
Counting

The best way to learn about counting is to do lots of problems. What I’ll try to do here is
outline the guiding principles and techniques. Only experience will help you decide what
to do when.

Rule of Sum. The number of outcomes of a process which consists of a collection of
mutually exclusive cases is the sum of the number of outcomes of the cases.

Rule of Product. The number of outcomes of a process which is a sequence of steps is
the product of the number of outcomes of the steps, provided that in each step the number
of outcomes is not different depending on the outcome of a previous step.

The italicized part is important. If you encounter a situation where the number of outcomes
of the current step depends on the outcome of a previous step, then you probably need
to either re-order the steps, or break some part of the process into several cases. As and
example, try counting the number of even numbers between 1000 and 9999 inclusive that
have distinct digits. (Answer: 9× 8× 7× 1 + 8× 8× 7× 4.)

When I count the number of ways to do something, I imagine making it as a sequence of
steps. In the example above, I imagine making the number by filling in each of its digits
(4 steps). One usually must make a judicious choice of the ordering of the steps. Here, it
is wise to “fill in” the ones digit first.

Forced choices. When the outcome of a step is determined in advance, the number of
outcomes of that step is 1. For example, the number of numbers between 1000 and 9999
inclusive that end in a seven is 9× 10× 10× 1.

Counting the complement. Sometimes it is easier to count the number of outcomes
you don’t want, and subtract this from the total number of outcomes. This technique
is useful in problems with “at least” or “at most”. As an example, try counting the
number of numbers between 1000 and 9999 inclusive that have at least one zero. (Answer:
9× 103 − 94.)

Another way to deal with problems involving “at least k” or “at most k” is to break into
cases. In the previous example, one could the consider the three cases: exactly one 0,
exactly two 0s, and exactly three 0s. (Answer: 3×1×93 +3×9×1×1×9+9×1×1×1.)

Inclusion - Exclusion. The number of outcomes where A happens or B happens is the
number where A happens, plus the number where B happens, minus the number where
both A and B happen. For example, try counting the number of numbers between 1000
and 9999 inclusive that are divisible by 7 or 11. (Answer:

(
b 99997 c − b

999
7 c

)
+

(
b 999911 c −

b 99911 c
)

+
(
b 999977 c − b

999
77 c

)
.)

The above principle comes from the following fact about sets: For finite sets X and Y ,

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |.

To see the correspondence, let X be the set of outcomes where A happens, and Y be the
set of outcomes where B happens.
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Glue. This is used in arrangement problems where you want several objects to be together.
First, you glue them together (and count the number of ways). Then you arrange the glued
object and the other objects (and count the ways). For example, suppose there are 3 boys
and 4 girls lining up for a photo, and you want to count the number of arrangements in
which the boys stand together. First, glue the boys together: 3 × 2 × 1 possible orders.
Then, arrange the five things you have (the 4 girls, and one object consisting of the 3 boys
stuck together) in a line: 5× 4× 3× 2× 1 ways. Thus, the total number of arrangements
is 3× 2× 1× 5× 4× 3× 2× 1.

Overcounting. If you can devise a procedure that counts every object you want the same
number of times, say k, then the number of distinct objects equals the number of outcomes
of the procedure divided by k. As an example, try counting the number of arrangements
of the letters in PEPPER. Temporarily call the Ps P1, P2 and P3, and the Es E1 and E2.
Then we have 6 distinct ojects, so the number of arrangements is 6!. Now rub out the
subscripts on the Ps and Es, and each arrangement of the letters appears 3!2! times (for
each fixed arrangement of PEPPER there are 3!2! ways of calling the the Ps P1, P2 and
P3, and the Es E1 and E2). Thus the number of arrangements of the letters in PEPPER
is 6!/3!2!.

n choose k. For integers n ≥ k ≥ 0, we define
(
n
k

)
(read: n choose k) to be the number

of ways of selecting a collection of k distinct objects from a collection of n distinct objects
without regard for the order in which they are chosen.

It turns out that
(
n
k

)
= n!

k!(n−k)! . You should be able to derive this formula. You do this

by counting the number of ways to line up k out of n people in two different ways: either
choose the k first and then line them up, or construct the lineup from left to right by
selecting the next person from among those not already lined up.(
n
0

)
=

(
n
n

)
= 1,

(
n
1

)
=

(
n

n−1

)
= n, and in general

(
n
k

)
=

(
n

n−k

)
. You should be able to

explain each of these in English without resorting to the formula for
(
n
k

)
. The key to the

last one is that deciding which objects to take from a collection is the same as deciding
which objects to leave behind.

Pascal’s Identity. If n ≥ k ≥ 1 then
(
n
k

)
=

(
n−1
k

)
+

(
n−1
k−1

)
. You should be able to prove

this without using the formula for
(
n
k

)
. To do this count the number of ways to select

k children out of n to take on a trip in two ways. The first way is to just select the k
children, and the second is to count the number of collections that include Gary, and the
number that don’t.

Arranging non-distinct objects: another way. First determine (for yourself) the
number of objects of each type. Then, choose which places will contain the objects of the
first type, which of the remaining places will contain objects of the second type, and so
on until all places are filled. As an example, the number of arrangements of the letters
in PEPPER is

(
6
3

)(
3
2

)(
1
1

)
. When expanded using the formula for

(
n
k

)
and simplified this

equals 6!
3!2!1! .

In general, if you have n objects, of which n1 are of type 1, n2 are of type 2, . . ., nt are of
type t, then counting as above by choosing the the number of places that hold objects of

2



each type and simplifying, implies that the number of arrangements is n!
n1!n2!···nt!

.

Separation. To count the number of outcomes where no two objects of a certain type are
together, first arrange the other objects (and count the ways), and then choose which of
the places “inbetween” (don’t forget the beginning and end) will contain the objects you
want separated. As an example, the number of arrangements of the letters in STATISTICS
in which no two Ss are adjacent is 7!

3!2!

(
8
3

)
.

Some things in a fixed order. To count the number of arrangements of objects in which
some of them (“special ones”) must appear in a particular order, first change the “special
ones” to empty boxes and arrange the remaining objects and the boxes (and count the
ways). Then, fill in the boxes with the special objects in the desired order (and count the
ways). As an example, to count the number of arrangements of ABELIAN in which the
vowels are in alphabetical order, first change the vowels to boxes, and arrange 4 boxes and
B, L, N: 7!/4! ways. Now fill in the boxes with A, A, E, I in the desired order: 1 way. This
the number of arrangements is 7!/4!.

Arranging objects in a circle. Here you want to know the number of ways to arrange a
collection of objects around a circle subject to the condition that arrangements that differ
by a rotation of the circle are considered the same. Determine the number of spaces that
need to be filled, and the number of ways to fill them. This counts every arrangement a
certain number of times, so divide (as in Overcounting, above). For example, the number
of seatings of n people around a circular table is n!/n = (n−1)!. This method generalises to
arranging objects around other shapes (for example, squares), and to allowing equivalence
under other symmetries like flips. There is another method that involves rotating the circle
until a fixed object is at the top – this then imposes an order on the remaining objects –
but the method does not generalize to other shapes.

Selections of objects which are not all distinct. The basic premise is that the number
of non-negative integer solutions to x1 + x2 + x3 + · · · + xk = n is equal to the number
of ways to place n identical balls into k labelled boxes, which is equal to the number of
sequences of n stars (*) and k − 1 bars ( | ). The correspondence in the former case is to
let xi equal the number of balls in box i, 1 ≤ i ≤ k, and in the latter case it is to let the
number of stars before the first bar equal the number of balls in box 1, the number of
stars between the first and second bar equal the number of balls in box 2, the number of
stars between the second and third bar equal the number of balls in box 3, and so on until,
finally, the number of stars following the last bar equals the number of balls in box k. You
can imagine the n stars as the balls, and the k spaces created by the k− 1 bars (including
at the beginning and end) as the k boxes. The number of solutions is then the number of

arrangements of these n+k−1 non-distinct objects, and is (n+k−1)!
n!(k−1)! =

(
n+k−1

n

)
=

(
n+k−1
k−1

)
.

For example, consider counting the number of ways to order 12 soft drinks chosen from
Coke, Pepsi, Mountain Dew, and Ginger Ale. All that matters here is how drinks many of
each type are ordered. Let x1 equal the number of Cokes ordered, x2 equal the number of
Pepsis ordered, x3 equal the number of Mountain Dews ordered, and x4 equal the number
of Ginger Ales ordered. Since each of these numbers is a non-negative integer, we want
the number of integers solutions to x1 +x2 +x+3+x4 = 12, subject to xi ≥ 0, 1 ≤ 1 ≤ 4.

There are (12+3)!
12!3! of these.
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To deal with counting the number of non-negative integer solutions to inequalities
like x1 + x2 + · · ·+ xk ≤ n, introduce a new variable xk+1 (called a slack variable) whose
value will be n − (x1 + x2 + · · · + xk) (i.e., the slack in the inequality). There is then a
1-1 correspondence between non-negative integer solutions to x1 + x2 + · · ·+ xk ≤ n and
non-negative integer solutions to x1 + x2 + · · ·+ xk+1 = n.

To deal with constraints on the variables which are different than non-negativity,
convert the equation into one involving only non-negativity constraints. For example, the
number of solutions in integers to x1 + x2 + x3 = 15 subject to x1 ≥ −1, x2 > 4, x3 ≥ 2 is
equal to the number of solutions in integers to (x1 +1)+(x2−5)+(x3−2) = 15+1−5−2
subject to x1 + 1 ≥ −1 + 1, x2 − 5 > 4− 5, x3 − 2 ≥ 2− 2. Let y1 = x1 + 1, y2 = x2 − 5,
and y3 = x3 − 2. Then the problem becomes counting the number of integer solutions to
y1 + y2 + y3 = 9 subject to yi ≥ 0, 1 ≤ i ≤ 3.
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