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COARSE AND EQUIVARIANT CO-ASSEMBLY MAPS

HEATH EMERSON AND RALF MEYER

Abstract. We study an equivariant co-assembly map that is dual to the
usual Baum–Connes assembly map and closely related to coarse geometry,
equivariant Kasparov theory, and the existence of dual Dirac morphisms. As
applications, we prove the existence of dual Dirac morphisms for groups with
suitable compactifications, that is, satisfying the Carlsson–Pedersen condition,
and we study a K–theoretic counterpart to the proper Lipschitz cohomology
of Connes, Gromov and Moscovici.

1. Introduction

This is a sequel to the articles [6, 7], which deal with a coarse co-assembly map
that is dual to the usual coarse assembly map. Here we study an equivariant co-
assembly map that is dual to the Baum–Connes assembly map for a group G.

A rather obvious choice for such a dual map is the map

(1) pEG
∗ : KKG∗ (C,C)→ RKKG∗ (EG;C,C)

induced by the projection pEG : EG → point. This map and its application to the
Novikov conjecture go back to Kasparov ([10]). Nevertheless, (1) is not quite the
map that we consider here. Our map is closely related to the coarse co-assembly
map of [6]. It is an isomorphism if and only if the Dirac-dual-Dirac method applies
to G. Hence there are many cases—groups with γ 6= 1—where our co-assembly
map is an isomorphism and (1) is not.

Most of our results only work if the group G is (almost) totally disconnected
and has a G–compact universal proper G–space EG. We impose this assumption
throughout the introduction.

First we briefly recall some of the main ideas of [6, 7]. The new ingredient in
the coarse co-assembly map is the reduced stable Higson corona cred(X) of a coarse
space X . Its definition resembles that of the usual Higson corona, but its K–theory
behaves much better. The coarse co-assembly map is a map

(2) µ : K∗+1

(

cred(X)
)

→ KX∗(X),

where KX∗(X) is a coarse invariant of X that agrees with K∗(X) if X is uniformly
contractible.
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If |G| is the coarse space underlying a group G, then there is a commuting
diagram

(3)

KKG∗
(

C, C0(G)
) pEG

∗

//
OO
∼=

��

RKKG∗
(

EG;C, C0(G)
)

OO
∼=

��
K∗+1

(

cred(|G|)
) µ // KX∗(|G|).

In this situation, KX∗(|G|) ∼= K∗(EG) because |G| is coarsely equivalent to EG,
which is uniformly contractible. The commuting diagram (3), coupled with the
reformulation of the Baum Connes assembly map in [11], is the source of the re-
lationship between the coarse co-assembly map and the Dirac-dual-Dirac method
mentioned above.

If G is a torsion-free discrete group with finite classifying space BG, the coarse
co-assembly map is an isomorphism if and only if the Dirac-dual-Dirac method
applies to G. A similar result for groups with torsion is available, but this requires
working equivariantly with respect to compact subgroups of G.

In this article, we work equivariantly with respect to the whole group G. The
action of G on its underlying coarse space |G| by isometries induces an action on
cred(G). We consider a G–equivariant analogue

(4) µ : Ktop
∗+1

(

G, cred(|G|)
)

→ K∗(C0(EG) ⋊G)

of the coarse co-assembly map (2); here Ktop
∗ (G,A) denotes the domain of the

Baum–Connes assembly map for G with coefficients A. We avoid K∗(c
red(X)⋊G)

and K∗(c
red(X) ⋊r G) because we can say nothing about these two groups. In

contrast, the group Ktop
∗

(

G, cred(|G|
)

is much more manageable. The only analytical

difficulties in this group come from coarse geometry.
There is a commuting diagram similar to (3) that relates (4) to equivariant

Kasparov theory. To formulate this, we need some results of [11]. There is a

certain G–C∗-algebra P and a class D ∈ KKG(P,C) called Dirac morphism such
that the Baum–Connes assembly map for G is equivalent to the map

K∗

(

(A⊗ P)⋊r G)→ K∗(A⋊r G)

induced by Kasparov product with D. The Baum–Connes conjecture holds for G
with coefficients in P ⊗ A for any A. The Dirac morphism is a weak equivalence,
that is, its image in KKH(P,C) is invertible for each compact subgroup H of G.

The existence of the Dirac morphism allows us to localise the (triangulated)

category KKG at the multiplicative system of weak equivalences. The functor from
KKG to its localisation turns out to be equivalent to the map

pEG
∗ : KKG(A,B)→ RKKG(EG;A,B).

One of the main results of this paper is a commuting diagram

(5)

Ktop
∗+1

(

G, cred(|G|)
)

//
OO
∼=

��

K∗(EG)
OO

∼=

��
KKG∗ (C,P)

pEG
∗

// RKKG∗ (EG;C,P).

In other words, the equivariant coarse co-assembly (4) is equivalent to the map

pEG
∗ : KKG∗ (C,P)→ RKKG∗ (EG;C,P).

This map is our proposal for a dual to the Baum–Connes assembly map.
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We should justify why we prefer the map (4) over (1). Both maps have isomorphic
targets:

RKKG∗ (EG;C,P)
∼= RKKG∗ (EG;C,C)

∼= K∗(C0(EG)⋊G).

Even in the usual Baum–Connes assembly map, the analytical side involves a choice
between full and reduced groupC∗–algebras and crossed products. Even though the
full group C∗–algebra has better functoriality properties and is sometimes preferred
because it gives potentially finer invariants, the reduced one is used because its
K–theory is closer to Ktop

∗ (G). In formulating a dual version of the assembly map,
we are faced with a similar situation. Namely, the topological object that is dual
to Ktop

∗ (G) is RKKG∗ (EG;C,C). For the analytical side, we have some choices; we

prefer KKG∗ (C,P) over KKG∗ (C,C) because the resulting co-assembly map is an
isomorphism in more cases.

Of course, we must check that this choice is analytical enough to be useful for
applications. The most important of these is the Novikov conjecture. Elements of
RKKG∗ (EG;C,C) yield maps Ktop

∗ (G) → Z, which are analogous to higher signa-
tures. In particular, (4) gives rise to such objects. The maps Ktop

∗ (G) → Z that
come from a class in the range of (1) are known to yield homotopy invariants for

manifolds because there is a pairing between KKG∗ (C,C) and K∗(C
∗
maxG) (see [8]).

But since (4) factors through (1), the former also produces homotopy invariants.
In particular, surjectivity of (4) implies the Novikov conjecture for G. More is

true: since KKG(C,P) is the home of a dual-Dirac morphism, (5) yields that G has
a dual-Dirac morphism and hence a γ–element if and only if (4) is an isomorphism.
This observation can be used to give an alternative proof of the main result of [7].

We call elements in the range of (4) boundary classes. These automatically

form a graded ideal in the Z/2-graded unital ring RKKG∗ (EG;C,C). In contrast,
the range of the unital ring homomorphism (1) need not be an ideal because it

always contains the unit element of RKKG∗ (EG;C,C). We describe two important
constructions of boundary classes, which are related to compactifications and to
the proper Lipschitz cohomology of G studied in [3, 4].

Let EG ⊆ Z be a G–equivariant compactification of EG that is compatible with
the coarse structure in a suitable sense. Since there is a map

Ktop
∗

(

G,C(Z \ EG)
)

→ Ktop
∗

(

G, cred(EG)
)

,

we get boundary classes from the boundary Z \ EG. This construction also shows
that G has a dual-Dirac morphism if it satisfies the Carlsson–Pedersen condition.
This improves upon a result of Nigel Higson ([9]), which shows split injectivity of
the Baum–Connes assembly map with coefficients under the same assumptions.

Although we have discussed only KKG∗ (C,P) so far, our main technical result
is more general and can also be used to construct elements in Kasparov groups of
the form KKG∗

(

C, C0(X)
)

for suitable G–spaces X . If X is a proper G–space, then

we can use such classes to construct boundary classes in RKKG∗ (EG;C,C). This
provides a K–theoretic counterpart of the proper Lipschitz cohomology of G defined
by Connes, Gromov, and Moscovici in [3]. Our approach clarifies the geometric
parts of several constructions in [3]; thus we substantially simplify the proof of the
homotopy invariance of Gelfand–Fuchs cohomology classes in [3].

2. Preliminaries

2.1. Dirac-dual-Dirac method and Baum–Connes conjecture. First, we re-
call the Dirac-dual-Dirac method of Kasparov and its reformulation in [11]. This is
a technique for proving injectivity of the Baum–Connes assembly map

(6) µ : Ktop
∗ (G,B)→ K∗

(

C∗
r (G,B)

)

,
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whereG is a locally compact group andB is a C∗–algebra with a strongly continuous
action of G or, briefly, a G–C∗-algebra.

This method requires a proper G-C∗-algebra A and classes

d ∈ KKG(A,C), η ∈ KKG(C, A), γ := η ⊗A d ∈ KKG(C,C),

such that pEG
∗(γ) = 1C in RKKG(EG;C,C). If these data exist, then the Baum–

Connes assembly map (6) is injective for all B. If, in addition, γ = 1C in KKG(C,C),
then the Baum–Connes assembly map is invertible for all B, so that G satisfies the
Baum–Connes conjecture with arbitrary coefficients.

Let A and B be G–C∗-algebras. An element f ∈ KKG(A,B) is called a weak

equivalence in [11] if its image in KKH(A,B) is invertible for each compact sub-
group H of G.

The following theorem contains some of the main results of [11].

Theorem 1. Let G be a locally compact group. Then there is a G–C∗-algebra P

and a class D ∈ KKG(P,C) called Dirac morphism such that

(a) D is a weak equivalence;

(b) the Baum–Connes conjecture holds with coefficients in A⊗ P for any A;

(c) the assembly map (6) is equivalent to the map

D∗ : K∗(A⊗ P⋊r G)→ K∗(A⋊r G);

(d) the Dirac-dual-Dirac method applies to G if and only if there is a class

η ∈ KKG(C,P) with η ⊗C D = 1A, if and only if the map

(7) D
∗ : KKG∗ (C,P)→ KKG∗ (P,P), x 7→ D ⊗ x,

is an isomorphism.

Whereas [7] studies the invertibility of (7) by relating it to (2), here we are going
to study the map (7) itself.

It is shown in [11] that the localisation of the category KKG at the weak equiv-

alences is isomorphic to the category RKKG(EG) whose morphism spaces are the

groups RKKG(EG;A,B) as defined by Kasparov in [10]. This statement is equiva-
lent to the existence of a Poincaré duality isomorphism

(8) KKG∗ (A⊗ P, B) ∼= RKKG∗ (EG;A,B)

for all G-C∗-algebras A and B (this notion of duality is analysed in [5]). The

canonical functor from KKG to the localisation becomes the obvious functor

pEG
∗ : KKG(A,B)→ RKKG(EG;A,B).

Since D is a weak equivalence, pEG
∗(D) is invertible. Hence the maps in the

following commuting square are isomorphisms for all G–C∗-algebras A and B:

RKKG∗ (EG;A,B ⊗ P) ∼=

D∗ //

∼= D
∗

��

RKKG∗ (EG;A,B)

∼= D
∗

��
RKKG∗ (EG;A⊗ P, B ⊗ P) ∼=

D∗ // RKKG∗ (EG;A ⊗ P, B).

Together with (8) this implies

KKG∗ (A⊗ P, B) ∼= KKG∗ (A⊗ P, B ⊗ P).

In the following, it will be useful to turn the isomorphism

Ktop
∗ (G,A) ∼= K∗

(

(A⊗ P)⋊r G
)

in Theorem 1.(c) into a definition.
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2.2. Group actions on coarse spaces. Let G be a locally compact group and
let X be a right G–space and a coarse space. We always assume that G acts
continuously and coarsely on X , that is, the set {(xg, yg) | g ∈ K, (x, y) ∈ E} is an
entourage for any compact subset K of G and any entourage E of X .

Definition 2. We say that G acts by translations on X if {(x, gx) | x ∈ X, g ∈ K}
is an entourage for all compact subsets K ⊆ G. We say that G acts by isometries
if every entourage of X is contained in a G–invariant entourage.

Example 3. LetG be a locally compact group. ThenG has a unique coarse structure
for which the right translation action is isometric; the corresponding coarse space
is denoted |G|. The generating entourages are of the form

⋃

g∈G

Kg ×Kg = {(xg, yg) | g ∈ G, x, y ∈ K}

for compact subsets K of G. The left translation action is an action by translations
for this coarse structure.

Example 4. More generally, any proper, G–compact G–space X carries a unique
coarse structure for which G acts isometrically; its entourages are defined as in
Example 3. With this coarse structure, the orbit map G → X , g 7→ g · x, is a
coarse equivalence for any choice of x ∈ X . If the G–compactness assumption is
omitted, the result is a σ–coarse space. We always equip a proper G–space with
this additional structure.

2.3. The stable Higson corona. We next recall the definition of the stable Higson

corona of a coarse space X from [6, 7]. Let D be a C∗–algebra.
Let M(D ⊗ K) be the multiplier algebra of D ⊗ K, and let B̄red(X,D) be the

C∗–algebra of norm-continuous, bounded functions f : X →M(D ⊗ K) for which
f(x)− f(y) ∈ D ⊗K for all x, y ∈ X . We also let

Bred(X,D) := B̄red(X,D)/C0(X,D ⊗K).

Definition 5. A function f ∈ B̄red(X,D) has vanishing variation if the function

E ∋ (x, y) 7→ ‖f(x)− f(y)‖ vanishes at ∞ for any closed entourage E ⊆ X ×X.

The reduced stable Higson compactification of X with coefficients D is the sub-
algebra c̄red(X,D) ⊆ B̄red(X,D) of vanishing variation functions. The quotient

cred(X,D) := c̄red(X,D)/C0(X,D ⊗K) ⊆ Bred(X,D)

is called reduced stable Higson corona of X . This defines a functor on the coarse
category of coarse spaces: a coarse map f : X → X ′ induces a map cred(X ′, D) →
cred(X,D), and two maps X → X ′ induce the same map cred(X ′, D)→ cred(X,D)
if they are close. Hence a coarse equivalence X → X ′ induces an isomorphism
cred(X ′, D) ∼= cred(X,D).

For some technical purposes, we must allow unions X =
⋃

Xn of coarse spaces
such that the embeddings Xn → Xn+1 are coarse equivalences; such spaces are
called σ–coarse spaces. The main example is the Rips complex P(X) of a coarse
space X , which is used to define its coarse K–theory. More generally, if X is a
proper but not G–compact G–space, then X may be endowed with the structure of
a σ–coarse space. For coarse spaces of the form |G| for a locally compact group G
with a G–compact universal proper G–space EG, we may use EG instead of P(X)
because EG is coarsely equivalent to G and uniformly contractible. Therefore, we
do not need σ–coarse spaces much; they only occur in Lemma 7.

It is straightforward to extend the definitions of c̄red(X,D) and cred(X,D) to
σ–coarse spaces (see [6, 7]). Since we do not use this generalisation much, we omit
details on this.
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Let H be a locally compact group that acts coarsely and properly on X . It is
crucial for us to allow non-compact groups here, whereas [7] mainly needs equivari-
ance for compact groups. Let D be an H–C∗-algebra, and let KH := K(ℓ2N⊗L2H).
Then H acts on B̄red(X,D ⊗KH) by

(h · f)(x) := h ·
(

f(xh)
)

,

where we use the obvious action of H on D ⊗ KH and its multiplier algebra. The
action of H on B̄red(X,D ⊗ KH) need not be continuous; we let B̄red

H (X,D) be
the subalgebra of H–continuous elements in B̄red(X,D ⊗ KH). We let c̄redH (X,D)
be the subalgebra of vanishing variation functions in B̄red

H (X,D). Both algebras
contain C0(X,D ⊗ KH) as an ideal. The corresponding quotients are denoted
by Bred

H (X,D) and credH (X,D). By construction, we have a natural morphism of
extensions of H–C∗-algebras

(9)

C0(X,D ⊗KH) // // c̄redH (X,D) // //

⊆

��

credH (X,D)

⊆

��
C0(X,D ⊗KH) // // B̄red

H (X,D) // // Bred

H (X,D).

Concerning the extension of this construction to σ–coarse spaces, we only men-
tion one technical subtlety. We must extend the functor Ktop

∗ (H,  ) fromC∗–algebras
to σ–H-C∗–algebras. Here we use the definition

(10) Ktop
∗ (H,A) ∼= K∗

(

(A⊗ P)⋊r H
)

,

where D ∈ KKH(P,C) is a Dirac morphism for H . The more traditional definition

as a colimit of KKG∗ (C0(X), A), where X ⊆ EG is G–compact, yields a wrong result
if A is a σ–H-C∗-algebra because colimits and limits do not commute.

Let H be a locally compact group, let X be a coarse space with an isometric,
continuous, proper action of H , and let D be an H–C∗-algebra. The H–equivariant
coarse K–theory KX∗

H(X,D) of X with coefficients in D is defined in [7] by

(11) KX∗
H(X,D) := Ktop

∗

(

H,C0(P(X), D)
)

.

As observed in [7], we have Ktop
∗

(

H,C0(P(X), D)
)

∼= K∗(C0(P(X), D) ⋊ H) be-
cause H acts properly on P(X).

For most of our applications, X will be equivariantly uniformly contractible for
all compact subgroups K ⊆ H , that is, the natural embedding X → P(X) is a
K–equivariant coarse homotopy equivalence. In such cases, we simply have

(12) KX∗
H(X,D) ∼= Ktop

∗

(

H,C0(X,D)
)

.

In particular, this applies if X is an H–compact universal proper H–space (again,
recall that the coarse structure is determined by requiring H to act isometrically).

The H–equivariant coarse co-assembly map for X with coefficients in D is a
certain map

µ∗ : Ktop
∗+1

(

H, credH (X,D)
)

→ KX∗
H(X,D)

defined in [7]. In the special case where we have (12), this is simply the boundary
map for the extension C0(X,D⊗KH) ֌ c̄redH (X,D) ։ credH (X,D). We are implicitly
using the fact that the functor Ktop

∗ (H,  ) has long exact sequences for arbitrary
extensions of H-C∗–algebras, which is proved in [7] using the isomorphism

Ktop
∗ (H,B) := K∗

(

(B ⊗ P)⋊r H
)

∼= K∗

(

(B ⊗max P)⋊H
)

and exactness properties of maximal C∗–tensor products and full crossed products.
There is also an alternative picture of the co-assembly map as a forget-control

map, provided X is uniformly contractible (see [7, §2.8]). We have the following
equivariant version of this result:
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Proposition 6. Let G be a totally disconnected group with a G–compact universal

proper G–space EG. Then the G–equivariant coarse co-assembly map for G is

equivalent to the map

j∗ : K
top
∗+1

(

G, credG (EG,D)
)

→ Ktop
∗+1

(

G,Bred

G (EG,D)
)

induced by the inclusion j : credG (EG,D)→ Bred

G (EG,D).

The equivalence of the two maps means that there is a natural commuting dia-
gram

Ktop
∗+1

(

G, credG (|G|, D)
) µ∗

//
OO
∼=

��

KXG∗ (|G|, D)
OO
∼=

��
Ktop

∗+1

(

G, credG (EG,D)
) j∗ // Ktop

∗+1

(

G,Bred

G (EG,D)
)

.

Recall that j is induced by the inclusion c̄redG (EG,D)→ B̄red

G (EG,D), which exactly
forgets the vanishing variation condition. Hence j∗ is a forget-control map.

Proof. We may replace |G| by EG because EG is coarsely equivalent to |G|. The
coarse K–theory of EG agrees with the usual K–theory of EG (see [7]). A slight
elaboration of the proof of [7, Lemma 15] shows that

KH∗
(

B̄red

G (EG,D)
)

∼= KKH∗
(

C, B̄red

G (EG,D)
)

vanishes for all compact subgroups H of G. This yields Ktop
∗

(

G, B̄red

G (EG,D)
)

= 0
by a result of [2]. Now the assertion follows from the Five Lemma and the naturality
of the K–theory long exact sequence for (9) as in [7]. �

3. Classes in Kasparov theory from the stable Higson corona

In this section, we show how to construct classes in equivariant KK-theory from
the K–theory of the stable Higson corona. The following lemma is our main tech-
nical device:

Lemma 7. Let G and H be locally compact groups and let X be a coarse space

equipped with commuting actions of G and H. Suppose that G acts by transla-

tions and that H acts properly and by isometries. Let A and D be H–C∗-algebras,

equipped with the trivial G–action. We abbreviate

BX := C0(X,D ⊗KH ⊗max A)⋊H, EX := (̄credH (X,D)⊗max A)⋊H

and similarly for P(X) instead of X. There are extensions BX ֌ EX ։ EX/BX
and BP(X) ֌ EP(X) ։ EP(X)/BP(X) with

EP(X)/BP(X)
∼= EX/BX ∼= (credH (X,D)⊗max A)⋊H,

and a natural commuting diagram

(13)

K∗+1(EX/BX)
∂ //

ψ

��

K∗(BP(X))

φ

��
KKG∗ (C, BX)

pEG
∗

// RKKG∗ (EG;C, BX).

Proof. The quotients EX/BX and EP(X)/BP(X) are as asserted and agree because
X →P(X) is a coarse equivalence and because maximal tensor products and full
crossed products are exact functors in complete generality, unlike spatial tensor
products and reduced crossed products. We let ∂ be the K–theory boundary map
for the extension BP(X) ֌ EP(X) ։ EX/BX .
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Since we have a natural map credH (X,D) ⊗max A → credH (X,D ⊗max A), we may
replace the pair (D,A) by (D ⊗max A,C) and omit A if convenient. Stabilising D
by KH , we can further eliminate the stabilisations.

First we lift the K–theory boundary map for the extensionBX ֌ EX ։ EX/BX
to a map ψ : K∗+1(EX/BX)→ KKG∗ (C, BX). The G–equivariance of the resulting
Kasparov cycles follows from the assumption that G acts on X by translations.

We have to distinguish between the cases ∗ = 0 and ∗ = 1. We only write down
the construction for ∗ = 0. Since the algebra EX/BX is matrix-stable, K1(EX/BX)
is the homotopy group of unitaries in EX/BX without further stabilisation. A cycle

for KKG0 (C, BX) is given by two G–equivariant Hilbert modules E± over BX and a
G–continuous adjointable operator F : E+ → E− for which 1 − FF ∗, 1 − F ∗F and
gF − F for g ∈ G are compact; we take E± = BX and let F ∈ EX ⊆M(BX) be a
lifting for a unitary u ∈ EX/BX . Since G acts on X by translations, the induced
action on c̄red(X,D) and hence on EX/BX is trivial. Hence u is a G–invariant
unitary in EX/BX . For the lifting F , this means that

1− FF ∗, 1− F ∗F, gF − F ∈ BX .

Hence F defines a cycle for KKG0 (C, BX). We get a well-defined map [u] 7→ [F ] from

K1(EX/BX) to KKG0 (C, BX) because homotopic unitaries yield operator homotopic
Kasparov cycles.

Next we have to factor the map pEG
∗ ◦ ψ in (13) through K0(BP(X)). The

main ingredient is a certain continuous map c̄ : EG × X → P(X). We use the
same description of P(X) as in [7] as the space of positive measures on X with
1/2 < µ(X) ≤ 1; this is a σ–coarse space in a natural way, we write it as P(X) =
⋃

Pd(X).
There is a function c : EG → R+ for which

∫

E
Gc(µg)dg = 1 for all µ ∈ EG

and supp c ∩ Y is compact for G–compact Y ⊆ EG. If µ ∈ EG, x ∈ X , then the
condition

〈c̄(µ, x), α〉 :=

∫

G

c(µg)α(g−1x)dg

for α ∈ C0(X) defines a probability measure on X . Since such measures are con-
tained in P(X), c̄ defines a map c̄ : EG×X →P(X). This map is continuous and
satisfies c̄(µg, g−1xh) = c̄(µ, x)h for all g ∈ G, µ ∈ EG, x ∈ X , h ∈ H .

For a C∗–algebra Z, let C(EG,Z) be the σ–C∗-algebra of all continuous func-
tions f : EG → Z without any growth restriction. Thus C(EG,Z) = lim

←−
C(K,Z),

where K runs through the directed set of compact subsets of EG.
We claim that (c̄∗f)(µ)(x) := f

(

c̄(µ, x)
)

for f ∈ C0(P(X), D) defines a contin-
uous ∗–homomorphism

c̄∗ : C0(P(X), D)→ C
(

EG,C0(X,D)
)

.

If K ⊆ EG is compact, then there is a compact subset L ⊆ G such that c(µ · g) = 0
for µ ∈ K and g /∈ L. Hence c̄(µ, x) is supported in L−1x for µ ∈ K. Since G
acts on X by translations, such measures are contained in a filtration level Pd(X).
Hence c̄∗(f) restricts to a C0-function K ×X → D for all f ∈ C0(P(X), D). This
proves the claim. Since c̄ is H–equivariant and G–invariant, we get an induced map

BP(X) = C0(P(X), D)⋊H → (C
(

EG,C0(X,D)
)

⋊H)G = C(EG,BX)G,

where ZG ⊆ Z denotes the subalgebra of G–invariant elements. We obtain an
induced ∗–homomorphism between the stable multiplier algebras as well.

An element of K0

(

BP(X)) is represented by a self-adjoint bounded multiplier
F ∈ M(BP(X) ⊗K) such that 1− FF ∗ and 1− F ∗F belong to BP(X) ⊗K. Now

F̃ := c̄∗(F ) is a G–invariant bounded multiplier of C(EG,BX ⊗ K) and hence a

G–invariant multiplier of C0(EG,BX⊗K), such that α · (1− F̃ F̃ ∗) and α · (1− F̃ ∗F̃ )
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belong to C0(EG,BX ⊗K) for all α ∈ C0(EG). This says exactly that F̃ is a cycle

for RKKG0 (EG;C, BX). This construction provides the natural map

φ : K0(BP(X))→ RKKG0 (EG;C, BX).

Finally, a routine computation, which we omit, shows that the two images of
a unitary u ∈ EX/BX differ by a compact perturbation. Hence the diagram (13)
commutes. �

We are mainly interested in the case where A is the source P of a Dirac morphism
for H . Then K∗+1(EX/BX) = Ktop

∗

(

H, credH (X,D)
)

, and the top row in (13) is
the H–equivariant coarse co-assembly map for X with coefficients D. Since we
assume H to act properly on X , we have a KKG-equivalence BX ∼ C0(X,D)⋊H ,
and similarly for P(X). Hence we now get a commuting square

(14)

Ktop
∗+1

(

H, credH (X,D)
) ∂ //

ψ

��

KX∗
H(X,D)

φ

��
KKG∗ (C, C0(X,D)⋊H)

pEG
∗

// RKKG∗ (EG;C, C0(X,D)⋊H).

If, in addition, D = C and the action ofH on X is free, then we can further simplify
this to

(15)

Ktop
∗+1

(

H, credH (X)
) ∂ //

ψ

��

KX∗
H(X)

φ

��
KKG∗

(

C, C0(X/H)
) pEG

∗

// RKKG∗
(

EG;C, C0(X/H)
)

.

We may also specialise the space X to |G|, with G acting by multiplication on
the left, and with H ⊆ G a compact subgroup acting on |G| by right multiplication.
This is the special case of (13) that is used in [7]. The following applications will
require other choices of X .

3.1. Applications to Lipschitz classes. Now we use Lemma 7 to construct inter-
esting elements in KKG∗

(

C, C0(X)
)

for a G–space X . This is related to the method
of Lipschitz maps developed by Connes, Gromov and Moscovici in [3].

3.1.1. Pulled-back coarse structures. Let X be a G–space, let Y be a coarse space
and let α : X → Y be a proper continuous map. We pull back the coarse structure
on Y to a coarse structure on X , letting E ⊆ X ×X be an entourage if and only
if α∗(E) ⊆ Y × Y is one. Since α is proper and continuous, this coarse structure is
compatible with the topology onX . For this coarse structure, G acts by translations

if and only if α satisfies the following displacement condition used in [3]: for any
compact subset K ⊆ G, the set

{(

α(gx), α(x)
)

∈ Y × Y
∣

∣ x ∈ X, g ∈ K
}

is an entourage of Y . The map α becomes a coarse map. Hence we obtain a
commuting diagram

K∗+1

(

cred(Y )
) α∗

//

∂Y

��

K∗+1

(

cred(X)
) ψ //

∂X

��

KKG∗
(

C, C0(X)
)

pEG
∗

��
KX∗(Y )

α∗

// KX∗(X)
φ // RKKG∗

(

EG;C, C0(X)
)

.

with ψ and φ as in Lemma 7.
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The constructions of [3, §I.10] only use Y = RN with the Euclidean coarse
structure. The coarse co–assembly map is an isomorphism for RN because RN is
scalable. Moreover, RN is uniformly contractible and has bounded geometry. Hence
we obtain canonical isomorphisms

K∗+1

(

cred(RN )
)

∼= KX∗(RN ) ∼= K∗(RN ).

In particular, K∗+1

(

cred(RN )
)

∼= Z with generator [∂RN ] in K1−N

(

cred(RN )
)

. This

class is nothing but the usual dual-Dirac morphism for the locally compact groupRN .
As a result, any map α : X → RN that satisfies the displacement condition above
induces

[α] := ψ
(

α∗[∂RN ]
)

∈ KKG−N
(

C, C0(X)
)

.

The commutative diagram (13) computes pEG
∗[α] ∈ RKKG−N

(

EG;C, C0(X)
)

in
purely topological terms.

3.1.2. Principal bundles over coarse spaces. As in [3], we may replace a fixed map
X → RN by a section of a vector bundle over X . But we need this bundle to
have a G–equivariant spin structure. To encode this, we consider a G–equivariant
Spin(N)–principal bundle π : E → B together with actions of G on E and B
such that π is G–equivariant and the action on E commutes with the action of
H := Spin(N). Let T := E ×Spin(N) R

N be the associated vector bundle over B.
It carries a G–invariant Euclidean metric and spin structure. As is well-known,
sections α : B → T correspond bĳectively to Spin(N)-equivariant maps α′ : E →
RN ; here a section α corresponds to the map α′ : E → RN that sends y ∈ E to
the coordinates of απ(y) in the orthogonal frame described by y. Since the group
Spin(N) is compact, the map α′ is proper if and only if b 7→ ‖α(b)‖ is a proper
function on B.

As in §3.1.1, a Spin(N)–equivariant proper continuous map α′ : E → Y for a
coarse space Y allows us to pull back the coarse structure of Y to E; then Spin(N)
acts by isometries. The group G acts by translations if and only if α′ satisfies the
displacement condition from §3.1.1. If Y = R

N , we can rewrite this in terms of
α : B → T : we need

sup
{

‖gα(g−1b)− α(b)‖
∣

∣ b ∈ B, g ∈ K
}

to be bounded for all compact subsets K ⊆ G.
If the displacement condition holds, then we are in the situation of Lemma 7 with

H = Spin(N) and X = E. Since H acts freely on E, C0(E)⋊H is G–equivariantly
Morita–Rieffel equivalent to C0(B). We obtain canonical maps

K
Spin(N)
∗+1

(

credSpin(N)(R
N )

) (α′)∗

−−−→ K
Spin(N)
∗+1

(

credSpin(N)(E)
)

ψ
−→ KKG∗

(

C, C0(E)⋊ Spin(N)
)

∼= KKG∗
(

C, C0(B)
)

.

The Spin(N)–equivariant coarse co-assembly map for RN is an isomorphism
by [7] because the group RN ⋊Spin(N) has a dual-Dirac morphism. Using also the
uniform contractibility of RN and Spin(N)-equivariant Bott periodicity, we get

K
Spin(N)
∗+1

(

credSpin(N)(R
N )

)

∼= KX∗
Spin(N)(R

N ) ∼= K∗
Spin(N)(R

N ) ∼= K∗+N
Spin(N)(point).

The class of the trivial representation in Rep(SpinN) ∼= K
Spin(N)
0 (C) is mapped

to the usual dual-Dirac morphism [∂RN ] ∈ K
Spin(N)
1−N

(

cred
Spin(N)(R

N )
)

for RN . As a

result, any proper section α : B → T satisfying the displacement condition induces

[α] := ψ
(

α∗[∂RN ]
)

∈ KKG−N
(

C, C0(B)
)

.
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Again, the commutative diagram (13) computes pEG
∗[α] ∈ RKKG−N

(

EG;C, C0(X)
)

in purely topological terms.

3.1.3. Coarse structures on jet bundles. Let M be an oriented compact manifold
and let Diff+(M) be the infinite-dimensional Lie group of orientation-preserving
diffeomorphisms of M . Let G be a locally compact group that acts on M by a
continuous group homomorphism G→ Diff+(M). The Gelfand–Fuchs cohomology

of M is part of the group cohomology of Diff+(M) and by functoriality maps to
the group cohomology of G. It is shown in [3] that the range of Gelfand–Fuchs
cohomology in the cohomology of G yields homotopy-invariant higher signatures.

This argument has two parts; one is geometric and concerns the construction of
a class in KKG∗

(

C, C0(X)
)

for a suitable space X ; the other uses cyclic homology
to construct linear functionals on K∗(C0(X) ⋊r G) associated to Gelfand–Fuchs
cohomology classes. We can simplify the first step; the second has nothing to do
with coarse geometry.

Let πk : Jk+(M) → M be the oriented k–jet bundle over M . That is, a point

in Jk+(M) is the kth order Taylor series at 0 of an orientation-preserving diffeo-
morphism from a neighbourhood of 0 ∈ Rn into M . This is a principal H–bundle
over M , where H is a connected Lie group whose Lie algebra h is the space of
polynomial maps p : Rn → Rn of order k with p(0) = 0, with an appropriate Lie
algebra structure. The maximal compact subgroup K ⊆ H is isomorphic to SO(n),
acting by isometries on Rn. It acts on h by conjugation.

Since our construction is natural, the action of G on M lifts to an action on
Jk+(M) that commutes with the H–action. We let H act on the right and G on the

left. Define Xk := Jk+(M)/K. This is the bundle space of a fibration over M with
fibres H/K. Gelfand–Fuchs cohomology can be computed using a chain complex
of Diff+(M)-invariant differential forms on Xk for k → ∞. Using this description,
Connes, Gromov, and Moscovici associate to a Gelfand–Fuchs cohomology class a
functional K∗(C0(Xk)⋊r G)→ C for sufficiently high k in [3].

Since Jk+(M)/H ∼=M is compact, there is a unique coarse structure on Jk+(M) for

which H acts isometrically (see §2.2). With this coarse structure, Jk+(M) is coarsely

equivalent to H . The compactness of Jk+(M)/H ∼= M also implies easily that G

acts by translations. We have a Morita–Rieffel equivalence C0(Xk) ∼ C0(J
k
+M)⋊K

because K acts freely on Jk+(M). We want to study the map

K∗+1(c
red

K (Jk+M)⋊K)
ψ
−→ KKG∗ (C, C0(J

k
+M)⋊K) ∼= KKG∗

(

C, C0(Xk)
)

produced by Lemma 7.
Since H is almost connected, it has a dual-Dirac morphism by [10]; hence the

K–equivariant coarse co-assembly map for H is an isomorphism by the main result
of [7]. Moreover, H/K is a model for EG by [1]. We get

K∗+1(c
red

K (Jk+M)⋊K) ∼= K∗+1(c
red

K (|H |)⋊K) ∼= KX∗
K(|H |) ∼= K∗

K(H/K).

Let h and k be the Lie algebras of H and K. There is a K–equivariant homeomor-
phism h/k ∼= H/K, where K acts on h/k by conjugation. Now we need to know
whether there is a K–equivariant spin structure on h/k. One can check that this
is the case if k ≡ 0, 1 mod 4. Since we can choose k as large as we like, we can
always assume that this is the case. The spin structure allows us to use Bott peri-
odicity to identify K∗

K(H/K) ∼= KH∗−N (C), which is the representation ring of K in
degree −N , where N = dim h/k. Using our construction, the trivial representation

of K yields a canonical element in KKG−N
(

C, C0(Xk)
)

.
This construction is much shorter than the corresponding one in [3] because we

use Kasparov’s result about dual-Dirac morphisms for almost connected groups.
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Much of the corresponding argument in [3] is concerned with proving a variation
on this result of Kasparov.

4. Computation of KKG∗ (C,P)

So far, we have merely used the diagram (13) to construct certain elements in

KKG∗ (C, B). Now we show that this construction yields an isomorphic description

of KKG∗ (C,P). This assertion requires G to be a totally disconnected group with a
G–compact universal proper G–space. We assume this throughout this section.

Lemma 8. In the situation of Lemma 7, suppose that X = |G| with G acting

by left translations and that H ⊆ G is a compact subgroup acting on X by right

translations; here |G| carries the coarse structure of Example 3. Then the maps ψ
and φ are isomorphisms.

Proof. We reduce this assertion to results of [7]. The C∗–algebras credH (|G|, D)⋊H
and credH (|G|, D)H are strongly Morita equivalent, whence have isomorphic K–theory.
It is shown in [7] that

(16) K∗+1

(

credH (|G|, D)H
)

∼= KKG∗ (C, Ind
G
H D).

Finally, IndGH(D) = C0(G,D)H is G–equivariantly Morita–Rieffel equivalent to
C0(G,D)⋊H . Hence we get

(17) K∗+1(c
red

H (|G|, D) ⋊H) ∼= K∗+1

(

credH (|G|, D)H
)

∼= KKG∗
(

C, IndGH(D)
)

∼= KKG∗
(

C, C0(G,D)⋊H
)

.

It is a routine exercise to verify that this composition agrees with the map ψ in (13).
Similar considerations apply to the map φ. �

We now set X = |G|, and let G = H . The actions of G on |G| on the left and
right are by translations and isometries, respectively. Lemma 7 yields a map

(18) Ψ∗ : K∗+1

(

(cred(|G|, D) ⊗max A)⋊G
)

→ KKG∗
(

C, C0(|G|, D ⊗max A)⋊G
)

.

for all A,D, where we use the G-equivariant Morita–Rieffel equivalence between
C0(|G|, D)⋊G and D. It fits into a commuting diagram

K∗+1

(

(credG (|G|, D)⊗max A)⋊G
) ∂ //

ΨD,A
∗

��

K∗(C0(EG,D ⊗max A)⋊G)

∼=

��
KKG∗ (C, D ⊗max A)

pEG
∗

// RKKG∗ (EG;C, D ⊗max A).

Lemma 9. The class of G-C∗-algebras A for which ΨD,A∗ is an isomorphism for

all D is triangulated and thick and contains all G-C∗–algebras of the form C0(G/H)
for compact open subgroups H of G.

Proof. The fact that this category of algebras is triangulated and thick means that
it is closed under suspensions, extensions, and direct summands. These formal
properties are easy to check.

Since H ⊆ G is open, there is no difference between H–continuity and G–conti-
nuity. Hence

(

credG (|G|, D) ⊗max C0(G/H)
)

⋊G ∼=
(

credH (|G|, D) ⊗max C0(G/H)
)

⋊G

∼
(

credH (|G|, D) ⋊H,

where ∼ means Morita–Rieffel equivalence. Similar simplifications can be made in
other corners of the square. Hence the diagram for A = C0(G/H) and G acting on
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the right is equivalent to a corresponding diagram for trivial A and H acting on
the right. The latter case is contained in Lemma 8. �

Theorem 10. Let G be an almost totally disconnected group with G–compact EG.

Then for every B ∈ KKG, the map

Ψ∗ : K
top
∗+1

(

G, cred(|G|, B)
)

→ KKG∗ (C, B ⊗ P)

is an isomorphism and the diagram

Ktop
∗+1

(

G, cred(|G|, B)
) µ∗

//

∼= Ψ∗

��

KX∗
G(|G|, B)

∼=

��
KKG∗ (C, B ⊗ P)

pEG
∗

// RKKG∗ (EG;C, B ⊗ P)

commutes. In particular, Ktop
∗+1

(

G, cred(|G|)
)

is naturally isomorphic to KKG∗ (C,P).

Proof. It is shown in [7] that for such groups G, the algebra P belongs to the

thick triangulated subcategory of KKG that is generated by C0(G/H) for compact
subgroups H of G. Hence the assertion follows from Lemma 9 and our definition
of Ktop. �

Corollary 11. Let D ∈ KKG(P,C) be a Dirac morphism for G. Then the following

diagram commutes

Ktop
∗+1

(

G, credG (|G|)
)

µ∗

''

Ψ∗
∼=

��

∂ // K∗(C0(EG,P)⋊G)

∼=

��

D∗

∼=
// K∗(C0(EG) ⋊G)

∼=

��
KKG∗ (C,P)

pEG
∗

//

D∗ ))SSSSSSSSSSSSSS

RKKG∗ (EG;C,P)
D∗

∼=
// RKKG∗ (EG;C,C)

KKG∗ (C,C),

pEG
∗

55kkkkkkkkkkkkkk

where Ψ∗ is as in Theorem 10 and µ∗ is the G–equivariant coarse co-assembly map

for |G|, and the indicated maps are isomorphisms.

Proof. This follows from Theorem 10 and the general properties of the Dirac mor-
phism discussed in §2.1. �

Definition 12. We call a ∈ RKKG∗ (EG;C,C)

(a) a boundary class if it lies in the range of

µ∗ : Ktop
∗+1

(

G, cred(|G|)
)

→ RKKG∗ (EG;C,C);

(b) properly factorisable if a = pEG
∗(b ⊗A c) for some proper G-C∗-algebra A

and some b ∈ KKG∗ (C, A), c ∈ KKG∗ (A,C);

(c) proper Lipschitz if a = pEG
∗(b ⊗C0(X) c), where b ∈ KKG∗

(

C, C0(X)) is

constructed as in §3.1.1 and §3.1.2 and c ∈ KKG∗ (C0(X),C) is arbitrary.

Proposition 13. Let G be a totally disconnected group with G–compact EG.

(a) A class a ∈ RKKG∗ (EG;C,C) is properly factorisable if and only if it is a

boundary class.

(b) Proper Lipschitz classes are boundary classes.

(c) The boundary classes form an ideal in the ring RKKG∗ (EG;C,C).
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(d) The class 1EG is a boundary class if and only if G has a dual-Dirac mor-

phism; in this case, the G–equivariant coarse co-assembly map µ∗ is an

isomorphism.

(e) Any boundary class lies in the range of

pEG
∗ : KKG∗ (C,C)→ RKKG∗ (EG;C,C)

and hence yields homotopy invariants for manifolds.

Proof. By Corollary 11, the equivariant coarse co-assembly map

µ∗ : Ktop
∗+1

(

G, cred(|G|)
)

→ K∗

(

C0(EG ⋊G)
)

∼= RKKG∗ (EG;C,C)

is equivalent to the map

KKG∗ (C,P)
pEG

∗

−−−→ RKKG∗ (EG;C,P)
∼= RKKG∗ (EG;C,C).

If we combine this with the isomorphism RKKG∗ (EG;C,C)
∼= KKG∗ (P,P), the re-

sulting map

KKG∗ (C,P)→ KKG∗ (P,P)

is simply the product (on the left) with D ∈ KKG(P,C); this map is known to be
an isomorphism if and only if it is surjective, if and only if 1P is in its range, if and
only if the H–equivariant coarse co-assembly map

K∗(c
red

H (|G|) ⋊H)→ KX∗
H(|G|)

is an isomorphism for all compact subgroups H of G by [7].
For any G–C∗-algebra B, the Z/2–graded group Ktop

∗ (G,B) ∼= K∗

(

(B⊗P)⋊rG
)

is a graded module over the Z/2–graded ring KKG∗ (P,P)
∼= RKKG∗ (EG;C,C) in a

canonical way; the isomorphism between these two groups is a ring isomorphism
because it is the composite of the two ring isomorphisms

KKG∗ (P,P)
pEG

∗

−−−→
∼=

RKKG∗ (EG;P,P)
 ⊗P
←−−−

∼=
RKKG∗ (EG;C,C).

Hence we get module structures on Ktop
∗

(

G, cred(|G|)
)

and

Ktop
∗

(

G,C0(EG,K)
)

∼= K∗(C0(EG) ⋊G) ∼= RKKG∗ (EG;C,C).

The latter isomorphism is a module isomorphism; thus Ktop
∗

(

G,C0(EG,K)
)

is a
free module of rank 1. The equivariant co-assembly map is natural in the formal
sense, so that it is an RKKG∗ (EG;C,C)-module homomorphism. Hence its range

is a submodule, that is, an ideal in RKKG∗ (EG;C,C) (since this ring is graded
commutative, there is no difference between one- and two-sided graded ideals).
This also yields that µ∗ is surjective if and only if it is bĳective, if and only if the
unit class 1EG belongs to its range; we already know this from [7].

If A is a proper G-C∗–algebra, then idA⊗D ∈ KKG(A⊗P, A) is invertible ([11]).

If b ∈ KKG∗ (C, A) and c ∈ KKG∗ (A,C), then we can write the Kasparov product
b⊗A c as

C
b
−→ A

idA⊗D
←−−−−

∼=
A⊗ P

c⊗idP−−−−→ P
D
−→ C,

where the arrows are morphisms in the category KKG. Therefore, b ⊗A c factors
through D and hence is a boundary class by Theorem 10. �
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5. Dual-Dirac morphisms and the Carlsson–Pedersen condition

Now we construct boundary classes in RKKG∗ (EG;C,C) from more classical
boundaries. We suppose again that EG is G–compact, so that EG is a coarse
space.

A metrisable compactification of EG is a metrisable compact space Z with a
homeomorphism between EG and a dense open subset of Z. It is called coarse

if all scalar-valued functions on Z have vanishing variation; this implies the cor-
responding assertion for operator-valued functions because C(Z,D) ∼= C(Z) ⊗ D.
Equivalently, the embedding EG→ Z factors through the Higson compactification
of EG. A compactification is called G–equivariant if Z is a G–space and the embed-
ding EG → Z is G–equivariant. An equivariant compactification is called strongly

contractible if it is H–equivariantly contractible for all compact subgroups H of G.
The Carlsson–Pedersen condition requires that there should be a G–compact model
for EG that has a coarse, strongly contractible, and G–equivariant compactification.

Typical examples of such compactifications are the Gromov boundary for a hy-
perbolic group (viewed as a compactification of the Rips complex), or the visibility
boundary of a CAT(0) space on which G acts properly, isometrically, and cocom-
pactly.

Theorem 14. Let G be a locally compact group with a G–compact model for EG
and let EG ⊆ Z be a coarse, strongly contractible, G–equivariant compactification.

Then G has a dual-Dirac morphism.

Proof. We use the C∗–algebra B̄red

G (Z) as defined in §2.3. Since Z is coarse, there
is an embedding B̄red

G (Z) ⊆ c̄redG (EG). Let ∂Z := Z \ EG be the boundary of the
compactification. Identifying

B̄red

G (∂Z) ∼= B̄red

G (Z)/C0(EG,KG),

we get a morphism of extensions

0 // C0(EG,KG) // c̄redG (EG) // credG (EG) // 0

0 // C0(EG,KG) // B̄red

G (Z) //

⊆

OO

B̄red

G (∂Z) //

⊆

OO

0.

Let H be a compact subgroup. Since Z is compact, we have B̄G(Z) = C(Z,K).
Since Z is H–equivariantly contractible by hypothesis, B̄G(Z) is H–equivariantly
homotopy equivalent to C. Hence B̄red

G (Z) has vanishing H–equivariant K–theory.
This implies Ktop

∗

(

G, B̄red

G (Z)
)

= 0 by [2], so that the connecting map

(19) Ktop
∗+1

(

G, B̄red

G (∂Z)
)

→ Ktop
∗

(

G,C0(EG)
)

∼= K∗(C0(EG) ⋊G)

is an isomorphism. This in turn implies that the connecting map

Ktop
∗+1

(

G, credG (EG)
)

→ Ktop
∗

(

G,C0(EG)
)

is surjective. Thus we can lift 1 ∈ RKKG0 (EG;C,C)
∼= K0(C0(EG) ⋊G) to

α ∈ Ktop
1

(

G, credG (EG)
)

∼= Ktop
1

(

G, credG (|G|)
)

.

Then Ψ∗(α) ∈ KKG0 (C,P) is the desired dual-Dirac morphism. �

The group Ktop
∗

(

G, B̄red

G (∂Z)
)

that appears in the above argument is a reduced

topological G–equivariant K–theory for ∂Z and hence differs from Ktop
∗

(

G,C(∂Z)
)

.
The relationship between these two groups is analysed in [5].
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