Big-O, Big-Theta, and Big-Omega

Memorize: Suppose f:Z — R and g : Z — R are functions. We say f is O(g) if there
exists constants C' and k so that |f(n)| < Clg(n)| for all n > k.

In other words, f is O(g) if it is never larger than a constant times g for all large values
of n. The function Cg(n) gives an upper bound on the size of f(n) for all large values of
n. Usually the expression for ¢ is less complex for the expression for f, and that’s one of
the things that makes big-O notation useful. Notice that we don’t care what happens for
“small” values of n. Also, usually we don’t worry too much about the absolute value signs
since we usually compare functions that take positive values.

To prove [is O(g) using the definition you need to find the constants C' and k.
Sometimes the proof involves mathematical induction (for instance in showing that n? is
O(2™)), but often it just involves manipulation of inequalities. What I recommend doing
in the latter case is starting with f(n) and writing a chain of inequalities that ends with
< Cg(n). Some of these inequalities will only be true when n is greater than some lower
limit. The largest of these limits is the k£ you want.

Example 1. Prove that 5n% — 2n + 16 is O(n?®). Consider 5n? — 2n + 16 < 5n% + 16 (if
n>0) <5n?+n? (if n >4) =6n2 <6n (if n > 1). Thus, if we take C = 6 and k = 4 in
the definition, the above calculation demonstrates that 5n% — 2n + 16 is O(n?).

To prove f is not O(g) you need to argue that the C' and k required by the defintion do
not exist. Usually you go about this by assuming they do exist (i.e., assuming f is O(g))
and arguing that this leads to a contradiction.

Example 2. Prove that 5n? — 2n + 16 is not O(n). Assume 5n? — 2n + 16 is O(n). Then
there exist constants C' and k so that 5n? — 2n + 16 < Cn for all n > k. Dividing both
sides by n (and assuming n > 0) we get b5n —2+16/n < C,orn < C+2—-16/n < C +2.
This inequality does not hold for n > C' + 2, contrary to our assumption that it held for
all large values of n. Therefore 5n? — 2n + 16 is not O(n).

Things you should know. There is no need to memorize the bounds on n; you can
always work them if you have to.

e 1 <log(n) if n > 10.

e logn < n®if @ > 0 (the bound on n depends on «).

e n® < t" for « >0 and ¢t > 1 (the bound on n depends on « and t).

es" <trifl<s<tandn>1.

e t" < n! (the bound on n depends on t).

en! <n™ifn>1.

Another importat fact is that the base of logarithms is not important. Any two log func-
tions are related by multiplication by a constant. The formula is log,(n) = log,(n) log, (b)

(so the constant is log,(b)). To prove this, start with a!°8«(") = plogs(?) (hoth of these
equal n), take logs to base a of both sides and simplify using the rules of logarithms.

1

Fact B1. If f is O(g) and g is O(h), then f is O(h).

You should know how to prove this Fact. It implies that if f is O(g), then it is also
Big-O of any function “bigger” than g. This is why one is typically interested in finding
a “best possible” big-O expression for f (i.e., one that can not be replaced by a “smaller”
function).

Usually one can guess a “best possible” big-O estimate for a function by first throwing
away all constants, and second keeping only the biggest term in the expression. (You
still need to prove that your guess is correct.) For example applying these guidelines to
f(n) =10-2"n% 4+ 17n3log(n) — 500 suggests that a best possible big-O form is O(2"n?).

A quick way to decide if f is O(g) is to use limits. It turns out that f is O(g) if
i)
n—oo |g(n)]

exists and is finite. The proof that this works involves the definition of the limit of a
function, which we have not studied. Most often you will be asked to prove f is O(g) using
the definition, so this method will not be accepted.

Memorize: Suppose f:Z — R and g : Z — R are functions. We say f is Q(g) if there
exists constants C' and k so that |f(n)| > Clg(n)| for all n > k.

Big-Q2 is just like big-O, except that Cg(n) is now a lower bound for f(n) for all large
values of n. All of the same comments and proof techniques as above apply except the
inequalities are in the other direction.

Fact B2. A function f is Q(g) if and only if g is O(f).
You should know how to prove this Fact, and should also be able to use it in arguments
involving big-).
Memorize: Suppose f:Z — R and g : Z — R are functions. We say f is ©(g) if f is
O(g) and f is Q(g).
In other words, a function f is O(g) if and only if there are constants C7 and Cs so that
Crg(n) < f(n) < Cag(n) for all large vales of n.
Fact B3. A function f is O(g) if and only if f is O(g) and g is O(f).
You should know how to prove this Fact, and should also be able to use it in arguments
involving big-©.
It turns out that f is O(g) if

L)

n—oc |g(n)]

exists, is finite, and is not equal to zero. Most often, however, you will be asked to show
f is O(g) directly, so this method will not apply.

Here are a couple of facts you should be able to prove:
e A polynomial is big-© of its largest term.
e For any integer k, 1% + 28 + ... + nF is ©(nF+1).

