
1 Recurrence Relations

Suppose a0, a1, a2, . . . is a sequence. A recurrence relation for the n-th term
an is a formula (i.e., function) giving an in terms of some or all previous
terms (i.e., a0, a1, . . . , an−1). To completely describe the sequence, the first
few values are needed, where “few” depends on the recurrence. These are
called the initial conditions.

If you are given a recurrence relation and initial conditions, then you can
write down as many terms of the sequence as you please: just keep applying
the recurrence. For example, f0 = f1 = 1, fn = fn−1 + fn−2, n ≥ 2, defines
the Fibonacci Sequence 1, 1, 2, 3, 5, 8, 13, . . . where each subsequent term is
the sum of the preceding two terms. On the other hand, if you are given a
sequence, you may or may not be able to determine a recurrence relation with
inital conditions which describes it. For example, 0, 1, 2, 3, 0, 2, 4, 6, 0, 4, 8, 12, . . .
satisfies an = 2an−4, a0 = 0, a1 = 1, a2 = 2, a3 = 3, but I can’t think of a
recurrence relation and initial conditions that describes the sequence {pn} of
prime numbers.

Deriving recurrence relations involves different methods and skills than
solving them. These two topics are treated separately in the next 2 subsec-
tions. Another method of solving recurrences involves generating functions,
which will be discussed later.

1.1 Deriving Recurrence Relations

It is typical to want to derive a recurrence relation with initial conditions
(abbreviated to RRwIC from now on) for the number of objects satisfying
certain conditions. The main technique involves giving counting argument
that gives the number of objects of “size” n in terms of the number of objects
of smaller size. This typically involves an analysis of several cases.

Suggestion. When attempting to derive a RRwIC, start by working
out the first few cases directly. You’ll need these for the initial conditions
anyway, and doing this might help you see how to proceed. If you do enough
cases, then you can use them later to check your recurrence.

Example 1 Fibonacci numbers. Assume you start with one pair of new-
born rabbits (one of each gender), and in each subsequent month each pair
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of rabbits which are more than 1 month old gives birth to a new pair of rab-
bits, one of each gender. Determine a RRwIC for fn, the number of pairs of
rabbits present at the end of n months.

The statement tells us that f0 = 1. Also, f1 = 1 because the original pair of
rabbits is not yet old enough to breed. At the end of two months, we have
our pair from before, plus one new pair. At the end of 3 months, we have
the f2 pairs from before, and f1 of them are old enough to breed, so we have
f3 = f2 + f1 = 3 pairs. Consider what happens at the end of n months. We
still have the fn−1 pairs from the month before. The number of pairs old
enough to breed is the number alive two months ago, or fn−2, so we get fn−2
new pairs. Thus, fn = fn−1 + fn−2, n ≥ 2, and f0 = f1 = 1. Using the
RRwIC yields the sequence 1, 1, 2, 3, 5, 8, ... which agrees with our initial
counting.

Counting sequences. Suppose you want to derive a recurrence for an,
the number of sequences with a certain property. A strategy that is often
successful is breaking the counting argument into cases based on the first (or
last) entry in the sequence.

Example 2 Derive a RR with IC for un, the number of sequences (strings)
of upper case letters that do not contain ZZ.

By counting, u0 = 1, u1 = 26, u2 = 262−1 = 675, u3 = 25(262−1)+1·25·26 =
17525. The method used to derive u3 suggests breaking the counting into
cases depending on the first letter in the sequence. Let’s call a string valid
if it does not contain ZZ. Consider a valid string of length n. There are two
cases depending on whether the first letter is Z.

Case 1. The first letter is not Z (25 choices).
Then, the remaining n−1 letters can be any valid string of length n−1. Since
there un−1 of these, by the Rule of Product there are 25un−1 valid string in
which the first letter is not Z.

Case 2. The first letter is Z (1 choice).
Since the string is valid, the second letter is not Z (25 choices), and then the
remaining n − 2 letters can be any valid string of length n − 2. Since there
un−2 of these, by the Rule of Product there are 25un−2 valid string in which
the first letter is Z.

Therefore, by the Rule of Sum, un = 25un−1 + 25un−2, n ≥ 2. As a check
on the work, computing with the recurrence, and u0 = 1 and u1 = 25 gives
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u2 = 25 · 26 + 25 · 1 = 675 and u3 = 25 · 675 + 25 · 26 = 17525. Since these
agree with what was obtained in step 1, there is some evidence that the RR
with IC is correct.

Similar methods often work when you are considering the number of ways
to accomplish a sequence of steps, where at each step one of a few things
happens. For example, a RRwIC for the number of ways to climb n stairs
where on each stride you climb 1, 2, or 3 stairs is a0 = a1 = 1, a2 = 2 and
for n ≥ 3, an = an−1 + an−2 + an−3.

Sometimes one or more of the cases do not involve the number of objects
of a smaller size.

Example 3 Derive a RRwIC for bn, the number of bit strings of length n
that contain 00.

By counting, b0 = b1 = 0, b2 = 1, and b3 = 3. Call a bit string good if it
contains 00. Consider a good bit string of length n. There are two cases to
consider, depending on the first bit (element of the sequence).

Case 1. The first element is 1 (1 choice).
Then, the remaining n − 1 bits can be any good bit string of length n − 1,
so there are bn−1 of these.

Case 2. The first element is 0 (1 choice).
If the next bit is 1, then the remaining n− 2 bits can be any good bit string
of length n−2, so there are bn−2 good bit strings that begin 01. On the other
hand, if the second bit is 0, then we have 00 already, so the remaining n− 2
bits can be any bit string of length n− 2, and there are 2n−2 of these.

Thus, by the Rule of Sum, bn = bn−1 + bn−2 + 2n−2, n ≥ 2. Plugging in
the initial conditions and computing yields b2 = 1 and b3 = 3, which agrees
with what was obtained directly.

When the recurrence relation is for the number of sequences that do, or
don’t, contain a subsequence where all characters are the same, the methods
above usually suffice. When the characters in the forbidden subsequence of
interest are not all the same, the counting can be more complicated.

Example 4 Derive a RRwIC for dn, the number of sequences of the 26 upper
case letters that do not contain DOG.
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By counting, d0 = 1, d1 = 26, d2 = 262, and d3 = 263 − 1. Call a se-
quence dogless if it does not contain DOG. There are two cases to consider,
depending on the first letter.

Case 1. The first letter is not D (25 choices).
Then, the remaining n−1 letters can be any dogless sequence of length n−1,
and there dn−1 of these. Thus, there are 25dn−1 dogless sequences in which
the first character is not D.

Case 2. The first letter is D (1 choice).
The remaining n − 1 letters must be a dogless sequence of length n − 1
(dn−1 choices), but care needs to be taken because DOG is formed when this
sequence starts with OG. We don’t want to count these, and so we subtract
the number of sequnces that contain DOG as the first three letters (i.e.
formed in this way – dn−3 choices). Hence, the number of dogless sequences
in this case is dn−1 − dn−3.

By the Rule of Sum, dn = 25dn−1 + (dn−1 − dn−3) = 26dn−1 − dn−3.

Another method involves remembering that if an counts the number of
objects you want, then the number that you don’t want equals the total
number of object minus an.

Example 5 Derive a RRwIC for zn, the number of sequences of A’s, B’s
and C’s that contain an odd number of C’s.

By counting, z0 = 0, z1 = 1, z2 = 4 and z3 = 13. Let’s call a sequence odd
if it contains an odd number of C’s, and even otherwise. Consider an odd
sequence of length n. There are two cases to consider, depending on the first
character in the sequence.

Case 1. The first character is A or B (2 choices).
Then, the remaining n− 1 characters form an odd sequence of length n− 1,
so there are 2zn−1 of these.

Case 2. The first character is C (1 choice).
Then the remaining n− 1 characters form an even sequence of length n− 1,
and the number of these is 3n−1 − zn−1.

Thus, by the Rule of Sum, zn = 2zn−1 +3n−1−zn−1 = zn−1 +3n−1, n ≥ 1.
Plugging in the initial conditions and computing yields z1 = 1, z2 = 4, and
z3 = 13, which agrees with our inital counting.

Counting subsets. If you are trying to derive a RRwIC that involves
subsets of {x1, x2, . . . , xn} with certain properties, try breaking into cases
depending on what happens to x1.
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Example 6 Derive a RR with IC for pn, the number of ways to partition an
n-set into subsets. (Remember that the subsets in a partition are non-empty
and pairwise disjoint.)

By counting, p1 = 1, p2 = 2, p3 = 5. Let’s agree that p0 = 1; we’ll see why
this is helpful in a moment. Consider a partition of the n-set {x1, x2, . . . , xn}.
Then x1 belongs to one of the subsets in the partition, call it S and let k = |S|.
Then 1 ≤ k ≤ n. Deleting S leaves a partition of the (n−k)-set formed by the

remaining elements. Since there are
(
n−1
k−1

)
choices for a k-subset containing

x1, and for each of these there are pn−k partitions of the remaining elements,
by the Rule of Product the number of partitions of {x1, x2, . . . , xn} in which

x1 belongs to a subset of size k is
(
n−1
k−1

)
pn−k. (Note: it is this line that

would lead to wanting to define p0 = pn−n = 1.) Thus, by the Rule of Sum,

pn =
∑n

k=1

(
n−1
k−1

)
pn−k, n ≥ 1. Computing using this recurrence leads to

p2 =
(
1
0

)
p1 +

(
1
1

)
p0 = 2, and p3 =

(
2
0

)
p2 +

(
2
1

)
p1 +

(
2
2

)
p0 = 5, which agrees

with what we obtained initially.

Summary. A good way to start is to work out the first few cases directly.
For the general case, try to organise the counting into cases depening on what
happens on the first move, or first step, or to the first object. Or, replace
first by n-th.

2 Solving Recurrences

To solve a recurrence relation means to find a function defined on the col-
lection of indices (i.e. subscripts, usually the natural numbers) that satisfies
the recurrence. There are usually many such functions. If initial conditions
are given, we will want to chose the one function that gives the correct initial
values.

Example 7 For example, if c is any constant, any function of the form c2n

is a solution to the recurrence relation an = 2an−1. To see this, plug the
corresponding value into both sides and verify that they are equal. This is the
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Induction part of a proof by mathematical induction: If an−1 = c2n−1, then
an = c2n. If the inital condition a0 = 5 is specified, then the only choice for c
that gives the correct initial value is c = 5. This is the Basis part of a proof
by mathematical induction that an = 5 · 2n. It doesn’t matter in which order
the basis and induction are established, what matters is that both have been
demonstrated to be true. Hence, the solution is an = 5 · 2n.

We will discuss four methods for solving recurrences: (1) Guess and
Check, (2) Iteration, (3) Characteristic Equations, and (4) Generating Func-
tions. The first three are discussed in this section, and the fourth in the
section on generating functions.

Guess and Check. The method is to guess a solution and then prove by
induction that your guess is correct. Obtaining the “right” guess is a matter
of astute observation or dumb luck, though experience can help.

Example 8 Consider the recurrence hn = 2hn−1 + 1, n ≥ 1 with initial
condition h0 = 0. Computing the first few values gives h0 = 1, h1 = 1, h2 =
3, h3 = 7, h4 = 15 and h5 = 31. It seems reasonable to guess that hn = 2n−1
for all n ≥ 0. It is easy to prove by induction that this is correct. If n = 0
then h0 = 0 = 20− 1, so that statement (that hn = 2n− 1) is true for n = 1.
Assume that hk = 2k − 1 for some k ≥ 0. Consider hk+1 = 2hk + 1 =
2(2k − 1) + 1 (by the induction hypothesis) = 2k+1 − 1, as desired. It now
follows by induction that hn = 2n − 1 for all n ≥ 0.

Iteration. This is also known as repeated substitution. It is most
useful when the recurrence involves only one previous term, and is what you
should probably try fist in such cases. The method is to repeatedly apply the
recurrence and reduce it to a summation that you can hopefully exaluate.
Usually is is best not to collect terms in the summation as that can obscure
what is going on.

It is useful to remember that if x 6= 1, then 1 +x+x2 + · · ·+xt = xt+1−1
x−1 ,

and if x = 1 the sum is t+ 1.

Example 9 Solve the recurrence tn = 3tn−1+7, n ≥ 1 with initial condition
t0 = 5.

6



We have

tn = 3tn−1 + 7
= 3(3tn−2 + 7) + 7 = 32tn−2 + 3 · 7 + 7
= 32(3tn−3 + 7) + 3 · 7 + 7 = 33tn−3 + 327 + 3 · 7 + 7
...
= 3nt0 + 3n−17 + 3n−27 + · · ·+ 7
= 5 · 3n + 73n−1

3−1
= 5 · 3n + (7/2)(3n − 1) = 17

2
3n + 7

2

In arguments like this we frequently make use of an elipsis (i.e. ‘. . .’),
which should be read as “and continuing in this way, we eventually arrive at”.
Almost every time an elipsis appears, we are actually using mathematical
induction but declining to write out the details. This is usually ok when the
pattern is “obvious”, though some people might insist on a formal argument
(I won’t).

Exactly the same argument as above will give the solution to any recur-
rence of the form tn = atn−1 +b, where a and b are constants and some initial
condition is also specified. In other words, there is a theorem to be found
and proved if you choose. It will also work if n− 1 is replaced by n− k, but
you’ll need initial values for t0 through tk−1 and get k solutions depending
on the remainder of n on division by k.

Some recurrences can be solved exactly by iteration only when n is of a
certain form (which depends on the recurrence). In such cases this informa-
tion can sometimes be used to obtain good upper and lower bounds on the
solution for arbitrary n.

Example 10 Try to solve the recurrence tn = tbn
2
c + tdn

2
e + n, with initial

conditions t0 = t1 = 1.

For arbitrary n it is almost impossible to see a pattern when iteration is
applied. The form of the recurrence suggests it would be good to try to solve
it for values of n where the floor and ceiling never come into play. Iterating
the recurrence requires dividing the subscript by 2 at each step, and we want
to choose n so that this always results in an integer. This requires that n
must be a power of 2. When n is even (and all powers of 2 are even except
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20 = 1), the recurrence becomes tn = 2tn
2

+ n. If n = 2k, then iteration gives

t2k = 2t2k−1 + 2k

= 2(2t2k−2 + 2k−1) + 2k

= 22t2k−2 + 2k + 2k

...
= 2kt1 + k2k

= 2k + k2k.

If n is not a power of 2 we can make use of the above analysis to go a
bit further and get good bounds on tn, provided one additional assumption
is satisfied. For what follows to make sense, it must be assumed that tn is
a non-decreasing function of n. That is, we assume that if m ≤ n, then
tm ≤ tn. Now, choose k to be the smallest integer such that n < 2k. That
k is the smallest implies 2k−1 < n, so 2k−1 < n < 2k. The assumption
about tn implies that t2k−1 ≤ tn ≤ t2k . Thus, from the analysis above,
2k−1 + (k − 1)2k−1 ≤ tn ≤ 2k + k2k. But, if 2k−1 < n < 2k, then (since log
is an increasing function), k − 1 < log2(n) < k. That is k − 1 = blog2(n)c
and k = dlog2(n)e. Also, since n < 2k, we have n/2 < 2k−1, and since
2k−1 < n we have 2k < 2n. Plugging all of these into the inequality for
tn we get our bounds: n/2 + blog2(n)c(n/2) ≤ tn ≤ 2n + dlog2(n)e(2n), or
(1/2)(n+ blog2(n)cn) ≤ tn ≤ 2(n+ dlog2(n)en). That is, tn is Θ(n log(n)).

Similar considerations as above apply to other recurrences involving floors
and ceilings.

Example 11 Try to solve the recurrence tn = 5tbn1/3c + 1.

Because of the special form of n we will use so that the floor function does
not come into play when we iterate, it will turn out that we will want to
know t2 as our initial condition (it could readily be computed if it is not
given). Let’s assume t2 = 4 is given.

We want to choose n of an appropriate form so that every time a (sub-
sequent) cube root is taken, the result is an integer and the floor function
never comes into play. If n is of the form 2 to some power, then taking the
cube root amounts to dividing the power by 3, so we want the exponent itself
to be of the form 3t, and thus will want to look at values of n of the form
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n = 2(3t). In this case, iterating yields

t2(3t) = 5t2(3t−1) + 1
= 5(5t2(3t−2) + 1) + 1 = 52t2(3t−2) + 5 + 1
...
= 5tt2(30) + 5t−1 + 5t−2 + · · ·+ 5 + 1

= 5tt2 + 5t−1
4
.

= 5t4 + 5t−1
4

If n is not of the special form we used above to solve the recurrence exactly,
then we can obtain reasonable bounds on tn under the assumption that it
is an increasing function of n. Choose the smallest t such that n < 2(3t).
That t is smallest means 2(3t−1) < n, so 2(3t−1) < n < 2(3t). Taking logs
throughout this inequality gives 3t−1 < log2(n) < 3t, and doing so again
gives (t−1) log2(3) < log2(log2(n)) < t log2(3), or t−1 < c log2(log2(n)) < t,
where c = 1/ log2(3). Since tn is assumed to an non-decreasing function,
t2(3t−1) ≤ n ≤ t2(3t) , so from the above we get 5t−14+ 5t−1−1

4
≤ tn ≤ 5t4+ 5t−1

4
.

Since t − 1 < c log2(log2(n)) < t we have t − 1 = bc log2(log2(n))c and
t = dc log2(log2(n))e. Plugging these in tells us that tn is “about” (i.e., a
constant multiple of) 5c log2(log2(n)).

There is more that can be done. Consider 5c log2(log2(n)). Since 5 = 2log2(5)

we can use the rules of exponents to our advantage:

5c log2(log2(n)) = (2log2(5))c log2(log2(n)) = 2log2(5)c log2(log2(n)) = log2(n)c1 ,

where c1 = c log2(5) = log2(5)/ log2(3). Thus, tn is “roughly” log2(n)c1 , that
is, tn is Θ(log(n)c1).

Similar means can be used for recurrences where the coefficients are not
constant.

Example 12 Try to solve the recurrence tn = n · tbn/3c, t1 = 1.

Here, similarly to the above examples, we have a hope of obtaining an exact
solution by iteration only when n is a power of 3. In that case

t3k = 3kt3k−1

= 3k(3k−1t3k−2)
...
= 3k3k−1 · · · 31t30
= 3k+(k−1)+···+11

= 3
k(k+1)

2 .
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If n is not of this special form, a futher analysis can be carried out as above.

Solving Linear Recurrence Relations with Constant Coefficients.
These are recurrence relations of the form

an = α1an−1 + α2an−2 + · · ·+ αkan−k + h(n),

where α1, α2, . . . , αn are constants. The name arises because the formula
giving an is a linear function of (some of) the previous terms. If h(n) is zero,
the recurrence is called homogeneous, otherwise it is non-homogeneous.

Solving non-homogeneous recurrence relations, when possible, requires
solving an associated homogeneous recurrence as part of the process, so we
will discuss solving linear homogeneous recurrence relations with
constant coefficients (LHRRWCC’s) first.

Theorems that tell us how to solve LHRWCC’s, and hints at how you can
prove them are given below. These lead to a general procedure for solving
this type of recurrence. Consider the LHRWCC’s an = α1an−1 + α2an−2 +
· · ·+ αkan−k or, equivalently, an − α1an−1 − α2an−2 − · · · − αkan−k = 0.

Theorem 1 If b is a non-zero complex number, then an = bn satisfies the
recurrence an−α1an−1−α2an−2− · · · −αkan−k = 0 if and only if b is a root
of the polynomial xk − α1x

k−1 − α2x
k−2 − · · · − αk−1x− αk = 0.

The equation xk − α1x
k−1 − α2x

k−2 − · · · − αk−1x− αk = 0 is called the
characteristic equation of the recurrence an = α1an−1+α2an−2+ · · ·+αkan−k.
By the Fundamental Theorem of Algebra, the characteristic equation has k
roots, counting multiplicities. Some of the roots may be complex.

It is important to notice that Theorem ?? is an “if and only if” theorem.
In particular, it tells us that any root of the characteristic equation gives a
solution to the recurrence. Thus, solutions exist.

To prove one direction of ??, substitute an = bn into the recurrence and
take out the common factor of bn−k to obtain bn−k(bk−α1b

k−1−α2b
k−2−· · ·−

αk−1b− αk) = 0. Since b is not zero, bk − α1b
k−1− α2b

k−2− · · · − αk−1b− αk

must be zero. To prove the other direction, reverse the argument.

Theorem 2 If b is a root of the characteristic equation of multiplicity t ≥ 1,
then each of bn, nbn, n2bn, . . . , nt−1bn satisfies the recurrence.
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Taken together with Theorem ??, the above result implies that if the
characteristic equation involves a polynomial of degree k, then there are k
different expressions that satisfy the recurrence. Also, notice that if t = 1,
then the only expression in the list is bn.

The proof of Theorem ?? is not hard, and it also not easy to communicate
the main idea briefly.

Sketch of the proof of Theorem ??. Let

p(x) = xk − α1x
k−1 − α2x

k−2 − · · · − αk−1x− αk.

If b is a root of multiplicity t ≥ 1, then p(x) = (x− b)tq(x), where q(x) is a
polynomial of degree k− t. Suppose r is between 0 and t− 1, and plug nrbn

into the recurrence. After factoring, one obtains

bn−k(nrbk − α1(n− 1)rbk−1 − α2(n− 2)rbk−2−
· · · − αk−1(n− k + 1)rb− αk(n− k)r) = 0.

But this expression is what you get when let x = b after performing the fol-
lowing operation r times starting with xn−kp(x): differentiate then multiply
by x. Since p(x) = (x − b)tq(x), this is the same as performing the same
sequence of operations on (x− b)txn−kq(x). The result of doing this is a sum
of many terms, each of which involves (x− b). Thus, when you let x = b the
result is zero, which is what was needed. (Note that if you performed the
operation t or more times, then some term would not involve (x− b), so the
result is not guaranteed to be zero.)

Theorem 3 If h1(n), h2(n), . . . , hk(n) all satisfy the recurrence relation

an = α1an−1 + α2an−2 + · · ·+ αkan−k

then, for any choice of constants c1, c2, . . . , ck, so does h(n) = c1h1(n) +
c2h2(n) + · · ·+ ckhk(n).

The function h(n) in Theorem ?? is called the general solution to the re-
currence relation. To prove Theorem ??, just plug h(n) into the recurrence
relation and do algebra.

If we are given a set of k initial values for the recurrence, then we want
to choose the constants in Theorem ?? so that the expression produces the
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correct initial values, and therefore produces (and gives a formula for the
n-th term of) the correct sequence. That is, we want to find a particular
solution that gives the correct initial values. To do this, use the k initial
values to generate a system of k equations in k unknowns, the unknowns
being the constants (from the general solution) that we want to determine.
It is possible for the system of equations to have no solution, but it turns out
to always have a solution in the cases where the roots of the characteristic
equation are distinct, or when the initial values given are consecutive (like
a0, a1, . . . ak−1). We won’t explore why here.

General Procedure for Solving LHRWCC’s

1. Determine the characteristic equation.

2. Find the roots of this equation and their multiplicities.

3. Write down the general solution.

4. Use the initial conditions to get a system of k equations in k unknowns,
then solve it to obtain the solution you want. (Where k is the degree
of the characteristic equation.)

Notes.

1. If the “largest” index term in the recurrence is an, and the “smallest”
index term is an−k, the characteristic equation will be a polynomial of
degree k. There will be a non-zero term involving xk−t whenever an−t
is involved in the recurrence.

2. There should be a total of k roots of the characteristic equation, count-
ing multiplicities.

3. Any complex roots come in complex conjugate pairs. Thus, if the
degree is odd there is at least one real root.

4. If the characteristic equation has only integer roots, and the coefficient
of xn is 1, then these are among the positive divisors of the constant
term and their negatives.
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5. Since each root of multiplicity t gives us t solutions to the recurrence
relation, the general solution is a sum of k terms.

Example 13 Solve the recurrence relation an = an−1 + 8an−2−12an−3, n ≥
3, subject to the initial conditions a0 = 0, a1 = 1, a2 = 3.

To determine the characteristic equation, first bring all terms over to the LHS.
Thus, the recurrence is an− an−1− 8an−2 + 12an−3 = 0, so the characteristic
equation is x3−x2−8x+12 = 0. Testing the positive divisors of 12 and their
negatives as possible roots reveals that 2 and −3 are roots, and after factoring
the LHS of the characteristic equation we get (x− 2)2(x+ 3) = 0. Thus 2 is
a root of multiplicity 2, and 3 is a root of multiplicity 1. Using Theorems ??
and ??, the general solution is then h(n) = c12

n + c2n2n + c3(−3)n. Finally,
we need to use the initial conditions to determine the constants.

a0 = 0 ⇒ c12
0 + c20(20) + c3(−3)0 = 0

a1 = 1 ⇒ c12
1 + c21(21) + c3(−3)1 = 1

a2 = 2 ⇒ c12
2 + c22(22) + c3(−3)2 = 2

This system of 3 equations in 3 unknowns has the solution c1 = −2/25, c2 =

3/10, c3 = 2/25, so the solution to the recurrence relation that also satisfies
the initial conditions is an = (−2/25)2n + (3/10)n2n + (2/25)(−3)n.

Example 14 Solve an = 2an−1 − 4an−2,+8an−3 n ≥ 3, given the initial
conditions a0 = 1, a1 = 1, a2 = 1.

Here the characteristic equation is x3 − 2x2 + 4x − 8 = 0. By trial we
find that 2 is a root, and the equation is (x − 2)(x2 + 4) = 0. Using the
quadratic formula on the second factor tells us that the other roots are 2i
and −2i. Since all of the roots have multiplicity 1, the general solution is
h(n) = c12

n + c2(2i)
n + c3(−2i)n. Plugging in the initial conditions gives:

a0 = 1 ⇒ c12
0 + c2(2i)

0 + c3(−2i)0 = 1
a1 = 1 ⇒ c12

1 + c2(2i)
1 + c3(−2i)1 = 1

a2 = 1 ⇒ c12
2 + c2(2i)

2 + c3(−2i)2 = 1

I think that the solution is c1 = 5
8
, c2 = − 3

16
− 1

16
i, c3 = 9

16
+ 1

16
i, but you

should check for yourself.
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Solving Non-homogeneous Linear Recurrence Relations with
Constant Coefficients.

Recall that these are recurrence relations of the form an = α1an−1 +
α2an−2 + · · · + αkan−k + h(n), where α1, α2, . . . , αn are constants, and h(n)
is not identically zero. We’ll refer to h(n) as the non-homogeneous term. We
will need to use solutions to the recurrence relation obtained by replacing
h(n) by zero, which we’ll call the associated non-homogeneous recurrence
relation.

Theorems that give us a method for solving non-homogeneous recurrences
are listed below, and followed by discussion of how to use the method.

Theorem 4 If f(n) is a solution to the associated homogeneous recurrence,
and g(n) is a solution to the non-homogeneous recurrence, then f(n) + g(n)
is also a solution to the non-homogeneous recurrence.

To prove this theorem, plug f(n)+g(n) into the non-homogeneous recur-
rence and do algebra.

Theorem ?? suggests that the general solution to a non-homogeneous re-
currence relation should be the sum of the general solution to the associated
homogeneous recurrence and any particular solution to the non-homogeneous
recurence. This expression will involve k unknowns (from the general solu-
tion to the associated homogeneous recurrence) which can be determined by
plugging in the k initial conditions in turn and solving the resulting system
of k equations in k unknowns as before.

Theorem 5 Suppose the non-homogeneous term is of the form p(n)sn, where
p(n) is a polynomial of degree r and s is a constant. If s is not a root of
the characteristic equation, then there is a particular solution of the form
q(n)sn, where q is a polynomial of degree at most r. If s is a root of the
characteristic equation of multiplicity t, then there is a particular solution of
the form ntq(n)sn, where q is a polynomial of degree at most r.

Theorem ?? says that in some situations there is a particular solution of
a certain form. To find it, use the method of undetermined coefficients.
If the number s in is not a root of the characteristic equation, then plug
an = (βrn

r + βr−1n
r−1 + · · ·+ β1n+ β0)s

n into the recurrence. If s is a root
of multiplicity t of the characteristic equation, then plug an = nt(βrn

r +
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βr−1n
r−1 + · · · + β1n + β0)s

n into the recurrence. (Remember to change all
n’s to (n − 1)’s when you are replacing an−1 and to (n − 2)’s when you are
replacing an−2, etc..) In either case, do some algebra. Both sides of the
equation will be polynomials in n, and two polynomials are equal if and only
if the coefficients of like powers of n are equal. This results in a system of
r+ 1 linear equations in r+ 1 unknowns (the β’s) to solve. A demonstration
that the system of equations you get is always solvable completes the proof.

Note that non-homogeneous terms like n or 6n are of the right form to
apply Theorem ??: there is a 1 that’s not written down. The term n is the
same as n1n, and 6n is the same as 1 · 6n. The two terms with the (implied)
ones written in are clearly of the right form. In the last case, remember that
a constant (in this case 1) is a polynomial of degree 0.

If you look in some combinatorics texts, for example Tucker, or Grimaldi,
you will find tables of other situations in which the form of a particular
solution is known. We will deal only with the cases covered by the above
fact, and the next one.

Theorem 6 If the non-homogeneous term is of the form p1(n)sn1 +p2(n)sn2 +
· · ·+ pm(n)snm, then there is a particular solution of the form f1(n) + f2(n) +
· · · + fm(n) where, for each i, fi(n) is a particular solution to the non-
homogeneous recurence an = α1an−1 + α2an−2 + · · ·+ αkan−k + pi(n)sni .

Theorem ?? allows you to find a particular solution to a recurrence with
a complicated non-homogeneous term by finding particular solutions to a
bunch of simpler non-homogeneous recurrences, and then adding these to-
gether. If the non-homogeneous term is a sum of m terms as in the theorem,
then there will be m non-homogeneous recurrences to solve, all with the
same associated homogeneous recurrence. Thus, you will end up finding the
general solution to the associated homogeneous recurrence once, using The-
orem ?? and the method of undetermined coefficiants m times, adding all of
these together, and then generating and solving a system of k equations in
k unknowns. In total, you’ll solve m+ 1 linear systems.

15



Procedure for solving non-homogeneous recurrences.

1. Write down the associated homogeneous recurrence and find its general
solution.

2. Find a particular solution the non-homogeneous recurrence. This may
involve solving several simpler non-homogeneous recurrences (using this
same procedure).

3. Add all of the above solutions together to obtain the general solution
to the non-homogeneous recurrence.

4. Use the initial conditions to get a system of k equations in k unknowns,
then solve it to obtain the solution you want.

Note. You must solve the associated homogeneous recurrence first because
you need to know the roots of the characteristic equation and their mul-
tiplicities before you can find the particular solution you want in the next
step.

Example 15 Solve an = 4an−1−4an−2+n2n+3n+4, n ≥ 2, a0 = 0, a1 = 1.

The associated homogeneous recurrence is an = 4an−1 − 4an−2. Its charac-
teristic equation is x2 = 4x− 4, or (x− 2)2 = 0. Thus, 2 is the only root and
it has multiplicity 2. The general solution to the associated homogeneous
recurrence is c12

n + c2n2n.
To find a particular solution to the non-homogeneous recurrence, we add

together particular solutions to the three “simpler” non-homogeneous recur-
rences:

• an = 4an−1 − 4an−2 + n2n,

• an = 4an−1 − 4an−2 + 3n, and

• an = 4an−1 − 4an−2 + 4.

Let’s find a particular solution to an = 4an−1 − 4an−2 + 4 first. The non-
homogeneous term is 4 = 4 ·1n, and since 1 is not a root of the characteristic
equation, Theorem ?? says there is a particular solution of the form c1n.
To determine c, plug c1n = c into the non-homogeneous recurrence and get
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c = 4c − 4c + 4 = 4. Thus, a particular solution to the recurrence under
consideration is an = 4.

Now let’s do the same for an = 4an−1−4an−2+3n. The non-homogeneous
term is 3n = 1 · 3n. Since 3 is not a root of the characteristic equation,
Theorem ?? says there is a particular solution of the form c3n. To determine
c, plug c3n into the non-homogeneous recurrence and get c3n = 4c3n−1 −
4c3n−2 + 3n. After dividing by the common factor of 3n−2, we have 9c =
12c − 4c + 9, or c = 9. Thus, a particular solution to the recurrence under
consideration is an = 9 · 3n.

Let’s find a particular solution to an = 4an−1 − 4an−2 + n2n. The non-
homogeneous term is n2n. Since 2 is a root of the characteristic equation
with multiplicity 2, NHLRR 2 says there is a particular solution of the form
n2(un + v)2n. To determine u and v, plug this expression into the non-
homogeneous recurrence and get

n2(un+v)2n = 4(n−1)2(u(n−1)+v)2n−1−4(n−2)2(u(n−2)+v)2n−2+n2n.

After dividing both sides by 2n− 2 and doing a bit of algebra this becomes

4un3 + 4vn2 = 8u(n− 1)3 + 8v(n− 1)2

−4u(n− 2)3 − 4v(n− 2)2 + 4n
= 8u(n3 − 3n2 + 3n− 1) + 8v(n2 − 2n+ 1)
−4u(n3 − 6n2 + 2n− 8)− 4v(n2 − 4n+ 4) + 4n

= (8u− 4u)n3 + (−24u+ 8v + 24u− 4v)n2

+(24u− 16v − 48u+ 16v + 4)n
+(−8u+ 8v + 32u− 16v)

Equating coefficients of like powers of n on the LHS and RHS gives:

4u = 4u,
4v = (−24u+ 8v + 24u− 4v)
0 = (24u− 16v − 48u+ 16v + 4) = −24u+ 4
0 = (−8u+ 8v + 32u− 16v) = −24u− 8v

The first two equations tell us nothing. The third equation implies u = 1/6.
Substituting this value into the last equation and solving gives v = 1/2.
Thus, a particular solution to the given recurrence is n2(1

6
n+ 1

2
)2n.

By Theorem ??, combining the three particular solutions just obtained
gives a particular solution to an = 4an−1 − 4an−2 + n2n + 3n + 4. It is
4 + 9 · 3n + n2(1

6
n+ 1

2
)2n.
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The general solution is therefore c12
n + c2n2n + 4 + 9 · 3n + n2(1

6
n+ 1

2
)2n.

To determine the constants, use the initial conditions.

a0 = 0 ⇒ c1 + 4 + 9 = 0
a1 = 1 ⇒ 2c1 + 2c2 + 4 + 27 + (1/6 + 1/2)2 = 1

The first equation says c1 = −13. Plugging this into the second equation
gives c2 = −8/3. Thus, the solution to the recurrence is

an = (−13)2n + (−8/3)n2n + 4 + 9 · 3n + n2(
1

6
n+

1

2
)2n.

18


