,2,4},
then ged(36r,4s) = 4. If ged(36,s) = 3, then ged(36r,4s) = 12. If ged(36,s) = 9,
then ged(36r,4s) = 36.

Examples: For (a,b) = (4,4) we have gced(9a,b) = ged(36,4) = 4. For (a,b)
(4,12), we have ged(36,12) = 12. For (a,b) = (20, 362), we have ged (180, 36%)
36.

Ol

Exercise (23). How many positive divisors does 253'5% have?

Proof. For each prime factor p with exponent m, there are m + 1 powers of p,
p°, pt, p%, ..., p™ that could be included in the prime factorization of a divisor. So,
there are 6 choices for powers of 2, 5 choices for powers of 3, and 4 choices for powers
of 5. Therefore, the number of positive divisors of 2°315% is (6)(5)(4) = 120. O

Exercise (25). Let a and b be positive integers such that ged(a,b) = 1. Prove that
lem(a,b) = ab.
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Proof. Suppose ged(a,b) = 1. Then a and b share no divisors (except 1). Recall that
lem(a, b) is the least common multiple of @ and b. It is sufficient to find the smallest
multiple of a that is also a multiple of b. Let k be a positive integer, and suppose
b | ka. Then since a and b share no divisors, it follows that there exists an integer r
satisfying k = rb, implying that & > b. So, the smallest multiple of a that is also a
multiple of b is when k = b, which yields lem(a, b) = ab. ]

Exercise (26). Use the Euclidean Algorithm to find ged(8288,15392). Use your work
to find

(a) lem (8288, 15392);
(b) Integers x and y such that 8288z + 15392y = ged (8288, 15392);
(c) Fork € Z, integers xy, and yy such that 8288z, +15392y;, = k-ged(8288,15392).

Proof. Finding the GCD: To find ged(8288,15392), we apply the division algo-
rithm repeatedly until we obtain a remainder of 0. Then the preceding remainder
value will be the GCD. So, we have

15392 = 1 - 8288 + 7104, (14)
8288 = 17104 + 1184, (15)
7104 = 6 - 1184 + 0.

Thus, gcd(8288,15392) = 1184.
Part (a): The least common multiple of integers a and b is given by the formula

lem(a,b) = (ab)/ ged(a,b). So, lem(8288,15392) = 828815392 — 107744,

1184

Part (b): We may use Equations and to find such an z and y. By
Equation ([15]),
ged(8288,15392) = 1184 = 8288 — 7104.

Then by Equation ,
7104 = 15392 — 8288.

Substituting the latter into the former yields
ged (8288, 15392) = 8288 — (15392 — 8288) = 2 - 8288 + (—1) - 15392.

So,z=2and y = —1.
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Part (c): Since we are just multiplying both sides of 8288x+15392y = ged (8288, 15392)
by k, using x = 2 and y = —1 from Part (b) means we have that

8288(2k) + 15392(—k) = k ged (8288, 15392),
and so it is sufficient to use x; = 2k and y, = —k. O

Exercise (28). Suppose that there are integers x and y satisfying ax + by = 2.
Suppose d is an odd divisor of a such that d | be. Prove that d | c.

Proof. Suppose ax + by = 2, d is odd, d | a, and d | be. Suppose for a contradiction
that d | b. Then there exists r € Z such that b = dr. Since d | a, there exist s € Z
such that a = ds. Then since ax + by = 2, we have

(ds)x + (dr)y =2 < d(sx +1y) = 2,

implying that d | 2. But since d is odd, d f 2, a contradiction. So, d / b. Finally,
since d | be, and d [/ b, it follows that d | c. O

Exercise (30). Prove that ged(n,n+1) =1 for alln € Z. What are the possibilities
for ged(n,n +2), ged(n,n + 3) and ged(n,n +4)?

Proof. The first part of the answer to Exercise (20) above shows the main idea for
the proof. Below is the general argument.

In general, let k be a positive integer. Let d = ged(n,n + k). Then d | n and
d | (n + k). This implies that there exist integers r and s satisfying n = dr and
n + k = ds. Substituting n = dr into n + k = ds yields (dr) + k = ds, which is
equivalent to k = d(s — r). This implies that d | k. O

Exercise (31). Let a € Z and k € N. Prove that one of the numbers a, a + 1, ...,
a+ (k—1) is divisible by k.

Proof. By the division algorithm (integer division), we may write a = bk + r, where
0 <r <k Ifr=0,then a = bk, and so k | a. Now suppose r > 0. Then
a+ (k—r)=(b+ 1)k, implying that k | (a + (k —r)). Since 0 <r < k — 1, we have
shown that one of the numbers a, a+ 1, ..., a + (k — 1) is divisible by k. ]

Exercise (33).

(a) Given that k = 2 (mod 4), determine the remainder when 5k + 13 is divided
by 4.
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(b) Given that k =1 (mod 4), determine the remainder when Tk + 11 is divided
by 4.

Proof. Part (a): Suppose k = 2 (mod 4). Evaluating 5k + 13 modulo 4 gives
5k + 13 =5(2) + 13 =23 = 3 (mod 4), and so the remainder is 3.

Part (b): Suppose k =1 (mod 4). Evaluating 7k333 + 11 modulo 4 gives
7% +11 = 7(1)** + 11 (mod 4)
=3+ 11 =14 =2 (mod 4),
and so the remainder is 2. O

Exercise (34). Use congruences to prove that 13 | 19" — 6™ for any n > 0. More
generally, prove that if a and b are integers, then d = a — b divides a™ — b™ for any
n > 0.

Proof. We want to show divisibility by d, so we evaluate congruences modulo d. First
we have

19" — 6" = (134 6)" — 6" (mod 13)
=6" — 6" (mod 13)
=0 (mod 13).
Then in general, substituting a = d + b, we have
a"—b"=(d+b)" —b" (mod d)
=b" — 0" (mod d)
=0 (mod d).

Aside: With slightly more effort and the binomial theorem, it is possible to prove
this without using congruences. We have

a®—=b"=a"— (a—d)"

—a" — Zak<_1)n—kdn—k
k=0

which is a multiple of d, and so d | (a™ — b"). O
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Exercise (36). Use congruences to find the last digit of 43*3, and the last two digits
of 747,

Answer. To find the last digit of 43%3, it is sufficient to determine the least residue
of 43*3 modulo 10. This is because any number n has a decimal expansion, which
expresses n as a sum of multiples of powers of 10, where the coefficient of ‘10%’
represents the last digit of n. Then evaluating n modulo 10 simply means observing
that all terms in the decimal expansion are multiples of 10, except the last term with
10°. Fortunately, since modular arithmetic works with multiplication, we don’t need
to worry about finding the decimal expansion of 433, and so we can just evaluate

43%3 (mod 10). We do this now:

43 times
438 = 7343 13 (mod 10)
43 times

=3-3---3 (mod 10)
=34 (mod 10)
=(3-3)*"-3 (mod 10)

92! . 3 (mod 10)
=(-1)*-3 (mod 10)

= -3 (mod 10)

=7 (mod 10)

and so the last digit of 43%3 is 7.

To find the last two digits of 747, one can use the exact same approach as above,
except modulo 100. This works because all terms in a decimal expansion are multiples
of 100 = 102, except the last two terms, which are multiples of 10° and 10'. Notice
that 74 = 2401, which is congruent to 1 (mod 100). We have

7 = (THM . 7P = 7° = 343 = 43 (mod 100),

and so the final two digits of 747 are 43. O
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6 Cartesian Products and Relations

Exercise (1). Answer each question true or false, and briefly explain your reasoning.

(a) Cartesian product is commutative on sets: A x B = B x A for all sets A and
B.

(b) 0 is a binary relation on any set A.
(¢c) If Ax B= B x A then either A= or B=0.

Proof. Part (a): False. For example {2,3,4} x {1,2,3} # {1,2,3} x {2, 3,4}, since
(4,2) is in the first product, but not the second.

Part (b): True. Note () = {}, and so is the relation containing no pairs of elements
in A.

Part (c): False. It can also be the case that A x B = B x A when A = B. O
Exercise (3). Let A, B, and C be sets. Prove that Ax (BUC) = (Ax B)U(AxC(C).

Proof. Let (x,y) € Ax (BUC). Thenx € Aand y € BUC. So, (z,y) € Ax B or
(x,y) € A x C; but either way, (z,y) € (A x B)U (A x C).

Suppose (z,y) € (A x B)U (A x C). Then (z,y) € (A X B) or (z,y) € (A x C).
Either way, x € A; but moreover, y can only be in either B or C, and so y € BUC.
Thus (z,y) € Ax (BUC). O

Remark. Note in the proof of Exercise (3) the relationship between set union ‘U’
and logical or ‘V’. Specifically, y € BUC' if and only if y € B or y € C'. Try to
convince yourself about the analogous relationship between set intersection ‘Y’ and
logical conjunction ‘A’.

Exercise (6). Answer each question true or false, and briefly explain your reasoning.
(a) If |A| = 4, then there are exactly 2'¢ relations on A.

(c) For any set A, there is exactly one relation on A which is reflexive, symmetric,
transitive, and anti-symmetric.

(e) The set of all relations from A to B is P(A x B).

(g) For any set A, there is a relation R on A that is both symmetric and anti-
symmetric.
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Proof. Part (a): True. The set A has n = 4 elements. There are n*> = 4% = 16
possible ordered pairs of the elements of A. During the construction of any relation
R on A, for each pair (z,y) € A2, we either include (z,y) into R, or we do not
include it. So, there are 2"° = 2!6 possible ways of constructing on A.

Part (c): True. Let Ry and R» be two relations satisfying the four stated properties.
Then reflexivity implies that Ry and R, both contain {(z,z) : x € A}. If either
relation contained some (x,y) € A? where z # y, then by symmetry, it must contain
(y, x); but, by anti-symmetry, this would imply that = = y, a contradiction. So, R,
and R, must equal {(z,z) : © € A}, and transitivity does not contradict this.

Part (e): True. A relation from A to B is a subset of pairs of the form (z,y)
satisfying x € A and y € B. Since A x B = {(z,y) : * € A and y € B}, the set of
all relations from A to B is P(A x B).

Part (g): True. The relation {(z,z) : © € A} satisfies this property (also sat-
isfies reflexivity). Also, () is both symmetric and anti-symmetric (does not satisfy
reflexivity). O

Exercise (9).

(a) Suppose A is a non-empty set and R is a symmetric and transitive relation
on A. Suppose further that each element x € A appears in some ordered pair
in R (as either the first coordinate or the second coordinate). Prove that R is
reflezive.

(b) Why is the statement in Part (a) true if A =0?

Proof. Part (a): Let € A. By assumption, there exists some y € A\ {z} such
that either (z,y) € R or (y,z) € R. Since R is symmetric, both are in R; that is,
(x,y), (y,x) € R. By the transitivity of R, since (z,y) and (y,z) are in R it follows
that (z,z) € R. Since z is a generic representative of A, we have shown that R is
reflexive.

Part (b): The definition of a relation R being reflexive is: for all z € A, (z,z) € R.
If A is empty, then this condition holds vacuously: all none of the elements of A
satisfy the property. So, R is reflexive. O]

Exercise (10). Let R be the relation on Z defined by (a,b) € R if and only if
a—b < 1. Determine, with proof or a counterexample as appropriate, whether R is
(i) reflexive, (i1) symmetric, (iii) anti-symmetric, or (iv) transitive.
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Proof. The relation R is reflexive because for all a € Z, a—a = 0 < 1. The relation
is not symmetric since (—2,0) € R because —2 —0 = —2 < 1, but (0,-2) ¢ R
since 0 — (—=2) = 0+ 2 = 2 > 1. The relation is not anti-symmetric since
(0,1),(1,0) € R, where 0 — 1 =—-1<land 1 —0=1<1, but 0# 1. The relation
is not transitive, because (6,5),(5,4) € R, but (6,4) ¢ R since 6 —4=2> 1. [

Exercise (11). Let A ={1,2,3,4}. Determine, with proof, whether each statement
below is True or False.

(a) If a relation R on A is anti-symmetric, then R cannot be symmetric.

(b) If a relation R on A is symmetric and transitive, and (1,2),(1,3),(1,4) € R,
then R s reflexive.

Proof. Part (a): False. The relation R = {(1,1),(2,2),(3,3),(4,4)} is vacuously
anti-symmetric since there are no pairs of distinct elements. Moreover, R is sym-
metric since for each (z,y) € R, (y,z) € R.

Part (b): True. By symmetry, we have (2,1),(3,1),(4,1) € R. Then we have the
following applications of the transitivity property:

So, R is reflexive. n

Exercise (13). Let C be the set of all circles drawn in the plane with centre at (0,0).
Let R be the relation on C' defined by c1Reo if and only if the radius of ¢1 is at least
as large as the radius of ca. Prove that R is anti-symmetric.

Proof. Let ¢; and ¢y be circles of radius r; and ry, respectively. Suppose r; > rs.
Then ¢;Rey (that is, (c1,ca) € R). Suppose caRey. Then 7o > 7. Since radii are just
real numbers, these two inequalities together imply r; = 5. Then since the circles ¢;
and ¢y have equal radii and are both centred about the origin (0,0), it follows that
they are equal as circles in the plane: ¢; = ¢y. Therefore, R is anti-symmetric. [

Exercise (14). Let ~ be the relation on N = {1,2,...} defined by x ~ vy if and
only if x/y is an integer. Prove that ~ is anti-symmetric.
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Proof. Let z,y € N such that x ~ y and y ~ x. Then x/y and y/x are integers. This
means that y | x and x | y. It’s easy to see that this implies x = y, but we can be
more precise: y | x implies there exists k € Z satisfying © = ky and similarly there
exists ¢ € 7Z satisfying y = fx. Then x = ky = klx, implying that k¢ = 1, which can
only happen if k = /¢ =1, and so x = y. Therefore, ~ is anti-symmetric. ]

Exercise (15). Let R be the relation on N defined by (a,b) € R if and only if b
is a multiple of a, that is, b = ak for some integer k. Prove that R is reflerive,
anti-symmetric, and transitive. Which of these three properties would no longer hold
if the relation R were on Z instead?

Proof. Reflexivity: For any a € N, it holds that a = ak for £ = 1 € Z, and so
(a,a) € R.

Anti-symmetry: Suppose (a,b), (b,a) € R. Then there exist integers k and ¢ satisfy-
ing a = bk and b = af. So, putting these together, we have a = bk = (al)k = alk.
Then subtracting alk from both sides gives a(l — ¢k) = 0. Since a # 0, we have
that 1 — ¢k = 0, which can only hold if f =k =1, andsoa=0-1=15b. Thus R is
anti-symmetric.

Transitivity: Suppose (a,b), (b,¢) € R. Then there exist integers k and ¢ such that
b = ak and ¢ = bl. Putting these together, we have ¢ = (ak)l¢ = a(kl), which implies
that ¢ is a multiple of a. Thus (a,c) € R, and so R is transitive.

If R was a relation defined on Z, then anti-symmetry fails. Here is a counter-example:
Observe that (5,—5),(—=5,5) € R since =5 = 5-(—1) and 5 = —5 - (—1); however,
5 # —b. O

Exercise (16). Let X be the set of symbols x/y, where x is an integer and y is a
non-zero integer. Note that these are not regarded as numbers, but as symbols used to
represent numbers, so for example 1/2 is not the same as 2/4. Let £ be the relation

on X defined by (a/b,c/d) € € if and only if ad = be.
(a) Show that £ is reflexive, symmetric, and transitive, but not anti-symmetric.
(b) What can you say about the fractions a/b and c/d if (a/b,c/d) € £? And why?

Proof. Part (a):
Reflexivity: Since ab = ab, it follows that (a/b,a/b) € £ for all a/b € X.

4 )

Symmetry: Since equality of numbers ‘=’ is symmetric, ad = bc < c¢b = da. So,
(a/b,c/d) € € if and only if (¢/d,a/b) € &.
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Transitive: Suppose (a/b,c/d),(c/d,e/f) € €. Then ad = bc and c¢f = de. Since
neither b, d, or f equal 0, we have that a/b = ¢/d and ¢/d = e/ f. Thus by transitivity
of the equality relation on numbers, a/b = e/ f < af = be, implying that (a/b,e/f) €
E.

The relation £ is not anti-symmetric. Notice that (—1/2,—2/4) € &, because
(=1)-4 =2-(—2). Then by symmetry, (—2/4,—1/2) € £. However, —1/2 # —2/4
as symbols in X. This implies that £ is not anti-symmetric.

Part (b): For every a/b,c/d € X, a/b,c/d € £ if and only if ad = bc & a/b = c/d.
So, each equivalence class contains the unique numerator/denominator symbol a/b in
X representing the reduced fraction a/b in Q equal to all other fractions ¢/d for ¢/d in
the same class as a/b. In other words, the relation € gives us a precise way to partition
the integer numerator/denominator symbols that we use to represent the rational
numbers into classes, each of which contains exactly one numerator/denominator
symbol representing the reduced form of the common fraction within the class. [

Exercise (17). Let S be a set that contains at least two different elements. Let R
be the relation on P(S), the set of all subsets of S, defined by (X,Y) € R if and
only if X NY = 0. Determine whether R is reflexive, symmetric, anti-symmetric,
or transitive. Would any of the answers change if S was empty or had only one
element?

Proof. Only the set () can be disjoint with itself (satisfy X N X = (), so since S
is non-empty, R cannot be reflexive. Suppose X and Y are subsets of S that are
disjoint; then, since set intersection commutes (X NY = Y N X), it holds that R
is symmetric. Let z € S. Then {z} N0 = 0 N {z} = 0, but it does not hold that
{x} = . This implies that R is not anti-symmetric. Let x and y be distinct elements
in S. For transitivity, we have that ({z,y},0), (0,{z}) € R, because {z,y} N0 =0
and 0N {z} = 0. However, ({x,y}, {z}) ¢ R since {z,y} N{z} # 0, and so R is not

transitive.

Suppose S contains exactly one element z. Then R = {(0,0), ({z},0), (0, {z})}.
Notice that R still cannot be transitive, since otherwise ({2}, 0), (0, {z}) € R would
imply that ({z},{z}) € R, which cannot be true since {z} N {z} # 0. So, the
answers don’t change when S has exactly one element. Suppose S = (). Then
P(S) = {0} and R = {(0,0)}, which satisfies reflexivity, symmetry, anti-symmetry,
and transitivity. ]

Exercise (21). Let T be an equilateral triangle with each side having length 1. Imag-
e T in a fixed position in the plane, say with the bottom side on the x-axis and
the opposite angle above it. Let S be the set of coloured triangles obtainable from
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T by painting each side with one of the colours red and blue. Any combination of
colours s allowed, for example, all sides could have the same colour. Note that S
has 8 elements: for example, the bottom side being red and all other sides being blue
is a different painting than the leftmost side being red and all other sides being blue.

Define a relation R on S by s1Rsy if and only if s; can be rotated so that the rotated
coloured triangle is identical to sy. Prove that R is an equivalence relation and find
the equivalence classes. (The elements of your sets can be pictures of the coloured
triangles.)

Proof. Consider the triangles in S shown in Figure [I} Define R to be the relation
on S given as follows:

R ={(si,si) i€ 8]} U{(si,s5) 14,5 €{2,3,4}} U{(si,5;) : 4,5 € {5,6,7}}.

Each triangle can be rotated to become identical with itself by rotating not at all, so
R is reflexive. Rotational equivalence of two triangles is unaffected by the ordering
of the triangles considered, so R is symmetric. If (s;, s;), (55, 5x) € R, then s; and s;
are rotationally equivalent and s; and s; are rotationally equivalent. So, s; and sy
are rotationally equivalent, and thus R is transitive. The equivalence classes of R

are {s1}, {s2,$3,54}, {55, S6, 57}, and {ss} (see dotted boxes in Figure [1)). O
S1 S9 S3 Sa
S5 S6 ST S8

Figure 1: The 8 triangles in S. Dotted boxes indicate equivalence under rotation
(equivalence classes).

Exercise (22). Let ~ be the relation on T = {10,11,...,99} defined by a ~ b
if and only if a has the same first digit as b (that is, the same leftmost digit as b).
Prove that ~ s an equivalence relation.

45



Proof. To prove that ~ is an equivalence relation, we must show that ~ is reflexive,
symmetric, and transitive. Let a € T. Then a shares the same first digit with itself,
so a ~ a, implying that ~ is reflexive, Suppose a ~ b. Then a and b share the same
first digit. The order in which a and b are considered does not affect the shared first
digit value, so b ~ a. That is, ~ is symmetric. Suppose a ~ b and b ~ ¢. Then a and
b share the same first digit, say x. Moreover, b and ¢ share the same first digit; but
since b has first digit x, ¢ must have first digit x. Thus a and ¢ both share first digit
x, implying that ~ is transitive. We have shown that ~ is reflexive, symmetric, and
transitive, and so ~ is an equivalence relation. O
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7 Functions

Exercise (1). For each of the following, if the statement is true, then prove it, and
if it is false, then give an example or explanation demonstrating that it is false.

(a) The function f:Q — R defined by f(x) = x is invertible.
(b) The function f: 7 — 7 defined by f(x) = 3x — 2 is onto.
(c) The function f:R — R defined by f(x) =Ter+9is1— 1.
Proof. Part (a): False. Consider v/2 € R. There does not exist 2, € Q satisfying

f(zo) = V2, since then v/2 would have to be rational, which it is not.

Part (b): False. No integers of the form 3k or 3k + 2 are in the range of f. For
example, it is impossible to find x € Z such that 5 = 3x — 2.

Part (c): True. Let x1,29 € R, and suppose f(z1) = f(x2). Then
Tx1+9=Tr9+9 < 701 = Tr9y & 11 = Zo.

So, fis 1 —1. Indeed, f is onto since for any r € R, there exists an zy € R satisfying

r="Tro+9 & 1o =" O

Exercise (2). List all of the functions from {a,b,c} to {a,b} and identify the ones
that are (i) one-to-one, (ii) onto, (iii) both one-to-one and onto, (iv) neither one-to-
one nor onto.

Answer. Here are the functions:

fi=A{(a,a),(b,a),(c,a)}
fa ={(a,a),(b,a),(c,b)}
fs ={(a,a),(b,0), (c,a)}
fi=A(a,a),(,0),(c,b)}
fs ={(a,0),(b,a), (c,a)}
fe = {(a,0),(b,a), (c,b)}
fr =A{(a,0),(b,b), (c,a)}
fs = {(a,0), (b,b),(c,b)}

None of the functions are one-to-one, since the co-domain is smaller than the domain.
Thus no function is both one-to-one and onto. All functions except f; and fg are
onto, because their range equals the co-domain. The functions f; and fgs are neither
one-to-one nor onto. 0
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Exercise (4). Let a and b be integers, with a # 0.
(a) Is the function f:R — R, where f(x) =ax+0b, 1 —1 and onto?

Proof. Part (a): The function f(z) = ax + b is onto because a # 0 and so for every

Yo € R, there exists zg = yo;b € R. The function is injective (one-to-one) because
f(x1) = f(x2) if and only if axy + b = azy + b < x1 = x9. So, f is both onto and
one-to-one. O

Exercise (5). Suppose that f is a function from A to B. Let g = {(y,x) : (z,y) € f}.
Ezplain why g being a function from B to A implies that f is 1 —1 and onto. (Hint:
the definition of function)

Proof. Since ¢ is a function, for every b € B, there exists some a € A such that
(b,a) € g. By the definition of g, this means that (a,b) € f, and so f is onto.
Suppose there exist aj,as € A and b € B satisfying (aq,b), (az,b) € f. The again by
the definition of g, for (b,a;), (b,as) € g to be true, we must have a; = as. So, f is
1-—1. 0

Exercise (6). Let f and g be the functions from {a,b,c,d,e, f} to {a,b,c,d,e, f}
given in the table shown below

x= |a|b|c|d|el|f
flx) =|c|d|lale|f|b
gx) = b|clalel|f]|d

(a) Find fog and go f.

(b) Show that g=' = ¢*>. The notation g* means g o g. In general, g* means

n times

P .,
gogo---og (there are n — 1 compositions).

(c) Find f? and f* = (f?)%. What does this tell you about f~1?
Proof. Part (a): Here are the function compositions:

xr = a|lblcldlel|f
foglx)y=|d|alc| fl|b
gof(x)=|ale|b|f|d

oo

Part (b): Note that the last two rows of the following table are equal.

x = a|lblc|d|e|f
g x)=|cla fldle
G (x)= |clal|b| fld]|e

S
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Part (c):

xr = a|lblc|d|elf
fley=|cld|ale|f|Db
fPlxy=|alelc|f|lb|d
fAz)=a|blc|d|e|f

Since f* is the identity map, it holds that f3 = f~!. O

Exercise (8). Let f: A— B and g : B — C be functions. Prove:
(a) If go f is one-to-one and f is onto, then g is one-to-one.
(b) If go f is onto and g is one-to-one, then f is onto.

Proof. Part (a): Let by,by € B, and suppose ¢g(b;) = g(by). We want to show that
by = by. Since f is onto, for every b € B, there exists a € A such that f(a) = b.
So, in particular, there exist a;,as € A such that f(a;) = by and f(az) = by. Notice
that g(f(a1)) = g(by) which we have assumed to be equal to g(by) = ¢g(f(a2)).
Then since g o f is one-to-one, g(f(a1)) = g(f(az)) implies that a; = as. So,
by = f(a1) = f(az) = by, implying that g is one-to-one.

Part (b): Let b € B. We want to show that there exists a € A such that f(a) = b.
Consider g(b). Since g o f is onto (and g(b) € C), there exists a € A satisfying
g(b) = g(f(a)). Then g being one-to-one implies b = f(a). O

Exercise (9). Indicate whether each statement is true or false, and briefly justify
your answer.

(a) The relation {(x,y) : y* = (v — 2)? + 4} is a function from R to R.

(b) Suppose |A| > 6. Every function f: A — {1,2,3,4,5,6} that is onto contains
exactly six ordered pairs.

(c) If f:{a,b,c,d} — {1,2,3} and g : {1,2,3} — {a,b,c,d} are such that f o
g(x) =z for every x € {1,2,3}, then g is the inverse of f.

(d) Let f:A— Bandg: B — C. Ifgo f isal—1 correspondence, then go f
has an inverse and |A| = |C].

Proof. Part (a): False. There exist distinct y; and y, such that (x,y;) and (z,ys)
would have to be in the function.
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Part (b): False. The statement is true only when |A| = 6, but since |A| > 6, the
statement cannot be true in general. Suppose |A| > 6. The number of ordered pairs
in any function is equal to the number of elements in its domain.

Part (c): False, for g to be the inverse of f, g must be a function that maps a
single element in {1,2,3} to two elements in {a, b, ¢, d}; but this contradicts g being
a function. So, g cannot be the inverse of f.

Part (d): True. The domain and co-domain of g o f are A and C, respectively. So,
since go f is a 1 — 1 correspondence, each element of A is matched with exactly one
element of C' through g o f, implying that |A| = |C|. That is, for every ¢ € C, there
exists exactly one a € A such that g o f(a) = ¢, and so we may define the inverse
function (go f)™': C — A by (go f)"(c) =a. O
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8 Cardinality of Sets

Exercise (1). Give a reason to explain why each set is countable.
(a) The set {x € R:x* =1}.
(b) The set P of prime numbers.
(c) The set {2n+1:n € Z}U{3*: k € N}.
(d) The set of rational numbers with numerator between —3 and 5.

(e) The set of years since 1970 that the Vancouver Canucks have won the Stanley
Cup.

Proof. Part (a): The set consists entirely of the two roots of the quadratic equation
2? —1 =0, which is {1, —1}. This set has cardinality 2, and so is finite and therefore
countable.

Part (b): For each n € N, there is a unique n-th largest prime p, in P such that
there are no elements in P that are both less than p,,; and larger than p,,. Since N
is countable, and P is indexed by N, P is countable.

Part (c): Since 3* is odd for all k € N, we have that {3* : k € Z} C {2n + 1 :
n € Z}, and so the union equals {2n + 1 : n € Z}. There is a bijective function
f:N—={2n+1:n € Z} defined by

f(n) = (2[n/2] = D(=1)",
so {2n +1:n € Z} is countable.

Part (d): This set is a subset of the rational numbers, which are countable.

Part (e): The set is emptyf} and so is finite and therefore countable. O

Exercise (3). Prove that N x N x N is countable. Does your argument generalize to
the Cartesian product of k copies of N, where k is a positive integer?

Proof. Note that N x N x N = {(a,b,¢) : a,b,c € N}, and so can be interpreted as
the set of integer lattice points (with positive valued coordinates) in R?. Observe
these lattice points can be partitioned into a sequence of 2-dimensional lattices T3,
Ty, ..., where T; = {(a,b,7) : a,b € N} for all i € N. For each i € N, there is a

3:(
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bijection f; : N x N — T, defined by f((a,b)) = (a,b,i). So, each T; can be listed
using diagonal sweeping of N x N under f;. Let s; be a diagonal sweeping list of T;.
Then we may list N x N x N by concatenating the lists sy, sq, ... .

In general, we can prove that N* is countable by induction on k > 1. We show a
sketch of this proof below. The basis of £ = 1 holds since N is countable.

Inductive hypothesis: For all 1 <n < k, N™ is countable. (16)

The set N* = {(ay,ay,...,ax) : ai,as,...,a, € N} can be partitioned into (k — 1)-
dimensional lattices T, Ty, . .. where T; = {(ay, as, ..., ax_1,1) : a1, a9, ..., a5_1 € N}.
By similar reasoning as above, there is a bijection between N*~! and 7;. Then by the
inductive hypothesis , Né~1 and therefore also T}, are countable. Concatenating
the lists for each Ty, T, . . . produces a listing of N*, which shows N* is countable. [

Exercise (4). Show that if A = {ay,as,...,a,} s a finite set, then the set of all
infinite length sequences of elements of A is uncountable.

Proof. We use a diagonalization argument. Let S be the set of all infinite length
sequences of elements of A. Suppose S is countable. Then the elements of S can be
listed as follows

tl - (Sl,lasl,Qa . ‘)7t2 = (SQ,lasQ,Qa . ‘)7 s

Define x = (x1, 23, ...) to be the sequence such that for each i € N,

{a1 if Sii cA \ {al}
T; =

ay otherwise

Then x € §. We claim that x cannot appear anywhere in {1, s, ...}. Suppose for a
contradiction that there is some j € N such that x; = s;; for all i € N. Then either
r; =ay and s;; € A\ {a1} or x; = as and s;; = a;. Either way, z; # s;;, which
contradicts x being in {t1,ts,...}. Therefore, S is not countable. O

Exercise (5). Prove that any non-empty half-open interval of real numbers, [a,b) is
uncountable. (Note: [a,b) ={x € R:a < x <b}.) Do the same for any non-empty
half-closed interval (a,b].

Hint. Find a bijection between [a,b) and a set that contains (0,1), which we know
is uncountable. O

Exercise (6). Prove that any closed interval of real numbers with positive length is
uncountable. What happens if the length is not positive?
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Proof. Consider the closed interval [a, b] satisfying b — a > 0. Consider the function
f :la,b] — [0,1] defined by f(z) = (r —a)/(b — a). Since f is a bijection, the
uncountability of [a, b] follows from the uncountability of [0, 1] (Note [0, 1] contains
(0,1), which we know is uncountable).

If b —a < 0, then [a,b] is empty, and so has cardinality 0. If b —a = 0, then
[a,b] = {a}, which is a singleton (has cardinality 1). In either of these two latter
cases, [a, b] is finite and so is countable. O

Exercise (7). Let 1 =R\ Q be the set of irrational numbers. Ezplain why the fact
that R is uncountable, and the fact that Q is countable, together imply that T # ().
More generally, explain why I must be uncountable. (Note: R =QUI.)

Proof. Since R is uncountable and Q is countable, |R| > |Q|. This strict inequality
implies that there exists some x € [

We show that I is uncountable indirectly via a proof by contradiction. Let L; be
a listing of Q. Suppose for a contradiction that I is countable. Then there exists a
listing Ly of all the elements in I. Since R = Q U I, it follows that the elements of
R can be listed with the elements in L; first, followed by the elements in the list Ls.
This implies that R is countable, a contradiction. O

Exercise (8). Classify the given set as countable or uncountable, and supply a brief
Justification for your answer.

(a) QN (0,1)

(b) The closed interval of real numbers [0, 2].

(c) The set C of complex numbers.

(d) The set of all prime factors of 1000!.

(e) The set of all integers with at most 2'%° digits in their base 16 representation.
(f) The power set of the set of natural numbers.

(9) 0

(h) N xR

Proof. Part (a): Countable. Subset of the countable set Q.

Part (b): Uncountable. Every interval with distinct left and right end-points in R
is uncountable. Or, [0, 2] contains (0, 1) as a subset, which is uncountable.
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Part (c): Uncountable. Contains the set of real numbers, which are uncountable.

Part (d): Countable. The set is finite. Moreover, the prime factors of 1000! are
precisely the prime numbers less than 1000, which can be listed by their total ordering
under <.

Part (e): Countable. The set is finite.

Part (f): Uncountable. For any set X, the power set P(X) of X must have larger
cardinality than X. So, there cannot be a bijection between N and P(N), implying
that P(N) is not countable.

Part (g): Countable. The set is empty.

Part (h): Uncountable. Notice that {(1,2) € Nx R : 2z € R} is a subset of N x R
and has the same cardinality as R, which is uncountable. O

Exercise (9). Let F = {f : N — {0,1}}. Prove that F is uncountable. Explain why
this tmplies that the set of all functions from 7Z to 7. is uncountable.

Remark. The notation F = {f : N — {0,1}} written in the question is not quite
correct. The correct way to write this in set builder notation is F = {f : f : N —

{0,1}}.

Proof. Let f € F. Then the pre-image of ‘1’ under f, f~'(1), is a subset of N.
Moreover, for any S C N, there exists an f € F such that S = f~1(1). So, there is
a bijection g : F — P(N) defined by g(f) = f~*(1). Since P(N) is uncountable, it
follows that F is uncountable.

Now, let G = {g : g : Z — Z}. Then for each f € F there is a function g € G
such that for all x € Z \ {0}, g(z) = g(—z) = f(Jz|) and ¢g(0) = 0. So, G contains
at least as many elements as F. Therefore, since F is uncountable, G must also be
uncountable. [
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