David Goluskin
Associate Professor
Department of Mathematics and Statistics
University of Victoria
Email: goluskin at uvic.ca
My research is in the broad area of applied nonlinear dynamics and incorporates both computation and analysis. Much of my work concerns fluid dynamics, but I also study simpler ordinary and partial differential equations. Recently I have been developing ways to use polynomial optimization to study dynamics, for instance to estimate time averages and other properties of attractors. An old public lecture about the challenges of understanding turbulence can be found here.
Education
PhD Applied Mathematics, Columbia University, 2013
MS Applied Mathematics, Columbia University, 2009
BS Applied Mathematics, University of Colorado Boulder, 2007
BS Aerospace Engineering, University of Colorado Boulder, 2007
Teaching: Winter 2025
MATH 346, Introduction to partial differential equations
MATH 444/550, Topics in fluid dynamics
Publications (arXiv)
arXiv versions closely reflect published versions.
Journal articles
- Q. Wang, D. Goluskin, D. Lohse
Lifetimes of metastable windy states in two-dimensional Rayleigh—Bénard convection with stress-free boundaries
J. Fluid Mech. Rapids 976, R2. 2023. arXiv, JFM (open access)
- H. Oeri, D. Goluskin
Convex computation of maximal Lyapunov exponents
Nonlinearity 36, 5378-5400. 2023. arXiv, Nonlinearity
- A. Chernyavsky, J. Bramburger, G. Fantuzzi, D. Goluskin
Convex relaxations of integral variational problems: pointwise dual relaxation and sum-of-squares optimization
SIAM J. Opt. 33, 481-512. 2023. arXiv, SIOPT
- S. Kazemi, R. Ostilla-Mónico, D. Goluskin
Transition between boundary-limited scaling and mixing-length scaling of turbulent transport in internally heated convection
Phys. Rev. Lett. 129, 024501. 2022. arXiv, PRL
- F. Fuentes, D. Goluskin, S. Chernyshenko
Global stability of fluid flows despite transient growth of energy
Phys. Rev. Lett. 128, 204502. 2022. arXiv, PRL, talk
- B. Wen, D. Goluskin, C. R. Doering
Steady Rayleigh—Bénard convection between no-slip boundaries
J. Fluid Mech. Rapids 933, R4. 2022. arXiv, JFM (open access),
talk
- J. P. Parker, D. Goluskin, G. M. Vasil
A study of the double pendulum using polynomial optimization
Chaos 31, 103102. 2021. arXiv, Chaos
- B. Wen, D. Goluskin, M. LeDuc, G. P. Chini, C. R. Doering
Steady Rayleigh–Bénard convection between stress-free boundaries
J. Fluid Mech. Rapids 905, R4. 2020. arXiv, JFM
- M. Olson, D. Goluskin, W. W. Schultz, C. R. Doering
Heat transport bounds for a truncated model of Rayleigh–Bénard convection via polynomial optimization
Physica D 415, 132748. 2020. arXiv, Physica D
- J. J. Bramburger, D. Goluskin
Minimum wave speeds in monostable reaction–diffusion equations: sharp bounds by polynomial optimization
Proc. R. Soc. A 476, 20200450. 2020. arXiv, Proc A
- G. Fantuzzi, D. Goluskin
Bounding extreme events in nonlinear dynamics using convex optimization
SIAM J. Appl. Dyn. Syst. 19, 1823-1864. 2020. arXiv, SIADS
- D. Goluskin
Bounding extrema over global attractors using polynomial optimization
Nonlinearity 33, 4878-4899. 2020. arXiv, Nonlinearity
- D. Goluskin, G. Fantuzzi
Bounds on mean energy in the Kuramoto–Sivashinsky equation computed using semidefinite programming
Nonlinearity 32, 1705-1730. 2019. arXiv, Nonlinearity
- D. Goluskin
Bounding averages rigorously using semidefinite programming: mean moments of the Lorenz system
J. Nonlinear Sci. 28, 621-651. 2018. arXiv, JNLS
- I. Tobasco, D. Goluskin, C. R. Doering
Optimal bounds and extremal trajectories for time averages in nonlinear dynamical systems
Phys. Lett. A 382, 382-386. 2018. arXiv, PLA
- G. Fantuzzi, D. Goluskin, D. Huang, S. I. Chernyshenko
Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization
SIAM J. Appl. Dyn. Syst. 15, 1962-1988. 2016.
arXiv, SIADS (open access)
- D. Goluskin, C. R. Doering
Bounds for convection between rough boundaries
J. Fluid Mech. 804, 370-386. 2016.
arXiv, JFM
- D. Goluskin, E. P. van der Poel
Penetrative internally heated convection in two and three dimensions
J. Fluid Mech. Rapids 791, R6. 2016. arXiv, JFM
- J. von Hardenberg, D. Goluskin, A. Provenzale, E. A. Spiegel
Generation of large-scale winds in horizontally anisotropic convection
Phys. Rev. Lett. 115, 134501. 2015. arXiv, PRL
- D. Goluskin
Internally heated convection beneath a poor conductor
J. Fluid Mech. 771, 36-56. 2015. arXiv, JFM
- D. Goluskin, H. Johnston, G. R. Flierl, E. A. Spiegel
Convectively driven shear and decreased heat flux
J. Fluid Mech. 759, 360-385. 2014. arXiv,
videos, JFM
- D. Goluskin, E. A. Spiegel
Convection driven by internal heating
Phys. Lett. A 377, 83-92. 2012.
arXiv, PLA
Book
- D. Goluskin
Internally heated convection and Rayleigh–Bénard convection
Springer. 2016. arXiv, Springer
Proceedings
- D. Goluskin
Who ate whom: population dynamics with age-structured predation
in WHOI GFD 2010 program of study: swimming and swirling in turbulence. 2010.
Book review
- D. Goluskin
Review of Exploring ODEs. By Lloyd N. Trefethen, Ásgeir Birkisson, and Tobin A. Driscoll
SIAM Rev. 61, 392-393. 2019.
Thesis
- D. Goluskin
Zonal flow driven by convection and convection driven by internal heating
Columbia University. 2013.
download