The Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion, hereafter called PIE, gives a formula for the size
of the union of n finite sets. Usually the universe is finite too. It is a generalisation of the
familiar formulas |AU B| = |A| + |B| — |[ANB|] and |[AUBUC| = |A| + |B|+|C|—|AN
B|-|AnC|—-|BNnC|+|AnBNC|.

Theorem PIE. If Py, P,,..., P, be are finite sets, then |Py U P, U---U P,| = (|P1| +
1P|+ +|P]) = (|[PiNPo| + |PLNPs| 4+ |Peci N P|) +(|[PrN PN P3|+ |[PLN Py
P4 4 |Poa NPy NP|) + ...+ (-1)"[PLN PN ... NP,

That is, the cardinality of the union P; U P, U ... U Py can be calculated by including
(adding) the sizes of all of the sets together, then excluding (subtracting) the sizes of the
intersections of all pairs of sets, then including the sizes of the intersections of all triples,
excluding the sizes of the intersections of all quadruples, and so on until, finally, the size of
the intersection of all of the sets has been included or excluded, as appropriate. If n is odd it
is included, and if n is even it is excluded. The formula can be expressed more compactly as
[PLUP, U UP,| = Z?:l(_l)k Zl§i1<i2<---<ik§n [Py NP, M-+ N By,
It is important to remember that all sets involved must be finite.

To prove PIE, both sides count only elements that belong to some positive number of the
sets. Each of these is counted once on the LHS. To determine the number of times it is
counted on the RHS, suppose it belongs to ¢ > 1 of the sets, and calculate the contribution
it makes to each intersection. You’ll end up making use of the Binomial Theorem expansion
of (14 (=1))%.

When to use PIE. Vaguely speaking, you should try PIE when you are trying to count
something described by a bunch of conditions, any number of which might hold at the
same time, and you can’t see how to organise the counting by cases. Often PIE is used
in conjunction with counting the complement. That is, you use it to count the number of
objects in the universe that you don’t want, and subtract this from the size of the universe
(which needs to be finite!).

In applying PIE, the setup is of great importance. You need to be clear about what the
sets are (what it means to belong to one or more of them), what the universe is, and how
the principle gives you what you want. Once you’ve done this, things often reduce to more
or less straightforward counting problems.

Example PIE 1. Count the number of sequences of 10 distinct letters that contain none
of THE, MATH, and QUIZ.



Here we’re are asked to count sequences of 10 distinct letters that have some special
properties, so a good choice for the universe is the set of all sequences of 10 distinct letters.
Thus, [U| = 26!/16!.

Let’s try to set up some sets whose union will contain the sequences we don’t want,
and then we can determine the number that we do want by subtraction. Let A, B and C be
the set of all sequences in U that contain THE, MATH, and QUIZ, respectively. Then, by
the definition of union, AUBUC' is the set of all sequences that contain at least one of THE,
MATH, and QUIZ, so the number we want is |U| — |[AU BUC| = 26!/16! — |[AU BUC|,
where the last term can be determined using PIE. Each of the terms on the RHS of
|AUBUC| = |A|+|B|+|C|—|ANB|—|ANC|—|BNC|+|ANBNC| can be determined by a
straightforward counting argument, so long as we are clear about what it means to belong
to each intersection. For example, a sequence belongs to BNC' if and only if it contains both
MATH and QUIZ. To determine the number of such sequences, use glue. After doing the
counting, we find that |[AUBUC| = (273)8! + (262) T+ (262) - (251)6! — (139)5! — (128)4! + (117)3!.
Thus, the number of sequences of 10 distinct letters that contain none of THE, MATH,
and QUIZ equals 26!/16! — (%)8l — (3A)71 — ()71 + (36! + (5)5! + (5) 4! — (V)3L.

Example PIE 2. Determine the number of integer solutions to x1 + xo + x3 + x4 < 70
such that 1 <x1 <12, 0 <29 <10, —3 <23 <13, 5 < x4 < 35.

After making a change of variables (let y; = x1 — 1, etc.) and adding a slack variable,
this is equivalent to determining number of integer solutions to y; +y2 + ys + y4 + ys = 67
such that 0 <y <11, 0 <y, <10, 0 <y3 <16, 0 <yy <30, and y5 > 0.

Under this setup we're asked to count non-negative integer solutions to an equation
that satisfy certain constraints. This suggests that the universe should be the set of all non-
negative integer solutions to y1+y2+ys+ya+ys = 67. Thus, [U| = (67+4)!/(67!14!) = (672'4)
(use bars and stars).

Let’s set up some sets whose union will contain the solutions we don’t want, that is,
the ones that violate at least one of the upper bound constraints. Then, the number of
solutions we do want can be obtained by subtraction. To do this, let

Y1 be the set of solutions where y; > 12,

Y5 be the set of solutions where yo > 11,

Y3 be the set of solutions where y3 > 17, and

Y, be the set of solutions where y4 > 31.

(There are only four sets because there is no upper bound constraint on ys.) Then, by
definition of union, Y7 UY5 U Y3 U Y} is the set of solutions where one or more constraints
are violated. Thus we want || — |Y7 UY, U Y3 UYy|, where the last term is determined by
PIE.

Again, the counting is straightforward once it is clear what it means for a solution
to belong to an intersection of several of the sets. For example, a solution belongs to
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Y1 NYsNYyif and only if y; > 12, y3 > 17, and y4 > 31.

After computing the sizes of the various intersections (using bars and stars), the
answer is (%) — [() + () + () + ()] + [+ )+ )+ () + ) +E)] -
() + )+ )+ )] + o
Example PIE 3. Determine the number of ways for n couples to stand in a line so that

no one stands beside her/his partner.

Here we are counting arrangements of 2n people in a line satisfying certain conditions,
which suggests that the universe should be the set of all such arrangements. Thus, [U| =
(2n)!.

On phrasing the conditions slightly differently, we see that there are n conditions that
must be satisfied: couple 1 is not standing together, couple 2 is not standing together,
..., couple n is not standing together. This suggests we should set up n sets so that set
1 contains the arrangements in which the i-th condition is violated. That is, for ¢ =
1,2,...,n, let X; be the set of arrangements in which couple 7 is standing together. Then,
X1UXoU- - X, is the set of arrangements where one or more couples are standing together,
so the number we want is |U| — | X1 UXoU--- X,,|. The last term can be determined using
PIE.

The counting is straightforward. An arrangement belongs to X;, N X;, N---NX;, if
and only if couples i1,1s,...,%; are each standing together. It is easy to see that the size
of an intersection depends not on which couples are involved, but on how many couples
are involved. Thus, |X;, N X;, N---N X;, | = 28(2n — 2k + k)! (use glue, and don’t forget
to include the glues couples among the objects to arrange).

Since for each k the size of the intersection of k of the sets depends only on k, and
since there are () ways of choosing k of the n sets to intersect, the answer is (2n)! —
S e (=11 (1)2%(2n — k)!. Looking at the answer, it is possible to recognise that the
first term, (2n)! is of the same form as the terms in the summation but with £ = 0. That
is (2n)! = (=1)°(5)2°(2n — 0)!. Hence it can be absorbed into the sum to get a single
summation that describes the answer. We must also remember to look after the minus
sign in front of the sum, i.e., put it together with the (—1)*~! to get (—1)%. Afeter doing
so, the answer is Y (—=1)%(7)2%(2n — k).

Example PIE 3 brings out some important points that should be remembered:

e It might help in setting up the sets if the conditions were rephrased so it is clear how
they apply to the objects under consideration. Statements like “none of these n objects
satisfy condition C” can (and often should) be rephrased as n conditions: “object 1 does
not satisfy condition C”, “object 2 does not satify condition C” and so on.

e There are (Z) possible intersections of k out of n sets. If the size of the intersections in
question depends only on the number of sets involved (not which sets are involved), then
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the term which is included or excluded is (Z) times the size of the intersection of k sets.
Note that |X;| can be thought of as the size of an intersection of one set.

e In cases where the size of the intersections in question depends only on the number of sets
involved, and where you are “counting the complement”, it is often possible to recognise
that the first term, |U|, is of the same form as the terms in the summation but with the
index of summation equal to zero. In such a case, it can be absorbed into the sum to get

a single summation that describes the answer.

Two classic examples of quantities that can be counted using PIE are onto functions and
derangements. Since these are thoroughly discussed in most textbooks, (and in class) they
will not be dealt with in detail here. Since you should be able to do these calculations, a
very brief discussion of each topic is included.

Example PIE 4. Find the number of functions from {x1,xa,...xn} onto{y1,y2,...,Yn}.

Remember that a function f from {x1,x2,...2mn} to {y1,vy2,...,yn} is onto if every
y € {y1,92,...,yn} is f(x) for some = € {x1,x3,...2,,}. (Notice how this corresponds to
rephrasing the conditions, as discussed above.)

Now if m < n the answer is zero, so assume m > n. We're counting functions, so
the universe should be the set of all functions from {x,xo,... 2y} to {y1,y2,...,yn}. To
figure out |U|, remember how to count functions.

For i = 1,2,...,n let P; be the set of functions where y; is not f(z) for any = €
{z1,22,... 2y }. (Notice how this uses the “new” description of the conditions to set up
the sets.) Then Py U P, U---U P, is the set of functions that are not onto, so we want
U| — |PL U Py U---U P,|. After counting, and recognising that the second and third
important points also apply here, the answer is Y _o(—=1)"(})(n — k)™.

Problems in which every thing in a first collection of distinct objects is assigned to some
thing in a second collection of distinct objects can be thought of as problems involving
functions. (The functions in question are from the first collection of objects to the second,
and if x is an object in the first collection, then f(x) should be the object in the second
collection to which it is assigned.) If the assignments are such that no object in the
second collection (the one “being assigned to”) is left out, then the problem involves
onto functions, and hence you can write the solution down without resorting to PIE. For
example, the number of ways that Dr. M. can assign 7 different projects to his research
team consisting of himself and 3 graduate students equals the number of functions from
the set of 7 projects onto the 4 people, which is Zizo(—l)k(é) (4 — k)7. If he must keep
3 projects for himself and distribute the remainder to his students, then the number of
ways is (;) 232:0(—1)’c (i) (3 —k)* (choose the 3 he keeps as the first step, then proceed as
above).



A derangement of a set X = {x1,22,...,x,} is a permutation y1ys . ..y, of the elements
of X so that y; # x; fori=1,2,...,n.

Example PIE 5. Determine d(n), the number of derangements of X = {x1,xa,...,2,}.

We’re counting permutations, so the universe should be the set of all permutations of
T1,T2,...,Tn. Fori=1,2 ..., n,let P; be the set of permutations y1ys ...y, in which y; =
;. Then we want || — [Py UP,U---UP,|. This turns out to equal }_;'_,(—=1)*(})(n—k)!.

It is sometimes the case that a given problem can be recognised as one involving derange-
ments, and thus solved without resorting to PIE. For example, suppose 8 people check
their coat and their hat at an event. In how many ways can these be returned so that no
one gets back either of his posessions? There are d(8) ways to return the coats so that no
one gets his own coat, and for each of these there are d(8) ways to return the hats so that
no one gets his own hat. Thus the answer is d(8)? = [Zzzo(—l)k(i) (8 — k:)!]z.

Curiosity. Notice that d(n) = > _o(=1)F(})(n — k)! = Zzzo(—l)kﬁik)!(n — k) =

k
n! Y _o(—=1)%L. ;From calculus we know that e® = 3.7 gff—l: Thus, e7t =72, (_kll) .

On comparing this with the final summation we have for d(n), we notice that d(n) equals

n! times the sum of the first n+1 terms (it starts at 0) in a series that converges (quickly!)

to e71. Thus d(n)/n! ~ e~! or, equivalently, d(n) ~ n!/e. The approximation is quite
good from n = 5 onwards. This says, for example, that if n people check their coat at a
party and they are returned at random the probability that no one gets his own coat back

is about e~!, and thus (essentially) independent of n.



