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6 CONTENTS

1. Preface

The study of C*-algebras was initiated by physicists working in quantum mechanics
like Heisenberg, but was continued by the mathematician Gelfand, especially in connection
with representation theory of locally compact groups. If one has two compactly supported,
continuous functions on a locally compact group, then their convolution product is the
function on the group given by

©.1) (fis f2)(g) = /G A fo(h g)dh,

where dh denotes Haar measure on the group. Using this multiplication, which is some-
thing like matrix multiplication, one can construct a C*-algebra C*(G) out of any locally
compact group, and the interest in the construction was that the representation theories of
the group and of the C*-algebra are in natural one-to-one correspondence with each other.
A C*-algebra can be defined to be any subalgebra A of the algebra of bounded oper-
ators B(H) on a Hilbert space, which is closed under operator adjoint and topologically
closed in the operator norm topology. If X is any compact Hausdorff space, then the col-
lection C(X) of complex-valued continuous functions f: X — C vanishing at infinity, acts
by multiplication operators on L?(X,u) with respect to any Borel measure, and forms a
C*-algebra where the algebra multiplication operation is pointwise multiplication

(f1- 2)(x) = filx) f2(x),

which is a commutative operation: ff, = fof1 for any fi,f>. Gelfand formulated an
abstract definition of C*-algebra, and proved that any abstract unital commutative C*-
algebra is canonically isomorphic to C(X) for X the compact space of characters of the
C*-algebra. Gelfand’s theorem generalizes the Fourier isomorphism and shows that the
category of commutative (unital) C*-algebras is contravariantly equivalent to the category
of compact Hausdorff spaces, and suggests the idea that a general, possibly noncommuta-
tive C*-algebra, may be thought of as a kind of ‘noncommutative space.’

The need for such a concept had already been felt in subatomic particle physics, as
Heisenberg had observed, because pairs of observables, like position and momentum, in
subatomic systems had a strange ‘noncommutative behavior’ that made it seem better to
model their behavior not as usual in classical physics, by functions on appropriate topo-
logical spaces, but by self-adjoint operators on a Hilbert space, which do not, in general,
commute with each other, unlike functions, when one multiplies them pointwise.

In the 1950’s and 1960’s, seminal results in topology and analysis — the Bott Period-
icity and Atiyah-Singer Index theorems — revitalized interest in C*-algebra theory from a
more geometric point of view. The content of the Index Theorem is that the Fredholm in-
dex of an elliptic operator on a compact manifold maybe be described purely topologically,
in terms of a K-theory invariant of the symbol of the operator. Topological K-theory was
developed by Atiyah, Hirzebruch, Segal and others, to a large extent in connection with
various statements and proofs of the Index Theorem. But K-theory actually makes perfect
sense for even noncommutative C*-algebras, and determines a canonical homology theory
for them.

In the 1980’s, the Fields’ Medallist Alain Connes initiated a number of innovative
reformulations of constructions from Riemannian geometry, topology, and geometric anal-
ysis, with the aim of applying them to potentially noncommutative C*-algebras. Among
Connes’ discoveries were cyclic cohomology, the concept of a spectral triple, and a for-
mula for a noncommutative Chern character linking the two. Connes’ work extends the
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set-up of de Rham cohomology and Chern-Weil theory for manifolds X, to the noncom-
mutative situation. In his fascinating book [48]] Connes suggested the possibility of a new
field of ‘Noncommutative Geometry.’

Concurrently, the Russian mathematician Genadi Kasparov was developing KK-theory,
a bivariant generalization of C*-algebra K-theory, and using it to prove cases of the Novikov
Conjecture [111]]. New and striking connections between the Novikov conjecture, group
C*-algebras, and the large-scale geometry of groups developed by Gromov and others
emerged in the 1990’s and stimulated cross-pollination between C*-algebra K-theory and
topology. A number of mathematicians began exploring various classes of C*-algebras at-
tached to various types of dynamical systems, by the ‘groupoid’ construction. By associat-
ing a C*-algebra to a groupoid, one can then study the groupoid C*-algebraically, compute
its K-theory invariants, representation-theoretic dual, primitive ideal space, tracial state
space, efc. The use of this strategy has produced interesting results in connection with
representation theory of locally compact groups, hyperbolic dynamical systems, Gromov
hyperbolic groups, Penrose tilings, ‘coarse’, or ‘large-scale’ geometry of metric spaces, fo-
liations, index theory on contact manifolds, quantum groups, manifolds with singularities,
homeomorphisms of Cantor sets, systems and C*-algebras associated to number fields, to
name a few examples from recent years.

The field of Noncommutative geometry, at present, offers what seems to be a very
enticing program. It is the author’s goal to bring the relative novice up to speed on the
basic ideas of C*-algebra theory, K-theory, K-homology, Index Theory and Connes’ Non-
commutative Riemannian geometry, and to offer a glimpse at some of the more advanced
topics in this fascinating subject.

This book was written with the explicit purpose of giving my students something to
read to learn the parts of the subject I have worked on or am working on, and at least the
first chapter should be readily comprehensible to a strong student at the third or fourth year
undergraduate level in the Canadian system, equipped with basic knowledge of algebra,
analysis, and a bit of functional analysis, especially basic Hilbert space theory. As the book
progresses, slightly stronger demands are made on the student, as we deal with smooth
manifolds, some differential geometry and elliptic operator theory, and K-theory, and the
reader may need to occasionally consult other more specialized texts for the occasional
detail, or to deepen their understanding, although I have tried to keep the book as self-
contained as possible.

All Hilbert spaces and C*-algebras in this book are assumed separable, with a very
small number of exceptions, e.g. the C*-algebra B(H), and all locally compact spaces
second countable.

The symbol u in connection with a locally compact group G denotes Haar measure,
normalized if G is compact.

Victoria, April, 2022.






CHAPTER 1

AN INTRODUCTION TO C*-ALGEBRAS

C*-algebras were first considered in connection with quantum mechanics to model
algebras of physical observables by Werner Heisenberg. Heisenberg called his new math-
ematics ‘matrix mechanics,” but the existence of the noncommutative algebra of matrices
had already been noted by Jordan. Von Neumann made numerous striking discoveries later
about various classes of algebras of operators on a Hilbert space. The abstract character-
ization of C*-algebra (Definition is due to Gelfand in around 1943. The term ‘C*-
algebra’ is due to L.E. Segal in 1947, who used it to describe norm-closed *-subalgebras of
bounded operators on a Hilbert space; the ‘C’ stands for ‘closed.’

The introduction to Connes’ book [48]] contains an excellent explanation of why the
experimental results of spectroscopy require noncommuting observables.

This chapter discusses some of the most important examples of C*-algebras: matrix
algebras, the algebra of bounded operators on a Hilbert space, the Toeplitz algebra, group
C*-algebras, and crossed products, Fredholm operators and the Fredholm index. We state
and prove the Toeplitz Index Theorem — the simplest case of the Atiyah-Singer Index
Theorem.

The reader wishing more sources on basic C*-algebra theory is invited to consult the
excellent books [[126]] and [7].

1. The definition of C*-algebra

An (associative) algebra over the complex numbers is a complex vector space A
equipped with an associative, bilinear (linear in each variable separately) multiplication
operation A X A — A, (a,b) — ab. An algebra is unital if it contains an element 1 € A such
that la =al =aforalla € A.

The zero algebra {0} is an algebra, albeit an extremely uninteresting one, as is the
complex numbers itself C. Both are unital. There are of course many, many other exam-
ples: polynomial algebras C|xj,...,x,] and their quotients, the quaternion algebra, matrix
algebras M, (C).

For our purposes, it is extremely interesting and important that every compact Haus-
dorff space X has a (commutative) algebra canonically associated to it: namely the algebra
C(X) of continuous complex-valued functions on X. To get the algebra structure we apply
the algebra structure of C pointwise: thus

(M) (x) :=Af(x), (f +8)(x) = f(x) +8(x), (fg)(x) := f(x)g(x).

The constant function 1 is the unit. The Hausdorff condition is to ensure an adequate
supply of continuous functions to produce something meaningful from the construction.
The algebra C(X) has further structure, which turns out to be important. Firstly,
complex conjugation on the complex numbers C gives rise to an involution on functions
f € C(X) by setting £*(x) := f(x). Secondly, any continuous function on a compact space

9



10 1. AN INTRODUCTION TO C*-ALGEBRAS

is bounded. We set

(1.1) (Al :ZSEE\f(x)I, for f € C(X),

and call it the norm of f; it satisfies the standard set of conditions for a norm on a linear
space:

IS = AL L+l < AT+ gl 11 =0 < f=0.

So C(X) gains a topology from the metric d(f,g) = ||f — g||- It is a quite easy enough
exercise (see below) to prove that C(X) is also complete with respect to this metric (thus is a
Banach space). This follows from completeness of the complex numbers C. Furthermore,
the conditions

) s

gl < LAl 1= 1A

hold, for all f, g, which makes all the algebra operations continuous.

EXERCISE 1.1.1. Prove that if X is compact Hausdorff, (f,) is a sequence of contin-
uous functions on X which is Cauchy with respect to the norm (1.1, then (f;) converges
in the same norm, to a continuous function f. That is, show that C(X) is complete with
respect to the norm (L.T).

If A is a unital algebra, an element a € A is invertible if there exists b € A such that
ab =ba=1.

DEFINITION 1.1.2. If A is any unital algebra, and a € A, a complex number A is in the
spectrum of a if A — a is not invertible in A.

The spectrum of an element, therefore, is a purely algebraic invariant of a (it doesn’t
make any reference to norms, nor, in fact, to adjoints.)
We let Spec(a) C C be the spectrum of a.

EXERCISE 1.1.3. If A is a unital algebra, u € A is an invertible element, and a € A,
then the spectrum of uau~" is the same as the spectrum of a.

EXERCISE 1.1.4. Verify the formula (A —ba) ™' =A=' + A ~1b(A—ab)~'a for any el-
ements a, b of a unital algebra A and any A # 0. Deduce that Spec(ab) — {0} = Spec(ba) —
{0} for any a,b € A, where a is a unital algebra.

EXERCISE 1.1.5. If A € M,,(C) then Spec(A) is the set of eigenvalues of A.

If A = C(X), for X compact Hausdorff as above, then a function f € C(X) is invertible
if and only if it does not vanish on X. We deduce that the spectrum of such f is precisely
the range of f. But the norm ||f]| of f is precisely the modulus of the largest complex
number in the range of f. Hence we get

(1.2) Il = sup [Al.
AeSpec(f)
This equation relates the topology and the algebra in a very tight way.

If A and B are two algebras, an algebra homomorphism o.: A — B is a linear map such
that o(ab) = a(a)au(b). We say o is unital if o(1) = 1.

PROPOSITION 1.1.6. Let X and Y be compact Hausdorff, A= C(X) and B=C(Y).
Then if o.: A — B is a unital algebra homomorphism, then O. is automatically continuous
with respect to the topologies on A, B determined by their norms as in (L))
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PROOF. Firstly, o is a unital algebra homomorphism. Hence it maps invertibles in A
to invertibles in B. It follows that Spec(ai(f)) C Spec(f) for any f € A. Since the norm of
f is the radius of the range of f, that is, of the spectrum of f, we deduce that ||a(f)|| < || f]]
as claimed.

(I

The algebra of n-by-n matrices has a similar property to the one appearing in (1.2).
Firstly, the correct involution, or ‘adjoint’ to use on this algebra is the conjugate transpose
A* of a matrix: thus A;‘j = ITH For the norm, we use the operator norm, defined for
A e M,(C) by

(1.3) A= sup  [|Ag[lcn,
geC [elicn=1

with ||-||c» the Hilbert space norm on C". Tt is an easy exercise to check that this defines
a norm on M, (C): that is: ||AA|| = |A[||A|], [|A + B|| < ||A|| + ||B||. Furthermore, ||AB|| <
[IA[|IB]|, so that the algebra multiplication is continuous in this norm.

The operator norm is easily checked to be invariant under unitary conjugation ||[UAU*|| =
|A|| for all A € M,,(C). Secondly, if A is any matrix, ||A||?> = ||A*A|| (this is more challeng-
ing to prove, and is done in the next section), which reduces the problem of finding ||A|| to

finding the norm of A*A. Now A*A is unitarily diagonalizable. So if it is unitarily conjugate
M 0 - 0

to 0 A where Aq,...,A, are the eigenvalues of A*A (repeated according
0 - Ay
to multiplicity.) Hence ||A*A|| equals the norm of the diagonal matrix. By another rou-
tine exercise, the operator norm of a diagonal matrix with entries Ap,..., A, is equal to the
supremum max{|A{|,...,|A,|} of the entries. We thus have that ||A|| (for any A) can be
characterized as
lal= s VP
AESpec(A*A)

where Spec(A*A) is the set of eigenvalues of A*A. And this is consistent with the case of
C(X) with a small adjustment, since we can write (T.2)) in the fancier but equivalent way

Ifl=sup VAL

AeSpec(f*f)

DEFINITION 1.1.7. A C*-algebra A is an (associative) algebra over the complex num-
bers equipped with a map *: A — A (usually called the adjoint) and a norm ||-||: A — [0, )
satisfying

a) The map = is a conjugate-linear, involutative anti-homomorphism, i.e. satisfies
- (Ma+b)* =ka* +b*forall L€ C, a,b €A,
- (ab)* =b*a* forall a,b € A, and
- (a*)* =aforallacA.
b) With the metric assigning distance ||a — b|| from a to b, A is complete, i.e. (A,
is a Banach space.
c) |lab|| < ||a||||b]| for all a,b € A.
d) |la*al| = ||a||? for all a € A.

A is unital if there exists an element 1 € A acting as the identity under multiplication.

4



12 1. AN INTRODUCTION TO C*-ALGEBRAS

The condition d) in Definition is often called the C*-condition.

As an easy exercise in the definitions, note that ||a*|| = ||a|| for all a € A, for using c)
above, we have that ||a||* = ||a*a|| < ||a*||||a||. The claim follows by switching the roles of
a and a*.

The following exercise is also routine, it follows from the uniqueness of the unit .

EXERCISE 1.1.8. The unit 1 in a unital C*-algebra satisfies 1* = 1.

As a matter of terminology, a *-algebra is an associative complex algebra with an
involution satisfying the condition a) above. A Banach algebra is an algebra (without nec-
essarily an involution operation) together with a norm with respect to which it is complete,
which also satisfies ||ab|| < ||a||||b|| for all a,b. A Banach *-algebra is a Banach algebra
with an involution *: A — A making it also a *-algebra, and as well, the requirement that
la*|| = ||a|| — a weakening of the C*-condition, as explained above. This weakening has a
substantial effect on the resulting different theories.

EXERCISE 1.1.9. Let A be a C*-algebra (not necessarily unital). Prove thatif a € A
and a*a = 0, then a = 0. Deduce that if xa = 0 for all x € A then a = 0.

A *-homomorphism ¢: A — B between two C*-algebras is an algebra homomorphism
such that @(a*) = ¢(a)* for all a € A. The notion of isomorphism of C*-algebras is then
the obvious one: there must be two *-homomorphisms which compose to the identity.

EXERCISE 1.1.10. If ao: A — B is an isomorphism of unital C*-algebras, then o is
automatically unital.

A C*-algebra is commutative if, of course, its multiplication is commutative, ab = ba
for all a,b € A. Tt is clear from the preceding discussion that C(X) is a commutative C*-
algebra for any compact Hausdorff space X.

We will finish in the next section the proof that the *-algebra of n-by-n matrices
M, (C), with the operator norm, is also a C*-algebra, but it is evidently not commutative.

The mathematical principal of Quantum Mechanics is roughly as follows. In classical
(Newtonian) physics, one deals with points in an appropriate space. If a particle moves
through space time, its positions with regard to a fixed set of — say, three — coordinate
axes as time changes, all of these constitute the points of a 4-dimensional space X. In
the language of physics, continuous functions on X are ‘observables.” For example, if one
has a system (xj,...,x,) of coordinates on X (valued in R") then each x;: X — R is an
observable: at a given point in space, and at a given time, one observes the x;th coordinate
of the particle.

At any rate, observables stripped down to their mathematical essentials, are continuous
functions.

However, it was shown experimentally that when one attempts to study electrons
within an atom, certain different measurements, namely position and momentum, interfere
with each other in such a way as to make the simultaneous measurement of them impossi-
ble. Heisenberg postulated that the mathematics describing quantum physics should be the
mathematics, not of functions on a space, but of linear operators on a Hilbert space, which,
taken as an algebra, behaves, algebraically, much like the algebra of continuous functions
on a space, but is not commutative. And the experimental fact noted with position and mo-
mentum of electrons would correspond to the failure of two specific operators to commute
with each other. The operators are each self-adjoint and diagonalizable, and thus each, in
its own right, is, up to unitary equivalence, just a (real-valued) function on a space (the
space being the spectrum of the operator, the function being the inclusion of the spectrum
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in R), but one cannot consider them both simultaneously as functions, because they cannot
be simultaneously diagonalized, because they do not commute.

EXERCISE 1.1.11. Let A be a C*-algebra and X is a compact Hausdorff space. Con-
sider C(X,A), the collection of continuous functions f: X — A. Endow C(X,A) with the
algebra operations

(fi+1f)(x) == filx) +Afa(x), (fifa)(x) = fi(x)f2(x),

adjoint (f*)(x) = f(x)" and norm ||| := sup,ex|[f(x)
Prove that C(X,A) is a C*-algebra.

s

EXAMPLE 1.1.12. An important example of a Banach algebra which is not a C*-
algebra is the disk algebra A(D), consisting of all continuous functions f € C(D) on the
closed disk, which are analytic in the open disk D.

The norm on A4(D) may be take to be the supremum norm on the closed disk, or,
equivalently,

1flamy = sup [f(@)|=fIrllce)-
zedD=T

Hence, 4 (D) can be regarded as a closed Banach subalgebra of the C*-algebra C(T)
(that is, the norm on 4 (D) is the restriction of the norm on C(T). In particular it is a

Banach algebra. It is not a C*-subalgebra of C(T), however, because the f*(z) := f(z) is
not analytic even if f is analytic.

EXERCISE 1.1.13. Let A and B be two C*-algebras. Their direct sum A @ B is defined
to be the direct sum of A and B as vector spaces, with the algebra structure (a,b) - (¢,d) :=
(ac,bd), adjoint (a,b)* := (a*,b*), and norm ||(a,b)|| := max{||al|, ||b||}.

Prove that A @ B is a C*-algebra and that the two projection maps w;: A@® B — A and
Ty : A® B — B are *-homomorphisms.

Similarly one defines the direct sum A; @ --- ® A, of finitely many C*-algebras, or
even infinitely many. If 7 is an index set, and {A;};c; is a family of C*-algebras, we let
®icrA; be the C*-algebra completion of the collection of I-tuples (a;);c; with a; # 0 for at
most finitely many i € I, with respect to the norm

[(ai)ier|| := suplla.
il
This is a C*-algebra, and the coordinate projections
Tj: it Ai = Aj

are surjective *-homomorphisms. Of course if [ is infinite, the direct sum is non-unital,
even if all the A; are unital.

We close with a basic but important C*-algebraic construction.

DEFINITION 1.1.14. Let A be any C*-algebra, possibly non-unital. Let AT =A@ C
as a vector space. Equip this vector space with the multiplication and adjoint

(a.,\)(b,p) := (ab+Ab+ pa,\y), (a,\)* := (a*,)).

If we let 1 = (0,1) € AT, we can write elements of AT in the form a + A1, or just a + A.
Then the multiplication becomes the ‘obvious’ one on such symbols

(a+A)(b+u) =ab+Ab+ua+ M.
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We can identify A with a *-subalgebra of A™ by the map a — (a,0). Moreover, with this
identification, if a+A € AT and b € A, then (a+X)b € A. Hence A is an ideal in AT, which
is also clearly closed under adjoint.

For the norm, we set

la+ 4[| == max{ sup [[(a+2A)bl|, [A[}.
[[bll<1

EXERCISE 1.1.15. A" with the given norm, is a unital C*-algebra. Moreover, if A is
already unital, then A™ = A @ C, where the direct sum is defined in Exercise(l.1.13

The C*-algebra A™ so defined, is called the unitization of A.

EXERCISE 1.1.16. Let X be a locally compact Hausdorff space. A continuous func-
tion on X vanishes at infinity if for all € > 0 there exists a compact subset K C X such that
|f(x)] < € for all x € X \ K Prove that the collection of continuous functions f on X which
vanish at infinity, with the supremum norm, is a C*-algebra. It is denoted Cp(X). (It is
non-unital).

More generally, if A is any C*-algebra, Cy(X,A) denotes continuous functions on X
valued in A, which ‘vanish at infinity’ in the above sense. Prove that Cp(X,A) is a C*-
algebra with norm || f|| := sup,cx || f(x)]-

EXERCISE 1.1.17. If X is a locally compact Hausdorff space, then the 1-point com-
pactification X of X is the disjoint union (we write X L {s}) of X and an additional
point, labelled oo, topologized with open sets the open subsets of X, together with the sets
Uk U{eo}, where K C X is a compact subset and Ux = X \ K.

Thus, X contains X as an open subset.

a) Prove that X+ is compact Hausdorff. Notice how the locally compact assumption
on X is used here.

b) Prove that if X is already compact, then {0} is an isolated point in X *.

c) Prove that a continuous map f: X — Y between locally compact Hausdorff
spaces, extends continuously to a map X — Y+ mapping the points of infin-
ity to each other, if and only if the map f: X — Y is proper, i.e. if and only if
f~Y(K) is compact in X for every compact subset K C Y.

d) Prove that the C*-algebra C(X ™) and Co(X)™ are canonically isomorphic.

EXERCISE 1.1.18. A projection p € A in a C*-algebra is an element such that p*> = p
and p = p*. Thus, it is an idempotent, p> = p, but is also required to be self-adjoint.
Projections will play an important role in C*-algebra theory, particularly in K-theory.

Let A be the C*-algebra C(X), where X is compact Hausdorff. Show that projec-
tions in C(X) correspond to connected components of X. (Thus, a Cantor set has many
projections).

2. The C*-algebra of bounded operators on a Hilbert space

A pre-Hilbert space is a complex vector space H equipped with a map, called an inner
product
(~):HxH—C
which is linear in the second variable, and the conditions

(€.8) =0,

&mn) =Mm.g),
(€ =0=E=0,
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forany & € H.
It follows that (-,-) is conjugate linear in the first variable.

REMARK 1.2.1. In Hilbert space theory in mathematics, inner products are conven-
tionally linear in the first variable, conjugate linear in the second variable, while in physics
they are conventionally conjugate linear in the first variable, linear in the second. We fol-
low the physicists’ convention in this book, because it is also the convention used in Hilbert
module theory.

We set
1G]] := 1/ (&.&)-

The Cauchy-Schwarz inequality asserts that
(1.4) &< lglimll-

EXERCISE 1.2.2. Use the Cauchy-Schwarz inequality (T.4) to prove that

&0l < 1§l + ]l

By the exercise, a pre-Hilbert space is a special case of a normed linear space, and the

formula
d(&mn) :=[I§—nll.

defines a metric on H.

A Hilbert space is a pre-Hilbert space which is also complete with respect to the metric
d. A Hilbert space is separable if it contains a countable dense set.

In this book, we will work exclusively with separable Hilbert spaces, and accordingly,
we will place a blanket assumption throughout that all our Hilbert spaces are separable.

We emphasize that the concept of orthogonality is essential in Hilbert space theory.
Two vectors &,1 are orthogonal if (€,1) = 0. If W C H is a subset of a Hilbert space, then
the orthogonal complement of W is the closed subspace Wt :={{ € H| () =0Vn €
W}. The Pythagorean Law asserts that [|& 0|2 = [[€[|? + |In||* for any pair of orthogonal
vectors &, 1.

EXERCISE 1.2.3. Show that if W C H is any subset, then W is a closed subspace of
H.

EXAMPLE 1.2.4. Let H = C" with inner product

-

Il
—

((z15--520)s (Wi, oo wy)) 1= ) ZTiwi,

1

Then H is a finite-dimensional Hilbert space.
For an infinite-dimensional example, take

H:=P(N) = {(an)izo | L lan|* <o}
n=0
with inner product
((zn)s (wn)) == anwn-
n=0
We leave it to the reader to check that /?(N) is complete and separable.

EXERCISE 1.2.5. Let H be a Hilbert space. Prove the Parallelogram Equality:
& +n1%+[1& =1 = 2(1E]1> + [l
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Let H,K be a pair of Hilbert spaces. A linear operator T: H — K is bounded if

(1.5) sup  [|TE||x
Eet |E]ln=1
is finite, where we have (exceptionally) subscripted the norms with the Hilbert space to
which they are attached. If is finite, then we write ||T|| for the supremum. It is called
the operator norm of T. We let B(H, K) denote all bounded linear operators H — K.
If H = K, we just write B(H).

EXERCISE 1.2.6. It is a consequence of Zorn’s Lemma that every Hilbert space (in-
deed, every vector space) has a Hamel basis: a basis in the purely algebraic sense of linear
algebra. (Such a basis will be uncountable unless the space is finite dimensional.)

Use this fact to show there exists a linear operator 7': [?(N) — /2(N) which is not
bounded.

An extremely important class of bounded operators on a Hilbert space are orthogonal
projections. We refer to [S3] for the proof of the following, or the reader may attempt the
proof themselves using the Parallelogram Equality (Exercise[1.2.5).

PROPOSITION 1.2.7. If H is a Hilbert space and W C H is a closed subspace, then
for each & € H there exists a unique vector P§ € W such that ||§ — PE|| = dist(&,W).

Moreover, the map P is linear and bounded, ||P| < 1, P> = P, and ker(P) = W+ and
ran(P) =W.

The map P is called the orthogonal projection to W.

EXERCISE 1.2.8. Suppose that P € B(H), P> = P and P = P*. Let W = ran(P).
Prove that W is closed and P is the orthogonal projection to W and that 1 — P is orthogonal
projection to W+,

EXERCISE 1.2.9. Prove using projections that if W is a closed subspace of H then
whHt=w.

An orthonormal set {e;}icy of vectors in a Hilbert space is a set of vectors such that
(ei,ej) = 8;j for all i, j € I. An orthonormal basis for H is a maximal orthonormal set of

vectors in H. Any orthonormal set {e;};c; in H is a subset of an orthonormal basis, by an
application of Zorn’s Lemma. Hence every Hilbert space has an orthonormal basis.

EXERCISE 1.2.10. Prove Bessel’s inequality: if {¢;}?*, is an orthonormal set of
vectors in a Hilbert space H then Y,|(e;,E)|* < |IE||*> for all £ € H. (Hint. Let &, =
E—Y" (ei,&)E. Note that &, is orthogonal to e; for i < n. Apply the Pythagorean the-
orem to [[§]|* = [|&, + X (e, E)eil|*)

We leave the proof, a consequence of Bessel’s inequality, to the reader.

PROPOSITION 1.2.11. If W C H is a closed subspace, P the orthogonal projection to

W, and (e;)ics is an orthonormal basis for W, then the series Y ;c;{(e;,&)e; converges in H
to PE.
In particular, if (e;)ics is an orthonormal basis for H then & =Y ¢;{e;,E)e;.

An unitary isomorphism U: H — K between two Hilbert space is a linear bijection
such that (U&,Un) = (§,m) forall §,m € H.

COROLLARY 1.2.12. Let H,K be Hilbert spaces with orthonormal bases {e;}ic; and
{e;} jes then any set bijection ¢: I — J induces a unitary isomorphism H — K mapping e;
toe ..

(i)
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Therefore, up to unitary isomorphism, a Hilbert space is completely determined by the
cardinality of an orthonormal basis.

EXERCISE 1.2.13. Suppose that H and K are Hilbert spaces and that H' C H is a
dense linear subspace, K’ C K another dense linear subspace.

a) Suppose that ¢ > 0 a constant such that ||TE|| < c|[§|| for all & € H'. Prove that
T extends to a bounded operator T : H — K, with ||T|| < c.
b) Suppose that ¢ > 0 and 7: H' — K is a linear map, such that

(1.6) (TEM| < cllg]l-[nll

holds for all &€ € H',m € K’. Prove that T extends to a bounded operator T : H —
K, with ||T|| <c.

EXERCISE 1.2.14. Prove the following about the operator norm.

a) Prove that the operator norm on B(H,K) is a norm, i.e. that
IAT[ = A[-T], IS+T[ < [IS|+ T, YA€ C,S,T € B(H,K)

and ||T|| =0 if and only if T = 0.

b) Prove that | TS| < ||T||-||S|| for any S € B(H,K) and T € B(K,L).

¢) Prove that B(H,K) is complete in the operator norm.

d) Prove that if H and K are finite-dimensional Hilbert spaces, then any linear op-
erator T: H — K is automatically bounded.

EXERCISE 1.2.15. Show that if H = K = C" and T is a diagonal operator

A
A2

A

with respect to the standard orthonormal basis, then ||T|| = sup,,|A,|-
Deduce from the Spectral Theorem for self-adjoint matrices, that if T is self-adjoint,
then || T'|| = sup{|A| | A is an eigenvalue of T}.

EXERCISE 1.2.16. If T is the operator on C? with matrix E (1)] then at what point

€ of the unit sphere in C? is ||T&|| maximized?

A bounded linear functional on a Hilbert space H is (by definition) a bounded lin-
ear operator L: H — C. For an example of such a functional, let & € H be a vector. Let
Lg: H — Cbe defined Lg(M) = (§,M). Then L is linear. By the Cauchy-Schwarz inequal-
ity,

ILe()| = [(M.&)] < [mIIlIE]],
whence L is a bounded operator. Moreover, ||Lg || = [|€]|, as is easily checked.

The Riesz representation theorem asserts that if L: H — C is a bounded linear func-
tional on a Hilbert space, then there is a unique vector § € H such that L = Lg (as it is part
of standard Hilbert space material we will not prove it — see [S5] for a proof.)

If T: H— K is bounded linear, where H = K we usually just speak of a ‘bounded
linear operator on H.” The bounded operators on H forms an algebra under composition of
operators, and is denoted B(H). The following shows that B(H) has an important adjoint
operation.
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LEMMA 1.2.17. For any bounded operator T : H — K between two Hilbert spaces
H,K, there is a unique bounded operator T*: K — H such that

M.7€) = (T™.§)
holds for all € € Hm € K.

The operator T* is called the adjoint of T.

EXERCISE 1.2.18. Lemma|l.2.17|is proved (below) using the Riesz Representation
Theorem. Show that, conversely, the Lemma immediately implies the Riesz Representa-
tion Theorem.

PROOF. Let T be as in the statement. Let | € H and Ty, : H — C be defined T;,(§) =
(N, TE). Clearly Ty is linear. By the Cauchy-Schwarz inequality 7y, is bounded. So by the
Riesz Representation Theorem there is a unique vector 7*(n) such that 7, (§) = (T* (), &).
Thus
(n.7€) =(T"(M).§).

That T* is linear and bounded is left as an exercise.

EXERCISE 1.2.19. Show the following properties of the operator adjoint.

* is conjugate linear.

(TS)* =S*T*.

(T*)*=T.

If H=C", B(H) = M,(C); under this identification, the adjoint 7* of an operator
defined above corresponds to the conjugate transpose of a matrix: (a*);; := @j;.

Hence B(H) is a *-algebra. We next show that when equipped with the operator norm,
it is a C*-algebra.

THEOREM 1.2.20. B(H) is complete in the operator norm, and ||T*T|| = ||T || for
any bounded operator T. Hence B(H) is a C*-algebra.

PROOF. We just verify the C*-identity; the other requirements to be a C*-algebra are
checked in Exercise|1.2.14] If T € B(H), then

(17 TE|? = (TETE) =(T*TEE) < |T*TE|(I&]| < IT*TIEI* < IT* I TIHEI?
So
(1.8) ITI? < 17T < 17|17
In particular, ||T|| < ||T*||, and by interchanging the roles of T and T* we get that ||T|| =
7.
Now, returning to (I.8), since ||T|| = ||7*||, we now have ||T||> < || T*T|| < ||T||* so

equality holds as required.
]

DEFINITION 1.2.21. A bounded operator T € B(H) is invertible if there exists a
bounded operator S € B(H) such that 7S = 1y = ST.

The spectrum of T € B(H) is the subset of the complex plane of all A such that A — T
is not invertible.

This definition accords with Definition [I.1.2} where T is understood as an element of
the algebra B(H).
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EXERCISE 1.2.22. Prove that T € B(H) is invertible if and only if T is surjective and
there exists a constant C > 0 such that

|Tv|| > C|v||, VveH.

EXERCISE 1.2.23. A bounded operator T € B(H) is normal if T*T = TT*. Prove
that if 7' is normal then ||T*v|| = ||Tv|| for any v € H.

EXERCISE 1.2.24. Let (P,);_, be a sequence of projections in B(H ) with the property
that lim,, ... P,& = & for all £ € H. Prove that

IT]| = sup| P, TF||
n

forall T € B(H).

It is obvious that a closed C*-subalgebra of B(H) (or more generally, of any C*-
algebra), is in its own right a C*-algebra. Thus, we can find a lot of other examples of
C*-algebras based on the fact that B(H) is one, since, for example, whenever 7 € B(H) is
a single bounded linear operator, it generates a C*-algebra.

More generally:

DEFINITION 1.2.25. The C*-algebra generated by a family {75} of operators on a
Hilbert space H, is the smallest C*-algebra containing all the 7j’s.

Since B(H) is such a C*-algebra, there is at least one, and since the intersection of
(unital) C*-subalgebras of B(H) is also a C*-subalgebra, the C*-algebra generated by a
family of operators is the intersection of all C*-subalgebras of B(H) containing them.

REMARK 1.2.26. It may or may not be the case that the C*-algebra generated by
a family of operators, or even a single operator T, contains the unit 1 € B(H). Nor are
such C*-algebras necessarily unital in an intrinsic sense. The C*-algebra generated by a
projection p € B(H) is all scalar multiples of p. This C*-algebra has a unit, namely p, but
the C*-algebra generated by p does not contain the unit of B(H). On the other hand, if 7' is
the operator My on L?(R) of multiplication by f(x) = xiﬂ then the C*-algebra generated
by M is isomorphic to Cp(R) (by the Stone-Weierstrass Theorem) which is not unital.

We will generally be specific about it if we want a C*-algebra defined by generators
to be unital or not.

EXAMPLE 1.2.27. Let T € B(H) be a self-operator, T* = T. We denote by C*(T) the
C*-algebra generated by {7}, and denote by C*(1,T) the (unital) C*-algebra generated by
T and the unit 1 € B(H). It is clear that C*(1,T) is the closure in B(H) of the *-algebra of
polynomials

i M T*
k=0

in T, with complex coefficients, where by T° we understand the unit 1 € B(H). It is
commutative and unital. And C*(T) is the closure of the polynomials ¥'7_,A«T* where
Ao =0.

The Spectral Theorem gives a complete analysis of C*(T) and C*(1,T), purely in
terms of the spectrum of 7. In finite-dimensions, this boils down to the standard results on
diagonalization.

Since T is self-adjoint, all the eigenvalues of T are real, and there is an orthonormal
basis of H consisting of eigenvectors of T. If the eigenvalues of T are Af,...,A,;, we may
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write 7 as a diagonal matrix organized into (diagonal) blocks

A
Ao

An

where each A; is understood to mean the corresponding multiple of the identity operator on
the A;-eigenspace ker(A; — T'). The spectral information is more than enough to determine
completely the isomorphism class of C*(1,T'). To see this, observe that [;.;(T —4;) is in
C*(1,T) (remember that we have by definition included the unit 1 € B(H) in C*(1,T), so
Aj:=A;-1isin C*(T)) and is the diagonal matrix with the nonzero scalar y; := [T ;.;(Ai —
A;) in the ith block. This shows us that P; := ;%H#i(T —Aj), the orthogonal projection
onto the ith eigenspace, is in C*(T'). Each P; generates a one-dimensional *-subalgebra of
C*(1,T) (namely, consisting of all scalar multiples of P;) and C*(1,T) is the direct sum of
these one-dimensional *-subalgebras, each of which, of course, is isomorphic to C.
Hence C*(1,T) = C" where n is the number of distinct eigenvalues of 7.

EXERCISE 1.2.28. Two operators 71 € B(H;) and 7, € B(H,) on Hilbert spaces H,
and H, are unitarily conjugate if there is a unitary operator u: H; — Hj such that Ad,(T) :=
MT] ut = Tz.

Show that if 7} and 75 are unitarily conjugate then C*(1,7;) = C*(1,T>) by an isomor-
phism Ad, taking T} to T5.

EXERCISE 1.2.29. Let 77 and 75 be self-adjoint operators on a pair of finite-dimensional
Hilbert spaces, with respective eigenvalue sets Spec(77) and Spec(73).

a) C*(T;) 2 C*(Tr) if and only if T} and T» have the same number of distinct eigen-
values.

b) C*(1,T1) = C*(1,T>) by an isomorphism sending 7; to 75 if and only if 77 and
T, have the same (sets of) eigenvalues.

b) C*(1,T1) and C*(1,T») are isomorphic by a unitary conjugacy with uTiu* = T,
if and only if Spec(77) = Spec(T3) and if ker(A — T7) and ker(A — 7») have the
same dimension for all A € Spec(T;) = Spec(Tz).

We close this chapter with some remarks on bounded self-adjoint operators.
A bounded operator T is self-adjoint if T = T*.

EXERCISE 1.2.30. Show that if 7 is a bounded self-adjoint operator then (T'€,&) € R
for all vectors .

LEMMA 1.2.31. If T is a bounded, self-adjoint operator on a Hilbert space then

1Tl = sup [TEE)l.

eH,[|§]=1
PROOF. By the Cauchy-Schwarz inequality,

(1.9) (TE8) < [IT]lIEl®
for any vector § € H, so if we let
M:= sup [{TE.)|
GeH [|g]|l=1
then M < ||T|| and we need to show that equality holds.
For T self-adjoint, (TE,&) is real, since (TE,E) = (£, TE) = (T*E,E) = (TE,E).
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If now & and 1 are two unit vectors in H then it follows from a little algebra that

(T(E£M),6+m) = (TE,§) £2(TEm) + (T, M).
Subtracting one of these equations from the other and using the fact that the equalities only
involve real numbers (by Exercise[I.2.30), gives

(T(€+m).&+m) —(T(§—n),E—n) = 4Re(TEM).
By the triangle inequality and the Cauchy-Schwarz inequality we get

(T (E+m),&+m) —(T(E—m),E—m)| < (T E+n),E+n)|+ T (E—m),E—n)
<M|E+n|*+M|E—n]>.

The last inequality using (T.9).

By the Parallelogram Equality (Exercise[1.2.5), [[&+7]* 4 [|& —n||> = 2||€|]>+ 2|
Since & and M were assumed unit vectors, this gives, putting everything together, that
4|Re (TE,M)| < 4M, so

(1.10) |[Re (TEM)| <M

for any pair of unit vectors £,m € H.

Now for a suitable complex number, ¢, we have ¢ (T&,m) is real and positive. This
equals (T&,e®n). Since (T.I0) holds for all unit vectors 1 and in particular for ¢n for
any M, [{T&€,m)| < M holds for any unit vectors &,7. If in this expression we put 1 = %
for an arbitrary unit vector § we get that ||TE|| < M, whence, taking sup over § we get
IT|| < M as required.

(I

EXERCISE 1.2.32. Prove thatif T € B(H) is a bounded linear operator then ker(T*)* =
ran(T).

EXERCISE 1.2.33. This exercise addresses polar decompositions of operators T &
B(H) on a Hilbert space.

a) A partial isometry u: H — H is a bounded operator which is an isometry from
ker(u)™" to its range. Prove that u is a partial isometry if and only if p := uu* and
g = u*u are projections (that is, p> = p and p = p*, and similarly for g.)

b) Prove that if u is a partial isometry then ran(«) = ran(uu*) and ker(u) = ker(u*u).

¢) If T is a bounded operator on a Hilbert space, let |T| := (T*T)%. The existence
of such ‘operator square roots’ requires some spectral theory, but for purposes of
the exercise, the reader may assume for the moment merely that | T'| is an operator
such that |T|? = T*T. Prove that ||T&|| = |||T|§|| for any & € H. (In particular,
ker(|T|) = ker(T) follows.)

d) Show that the restriction of |T'| to ker(7T)* maps into ker(7)*, and that the range
of this restricted operator is dense in ker(7)~. (Hint. Note first that ran(7*T) C
ran((|T|) =ker(|T|)*, since |T|*> = T*T. On the other hand ran(|T|) = ker(|T|)* =
ker(7)*.)

e) Define u: ker(T)* — ran(T) by defining it on the dense subspace ran(|T|) C
ker(T)* in the way it has to be defined, i.e. so that T§ = U|T|&. Show that this
densely defined operator is isometric.

f) Complete the proof of the Polar Decomposition theorem: thatif 7 € B(H) is any
bounded operator on H, the there exists a partial isometry u with initial space
ker(T)* and final space ran(7') such that T = U|T|.
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EXERCISE 1.2.34. Let T: H — H be a self-adjoint operator on a finite-dimensional
Hilbert space. Let S C H be the unit sphere in H. By maximizing the functional

f:S—=C, f(v)=(Tv,v),
and Lemma|l.2.31} show that T has at least one eigenvalue.

Many bounded operators (e.g. convolution operators on groups) which arise from
geometry are integral operators in the sense of the following Exercise.

EXERCISE 1.2.35. Let 1 < p < co. Assume that (X,u) is a o-finite measure space
and let k be a measurable function on X x X. Suppose there exists C > 0 such that
Jx|k(x,y)|du(x) < C fora.e. x € X, and that [ |k(x,y)|du(y) < Cforae.y€X.

Then if f € LP(X) then the integral (I f)(x) := [x k(x,y)f(y)du(y) exists a.e. x € X,
Iif lies in LP(X), and ||I. f||, < C|| f| -

In particular, I; defines a bounded operator on the Hilbert space L*(X).

(Hint. If 1 < p < oo write

1 1
k() fO)] = W) 7 - (JkCe) P17 D))
and apply the Holder inequality.)
3. Group C*-algebras

In this section, we explain an important construction that associates a C*-algebra to a
(locally compact) group. The C*-algebra’s structure reflects the representation theory of
the group. We will give the general definition, but for more detailed theorems and proofs
we will specialize to particular classes of groups.

In the second part of this section, we discuss the examples where the group is the
integers and the circle, respectively, and in Section [5] we analyze the case of finite groups.
We will defer a discussion of the group R of real numbers, which involves a lot of other
considerations, to Section [13}

Any locally compact group has a unique (up to scale) Borel measure p which is left-
translation-invariant, in the sense that the left translation maps G — G elements of G, are
measure-preserving. Hence [i; f(gh)du(h) = [ f(h)du(h).

If G is compact, we will always assume that u is normalized so that u(G) = 1.

We frequently use the abbreviated notation [; f(g)dg for [ f(g)du(g).

Let f be a continuous function on G of compact support on G.

Then f determines a convolution operator A(f): C.(G) — C.(G),

(L.11) (B (&)= [ G g)an.
The integrand is continuous and compactly supported so converges absolutely.

EXERCISE 1.3.1. Verify thatif f,& € C.(G) then A(f)& is continuous, and if supp(f) =
K C G and supp(§) = L C G, K,L compact, then supp(A(f)E) C K-L. In particular,

M/)E € Ce(G).
PROPOSITION 1.3.2. If f € C.(G) then A(f) extends continuously to is a bounded
operator L*(G) — L*(G), and |Mf)I| < 1f]l ().

PROOF. Let &,m be a pair of compactly supported continuous functions on G. Then
by the definitions

(1.12) <Mﬁ®w—é<éﬂww~mw0m@@
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and we can switch the order of integration by Fubini’s Theorem, giving

(1.13) :/Gf (/&,h l dg)dh

Set Up(g) :=&(h™'g). Then Uy € L*(G) and [[Up&]| = ||E]| (Uj is (a unitary.) This
is because of the left-translation invariance of Haar measure. For each & € G, the Cauchy-
Schwarz inequality gives

I/éh tein(g)dgl = (US| < [|UWEl- [l = [IE]l - [mll-

Putting everything together we get

(1.14) &n\</|f \l/&hl g)dgldh
<&l - [ml| '/G|f(h)\dh= £l - NN -

Now set

n:=A(f)5
1 is then compactly supported and continuous and so by above
(1.15) IMNEIP = MNEAMNE) < IIflli(q) - IEI- IM(f)
divide both sides by ||A(f)E|| to get
(1.16) IMAEN < Nf 1l ) - -

Since compactly supported & are dense in L?(G), (I.16) implies that A(f) extends contin-
uously a linear map L?(G) — L*(G), with operator norm < || f|| .1 (G)» as claimed.
([l

DEFINITION 1.3.3. The C*-algebra generated by the convolution operators A(f), as
f ranges over C.(G), is the C*-algebra of G and is written C*(G).

The C*-algebra of a group G is a completion of an intrinsically defined *-algebra,
namely of C.(G) under convolution of functions (not pointwise multiplication). Convolu-
tion is defined for f1, f> € C.(G), by

(1.17) (Firo)(g / Fh) f(hg) du(h).

It is clear that f| x f» € C.(G) if f1, > € C.(G). It is easy to check that convolution is an
associative bilinear operation.

The modular function on a locally compact group G is the function §: G — R defined
by the equation

u(Ag) =8(g ") u(A)
for any A C G measureable, with 4 Haar measure on G. If f: G — C is an integrable

function then
(1) [ f(sh) duls) = [ 5(s) dus

The map 0 is a group homomorphism. A group is unimodular if 6 = 1. Almost all the
groups we will consider in this book are unimodular: for example, discrete groups, com-
pact groups, and abelian groups, are all uni-modular.
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The reason we bring up the modular function, is that the operator adjoint on f €
C.(G) C B(L*(G)) corresponds to the following adjoint, intrinsically defined on C,(G):

(1.18) f(g)=8("-flgh.

EXERCISE 1.3.4. Check that the convolution formula (1.17) matches composition of
operators on L>(G), i.e. that

Mfix f2) = MfOM ) € B(LX(G)).
Check as well that the adjoint (T.18)) agrees with the operator adjoint in B (Lz(G)).
The following exercise gives an example of a non-unimodular group.
EXERCISE 1.3.5. Let G be the upper triangular group

G::{g: {g aél} |a,b€R,a>0}CSL2(R)

of matrices in SLy(R). It has evident coordinates a,b putting it into bijective correspon-
dence with R x R. Compute the Haar measure on G in these coordinates and compute
the modular function

8: G—RL.

Proceeding with the general theory, the regular representation A can be viewed as a
*-algebra map C,(G) — B(L?*(G)). Hence C*(G) is the completion of the *-algebra C.(G)
(that is, with its intrinsically defined convolution multiplication, and adjoint), with the
operator norm via the representation A.

In the important case where G is a discrete group, we can represent an element of
C.(G), often alternatively denoted C[G], and called the complex group algebra of G, in the
form

f= Z dg [g ],
geG
where the sum is finite, each a, € C, and where [¢] means point mass at g: the function,
often written Sg, which is 1 at g and 0 otherwise.

Thus, f is a function on G whose value at g is ay.

If we are considering f as an operator on [?(G), by the regular representation A, then
M([g]) (or A(g)), means the unitary operator of left translation by g, A([¢])&(h) = E(g~'h).

It is easy to check that convolution multiplication in this notation becomes the ‘obvi-
ous’ multiplication of such expressions, using the rules that

8] % [h] = [gh] [g]"=[g""]-

Thus, for example

geG

(Z ag(g]) (Zbg[g]) = Z};agbh ghl,

and re-arranging the sum gives =Y . (ZheG apby-1 g) [¢], which re-produces the convolu-

tion formula (1.17).
Similarly, the adjoint is given by (Y.ccaglg])” = ):gchTg[g_l].

EXAMPLE 1.3.6. Let G be the finite cyclic group Z/nZ.
Then the reduced C*-algebra C*(G) = CIG] is finite dimensional, since C[G] is, and
consists of all combinations Y7 A [k +nZ).
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The regular representation A.: C;'(G) — B(I*?G) = B(C") = M, (C) maps the generator
1 + nZ to the shift matrix

0 - 1 0
Thus, as a *-subalgebra of M, (C), C*(G) is generated by the shift, and consists of all
operators of the form ZZ;(I) MUK,
To understand the structure of this C*-algebra, note that the shift U acting on C" can

be diagonalized. Its eigenvalues are precisely the nth roots of unity, 1, ®, ®%,... 0" !, and
the eigenvector v; corresponding to the eigenvalue o is given by

v = (0 F 0 * 03, . o) eCn
Let xx be the character, that is, group homomorphism to the circle group T, given by
Yi: Z/nZ — T, yp(m—+nZ) = o™,

Since )y is a function on the group, it defines an element of C[Z/nZ] = C*(Z/nZ). In
group-algebra notation

Xk = kam_ [m] € C[Z/nZ).

EXERCISE 1.3.7. Show that A()x) acts on [?(7Z/nZ) by the matrix

1 o*
o 1 o*
o* of 1 o*
pk= ;
w2k
ok
| o* o 1 |

(where the ellipses indicate a similar pattern; the matrix has ‘constant diagonals’) and
check that the matrix

1
Pri= - M)
is orthogonal projection to the eigenspace spanned by vy.

Thus, the group C*-algebra C*(Z/n) contains n orthogonal projections pg, p1, ..., Pn—1
which sum to the identity operator. And in this notation U = ZZ;(I) o*py expresses U as a
diagonal operator with respect to the basis vy, ...,v,—1: with respect to this basis, U is the
diagonal matrix

(1.19)
(anl

Hence the C*-algebra C*(U) = C*(Z/nZ) generated by U consists of diagonal matrices
in this basis. We have shown that this C*-algebra contains, as well, the projections to the
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elements of this basis, and hence it is isomorphic to the C*-algebra of n-by-n diagonal
matrices — ie. is isomorphic to C@---® C = C" as C*-algebras.

The representation theory of the group Z/nZ is thus reflected by the structure of the
group C*-algebra C*(Z/nZ).

EXERCISE 1.3.8. Let G = T be the circle.

a) Show that the characters ¥, (z) := Z", viewed as elements of C*(T), are projec-
tions: X, = % and X, * X = X, and that ¥, * X, = O unless n = m.

b) Prove that the infinite sum Y7 %, does not converge in the norm in C*(T), but
that ..z f *Yn does converge (in norm) in C*(T), for any f € C*(T), with f*y,
convolution multiplication (the multiplication in C*(T).)

EXERCISE 1.3.9. Let G be a finite group and f € C[G] = C*(G) a function which is
constant on conjugacy classes in G. (Such functions are called class functions.) Prove that
£ is in the centre of C*(G), that is f commutes with all other elements of C*(G).

EXERCISE 1.3.10. Let G be any discrete group.

a) In I*(G), let : C[G] — C be the map T(Y Ajg]) := A.. Prove that T extends to
a continuous linear functional C*(G) — C, and that T is a trace: t(ab) = t(ba)
for all a € C*(G). (Hint. Let eg € I*(G) be the point mass at the identity of the
group, check that T(T) = (M(T)ep, eo) for all T € C[G].)

b) Prove thatif 7' # 0 is an element of C*(G) of the form 7 = S*S, for some S € C*G,
then ©(7) > 0.

¢) Prove that the map A: C[G] — C*(G) is an injective map of *-algebras.

d) Suppose that H C G is a finite subgroup. Let

1
p.:H Y ().

heH

Show that p is a projection in C*G), and that T(p) = ﬁ
e) Show that py is projection onto the subspace of /?>(G) consisting of functions
€ € I?(G) which are constant on each right H-coset in G (so for example if G is

finite and H = G then pg is projection to the constant functions in /%(G)).
It is a conjecture of Kadison and Kaplansky that if G has no torsion, then T only takes
integral values on projections. The problem is as yet unsolved, with some of the strongest
results derived from positive cases of the Baum-Connes conjecture (discussed in the last
section of the book.)

EXERCISE 1.3.11. Let G be a discrete group.
a) Show thatif f =Y f(g)[g] € C[G] then

(ensMf)ex) = f(hkT).

b) If T € C*(G) set & := T(ep) € I>(G), where e, € [*(G) is point mass at the
identity of the group. Show that &M f) = [ regarded as a function in 1>(G), for
f € C:(G) =C[G] C C*(G).

¢) Show that the map T + &7 is a norm contractive map C*(G) — I*(G), which
recovers f from A(f), for f a finitely supported function on G.

d) Show that if & =0, then T = 0. (Hint. The statement is obvious if T = A(f)
for f € C[G]. To prove the stronger statement using limits, supposed 7, — T
in C*(G), where T, = A(f,), fu € C[G]. Then &z, — &r (part ¢)), so if & =0
then &7, = f, — 0in [?(G) and in particular f, — 0 pointwise on G. By part a)
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{ensMf))ex) = fu(hk™') — 0 for h,k fixed and n — co. From Cauchy-Schwarz
(en, M fn))ex) — (en,Tey), whence (e, Tey) = 0 for all h,k.)

e) If T € C*(G) let f =&r. Observe that the convolution f x& is well defined for
€ € C.(G) and f any function (confirm), producing a function on G. With this
convention, verify that

)
Jn)

= fxn
for allm € C.(G).
Thus one can describe C*(G) fairly concretely as consisting of a priori densely-
defined convolution operators A(f)E := f *&, *f € I>(G), which are defined on C.(G),
for which the norm estimate

1f%&ll2(6) < CllEl 2

holds for all & € C.(G). The estimate then implies that A(f) extends to a bounded operator
on I%(G), even though £ *E may not actually be defined as a convergent integral if £ € [*(G)
is more general than a finitely supported function.

EXERCISE 1.3.12. If H is a Hilbert space and A C B(H) is any self-adjoint set of
bounded operators on H, then the commutant A’ of A is the collection of bounded operators
T on H which commute with all elements of A.

a) Prove that A" is a norm-closed *-subalgebra of B(H ), and hence is a C*-algebra.
b) Check that if G is finite and

p(g): (G) > P(G). plg)(en) = epg .

is the right regular representation, then C*(G) = {p(g) | g € G}’ and that C*(G)
is unitarily conjugate to C*(G)'.

REMARK 1.3.13. If G is infinite, the commutant W*(G) = {p(g) | g € G}’ is called the
group von Neumann algebra of G. It contains C*(G) as a dense subalgebra, but is closed in
a much finer topology. The relation between the C*-algebra and the von Neumann algebra
is analogous to the relation between Cy(X) and L (X, u) for a locally compact space with
a Borel measure p.

EXERCISE 1.3.14. Prove that a bounded operator T € B(I>G)) is in the group von
Neumann algebra L(G) if and only if it’s matrix representation in the canonical basis
{e; | g € G} has constant ‘diagonals’ (the ‘diagonals’ are the vectors (7} g )reg, one for
each g, where Ty, := (T (ep,), ex) as usual.

EXERCISE 1.3.15. If G is a discrete group, then verify that C*(G) C p(G)’, where
p: G — U(I?) is the right regular representation.

EXERCISE 1.3.16. Let G be any locally compact group. An alternative to forming the
C*-algebra of G, is to form the Banach algebra L'(G).

Use the Fubini-Tonelli Theorem to prove that if fi, f» € C.(G) then fi > € L'(G)
and

1f1 =2l ey < Al ol 2l @)-

Deduce that convolution extends continuously to a multiplication on L!(G), and that with
this multiplication and the L'-norm, L' (G) is a Banach algebra.

Actually, L' (G) has a natural adjoint as well, and it is easy to check that || f*||,1 G =
[£1lL1(G)- Hence L'(G) has the structure of a Banach *-algebra. The regular representation
A extends continuously to a contractive map L!(G) — C*(G) of Banach *-algebras.
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EXERCISE 1.3.17. Suppose thatw: G — U(H) is a unitary representation of a discrete
group G. It extends linearly to a *-algebra map (for which we use the same letter)
(1.20) n: C[G] — B(H),

and the question addressed here is whether (T.20) extends to a C*-algebra homomorphism

C*(G) — B(H). If it does, we say that T is weakly contained in the regular representation
of G.

a) Show that the diagonal action of G on the direct sum @iellz(G) of an arbitrary
number of copies of the left regular representation, is weakly contained in the
regular representation.

b) Let X be a discrete G-space on which G acts freely. Lett: G — U (12 0:¢ )) be
the resulting representation

(M(8)8)(x) = &g ).
Prove that 7 is weakly contained in the regular representation.

c¢) Prove that the trivial representation €: Z — {1} C T of the integers, is weakly
contained in the regular representation.

The condition that the trivial representation of a discrete group G is weakly contained
in the regular representation is sufficiently important we record it in a definition.

DEFINITION 1.3.18. If G is a countable group, then G is amenable if the trivial rep-
resentation extends continuously to C*(G), equivalently, if

(NI < IMA

for all f € C[G], where € is the trivial representation.

The group Z is amenable, but the free group [F» on two generators is not, and so the
trivial representation of I, does not extend to C*(IF,) (see Section ??).

EXERCISE 1.3.19. Let G be a discrete, amenable group. Prove that if S C G, then

I M) =1s

seS

)

where A is the regular representation.

We close this section with the following remark.

What we are calling the C*-algebra of G in this book is usually called the reduced C*-
algebra of G in the literature. There are other ways of completing L' (G) to a C*-algebra.
Such completions come from injective unitary representations of the group, and these are
not all equivalent to each other, that is, they can produce different norms, and when one
completes, one can obtain different C*-algebras.

But the ‘reduced’ C*-algebra has a certain concreteness about it, and is important for
other reasons as well.

4. C#*-algebras of the integers and the circle

The structure of the C*-algebras of the groups of the integers and the group consisting
of the points of the unit circle T of the complex plane, is completely elucidated by the
classical Fourier transform, which we describe in slightly more general terms as follows.

If G is a locally compact, second countable, abelian group, its Pontryagin dual is
the group G of continuous group homomorphisms y: G — T (they are called charac-
ters). The group structure on G is by pointwise multiplication of characters (x1-%2)(g) =
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%1(2)x2(g) € T. The identity element is the trivial character, which we will usually denote

€: G—T,e(g)=1€Tforall g. If  is a character, then (*(g) := % (g) is also a character,
since complex conjugation on the circle is a (continuous) group homomorphism T — T.
And -y, = €. Hence characters from a group. It is clearly abelian. We topologize G with
the compact-open topology, with basis U (K. &,%0) := {x. € G | [x(g) —%0(g)| < e Vg € K},
as K range over compact subsets of G, Yo € G, and e > 0.

LEMMA 1.4.1. If G is compact, then G is discrete. If G is discrete, then Gis compact.

PROOF. If G is compact then {y € G lx(g)—1] < %, Vg € G} is a neighbourhood of
the trivial character € € G containing only one point, namely € itself, since the image of
any character is a subgroup of the circle, and there are no subgroups of T which lie entirely
within % of 1. This shows that G is discrete if G is compact.

On the other hand, if G is discrete, then the continuity requirement on a character
becomes trivial, and it is then easy to check that G embeds continuously as a closed subset

of [15 T, which is compact by Tychonoff’s Theorem. Hence Gis compact if G is discrete.
(]

EXERCISE 1.4.2. Prove that if G is discrete then G can be identified with a closed
subset of [[; T with the product topology.

EXAMPLE 1.4.3. Let G =T, the circle. To each integer n € Z we associate the char-
acter ), (z) := z". This gives an isomorphism G = Z.

If G is locally compact abelian, the Fourier transform for G involves the following
construction, which can be applied to various classes of functions, with various results.
Suppose that f € C.(G). We let

(1.21) 7= | £(&)uledu(s).
where u is Haar measure on G. Then it is immediate that
PO < A1l 6)-
And if [x(g) —xo(g)| < & on supp(f), then
1F00) = F o)l <1111 -

Hence f is continuous on G if f € C(G).
Now if G is compact, any two distinct characters )1,%2 of G, viewed as vectors in
[? (G), are orthogonal. Indeed, if h € G, then by invariance of Haar measure

X1.%2) = /G x1(8)x2(g)du(g) = /G x1(hg)x2(hg)du(g)

=umam ™ | @l =nmnen ™ ..

which implies that either %; = (2 or the product is zero.
If f € L*(G), then by the definition (T.2T), we have f(x) = (f.x). Hence

(1.22) YIF00P < 1fll2(6)-

xeG

from Bessel’s inequality (I.2.10). In particular, if G is infinite, then f (x) > 0asy—
co. This shows that if f € C.(G) then f € Cy(G), when G is compact. Furthermore, as
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||f||CO < |fllz1(g) the map f+— f extends to a contractive map L'(G) — Co(G). The
followmg is an easy exercise left to the reader.

EXERCISE 1.4.4. If G is any locally compact abelian group and fi, f> € L'(G) then
fisf=hb.

Hence f — f is a contractive homomorphism of Banach algebras L' (G) — CO(G),
when G is compact.

If G is not compact, but is discrete, then Gis compact, and the above arguments show
that if f € L'(G) then f € C(G), and that Hf||c < |Ifllz1(G)- Therefore, putting things
together:

PROPOSITION 1.4.5. If G is compact or discrete, the Fourier transform defines a
contractive homomorphism of Banach *-algebras L' (G) — Cy(G).

We will see shortly that the Fourier transofrm extends continuously to an C*-algebra
isomorphism C*(G) — Co(G).

EXAMPLE 1.4.6. If G =T, with Haar measure normalized Lebesgue measure u, then
T = Z with the integer n corresponding to the character y,(z) := z" of T. The Fourier
transform in this notation is

m = [ @z du(z). feL' (D).

If G =Z, then Z>TwithzeT corresponding to the character y,(n) := z". The Fourier
transform for the integers is given by

2)=) fm)z™", fel'(Z)CCi().

nez

If G is a compact (abelian) group, then one can show that the characters {X}x ¢ form

an orthonormal basis for L>(G). Hence the inequality in (T.22) is actually an equality. So
when G is compact, the restriction of the Fourier transform to L?(G) C L' (G) determines
an isometry between Hilbert spaces which we denote by

Fg: L*(G) — I*(G).
For example,
Fr: LX(T) — LX(T) = *(Z)
maps a function in L?>(T) C L'(T) to the bi-infinite sequence (f(n)),ez of its Fourier
coefficients with respect to the standard orthonormal basis {z"},cz for L?(T).

When G is discrete (abelian), f(x) = Yeea f(8)x(g) for f € C.(G) = C[G], x € G.
Thus f = Yoci f(g)g where g: G — T is the function g(x) :=x(g). Since ¢ so defined is
a character of the compact dual group é, and all characters appear this way, and make an
orthonormal basis of L2(G), we again obtain that

1l = L @R =1l
geG

Thus, again, we see that F; induces, now by extension by continuity from !(Z)
12(Z), an isometry Fg: I2(G) — L*(G), for any discrete G. So in either case, Fourier
transform induces a unitary isomorphism.

For example, if G = Z, then Fg: [*(Z) — L*(T) maps a sequence (ay),cz, to the L2-
function Y ,,c7 an7".
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Although one might expect that F inverts Fg, this almost happens, but not quite. The
statement is that

F@ oFg =Sg.
where Sg: L?(G) — L*(G) is the self-adjoint unitary (Sg.f)(g) = f(g~!).
Similarly, still assuming G is compact, Fg o F; = Si. We conclude that if G is either
compact or discrete, then since Sg is a self-adjoint unitary isomorphism, Fg: L?(G) —
L2(G) is a unitary isomorphism as well, and Fi=F;'= FgoSg.

LEMMA 1.4.7. IfA(f) € C*(G) C B(L*(G)) then FoA(f)F§ =M;: L*(G) — L*(G),
with M; the multiplication operator by f € C()(é).

We leave the proof as an exercise.

THEOREM 1.4.8. If G is any compact or discrete abelian group, then the Fourier
transform L' (G) — co(é) of Proposition extends continuously to a C*-algebra iso-
morphism Ci(G) — Co(a),' moreover, this C*-algebra isomorphism is impiemented by
unitary conjugation with the Fourier transform, as a unitary L>(G) — Lz(é).

The statement contains the important fact that

IR = supl f ()1,

x€G
for all A(f) € C*(G) (in particular for f € C.(G), for example.)

REMARK 1.4.9. Although the space G of characters of G, group homomorphisms
G — T, may be rather trivial, and hence not a useful thing to consider, when G is not

abelian, so that Cp(G) no longer is a very useful thing to think about, C*(G) always is
defined, and, of course, agrees (by above) with Cy(G) in the commutative case. So this is
an example where (noncommutative) C*-algebras may be of use — to study representation

theory of nonabelian groups.

5. C*-algebras of finite groups

Let G be a locally compact group. A unitary representation of G is a group homomor-
phism ©t: G — U(H), where U(H) is the unitary group of a Hilbert space H, such that for
every & € H, the map g — m(g)& is continuous. Sometime we drop the adjective ‘unitary,’
since we only consider unitary representations in this book.

A (unitary) representation is irreducible if it has no closed, G-invariant subspace. Two
representations pi,p2 of G on Hy,H, are equivalent (or unitarily equivalent) if there is a
unitary U : H; — H; intertwining them: i.e.

Up1(g)U* =p2(g), Vg €G.

In this section we are going to briefly describe some general features of the repre-
sentation theory of finite groups, and show how it ties in with the structure of their group
C*-algebras.

EXERCISE 1.5.1. Lett: G — U(H) be a unitary representation of a finite group G on
a Hilbert space H.
a) Prove that if & is irreducible, then H is finite-dimensional. (Hint. Any orbit of G acting
on H is finite, and so spans a finite- dimensional, G-invariant subspace.)
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b) Prove that if 7 is any finite-dimensional unitary representation of G, then 7 is completely
reducible: there exists a decomposition H = H; & - - - H, and irreducible representations
: G — U(H,), such that & is unitarily equivalent to the direct sum representation T; ®

ea T,,.

LEMMA 1.5.2. (Schur’s Lemma). If n: G — U(H) is an irreducible representation of
G finite, then the only operators T on H commuting with T(G) are scalar multiples of the
identity operator 1.

PROOF. Suppose that 7 commutes with G, thatis, ©(g)T = Tn(g) for all g € G. Since

H is finite-dimensional, T has at least one eigenvalue. The corresponding eigenspaceH’ C
H is G-invariant since T(G) commutes with 7. Since H' # {0}, H' = H, and we are done.
(I

LEMMA 1.5.3. Let n: G — U(H)) be a finite-dimensional irreducible unitary repre-
sentation of the finite group G. Then

(1.23) Y n(g) tTrLe(”)-l

\G| dimH

gcG

forany u € B(H), where 1 € B(H) is the identity operator.

PROOF. The group G acts by unitary conjugation on the C*-algebra B(H), and the
content of Schur’s Lemma is that the fixed-point *-subalgebra of this action is linearly
spanned by the identity operator. Clearly the operator on the left hand side of is
G-fixed in this sense. Hence it is a scalar multiple ¢(u) of 1.

Taking the trace of each side of the equation

(1.24) G Zn =c(u)- 1y,
‘ | geG
then gives
Trace(u) = c(u) -dimH

Trace(u)

so c(u) = ~gmp

. as required.
O

The statement can be generalized to deal with pairs of representations.
Suppose that if w;: G — U(H;) are irreducible representations. And let u: Hy — H;
be any linear map. Define a linear map 7,,: H; — H, by

(1.25) Toi=— Y m(g)umi(g
|G| g€G

LEMMA 1.5.4. The operator T, of (I.23) is zero if ™) and Ty are inequivalent repre-
sentations, for any u: Hy — Hj.

PROOF. Clearly m,(g)7, = T,m(g). If T, were invertible, it would give rise to a
unitary conjugacy between the representations. Hence 7;, must be non-invertible for any
u. On the other hand, ker(7;) is a m; (G)-invariant subspace of H;, whence is either all of
H; (making 7,, = 0 as claimed) or, as we may assume, is the zero subspace. This makes 7},
injective. Next, since 7;(g) are unitaries, i = 1,2 and all g € G, it follows that

()T, =T, m2(g)
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for all g € G, from which it follows that ker(7}") is m,(G)-invariant. Reasoning as above,

we conclude that 7;; is either the zero operator, making 7, also zero, as claimed, or that 7,
is injective. This would make 7, surjective, and hence invertible, a contradiction.

O
In the notation of the Lemma, let § € H,,n € H;. Define the rank-one operator
(1.26) Ocn: Hi — Ha, 0:0(8) := (M, 0)E.
Note that
(1.27) (Ozn(M).€") = (. M') - (£.8).
Furthermore,

72(8)0eq71(2)"(6) = M, 1 (8)"C) - M2(8)§ = (m1(g)n, §) - M2()S,

hence

m2(8)8en™1(8)" = Ona(g)5mi (g)n-
Hence, applying Lemma|[.5.4]to u := T ; gives the operator equation

1

1.28
(1.28) Gl

Y Bny(g)tm (gn = O-
geG

Now evaluate the operator on the left-hand-side at a vector ' € Hj, and take the inner
product of the result with &'. With the above remarks (and recall that our inner products
are conjugate-linear in the first variable), we obtain

L

1.29
(1.29) Gl

Y (m(g)€.8) - (mi(gm.n') = 0.

geG

which is an orthogonality statement for two functions on G, thought of as vectors in >(G).
Such functions, of the form

fEy: G—C. fEu(e) = (n(0)8)

are called matrix coefficients (of the representation.) Our computations have shown that
T LTy
(1.30) (ST Sy =0

for any pair of inequivalent, irreducible representations Ty, ;, and any vectors &,&', 1,1,
where the inner product is in the Hilbert space I2(G).

Finally, we return to the case Hy = Hy = H and Ty =T, = 7. Setu = eﬁ,n in Lemma
It is an easy exercise to check that Trace(8 ) = (n,&). Hence

1
|Gl

= n(g)E.m(g)n dimH H

(1.31)

with 1y the identity operator on H. Applying this operator equation to a vector i/, and
taking product with a vector &', and proceeding as above in the case of two representations,
we get the identity

m.8)(E'.n")

(1.32) o L ST (8) Sy (8) = ~ dimH

We summarize:
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PROPOSITION 1.5.5. Let G be a finite group.
a) Matrix coefficients of any two inequivalent irreducible representations of G are
orthogonal to each other as vectors in 1*(G).
b) Ifn: G — B(H) is an irreducible representation and £,&',m,n are vectors in H,

then
(133) o Fi) = i - (n.8) - E),
’ ’ imH
where the fgg, etc. are the corresponding matrix coefficients, regarded as ele-
ments of I>(G).

The character of a finite-dimensional representation (w, H) is the conjugation-invariant
function
x:G—=C, x(g):= Trace(n(g)).
If&y,...,&, is an orthonormal basis for H then

x(8) =Y fLe,

from the definitions.

If;: G— U(H;), i = 1,2 are two inequivalent representations, it follows from @
that

<Xn1 ’Xﬂ?2> =0

by setting § = &; =& andm =n; =1/, for orthonormal bases &;,...,&, of H andy,... My
of Hy, and summing over i, j,

Similarly, for a single representation apply (I.32) to § = &; =&, andn =n; =1/, for
two indices i, j, and then sum over i, j to get:

PROPOSITION 1.5.6. If n;: G — U(H,;), i = 1,2 are inequivalent irreducible repre-
sentations with characters Yz, and Xr,, viewed as vectors in | Z(G), then

(Xm;%my) = 0.
Ifn: G— U(H) is an irreducible representation, then

HXTC||122(G) = ‘G|

Every equivalence class of irreducible representation has a uniquely defined character,
since trace is invariant under conjugation. The results above show that the set {x | [1] € G}
forms an orthonormal set of vectors in /2(G), and hence there are only finitely many of
them. In particular, we conclude that a finite group has only finitely many equivalence
classes of irreducible representation, i.e. G has only finitely many points.

Suppose they are [my],...,[n,]. Let (H,T) be any finite-dimensional representation.
Since it is completely reducible, it can be written as a direct sum

T = ®in; ;.
of the irreducibles. The integers n; determine T up to isomorphism. Now Yz = ;7 Xn;-
Since <XTE[’XTEJ'> = |G| ‘Sij,
<Xn,X7ti> =n; - |G|

so that the character y; determines the multiplicities n; and hence the representation, up to
isomorphism.

The basic example is the regular representation (A,/%(G)). Note that its character )y,
is supported at the identity of the group, and has the value |G| there.
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PROPOSITION 1.5.7. A finite group has only finitely many unitary equivalence classes
of irreducible unitary representations.
If the irreducible representations of G are [T1],[T] . . ., then
A= @;dim(Hy,) - ;.

That is, the multiplicity of m; in A is dim(Hy,).
Finally,
C*(G) = &B(Hy,),
as C*-algebras, by taking the direct sum of the maps w;: C[G] — B(Hy,).

Notice the following interesting Corollary:

COROLLARY 1.5.8. If G is a finite group, G the set of equivalence classes of irre-
ducible representations of G, then
|G| =Y dim(Hy)>.
[n]eG
PROOF. The multiplicities are given by

1 1
ni = o (X)) = 7570 2 X(8)Xm (8)-
Clel T Gl g§c "
Since 7, is supported at the identity e € G and ) (e) = |G|, %z, (e) = dim(m;), the first
statement follows.
For the second statement, we have shown above that there is a unitary isomorphism of
Hilbert spaces

(1.34) I?(G) = @;dim(Hy,) - Hy,,

with mV denoting V & --- @V m times. This unitary conjugates the regular representation
A to the direct sum representation

g Di(Ti(g) - Om(g)),

with the term in brackets the direct sum of the unitary m;(g) with itself dimHy, times,
acting on Hy, @ - -- @ Hy,. For each i € I, follow this map from the projection to one of the
summands in the ith factor. Then the composition

(1.35) B(I°G) — @;dim(Hy,) - B(Hz,) — ©ic/B(Hy,)

is an injective *-homomorphism.
The dimension (as a complex vector space) of the C*-algebra ®;c;B(Hy,) is

Y dim(Hy,)?
iel
and by the first statement of the Proposition, this equals dim/?(G). This equals |G|, and
equals dimC*(G). Therefore the map (I.33) is an isomorphism for dimension reasons.
O

~

These simple observations lead to the following fact. Since we have shown C*(G)
@, dim(Hy,;) - B(Hy, ), there must be, for each irreducible representation € G. a projection
ex € C*(G), which is mapped by this isomorphism to the projection to the ith factor (the
i-tuple with zeros everywhere except in the ith spot, and the identity operator there.) Note
that ey commutes with all elements of C*(G), i.e. itis in the centre of C*(G). The condition
of projecting to the ith factor means that p(ey;) = 0 if p is not equivalent to 7, and that
m(ex) = 1.
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If % is a character of G let x*(g) := x(g).

PROPOSITION 1.5.9. If m is an irreducible representation of G, then the induced C*-

algebra representation C*(G) — B(Hy) maps the function di n‘l(lli") X% on G to the projec-
tion ey.
In particular, ey = dmll(‘ n) X € C[G] is a projection in the centre of C*(G), and

ex-C*(G) = B(Hy).

PROOF. Let ex = ¥, aglg]; we solve for ag, by the following arguments.

First note that any character % : G — C extends linearly to a map C[G] — C. In the
case of the character of the regular representation, X, (¥, b¢(g]) = |G| - b, for any Y. b, [g] €
C[G], since Trace(A(g)) = 0if g # e. Thus, in particular,

x(en) = |Gl ae

and similarly, since multiplication by a group element [g] C C[G] just shifts the indices of
er,

(1.36) %87 en) = |G| - ay.

On the other hand, if, say T = 7;, the projection ey acts as zero on Hy, unless i = j. Hence
the same is true of the element [¢~'] - ez € C[G]. It acts on Hy, by T;(g"") since ey acts as
the identity on Hy,. Finally, since ), = ¥;dim(Hz,) - Xx;, We get

1 dim(Hy,)
1.37) ay=— - -17. dim(H. -1 i S VR
( ) aé |G| X)L([g ] e?[) |G| Z lm TCz) Xﬂ:,([ ] 37[) |G| X](g)
We conclude that
_ dim(Hy)
T e

as functions on G.

We summarize what has been proved about C*-algebras of finite groups.

THEOREM 1.5.10. Let G be aﬁmte group, G its set of equivalence classes of irre-
ducible representations. Let [T € G, and ¥ its character. Let ey, = Téll{" YecoXAn(g)lgl €
C*(G). Then:

a) ey is a central projection in C*(G).
b) T(ex) = 1, the identity in B(Hx), and if [p] € G and [p] # [x] then p(ez) = 0.

¢) Summing the representations T for [Tt] € G gives an isomorphism

C*(G) = @ exC(G), and exC"(G) = B(Hy).

d) Ift: C*(G) — Cis the trace T(L, ag[g]) := ac of Exercise a), then

dim H?

T(en) = \G|

forall [n] € G.
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EXERCISE 1.5.11. The finite group S3 has 3 irreducible representations: the trivial
representation €, the sign representation 6(g) = %1 according as g is an even or odd per-
mutation, and a 2-dimensional representation defined as follows. Let S3 act on C? by per-
mutation matrices. In C3 let V be the subspace (1,1,1)* = {(x,y,z) € C* | x+y+w = 0}.
Then V is S3-invariant and the restriction of the S3 action on C3 to V is irreducible.

Deduce that C*(S3) = C® C @ M, (C). Exhibit an explicit isomorphism.

6. The compact operators

In Noncommutative Geometry, ‘compact’ (operator) tends to suggest ‘small’ in some
sense, as in, a ‘small perturbation.” Sometimes they are argued to be the quantum physical
(or noncommutative) analogue of the ‘infinitesimals’ one meets in calculus, or differential
geometry.

DEFINITION 1.6.1. A bounded linear operator T € B(H,K) between Hilbert spaces
H,K is a compact operator if the image T (By ) of the unit ball By :={E € H | ||&|| < 1} in
H is pre-compact, that is, if its closure is compact.

REMARK 1.6.2. A standard result from point-set topology is that a subspace A C X
of a complete metric space is pre-compact if and only if it is totally bounded. Hence, a
bounded operator 7: H — K is compact if and only if for all € > O there exist vectors
E1,...,&1 € By such that T(By) C U; B¢(TE;).

If H is an infinite-dimensional Hilbert space then the closed unit ball By is non-
compact since any infinite orthonormal set in By provides a net with no convergent subnet.
It follows that the identity operator on H is not compact, whence certainly not all bounded
operators are compact.

More generally:

EXERCISE 1.6.3. Let T: H — K be a bounded operator for which there exists ¢ > 0
such that that ||TE|| > c||&|| for all & € H. Prove that if T is compact then H is finite-
dimensional.

EXAMPLE 1.6.4. Let T be a bounded operator on a Hilbert space whose matrix with
respect to an orthonormal basis {ej,ez,...} is

M
A2
T = A3

Then T is compact if and only if lim,_.|A,| = 0. Indeed, if T is compact, then Exercise
implies that for all € > 0 the set {n | |A,| > €} is finite. Hence A,, — 0 as claimed.

Conversely, suppose that lim,, ,|A,| = 0. Choose € > 0. Let N such that [A,| < §
if n > N. Any vector in T (By) can be written in the form T+ 71 where & is a linear
combination of ej,...,ey, N is in the closed span of eyi,en2,..., with ||E|| < 1 and
Inil < 1.

By choice of N and Exercise |Tn|| < %. because the restriction of T to the
closed span of ey 1,en2,... is diagonal, with entries bounded by %

Hence every vector in T (By) is at distance at most € to a vector in 7 (Bp) where H’
is the subspace span(ey,...,ey).
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Now since H' is finite-dimensional, By is pre-compact, so T (By) is also pre-compact,
whence it is totally bounded, so there are finitely many vectors &, ...,&; in By such that
T(By) € UL, Bs (T(&)).

Putting these together gives that T (By) C UL, B¢(T (&), as required.

As observed in the previous proof, an operator T € B(H,K) with finite-dimensional
range maps By into a bounded subset of a finite-dimensional subspace of K. Such operators
are said to have finite rank. Since a bounded and closed subset of a finite-dimensional
Hilbert space is compact, we get the following basic result.

PROPOSITION 1.6.5. Any bounded finite rank operator is compact.

EXERCISE 1.6.6. Let H be a separable Hilbert space. Fix an orthonormal basis
{e1,es,...} for H and represent operators by their matrices in the usual way with 7' = (T};),
T;j = (e;,T(e;)). An operator has a finitely supported matrix (with respect to the given or-
thonormal basis) if it has only finitely many nonzero entries. Prove that

a) If T is bounded and has finite-rank, there is a unitary « and a finitely supported
operator S such that u7Tu* = S.
b) If T is a bounded finite-rank operator and € > 0 then there exists a finitely sup-
ported operator S such that ||S—T|| <.
c) IfEneH,let
Teq(v) == (N.v)&.
Prove that T is a rank-one linear operator.
Prove that if T is a bounded finite rank operator on H , then there exist
vectors €1,...,&,,M1,... My in H and ay,...,a, € C such that T = YiaiTen,

The following theorem gives the basic tool in showing that operators are compact.

THEOREM 1.6.7. A bounded operator T : H — K between Hilbert spaces is compact
if and only if it is a norm limit of finite-rank operators.

The proof of Theorem amounts to the following two Lemmas.

LEMMA 1.6.8. The set of compact operators K (H,K) from H to K is a closed subset
of B(H,K) in the operator norm topology. That is, any operator norm limit of compact
operators is a compact operator.

PROOF. See Remark Let T be a limit point of the set of compact operators from
H to K. Choose € > 0. There exists a compact operator S such that [|S—T'|| < £. Since S is
compact, there exist finitely many vectors &y,...,&, € By such that S(By) C UL, B e (SE)).
Now we claim that T'(Byy) C UL Be(T&;). For if § € By, choose &; so that S € Be (&),
then by the triangle inequality )

€ € €
ITE~ T8 < 78— SE| +ISE — S&il + &~ T8l < S+ 5+ 5 =e

proving the claim.

LEMMA 1.6.9. The finite-rank operators from H to K are dense in X (H,K).

PROOF. We show thatif T: H — K is a compact operator then there exists a sequence
(T,,) of finite-rank operators from H to K such that 7,, — T in operator norm.
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Letey,es,... be an orthonormal basis an let P, be the orthogonal projection to the span
ofeq,...,ey,:

PE= i<en,§>en.

By standard Hilbert space theory P, — M for all | € L. In particular, P,TE — T for all
EcH.

We claim that this convergence is actually uniform over By, i.e. that P,7 — T in
operator norm, and thus provides the required approximation of T by finite-rank operators.

Choose € > 0. Choose a finite set of vectors &1,...,&, in By such that T(By) C
U; Be(TE;). Choose any & € By. Then ||TE — TE;|| < € for some i. Since P,T — T point-
wise as observed above, there exists N such that if n > N then ||P,TE; — TE;|| < € for
i=1,...,n. So we argue

1PaTE = TE|| < [|PaTE = PuT&i|| + 1P TS = TEil[ + || T&i — TG

The first term is bounded by ||P,|| - [|TE — TE:|| = ||TE — TE;|| < €, and this is why the third
term is also < €. The second term is also < € if n > N.
O

COROLLARY 1.6.10. If T € B(H,K) is a compact operator, S € B(M,H) and R €
B(K,L) then TS and RT are compact operators M — K and H — L respectively. The
adjoint T* : K — H of a compact operator H — K is compact.

PROOF. All of these statements are clear for finite-rank operators, and they follow by
taking norm limits for compact operators, by the density result Lemma(l.6.9 [

COROLLARY 1.6.11. The collection K(H) of compact operators H — H, is a C*-
subalgebra of B(H) for any Hilbert space H, and in particular, is a C*-algebra, for any
Hilbert space H.

Moreover, X (H) is an ideal of B(H): if T € B(H) and S € K(H) then ST, TS € K (H).

EXERCISE 1.6.12. Let H be a separable Hilbert space and T € X (H) is any compact
operator on H. Show that ||Te,|| — 0 as n — o for any infinite orthonormal set eg, ey, ... of
vectors in H. Give an example of a bounded operator 7 and an orthonormal basis eg, e, . ..

such that ||Te,|| — 0 as n — oo, but T is not compact. (Hint. For the second question, let P
I 1

n n
be a countable infinite direct sum of the n-by-n (projection) matrices | : )
1 1

n

EXERCISE 1.6.13. Let W,F C H be two linear subspaces of a Hilbert space H with
dimF < oo. Prove that W is closed if and only if W + F is closed.

EXERCISE 1.6.14. Let T be a compact operator on a Hilbert space H and A # 0 a
nonzero complex number. Prove:
a) The subspace Hy :={§ € H | TE =AE} =ker(A—T) of T is finite-dimensional.
b) If
inf{{|(A=T)v[[[[v] =1} =0

then A is an eigenvalue for T. (Hint. Otherwise there exists a sequence (&,)
of unit vectors such that (A —T)&, — 0. Use compactness of 7' to deduce an
appropriate convergent subsequence.)

¢) If A is not an eigenvalue of T then A — T has closed range.
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d) As an element of the unital C*-algebra B(H), the compact operator T has a
spectrum: the set of A € C such that A — T is invertible as a bounded operator.
Let A € Spec(T') be nonzero. Show that either A is an eigenvalue of 7 or A is an
eigenvalue of T*. (Hint. Use Exercise[1.2.32).

EXERCISE 1.6.15. The following Exercise shows that the set of nonzero eigenvalues
of a compact operator is always discrete in C — {0}. Suppose that T is compact and that
Tv, = A,v, for nonzero, distinct elements A,, € C and unit vectors v,,.

a) Prove that {vi,...,v,} is linearly independent.
b) Deduce there exist unit vectors g, € span{vy,...,v,} such that g, L vy,...,v,_|
for all n.

¢) Check that
Tqn = hngn +wn
where w,, € span{vy,...,v,—} and deduce that for any n > m
1T qn —Tqmll > |Aul.

d) Deduce that the sequence (T¢g,) has no convergent subsequence unless A, — 0.

EXERCISE 1.6.16. If T: H — K is a compact operator, then there exists a vector § € H
such that ||§|| < 1 and ||TE|| = ||T||.

(Hint. By compactness of T and the definition of norm, there is a sequence &1,&;,...

of unit vectors in H such that T, — 1, where |n|| = ||T||. Apply the the parallelogram
law to get the estimate

Hén _amHz =4- ||§n +E;m||2 <4

as n,m — oo, and deduce the result.)

T8+ TE

—0
1712

EXERCISE 1.6.17. If T € K (H) is self-adjoint, then T has an eigenvalue A such that
M| = ||T||. (Hint. Assume ||T|| = 1 without loss of generality. Let (v,) a sequence of
unit vectors with lim,_.|(Tv,,v,)| = 1 (by Lemma such a sequence exists. By
compactness we may assume T'v, — w for some w. Argue ||w|| = 1. As in Exercise[1.6.16]
argue now that (v,) converges, say to v. Prove that [(Tv,v)| = 1, and then deduce that
Tv==v)

We now discuss compact operators arising geometrically. Let X be a locally compact
Hausdorff space and u a Borel measure on X. For example, X = R, u Lebesgue measure,
or X = T with Lebesgue measure. Let k € L*>(X x X,u x u). If § € L*(X, u), set

(138) IE () = /X K(x,y)E()du(y).

Since k is in L2(X x X) it follows from the Fubini Theorem that for a.e. x € X,

[ k) Puy) <
X

so that k(x,-) € L*>(X) for a.e. x € X. By the Cauchy-Schwarz inequality, the integral (T.38))
converges absolutely. By the Cauchy-Schwarz inequality [ (x)|?> < ||k(x,-) ||i2 x) ||E,.||i2 x)"
Integrating this over X gives that I is a bounded operator and ||| < [[k[| 2 (x xx)-

PROPOSITION 1.6.18. I is a compact operator for all k € L*(X x X) and ||I;|| <
&l 22 0 )
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PROOF. We proved the first assertion above. For the second, measurable functions of
the form r(x,y) = ¥, fi(x)gi(y), where the sum is finite, and the f;’s and g;’s are in L%(X),
are dense in L?(X x X, u x u). For such a function r, by the definitions,

LE = Z;, [ /X gj(y)i(y)du(y)] fi

In particular ran(J;) C span{ f;} which is finite-dimensional. Hence I, has finite-rank.
Now if k € L*(X x X) let k, — k with k, of the form of r above. Then ||, — Ii|| <
[[kn — k| 12(x xx) — 0 s0 I is a compact operator.
O

EXAMPLE 1.6.19. If G is a compact group and f € C(G), A(f) the corresponding
convolution operator on L*(G), then A(f) is a special case of a compact integral operator,
for we can write

MPE (8) = [ FEN" g)du(h) = [ Flah™Emdu(n) = 15 (2)

where I} is the integral operator with kernel k(g, /) = f(gh™!) (u normalized Haar measure
over G as usual).

Compactness of G is needed here to ensure that k € L?(G x G).

In particular, convolution operators A(f) with f € C(G) are compact operators. Since
it is an immediate consequence of Theorem that operator norm limits of compact
operators are also compact, it follows that the C*-algebra C*(G) of G consists entirely of
compact operators on LZ(G), when G is a compact group.

EXERCISE 1.6.20. If G=T and f(z) =Y. _, ay7* is a trigonometric polynomial in
C(T) € C*(T), then the convolution operator A(f): L?(T) — L*(T) has rank at most n+m.

EXERCISE 1.6.21. If G is a compact group and A(f) € C*(G) is convolution by a
continuous function f on G, then f then A( f) is a compact operator on L>(G). By Theorem
(and Exercise A(f) has a countable collection of nonzero eigenvalues. What
are they if G is abelian? What about G finite?

EXERCISE 1.6.22. Let G be a locally compact group, f € C.(G) and h € C.(G), and
let A(f) € B(L?(G)) be convolution with f and M), be multiplication by 4. We have already
noted that A(f) is compact if G is compact; it is clear that M}, is compact if G is discrete.

Prove that A(f)M, is a compact operator for any locally compact group G. (Hint.
Show that A(f)M, = I, an integral operator, with appropriate compactly supported kernel.)

We conclude the general discussion with a Spectral Theorem for compact operators.

THEOREM 1.6.23. Let T be any self-adjoint compact operator on a separable Hilbert
space H and A C R denote the set of eigenvalues of T. If A € A let Hy = ker(A—T) be the
corresponding eigenspace.

Then A is at most a countable set, H, is finite-dimensional for all nonzero A, Hy, is
orthogonal to Hy, if A # N, and H = ®)cpH,.

PROOF. The proofs that T self-adjoint implies that all eigenvalues are real and that
eigenspaces for distinct eigenvalues are orthogonal, are left to the reader — they are iden-
tical to the arguments used to prove these facts in finite-dimensional linear algebra. The
existence of an eigenvalue A such that ||T'|| = |A| is shown in Exercise
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Let H = (EB;LQAH;L){ and T’ be the restriction of T to T’, then since the restric-
tion of a compact operator is compact, T’ is both compact and injective, so H’ is finite-
dimensional. Furthermore, T’ clearly has no eigenvalues, as they would also be eigenvalues
for T, whence H' = 0.

(]

EXERCISE 1.6.24. A compact operator T is positive if it is self-adjoint and all its
eigenvalues are positive. Show that if 7 is a positive compact operator then there is a

. . 2
unique positive compact operator v/7 such that /T~ = T. Deduce that

(T€.8) =0

for all & € H, and every positive compact operator.

EXERCISE 1.6.25. Let T be a compact operator. Prove that T*T is positive.

7. The Schatten ideals

Certain algebraic ideals (they are not closed in the norm topology) of the C*-algebra
of compact operators play an essential role in Noncommutative Geometry. These are called
Schatten ideals, and they are the noncommutative analogues of the /”-spaces of basic anal-
ysis.

If T is a diagonal operator with respect to an orthonormal basis of a Hilbert space,
with, say, non-negative diagonal entries ag, a1, ..., then T is compact if and only if @, — 0
as n — oo, Such T resembles an ‘infinitesimal’ in the sense that, for all € > 0, the restriction
of T to the orthogonal complement of a sufficiently large finite-dimensional subspace has
norm < €.

If S is a general nonzero compact operator, then S*S is self-adjoint and hence diago-
nalizable by Theorem and has spectrum consisting of 0 and a countable collection
of eigenvalues which we may list in decreasing order Ay > A; > A, > --- where we list
including multiplicity.

The singular values of S are given by the numbers u, := \/A,. They are thus the
nonzero eigenvalues of T := |S| := /S*S. Note that uy = ||T|| = ||S||. Since for any
S e B(H), SS* and S*S have the same nonzero eigenvalues, u(S) = u(S*) for any S.

A similar discussion as the one above for diagonal operators applies to 7 := |S|: work-
ing with the orthonormal basis diagonalizing T, we see that for all € > 0, there exists a
finite-dimensional subspace F C H such that |7, || < €. Indeed, one can take F to be the
direct sum of all the eigenspaces of T with eigenvalue > €. In fact, this argumentation
leads to a geometric formula for the singular values.

LEMMA 1.7.1. If S is a compact operator with singular values py > uy; > - - - then
Uk = inf{||S‘FL || F CH, dimF <k}.

PROOF. Let T = |S|. The previous discussion shows that
g > inf{HTFL || FCH, dimF < k}.

Conversely, suppose that F C H with dimF < k. Let vy, ..., v be unit pairwise orthogo-
nal eigenvectors for 7' with eigenvalues uo, . ..,u. Since dim(H/F1) = dim(F) < k, the
quotient map

span{vy,...,v} — H/F*
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cannot be injective since the domain has dimension &+ 1. Hence there exists a unit vector
v € Ftnspan{vy,...,n} — H/F*. Since v € Hy®--- ® Hy, then ||Tv|| > g ||v||. Hence
1T > g

Finally, we note that ||Tv|| = ||Sv|| for any v, for | Tv||> = (Tv,Tv) = (§*Sv,v) =
(Sv,8v) = ||Sv||>. So the corresponding result holds with S in place of 7.

EXERCISE 1.7.2. If T is compact with singular value sequence yg > u; > --- then
Up = inf{||T — S|| | rank(S) < n}.

DEFINITION 1.7.3. If 1 < p < oo, the Schatten p-class LP(H) is the collection of
compact operators T € K (H) such that Y» 1, (T)? < oo, where uo(T) > pi(T) > --- is
the list of singular values of T'.

The Schatten p-norm of such an operator is defined

—

1

nmm:<i¢w05

EXERCISE 1.7.4. Show that LP(H) is a linear subspace of B(H) closed under unitary
conjugation: that is, 7 € L” if and only if uTu* € LP for any unitary u and adjoint: T €
LP(H) ifand only if T* € LP(H), and ||T|| .o = ||T*|| co. (Hint. For the first statement use
Lemmal|l.7.1)

If T € LP(H) and W € B(H) then Lemmal[1.7.1|shows that WT € LP(H) and |[WT|| z»r <
Wl - IIT||zr. Using closure of £LP under adjoint, one obtains as well that TW € L and
[WT| o <|WI-||T| cr. Lemma[l.7.1]implies that L7 (H) is a linear subspace of % (H)
and that ||S+T||zr <||S||ze + ||T||cp. Thus, the LP(H) are ideals in B(H), and normed
vector spaces in their own right. One can also show they are complete in the Schatten norm,
and so are Banach spaces. However, they are clearly not closed in the operator norm. So
they are non-closed, dense ideals in X (H).

We will be mainly interested in the cases p =1 and p = 2.

DEFINITION 1.7.5. A compact operator T € K (H) is trace-class if itis in L' (H). T
is Hilbert-Schmidt if T € L*(H).

LEMMA 1.7.6. If (e;)ics and (€;) jey are two orthonormal bases for H, and T € K(H),
then
YlTeil?> = Y |ITej|* € [0,e0].
icl jer

PROOF. First observe that from Parseval’s Identity,

YITell? = Y Teiep? = ) WenT e = Y [(T7ej el = Y[ Tl

icl i,jel i,jel i,jel icl

Next,

Ll = ¥ [(Fee) = Fl(e.T ) = ElIT°e = L 7e,

i€l icl,jeJ jel =

by Parseval again, and the first observation.
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COROLLARY 1.7.7. If S € K(H) is a compact operator on H and (e;);cj is any or-
thonormal basis for H, then S is Hilbert-Schmidt if and only if ¥;c;||Se;||> < oo, and in this

case
2
IS172 = Y lISeil.

iel

PROOF. Let S be compact and 7 = |S|. The previous Lemma implies that ¥;;|| Te;||?

is independent of the basis. In particular, we may assume (e;);c; consists of eigenvectors

for T. This yields that

Y| Teil* =) u,

il il
where y; is the eigenvalue corresponding to e;. These are the singular values of S. Therefore
Yietl|Teil|* = ||S|| »- Finally,

| Teil|* = (V'S*Sej\/S*Se;) = (S*Seje;) = ||Sei||*.

This proves the result.
O

Hilbert-Schmidt operators appear in geometric contexts, due to the following

PROPOSITION 1.7.8. Let k € L*(X x X), where (X,u) is a measure space. Then the
integral operator I is Hilbert-Schmidt and

||Ik||L2 = ||kHL2(Xxx)-

PROOF. Let (¢;);es be an orthonormal basis for L?(X). Then the functions e; ;(x,y) :=
ei(x)e;(y) form an orthonormal basis for x X). From a quick calculation, we have
(x)e; () f h 1 basis for L2(X x X). From a quick calculati h

<e[j,k> = <e[,1kej>.

KBy = Llfer k)P = Lo e ) P = Llie]?
L,] L] 1

from which the result follows from Corollary

Hence

We now discuss trace-class operators.

LEMMA 1.7.9. Let S € K(H) and (e;)ici an orthonormal basis for H. The sum
Y (ISleiei)
i

is independent of the orthonormal basis, and S is trace-class if and only Y ;{|S|e;, e;) < oo,

and in this case
ISH21 = Y {ISles.er).
i
We leave the proof to the reader, as it is similar to the corresponding statement for
Hilbert-Schmidt operators. Note that

Y (ISlei.e:) —Z< V/Sei, V/Sei) ZII\/ |S]ei]|?

i
so independence of this expression on the basis follows from the discussion of Hilbert-
Schmidt operators.

LEMMA 1.7.10. If S € K(H) then S is trace-class if and only if S is a product of two
Hilbert-Schmidt operators.
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PROOF. From the remarks before the Lemma, |S| is trace-class if and only if m
is Hilbert-Schmidt. In particular, if |S| is trace-class, then |S| is a product of two Hilbert-
Schmidt operators. Now write S trace-class in polar decomposition, then S = (U+/|S]) -
\/E expresses S as a product of two Hilbert-Schmidt operators.

Conversely, suppose first that S € X (H) and |S| = QT is a product of two Hilbert-
Schmidt operators. If (¢;);c; is an orthonormal basis then

(1.39) Y (|Sleiei) = Y (QTei.ei) = Y (Tei, Q%)

1 1 1

} !
< YT -0l < (anz) - <Z||Q*ei2>

by the Cauchy-Schwarz inequality (twice). Hence |S|, and S, are trace-class.

If we know that S = BC is a product of two Hilbert-Schmidt operators, write S = US|
in polar decomposition. Since UU*|S| = |S], it follows that |S| = U*S = (U*B)C. This
expresses |S| as a product of two Hilbert-Schmidts.

|

The following shows that the familiar recipe of summing the diagonal entries of a
matrix (taking the trace) extends to a well defined map on trace-class operators.

THEOREM 1.7.11. IfS € L'(H) and (e;)ic; is an orthonormal basis of H then
Z|<Se,-,e,->| < oo,
i€l
The convergent sum
Trace(S) := Z(Sei,ei>
iel
is is independent of the choice of orthonormal basis.

PROOF. We can write S = Q*T as a product of two Hilbert-Schmidts. From defini-
tions and the Cauchy-Schwarz inequality

|Tei]]* + || Qeil?

|(Seis ei)| = [(Tei, Qei)| < [|Tei| - [|Qei| < >

We get
(71132 + 112122

| —

1
Yl(Serel < 5+ ¥ ITeil> +]|0e> =
I 1

proving absolute convergence of the series };(Se;, ;).
(]

From this discussion we see that if Q,T € £L?(H) then Q*T € L'(H) and Trace(Q*T)
is well defined . The functional Trace(Q*,T) is sesquilinear and Trace(Q*Q) = HQ||2L2
Thus, we obtain the following

COROLLARY 1.7.12. The complex vector space L*(H) is a Hilbert space with the
inner product
(Q,T) :=Trace(Q*T).

By Proposition and polarization we get:

PROPOSITION 1.7.13. Let (X,u) be a measure space, H = L*(X). Then the map
L>(X x X) — L2(H), k+ L, is a unitary isomorphism of Hilbert spaces.
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PROOF. By Proposmon I, € L2(H) if k € L*(X x X ), and Trace(I; I) = Hlk||2L2(H) =

||k||L2(X><X)' By polarization,

Trace(I 1) = (f.8)12(x xx)-

for any k,/ € L>(X x X). So the map k — I is a Hilbert space isometry. We leave it as an
exercise to verify it has dense range. Hence it is a unitary isomorphism.
(]

We conclude this discussion with an important result in connection with index theory.
We sketch the proof, as it requires a bit of familiarity with manifolds; the case where the
manifold is the circle can be handled directly and is left as an exercise below.

THEOREM 1.7.14. Suppose that X is a compact Riemannian manifold and u a Borel
probability measure on X. Suppose that k € C*(X x X) is a smooth kernel. Then I is
trace-class, and

Trace(ly) = /X k(o x)du(x).

PROOF. We start with some observations about integral operators with continuous
kernels. Let H = L?(X). If k; and k; are continous kernels, then their convolution

(ki # ko) (x,y) = /X ki (x,2)k2 (2, %) dua(2)

is a continuous kernel as well, and Iy, Iy, = I, «, as Hilbert-Schmidt operators on H. Simi-
larly, a simple computation shows that *(x,y) = k(y,x) is a continuous kernel and [+ = I;.

Now the operator I,:‘l Iy, = IkT k,» Tor a pair of continuous kernels k;, is trace-class, since
it is a product of Hilbert-Schmidts. We have, using Proposition [I.7.13]

(140) Trace([,fllkz) = <Ik17lk2>L2(H) = <k1’k2>L2(X><X)
= [ D) k() du(x)du() = [ ( /. ki‘(w)kz(y,x)du(y)) du(x)

XxX
_ / (ks ka ) (2, x)da(x)
X

Now choose k € C*(X x X). Let A be the Laplacian on X, which we may consider as a
densely defined unbounded operator on L?(X) with domain C**(X). From Sobolev theory,
(14 A)~¢ = Iy for a suitable continuous kernel k, for d sufficiently large relative to dimX.
On the other hand, the composite densely defined operator on C*(X) given by (14 A)?I;
is an integral operator with smooth kernel k2 (x,y) = ((1+ A)%k)(x,y). We thus get that
ki * ky = k. We can factorize

L= (14+A)"9 (1+A),.

into a product of two integrals operators with continuous kernels and from the above dis-
cussion.

Trace(l) = /(kl * ky ) (x,x)du(x) /k x,x)du(x)

proving the result.

The formula
Trace(ly) = / k(0,8) do
T
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for suitable k € C*(T x T), will play a key role in connection with the Toeplitz Index
Theorem discussed below.

EXERCISE 1.7.15. Let G be a compact Lie group (such as G = T) equipped with
normalized Haar measure, and f € C*(G) be a smooth function, A(f) convolution by f,
Mf) € K (L*(G)). Deduce from Theorem [1.7.14|that A(f) is trace-class and

Trace (A(f)) = f(e),

where e € G is the identity element.

See Corollary[2.2.8|for more information about the spectrum of a compact operator. It
is based on the (holomorphic) functional calculus developed in Chapter 2]

8. The Toeplitz algebra

The Toeplitz algebra is an important C*-algebra connected with analytic function the-
ory in the disk. It eventually will be shown to play a big role in K-theory and the Index
Theorem.

Let H = L?(T), with its standard orthonormal basis {z"},cz of characters, u nor-
malised Lebesgue measure on T.

The Szego projection (or Toeplitz projection) Py € B(H) is the orthogonal projection
onto the closed subspace H? := span{z" | n > 0} = [*(N) of H. Explicitly:

(1.41) (Prf)(z) = io( /T Fw)w'du(w)) -2".

The sum is a convergent series of vectors in L?(T) for every f € L*(T).

DEFINITION 1.8.1. If f € C(T), the Toeplitz operator with symbol f is by definition
the operator Ty := P M acting on the subspace H? C L*(T).

The C*-algebra generated by the Toeplitz operators on H? is called the Toeplitz alge-
bra and will be denoted 7.

Operators in ‘T will be called pseudo-Toeplitz operators.

Using the standard orthonormal basis 1,z,72,... for H2, we can expand a Toeplitz
operator Ty into an infinite matrix, its Fourier transform as an operator. The m, nth entry is
by definition

(Trenem) = (P (f2").2") = Y, Fk)("E.2") = f(n—m).

k>—m
Thus,
FO) f=1) f(-2)
R fy o) =1 f(-2)
(1.42) Tr=17@ Jju)  f0O) j=1)
' 7 )

so that along the various diagonals of the matrix, we see the values of f; the negative values
appear above the diagonal and the positive ones below.
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Note also that if f € C|z,Z] then YA} has only finitely many diagonals, that is, the support
of ff is contained in a neighbourhood of the diagonal: there exists a constant C > 0 such
that R

(Tf)am #0= [n—m| <C.
(Such matrices are said to have finite propagation).
For example, YA} = S the shift, S(e,) = e,+1,n=0,1,2,...

0 0 o ]
1 0 0 0
S=1l0o 1 0 o0
0 1 0

i 1 |

EXERCISE 1.8.2. If § is the shift on />N then prove that
a) S is an isometry [*(N) — [?(N), that is, $*S = 1. Furthermore, 1 —SS* = P,
where Py is orthogonal projection to Ce.
b) 1-8"(s")* = Z;(l) Py, with Py the rank-one projection onto Cey.
c) SiPo(Sj)* =E;jforalli,j€ N, where E;  is the rank-one operator whose matrix
has a 1 in the i, jth spot and zeros everywhere else

Exercise ¢) implies that the C*-algebra generated by S, and hence the Toeplitz
algebra, contains all operators on />(N) whose matrix representations contain only finitely
many nonzero entries. Hence:

PROPOSITION 1.8.3. The Toeplitz algebra T contains K(H?) as a norm closed ideal
closed under adjoint.

PROOF. The *-algebra of operators on H? whose matrices with respect to the stan-
dard basis have only finitely many entries, are dense in K(Lz(’]l‘)) , by Exercise , and
Lemma Since 7 is closed in the operator norm topology, 7 contains X as claimed.

]

We next observe that the Toeplitz algebra is actually generated by a single operator.
PROPOSITION 1.8.4. The Toeplitz algebra is generated as a C*-algebra by S :=T,.

PROOF. First note that C*(S) contains all Toeplitz operators Ty where f € C|z,Z]. For
example, if f(z) = 2Z+ 1+ 3z+ 4z then

1 2 00
31 20

(1.43) =14 3 1 2 = 28" +1+35445%
0 4 31

Furthermore, since Ty = Py M|y, itis clear that ||T¢|| < ||Mf|| = || f||, soif f, € C[z,Z]
is a uniformly convergent sequence, converging to f € C(T), then Ty, — T.

Consequently C*(S) contains all 7;’s with f € C(T), and hence it contains the gener-
ators of 7. So it contains 7. Obviously C*(S) C 7 since S € 7. Hence C*(S) =T as
claimed.
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EXERCISE 1.8.5. Prove the following.

a) If T is a Toeplitz operator then 7 TT, = T. What about the converse?

b) Show that Ty Toeplitz implies 7 is Toeplitz, and that 7 = Ty-.

c) LetA: T — U(Lz(T)) be the regular representation. It leaves the Hardy space
H? invariant so we will consider for the moment A as a representation of T on
H?. Show that A(w)*T,A(w) = wT, for any w € T. What does this say about the
spectrum of 7; as a subset of the complex plane?

d) Prove that if m: T — U(H) is a finite-dimensional representation of T and T €
B(H) such that ©(z)Tn(z)* = zT for all z € T, then the spectrum of T is {0}.
Then give an example of an operator 7 on C? and a unitary representation of T
on C? such that ©(z)T7(z)* = zT for all z € T, but T is not the zero operator.

The previous exercise shows that the Toeplitz algebra 7 carries an action of the group
T as C*-algebra automorphisms: the automorphism of 7" corresponding to z € T is given
by o (T) := Mz)TA(2)*.

Commutators play an important role in Noncommutative Geometry. If P, is the Szegd
projection, considered as projection to /?(N) inside /?(Z), by multiplication by the char-
acteristic function of the natural numbers, A the regular representation of Z, then the com-
mutator [Py, A(n)] = P+ A(n) — A(n)Py for n > 0is given by

[Xfo.e)> Mm)] = A1) - X -n.0)-
where )[_, ) is the operator of multiplication by the corresponding interval. In particular
the commutator has finite rank.
Taking Fourier transform we see that [P,,M] € B(LT)) has finite rank for f € C[z,Z],
and in particular [Py, M| is compact for f € Cz,Z], and hence, by density of C|z,Z] in C(T)
and the norm continuity of the commutator operation that

LEMMA 1.8.6. If f € C(T), then the commutator [My,P. ] is compact.
COROLLARY 1.8.7. If Ty and T, are two Toeplitz operators, then
TyTy —Tyg
is a compact operator.

PROOF. Now, let Ty and T, be two Toeplitz operators. Then as operators on H?,

(144) TfT - P+MfP+Mg == P+Mf(Mg + [P+,Mg]) = ng + P+Mf[P+,Mg],
By Lemma|1.8.6, Py M [P, ,M,] is a compact operator. |

In particular, up to ‘compact operator’ error, the Toeplitz algebra is commutative. We
will show shortly that the C*-algebra quotient 7 / X is isomorphic to C(T).

THEOREM 1.8.8. The Toeplitz algebra contains K(LZ(’]I‘)) as a closed *-subalgebra
and an ideal. Furthermore,

a) The equalities
dist(7y, K) = inf{||Ty — S| | S € K(L*(T))} = I T¢]| = [If ey

hold for any f € C(T).
b) Every pseudo-Toeplitz operator T € I can be written uniquely in the form T =
Ty + S where f € C(T) and S € K.
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¢) If T/X is given the quotient norm ||T + K|| := dist(T, X)), and quotient *-
algebra structure, then T | K is a C*-algebra, and, moreover, it is isomorphic to

C(T), by the map q: C(T) - T/ X,
q(f) = Tf mod X.

If T = T7 + S is a pseudo-Toeplitz operator, then we call f the symbol of T. That the
symbol is uniquely defined is a consequence of the work done above.

PROOF. Statement a) is Proposition
Consider the matrix

a a_1 |ad—p d4d-j3
aj ap a1 4ad-p
ar aq a a1 da-p
..as ar aq a a_q
ay aj ap

(1.45) Ty =

of a Toeplitz operator 7. We have indicated a partition of the matrix. For each n let P, be

projection to the closed span of e;,,e,+1,.... Truncating the matrix as shown to the bottom
right hand corner amounts to replacing Ty by P,TyP>, which has matrix
o 0|0 O
0o 00 O
o 0 0 apg d—1 d-p
(1.46) P TP, = 0 0 |a a5 a
a ap ao

It is obvious from looking at the two corresponding matrices, that Ty and P,T¢P; have
the same operator norm. Thus, we prove inductively the interesting fact that truncation is
isometric when applied to Toeplitz operators:

(1.47) |P. TPy = ||Tf||, n=0,1,....

Now let S be a finitely supported matrix. Then its truncations P,SP, are zero for n

large enough, and hence
IS = T¢ll = [1Pa(S = Tp) Pull = [P Ty Pall = | Tl-

This shows that

dist(Ty, F) > || T¢||
where F is the *-algebra of operators with matrices of finite support. Since F is dense in
K, it follows that

dist(Ty, K) > || T¢{]-
On the other hand, dist(T¢, K) < ||T¢|| is clear. So

dist(Ty, K) = || T¢ll.

It remains to prove that ||Ty|| = || f||. Clearly ||T¢|| < || f|. If € > 0 and f € C|[z,Z]
then since ||f|| = ||M||, there exists v € C[z,Z] C L*(S") such that ||Myv|| > || f|| — € and
|Ivll = 1. Since Myv € Clz,Z], M!Mysv € C[z] for n large enough, and My and the uni-
tary M, commute so we may argue so || Ty|| > ||[TrM?v|| = |PLMMv|| = |PLMIMsv|| =
[Z"Mpvl| = [|Mgv]| = || ]| — & Hence [|Ty|| = || f|| for f & C[z,2] and so || /]| = ||T¢|. Tt
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follows that the map ¢: C(T) — 7 /K is isometric on the dense subset C|z,Z] and hence
extends to an isometry of normed spaces.
In particular 7'/ X is a C*-algebra isomorphic to C(T).
O

Using the above result, we can show that the Toeplitz algebra strong and rather re-
markable uniqueness property.

THEOREM 1.8.9. (Coburn’s Theorem) If W is any non-unitary isometry of a Hilbert
space, then there is a unique C*-algebra isomorphism T — C*(W) mapping Sto W.

In particular, any two C*-algebras generated by non-unitary isometries are canoni-
cally isomorphic.

REMARK 1.8.10. If the caveat non-unitary is dropped in the statement, then the the-
orem obviously fails, since the unitary 1 € C generates the C*-algebra C and the unitary

1 0
[0 _1] generates CH C.

PROOF. Note that W and all its positive powers have closed range, since they are
isometries. So H D W(H) D W2(H) D --- is an infinite descending chain of closed sub-
spaces of H.

Define Hy=H oW (H), Hy := W (H)©W?(H), and so on, H, | = H,©W (H,). Then
Hy,H,,... are pairwise orthogonal subspaces of H and W maps H; isometrically onto H;, 1.
Set H,, = D:ZOW]‘ (H), this is a closed subspace of H, and H decomposes orthogonally as
a direct sum

H=&,H, & He.

The isometry W leaves each summand invariant, and is unitary on H..; denote by U : H., —
H., this unitary, and W’ the restriction of W to &, H,,.

Let E be any orthonormal basis for Hy. Then W’(E) is an orthonormal basis for Hj,
(W')2(‘E) is an orthonormal basis for H,, and so on. So we obtain an orthonormal basis
Ui S"(E) for &,H. With respect to this orthonormal basis, W’ has the block matrix
representation

S ~ O ©
~ o o o
S o o O

0
1
W = 0
0

Each [ is the identity matrix of size dim(Hy). If Hp is 1-dimensional, this shows that W’
is unitarily conjugate to the unilateral shift S, and then certainly C*(S) and C*(W') are
isomorphic. In general, if n = dim(Hy), W' is unitarily conjugate to the direct sum ;S of
a certain number n of coples of the unilateral shift (where n = oo is possible.) We define
the required isomorphism
C () =C (@)

between the C*-algebras generated by S and the direct sum of any number of copies &®;S of
S, mapping S to @;S, by mapping an arbitrary element of the Toeplitz algebra T, say Ty + S,
to the corresponding direct sum ;T + S. It is clear that this is a C*-algebra isomorphism
between C*(S) and C*(®;S). Therefore, C*(S) and C*(W’) are isomorphic, as required.
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If the unitary U is non-trivial, we need to use simple spectral theory — as we have not
yet developed the Spectral Theorem, we refer the reader to Exercise ?? for the additional

argument.
O

EXERCISE 1.8.11. Let P, be projection to the closed span of e,, e, 1,... in I>(N), as
in the proof of Theorem Prove that lim,, ;|| P,S|| = O for any compact operator S.

EXERCISE 1.8.12. (Cuntz algebras). Given any two intervals [a,b], [c,d] of R there is
a canonical affine map
b—a Vet ad —bc
X s
d—c d—c
from [c,d] to [a,b], with constant positive derivative ¢’ (x) = %. We define a linear oper-
ator

0(x) = (

s: L([a,b]) = L([e.d]), (s8)(x) = VO (x) §(0() =1/ 5— - &(0(x)).

a Hilbert space map between the two corresponding L-spaces.

a) sis an isometry.

b) Now divide the unit interval [0,1] into n subintervals I, ...I; of equal length,
and we regard L?(I;) as a closed subspace of L*([0,1]) in the obvious way by
extending functions by zero. Let

se: L2([0,1]) = L2(I,) — L*(]0,1]).

be the composition, the first being one of the interval isometries described above,
and the second map the inclusion.

Prove that si,...,5¢ € B(L*([0,1]) are isometries with orthogonal ranges,
compute the range projections s;s7, as Hilbert space projections on L?([0,1]),
and verify that

n
Y sisf=1.

i=1
The C*-algebra generated by s1,...,s, is the Cuntz algebra O, (see [56]].) A
more general, but similar class of algebras related to topological Markov chains

is discussed in Exercise|1.11.13] see [59].

REMARK 1.8.13. The Cuntz algebra O, turns out to be structurally unique in the

sense of Coburn’s Theorem: any two C*-algebras generated by n isometries s1,. .. ,S,, and
11, .. ty, with orthogonal ranges summing to the identity, are isomorphic by a map sending
S; to t;.

EXERCISE 1.8.14. Letsy,...,s, be isometries of a Hilbert space H such that Y| s;s7 =
1.

a) Prove that the s; have orthogonal ranges.

b) Prove that the linear span of the elements s,'sj, i,j=1,2,...n form a *-algebra
isomorphic to M, (C).

c) What about the *-algebra (or C*-algebra) generated by s;s ;5757 ?
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9. The Toeplitz Trace Theorem

The connection between the Toeplitz algebra and analytic function theory leads to an
interesting identity which we will identify in the next section as an Index Theorem.

EXERCISE 1.9.1. Use the Cauchy-Schwarz inequality to prove that if f € H? with
Fourier series f = Y, a,z" € H2, then for each z € I, the power series f(z) := Yoo anZ"
converges absolutely and

1/ 2

If2)] < T

Deduce that £ is analytic in ID.

Let f € H?, with Fourier series Y'>_a,7". By Exercise the function Y7 a,2" is
a power series defining an analytic function f in D.

EXERCISE 1.9.2. Show that the map f ~ f(z) defines a continuous linear functional
H? — C for each z € D and deduce by the Riesz Representation Theorem that there exist
k. € H? such that

f(Z) = <stf>,

the inner product in H?. Show that

is the required vector.

The function

k(z,w) :

I
Ry
—~

=
S~—"
I

is called the Szegd kernel, and we have
. f(w)
1.48 = | —2d ,
(1.48) f(2) /qu—Wz u(w)

with u normalized Lebesgue measure. The integral converges absolutely for f € H> and
|z| < 1. Notice that we may identify the integral (T.48)) with the contour integral

1
. W)
2 JTw—2

over the unit circle oriented counter-clockwise. Therefore, by the Cauchy Theorem, if f

{_(VQZ du(w) = f(z), giving another point of view on

extends analytically to the disk then |},
(1.48).

EXERCISE 1.9.3. Use Residue Theorem to prove that

I
% 4 dw=0
TW—2

if n < 0. (Hint. The Residue Theorem equates the integral with the sum of the residues of
the meromorphic function g(w) = W”—fz For any n € Z, one of these poles happens at w = z
with residue 7. If n < 0 there is a pole at w = 0; check that the residue there is —z".)

The discussion shows that the Szegd projection has the following alternative geomet-
ric meaning. If f € Lz(']I‘) is in a suitable (dense) class of functions (e.g. trigonometric
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polynomials), then P, f € H? is the boundary value of the analytic function in the disk
given by

= — dw.
2ni Jtw—z

By ‘boundary value’ we refer to the continuous function on T

2 lim Lf(Z).
7=z, |7|<1

EXERCISE 1.9.4. Let X be a compact Hausdorff space with a probability measure u
onit, let f € C(X) and k € L*(X x X), I the integral operator

(1)(0) = [ K)vO)du(y)

with kernel k. Let My be the multiplication operator (Mv)(x) = f(x)v(x). Show that the
commutator [M,[;] is the integral operator with kernel kf(x,y) = (f(x) — f(v)) - k(x,y).

The previous exercise suggests a more geometric way of understanding commutators
with the Szego projection.

We have noted above that for f in a suitable class of functions on the circle, e.g. for
f € Clz,Z], then

Pif(x)= lim (Lf)().

7=z |Z]<1

where for |z] < 1,
1)@ = [ auto).

Using this formula, it is immediate that the commutator [M, P | is given by

(y.pe) =, tim [ LEIZE ) duo,
at least for f,v € Cl[z,Z]. This equals

i oo (2220 ) vt o,

7=z, |7]<1 w—z

Consider the function
kf(z,w) =w- (

defined initially on the complement of the diagonal z =w in T x T. If the complex deriv-
ative f’(z) exists everywhere on T (for example if f € C|z,Z]) then we can define k7 along
the diagonal by

1)1,

w—2z

_..9f
kf(z,z) :=z- %

and this will give a continuous extension of k¢ to T x T for which we may write

My PoJv(E) = [ ky(ew)vio)du(),

realizing the operator commutator as an integral operator with continuous (whence L?)
kernel and hence a compact operator.
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Actually, z- %—é only depends on the angular differentiability of f. To see this, write

as a function of 8 with z = ¢, we have

of oy _ . S(®) = f(1%)
(1.49) aiz(e )= él_% o _ ¢i0+a))
) 0y _ i(6+o)
i <f(e )~ fle >> < o )
a—0 o 1 —¢e®
_ ie—ie . g%(eie)’
since limg—0 ;% = —i. Thus,

o Y Y
kf<616’616) — ez(-) . a7~;c(ez(3) =i. %(616)

In particular, k¢ is continuous on T x T if fis C ' on T, and the commutator [Py, f] is given

by the integral operator I,

PROPOSITION 1.9.5. If f € C=(T), define, in, polar coordinates 6, 0 onT,
(f(eie)_ﬂeie )) lfe#e/

010 _ i’
(1.50) kp(6,8') =
—i- 9 () ifo =6
Then kg is smooth on T x T, and hence the integral operator Iy, with kernel k is a trace-

class operator.
For such f, the commutator [Py, My| equals I,.

PROOF. We have proved above that [Py, M| = I, for f € Clz,z]. Under Fourier
transform, C*(T) is the space of sequences (ay),z of rapid decay: that is sup,.;|p(n) -
ay|. < oo for any polynomial p. Using this, if f smooth has Fourier series Y a,z" then the

partial sums f,,(z) = Yiki<n ay7* along with all of their derivatives f,sk), converge absolutely
and uniformly to f on T. It follows that ks, — ky uniformly on T x T, and hence kg, — k¢
in L?(T x T) and hence I; » — Ik, in operator norm. We get

[P M) = JEIJO[P%MJ%] = Lim I, = I,

as claimed, for any f € C*(T).
O

We now deduce a rather remarkable identity.

It is a basic but non-trivial result of topology that the fundamental group of the circle
is isomorphic to the group of integers. If ¢: T — T is a loop in the compact space T,
with @(1) = 1, then the integer corresponding to the class [y] € 7;(T) is called the winding
number of 7. It is an invariant of the homotopy-class of ¢ amongst maps T — T.

Intuitively, it is the number of times (possibly negative) it wraps the circle around
itself.

More generally, since T C C* is a deformation retract, for any non-vanishing continu-
ous function f: T — C* the composition

Ther LT
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defines an element of 7, (T) and we denote the corresponding integer by wind (0).

REMARK 1.9.6. If f € C'(T) then the winding number can be expressed as a contour
integral
1 dz
1.51 indr(0) = — ¢ —,
( ) Wmf() 2ni Jf oz
where in the formula, f is understood to be the closed curve, i.e. closed contour, [0, 27] 2P,

T i> C* in the complex plane. To be slightly more explicit, if we view f as a function of
the argument parameter 6 € [0, 2], then

de.

1 /20 (0
(1.52) wind(0) = 7 A J}((e;

Consider the bilinear functional C(T) x C(T) — C,

(p(f7g) = Trace(f[P+,g]).

where for brevity of notation we have written simply f in place of M.
A computation show that it has the anti-symmetry property ¢(f,g) = —¢(g, f):

(1.53)  o(f.g) = Trace(f[P+,g]) = Trace([Py,g] f) = Trace(Py fg — gP+.f)
= Trace (Ps fg —g(fP+ + P4, f]))
= Trace([Py., fg]) — Trace(g[Py., f])
= —Trace(g[Ps, f]) = —9(g. f)-

¢ is an example of a cyclic cocycle. What is remarkable, is that @(f,g) is an integer
when fg=1:

THEOREM 1.9.7. Let f € C*(T) be a non-vanishing smooth function on T. Then the
operator
Mz [P, My]
on L2(T) is trace-class, and
(1.54) Trace(M) /- [P+, M]) = wind ¢ (0).

PROOF. By Proposition [P+,My] is an integral operator with smooth kernel.
Hence g[Py,M¢] is also an integral operator with smooth kernel, for any smooth g. By
Theorem the trace of an integral operator on L*(T) with smooth kernel is the in-
tegral of the kernel along the diagonal, given in this case by —ig(8)f’(8). We obtain
therefore a geometric formula for the cyclic cocyle ¢:

(1.55) 0(s.) = Trace(M,[P:. 7)) = 5 [ (@) (0)ao.

O

We are going to interpret the invariant appearing in the Theorem in the next section as
a Fredholm index.
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10. Fredholm operators and the Calkin algebra

In our discussion of the Toeplitz algebra in the previous section, several important
points emerged. A primary one was that a (pseudo-)Toeplitz operator T', when considered
up to compact perturbation, is exactly equivalent to a continuous function on the circle, its
‘symbol.’

More precisely, the quotient Banach *-algebra 7 /%, with the quotient norm, is a
C*-algebra isomorphic to C(T) by the quotient map ¢ : C(T) = T/ X, f— Tr+ X.

The Toeplitz Index Theorem, a (very) special case of the Atiyah-Singer Index The-
orem, asserts the equality of two integer invariants of a pseudo-Toeplitz operator 7 with
non-vanishing symbol.

The first is the winding number of the symbol, discussed at the end of the previous
section. The second, called the Fredholm index, is analytic in nature: it is by definition the
difference in dimensions of the solutions spaces to the equations 7€ = 0 and to T* = 0.

It is not obvious that our assumption that the symbol is non-vanishing, implies that
these dimensions are even finite.

The Toeplitz Index Theorem represents, therefore, an interesting bridge between anal-
ysis, on the one hand, and topology, on the other.

The general framework of index theory is based on another C*-algebra quotient, called
the Calkin algebra.

By Corollary for any Hilbert space H, the C*-algebra X (H) of compact op-
erators on H is a closed *-ideal in B(H). By standard algebra, the quotient (vector space)
B(H)/X(H) is an algebra, under multiplication of cosets. Since X (H) is invariant under
adjoint, B(H)/ % (H) inherits an adjoint operation as well.

Also, if we give the quotient B(H)/ % (H) the quotient norm

IT + K| := dist(T, X) := inf{||T +S||;] S € K},
then we obtain a Banach *-algebra; this is a rather general fact, as the following Exercise

shows.

EXERCISE 1.10.1. Let A be a Banach algebra, and let / C A be an ideal which is also
a closed subspace of A) in the norm topology. Prove that the quotient vector space A/J
with its operation of multiplication of cosets, and the norm

|la+J| : dist(a,J)
is a Banach algebra. (Hint. See Lemma [3.4.10] for the proof. ) ,
When we consider the smaller quotient 7'/ %X in the previous section, we verified the
C*-identity for the quotient norm. Similar arguments prove that actually the C*-identity
holds for Q(H) :=B(H)/ X (H) as well, as we show.

Let ej,es,... be an orthonormal basis for H and P, be projection to the span of
€ns€ntlye. ..

LEMMA 1.10.2. IfT € B(H) then
dist(T, X) = lim ||TP,|| = lim || P, T
n—soo n—soo

The reader should compare to (1.47)); that is, we have already verified the Lemma for
Toeplitz operators T (indeed, it is obvious for them, since the sequence || Py T¢||, || P-T¢]|, . - .
was observed there to be constant.)
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PROOF. It is clear that dist(7, K) < ||T —T(1 — P,)|| = ||T Py, since 1 — P, is com-
pact. Since this is true for all n, we get

dist(T, ) < liminf ||TP,||.
n—oo
On the other hand, if S € K then
|TPu|| = [T Py + SPy — SPu|| = (T +S8)Py — SPu|| < [T + S| + [[SPa||

by the triangle equality and the fact that || P,|| = 1 for all n. Hence, since lim;_,o ||SP,|| =0
by Exercise|1.8.11] we get
limsup ||TP,|| < dist(T, X).

n—roo
Putting these two results together gives that lim,_,o||P,T|| = dist(T, X). Since this
is true for all T € B(H) and since ||T|| = ||T*|| for any bounded operator, it follows that
1My, || TPy || = dist (T, %) as well. O

COROLLARY 1.10.3. The Banach algebra Q(H) :=B(H)/K(H) endowed with the
quotient norm |T + K|| := dist(T, X) and adjoint (T + K)* :=T*+ X, is a C*-algebra.

The C*-algebra Q is called the Calkin algebra.
PROOF. The proposed norm satisfies the C*-identity because
(1.56)  dist(T, K)* = dist(T, K) - dist(T*, K) > dist(T*T, K) = lim ||T*TP,||
n—yoo
> lim | P, TT*P,|| = lim ||TP,||* = dist(T, K)>.
n—soo n—soo
where the first step uses the fact that Q is a Banach algebra with the distance norm. O

The Calkin algebra comes with a quotient map p: (B(H) to Q(H) It is a surjective
*-homomorphism with kernel X.

The construction of Toeplitz operators from f € C(T) determines a C*-algebra injec-
tion C(T) — Q;

PROPOSITION 1.10.4. The map
© C(T) = Q). <(f) :=mn(Tp),

is an injective, unital *-homomorphism.
In particular, if f € C(T) does not vanish anywhere on the circle, then Ty + X is an
invertible in the C*-algebra Q(H?).

PROOF. By the definitions, 7 is a C*-subalgebra of IB%(HZ), that is, there is an injective
*-homomorphism 7 — B(H?). This *-homomorphism maps the ideal % (H?) to itself,
and hence induces a C*-algebra homomorphism 7'/ X — B/ X, which is injective by the
definitions.

Now since C(T) — 7'/ K has already been shown to be a C*-algebra isomorphism in
Theorem[1.8.8]c), the result follows.

g

We have already noted that a Toeplitz operator 7y with f € C(T) not vanishing any-
where, is invertible when considered as an element of the Calkin C*-algebra Q (H?). That
is, Ty is ‘invertible mod compacts,” when f is non-vanishing. Operators which are invert-
ible mod compacts are called Fredholm operators.
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LEMMA 1.10.5. The following conditions are equivalent for a bounded operator
T: H — K between two Hilbert spaces, and such T is called Fredholm if it satisfies them.

1) There exist bounded operators Q,Q': K — H such that QT —idy and TQ' —idg
are finite rank operators.

2) There exist bounded operators Q,Q": K — H such that QT —idy and TQ' —idg
are compact operators.

3) The range of T is closed and ker(T) and coker(T) := K /ran(T) are each finite-
dimensional vector spaces.

If T is Fredholm, the index of T is defined to be
(1.57) Index(T) := dimker(T) — dim coker(T).

REMARK 1.10.6. Note that if T is Fredholm, then as T has closed range, coker(7T') :=
H/ran(T) = ran(T)* = ker(T*), so

(1.58) Index(T) = dimker(T) — dimker (7).
In particular, Index(T) = 0 for any self-adjoint Fredholm operator.

PROOF. Suppose T as as in 2).

Suppose Q, Q' are bounded such that QT — 1 and TQ’ — 1 are compact operators. Let
A:=QT —1,B=TQ — 1. Then the kernel of T is contained in the kernel of QT =1+ A,
which is the —1-eigenspace of A. But all eigenspaces of a compact operator corresponding
to nonzero eigenvalues are finite-dimensional (Exercise ?? a).) So the kernel of T is finite-
dimensional.

We show next that ran(T') is closed if it satisfies 2). Note that ran(QT) = ran(1+A)
is closed for A compact. The restriction of QT is a bijective bounded operator ker(QT )+ —
ran(QT) between Hilbert spaces, and hence (by the Open Mapping Theorem) there exists
C > 0 such that ||QTv|| > C||v|| for all v € ker(QT)*. We deduce

QI ITvll = Cllvll, ¥v € ker(QT)",

and it follows immediately that T (ker(QT)™) is closed. We get that
ran(T) = T (ker(QT)* ) +T (ker(QT))

is the sum of a closed subspace and a finite-dimensional subspace. Hence it is closed.
Finally, since ran(T) is closed, H /ran(T) = ran(T)* = ker(T*). Applying the above
argument using 7Q = 1 + B shows that this is finite-dimensional.
Assume 3). We prove 1). T restricts to a bounded bijective linear map ker(7)+ —
ran(T) between two Hilbert spaces, so there is a (unique) bounded linear map S: ran(7) —
ker(T)* such that ST = ider(ryL and TS = id, (7). We can extend S to K by setting it

equal to zero on ran(T)*. The extension is now a bounded linear map Q: K — H such
that QT is the identity operator on ker(T)*, and is zero on ker(7'). Thus, 1 — QT is the
orthogonal projection operator onto ker(7'), a finite-rank, operator. Similarly, 1 — TQ is
zero on ran(T') and the identity on ran(T)* so is orthogonal projection to ker(T*).

]

COROLLARY 1.10.7. A bounded operator T € B(H) is a Fredholm operator if and
only if its image n(T) € Q(H) := B(H)/XK(H) is invertible, where n: B(H) — Q(H) is
the quotient map to the Calkin algebra.
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PROOF. Let T be Fredholm. By Lemma[1.10.5] ©(T) € Q(H) is both left and right-
invertible. Hence it is invertible.

Conversely, if 7 has invertible image in the Calkin algebra, let S € B(H) such that
n(S) =n(T)~", i.e. let S be a pre-image of its inverse. Then ST — 1 and T'S — 1 are both
compact operators. So T is Fredholm. (]

It is immediate from Corollary [1.10.7| that the product of two Fredholm operators is
Fredholm and the adjoint of a Fredholm operator is Fredholm.

COROLLARY 1.10.8. If f € C(T), then the Toeplitz operator Ty € B(H?) is Fredholm.
In particular, Ty has closed range and dimker Ty and dimker T]i‘ are finite-dimensional.

This is immediate from Lemma|[1.10.5]
One can be a bit more precise: if f € C(T) is non-vanishing on the circle, then 77/ is

a parametrix for Ty, by (I.44).
The important general properties of the Fredholm index are listed in the following

Theorem.

THEOREM 1.10.9. Let H be a Hilbert space and Fred(H) denote the set of Fredholm
operators on H.
a) IfSandT are Fredholm on H then so is ST and T*, and Index (ST ) = Index(S) +
Index(T), while Index(T*) = —Index(T).
b) If T is Fredholm and S is a compact operator then Index(T + §) = Index(T).
c) The subspace Fred(H) C B(H) is a open.
d) The function Index: Fred(H) — Z is continuous.

REMARK 1.10.10. The theorem may be summarized by saying that the Fredholm
index induces a continuous group homomorphism

Index: GL(Q) — Z,

from the topological group of invertibles in the Calkin algebra, under multiplication, to the
group of integers under addition.

As the proof is somewhat technical, we relegate it to an Appendix at the end of the
chapter.

We now prove the Toeplitz index theorem, giving a Fredholm Index interpretation to
the invariant (1.54). The rather remarkable conclusion will be that the Fredholm index of
a Toeplitz operator T is the number of times the map f wraps the circle around itself.

LEMMA 1.10.11. Let T: H — K be a Fredholm operator between two (possibly dif-
ferent) Hilbert spaces. If Q is a bounded operator K — H such that 1 —TQ and 1 — QT are
each trace-class operators (such Q exists for any Fredholm operator, by Lemma [I.10.5)),
then

(1.59) Index(T) = Trace(1 — QT) — Trace(1 — TQ).

PROOF. We have already noted in the proof of Lemma [[.10.5] that if 7: H — K is
a Fredholm operator between two (possibly different) Hilbert spaces then there exists a
Fredholm operator G: K — H such that
(160) 1-GT = Plyerts 1-TG= prker(r*).

where pry,7 is the projection to the kernel of T, pry..(7+) projection to the cokernel of T'.
If Q = G then the statement regarding traces is obvious.
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Now suppose that Q € B(H) and 1 — QT and Q — TQ are finite rank. It follows that
T(Q—G) and (Q — G)T are each trace-class. We have, for A= Q — G,
(1.61) Trace(l —QT) — Trace(l — TQ) = Trace (1 — (G+A)T) — Trace (1 - T(G+A))
= Trace(l — GT) — Trace(AT ) — Trace(1 — T G) + Trace(TA)
= Trace(1 — GT) — Trace(1 — TG) = Index(T)
completing the proof.

O

The following is one of the most important basic examples of Noncommutative Ge-
ometry. The computation of the index by the trace is a special case of Connes’ Chern
character formula, discussed in ChapterE}

THEOREM 1.10.12. Let A be a unital C*-algebra and n: A — B(H) a unital repre-
sentation of A on a Hilbert space H. Let P € B(H) be a projection such that

[m(a), P| € K(H)

foralla € A.
Then if u € A is invertible, then T, := Pr(u)|py is a Fredholm operator on PH, and so
has an index Index(T,) € Z.

a) The map u — Index(T,) is constant on connected components of GL(A) :={u €
A | uinvertible}, an open subset of A with the subspace topology.
b) IfA™ C A is a dense *-subalgebra with the property that

[n(a),P] € L' (H)
Sorall a € A=, then every connected component of GL(A) intersects A, and
(1.62) Index(T;,) = Trace(u ' [u, P])
holds for all invertibles u € A™.

PROOF. We suppress the representation 7 to simplify notation, thus, writing a instead
of n(a).

That 7, is a Fredholm operator on PH for u invertible in A follows immediately from
the assumptions. We verify (1.62).

The bounded operator 7,,-1 := Pu~'P on PH provides an essential inverse. Hence

Index(T,) = Trace(1 — T,,1T,) — Trace(1 — T, T,-1),

by Lemmal|1.10.11] This identity involves traces of operators on PH. In terms of operators
on H, this can be written

Index(T},) = Trace(P — Pu~' PuP) — Trace(P — PuPu™").
Using the tracial property and the fact that P> = P we get
(1.63) Index(7,) = Trace (P(1 —u~'Pu)) — Trace (P(1 —uP™")).
We have
P—u'Pu=u"'(PuP—Pu)+P—u 'PuP
and this is a sum of two trace-class operators since uP = Pu modulo trace-class operators,
by hypothesis. Taking traces and using the tracial property gives

Trace(P — u~ ' Pu) = Trace(PuPu~' — P) + Trace (P-(1- u_lPu))
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which equals
Trace(P- (1 —u~ ' Pu) — Trace(P(1 — uPu~"))
which is (T.63). Hence Index(T,) = Trace(P — u~'Pu). Finally, note that
Trace(P —u ™' Pu) = Trace (u~ ' (uP — Pu)) = Trace(u™ ' [u, P])

giving (T62).
O

THEOREM 1.10.13. (The Toeplitz Index Theorem). Let f: T — C* be a non-vanishing
smooth function on the circle, Ty the corresponding Toeplitz operator. Then the Fredholm
index of Ty agrees with minus the topological winding number of f:

(1.64) Index(Ty) = —wind(0).
If f is smooth,
—1 r2m (9
Index(Ty) = i o J}((G)) de.

PROOF. InTheorem(1.10.12] put A = C(T) and A~ := C*(T), P= P, and n(f) = M.
The commutators [My, P, ] for f € C*(T) are integral operators with smooth kernels by
Lemma and hence are trace-class by Theorem [1.7.14] Finally, we apply Theorem
9.7

O

EXAMPLE 1.10.14. Let f(z) = z 73, then as a function of 8 € [0,27], £(8) = e~ 39,

j}l((g)) = —3i and wind,-3(0) = —3 by the formula (1.52].

On the other hand, in terms of the standard orthonormal basis 1,7,72,... for H2, T,
shifts sequences by 3 units to the left: 7, 5(zF) =22 if k >3, and 7, 3(F) = 0 if k <
3. Hence ker(?}fs) is the span of 1,z,72, it is 3-dimensional. And coker(?}s) =0 so
Index(7,-3) = 3 = —wind_-3(0).

EXERCISE 1.10.15. Prove that if f: T — T is not surjective, then wind(0) = 0.
Hence, for a non-surjective map T — T, the corresponding Toeplitz operator 7y has zero
index.

To conclude this section, the Toeplitz Index theorem expresses the Fredholm index of
a Toeplitz operator T = Ty € B(H?) in terms of a topological (homotopy) invariant of its
symbol f: T — C*, namely, its winding number.

In a similar way, the Atiyah-Singer Index Theorem, one of the main theorems de-
scribed in this book, computes the Fredholm index Index(D) of an elliptic differential
operator

D: C*(X,E) C L*(X,E) — L*(X,F),

with symbol 6, between spaces of smooth vector bundle sections, over a smooth, compact
manifold X, in terms of an appropriate topological invariant of its symbol — a kind of
generalized winding number. In fact, this invariant, which is of course is more complicated
than a winding number, since general manifolds have more complicated topology than the
circle, turns out to be be described extremely conveniently using K-theory.
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11. Inductive limits of C*-algebras

We start by discussing the category-theoretic idea of a direct limit. Let C be a category
and / a directed set: a set I equipped with a reflexive and transitive relation such that any
two elements of / have an upper bound in /.

A directed system of objects of C is a family {A; | i € I'} of objects of the category, and
a family of morphisms @;;: A; — A; for all i < j such that ¢;; = id,,, the identity morphism
A; — A;, for all i, and such that

QrjoQji =0, Vi<j<k

REMARK 1.11.1. If the directed set is just the natural numbers 1,2, ... with its usual
ordering, then the directed system is often written simply in the form

Ay & A &>—> s
with @,: A, — A, the maps between the adjacent objects of the system.

DEFINITION 1.11.2. A direct limit of a directed system {A; |i € I},{@;i: A; > A;|i<
j} in a category C is an object A of C together with a family @;: A; — A of morphisms,
that satisfies the following universal property.

If B is any object of C and {y;: A; — B |i € I} is a family of morphisms which is
coherent in the sense that ;o @;; = ; for all i < j, then there is a unique morphism
Vy: A — Bsuchthat yo@; =vy; foralliel.

In general, direct limits may or may not exist in a category. In many familiar cate-
gories, however, like the categories of groups, rings, modules over a ring, and so on, they
exist and are defined by a construction similar to the case of groups, which we explain first.

Let {G;|i€I},{9;;|i< j} beadirected family of groups. On the disjoint union LIG;
let ~ be the equivalence relation generated by g; ~ ¢;i(g;) if i < j. Thus, if g € G;, we
identify g with any of its images ¢;i(g) € G,.

We endow LIG;/ ~ with the following group operation: if g € G; and h € G| then
choose any k > i, j, push g and 4 into the same Gy using the structure maps @; and @;
respectively, and multiply them in Gy. Thus, if [g] denotes the equivalence class of g € G;
in UG;/ ~, and similarly for A, then [g] - [h] := [@xi(g)@x;(h)]. This is easily seen to be a
group operation.

The morphisms @;: G; — liﬂGi are the evident maps; G; embeds firstly into the dis-
joint union, as a set, and then by the quotient map into the direct limit, and this is clearly a
group homomorphism. We leave it to the reader to check the universal property.

The following exercise gives practise in dealing with inductive limits (of abelian groups).
These examples appear later as Ko-groups of certain inductive limit C*-algebras.

EXAMPLE 1.11.3. With the usual ordering on the natural numbers, making it a di-
rected set, for n < m, let ¢,,, : Z — Z be the group homomorphism of multiplication by
2m=n,

The corresponding direct limit G of groups is Z[%] the subgroup of Z generated by Z
and the numbers 2% ceQ,n=12,....

To see this, note that a typical element of the inductive limit is the equivalence class
[(n,m)] of a pair (n,m). The equivalence relation is that (n,m) ~ (n+ k,28m) for k =
1,2,.... The group operation at the level of pairs is

[(n,m)] 4+ [(r,8)] ;== [(n+r,2"m+2"s)].
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The map ¢: lim7Z — Z[%} by
m
o([(mm))) == .
is a well defined group isomorphism.
The same works for any positive integer d, not just d = 2.

EXERCISE 1.11.4. Let N be made into a directed set by letting n < m if n|m.

For each n|m let @, : Z — Z be the group homomorphism of multiplication by %! (an
integer).

Show that limZ = Q. Hint. We denote elements of the direct limit as classes [(n,m)]
of pairs (n,m) € N x Z of integers, where the equivalence relation is that (n,m) ~ (nk,mk).
Identify [(n,m)] with the fraction 2.

PROPOSITION 1.11.5. Direct limits exist in the category of C*-algebras and C*-
algebra homomorphisms.

For the proof, which we will give only in the situation where the structure maps @;; of
the system are injective, we will need the following Lemma; the (easy) result is the content
of Corollary [2.1.18| of Chapter 3 and we refer the interested reader to the proof presented
there.

LEMMA 1.11.6. If A and B are C*-algebras and ©: A — B is a *-homomorphism,
then @ is norm contractive:
, VaeA.

lo(a)ll < la

If @ is injective, then it is isometric.
lo(a)|| = llall, Vae€A.

PROOF. (Of Proposition [I.TT.5). We will assume for simplicity that the structure
maps @¢;;: A; — A; are all injective. See Example@]for the general case.

As in the example of a direct limit of groups, we start by defining the algebra direct
limit as 4 := LIA;/ ~ where ~ is the equivalence relation generated by identifying a € A;
with @ji(a;) € A; for any i < j. Note that this results in the zero elements 0 € A; all
being identified (similarly the identity elements of the groups G; are all identified in the
construction of the direct limit of groups). Let ¢;: A; — A4 be the evident maps of A; into
A.

As in the case of groups, we endow A4 with the structure of a *-algebra. If we wish to
multiply @ € A; and b € A; (or more precisely, if we want to multiply @;(a) and @;(b) in
A, we we instead choose k > i, j and define the product to be the class in 4 of

@i (9i(a)) - @u; ((9(5))-

Similarly, we define the sum of two elements. The adjoint may be defined in the obvious
way. We obtain a *-algebra 4. If a € A;, we set ||@;(a)|| := limj_,o||@;i(a)||. The limit
exists because it is a decreasing net of positive real numbers, because *-homomorphisms
are automatically contractive, by Lemma Now, if the ¢;; are all injective, then by
the same Lemma, they are isometric, and the norm defined above on A4 is actually a norm.
In this case we can limA; to be the completion of A4 with respect to this norm. It is easy to
see that this results in a C*-algebra.

In the general case (if the @;; are not all injective), we obtain a pre-C*-algebra (4, ||-||)
in the sense of Definition of Chapter 3, and we define li_n}Ai to be its completion in
the sense of completions of pre-C*-algebras as discussed in Chapter 3. We will be largely
focusing on examples where the structure maps are all injective.
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We leave it as an exercise to check the universal property. O

EXERCISE 1.11.7. Show that if the structure maps @;;: A; — A;, i > j of a directed
system are all injective, then the induced inclusions @;: A; — lingA,' into the direct limit,
are also injective, so that case li_n;A,- is effectively the closure of the union of the A;’s in
this case.

EXAMPLE 1.11.8. Infinite direct sums @®;c;A; of a family {A;};c; of C*-algebras, are
inductive limits of finite direct sums.

Indeed, let F be the directed set of finite subsets of / under inclusion. If F € F,
let Ap := ®icrA;. If F| < F, there is an associated injective C*-algebra homomorphism
Op,.F . Af, — AF, by adding zeros to an Fi-tuple until one gets an F>-tuple. We obtain a
directed system of C*-algebras.

For each finite subset F, let Yr: Ar — B := ®;c;A; be the map which adds zeros to
an F-tuple to get an /-tuple. Evidently if F1 < F; then Y, 0 Qp, ;, = Y, sO we obtain a
*-homomorphism

imAr — SicrA.
Thus, we recover infinite direct sums by combining inductive limits and finite sums.

EXAMPLE 1.11.9. There is a natural C*-algebraic analogue of the inductive system
of Example[I.T1.3] The directed system is N with its usual ordering.

For n = 1,2,... we set A, := My (C). If m > n, the map @y ,: M (C) — M (C)
places 2" copies of a matrix A € M. (C) along the diagonal, to make a matrix in Mo (C).

For example,

1 200
( 1 2 )= 3400
P2tz 4710 0 1 2
0 0 3 4
The inductive limit is a special kind, called a UHF algebra, and this particular one is

usually denoted U (2%) in the literature.

EXAMPLE 1.11.10. The inductive system of groups of [[.T1.4]also has a kind of C*-
algebraic analogue. Here the directed system is the natural numbers with the relation n < m
if and only if n|m.

If A is a k-by-k matrix then we can place / copies of A along the diagonal of a kl-by-kl
matrix

A
A
Quik(A) =

A

This procedure define a *-homomorphism @y ;: M;(C) — My (C); put otherwise, if
n and m are positive integers and n|m, then by the procedure just explained we obtain a
canonical unital *-homomorphism M, (C) — M,,(C).

We set

N = hﬂMn«C)

to be the corresponding direct limit.
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EXAMPLE 1.11.11. The Bunce-Deddens algebra is defined by the following inductive
system. For each natural number 7 let ¢y1.1,,: C(S',M2:(C)) — C(S',Myn41(C)) be the *-

2
homomorphism ¢, ,(f)(z) := [f () 0 } . The Bunce-Deddens algebra By~ is then

0 f&)
defined by
By= :=1imC(S', M2 (C)).
One similarly can define By~ for any natural number d.

EXERCISE 1.11.12. Let X be a locally compact Hausdorff topological space. Let U
be the directed set of all pre-compact open subsets of X, under the inclusion relation.

IfU CV and f € Cy(U), then by extending f to zero on V \ U, we obtain a continuous
function @y 7 (f) € Co(V). Check that this describes an inductive system {@y y: Co(U) —
Co(V) | U C V}, and prove that the associated direct limit satisfies Cp(X) = 1i_n>1Co(U ).

EXERCISE 1.11.13. An important example of a C*-algebra connected to topological
dynamics (of topological Markov chains) is the Cuntz-Krieger algebra associated to an n-
by-n matrix A of 0’s and 1’s. Such a matrix can be interpreted as the adjacency matrix of a
directed graph on n vertices, with an edge from vertex i to vertex j iff A;; = 1.

The Cuntz-Krieger algebra O,4 is the C*-algebra generated by n partial isometries
S1,...,8, and satisfying

n
s; 8= ZA,jsjsj.
j=1

If A is a primitive matrix, then O4 is uniquely defined in this way, and is simple. Cuntz-
Krieger algebras were invented by J. Cuntz and W. Krieger [59]. If u= (i1,...,i) is a word
in {1,...,n} let s, :=s;, ---s;,. Prove that the subalgebra of O, generated by the elements
susy with u and v words of equal length, is an inductive limit of finite-dimensional C*-
algebras.

12. Crossed product C*-algebras

In dynamical systems, one is generally interested in the long-term, or asymptotic prop-
erties of a group action, such as, for instance, the action of the group of integers induced
by a single homeomorphism @: X — X of (usually) a compact space.

We might be interested, for example, in the case of such an integer action, in the orbit
of a single point: how the orbit {¢"(x)},cz wanders around the space.

One might also be interested in parameterizing the set of all the orbits. In fact, this
set, the quotient of X by the equivalence relation x ~ y if y = ¢"(x) for some n € Z, has
a natural topology: the quotient topology. One might therefore hope that one could study
the space of orbits, and acquire information about the dynamics or geometry by computing
the standard invariants of algebraic topology of this space.

However, as the following example shows, in examples which are interesting from a
dynamical systems point of view, the quotient space of a space by an interesting action, is
rarely any good as a topological space.

EXAMPLE 1.12.1. Let o = ¢*™® ¢ T with 6 irrational and let Rg: T — T be group
multiplication by ® (in other words, rotation by the angle 6.) Then every orbit of Ry is
dense in T, and the quotient topology on the quotient space Z\T is trivial. This is because
there are no nonempty proper open subsets of T invariant under Rg.

The crossed-product construction makes a C*-algebra which is a substitute in a certain
sense for the (C*-algebra of continuous functions on the) space of orbits of the action, but
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which is noncommutative. This crossed-product C*-algebra, carries a great amount of
interesting information about the action — unlike, in general, the quotient space. The C*-
algebra C(Z\T) of continuous functions on the quotient space of Example with
the quotient topology, is simply isomorphic to C, the constant functions on Z\T. But the
C*-algebraic crossed-product C(T) xg Z associated to the action of the integers generated
by group translation by 0, called the irrational rotation algebra is an extremely interesting,
noncommutative C*-algebra, containing a great deal of fine geometric information about
arithmetic properties of 6 € R/Z, and the dynamics of the action.

Let G be a (countable) discrete group.

An action of G on a locally compact Hausdorff space X is a group homomorphism
G — Homeo(X) of G into the group of homeomorphisms of X. We say that X is a G-
space.

If G acts on X, then G acts by C*-algebra automorphisms of the C*-algebra Cy(X) by
f+ fog™!. More generally, a group action on a C*-algebra A is a group homomorphism
G — Aut(A), where Aut(A) is the group of *-automorphisms of A.

We call A a G-C*-algebra.

DEFINITION 1.12.2. Let G be a discrete group and A be a G-C*-algebra. The twisted
group algebra A[G] is the vector space C.(G,A) of finitely supported functions from G to
A, with multiplication and involution defined as follows.

We write an element of C.(G,A) in the form Y, ag[g], with a, € A being the value
of the function at g, and where it is to be understood that a, = 0 for all but finitely many
g € G. With this convenient notation, we equip C.(G,A) with an algebra multiplication
and an involution:

(165 (Y aglg) * (Y belg]) Zaggbh [ghl, (Y aglel) ==Y ¢ '(ap)lg™]

geG geG geG gcG

EXERCISE 1.12.3. If A = C, then A[G] with twisted convolution is the same as the
group algebra C[G] with convolution, as in (I.17). In particular, C[G] is a *-subalgebra of
A[G] if A is unital.

The algebra multiplication is a kind of twisted version of the convolution oper-
ation on scalar-valued functlons on groups. It can be re-written

(1.66) (fixf)(g) =Y. i [f2(h""g)]. fi.fo € Cc(G.A).

heG

We generally prefer the group algebra notation, as it involves fewer brackets and seems
more transparent.

EXERCISE 1.12.4. Answer the following questions about the twisted group algebra
construction.

a) Prove that the map A — A[G], a — ale], with e € G the identity, is a *-homo-
morphism of *-algebras. Thus, A can be viewed as a *-subalgebra of A[G], con-
sisting of functions supported at the identity of the group.

b) Prove that if A is unital, then the elements [g] € A[G] are unitaries: [g]* =
[¢7!] = [g]”!, that the resulting copy of the group G as unitaries in A[G] sat-
isfies [glalg]* = g(a) forall g € G and a € A.

Thus, A[G] is a larger algebra than A, in which the original action of G on A
becomes one by inner automorphisms.
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c) If G acts on C*-algebras A and B, and if there is a G-equivariant *-isomorphism
o: A — B, then a induces a canonical *-homomorphism of *-algebras A[G] —
B[G].

d) More generally, let A and B be C*-algebras, G and G’ be two discrete groups,

with G acting on A and G’ acting on A’. Suppose that o.: A — A’ is a *-homomorphism,

©: G — G is a group homomorphism, and that

(1.67) o(g)(a(a)) = a(g(a)).
Check that the map A[G] — A’[G'] mapping Y,cc ag[g] t0 ¥ peq 0lag)[0(g)] is a
*-algebra homomorphism.
e) Suppose that B is a unital C*-algebra, ot: A — B is a *-homomorphism, and
¢@: G — U(B) is a group homomorphism from G into the group of unitaries in B,
such that the covariance condition

(1.68) P(g)a(a)e(g)” = a(g(a))
holds for all a € A, g € G. Then o and ¢ combine to make a *-homomorphism
A[G] — B, mapping deGag [g] to deG Oc(ag)(p(g).

The pair (o, @) is called a covariant pair. Prove that any unital *-homomorphism

A[G] — B to a unital C*-algebra, arises from a covariant pair.

EXAMPLE 1.12.5. Let X = {1,2} be the 2-point space, A =C(X) ZC@C, and G =
Z/2 act with the generator u flipping the points. Since the group has two elements every
element of C(X)[G] can be written f+ g[u]. Associate to f+ g[u] the matrix [J(; 85 ?E;ﬂ .

Under twisted convolution we have

(f +8lu)(f +8&'[u]) = ff +gu(g") + (gu(f) + f&")[ul,

which is easily checked to correspond to the product of the two matrices.

The adjoint: (f + g[u])* = f* +u(g*)[u] (since u = u~") corresponds to the adjoint on
2-by-2 matrices.

Hence C({1,2})[Z/2] = M»(C) as *-algebras.

EXERCISE 1.12.6. Generalize the above and prove that C(X)[Z/n] = M,(C) if X is
the n-point space {1,2,...,n} and Z/n acts on X by shifting.

An important concept in Noncommutative Geometry is that of Morita equivalence.
Matrix algebras M, (C) are all Morita equivalent to each other, and thus to C. The above
calculations show (with a bit more work) that if G is a finite group acting freely and transi-
tively on a finite set, then the twisted group algebra C(X)[G] is a matrix algebra M,,(C), and
hence is Morita equivalent to C, or, in other words, to the algebra of continuous functions
on a point. This is because the quotient G\X by the action is a single point in this case. As
we will see, if one allows a variety of orbits, with stabilizers, then C(X)[G] decomposes as
a direct sum over the set of orbits, and each terms in the sum is Morita equivalent to the
group C*-algebra of the isotropy group of the orbit. These matters will be pursued later.

We proceed to define a C*-algebra A x G, by suitably completing A[G].

DEFINITION 1.12.7. Let the discrete group G act on the C*-algebra A by automor-
phisms, and suppose that t: A — B(H) is an injective and unital *-homomorphism rep-
resenting A on a Hilbert space H. Let [>(G,H) be the Hilbert space of L?-functions on
G valued in H, that is, the completion of C.(G,H) under the inner product (fj, f2) :=

Yeca(f1(8): f2(2))-
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Define a covariant pair, in the sense of Exercise|l.12.4] e), and induced *-homomorphism
which we denote by

(1.69) Ind(r): A[G] — B(I*(G,H))
by
(e8)(h) =&(g~'h), (a-&)(h) =m(h~" (a)&(h).

The crossed-product A x G is the completion of A[G] in the norm

(1.70) 1Y aglg]ll := [Tnd(m) (Y aclg]) .

the norm on the right hand side being the operator norm on I*(G, H).

By definition A X G comes equipped with a natural, injective representation, which
we continue to denote by Ind(m): A x G — B(I*(G,H)), by extending the homomorphism
(1.69).

EXERCISE 1.12.8. If G is a finite group, acting on X, then C(X)[G] is already complete
with respect to the norm defined in Definition for any choice of &, and hence A x
G = A[G] = C(X)[G).

Note that if G acts trivially on the C*-algebra C, then C x G is exactly the same thing
as the reduced C*-algebra C*(G) of Definition [1.3.3] where, of course, for an injective
representation of C we use the identity map.

EXAMPLE 1.12.9. Let G act on X locally compact Hausdorff by homeomorphisms,
with induced action by C*-algebra automorphisms on Co(X) by g(f) := fog™'. Letubea
Borel measure on X of full support, so that f € C.(X) f # 0 and f > 0, implies | fdu > 0.
Let m,: Co(X) — B(L?(X,u)) be the representation by multiplication operators.

Then Ind(m,) =: A, is an injective representation of Cy(X) x G on [*(G,L*(X,u)). It
is injective because T, is, because u has full support.

The formulas for the covariant pair are given by

(88)(h) =&(g 'h), (f-E)(h) = (foh) -E(h).
EXAMPLE 1.12.10. Let G =7/2 acting on X := [—1, 1] by letting the generator u of
G act by u(x) = —x. Then
C(X)xG=2{f:[0,1] = M(C) | f is continuous, and f(0) is a diagonal matrix }.

As G is finite, C(X) x G = C(X)[G], i.e. no completion is involved in forming the
crossed-product. So there is no need to locate an injective representation of C(X). Instead,
to understand the C*-algebra better, define a covariant pair and induced *-homomorphism
C(X)[G] — M»(C) by letting the group generator u map to the constant (unitary) matrix-

valued function (1) (1) on [0,1]. If f € C([—1,1]), we map f to the matrix-valued function

on [0, 1] (note the change of domain) given by

s [0
flx)= [ 0 f(—x):| .
This is clearly a covariant pair (exercise). It is injective on functions because if both
f(x) and f(—x) vanish on [0, 1] then f vanishes on [—1,1]. An element f + g[u] € C(X)[G]
is mapped to the function T with

= %)
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atx € [0, 1]. Fix any x # 0. The collection of matrices T (x) obtained from some f, g is then
M>(C). To see this, note that the range is automatically a *-subalgebra of M>(C). Since
we can find a continuous function f with value 1 at x and value 0 at —x, and setting g = 0,

we obtain the matrix
T f(x) 0 [t o
10 f(—x)| [0 Of

Since the image under our *-homorphism is and these two matrices generate

0 1
! o
M, (C) as an algebra, we obtain that the possible set of values of T'(x) is all of M,(C),
if x £ 0.

If x = 0, consider the collection of matrices of the form

0 o)

for some continuous f, g on [—1, 1]. This is just the *-algebra of matrices

!

and this collection is simultaneously diagonalizable using the eigenvectors %(1, 1) and

%(1, —1). From this we conclude, as is easily checked by the definitions, that the algebra

obtained at x = 0 is isomorphic to C & C by the map

a b
{b a} — (a+b,a—0b).

We obtain therefore a sort of ‘picture’ of this C*-algebra, as the space of sections of a
continuous field of C*-algebras over [0, 1] equal to M, (C) for x # 0, and equal to C® C at
=0.

Actually, the contribution at x = 0 is the representation ring Rep(Z/2) of the isotropy
group at that point. The relation of [0, 1] to the original space [—1, 1] on which the group
acts, is that [0, 1] is naturally homeomorphic to the quotient space of [—1,1] by the Z/2-
action.

Before discussing more examples of crossed products, we discuss an important con-
struction. We start with the following exercise. It deals with whether or not it makes sense
to speak of infinite ‘expansions’ a =Y, a,[h] in A x G, as one does for the twisted group
algebra A[G].

EXERCISE 1.12.11. Let a = Y au[h] € A[G]. Show that the operator Ind(x)([g~!]a])
on I?(G,H) = @©jcgH leaves the summand of the direct sum over g = e, a copy of H,
invariant, and acts by the operator m(a,). Thus, the coefficients a, of an element of the
twisted group algebra, or at least their images 7(g) under the injective representation T,
have an interpretation purely in terms of the operator Ind(x)(a).

Suppose that we declare for @ € A X G to have the ‘expansion’ a = Y, ap[hl, if a, =
Ind(mt)([g~'a]) for all g € G. Check that (from) the previous paragraph this agrees with
the usual expansions of elements of A[G], and if a, € A[G], a € A x G and a, — a in the
crossed product, then the coefficients (a,), of a, converge in A to the coefficients a, of a.

EXERCISE 1.12.12. Let a, € A be the coefficient of e in an expansion a =Y ;g an[h] €
A[G] of an element of the twisted group algebra.
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a) Show that A[G] — A,a — a, extends continuously to a norm contractive linear
map E: Ax G — A.

b) Prove that if @ € A X G has expansion a = Y, a,[h] in the sense of Exercise
then E(a) = a,.

¢) Prove that E(a*a) > 0, so E is positive.

d) Prove thatif u: A — Cis a state, then T, := po E is a state on A X G, and that if
u is G-invariant in the sense that u(g(a)) = u(a) forall g € G,a € A, then 7, is a
trace: T,(ab) = t,(ba).

e) Show that if G acts by homeomorphisms on X compact preserving a probability
measure u then T,(Y, fulh]) := [y fedu defines a tracial state on C(X) x G.

f) Prove that if t: C(X) x G — C is a tracial state, where X is compact, then T =1,
for some G-invariant probability measure u.

There is of course an enormous variety of group (discrete) group actions. It is useful
sometimes to conceptually classify them into three types. These correspond approximately
to the Types, in the theory of von Neumann algebras, of the von Neumann closures of their
C*-algebras.

Type I examples are proper actions, whose C*-algebras are discussed in the following
chapters. Example is of this kind. Up to Morita equivalence, these examples are
nearly commutative, although not quite. They are important in topology.

Type II examples involve actions G x X — X of compact spaces where the action
preserves a probability measure. See Exercise exercise:dsoifjsdjflskdf e). The invariant
measure determines trace T,: C(X) x G — C. The irrational rotation algebra discussed
below involves an interesting dynamics of the circle by the integers, leaving Lebesgue
measure invariant, and is an excellent example of a Type II action.

EXAMPLE 1.12.13. (Rotation by an irrational angle.) Let ® = ¢*™® ¢ T with 0 irra-
tional. The corresponding homeomorphism Rg: T — T of group multiplication by ®, or
rotation by 0, has infinite order, since ® has infinite order (an easy exercise). We obtain an
action of the integers Z on T and on C(T) with the integer n acting by f — foRy".

The corresponding C*-algebra crossed-product, which we frequently denote in the
form C(T) xg Z is called the irrational rotation algebra and is denoted Ag.

It has some remarkable properties, among which is its simplicity: it has no proper,
nonzero closed ideals.

As an injective representation of C(T') to build the crossed-product, we can take H :=
L?(T) with C(T) acting by multiplication operators. We then complete the twisted group
algebra C(T)[Z] by letting it act as operators on /*(Z,L*(T)) as described above. The
group algebra C(T)|[Z] consists of all finite sums Y'__, f,[n] with f,, € C(T). If we require
f to be a trigonometric polynomial we obtain a smaller *-subalgebra consisting of all finite
double sums ¥ ay,,z"[m], and these act on the Hilbert space /?(Z,L*(T)) by operators of
the form

(1.71) Zan,mu”v’",

where u is the operator on /?(Z,L*(T)) corresponding to the function f(z) =z € C(T) C
C(T)[Z] and v the operator corresponding to the unitary group generator [1] € C[Z] C
C(T)[Z)] of the integers Z.

If we use the standard identification of L*(T) as [?(Z), we can identify I*(Z,L*(T))
with /?(Z&Z) with orthonormal basis ey, with e, , corresponding to 2" [m] € I*(Z,L*(T)).
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EXERCISE 1.12.14. In this notation,

M(en,m) = €n,m+1, V(en,m) =" Cnm+1,

so that u by a vertical shift and v by a horizontal weighted shift.
Verify the relation

(1.72) Uy =@o-vu

for this pair of unitary operators. Of course this follows from a similar relation in the group
algebra C(T)|Z]. If f(z) = z then (f o Ry ')(z) = ®z. Hence in group algebra notation,

[z[1]" =®-z.

REMARK 1.12.15. It turns out that Ag is the unique C*-algebra, up to canonical iso-
morphism, generated by a pair u, v of unitaries satisfying uv = - vu, i.e. satisfying (1.72).

Roughly, Type III examples of actions, are those which leave invariant no probability
measure. In this case, the C*-algebras C(X) x G therefore have no traces, by Exercise
f). Some interesting examples of Type III examples involving group actions on
boundaries, are discussed at several points in this book. The following is a simple instance
of them.

EXAMPLE 1.12.16. Let G = [, be the free group on 2-generators a,b. Elements of
F, may be written uniquely as reduced words s; ---s, with s; in the generating set S :=
{a,a’l ,b,b! }, where a word is reduced if it contains no occurrence of an $iS; I

The collection of infinite reduced words 5157 --- is a subspace of the product space
IT,—; S. It consists of those sequences s1,s2, - - - for which no term s; is followed by si_l. It
is an easy exercise to prove that this is a closed subspace of the product space. We let olF,
be the collection of infinite such words, with the subspace topology. It is a Cantor set. If
w is a reduced word in the generators, we let U,, C dF; be the set of infinite words sy - - -
which begin with w. Then the U,,’s form a basis for the topology.

The left translation action of [F; on itself extends to an action of IF; on dIF, by left group
multiplication on infinite reduced words. For example the group element g = ab> € F,
maps the boundary point & = baba~'bbb--- € dF; to g(§) = ab~'aba~'bbb - - -.

The dynamics of this group action is very interesting, and the associated crossed prod-
uct C*-algebra has some special properties not possessed by the irrational rotation algebra
Ap.

EXERCISE 1.12.17. Let i € S be a generator, and U; C dF, the clopen subset of all
infinite reduced words beginning in i. Let x; := Xy, € C(dF,) and

si = Xsli] € C(9F2)[F2] C C(dF3) x F.
a) Prove that the s;’s, for i € S are partial isometries, and that
(1.73) Zsis;‘ =1, and sjsj = Z 8iS7.
[IS\) iAj!
b) If g =ij---i; is areduced word in I, let s, :=s;, - - - 5;, . Prove that
Sg s; = XU,

where U, is all infinite reduced words in dF, which begin with g.
¢) Prove that {s;| i € S} generates C(dFF,) x F5. This is an example of a Cuniz-

Krieger algebra. Such algebras occur in connection with topological Markov

chains, and are among the most important basic examples of C*-algebras. See
[S9].
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The following two exercises give two proofs that C(dF,) x F, has no traces — is “Type
1’

EXERCISE 1.12.18. Deduce from (I.73) that there is no nonzero trace t: C(dF,) %
F, — C. (Hint. In the notation of the displayed equation, T were a trace then T(s;s}) =
t(sts;) for all i.)

EXERCISE 1.12.19. Let s € [F; be one of the generators.

Prove that if y were any (s)-invariant probability measure on dF,, where (s) is the
subgroup generated by s, then u is supported at the two fixed points of s.

Deduce that dFF; has no probability measure invariant under ;.

The action of F, on dF; is a special case of a more general construction which ap-
plies to the class of Gromov hyperbolic groups G, for which Gromov has defined a natural
geometric boundary dG, on which G acts by homeomorphisms. See Section@ The bound-
ary determines a compactification G = G UG, all invariant under the group action. The
dynamics of G on its boundary has many interesting and important features (see [91]]). Ex-
ample is of this kind, involving the (elementary) hyperbolic group Z. The absence
of traces, and the important purely infinite property, are verified for these examples in [150]]
and [4]].

EXAMPLE 1.12.20. Let Z := Z U {+oo} the usual 2-point compactification of the in-
tegers. Let the group of integers act on this set by translation, fixing the points at oo, This
induces an action of Z on the C*-algebra C(Z).

The C*-algebra C(Z) is represented on /2(Z) by multiplication operators. Together
with the left-regular representation of Z on the same Hilbert space, we obtain a covariant
pair and *-homomorphism

C(Z)[zZ) — B(I*(z)).
For the following exercise, the reader may assume the fact (which is not obvious) that this
representation extends continuously to an injective representation of C(Z) x Z on [>(Z).

EXERCISE 1.12.21. A corner of a C*-algebra A is a sub-C*-algebra of the form pAp,
where p € A is a projection. A corner is full if ApA (the ideal generated by p) is dense in

A. Prove that the Toeplitz algebra is a corner of the crossed-product C*-algebra C(Z) x Z,
but that it is not full. What is the ideal generated by p?

EXAMPLE 1.12.22. (Rational rotations of the circle). Let Z/n, the cyclic group of
order n, be realized as the corresponding subgroup of roots of unity in the circle T. This
subgroup then acts by group multiplication on T. Taking a primitive nth root of unity
o= exp(%) € T representing the generator of Z/n, its action on T is rotation by 27“
radians.

For a faithful representation of A = C(T) we use the representation by multiplication
operators on L*(T). The Hilbert space /?(Z/n,L*(S")) may be identified with L*(T,C").
Let f € C(T), then by the definitions

e f acts by the M, (C)-valued function

/@)
fo=| e ,
flor12)

where we let such matrix-valued functions act on L?(T,C") in the obvious way.
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e The group Z/n acts on L*>(T,C") by the unitary representation implemented by
sending the generator ® to the shift

0O 0 - 1
I 0 0
U=(0 1
0 1 0

A change of coordinates makes things more clear. The Hilbert space C" with Z/n act-
ing by the shift is the regular representation of Z /n, and it decomposes into character spaces
Vi = {v € C" | Uv = 0*v} for the set of characters of Z/n, which may be identified with
the set of nth roots of unity, i.e. the points 1,®, @, .0 (each power ®* determines
a character of Z/n by sending the generator ® to ®¥). So we have another orthonormal
basis vo...,v,_ for C"with, explicitly, v, the vector ﬁ (0 *,0 % 03k, ... ,07"). With

respect to this orthonormal basis, U acts by the (constant) diagonal matrix-valued function

Vi)=z|0 &

Let Py be the diagonal matrix 0 . . It is projection onto the span of the
0
trivial character 1 (it is the matrix representation in this basis of the element %ZZ;& ot e
C;(Z/n) C C(T)xZ/n.) An easy computation shows that V(z)'PyV (z) ™/ = 2 /@ /E;;
where E;; is the matrix with a 1 in the (i, j)th entry and has zeros in all other entries.

As the crossed-product also contains a copy of C(T), identified with continuous func-
tions valued in scalar multiples of the identity operator on C”, it follows that C(T) x Z/n
contains all matrix-valued functions of the form f(z)E;;, for any f € C(T). Therefore it
contains every element of C(T,M,(C)).

This argument shows therefore that

PROPOSITION 1.12.23. C(T) x Z/n = C(T,M,(C)).

EXERCISE 1.12.24. The Bunce-Deddens algebra B~ appears in Example |[1.11.11
Let G be the group of diadic rationals in the circle G = U?_,{® € T | ®*" = 1}. Prove that
C(T) x G = By~ by constructing an appropriate inductive system.

EXERCISE 1.12.25. Prove that the *-algebras Ag := C(T) xgZ and A_g := C(T) x_g
Z are isomorphic, for any 0 € R irrational, by constructing an appropriate covariant pair

(see Exercise[I.12.4).



12. CROSSED PRODUCT C*-ALGEBRAS 75

We close this section with the definition of crossed products by general (not necessar-
ily discrete) locally compact groups. We will not work much with this level of generality
in this book, so we will be brief. C*-algebras of locally compact groups were discussed to
some extent in Section[3l

If G is a locally compact group, a G-C*-algebra is a C*-algebra A equipped with a
group homomorphism G — Aut(A) satisfying g — g(a) is continuous from G to A, for
every a € A.

In this situation, the formula (T.66) is generalized by defining the twisted convolution
0ff1,f2 € CC(G,A) by

(Frfa)(g) = [ F(nh (™' g)) duth)
By aroutine exercise, f]*f> € C.(G,A). We can make C.(G,A) into a *-algebra by defining
(@) =g(fle”")) -8,

where 0 is the modular function of G.
Now fix an injective representation T: A — B(H) and as in the discrete case we rep-
resent C.(G,A) on L2(G, H) by the covariant pair

(P(@)8) (8) :==m (g (@)&(g),  (P(8)E) (h) :=E(g™'h).
This induces a representation p = Ind(m) of the *-algebra C.(G,A) on the Hilbert space
L?(G,H) by ‘“integrating’ this covariant pair:

(P(1)E) () 1=/Gﬂ(f(h))§(hflg)du(h), f€C(G.A).

Then the crossed product A x G is by definition the completion of C.(G,A) with respect
to the norm || ]| == [[2()].

An important family of examples are sometimes called time evolutions, which refer to
actions of R on C*-algebras. The C*-algebra C*(R) of the real line is discussed in the next
section. This is the crossed product C x R of R acting on C (trivially, of course).

The following two exercises give other interesting examples of R-C*-algebras.

EXAMPLE 1.12.26. Let T? = }RZ/Z2 be the 2-torus, and let v € R? be a vector. For
f € C(T?), define o, (f)(w) := f(w+1tv), for w € T?. This is a time evolution on C(T?). It
underlies the flow w — w4 v on T2, which is especially interesting when v has irrational
slope, and is called Kronecker flow.

As we show later, the C*-algebra C ('H‘2) x R, is Morita equivalent to the irrational
rotation algebra Ay, where £ is the slope of v.

EXAMPLE 1.12.27. This example continues Example[1.12.16] On the boundary JIF,
of the free group, define a probability measure as follows. If w is a reduced word, let U,, be
the basic clopen set of all infinite reduced words which begin in w. There are 4 generators
a,a=L,b,b~! and for each such generator s we define u(Us) := %. Forw =1+ ---s; areduced
word of length > 1, we let u(U,) := %3”‘, so that the sum Y}, p(Uy) = 1.

This defines a probability measure on dF,, as one may verify.

The measure u is not F,-invariant, but its measure class is left invariant, and if g € F;

then
d(g.)
du

[ @) = [ 1)
The functions
_ d(g*/.l) du

8 = d,u
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are discrete Gaussian probability distributions on the boundary, and are in particular con-
tinuous. See Lemma[9.4.14
We now define a time evolution on the crossed product C(dF;) x I, by setting

o/ (Y felg]) ==Y o} fele].

EXERCISE 1.12.28. Verify that ¢ satisfies the ‘Chain Rule’ G4, = (o) og™h- Cg.
Deduce that o,: C(dF,)[F2] — C(JF,)[F2] is a *-automorphism. Show that o, extends
continuously to an automorphism of C(dF;) x [F, and that C(dF,) x F, is an R-C*-algebra
with this action.

The crossed product C(dF;) x Fy x¢ R of the Type III example C(dF,) x F,, turns
out, roughly speaking, to have a Type II character: it has a (densely defined) trace.

EXERCISE 1.12.29. Let (¥ f;[g]) := [y, fdu.

a) Prove that T extends continuously to a bounded linear functional t: C(dF;) x
F, — C.

b) Let (6;),cr be the time evolution of Exercise Show that for elements
a € C(dF,)[F,] in the group algebra, the function ¢ — G;(a) analytically extends
to C. Let 6,(a) denote the value of this extension to z € C. Show that for each
z€ C, 0,: C(dG)[G] — C(dG)[G] is an algebra homomorphism, but that it does
not extend to a C*-algebra automorphism unless z € R[i].

¢) Show that

t(o_i(a)b) = 1(ba).
This is called the KMSg condition.
d) Define, for f € C.(R,C(dF,) x Fy),

2(f) =1(f(0)).
Show that T: C.(R,C(dF,) x F,) — C has the tracial property: %(ab) = %(ba).
Thus, the crossed product C(dF;) x [, X R has a densely defined trace.

We have for the most part avoided dealing with the more general class of locally
compact group crossed products in this book — with a few exceptions.

In fact, many of the interesting actions of locally compact groups appearing in dy-
namics, especially foliation theory, are equivalent in a certain sense (Morita equivalent)
to discrete group actions. Therefore, from a certain point of view, crossed products by
discrete groups are really the essential examples.

The C*-algebra of the real line R is important for other reasons, and is discussed in
more detail in the next section.

13. The C#*-algebra of the real numbers

The structure of the group C*-algebra C*(RR) of the topological group of real numbers,
is, as with compact or discrete abelian groups, determined by the Fourier transform for R,
see [83] for a good exposition.

Let f € C.(R), A(f): L*(R) — L*(R) be the operator of convolution by f:

(1.74) (MS)u) () := (f *u) (x) = /R f)u(x—y)dy.

The integral converges absolutely, by the Cauchy-Schwarz inequality, and using translation
invariance of Lebesgue measure |(f * g)(x)|m < ||f||2 - ||u||> where ||-||> denotes the L*-
norm. More generally, we have:
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EXERCISE 1.13.1. Let 1 < p <o and f € L'(R) and g € LP(R). Then the integral
defining f * g exists for a.e. x € R, and ||f *g||, < || f|l1 - ||g||p. (Hint. Follows from

Exercise|1.2.35|with k(x,y) = f(y —x)).

In particular, f*u € L*>(R) if f € L'(R) and u € L*(R) and || f *ul]2 < ||f]|1 - ||u/|2 so
we get a representation A.: L' (R) — B(L?(R)) of the Banach *-algebra L' (R) (see Exercise

The C*-algebra of R is the completion of this Banach *-algebra to a C*-algebra, using
the operator norm on L?(R).

The following heuristic is sometimes helpful, if one wants to remember how convolu-
tion works.

Let U,: L*(R) — L*(R) by the unitary translation operator by ¢, U;v(x) = v(x —1).
Then, as an operator, if f € L' (R), then

(1.75) M) = [ fudrec @)

which is an integral version of the group-algebra notation Y a,[g] we were using before, for
discrete group C*-algebras, with the symbol [¢] (for 7 in the group R having been replaced
by U;. The integral converges absolutely (since f € L' (R).

If one applies the operator-valued integral (I.73)), somewhat formally, to an L?-function
€, and evaluate at x € R, one gets the formula (1.74). Thus:

(frowza) = [ row@Ima= [ 080 = (£ x8)

REMARK 1.13.2. Note that the unitaries U; € B(L?R) are not in C*(R), but they are
multipliers of C*(R), see Section [3| for this concept. That is, left multiplication by the
unitary operator U, maps C*(R) C B(L’R) to itself. Indeed, if f € C.(R), then U, - A(f) =
A(f:) by an easy computation, where f;(x) = f(x—1).

EXERCISE 1.13.3. Prove that

a) The map R — U(L*(R), 1 — Uy, is continuous as a map from R with its standard
topology, and B(L?R) with the strong operator topology.

b) The integral converges converges in the norm topology of C*(R) if f €
L'(R) c C*(R).

EXERCISE 1.13.4. Suppose that (k;));~o is a family of continuous functions on R
such that for some C > 0, [|k(x)|dx < C for all t > 0, [k (x)dx =1, and for all § > 0,
lim; 0 [jy>5 ke (x)|dx = 0.

Then if f € C,(R) then the convolution integral (f *k)(x) := [ f(y)k (x —y)dy is
absolutely convergent and f *x k; — f uniformly on compact subsets of R.

If € € R is a real number, then ¢ (t) := €¥M1S §g a character Xe: R — T of the group of
real numbers, and, conversely, all characters arise in this way.

EXERCISE 1.13.5. Let x: R — T be a continuous group homomorphism. Let a > 0
be suitable. Use the identity

a0 [ = [ g

to deduce that ¥ satisfies a differential equation ’(s) = Cx,(s) and deduce that ¥ (s) = ¢2%s¢
for some & € R.
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Thus, R may be canonically identified with its own Pontryagin dual R. With this
identification, the Fourier transform as defined in (T.2T)) has the form

(1.76) a(€) == (Fru)(§) := /u(x)e’zm"édx,

where for initial purposes, we can take u € C2°(R), but the integral converges absolutely if
merely u € L'(R).

The following two features of the Fourier transform are key: let u be any measurable
function on R.

a) If u has rapid decay, i.e. if p(x)u(x) is bounded for every polynomial p(x) (so
that in particular u € L' (R), then the integral defining it converges absolutely at
each point and # is an infinitely differentiable function.

b) If u is infinitely differentiable with all derivatives in L!(R), then i has rapid
decay, i.e. 4(&)p(&) is bounded for every polynomial p(&).

To prove a) , use the Dominated Convergence theorem to prove that i is differentiable
everywhere with

i'(&) = —2mi / u(x)xe > dx,
i.e., differentiate under the integral sign. Thus,
(1.77) i () = Zmixu(€)

where by xu we mean the function xu(x).
Smoothness is proved inductively using this idea.
For b) we write

2miEA(E) = 27ti/u(x)§e72mx§dx: —/u(x)(efzmé)/dx: /u’(x)efzmédx

by integration by parts.
Thus

(1.78) i (§) = 2miEa(E).

So b) is proved by an obvious inductive argument.

EXERCISE 1.13.6. Let h(x) = e~ where a > 0. Then
1 _=2

h(g) = %67 “.

(Hint. Differentiate under the integral sign in 7(§) := [ e’""xze’zm"&dﬁ and use integration
by parts to get i (&) = 7(;&5_, -h(&). Solve this differential equation, using that [ P
i\[ to fix the constant.).

a’

Because Fourier transforms exchanges differentiation and multiplication, a natural do-
main for it is the Schwartz algebra S(R) of the real line, defined as follows.

DEFINITION 1.13.7. The Schwartz algebra S(R) is
S(R) :={f € C*(R) [ Vm,n >0, sup|(1+|x])" 9" f(x)| < oo},
x€R
where 9" f is the n-th derivative of f.

The Schwartz space S has a natural structure of topological vector space with semi-
nOIS P () = SUPyes g (1 [6])" [ (1)1
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EXERCISE 1.13.8. Prove that the convolution f * g of two Schwartz functions f,g € S,
is again in S.

(Hint. The inequality 1+ |x| < (1+|x—y|)- (14 y|) is helpful for this.)

By the Exercise, the convolution of two Schwartz functions is again Schwartz, and
with Fg the Fourier transform, Fru € S if u € S. So Fourier transform restricts to a (con-
tinuous) map F: S(R) — S(R).

THEOREM 1.13.9. Let F: S(R) — S(R) be the Fourier transform.

a) Ifu,v € S(R) then [iv = [ub.

b) Ifu € S(R) then ||l 2(r) = [lull 2(r).

) Ifu,v € S(R) then uxv = a.

d) Ifu € S(R) then Frii(x) = u(—x). Equivalently (the Fourier inversion formula)

(1.79) u(x) = / a(&)e¥™ S gt
holds for all Schwartz functions u.
The inverse Fourier transform is given thus by
Fy tu(x) := a(—x).

We sometimes denote ii(x) := f4(—x).
We will need two Lemmas.

LEMMA 1.13.10. (Minkowski’s inequality for integrals). Suppose that (X,u) and
(Y,v) are o-finite measure spaces and k measurable on X xY. Let 1 < p <oo. Ifk >0

then
V </k(x,y)dv(y))pr S/Vk(xsy)”dp(x)]”_

And if k is measurable on X XY, k(-,y) € LP(X) for a.e. y, and [||k(-,y)||dV(y) < oo,
then k(x,-) € L'(V) for a.e. x, the function k(-,y): x + [k(x,y)dv(y) is in LP(X), and

| [ *ex)avelp < [ IkC3) v,
EXERCISE 1.13.11. Use Minkowski’s inequality to give another proof of Exercise
1.13.1} if f € L'(R) and g € LP(R) then (f * g)(x) exists a.e. x, f*g € LP(R), and
\f8llp < Ifll1-llgllp- (Hint. Letk(x,y) = f(x—y).)-

LEMMA 1.13.12. Let 1 < p <o and g € L'(R) with [ g(x)dx = a. Let

40 = g(e/r).

Then if f € LP(R) then g; x f € LP(R), ||g:* fll, < ||gll1 - I f]lp, and g: = f — af in
LP(R) ast — 0. If f is bounded and continuous, then g, x f — af uniformly on compact
sets ast — 0.

PROOF. The last statement is Exercise[T.13.4] That if f € L (R) then g, * f € L (R)

and [|g; * flp, < llgll1 - [l is Exercise[1.13.1|or Exercise|I.13.11} We show that g, * f — f
in LP.
Let t,(f)(x) := f(x—s). Compute

(60 —af ) = [ (Gel)) — () -8(2) e
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Then apply Minkowski’s inequality to get ||g * f —af|, < [llt(f) — fllp - 18(2)| dz.
Now ||T::(f) — fll - |g(2)| converges to zero for all z as t — 0, and |t;(f) — f|, - |g(z)| <
2||fHP -|g(z)| and g € L! so the functions z — |7.(f) — ||, - |g(z)| are dominated by an
L'-function. So we may apply Dominated Convergence to deduce that lim, ¢ [ ||, (f) —
fllp-18(2)| dz =0 as required.

[

PROOF. (Of Theorem|[I.13.9). Parts a), c) are routine.
We establish the Fourier inversion formula in d):

(1.80) flx) = / / f()em T aydE,,
where f € §,x € R.
By Lemma if g(x) = e~™ so that J[g(x)dx =1, then (g, * f) — f(x) uni-

formly on compact sets, since f is continuous and bounded.
Now Exercise|1.13.6shows that g, (x — y) = A(y) where h(£) := 2™~ *¢’ Hence

(f*g)(x /f Y)gi(x—y)dy = /f dy:/f(ﬁ)h(i)di
:/f(&)ezmxé_mzézdé.

and the Dominated Convergence Theorem implies that the right hand side converges as
t—=0to [ f(E)e™EgE,

From a), we have

On the other hand, V(&) = $(—-§), so

with ¥(x) := #(—x). Replacing v by ¥ and using the Fourier inversion formula gives (i, ¥) =
(u,v). In particular b) holds.
(]

REMARK 1.13.13. The statement of the Fourier inversion formula we have given can
be strengthened as follows: if f € L' and f € L' then f agrees a.e. with a continuous
function fy and f = fp. Indeed, in the notation of the proof, f*g, — f in L' by Lemma

1.13.12] On the other hand (f*g)(x) = [ f(€)e2™*—™€4E. The latter expression con-
verges for every x € R, since f € L! (R), and Dominated Convergence, as t — 0. If we
set fo(x) := [ F(E)e 2“”&51& then f is the Fourier transform of an L!-function. Hence fj is
continuous, by the Riemann-Lebesgue Lemma, and f = fj a.e.

EXERCISE 1.13.14. If g, g, are as in Lemma|l.13.12] with [ ¢ = 1, then g, xu — u for
all u € L*(R). Deduce that the elements g, € L' (R) C C*(R) define an ‘approximate unit’
for C*(R) in the sense that g, * f — f in the norm of C*(R), for all f € C*(R).

COROLLARY 1.13.15. (Plancherel Theorem). The Fourier transform Fr: S(R) —
S(R) extends to a unitary isomorphism U : L*(R) — L*(R) satisfying

UrM(f)Ur = M},
forany f € .
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Therefore,
C*(R) = Co(R)

by a C*-algebra isomorphism sending the operator A(f) to the function f € Co(R), for
feSR) cC*R).

EXAMPLE 1.13.16. Let f(x) = ﬁ Then f € L'(R) C Co(R) and its Fourier trans-

form converges absolutely to f(&) = me 25,

The proof uses some standard methods from basic complex analysis.

Let Ci be the upper half of the circle of radius R in the complex plane, oriented
counter-clockwise, and let Cg be the closed contour in C consisting of the segment [—R, R]

joined to Ck. Suppose & < 0. Observe that fc’ 1 9z _5 0 as R — co. On the other hand,

Jex @d = Jeg ;dz where g(z) = : fl an analytlc function on the upper half plane, so

by the Cauchy Integral formula [, mdz = 2mig(i) = me®.
It follows that '

f@)—ne ™
when & < 0. On the other hand, since f(x) = — is real-valued, f(—&) = f(E), so that i
hen & < 0. On the other hand, since f(x) = - l-valued, f(—&) = f(£), so that if
& > 0, by the computation above, f(—&) = e~ and hence f(£) = me—5 = me 5.
Therefore,
1 A _
f(x):méf@):m ¥ eeRr
as claimed.

EXERCISE 1.13.17. Verify the Plancherel Theorem ||xz||2 = ||Xz||> by direct compu-
tation, where Xz = X|_rr) € L?(R) is the characteristic function of an interval (use the fact

that [ (82)% dx = 1)

EXERCISE 1.13.18. Show that if f € L2(R) then f(§) = limg_ e /5 F(€)e¥™% dx
holds in the L2. That is, i fz(&) := [®z F(&)e*™ dx, then fg — f in L2,

(Hint. We can define an operator on L? by f + limg s« [X5 £(€)e*™()5dx by defining
it initially on simple functions, verifying that the map is isometric in the Hilbert space

norm, and then extending it by continuity. It agrees with Fourier transform on a dense
subset of L2(R).)

EXERCISE 1.13.19. The proof of the Fourier Inversion Theorem involves a regular-
ization of divergent integrals of general interest. Suppose that ® € Co(R) N L!'(R) such
that ®(0) = 1 and ¢ : =P € L'. For f € § let

(1.81) /f D(1E)e™S dE,

a) The integral (I.8T)) converges absolutely.

b) Let ¢;(x) := 10(x/t). Show that f' = f* ¢.

c) Use the Fourier Inversion formula (use the strengthened version in Exercise
1.13.13)) to deduce that [¢ = 1 and deduce that f* — f in L” for 1 < p < oo
and ¢ — 0, and uniformly on compact sets (see Lemma[I.13.12).

Another good example where the technique of Example [I.13.19] can be applied is to
harmonic function theory and the Poisson transform.
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EXAMPLE 1.13.20. Example [1.13.16| shows that if ¢(x) = 1 - 177 € L'(R), then

v

9(8)i=8(8) =¢ % and
o) = 100/ = 2+ (7).

which is called the Poisson kernel.
It follows from the discussion above that if f € L?>(R) then the integral defining (f *
;) (x) exists a.e., f ¢, defines an element of L>(R), and

(re0)) = [ 100 =pas = 1 [ 7069 (s ) as

holds a.e. By our results, f *¢, — f in L?, and the convergence is uniform on compact sets
if f is bounded and continuous.

We may interpret f ¢, geometrically with a (harmonic) function on the upper half
plane in the following way. Writing y > 0 in place of ¢, we let Pf be defined on the upper
half-plane z = x+ iy, y > 0, by

(PA(x-+) 1= (F+0)) = [ fla—s) ( )ds—/f ( +y>ds.

Note that Im( -). Soiif fis real-valued then, noting that f € L2 by assump-

(x— ) =
tionand s — — isin L?, since z = x+iy, y > 0, the integral f ) . ds converges absolutely,

and
(216 = ( [ )

-
which shows that Pf is the imaginary part of an analytlc function, if f is real-valued, and
in particular Pf is harmonic in the upper half-plane. Since a complex combination of
harmonic functions is harmonic, it follows that if f € L? then Pf a harmonic function in
the upper half plane Tm(z) > 0, and

lim Pf(x+iy) = f(x)
y—0
in L?, and uniformly on compact subsets of R if f is bounded and continuous.

We close this section with some applications of the technique explained in Exercise
1.13.19|to Fourier analysis on T.

THEOREM 1.13.21. Suppose f € C(R) and suppose there exists € > 0 such that
£)] < €1+ )~ for all x and | FE)] < C(1+ [E]) '~ for all &
a) Let ©(f)(x) = f(x+k). Then Yicztw(f) converges pointwise and a.e. to a
periodic function Pf on R such that ||Pf]| (1) < || f]l1. Moreover,

A

Fr(Pf)(k) = f(k), VkeZ.

b) (Poisson Summation) In the same notation, Yy f(x + k) = Yyez f k)™,
where both series converge absolutely and uniformly on T.

PROOF. a)We have
Lurae=% [ireolas= ¥ [ mneiec= Tl
keZ keZ keZ

Consequently, the series Y 7;(f) in L'(]0, 1]) is absolutely summable, and hence summa-
ble, so ¥ 7x(f) converges norm absolutely in L!([0,1]) =2 L' (T). Now if (gx) € L'(T) is
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any sequence such that Y ||gx||1 < oo, then ¥ g, converges a.e. Indeed, by the Monotone
Convergence Theorem [1Y[gk| = ¥ [r|gx| = Lllg«llz1 (1) < oo, and so A(x) := ¥[gk(x)] is
in L' (T). Hence 0 < (x) < o a.e 50 ¥ |gx(x)| < = a.e. and for each x for which the sum is
finite, the sum Y g (x) converges, by completeness of C.

Applying this to g, = T (f) gives that ¥, Tx(f) converges a.e. and in L!(T). Let Pf
be the limit function. Then ||Pf{|,1p) < | f[|1, and Fr(Pf)(k) = f(k) is easily verified by
direct computation.

b) The decay condition on f implies immediately that the series ) f(x + k) converges
absolutely and uniformly. Hence Pf is continuous on T. Hence Pf € L*(T) and so the
series Yyez (Pf)(k)e*™* converges in L2(T) to Pf. By a) this is the same as the series
Y ez f(k)e*™* by a). So the latter series converges in L>(T) to Pf. The latter series also
converges absolutely uniformly, due to the decay assumption on f. This proves b).

O

COROLLARY 1.13.22. Suppose that C > 0,€ > 0 and ® € C(R") with |®(&)| < C(1+
€))7 and that |®(x)| < C(1+|x|)~' "¢, Assume ®(0) = 1.

Let f € L'(T) , and f' be defined by the absolutely convergent integral f'(x) :=
Yiez(Frf) (k) (tk)e*™ . Then if f € LP(T), 1 < p < oo, then || f* — f|l o) — O ast — 0,
and if f € C(T) then f' — f uniformly on T ast — 0.

PROOF. Let ¢(x) = <i>(x) and ¢;(x) = %q)(x/t). By Theorem
(1.82) vi(x) = Y 0(x—k) = Y @(tk)e*™,

keZ k€Z

The function y, is periodic, and if * denotes convolution in T then Fr(f ;) (k) = (Frf)(k)-
(Fryi) (k). And (Fry; (k) = @(tk) by (1.82). Hence Fr(f *;)(k) = (Frf)(k)®(tk) =
(Frf")(k). It follows that f* = f + ;. By Young’s inequality, || f'||.r(r) = IIf * Wi|lr(T) <
Iwillt- 1Al ery = 1l ery - 9]l (x)- Hence the operators f — f* are uniformly bounded
on LP(T), 1 < p < oo. Since f'(x) := Yy (Frf)(k)®(tk)e*™k it is clear that if f € C[z,7],
so that Fr f vanishes except on a finite set of integers, then f; — f uniformly as t — 0.
Since C[z,Zz] is dense in C(T) and in L?(T), 1 < p < e, we deduce that f* — f uniformly
for f € C(T), and f* — f in LP(T) for f € LP(T), as claimed.

(I

EXAMPLE 1.13.23. With notation as in Corollary [1.13.22[let ®(§) = ¢~278l_ 50 that
0(x) = 1 - 352- by Example |1.13.16] the Poisson kernel. The methods above give the

following. If f € L'(T), let
(1.83) f1(@) = Y (Frf) (k) D(tk)e™.

nez

The integral converges absolutely for all z > 0. By Corollary [1.13.22| f* — f ast — 0,
where the convergence is uniform if f is continuous and in L2 if fisin L. If r 1= ¢ ™2™ < |
then with f := Fr f, (1.83) can be written

(1.84) fry=Y Hpzn, zeT.

nez

Equivalently, for rz considered as a point in the unit disk,

=)

(1.85) fr)=Y, |o| W 2" = Y Izl 7 " + i 2| " f-nZ", zeD.
n=1

nez n=0
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The sums are all absolutely convergent, and the results above show that f(z) — f radially,
as z — dD, in the sense(s) discussed, and in particular uniformly. The decomposition
of f into a sum of a holomorphic function and an anti-holomorphic function in the disk
implies that f is harmonic. The discussion above shows that f' = f x\, where y;(z) =
Y.z e M7k and a computation shows, substituting 7 = 2~2™ that

1—72
75

_ T.
T i€

W (z) =

The formula for f* translates into the familiar Poisson transform f — f where

1— 2
/f (ll_liz) du(w), z€D,

with u normalized Lebesgue measure on T.

The Szegd, or Toeplitz projection Py € B(L?(T)) discussed in connection with Toeplitz
operators in Section@ maps an element f € L?(T) to its truncated Fourier series ¥'>°_, f(n)z"
As discussed earlier, this suggests a convolution formula

(Pof)@) = fote %)= ——.

-z
If one attempts to regularize the singular operator of convolution with %, we can define

_ [ fw)
)7/[l—r2wd‘u(w)’ zeT

and attempt to take a limit as r — 1. The limit certainly exists for trigonometric polynomi-
als f(Z) = Zn anzn~ Furthemore’ Hfr”iZ(']D = an() r2n|an|2 < anan‘z = Hf||i2(']y) Since
fr — ffor f € C[z,Z] as r — 1, by density of C[z,Z] in L?(T), and uniform boundedness of
the operators f + f,, it follows that f, — f in L*>(T). But f, — f in C(T) fails. Equiva-
lently, f is not necessarily in the disk algebra if f is merely continuous on T, even though
it is the case if f € Clz,7].

To see an example, use the Riemann Mapping Theorem to find f: D — C an analytic
bijection from D onto the rectangle —1 < Re(z) < 1, —R < Im(z) < R with f(0) = 0. Then
f extends continuously to 0D and defines an element of the disk algebra, and since f(0) =0
it is clear from the Fourier series of f that P, f = 0. Hence if u = f + f = 2Re(f) € C(T)
then Pru= P (f+f) = f+0=f. But |[ul|cr) = 2, but Pru = f, and || f||c(T) = R.

EXERCISE 1.13.24. (Heisenberg’s Inequality) (see [83]). Let f € L*(R).

2 ([P dx) - (JEIFE)P dg) > L.
b) Forany a,n € R,

(/(x—a)2|f(x)|2 dx) : (/(ﬁ—n)zlf(é)lzdé> > !ngléz‘.

¢) Part b) shows that it is not possible for both f and f be sharply localized at single
points. Why?

d) Verify Heisenberg’s inequality for the Gaussians e

14. Appendix — Fredholm operators and the index

THEOREM 1.14.1. Let H be a Hilbert space and Fred(H) denote the set of Fredholm
operators on H.
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a) IfSand T are Fredholm on H then so is ST and T*, and Index (ST ) = Index(S) +
Index(T), while Index(T*) = —Index(T).

b) If T is Fredholm and S is a compact operator then Index (T + S) = Index(T).

) The subspace Fred(H) C B(H) is a open.

d) The function Index: Fred(H) — 7Z is continuous.

REMARK 1.14.2. The theorem may be summarized by saying that the Fredholm index
induces a continuous group homomorphism

Index: GL(Q) — Z,

from the topological group of invertibles in the Calkin algebra, under multiplication, to the
group of integers under addition.

We will require several lemmas, the first of which is a matter of elementary linear
algebra. A sequence of vector spaces and vector space maps

0=V v & Iy o
is said to be exact if ran(f;) = ker(fi+1) fori =0,2,...,n (where fo is understood to be the

inclusion of the zero subspace, and f, the map fo the zero subspace.)
In particular, fi is injective and f,,_ is surjective.

LEMMA 1.14.3. Let
O=-Vi=V,—=-- =V, =0
be an exact sequence of vector spaces. Then Y1_, (—1)*dim(V;) = 0.

PROOF. By induction. If n = 3 the result follows from V, /V; & Vj.
If the result holds for all sequences of length n > 2 and if n > 2 and we are given an

exact sequence

0oV Loy &y Loy Dy o,

then observe that the sequences

0—>V1 f_1>V2f_l>'_.f”_’1>ran(ﬁ171)—>0

and
0= ran(fy_1) — Vy 25 Vory =0

are exact; now use the inductive hypothesis, the case n = 2, and a small amount of algebra.
O

LEMMA 1.14.4. Let T: Hy — Hy be a bounded linear operator with closed range.
Then there exists € > 0 such that if ||S — T|| < € then ker(S) injects in ker(T). In particular,
dimkerS < dimker(T).

PROOF. Since T has closed range, its restriction to ker(7')" is bijective onto a closed
subspace of a Hilbert space. So, by the Open Mapping Theorem (see [55]) there exists
C > 0 such that ||T&|| > C for all unit vectors & in ker(T)*.

Choose ¢ = §. Let P € B(H) be projection onto ker(T)*. Of course then 1 — P is

projection onto the kernel of 7. Let & be a unit vector in ker(S). Then
e>[[(S=T)&| = T&| = IT(PE+ (1= P)E)|| = [TPE|| = C|[PE],

so ||[PE|| < %. Hence || (1 — P)E|]*> > ||E||* — [|PE||> = 1 — || PE||* > 2 for every unit vector &
in ker(S), which shows that the restriction of 1 — P to ker(S) is injective.
]
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PROOF. (of Theorem[I.14.T)). From Corollary[I.10.7]it is clear that the product of two
Fredholm operators is Fredholm, and that the topological subspace Fred(H) C B(H) of
Fredholm operators on H, is open, since Fred(H) = 7! (GL(Q)), = is continuous, and
the group GL(Q) of invertibles in Q is open, because the invertibles in any C*-algebra
are open — see Corollary [2.1.9] of Chapter 3 where we prove it in connection with our
development of basic spectral theory.

Thus, c) is proved, and part of a).

Now let 77 and T; be Fredholm. The sequence of finite-dimensional vector spaces

(1.86) 0 — ker(T3) — ker(Ti ) - ker(T}) — H /ran(T3)
4, H/ran(T\T») — H/ran(T;) — 0

is routinely checked to be exact. An application of Lemma to this sequence yields
the result. This proves the remainder of a): the additivity of the index.

Next, we prove that the index is invariant under perturbation by finite-rank operators.
Indeed, from Exercise 22, dimker(A — F) = dimker(A — F*) for every finite-rank operator
F and every A € C. Applying this to the Fredholm operator A — F gives

Index(A— F) = dimker(A — F) — dimker(A— F*) = 0.

Hence, any finite-rank perturbation of a multiple of the identity operator has zero index.

Now if T is Fredholm and F has finite-rank, let Q be a parameterix for T with QT =
1+F’, F' finite-rank. We get that Index(Q) +Index(T) = Index(QT) = Index(1+F) =0
by the result just proved. So Index(Q) = —Index(T). Furthermore, as F’' + QF also
has finite-rank, Index(1+F'+ QF) =0. As Q(T+F)=QT +F =1+ F' + QF, we
deduce Index(Q(T + F) = 0. Since this equals Index(Q) + Index(T + F) = — Index(T) +
Index(T + F), we get Index(T 4 F) = Index(T) as claimed, proving b).

Next, we show continuity of the index. Coupled with its invariance under finite-rank
perturbation, this will imply invariance under compact perturbation, and conclude the proof
of the Theorem.

We will show:

Claim. If T is Fredholm, then there exists € > 0 such that ||S — T|| < € then S is
Fredholm and Index(S) > Index(T).

Once the claim is proved, the equality Index(S) = Index(T) follows, since we can
replace S by S* and T by T* in the claim without changing their distance apart, and the
index changes sign when we take an adjoint.

To clarify things, we will use the decomposition H = ker(T)* @ ker(T). With re-
spect to this decomposition we can write T = [;? 8} , with Tp: ker(T)* — ker(T)",
T1: ker(T)* — ker(T). Since Tj has finite-rank, Index(7) = Index(Ty). Furthermore,
T 8} is a finite-rank perturbation of S at the same
Ty O . . .

0 0} as the distance from 7 to S, and the index of S is the same
0
T;

if S as an operator on H, then S — [O
distance from 7 = [

as the index of S — [ 8] . These observations show that if we can prove the result for

. . Th O .
Fredholm operators T in whose matrix form 7 = { 0 ] the term 7] is zero, then we

T 0
will be done in general.



14. APPENDIX — FREDHOLM OPERATORS AND THE INDEX 87

0
0 0
ker(T)* has trivial kernel closed range (since it is Fredholm.) Also, Ty is also Fredholm

so has closed range as well.
By Lemma|I.14.4] we can choose

e £ >0suchthatif A € B(ker(T)') and ||A—Ty|| < &, then dimker(A) < dimker(Ty) =
0 (making A injective).
e & >0 thatthatif A’ € B(ker(T)") and ||A’ — T || < € then dimker(S) < dimker (7).
Now let S be a bounded operator on H at distance < €to 7.

. A B
Write S = [ c D] . We have

|[A =Tl = [[PSP—PTP|| = |P(S=T)P|| < [IS-T| <e.
Therefore, A is injective by choice of € < €.

Since [g 8] is a finite-rank perturbation of S (exercise), Index(S) = Index( [13 8] ),
and the latter is easily checked to equal Index(A), which, since A is injective, equals
—dimcoker(A).

Thus, we’ve shown that Index (7)) = Index(7y) = —dimker(7;’) and that Index(S) =
Index(A) = —dimker(A*). On the other hand, A* and 7" are at distance at most € as well,
and hence by our choice of € < &, dimker(A*) < dimker(7}"). Now putting everything
together gives

So assume T = [T O] , that is, that 7 maps ker(7T )" into itself. Note that Ty: ker(7)* —

Index(S) = —dimker(A™) > dimker(7y') = Index(T)
for all S with ||S—T|| <e.
Finally, continuity of the index compled with density of finite-rank operators in the
compact operators, implies the invariance of Index(T') under compact, not just finite-rank,

perturbations, and completes the proof.
O






CHAPTER 2

SPECTRAL THEORY AND REPRESENTATIONS

The mathematical concept of spectrum, and the term, arose out of the work of Hilbert
and his students; the term is said to originate in an 1897 paper of W. Wirtinger.

Later, with the development of quantum mechanics, the a connection between the
mathematical concept of spectrum and atomic spectra in physics emerged: when a chemi-
cal element or compound makes a transition from a higher to a lower energy state, a photon
is emitted, resulting in the production of light, which has a frequency. These frequencies,
or wavelengths are the spectrum of the element. Spectrum in physics is more generally
is concerned with frequencies of vibrations, and these frequencies appear as points in the
spectrum of an appropriate operator. For instance, the frequencies at which a drum vi-
brates consists of the mathematical spectrum of the Laplacian; the aptly named paper of
Kac [106] discusses the extent to which the shape of the drum can be reconstituted from
this spectrum.

The spectrum of an operator 7 on a finite-dimensional complex vector space is its
set of eigenvalues, but equivalently, the spectrum parameterizes the maximal ideals in the
(commutative) ring C[T'] generated by T, and this concept extends to commutative Ba-
nach algebras and C*-algebras. In the case of C*-algebras, the C*-algebra generated by
a bounded operator T on a Hilbert space is commutative if and only if the operator 7T is
normal, and in this case the spectrum of T is in natural correspondence with the space
of characters of C*(T), that is, *-homomorphisms y: C*(T) — C. Motivated by these
examples one defines the spectrum of any commutative C*-algebra to be the the space of
characters, and Gelfand’s celebrated theorem sets up a canonical isomorphism between any
commutative C*-algebra, and the C*-algebra of continuous functions on its spectrum, so
that in particular, commutative unital C*-algebras are all of the form C(X) for some X. The
precise version of Gelfand’s theorem is a stronger statement than this: there is a canonical
(contravariant) isomorphism of categories between the category of commutative unital C*-
algebras, and the category of compact Hausdorff spaces. In this sense, C*-algebra theory
may be thought of as ‘noncommutative topology.’

1. Spectrum in a Banach algebra

An element a in a unital algebra A is invertible if there exists b € A such that ab =
ba=1.

DEFINITION 2.1.1. Let A be a unital Banach algebra and a € A. The spectrum
Specy(a) of a is the set A € C such that A — a is not invertible.

Here A really means A- 1, where 1 is the unit, but we generally just write A. Invertibility
of course makes no sense unless the algebra is unital.

EXERCISE 2.1.2. If A is a Banach algebra and u is an invertible in A then Specy (a) =
Spec, (uau™").

89
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If a: A — B is a unital homomorphism of unital Banach algebras, continuous or not,
then Specg (0i(a)) C Specy (a) for every a € A.

REMARK 2.1.3. Invertibility sometime depends on in which algebra one allows the
inverse to be in, as in, for instance, if A C B is a unital subalgebra of a unital Banach algebra
B then by Exercise Specg(a) C Specy(a) but the containment may be strict.

For example, consider the Banach subalgebra 4 (D) of C(T) (Example(l.1.12|of Chap-
ter 2).

The function f(z) =z in C(T) is invertible in C(T) but not in A(ID), since its in-
verse would have to be % which has a singularity at the origin. Hence 0 € Specgp) (z) —
Specer) (2)-

EXAMPLE 2.1.4. If A = M, (C) the spectrum reduces to the usual notion of eigenvalue
of a matrix, since T € M, (C) is invertible exactly when det(A—T) # 0. So if A € Spec(A)
then A — A is not invertible and hence has a nonzero kernel, spanned by the A-eigenvectors
of A.

For infinite dimensional Hilbert spaces H, the spectrum of 7 € B(H) is the set of
A € C such that A — T is not bijective, since bijectivity of an operator is equivalent to its
invertibility in B(H ), by the Open Mapping Theorem, see[55]. But bijectivity may fail by
failure of surjectivity without injectivity failing, in infinite dimensions, so spectral elements
need not be eigenvalues in general.

EXERCISE 2.1.5. If X is a compact Hausdorff space and f € C(X), then f is invertible
if and only if f does not vanish anywhere, so the spectrum of f in C(X) is the range of f.

EXERCISE 2.1.6. Let A be a unital C*-algebra. Show that a € A is invertible if and
only if a* is invertible and in this case (a¢*) ' = (a~')*. Deduce that if A is a C*-algebra
and a € A then Specy (a*) = {A | A € Specy(a)}.

EXERCISE 2.1.7. If T, is the Toeplitz operator with symbol z, then T*T; = 1 is invert-
ible, but T;T.* is not; however, it is true in general that for a,b in a unital Banach algebra,

Spec(ab) — {0} = Spec(ba) — {0} (see Exercise of Chapter 2.)
The following lemma shows that the open disk in A centred at 1 consists entirely of
invertibles.

LEMMA 2.1.8. IfA isunital, a € A and ||a—1|| < 1, then a is invertible and the series

Yo o(1—a)" converges norm absolutely in A to a™".

PROOF. In a complete normed linear space, e.g. in a C*-algebra, or Hilbert space, if
a series Y, b, converges absolutely, that is, if Y'||b,|| converges, then the series converges.
This is because of the triangle inequality implies that the sequence of partial sums of such
a series is a Cauchy sequence.

Now since ||a — 1]| < 1, the series Y5 [|1 — a||" converges. Since ||(1 —a)"|| < ||[1 —
al|", the series Y» || (1 —a)"|| converges, that is, },,_o(1 —a)" is an absolutely convergent
series in A. Hence it converges, say to b. By considering the partial sums of (1 —a) -
Y (1 —a)" one sees easily that (1 —a)b =b—1. Hence b—ab =5b—1, so ab = 1.
Similarly, ba = 1.

O

COROLLARY 2.1.9. Let A be a unital Banach algebra.
a) Let a € A be invertible. If b € A and ||a — b|| < 17, then b is invertible, and

lla=t]"
the series Yoo (1 —ba~')"a converges to b~'. In particular, the invertibles in A
form an open subset of A in the norm topology.
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b) If|A| > ||a|| then A — a is invertible, and the norm absolutely convergent series
1 & ,a
> 2 G
/M A0
converges to (A —a)~. In particular, Spec,(a) C {A € C ||| < |a||}.

To proceed further with spectral theory, we need to develop a some calculus for Banach
algebra valued functions.

Fix a Banach space A, which later will be a Banach algebra, or C*-algebra. A func-
tion f: (a,b) — A from an open interval in R to A, is differentiable at 7y € (a,b) if
lim, %{0@) exists in A, in this case we denote the limit f’(¢y), and is differentiable on
the interval if it is at every point. The standard properties of the derivative, like its linearity,
the Leibnitz rule (f1 f2)'(¢) = f{(¢) f>(t) + f1(¢) f5(¢) go through for A-valued functions, we

may speak of Cl,C?,...,C* or C*-functions in the evident way, and so on.

EXERCISE 2.1.10. Prove that if f,g: (a,b) — A are differentiable then so is fg and
(f8) (1) = f()g'(t) + f(2)g ().
Similarly, the Riemann integral is defined for continuous functions f: [a,b] — A is

defined using nets. If 2 is the set of all partitions of [a,b], and P € P is one of them with
points a = xp < x1 < --- < x, = b, we associate to it the element

2.1) <f,P>:if(ti)(ti—ti_1) €A.
i=1

The net ({f,P))pcp is Cauchy in A and hence converges since A is complete (a Banach
space). We define

b
t)dt =i P).
| = tim 1)
The linearity and other expected basic properties of the integral are easily checked. In fact,

the space C([a,b],A) is itself a Banach space, and integration defines a linear functional
C([a,b],A) — A which is continuous, since

b
H/)fUﬁﬂHS sup [[f(0)[[(b—a)=f]l-(b—a)
a t€la,b]
is easily checked from the definition.
Let f: [a,b] — A be a C'-function on some open neighbourhood of [a,b]. The deriva-
tive of f being continuous implies that the function
fls)=f(1)

f:[a,b] x [a,b] = A, f(s,t):= ift =s, else f(t.t):= f'(¢t)

is continuous. Since the square is compact, it is uniformly continuous, and it follows that
for all € > 0 there exists & > 0 such that if |s — | < § then ||w —f'(s)|| < % Fora
sufficiently fine partition P with points a = xp < x1 < --- < x,, = b, we have thus
f(ti1) — f(@:)
tit1—1;
where a; € A has norm < 3. Now pairing f’ with P yields

= f’(ti) +a;

n

() = if/(m(n—t,»_l) = Y (1) — £0)) — il — 1)

i=1

and Y7 (f(tie1) — () — ai(ti — 1i—1) is within & of f(b) — f(a).
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Using approximation of domains in the plane by rectangles, one similarly defines the
integral [ [, f of a continous function f: D — A, on a suitable class of regions D C C of
the plane. Fubini’s theorem holds, so such integrals can be computed by the method of
iterated integrals. The class of regions for which all this can be checked includes those
enclosed by piecewise smooth, simple closed curves in C.

We now discuss line integrals. Let y: [0,1] — W C C be a smooth curve with y(t) =
x(t) +iy(t), W the domain of a continuous function f: W — A. Set

22 [rax= [ snoar, [ rasi= [ sty o

these ‘line integrals’ and any complex linear combination of them define continuous linear
functionals Cp(D,A) — A. An important such linear combination is the contour integral

2.3) /Y fdz = /Y Fdx+i /Y fdy.

If v is merely a piecewise smooth curve, it is the union of finitely many smooth seg-
ments, and by adding up the relevant integrals, one extends the all the definitions
above to work for piecewise smooth curves as well.

Suppose D = [a,b] X [c,d] is a rectangle in the complex plane. A direct calculation
using Fubini’s theorem yields Green’s Theorem for the rectangle:

/fdx+gdy // %—a—fdd

where the boundary is oriented positively in the usual way. Green’s theorem can then be
extended to all D which are interiors of piecewise smooth simple closed curves.

For purposes of spectral theory, we are most interested in holomorphic functions. A
function f: W — A is holomorphic at a point zg € W if

F i L)

exists.
0z €Wz Z2—20

f is holomorphic in W if it is holomorphic at every point of W.
EXERCISE 2.1.11. Let A be a unital Banach algebra, and a be an element. Then

f@)=(k-a)"
is a holomorphic A-valued function defined on the open subset U := C\ Specy (a).

If f is holomorphic at zg = x + iy, then in particular the limits
i S+ 0) = f(z0) lim f(xo + W).— f(z0)
X—X() X — )CO X—X() ly —_ lyo

existin A, i.e. gf and figf, exist at 7, where a@ and ai are the standard vector fields on C,

and are each equal to whence to each other; we get the Cauchy-Riemann equation

fi=—ify €A

Now let D be a region whose boundary is a piecewise smooth curve y. Let f be an
A-valued function which is holomorphic on a neighbourhood of D. With dz := dx+idy as
in (2.3) above, we obtain the analogue of the Cauchy-Goursat Theorem as an immediate
consequence of Green’s Theorem

7{ fdz=0.
Y
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The existence of anti-derivatives of analytic functions in simply connected open subsets
U c C s a consequence, From existence of anti-derivatives one obtains that fy f(z)dz=0
for arbitrary piecewise smooth closed curves in U, for f analytic in U, and U simply
connected.

If yis a simple closed piecewise smooth curve then it splits C into two components,
one bounded and one unbounded. If w is in one of these components, then by standard
complex analysis

-7{ dz = 2mi - wind,, (Y),
¥

z—w
the winding number of y around o. The winding number is zero if w is in the unbounded
component and is +1 if w is inside and the curve is oriented positively with respect to
its interior. More generally, we say a system I" of pairwise disjoint closed curves v; is
positively oriented if wind,, (') := ¥ ;wind,,(7;) is either 0 or +1 for all w ¢ T".

THEOREM 2.1.12. Suppose that " C U C C is a positively oriented system of closed
curves such that wind,,(I') = 0 for all w ¢ U. Let f: U — A be analytic, where A is a
Banach space. Then
oy

1
— ¢ ——=dw, V .
™ dw, V2D

7(@)-wind,(1) = 5 § £

Furthermore,
ff(w)dw =0.
r

PROOF. The set
out(I) :={w ¢ " | wind,,(I') = 0}

is open and contains C\ U. Now for f analytic on U consider the function f(z,w) =
w if z # w and else = f'(z), for z,w € U. It is routine to check that f is continuous

onU x U. Set
1 ~
=— ,w)dz.
fiw) = 5= ¢ Fewa:
The proof will be clearly be finished if we can show that f1(w) =0 for all w ¢ |I'|. However,

the function
1
70 = 3 f

is analytic on U \ |I'| and agrees with f on out(I') by the hypothesis that wind,,(I") = 0.
As out(I") is open, f1, f> piece together to give an analytic function 4 on out(I") UU and
by hypothesis this union is C. So % extends to an entire function. But clearly f, vanishes at
oo, whence £ is bounded and so by Liouville’s Theorem & = 0 everywhere, whence f; =0
as well.

Zfizv)vdz, wé|T|

O

By differentiation under the integral sign we get the generalized Cauchy Integral for-
mula

() - windy () = 22 /Y _S&

= 27751 (W _ Z)n+l

THEOREM 2.1.13. (Liouville’s Theorem) If f: C — A is bounded and holomorphic
everywhere, then f is constant.



94 2. SPECTRAL THEORY AND REPRESENTATIONS

Indeed, we show that the complex derivative f’ vanishes everywhere. For if zg € C
and if | f(z)| < C for all z then the Cauchy integral formula applied to the circle of radius n
around zo, gives

e =1 Lsazl <2E

20 n’

which implies the result by letting n — co.

COROLLARY 2.1.14. The spectrum Spec(a) of any element of a unital Banach alge-
bra A is a non-empty compact subset of the complex plane.

PROOF. The first statement is immediate from Corollary 2.1.9] the first part of which
implies that C — Spec(a) is open, and the second part that it is bounded.

To prove that the spectrum is nonempty, assume the contrary. We can then apply
Liouville’s theorem for C*-algebra-valued functions to the function

fiC=A, fA):=M—a)"",

which is entire. Clearly limyy|_,o|[f(A)|| = 0. In particular, f is bounded, whence is con-
stant, and hence is zero, which is ridiculous.
This contradiction implies that Spec(a) # 0. O

We omit the proof of the following Theorem, which also is essentially the same as the
case A =C.

THEOREM 2.1.15. Let A be a Banach space and f: W — A be a holomorphic function
defined on an open set W. Then at any point zo € W, f has a power series expansion

flz)= i)an(z —z0)"

which converges absolutely and uniformly on compact subsets of the open disk |z—zo| <R
to f, where R its the distance from zo to C\ W. Moreover,

1 . 1
z = Jm la, "
gives the radius of convergence in terms of the coefficients.

Let A be a unital Banach algebra. The spectral radius of an element a € A is defined

r(a):= sup [A]
A€eSpec(a)

If A > [la

, then A — a is invertible, as discussed above. Hence r(a) < ||«/|.

THEOREM 2.1.16. (Spectral radius formula) If A is a unital Banach algebra and a € A
then

. 1
@) = lim "] 7.

PROOF. Let f(A) = (A—a)~! for A ¢ Spec,(a), then f is analytic on C\ Specy(a),
and it has a power series expansion

1 &
f(l):XZa"k - A > lall
n=0
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Set g(A) = f(%) if A £ 0, and set g(0) = 0. The power series expansion of g at 0 is obtained
by substituting % into A in the power series expansion of f, thus

A T—a) P =g) =1 i a"\'.
n=0
Now if [A] < ﬁ then A~! ¢ Spec(a) and so g will be holomorphic at . Thus g is holo-
morphic in the ball of radius ﬁ centred at zero. Hence, by the machinery of power series,
the series converges absolutely on compact subsets of {A € C | |A| < @} and the radius
of convergence of the series is ﬁ Since the nth coefficient of our series is now a”, the
result now follows from the radius of convergence formula of Theorem [2.1.15] (]

THEOREM 2.1.17. Let A be a unital C*-algebra and a € A a self-adjoint. Then ||a| =

r(a).

PROOF. By Theorem|2.1.16} lim,,_..||a*" | - r(a) holds for any a even in a Banach
algebra. . On the other hand, ||a®|| = ||a||? for self-adjoint elements in a C*-algebra, by the

C*-identity, and inductively, ||a*'|| = ||a||*". The result follows.
O

From Theorem 2.1.17} r(a*a) = ||a*a|| for any a € A, since a*a is self-adjoint. So
combining this with the C*-identity gives the following purely algebraic description of the
norm on a C*-algebra:

l|a||* = sup{|A| | A — a*a is not invertible}.
In particular, C*-algebras are rigid in the following sense.

COROLLARY 2.1.18. Any unital *-homomorphism @©: A — B between unital C*-
algebras is contractive:

lo(a)| <llall, VacA.

PROOF. What is obvious is that if A — a is invertible, then so is @(A —a) =L — @(a).
Thus Spec(¢(a)) C Spec(a), so r(¢(a)) < r(a) holds for any a € A.

Now, since ||a|| = r(a) for self-adjoint elements, and since @(a) is self-adjoint if a is,
we see that [|¢(a)|| = r(¢(a)) < r(a) = ||a|| for self-adjoints, using Theorem[2.1.17} Now
in general, a*a is self-adjoint, and using the C*-identity we get the result.

(]

COROLLARY 2.1.19. A C*-algebra isomorphism ©: A — B is isometric:
lo(a)ll = llall. a€A.

PROOF. ¢ (r(a))=r(¢(a))is clear for isomorphisms. Now proceed as in the previous
proof to show that the norm is also preserved.
O

It will follow from the Spectral Permanence Theorem [2.5.1] that the hypothesis can be
weakened from isomorphism to injective.

Essential spectrum of a bounded operator
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An interesting example of a spectrum is to take a bounded operator T € B(H) and look
at its image in the C*-algebra Q(H) := B(H)/ X (H) (it was shown to be a C*-algebra
under coset multiplication in the previous chapter.)

DEFINITION 2.1.20. The essential spectrum Spec.q(T) of a bounded operator T, is
the spectrum of T in Q(H), the set of A € C such that A —7t(7T') is not invertible in Q.

By Exercise [2.1.2] Specy(T) C Spec(T). The essential spectrum is the part of the
spectrum which remains unchanged when T is replaced by a compact perturbation of 7.
By the definitions, T is Fredholm if and only if 0 ¢ Spec,(T).

EXERCISE 2.1.21. Let T € B(/*(N)) be the multiplication operator M; where f €

I”(N). Say ||f|| <1 for simplicity. Prove that Spec(T) = ran(f), a closed subset of the
unit disk, while

Specess(T) = ran(f) U{A € C | f~1(A) C Nis infinite},
where ran(f)’ means the set of limit points.

EXERCISE 2.1.22. Prove thatif T is essentially unitary and Spec.(T) C T is a proper
subset of the circle, then Index(T) = 0.

EXERCISE 2.1.23. Let T be any bounded operator. If A ¢ Specy(T) then A — T is
Fredholm. Show that Index (A — T') is constant on connected components of C\ Spec, (T')
and vanishes on unbounded components.

EXERCISE 2.1.24. Prove that Specy(7f) = ran(f), if f € C(T) and T the corre-
sponding Toeplitz operator.

2. The holomorphic functional calculus

Let A be a commutative, unital Banach algebra and a € A, with spectrum Specy (a) C
C.

Let U be an open neighbourhood of Spec(a) and f an analytic (holomorphic) function
on U. Let v be a simple, closed, positively oriented piecewise smooth curve in U so that
Spec(a) C ins(y) := {w ¢ |y| | wind,,(y) = +1} and such that C\ U C out(y) :={w ¢
Y| | wind,,(y) = 0}. Recall that the winding number is defined wind,,(y) = ﬁ Fy ﬁdz-
We are going to define a quantity

(2.4) fla):= zim ﬁ Fw)(w—a) tdw.

The first observation is that the formula does not depend on Y. For if ¥ were another
such positively oriented closed curve then wind,,(y—7) = wind,,(y) — wind,,(y) =0 —
0=0ifw¢ U, and wind,,(y—Y) =1—1=0if w € Spec(a), so that the cycle ' :=y—Y
is a system of closed curves in V := U \ Spec(a) such that wind,,(I') = 0 for all w ¢ V.
Since f(w)(w—a)~! is analytic on V,

jéf(w)(w—a)fldw =0
by Cauchy’s Theorem [2.1.12] That is,
/{f(w)(w—a)*l dw= /yf(w)(w—a)fl dw.

The same argument extends to systems I" of closed curves; we refer to [55]] for the
details.



2. THE HOLOMORPHIC FUNCTIONAL CALCULUS 97

THEOREM 2.2.1. Assume that Spec(a) C U C C where U is open. Let T and I be
systems of positively oriented piecewise smooth curves in U such that Spec(a) C ins(I') C
U and Spec(a) C ins(I") C U. Then for any f analytic on U,

%f (z—a) ldzfy{f le

DEFINITION 2.2.2. Suppose that f is analytic on a neighbourhood U of Spec(a). Let
I" be a system of positively oriented simple closed curves in U such that Spec(a) C ins(I")
and C\ U C out(T"). We define

1@ = 5 S =) e

EXAMPLE 2.2.3. Let A be the Banach algebra (the C*-algebra) C(X), with X C C any
compact subset. Let a € A be the restriction of f(w) =w to X. Then Spec,(a) = X. Let
U be an open neighbourhood of X. Let I be a system of positively oriented closed curvces
as in Definition [2.2.2] If f is analytic on U then by the usual Cauchy Integral formula

1) = 5 f 109) =) ez
holds for all w € X.

The right hand side is the integral in (2.4). In other words, the map f — f(a) defined
in (2:4), agrees with the natural inclusion of algebras

Hol(U) —» C(X), f+~ flx-

PROPOSITION 2.2.4. Suppose Spec(a) C U C C and let T be a system of piecewise
smooth curves in U as in Definition Suppose that f is analytic on |z| < R for some
R > r(a). Then Y7 cpa” converges absolutely in A and

(2.5) fla)=Y cd"
n=0

The proof is left as an exercise.
PROPOSITION 2.2.5. In the above notation,
fla)-gla) = (f-g)(a).
That is, the map f — f(a) is an algebra homomorphism Hol (Spec(a)) — A.

PROOF. Let o and P be two curves with Specy (a) on the inside of both of them and
o inside B. Using o to define f(a) and B to define g(a), we write

(2.6) f(a)-g 2m //f z—a) Y(w—a) 'dwdz

= Wﬁ/ﬁf(z)g(w). < (c—a)” 1W—_(vzv—a)_l)> dwdz by algebra

_ 1 g(w) - 1 fw)
= Gami? ﬁf(z).jéwi_zdw.(z—a) ldz + ni? ?{sg(w)(w a)”! T ——dzdw

but in the second term, for each w we see the integral

),

al—W
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and w is a point on J, and hence is outside the loop @, so the integral is zero by Theorem
[2.1.12] Thus, the second term vanishes, while in the first integral, we see the integral
w
8w .,
pwW—2

where z is on o, and hence is inside . From the Cauchy Integral Formula

7{ 80 o omi-g(2).
pW—2z
Going back to (2.6) we see that we have showed that

fla)-gla) = Zim 7& F(2)e(2)(z—a) \dz,

which is (f - g)(a), defined using the curve .
The argument is only computationally more complicated for systems of curves, we
refer to [55]] for the details.
d

EXERCISE 2.2.6. If (f,) is a sequence of analytic functions in U and f,, — f uniformly
on compact subsets of U (so that f is therefore analytic on U as well), then

fala) = f(a)
in the Banach algebra A.
An important result concerning the holomorphic calculus is the
THEOREM 2.2.7. (Spectral mapping theorem.) If f € Hol (Spec(a)) then
Spec(f(a)) = f (Spec(a)).

PROOF. Let U,T be as in Definition Let A € Spec(a) and f be holomorphic on
U.Letg(z)= % Then g is also holomorphic on U. Since (z—X)g(z) = f(z) — f(A),
(a—A)g(a) = f(a) — f(A). If f(A) ¢ Spec(f(a)) then f(a)— f(A) would be invertible,
which would imply that a — A is invertible, a contradiction. Hence f(A) € Spec(f(a)) as
claimed.

Conversely, suppose u ¢ f (Spec(a)). Then g(z) := (f(z) —u)~' is holomorphic on
a (possibly smaller) neighbourhood of Spec(a) and so g(a)(f(a) —u)~' = 1. Hence u ¢

Spec (f(a)). -

COROLLARY 2.2.8. If A # 0 is an isolated point of Spec(T), where T is a compact
operator; then A is an eigenvalue of T.

PROOF. Let U be a neighbourhood of A, V an open set containing Spec(a) — {A},
and U NV = 0. Let Y be a positively oriented loop around A in U, and I" be a positively
oriented closed path or system of closed paths containing Spec(a) — {A} in its inside. Let
I=vy+TI". Set

1

. ~1
E) = i f{(z T) ‘dz.
I claim that E) is an idempotent. Indeed, if f is the function on U UV equal to 1 on U and
0 on V, then f is clearly holomorphic on U UV, and hence we may apply the holomorphic
functional calculus to form

71 = 5 7@ = T)
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This reproduces the formula for Ej above. From the fact that f> = f as holomorphic
functions on U UV, and that the functional calculus is an algebra homomorphism, we

T 0 ]
0 T//
where T = T (1 — E, ), and the decomposition is into the direct (non-orthogonal) sum of
E;MH and (1 - E;L)H.

Provided that A # 0, it is easy to see that 7’ = E; T is invertible as an operator E H —
E)H (construct an inverse). Hence 0 ¢ Spec(T”). Since Spec(f(T)) C {0,A}, it follows
that Spec(7T") consists of A alone.

Now if T is compact, so is T, and since T’: EyH — E) H is invertible, E H is finite-
dimensional. Since in finite-dimensions, every element of the spectrum of an operator is
an eigenvalue, A is an eigenvalue of 7/, whence of T

deduce that f(T) = E,_ is an idempotent. Since T commutes with Ej, T = [

(]

3. Characters and Gelfand’s Theorem

Let A be a unital commutative Banach algebra. The set of algebraic, i.e. not necessarily
closed, proper ideals in A is a poset to which Zorn’s lemma can be applied. We deduce the
existence of maximal proper ideals M, i.e. proper ideals of A which are contained in no
larger proper ideal.

Maximality of a proper ideal M implies that it is closed. For otherwise, the closure of
M would be a larger ideal. If this larger ideal is A itself, then M would be dense in A, and
hence M itself would non-trivially intersect the open subset {a € A | ||[a — 1|| < 1}, which
consists entirely of invertibles. An ideal containing an invertible can only of course be A
itself. This contradicts properness of M.

EXERCISE 2.3.1. Let A be a Banach algebra and J C A be any closed ideal. Show that
A/J with the quotient norm

la+J]| := inf||a+ x|
xeJ

and quotient vector space and algebra structure, is a Banach algebra, and that the quotient
map T: A — A/J is a contractive homomorphism of Banach algebras.

By the Exercise, A/M with the quotient norm is a Banach algebra for any maximal
ideal, so for any a € A we can speak of the spectrum of the coset a + M in the Banach
algebra A/ M.

LEMMA 2.3.2. If M is any maximal ideal in a commutative, unital Banach algebra A,
then the spectrum of any element a+ M in the Banach algebra A/ M consists of a single
point in the spectrum of a in A. The mapping sending a+ M to L if Specy ar(a+M) = {A}
is an isometric isomorphism A/ M = C of Banach algebras.

PROOF. Ifa ¢ M, i.e. if a+ M is a nonzero element of A/M, then a+ M generates
anonzero principal ideal (a+ M) :={ab+ M | b€ A} C A/M which, clearly, is proper in
A/M if and only if @+ M is not invertible in A/ M. The inverse image n~' ((a+ M)) C A
of this ideal is an ideal of A containing M. Since M is maximal, this inverse image must
be all of A. Thus the ideal (a+ M) we started with is actually A/ . In particular, a + M
must be invertible in A/ M. This shows that any nonzero element of A/M is invertible in
A/M.

From this, we deduce that the the spectrum
Spec(a+ M) :={h € C|A—a+ M invertible in A/ M }
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of an element a + M of A/M is the same as {A € C | a+ M = A+ M}, or, equivalently,
the same as {A € C | L —a € M}. Note that there can be at most one scalar A such that
A—a € M, since if there were two, say A; and A;, then we would get A; — A, € M, but
M, being proper, can contain no nonzero scalar. Furthermore, by Liouville’s theorem,

Spec(a+ M) is non-empty.
This all shows that the Banach algebra A/ M consists exactly of multiples A+ M of the
unit, with a + M corresponding to the multiple A+ 9 if and only if {A} = Spec, /ar(a+
([l

If A is a commutative unital Banach algebra we call a nonzero homomorphism % : A —
C of Banach algebras a character of A. If M :=ker() then y determines an isomorphism
A/M = C and since C has no nonzero proper ideals, neither does A/M, and hence M is
a maximal ideal in A.

Hence the proof of Lemmaprovides an isomorphism A /M = C mapping a + M
to the unique point A € Specy (a) C C such that Specy /g7 (a+ M) = {A}. Equivalently, A
is determined by the property that A —a € M. Since y(a) satisfies this condition, ¥ (a) = A.

In particular, }(a) € Specy (a) for any character and any a € A. Since |A| < r(a) < ||al|,
we obtain the following facts about characters.

LEMMA 2.3.3. If A is a commutative unital Banach algebra andy: A — C is a char-
acter of A then y(a) € Specy (a) for all a € A, and (hence) |y (a)| < ||a|| for any a, that is,
X is automatically contractive.

In particular, characters of Banach algebras are automatically continuous.

LEMMA 2.3.4. If A is a commutative unital Banach algebra and a € A, then for every
A € Specy (a), there is a character ¥: A — C such that x(a) = \.

In particular, for any commutative unital Banach algebra and any a € A, the spectrum
Specy (a) consists precisely of the values ¥(a) of characters of A at a.

PROOF. Since A — a is not invertible, it generates a proper ideal (A —a) in A. This is
contained in a maximal ideal M, by Zorn’s lemma, which is the kernel of some character
x: A — C. Moreover, %(a) = Aif and only if A —a € M, and since A := (a) satisfies this
condition, x(a) = A.

([

EXERCISE 2.3.5. Prove that point evaluation at a point of D determines a character of
the disk algebra A(D).

EXERCISE 2.3.6. If G is a locally compact abelian group and Y is a character of G (a
continuous homomorphism G — T) then

alf)= [ 1(e)(s) duls)
defines a character the Banach algebra L'(G), and the C*-algebra C*(G) of G.

In the case of C*-algebras, we have the special general result about characters.

LEMMA 2.3.7. If A is a commutative C*-algebra and ,: A — C is a character, then
x(a*) = x(a), that is, ¥, is automatically a *-homomorphism.
This implies that A/M is a C*-algebra, since it is isometrically *-isomorphic to C.

It also implies that a maximal ideal in a C*-algebra is automatically both closed, and a
*-ideal, i.e., closed under adjoint.
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PROOF. It clearly suffices to show that x(a) € R for a self-adjoint. Write y(a) =
o+ iB. Then |x(a+it)|> = o2 + B> + 2Bt + 2 for any € R. On the other hand, ¥ is
contractive, so |y(a+it)> < |la+it||> = ||(a+it)*(a+it)| = ||a® + 2| < ||a||> +>. The
resulting inequality

o + B2 4+2Bt + 12 < ||a* +12
valid for all # € R implies immediately that 3 = 0.
(I

COROLLARY 2.3.8. If A is a C*-algebra and a € A is any self-adjoint element, then
Spec(a) € R.

PROOF. Indeed, the elements of Spec, (a) are precisely the values of charactersy: A —
C by Lemma[2.3.4] and such a character maps self-adjoints to R by Lemma[2.3.7] (]

4. Gelfand’s Theorem

DEFINITION 2.4.1. If A is a commutative unital Banach algebra, A denotes the space
of characters y: A — C endowed with the topology of pointwise convergence on A.

We remind the reader that in the case where A is a C*-algebra we do not need to
require additionally that characters are *-homomorphisms, since this is automatic.
We sometimes refer to A as the spectrum of A, or Gelfand spectrum.

PROPOSITION 2.4.2. If A = C(X) for a compact Hausdorff space X, then the char-
acters of A are in natural 1-1 correspondence with the points of X, with a point x € X
corresponding to the *-homomorphism C(X) — C of evaluation f — f(x) of functions at
X.

Thus, the spectrum of C(X) is X.

PROOF. Suppose a.: C(X) — C is a character of C(X). If f and g have disjoint sup-
ports, then fg = 0 so it follows a(f)a(g) = 0, whence either a(f) =0 or a(g) = 0.
Now say x € supp(a) if for all neighbourhoods U of x, there exists f € C.(U)" such
that a.(f) # 0. The complement of supp(a) is open by definition, so supp(f) is closed.
Suppose that supp(a) = 0. By definition x € X —supp(o) implies there exists a neighbour-
hood U of x such that a.(C.(U)) = 0. If supp(a) = 0 every point satisfies this condition.
Since X is compact, there exists a finite collection {U;} of such open sets. Let (p;) be a
subordinate partition of unity, so 0 < p; < 1, supp(p;) C U;, and ¥; p;(x) = 1 for all x € X.

We get
o(f) = (L pif) = Y o(pif) = 0

for all f € C(X), a contradiction to o # 0. Hence supp(a) # 0. Next, supp(a) contains
at most one point, for if x,y € supp(a) then there exist U and V disjoint neighbourhoods
of x,y, and f € C.(U) and g € C.(V) such that a(f) # 0 and a(g) # 0, which contradicts
a(f)a(g) = a(fg) = o(0) = 0. So supp(a) contains exactly one point point, say {xo}.

Next, I claim that if f(xo) = 0 then o(f) = 0. Suppose f(xp) = 0. Choose € > 0 and
any neighbourhood Uy of x such that | f| < € on Up. If x # x there exists a neighbourhood
U of x such that o is zero on C.(U). Find a finite collection {U;} of such U so that
Up U, U; covers X, and a partition of unity {p;} subordinate to the cover by Uy and the
U;. Then

o f) = (Y pif) = lpof).

Since |pof| < € and characters are contractive, |o(pof)| < €. This shows that |o(f)| < €,
and since € is arbitrary, a(f) = 0.
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Finally, f — f(xo) - 1 vanishes at xo whence a(f) = f(xo) follows. O

LEMMA 2.4.3. For any commutative unital Banach algebra A, Aisa compact Haus-
dorff space.

PROOF. Since any characters is contractive, we may identity A with a collection of
functions Ay :={a € A | ||a|| < 1} to D, that is, as an element of the Cartesian product X :=
14, D. Endowing this product with the product topology results in a compact Hausdorff
space since D is compact Hausdorff (and the Tychonoff theorem). The resulting map A
X is clearly injective since a character is determined by its values on Ay, and is continuous,
by the definitions. Moreover, its range is closed. Indeed, suppose that ) : A} — C is a map
which is a limit point of the image of A. So there is a sequence of characters () such
that )¢, (a) — % (a) for all a € A;. First we extend ¥ to A by setting ¥ (a) := ||| X(ﬁ) If
a € A is any nonzero element, ), (a) = ||a|| xn(ﬁ) — |lal| X(ﬁ) =%(a). Hence ), — %
pointwise on all of A. Now the fact that §{ is a character, and hence that Y is the restriction

to A of a character, follows immediately using limits. We leave the details to the reader.
O

If A is a commutative, unital Banach algebra, C(;\\) is a C*-algebra, and in particular
a Banach algebra. If a € A is any element, we let 4 denote the function on A defined by
a(x) :=y(a). Clearly a is continuous on A. The map a + d is the Gelfand transform

A— C(A).
THEOREM 2.4.4. (Gelfand) For any commutative unital Banach algebra A, the Gelfand

transform A — C (X) is a contractive, injective, Banach algebra homomorphism. If A is a
C*-algebra, it is a C*-algebra isomorphism.

PROOF. The Gelfand transform is easily checked to be an algebra homomorphism.
Using Lemma [2.3.4] we get, for any a € A,

llall = supla(x)| = suplx(a)] =  sup [A]=r(a) < |al,
XEA xEA AeSpecy (a)

so the Gelfand transform is a contractive homomorphism of Banach algebras. If A is a
C*-algebra, % (a*) = ¥ (a) for any character, from Lemma It follows that a* = a* if A
is a C*-algebra, so in this case the Gelfand transform is a *-homomorphism. Moreover, if
a is self-adjoint, then since r(a) = ||a|| by Theorem[2.1.17] we get that ||d = [|a|| and the
Gelfand transform is isometric, whence injective. Clearly 1 is the constant function 1 on A.
Moreover, if %1 # Xp are different characters, then by definition, there is some a € A such
that %, (a) # ¥2(a), so the image of A in C(A) is a *-subalgebra of C(A) which separates
points of A, contains the constant functions, and is closed under conjugation, so by the
Stone-Weierstrass theorem it is dense in C (Z) Since the Gelfand transform is isometric,
however, and C (2) is complete, the range of the Gelfand transform is closed by a standard
argument. Hence its image is C(X)

O

From the above discussion we obtain the following critically important theorem.

COROLLARY 2.4.5. Every commutative unital C*-algebra is isomorphic to C(X)
where X is a compact Hausdorff space.
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This result is why general C*-algebras are sometimes considered philosophically as
generalized spaces, or ‘noncommutative’ spaces.

One can formulate Corollary [2.4.5] more precisely as follows. Let Top be the cate-
gory with objects compact Hausdorff spaces and morphisms continuous maps and Cj,
the category of commutative unital C*-algebras and unital C*-algebra homomorphisms.
Define a (contravariant) functor Top — C}, by sending an object X of Top to the object
C(X) of Cy, and a morphism ¢: X — Y to the induced *-homomorphism C(Y) — C(X),
f — foo. This functor is a (contravariant) equivalence of categories. Equivalently, it is an

equivalence between Top and the opposite category C} 7.

EXERCISE 2.4.6. Let X and Y be compact Hausdorff spaces.

a) As discussed in Remark [2.5.4] any *-homomorphism a:: C(X) — C(Y) has the
form a(f) = f o ¢ for a unique continuous map ¢: ¥ — X. Show that if a is
injective then ¢ is surjective, and if o is surjective, then ¢ is injective.

b) Deduce from a) that any injective *-homomorphism between C*-algebras — com-
mutative or not — is isometric. ( Hint. Note that to show that a *-homomorphism
o: A — B between C*-algebras is isometric it suffices to show that |jo(a)|| = ||«||
for all a self-adjoint (by the C*-identity.) Now if a € A is self-adjoint, then C*(a)
is a commutative unital C*-algebra, as is C*(o(a)). Use Gelfand’s Theorem and
part a).)

EXERCISE 2.4.7. A C*-algebra is separable if it is as a topological space, that is, if it
contains a countable dense set. Show that if X is locally compact Hausdorff, then Cy(X) is
separable if and only if X is second countable. Thus, a general commutative C*-algebra A
is separable if and only if its spectrum A is second countable.

EXERCISE 2.4.8. Viewing the circle T as R/Z, we have a copy of QN[0, 1] inside of it
(with 0 and 1 identified). Let A be the C*-algebra generated by C(T) and the characteristic
functions ¥, 4 of the characteristic functions of closed intervals [p.q], p<q,p,q €Q,

with rational endpoints. Clearly A is commutative, and C(T) is a subalgebra. Therefore A
is a compact space which maps to T. Describe A and the map.

EXERCISE 2.4.9. Itis clear that an inductive limit of commutative C*-algebras A, =
Co(X,) results in a commutative C*-algebra h'gCo (X,) — what is its spectrum?

Let I be a directed system. An inverse system of compact Hausdorff spaces over I is a
family {X; | i € I'} of compact Hausdorff spaces and a family {¢;;: X; — X; | fori < j} of
continuous maps such that ¢;; o ¢ jx = ¢ for all i < j < k. The corresponding inverse limit
space is defined to be the set

limX; o= {(xi)ier € [ [ X [ = ¢ij(xj) Vi < j}.

topologized as a subspace of []; X;.

It is a closed subspace of a compact Hausdorff space, whence is itself compact Haus-
dorff.

The inverse limit satisfies the following universal property: if Y is a compact Hausdorff
space and {a;: Y — X;; | i € I} is a family of maps such that if i > j then ¢;; 0 o; =
then there is a unique map o.: ¥ — l’&nX,- such that ;oo = o; for all i € 1.

The maps ¢;; of an inverse system give rise to *-homomorphisms ¢;;: C(X;) — C(X;),
for i < j, by §; i(f) = fo0;; and these make up a directed system of C*-algebras.

Prove that
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C(limX;) = lim C(X;).

The following exercise introduces some interesting compactifications of R, and of
more general metric spaces, which in a number of cases are in a sense more naturally
defined in terms of their C*-algebras of continuous functions, than as spaces described in
terms of a locus of points.

The simplest example of such a space is the Stone-Cech compactification X say of the
discrete space X := N of natural numbers. Then BN is by definition the Gelfand spectrum
of the C*-algebra C,(N) = [*(N). To describe the actual points of PN is not so easy.

EXERCISE 2.4.10. Let (X,d) be a non-compact metric space. Define
CX) = {f €CX) | lim sup |£(x) — ()] =0, ¥R > 0}.

d(x,y)<R
Show that C(nX) is a commutative C*-algebra. It’s Gelfand dual nX is, by definition,
called the Higson corona of X, and plays a role in Index Theory. The Higson corona
construction is part of the more general field of coarse geometry, information about which
can be found in [99].

a) With R given its standard metric, prove that smooth functions f on R with f’ €
Co(R) are dense in C(NR).
b) Prove thatif ¢: X — Y is a proper Lipschitz map between metric spaces then

fr=foo

defines a *-homomorphism C(MY) — C(nX), whence that a proper Lipschitz
map X — Y determines a map nY — nX.

¢) Prove that any group G of isometries of (X,d) acts naturally by homeomorphisms
of the compact space nX.

d) Suppose (X,d) is a discrete metric space and X C X is a compactification of X
satisfying the following condition, making it a coarse compactification. If (x,)
and (y,) are sequences in X such that sup, d(x,,y,) < o, then (x,) converges to
a boundary point & € X — X if and only if (y,) does, and they converge to the
same boundary point.

Prove that there is a surjection continuous map nX — X.

e) Let X be the metric space D with the Poincaré metric (defining the hyperbolic
plane.) Show that the usual compactification of D by 0D = T is a coarse com-
pactification of X in the sense of d).

EXERCISE 2.4.11. Let (X,d) be a non-compact metric space. Recall that f € C(X) is
uniformly continuous on X if for all € > 0 there exists & > 0 such that d(x,y) < & implies

[fx) = f)| <e.
Define

Cu(X) :={f € Cp(X) f is uniformly continuous on X }.
Show that C,(X) is a unital commutative C*-algebra, determining, therefore, by Gelfand
duality a compact space X, the uniform compactification of X.
a) Prove that smooth functions f on R with f’ € C,(R) are dense in C,(R).
b) Prove that any group G of isometries of (X, d) acts naturally by homeomorphisms
of the compact space X .
¢) Show that for T the circle, lifting functions to periodic functions determines an
injection C(T) — C,(R), and an induced surjection R* — T.
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We close this section on some remarks on Gelfand’s theorem for (potentially) non-
unital, commutative C*-algebras.

If A is a commutative C*-algebra, A™ the unitization of A, then Gelfand’s theorem pro-
vides an isomorphism AT = C (gi ). The unitization A comes equipped with an augmen-
tation €: AT — C and € is a point of E, hence determines an ideal: the ideal of continuous

functions on A+ which vanish at €. This ideal identifies under Gelfand’s isomorphism to
the ideal A C A™.

THEOREM 2.4.12. If A is a commutative C*-algebra, and A" the unitization of A,

then A is isomorphic to the ideal J C C(A™) of continuous functions on AT which vanish
at €.

Since the complement of a point in a compact Hausdorff space is locally compact, it
follows that any commutative C*-algebra is isomorphic to Cy(X ), for some locally compact
Hausdorff space X.

5. Functional calculus, isospectral subalgebras

If A is a unital subalgebra (or another type of subalgebra) of a C*-algebra B, and if
a €A, is the spectrum of a the same in A and in B? This question has important implications
for functional calculus constructions, and is important in Noncommutative Geometry.
Firstly, if A is a C*-subalgebra of B, then the answer is ‘yes.’

THEOREM 2.5.1. (Spectral permanence). Let A be a unital C*-subalgebra of the
unital C*-algebra B. Then Specy(a) = Specg(a) for all a € A.

PROOF. Clearly Specg(a) C Specy (a) for any a € A. We need to prove that if a € A
is invertible in B, then it is also invertible in A. Notice first that it suffices to prove the
statement for self-adjoints. For if a is invertible in B so is ¢* (in B), and hence so are a*a
and aa*. If we can show these are both invertible in A, invertibility of @ in A will follow (if
a*a is invertible then a has a left inverse, etc).

If a is any-self-adjoint, it’s spectrum is real, by Corollary [2.3.8] Since a is self-adjoint
in both A and B, both Spec, (a) and Specg(a) are subsets of R. Let A ¢ Specg(a). We show
that A ¢ Specy (a). Assume otherwise. Choose a sequence of complex numbers A, lying
off the real axis and converging to A. Since A, ¢ R for all n, A, — a is invertible in both A
and B for all n. As inversion is continuous in any C*-algebra, (A, —a)™' — (A—a)~!in
B. But since the inclusion A — B is isometric, it follows that (A, —a)~! also converges in
A (it is a Cauchy sequence and hence converges to something). A routine argument shows
that it converges to the inverse of A — a, i.e., we obtain a contradiction to the assumption
that A € Specy (a).

O

COROLLARY 2.5.2. A unital *-homomorphism A — B is injective if and only if
2.7 Spec(a) = Spec(9(a)) Va € A.

PROOF. The Principal of Spectral Permanence Theorem [2.5.1] asserts that injective
unital *-homomorphisms are isospectral in the sense of (2.7).

For the converse, [|9(a)||* = ||¢(a)*¢(a)|||¢(a*a)|| = r(9(a*a)) by Theorem

for any a € A, but since @ is assumed isospectral this equals r(a*a) = ||a||>. O
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Accordingly, from now on, when referring to the spectrum of an element a of a C*-
algebra, we will just write Spec(a) rather than Specy(a), since the spectrum does not
depend on the containing C*-algebra.

We now develop the functional calculus, for normal elements of a C*-algebra.

An element a in a C*-algebra A is normal if a*a = aa*. The set of all elements of A of
the form Y, ,, A ma” (a*)™ is then a commutative *-subalgebra of A, whose closure is the
C*-algebra C*(a) generated by a, that is, the smallest unital C*-subalgebra of A containing
a. Clearly then C*(a) is commutative. From spectral permanence, the spectrum of a is the
same if we regard a as an element of C*(a), or of the A we started with. So for brevity of
notation, we replace A by C*(a) in the following. That is, we will assume that a generates
A.

LEMMA 2.5.3. If A= C*(a) and a is normal then the compact Hausdorff spaces A
and Spec(a) are homeomorphic by the map A — Spec(a) of evaluation of characters at a.

PROOF. Note that any character of A = C*(a) is determined by its value at a. This
shows injectivity of the evaluation map. Surjectivity is immediate from the fact that
Spec(a) consists exactly of values of characters at a (Lemma 2.3.4). d

By Gelfand’s theorem, A = C(A). By the Lemma, A = Spec(a), whence C(A) =
C(Spec(a)) as C*-algebras. Thus

(2.8) C(Spec(a)) — A.

This map might reasonably be called Gelfand functional calculus, or ‘continuous’
functional calculus. It extends holomorphic functional calculus (as we show below.)

DEFINITION 2.5.4. (Functional calculus for normal elements). Let a be a normal
element generating a unital C*-algebra A. Let f: Spec(a) — C be a continuous function
on Spec(a). Then f(a) denotes the element of A corresponding to f under the isomorphism

PROPOSITION 2.5.5. Ifa € A is normal and f(2) =Y, aym7"Z" is a polynomial in z,7,
then

fla)=Y cnma" (@)™,
where f(a) is defined by the Gelfand functional calculus.

If f is holomorphic on a neighbourhood U of Spec(a) and if U is a positively oriented
system of closed curves in U as in Definition then

fla)= Zim.?gf(z)(z—a)‘1 dz.

That is, the holomorphic functional calculus and the Gelfand functional calculus agree on
their common domain.

PROOF. Since the functional calculus is a C*-algebra homomorphism it suffices to
check that it maps z[gpec(q) t0 @, since z|gpeq(a) generates C (Spec(a)) as a C*-algebra. To
check that f(a) = a when f(z) = z, note that f corresponds under Spec(a) = A to the
continuous function f(x) = f (x(a)) = x(a). This continuous function on A corresponds
under C(A) 2 A to a itself. This proves the first statement.

Suppose now U, f,I" is as in the statement. We argue that

zim,ygf(z)(z—a)—l dz
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agrees with Gelfand’s f(a). If y: A — C(Spec(a)) is Gelfand’s isomorphism, then we
may apply 7 to the A-valued contour integral above. One has y(a) = z\spec<a) and it follows
that Y((z —a)~!) is the continuous function on Spec(a), A z%k Since v is continuous,

application of v, for each A, to the contour integral produces the function

1IE

2mi Jrz—A

on Spec(a), and this equals f by Cauchy’s Theorem.
([

Since z|gpec(q) generates C (Spec(a)) as a C*-algebra, any *-homomorphism from
C(Spec(a)) to another C*-algebra, is completely determined by the image of z (Z is then
sent to the adjoint of this element), and then polynomials in z and Z are sent to the cor-
responding combinations in the C*-algebra. This leads to a compact formulation of the
above discussion as a uniqueness result about functional calculus:

LEMMA 2.5.6. Let a be a normal element of a C*-algebra. Then the functional cal-
culus is the unique unital *-homomorphism

C(Spec(a)) — C*(a)
which maps the inclusion function z: Spec(a) — C, to a.
Lemma [2.5.6)implies the following result, the Spectral mapping theorem.

PROPOSITION 2.5.7. Ifais a normal element of a unital C*-algebra and f & C(Spec(a))

then Spec(f(a)) = f(Spec(a)).

PROOF. The functional calculus is a C*-algebra isomorphism so Spec (f(a)) = Spec(f),
where Spec(f) means of course the spectrum of f as an element of the C*-algebra C(Spec(a)).
Since the spectrum of a continuous function is its range, the result follows. ]

COROLLARY 2.5.8. Let a be normal, g € C(Spec(a)) and f be a continuous function
on g(Spec(a)). Then (fog)(a) = f(g(a)).

In the statement of the Corollary, (f o g)(a) refers to the functional calculus for a
applied to fog and f (g(a)) refers to applying first the functional calculus for a using g,
then the functional calculus for g(a) using f.

PROOF. We apply the uniqueness result of functional calculus to b := g(a). The map
f+ fogisa*-homomorphism C [g(Spec(a))] — C(Spec(a)). By the Spectral Mapping
Theorem g(Spec(a)) = Spec(g(a)). Hence this is a *-homomorphism C(Spec(g(a)) —
C(Spec(a)). Composing with the functional calculus for a then gives a *-homomorphism
C(Spec(g(a)) — C(Spec(a)) — C*(a). This maps the inclusion function z: Spec(g(a)) —
C to the function g(a) by the definitions. By uniqueness, it must agree with functional
calculus for g(a). In other words, f(g(a)) = (fog)(a).

(]

Another result that is useful and follows immediately from density in C (Spec(a)) of
polynomials in z,Z, is the following.

COROLLARY 2.5.9. If ais a normal element of a C*-algebra A and b € A commutes
with a and a* then b commutes with f(a) for every f € C(Spec(a)).



108 2. SPECTRAL THEORY AND REPRESENTATIONS

COROLLARY 2.5.10. if a is a self-adjoint in a unital C*-algebra A then there exist
unique positive elements ay and ap in A such that a = ay — ap and ayar = aza; = 0.

PROOF. For existence set fj () = max(z,0) and f>(t) = —min(¢,0), then a; := fi(a)
and ay := f>(a) are the required elements. If A happens to (isomorphic to) C(X), for X
compact Hausdorff, the uniqueness part of the statement is easily checked by hand. We re-
duce the general case to this one by showing that if a = b; — b has a second decomposition
in A of the same kind, then the b;’s commute with the a;’s, whence C* (a1,a2,b1,by) will
be commutative, whence, by Gelfand’s theorem, isomorphic to C(X) for X compact Haus-
dorff, the special case just discussed. But given that a = by — by with b1by, = byby = 0,
it follows immediately that bya = b% = aby, so by commutes with a, and similarly b»
commutes with a. Now by Corollary each b; then commutes with f(a) for any con-
tinuous function f on Spec(a), so in particular each b; commutes with both a; = fi(a) and
a) = fz (a)
O

EXERCISE 2.5.11. The function f(t) = +/1 —1¢ is the uniform limit on any closed
interval |t| < 1 — ¢, of its Taylor series expansion at # = 0: thus, for appropriate constants
CO? Cl LR}

Vi—i=Y cu",
n=0
and the sum is norm convergent in the C*-algebra C([0, 1 —€]). Use the fact that
a(a*a)" = (aa*)'a

in combination with the Spectral Theorem to show that for any unital C*-algebra A and
any a € A with ||a|| <1,

a(l —a*a)% =(1—aa")2a.

Isospectral subalgebras

We now discuss some examples of a geometric kind in which spectral permanence
holds for subalgebras B C A of a C*-algebra which are not C*-algebras, but are dense
subalgebras.

Let A be a C*-algebra. Assume that A comes equipped with a time evolution: a 1-
parameter group (0;),;cr of automorphisms of A. The continuity requirement is that ¢ —
6;(a) is continuous for all a € A.

An element a € A is smooth if the map R — A, t — 6,(a), is smooth. Let A* be the
subalgebra of smooth elements of A. The map &: A~ — A,

2.9 d(a) := —oy(a)
is a derivation: 3(ab) = ad(b) + 8(a)b.

EXERCISE 2.5.12. Suppose that a time evolution with derivation & is inner in the sense
that 6;(a) = e " ae~™ for some H € A self-adjoint. Show that 8(a) = i[H,a].

EXERCISE 2.5.13. Show that A” C A is dense in A and that if @ € A™ is invertible in A
then a is invertible in A”. Deduce that the spectrum of a € A” is the same as the spectrum
of ain A.
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EXAMPLE 2.5.14. Let M be a compact manifold M admitting a smooth flow (T;);cr
then C(M) gets a time evolution ;(f)(p) := f(t—;p) and derivation 8(f) := Lx (f), where
Ly denotes the Lie derivative with respect to the tangent vector field of the flow

(Lx1)(p) = (D), pEM.

The smooth elements of C(M) are the continuous functions which are smooth along
the orbits of the flow.

Let A have a time evolution (o;);cr as above. We show that the *-subalgebra A* of
smooth elements is stable under smooth functional calculus. Let f € C°(R) be a smooth,
compactly supported function. Since f is smooth, its Fourier transform

7&) = [ e a

is defined, and is a smooth function of rapid decay on R: for every n the function | £(&)|-|&|"
is bounded. The Fourier inversion formula then expresses f as an integral

16 = 5 [ Feeae,

EXERCISE 2.5.15. Let a € A be self-adjoint.
a) Prove that the integral [ f(£)e>?d€ converges absolutely in A and that

(2.10) fla)= 5 [ F@)ena

holds in A.

b) By the usual technique of differentiating under the integral sign using (2.10),
prove that f(a) is smooth if a is smooth. Hence A* is stable under smooth func-
tional calculus. It is therefore also stable under holomorphic functional calculus.

c) Use to deduce the ‘chain rule’
8(f(a)) =3(a) f'(a),

where f(a) and f’(a) refer to continuous functional calculus for a.

The smooth elements of a flow are an example of an ‘isospectral subalgebra’ in the
following sense.

DEFINITION 2.5.16. A unital, dense subalgebra B C A of a unital C*-algebra is isospec-
tral in A if Spec4(a) = Specy(a) forall a € 4.

Such subalgebras are important in Noncommutative Geometry in its applications to
K-theory.

EXAMPLE 2.5.17. C*(M) C C(M) is isospectral, since f is invertible in C(M) (resp.
C>(M)) if and only if f(x) # O for all x € X.

EXERCISE 2.5.18. Let B C A be a dense subalgebra.

a) Show that B C A is isospectral if and only if b € B invertible in A implies b~! € B.

b) Show that if B C A is isospectral, and if there is a norm on B making B a Banach
algebra, then B is closed under holomorphic functional calculus. That is, if b € B
and f is holomorphic on a neighbourhood of Spec, (b) = Specg(b) then f(b) €
B.
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c) Show that if p € A is a projection, then there exists an idempotent g € B such
that |p — ¢|| < 1. (Hint. By density find b € B arbitrarily close to p, and for
such b, b? — b is small, and if it small enough 1 ¢ Spec(b) and hence there
is a holomorphic function /4 in a neighbourhood of Spec(b) such that h(b) is
idempotent.)

Part ¢) implies that the inclusion B — A induces an isomorphism Ko(B) — Ko(A).
This is one of the essential points about isospectral subalgebras.

Other important examples of isospectral subalgebras come from densely defined deriva-
tions.

Let A4 C A be a dense subalgebra of a C*-algebra. Let D be an A- bimodule, equipped
with a Banach space norm such that |lavb|| < ||a| ||v|| ||b|| foralla € A, b € B, v € D.

In this notation, a derivation 8: A4 — D is a linear map satisfying 8(ab) = 8(a)b +
ad(b) for all a,b € 4.

Say 8 is closable if whenever a,,a,b € 4 such that a, — a and 8(a,,) — b, then 8(a) =
b.

The following exercise shows that & extends to a derivation of a dense Banach subal-
gebra dom(J) of A such that dom(8) C A is isospectral.

EXERCISE 2.5.19. Let 8: 4 — D be a densely defined closable derivation as in the
discussion above.

a) Define fora € 4, ||a||; := max{||a||,||d(a)||}. Prove that
llabl|y < 2[lally - [|2]]:-

Let now ||al[s := sup,_; [labl|1. Prove that |-[|5 is an equivalent norm to |[-[|;
but now is a Banach algebra norm ||ab||s < ||al|5 - ||D]|s-

b) Let dom(d) of 4 be the completion of 4 with respect to ||-||s, equivalently, with
respect to ||-||;. Prove that § extends to a derivation of dom(8) into D. The new
derivation is closed (the graph of d is closed in A @ D.) (Hint. An element of
dom(9) is an element a € A for which there exist a,, € 4 such that a, — a and
d(ay) converges in B.)

¢) Suppose that a € dom(3) is invertible in A. Prove that a~! € dom(8). (Hint.
Choose a sequence (b,) C dom(8) such that b, — a~'. Apply the derivation
rule to the sequence (ab,) and deduce that 8(b,) — a~'8(a)a~". Deduce the
result).

d) Prove that dom(d) C A is isospectral.

EXERCISE 2.5.20. Let (f,) C Cp(R) be a bounded sequence of differentiable func-
tions on R such that f, — 0 uniformly and f;, — h uniformly, for some continuous function
h on R. Prove that & = 0. (Hint. Show [;h = 0 for any interval 1.)

Deduce that if = Ly is the densely defined derivation of C*(M) determined by Lie
derivative with respect to a vector field X, as in Example 2.5.14] then 8: C*(M) — C(M)
is closable.

EXERCISE 2.5.21. Let G be a countable group and ¢: G — R be a group homomor-
phism. On C[G] define 8(Y4c ag[g]) := Locq 9(g)agg]. Prove that 8 is a densely defined
derivation C[G] — C*(G) and that 9 is closable. Hence dom(9) is a dense subalgebra of
C*(G) which is closed under holomorphic functional calculus.

EXERCISE 2.5.22. Let A be a C*-algebra and n: A — B(H) be a representation. Let
F € B(H) be a self-adjoint operator such that the commutators [(a), F] are in the Schatten
trace-class ideal L!(H) for a € 4, where 4 C A is a dense *-subalgebra.
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Prove that £!(H) has a natural A-bimodule structure and that §: A — L' (H), §(a):=
[n(a),F] is a closable derivation. Hence dom(9) is a dense Banach subalgebra of A which
is isospectral in A and for which [n(a),F] € L'(H) for all a € dom(3).






CHAPTER 3

POSITIVITY, REPRESENTATIONS, TENSOR PRODUCTS AND
IDEALS IN C*-ALGEBRAS

In classical mechanics an observable is a continuous function on a space X, an element
of the commutative C*-algebra C(X). In quantum mechanics an observable is a bounded
operator on a Hilbert space, or an element of a C*-subalgebra A C B(H), such as M,(C),
if the system is very simple, like that of an atom which can be in n quantum states, corre-
sponding to energy levels of the Hamiltonian. A ‘microscopic’ state of the classical system
is a point of the space, and corresponds to a C*-algebra character C(X) — C. In quantum
mechanics one is forced to work with general states in the C*-algebraic sense: positive
linear functionals ¢: A — C, i.e. linear functionals taking positive values at self-adjoint el-
ements of A with positive spectrum. For example, the the energy states of the Hamiltonian
are the vector states corresponding to the eigenfunctions of the Hamiltonian H.

States are the quantum analogues of probability measures on a compact space. This
requirement of working with states, due to failure of various operators to commute, is what
given quantum mechanics its probabilistic nature.

Vector states associated to a representation ©: A — B(H) of a C*-algebra on a Hilbert
space are obtained by the formula ¢(a) = (n(a)v,v), where v is a unit vector. Thus, a
representation gives rise to a family of states. The GNS construction gives something like
a converse: a state on a C*-algebra gives rise to a representation of the C*-algebra, from
which the state can be recovered as a vector state. A consequence is the famous theorem of
Gelfand, Naimark and Segal [86] published in 1943, stating that every abstract C*-algebra
is isomorphic to a C*-subalgebra of B(H) for some H.

In this chapter we discuss positivity, states and representations of C*-algebras, estab-
lish the GNS theorem, define tensor products and discuss the general procedure of com-
pletions of *-algebras, as well as prove some basic results on ideals deferred up to now, i.e.
that the quotient of a C*-algebra is a closed ideal is a C*-algebra. We close by studying an
example and analyze the space of irreducible representations of the examples Cp(X) x G of
noncommutative, orbifold examples, where G is discrete and acts properly, co-compactly
on X. The computation comes from the paper [68], where the description of the topology
on the spectrum is given directly in terms of the space X and the action.

The books [127], [126]] and [7]] are good sources for representation theory and ideal
theory of C*-algebras.

1. Positivity and states

DEFINITION 3.1.1. Let A be a unital C*-algebra. An element a € A is positive if a is
self-adjoint and Spec(a) C [0, ).

We write a > 0 if a is positive. More generally, if a and b are self-adjoint, we write
a<bifb—a>0.

113
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EXERCISE 3.1.2. Let p and ¢ be two projections in B(H). Prove that p < ¢ if and
only if p is a subprojection of g.

REMARK 3.1.3. The square a? of any self-adjoint element « in a unital C*-algebra is
positive, for by the Spectral Mapping Theorem (Proposition , Spec(a®) = {M | L€
Spec(a)}, and since a = a*, Spec(a) C R, so Spec(az) C [0,0). Conversely, if @ > 0 then
f(t) ;== +/t is a continuous function on Spec(a), so \/a is defined and has square equal to
a. Thus positivity for elements of a C*-algebra A is equivalent to being the square of a
self-adjoint element of A.

It is clear that if f € C(X) for a compact Hausdorff space X then f > 0 in the C*-
algebra sense if and only if f(x) > 0Vx € X.

A very useful criterion for a self-adjoint operator on a Hilbert space to be positive is
given by the following.

PROPOSITION 3.1.4. If T € B(H) is a self-adjoint then T > 0 if and only if (TE,&) >0
forallE € H.

PROOF. If T >0 then T = S? for a self-adjoint S by Remark and then (TE,&) =
(S?E,E) = (SE,SE) > 0 holds evidently for all § € H.

Conversely, suppose that (T€,&) > 0 for all €. Then T is self-adjoint. By Proposition
of the previous chapter, we can write T = T} — T for positive elements T; € B(H)
such that 7175 = 0. Now

||T2§||2 <T2§ Tz@ (T7E, Th).
But since T1T» = 0 TT = —T2 So <T22?; 1E) = —(ThE, T2§> < 0 follows. Therefore

3
[7,2E|> =050 T ZZ; 0. Since & was arbitrary, this shows that T22 =0. Hence T, = 0. So
T =T, and T is positive.

]

Note that Proposition implies immediately that any operator of the form T*T is
positive. One of the trickier results in elementary C*-algebra theory is that a*a is positive
for any element a of any C*-algebra. Note that the result is clear for elements of abelian
C*-algebras, since these are isomorphic to C(X) for compact Hausdorff spaces X, and
here the result is obvious, since a function of the form f*f = | f|* obviously takes positive
values only.

The following criterion for positivity will be useful for several arguments.

LEMMA 3.1.5. If a is a self-adjoint in a C*-algebra with ||a|| < 1 then a > 0 if and
only if [1—a < 1.

PROOF. The statement is clearly true for complex numbers, then follows for f € C(X)
by considering the values of f. Now the result for general a self-adjoint and contractive
follows from the Spectral Theorem, giving an isomophism C*(a) = C(Spec(a)). O

COROLLARY 3.1.6. The sum of two positive elements is positive.

PROOF. Leta and b be positive; assume first that [|a|| < 1 and ||b|| < 1. Then |52 || <
1 as well, and

=20 = 50 —a)+ (1 -b) < 5 (11—l + 1 ~b) <

t a+b

since a and b are positive and have norm < 1. This shows tha
that a + b is positive.

is positive, and hence
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Now for the general case, replace a and b by ta and ¢b for suitable t > 0 making both

ta and tb have norm < 1. We deduce that za+tb = t(a+ b) is positive and hence that a+ b
is.

(]

THEOREM 3.1.7. IfA is a C*-algebra and a € A then a*a is positive.
Hence an element of a C*-algebra is positive if and only if it is of the form a*a for
some a.

PROOF. Write a*a = u — v as a difference of positive elements as in Proposition

Let e = av. We are going to show v = 0.
First of all,
efe=va*av =v(u—v)y = —v’

since uv = vu = 0 and v = v*. On the other hand, if we write ¢ = x+ iy with x,y self-
adjoint, then we see that e*e = x> 4 y* +i(xy — yx), while ee* = x> +y? — i(xy — yx). Hence
e*e+ee* = x> +y?. Since x> and y? are certainly positive, their sum is positive. Hence
e*e+ee® > 0. On the other hand, we have just observed that e*e = —v3. Thus ee* =
—e*e+x*+y* = v3 +x% +y? which is another sum of positive elements, whence positive.
Thus, ee* is positive. On the other hand since Spec(ee*) \ {0} = Spec(e*e) \ {0}, by
Exercise [2.1.7| of Chapter 2, and since ee* has been shown to be positive, it must be that
e*e >0 as well. But again, e*e = —v* < 0. So the spectrum of e*e can consist only of 0.
Since e*e is self-adjoint, this implies that e*e = 0 and hence that —v? =0, whence, since v
is self-adjoint, v = 0.

(]

EXERCISE 3.1.8. Prove that if A is any unital *-algebra, then 1 4 a*a is invertible for
all a € A, holds if and only if Spec(a*a) C [0,0) for all a € A. (Hint. For a fixed, and any
A > 0, the hypothesis implies that 0 ¢ Spec(1 4 Aa*a) and hence that —% ¢ Spec(a*a).)

Since the converse is trivially true, we see that the property of C*-algebras that a*a >0
for all a € A, is equivalent to the property that 1 +a*a is invertible, for all a € A.

DEFINITION 3.1.9. Let A be a unital C*-algebra. A state on A is a linear functional
¢@: A — Csuch that (1) =1 and if @ > 0 then @(a) > 0.

EXAMPLE 3.1.10. States of C(X) are in 1-1 correspondence with Borel probability
measures on X. (the Riesz Representation Theorem.)

LEMMA 3.1.11. Let ¢ : A — C be a linear functional. Then @ is a state if and only if
©(1) =1, @ is contractive, and 9(a) € R ifa = a*.

In particular, states are automatically continuous.

PROOF. Suppose ¢ is a state. If a is any self-adjoint, then a = u — v where u,v are
positive, whence ¢(a) = @(u) — @(v) is a difference of positive real numbers so ¢(a) € R
for a = a*.

Since a < ||a|| holds for any a € A self-adjoint, @(a) < ||a|| - (1) = ||a]|.

Conversely, let : A — C be linear and satisfy the stated conditions. If a € A with
llall < 1 then since a*a is positive and ||a*al| = ||a||*> < 1, an application of Lemma
gives that |1 —a*al| < 1. Since @ is a contraction, |1 —@(a*a)| = |¢(1 —a*a)| <1, and
furthermore, |@(a*a)| < 1, and these two conditions together gives that ¢(a*a) > 0 for
any a. Since positive elements are exactly those of the form a*a, this shows that ¢ maps
positive elements to non-negative real numbers as required. (]
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THEOREM 3.1.12. IfA is any unital C*-algebra and S(A) is the state space of A, then

lall = sup [o(a)]
QES(A)

for any self-adjoint element a € A.

PROOF. If a € A is self-adjoint then C*(a) = C(Spec(a)) with a corresponding to
the inclusion z : Spec(a) — C. Since Spec(a) is a compact subset of R the function |z]
obtains its maximum on Spec(a), say at A. Then the map yo: C*(a) = C(Spec(a)) — C
corresponding to evaluation f — f(A) of functions at A is a character of C*(a) satisfying
[wo(a)| = ||a||. Being a character, it is contractive on C*(a). By the Hahn-Banach Theorem

it can be extended to a contractive linear functional y: A — C. Then @(a) := 1(y(a) +

y(a*)) is still contractive, extends W, maps self-adjoints of A to real numbers, and has
¢(1) =1, so it is a state by Lemma|3.1.11|and by design satisfies |¢(a)| = ||a]|.

REMARK 3.1.13. Note that the proof shows that for each self-adjoint a € A there exists
a state @ € S(A) such that ||a|| = |@(a)|.

EXERCISE 3.1.14. Let A be a unital C*-algebra. Answer the following questions
about positivity.
a) a < ||a|| -1 for all a € A self-adjoint.
b) If x <y are self-adjoints then a*xa < a*ya for all a € A.
¢) If a,x € A with x > 0 then a*xa < ||x||a*a.
d) If x <y and both are invertible, then y~! <x~'. (Hint Observe first that y~ %xy’% <
1. Deduce that x2y~Z || < 1, then that x2y~'x2 < 1)

REMARK 3.1.15. There is a special class of states appearing in the C*-algebraic for-
mulation of quantum statistical mechanics, called KMS, or equilibrium states, which phys-
ically measure the properties of a system in thermal equilibrium. Given a 1-parameter fam-
ily {0, };er of automorphisms of A, a KMSg state is a state ¢ of A with a certain twisted
tracial property with respect to this evolution. This set-up appears in connection with a
number of examples related to number theory see [28]], [54]], corresponding physically to
systems with interaction in which at high temperature (small B) disorder is predominant,
resulting in uniqueness of KMSg states while at low temperatures order sets in and allows a
multitude of possible KMSg states, i.e. thermodynamical phases (called spontaneous sym-
metry breaking.) In a number of examples, these state spaces admit interesting descriptions
(see [115], [58]).

2. The GNS theorem

DEFINITION 3.2.1. A representation of a C*-algebra A is *-homomomorphism t: A —
B(H) for some Hilbert space H. The representation is faithful if T is an injective *-
homomorphism, and is non-degenerate if t(A)H = H. 1t is irreducible if there is no proper
nonzero closed subspace H' C H of H such that n(A)H’ C H'. It is non-degenerate if
n(A)H is dense in H, and is cyclic if there is a vector § € H such that m(A)E is dense in H.

EXERCISE 3.2.2. Let A be a C*-subalgebra and 7 a representation of A on H. If
H' C H is a closed subspace invariant under a, then H is also invariant under 7t(A).
With respect to this decomposition,
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for a pair of representations of A on H,H.

Two representations T: A — B(H) and p: A — B(K) are equivalent if there is a unitary
u: H — K such that n(a) = n(u)*p(a)n(u) for all a € A.

The complex numbers, and more generally, matrix algebras of any size, have unique
irreducible representations, up to unitary equivalence.

PROPOSITION 3.2.3. Up to unitary equivalence, the C*-algebra M,,(C) has a unique
irreducible representation — the standard one, given by the action of M,(C) on C" by
matrix multiplication.

We need the following:

LEMMA 3.24. If ¢: M,(C) — M,,(C) is a unital *-homomorphism then nlm and
there is a unitary u € My,,(C) such that

A 0 --
ow=u|? L Dlw
0o --- A

forall A e M, (C)).
Of course the number of diagonal summands in the matrix is 7.

PROOF. Let us start by recalling that since M,,(C) is always simple (Exercise 3.4.06),
every nonzero *-homomorphism M,,(C) — D to another C*-algebra is automatically injec-
tive, whence isometric.

The idea of the proof is to think of the matrix units ¢;; € M, (C) geometrically in terms
of the Hilbert space C” on which M, (C) acts via the representation @: M, (C) — M,,(C) =
B(C™). Each e;; acts as a projection €; onto a subspace E; of C™. The subspaces E; are
pairwise orthogonal and @}_, E; = C". (In particular n|m).

The matrix units e;; for i # j act as partial isometries €;; the range projection for
g;j is e,»js;?j = g;;€;; = €; and the source projection is €;;. Thus €;; restricts to a unitary
isomorphism E;: — E;, and it is the zero operator on the orthogonal complement E]L =
Ot jEk-

Consider Ej. It has an orthonormal basis. Using €;;: E; — E;, we construct the
corresponding image orthonormal bases of Ej, E3, ..., E,. Putting all of these orthonormal
bases together gives an orthonormal basis of C”. We leave it to the reader to check that
with respect to this basis, ¢(A) has the form

A 0 --
0O A O
o --- A
as claimed. |

EXERCISE 3.2.5. If A is unital and t: A — B(H) is a representation, then there exists
a subspace H' of H so that with respect to the induced decoposition of H,

n(a) = [”’é“) 8}

where T': A — B(H’) is non-degenerate.
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EXERCISE 3.2.6. Prove that any representation @: A — B(H) is a direct sum of
(countably many) cyclic representations. That is, there is a decomposition H = H; & H, &
-+ and cyclic representations T, : A — B(H,) such that n(a) = @;,_, ®,(a).

Lett: A — B(H) be a representation. If & is a unit vector in H, let ¢: A — C be the
linear functional @(a) = (n(a)&,£). Then clearly (1) = 1 and ¢(a*a) = ||x(a)||* > 00 ¢
is actually a state, usually called a vector state.

The GNS construction, explained below, reverses this, and produces a representation
from a state. Let @: A — C be a state. Define a sesquilinear form on A by (a,b) := @(b*a).
By the generalized Cauchy-Schwarz inequality (Theorem [4.4.15)),

3.1) |(ab*)* < 9(a*a)o(b*b)
for all a,b € A, a fact used in the proof below.

PROPOSITION 3.2.7. Let @ be a state of A. Then there is a cyclic representation
n: A — B(H) and a cyclic vector § such that ¢(a) = (n(a)&,&) for all a € A.

Furthermore, if p: A — B(K) is another cyclic representation, and | € K is a cyclic
vector giving the same state, i.e. for which ¢(a) = (p(a)n,m), then © and p are unitarily
equivalent by a unitary isomorphism sending & to 1.

PROOF. In the notation above set (a,b) := @(b*a). Let N C A be the subset of A
consisting of a such that (a,a) = 0. By Equation (3.I) N is a linear subspace of A. Form
the quotient vector space Hy := A/N. Then (-,-) descends to an inner product on Hy. Let
H be its completion, a Hilbert space. Write ||a||y := {(a,a) := @(a*a) to distinguish from
the C*-algebra norm.

If a,b € A then since b*a*ab < ||a||*b*b, and since @ is a state,

(3:2) lab|3; = (ab.ab) = ¢(b*a*ab) < |la|*¢(b"b) = |lall3 1b]I7-

Soif b € Nthenab € N. Hence N is actually a left ideal in A, and so there is a well well
defined defined bilinear multiplication, A x Hy — Hy, (a,b+N) — ab+ N, where b+ N etc
denotes the coset of b in Hy =A/N. Equation also shows that the linear map Hy — Ho
of left multiplication by a € A is bounded by ||a||. Consequently, left multiplication by a
extends to a linear map H — H which is a bounded operator with norm < ||a||. Denote this
bounded linear map by m(a). It is easily verified that m: A — B(H) is a representation of
A, and that if & € H is the coset of 1 in Hy C H, then (n(a)&,&) = ¢(a).

For the uniqueness statement, suppose p: A — B(K) is another representation of A and
M € H is a vector such that ¢(a) = (p(a)n,m). Notice that from the definitions ¢(a*a) =
|[m(a)||? and for the same reason = ||p(a)||>. In particular if a € A then 7t(a)§ = 0 if and
only if p(a)n =0, and the map U: H — K, U (n(a)§) := m(a)n is then well defined . It is
clearly linear and isometric on the dense subspace T(A)& C H and hence extends uniquely
to a unitary map H — K. Since it was also assumed that p(A)n is dense in K, it is a unitary
isomorphism. From the definitions, if &; := nt(a)§ € H then U = p(a)n € K so

(UTp(b)U)E1 = Up(b)p(ba)n = U p(ba)n = n(ba)§ = n(b)n(a)§ = T(b)&:.
This implies that T and p are unitarily equivalent by a unitary mapping & to 1.
O

EXAMPLE 3.2.8. Let G be a discrete group, and T: C;(G) — C the tracial state which
on elements of C[G] is given by T(¥,A,[g]) = A. (see Exercise Exercise|1.3.10})
Then the cyclic representation associated to 7 is the left regular representation

A C*(G) — B(1*(G)),
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with cyclic vector the point-mass e; at the identity element of G.
Thus
©(T) = (MT)e1,e1)
represents T as a vector state affiliated with the regular representation.

EXAMPLE 3.2.9. Let X be a compact Hausdorff space ad u a Borel probability mea-
sure on X, @, the corresponding state of C(X). The associated GNS construction forms
the Hilbert space obtained by completing C(X) with the norm || f||? = [y|f(x)[*du(x), and
represents C(X) on L2(X,u) as multiplication operators. The cyclic vector is the constant
function 1 € L*(X).

COROLLARY 3.2.10. Every C*-algebra is isomorphic to a C*-subalgebra of B(H)
for some Hilbert space H.

PROOF. From each unitary equivalence class of representation of A, pick a represen-
tative m: A — B(Hy). Let X be the set of such representations. Let H = ®rexHy, and
represent A on H diagonally by p(a)(&x)rex := (T(a)&x)rex. We need to show that p is
injective. But if p(a) = 0 for some a € A then n(a)& = 0 for every T € X and every vector
& € Hy. Since every state of A can be represented as a vector state for some T € X and some
€ € Hy, we get that @(a*a) = 0 for every state of A, which contradicts Theorem

As an alternative proof, by Remarkfor each a € A there exists ¢, € S(A) such
that @(a*a) = ||a||>. Taking the direct sum of the corresponding cyclic representations
gives another faithful representation of A.

(]

EXERCISE 3.2.11. Prove that the C*-algebra M,(C) has a unique irreducible repre-
sentation, up to unitary equivalence, which is the standard representation (on C2).

EXERCISE 3.2.12. The following exercise addresses the question of whether or not a
representation can be extended from a C*-subalgebra to a larger one.

Let A be a unital C*-algebra, B C A a C*-subalgebra containing the unit of A, and
n: B— B(H) be a representation of B. Follow the steps below to prove the following:

PROPOSITION 3.2.13. In the above notation, there is a Hilbert space K and a repre-
sentation p: A — K whose restriction p|g: B — B(K) splits into a direct sum of represen-

tations
0= "¢ i)

of B, where p' is unitarily equivalent to T.

a) Let y be a state of B, my: B — B(Hy) the associated GNS representation. Let
¢ be a state of A extending y, and 7y: A — B(Hy,) the corresponding GNS
representation. Prove that the inclusion B — A induces a Hilbert space isometry
U: Hy — Hy, that its image is invariant under 7ty (B), and that Uty (b)U* |y (#,,) =
To(b)|y(s,) forall b € B.

b) Prove that if n: B — B(H) is a cyclic representation, then the conclusion of

Proposition |3.2.13| holds.

¢) Using Exercise[3.2.6]to deduce the Proposition for general representations .

EXERCISE 3.2.14. Let A be a unital C*-algebra. Equip M»(A) with the obvious vector

space structure, adjoint
a bl" _|a*
c d| ~|b* d*|’
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and multiplication
a b| |d V| _ |ad+bc" ab +bd
c d| | d|7 |cd+dd cb+dd'|’
The result is a *-algebra.

Let n: A — B(H) be a faithful representation of A on a Hilbert space H. Construct
from this a faithful *-homomorphism &t: M»(A) — B(H & H). We may define then

e al=ie

where the norm on the right hand side is the norm in B(H & H). Show that no nonzero
element of M»(A) has zero norm, that M, (A) is already complete with respect to this norm,
and that M>(A) (with the given norm) is a C*-algebra.

REMARK 3.2.15. Since a C*-algebra can have only one C*-norm, the norm defined
on M;(A) does not, in fact, depend on 7.

EXAMPLE 3.2.16. The following construction produces an injective representation of
the inductive limit C*-algebra U (2*) of Example

We will take H = L2([0,1]).

A standard argument used to prove the Bolzano-Weierstrass theorem, proceeds as fol-
lows. Divide the interval [0, 1], which we denote just by I, into I; := [0, l] and b, :=
LQ([%, 1]). We can further subdivide /; into equal-length subintervals /1,72 , and similar-
ily subdivide I, into I»1,l;. Continue in this way, for example dividing I»; (the interval
[3.3]) into Ly; (the interval [3, %]) and 1, (the interval [% 21

We obtain a family of intervals /,,, where u ranges over all finite sequences of 1’s and
2’s.

Now let p and v be distinct sequences of equal length. Then the intervals I, and I, are
disjoint, and of the same length, and hence same measure. There is then a canonical Hilbert
space isometry (c.f Exercise syu: L*(Iy) — L*(1,) induced by translating the one
interval onto the other. Viewing L?(I,) and so on to be closed subspaces of L([0,1]), we
can then extend sy, to be zero on the orthogonal complement of the closed subspace L? (1)
to get a partial isometry s,y : L2([0,1] — L2([0,1].

Now we may parameterize a basis for C2' by finite sequences of 1’s and 2’s of length
n, since the number of such sequences is 2". If i and v are such sequences (of the same
length), let E,,y € M»:(C) be the corresponding matrix unit, and let E,,y act on L2([0,1])
by s;v.

EXERCISE 3.2.17. Prove that this defines an injective representation of U (2%) as
bounded operators on the Hilbert space L*([0, 1]).

In other words, U(2*) is isomorphic to the C*-subalgebra of B(L?([0,1])) generated
by the partial isometries s,y : L?([0,1]) — L?([0,1]), where u and v range over all pairs of
finite sequences of the same length.

The same idea produces a representation of U (n*) for any n.

EXERCISE 3.2.18. Prove that the universal UHF algebra A’ of Example[1.11.10]can
be realized as a C*-subalgebra of bounded operators on L?([0, 1]) in the following way. If
n,k,! are natural numbers with 0 < k,[ < n, let

swktt L2(10,1]) = L*([0,1])
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be the partial isometry which is zero on the orthogonal complement of the closed subspace
Lz([é, HT]], and which maps Lz([ﬁ, HT]} isomorphically onto Lz([f, Et1] by the obvious
map, induced by translating the one interval onto the other.

Prove that A is isomorphic to the C*-algebra generated by the s, .

We close with some general remarks on containment and weak containment of repre-
sentations.

In general, a representation of a C*-algebra need not have any nontrivial representa-
tions contained in it as summands. So a general representation does not decompose into a
direct sum of irreducible representations, as with representations of compact groups.

Indeed, if X is compact and u a Borel measure with full support then the representation
M : f+ My of C(X) by multiplication operators on L?(X, 1) contains the representation 7,
of point evaluation f — f(x) for some x € X, if and only if x is an atom for the measure.

How are the representations on L?(X,u) and on the Hilbert space direct sum @,cxC
of the point evaluation representations 7, related? Notably, they give the same norm on
C(X): since ||M¢|| = sup,cx|f(x)| if u is a Borel measure with full support.

The right notion is that of weak containment of representations.

DEFINITION 3.2.19. If w,p are representations of a C*-algebera A, we say T < p if
Im(a)] < ||p(a)|| for all a € A.

If x € X, then w, < M, in the notation above.

In this book the author periodically uses the term spectrum Aofa C*-algebra A to
refer to the space of unitary equivalence classes of irreducible representations of A. We do
not discuss it in any kind of systematic way. In this topology, a representation © determines
the closed set of of (classes of) irreducible representations p which are weakly contained
in .

EXERCISE 3.2.20. Show that if u is a Borel measure on X, M: C(X) — B(L*(X,u))
is the representation by multiplication operators, and 7, : C(X) — C is the representation
of C(X) by point evaluation at x, then , < M if and only if x € supp(u).

EXERCISE 3.2.21. Let Ay = C(T) x5 Z be the irrational rotation algebra. If x € T,
C(T) is naturally represented on [%(Zx), with Z, the orbit of x. The group Z acts by
shifting.

a) Verify that these constitute a covariant pair and give an irreducible representation
T, of Ap.

b) Show that 7, and 7, are unitarily equivalent irreducible representations if x and
y are in the same orbit of the Z-action. Thus, one gets a map Z\T — Z; from
the space of orbits into the ‘spectrum’ of Ay.

The issue of comparing norms from different representations of *-algebras and C*-
algebras is discussed further in the next section.

3. Generalities about completions of *-algebras

Many C*-algebras are defined by an algebraic construction followed by a ‘completion’
procedure. The algebraic construction makes a *-algebra. The completion procedure com-
pletes it to a C*-algebra. C*-algebras are themselves ‘rigid’ — a C*-algebra has a unique
norm with respect to which it is a C*-algebra. But a given *-algebra may be endowed with
many different submultiplicative norms satisfying the C*-norm axioms (except complete-
ness, of course.) Each gives rise to a potentially different C*-algebra, by completion.
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DEFINITION 3.3.1. A pre-C*-algebra will mean a *-algebra 4 which is equipped with
asemi-norm ||-||: 4 — [0,0) satisfying ||ab|| < ||| -||b|| for all a,b € A, and ||a*al| = ||a||®
foralla € 4.

EXERCISE 3.3.2. Show that if (4, ||-||) is a pre-C*-algebra, then the elements of norm
zero in 4 form a *-ideal Null(]|-||). Furthermore, if we define

[la+ Null([[- )]l := inf{{ja+&] [ [|5] = 0},

then this defines a norm (not just a semi-norm) on the *-algebra A4/Null(]|-||). Show that
the quotient map 4 — 4 /Null(]|-||) is isometric.

REMARK 3.3.3. A typical (and in fact the general) way of getting a pre-C*-algebra
structure on a *-algebra 4 would be to find a *-representation n: 4 — B(H) of 4 as
bounded operators on a Hilbert space. We could then define a semi-norm ||-||; satisfying
the C*-identity by setting

llalln := [|In(a)]]
where the norm on the right hand side is the operator norm in B(H).

The Gelfand-Naimark-Segal Theorem combined with Proposition [3.3.7|below implies

that every pre-C*-algebra structure on a given *-algebra arises in this way.

DEFINITION 3.3.4. A completion of a pre-C*-algebra (4, ||-||) is a pair consisting of
a C*-algebra A and an isometric *-homomorphism ®: 4 — A (with respect to the given
semi-norm on A4 and the C*-algebra norm on A) which satisfies the following universal
property. For any C*-algebra B and any contractive *-homomorphism ¢ : 4 — B, there is
a unique *-homomorphism ¢: A — B such that o n = @.

EXERCISE 3.3.5. Assume the existence of a completion A of a pre-C*-algebra (4, ||-||)-
Suppose that B is a C*-algebra and ¢: 4 — B is an isometric *~homomorphism. Show that
the induced map @: A — B is also isometric.

EXERCISE 3.3.6. Prove thatif w: 4 — A is a completion, then 7 has dense range.
Completions exist:

PROPOSITION 3.3.7. Every pre-C*-algebra has a completion; and if *: A — A and
7. 4 — A are any two completions of (4, ||-||), then there is a unique C*-algebra isomor-
phism o: 4 — A" such that T = dloT.

PROOF. Let (4,]||) be as in the statement. The set of elements of 4 of norm zero
form a *-ideal in A4 as is easily checked. The quotient of A4 by this *-ideal then an algebra
to which the seminorm descends, giving a a norm satisfying the C*-identity. To avoid
introducing new notation, we just assume that ||-|| was a norm to begin with.

As any metric space has a completion, we may apply this to the current situation,
obtaining a metric space A into which A4 is embedded isometrically and densely. Any
Lipschitz map from A4 into a complete metric space extends uniquely to A. In particular,
the norm on A4 extends to a norm on A. The algebra operations on A4 similarly extend to
A: for example addition by a fixed a € A4 regarded as a map A — A is isometric, hence
Lipschitz, and so extends continuously to a map A — A. The adjoint * also extends, by the
same arguments. Thus A is actually a C*-algebra.

If @: 4 — B is a contractive *-homomorphism to a C*-algebra B, then ¢ maps null
vectors in A4 to zero, and induces a (contractive) *-homomorphism 4 /Null(]|-||) — B.
Since a contractive map from a metric space into a complete metric space extends uniquely
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to the completion, ¢ extends uniquely to a contractive map A — B. This extension is easily
seen to be a *-homomorphism.
]

EXERCISE 3.3.8. Show, using the universal property of completions, thatift: 4 — A
is a C*-algebra completion of a pre-C*-algebra (4, ||||) then ker(n) = {a € 4 | ||a|| =
0}. Hint. Compare the completion of (4, ||-||) to the completion of the pre-C*-algebra
A/Null([[-]1)-)

EXERCISE 3.3.9. Let 4 be any dense *-subalgebra of C(X), where X is a compact
Hausdorff space. Prove that if w: 4 — A is a completion of 4 then ||n(f)|| = || f|r| for
some closed subset F C X. In particular, A is C*-isomorphic to C(F).

With the language of completions, we revisit group C*-algebras in the following ex-
ample.

EXAMPLE 3.3.10. As we have seen, a unitary representation ©: G — U(H) of a dis-
crete group G on a Hilbert space H induces a *-algebra homomorphism n: C[G] — U(H),
(Y Aglgl) ==Y Aem(g) € B(H),

geG geG
and hence every unitary representation of G gives a a pre-C*-algebra (CG, ||-||x) where
I fllx == [|=(f)||, for f € C[G], and a corresponding C*-algebra completion C;G.
In this notation, C; (G) = C*(G) where A: G — U(1?(G)) is the left regular represen-
tation.

EXERCISE 3.3.11. Let G = Z. Compute Cy; (Z) where €: Z — T is the trivial repre-
sentation.

EXERCISE 3.3.12. Let F C T be a closed subset of the circle. Restriction of Laurent
polynomials f € C[z,z!] to F determines a completion C|z,z~!] — C(F) of the *-algebra
of Laurent polynomials.

Using Fourier transform, we may regard this as giving a completion 1ty : C[Z] — C(F)
of the group algebra C[Z] of the integers.

Prove that if F has an accumulation point, then Ttz is injective on C[Z].

The case of the group of integers has a special property (amenability), with regard
to completions, not possessed by all discrete groups. If F C F’ C T are two nested closed
subsets of the circle, then ||(f)||r < || f|| for all f € C[G]. In particular, || f||r < || f]|T for
all f € C[z,z7'] (and it follows that the *-homomorphism 7tz : C[z,z~!] — C(F) extends
continuously to a C*-algebra homomorphism 7z : C(T) — C(F).)

If G =T, is a free group on n > 2 generators, then the *-algebra homomorphism
€: C|[G] — C induced by the trivial representation, does not extend continuously to C;(G)
(F,, is not amenable, n > 2.)

EXAMPLE 3.3.13. Another important example where a completion procedure is used
is in connection with direct limits. We have already discussed direct limits, especially
limits in which the structure maps of the system are injective. We now discuss the general
case in the language of pre-C*-algebras.

Assume that {@;;: A; — A;};>; is a direct system of C*-algebras and *-homomorphisms.
We start with forming the algebraic limit 4 := LIA;/ ~ where ~ is the equivalence relation
generated by identifying a € A; with @;i(a;) € Aj for any i < j. Let ¢;: A; — 4 be the evi-
dent maps of A; into 4. Note that if one of the structure maps @;;: A; — A; is not injective,
and maps an elementa € Aj to 0 € A;, then ¢;(a) =0 € 4.
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As discussed previously, A4 has a natural *-algebra structure. As before, if a € A;, we
set [|@;(a)|| := lim;_|/@;i(a)|]. The limit exists because it is a decreasing net of positive
real numbers, because *-homomorphisms are automatically contractive, by Lemma[I.11.6]
We therefore have a pre-C*-algebra 4, ||-||). The direct limit is defined to be the completion
of this pre-C*-algebra.

EXERCISE3.3.14. If ¢;: A; - A:= li_n>1Ai is a directed system, prove that
ker(g) = {a € A;| lim |@;i(a)| = 0},
foralliel

EXERCISE 3.3.15. Let 4; := C([0,1]) for i = 1,2,..., and let @;;(f)(x) = f(2/7'x),
fori> jand f € A; = C([0,1]). The *-homomorphisms in the system are not injective,
since they are induced by non-surjective self-maps of the interval. Show that ligAi =C
by evaluation of functions at 0.

4. Ideals and quotients of C*-algebras

We have already discussed several instances where the Banach algebra structure on
the quotient of a C*-algebra by a closed *-ideal makes the quotient into a C*-algebra (the
Calkin algebra, the quotient of the Toeplitz algebra by the compact operator ideal in it.) In
this section we establish the general result: the quotient of a C*-algebra by a closed ideal,
is always a C*-algebra with the distance norm.

This relies on a technical result concerning existence of approximate units.

An approximate unit in a C*-algebra A is a net (i) )yep in A such that upa — a as
A — oo for all a € A. We are going to show that an approximate unit exists in any C*-
algebra. In fact, one can put the index set for the net to be simply A:={a € A, | ||a| < 1}
and the net the ‘identity net’, whose value at a € A is a itself, but the important point is
that the ordering on the index set A needed to make a net, is the usual ordering of positive
elements a < bif andonly if b—a > 0.

It is clear that this relation is reflexive, transitivity is an extremely easy exercise, but
the upper bound requirement, making this a directed set, needs to be verified. Clearly since
the sum of two positive elements is positive (Corollary [3.1.6), if a,b € A, then a+ b is an
upper bound for a, b, so all of A is a directed set, but if a, b are contractions, it is of course
not true that a + b need be a contraction. However, the map

o: AL — A, afa) :=a(l+a)”!

is an order isomorphism A, 22 A with inverse B: A — A, B(a) := a(1 —a)~', and since
the upper bound condition holds for the ordered set A, it does for A as well. To check
these facts it helps to note that a(14+a) ' =1—(1+a)~1.)

EXERCISE 3.4.1. If g and b are in A find an explicit formula for an upper bound of
a,bin A.

PROPOSITION 3.4.2. A is an approximate unit for A. That is, if a € A and € > 0, then
there exists ug € A such that if u € A and u > ug then ||ua—al|| < €.

In the commutative case, the content of the proposition is as follows. Given f € Cy(X),
and € > 0, there exists pg € Co(X) such that 0 <p < I, and forall po <p < 1, ||pf — f]| <&.
It is clear, at any rate, if f € C.(X), then one should take py strictly less than, but very close
to 1 on the support of f, which would certainly do the trick. An approximation arguments
extends this to where f € Cp(X), in which case the support need not be compact necessarily.
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Alternatively, one can argue that one can simply choose, depending on € > 0, pg to be of
the form uf (14 uf)~', where u is large. The relevant estimates are done in the proof
below.

PROOF. If we can show that ua — a as u — oo in A, for a positive and of norm < 1,
then it follows that ua — a for any positive element. Since any self-adjoint can be written
as a difference of two positive elements, ua — a for a self-adjoint. The result for arbitrary
a follows from writing a as a linear combination of two self-adjoints.

So assume thata € A, ||a|| < 1 (that is, that a € A). Choose € > 0. Let up = £ 2a(1+
e 2a)"!. Letu>up. Since 1 —u <1, (1—u)><1—u. Sinceu>ug, | —u<1—uy=
(1+¢2a)~!. Putting these facts together gives

(1—u)?<(1+e %)l

So we deduce
a(l—u)?a<a(l+¢e2a) " a

Since a(1+¢2a)"'a < €2a, we get a(1 —u)?a < €2a. Hence ||a(1 —u)?a|| < €?|a|| < €%.
By the C*-identity, on the other hand, ||a(1 —u)%a|| = |la(1 —«)||*. Thus ||a —au|| < € as
required.

(]

EXERCISE 3.4.3. If H is any Hilbert space it has an orthonormal basis £ and the
dimension of H is by definition the cardinality of £. Make a directed set A consisting
of all finite subsets of £ under the subset relation, and let (Pr)rea be the net in which
Pr is the projection to span(F) for any finite subset F C E. Show that (Pr)pea is an
approximate unit for X (H).

EXERCISE 3.4.4. Show that if A is separable, then A has an approximate unit which
is an increasing sequence u; < up < --- of positive contractions in A. Hint. Let ay,ay,...
be a countable dense set in A. Using Proposition inductively construct (u,) such that
0<u; <up <---and |lupa; —a;|| < % forl1<i<n

A closed ideal in a C*-algebra is an algebraic ideal J C A which is also closed in the
norm topology. This implies by the following Lemma that J is also closed under adjoints.

LEMMA 3.4.5. If J is a closed ideal in a C*-algebra A then J is automatically closed
under adjoint (and hence is, in particular, a C*-subalgebra of A.)

PROOF. If a € J, then a*a and hence the (non-unital) C*-algebra C*(a*a) generated
by a*a is contained in J. indeed, C*(a*a) is the completion of the *-algebra of polynomials
Yioh(a*a)kin J.

In particular, C*(a*a) has an approximate unit (1) ) consisting of positive contractions.
If we can show that uy a — a, it will follow, since the adjoint is continuous, that uya* — a*,
as well. Since upa® € J for all A, it will then follow that a* € J since J is closed.

But using the C*-identity and the facts that u; is self-adjoint and a contraction, ||au) —
all? = lla(u, — )12 = [0, — Da*a(l —w)]| < (5, — Va"al - | 1] < ||, — a*a]] =
|lupa*a — a*al|. Since upa*a — a*a, we see that upa — a as well, as required.

O

EXERCISE 3.4.6. A C*-algebra is simple if it has no nonzero, proper closed ideals.
Prove that M, (C) is simple.
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EXERCISE 3.4.7. If X is a locally compact Hausdorff space and F' C X is a closed
subset then show that Jr := {f € Co(X) | f|, = O} is a closed ideal in Co(X). It is a
standard result of basic analysis that all closed ideals in Cy(X) arise as Jr for some F. That
is, closed ideals in Cy(X) are in 1-1 correspondence with closed subsets of X.

EXAMPLE 3.4.8. The results of §6| show that the C*-subalgebra K (H) of B(H) is a
closed ideal.

EXERCISE 3.4.9. Prove that X (H) is the unique closed ideal in B(H).

Let J C A be a closed ideal. The quotient vector space A/J has an evident structure of
a *-algebra. We equip it with the quotient norm

la+J| :=inf{|la—b]| | b € J}.

Since J is assumed closed, A/J is complete as a normed vector space, by an easy exercise.
LEMMA 3.4.10. The cosets in A/J with the quotient norm form a Banach algebra.
PROOF. Indeed,

(3.3) |lab+J| :=inf{||lab—c| | c € J} <inf{|lab— (c1b—cic2 +acz)|| | c1,c2 €T}

—inf{|(a—c1)(b—c2) | i € J} < infffla—ei]|- [b—cal| | & €.}
<inf{|la—ci|| | c1 € J}-inf{||b—ca| | c2 €T}.
O

We have already met one example: that of the Calkin algebra Q(H) :=B(H)/ X (H).
We proved in Chapter 1 that the C*-identity holds for the quotient norm; we now prove
this result in general.

LEMMA 3.4.11. IfJ C A is a closed ideal and () is an approximate unit of positive
contractions in J then ||a+J|| = limy_,..||auy, — al| for all a € A.

PROOF. If b € J then
lla—aw || = ||a+b—b+buy — buy, — aup|| = |la+b — (a+b)uy, + buy, — b|| <
lla+b—(a+Db)uy| + [bur, — bl = [[(a+b) (1 —up) || + || bur, — b]|
< lla+ bl + [[bup, — bl

Therefore limsup;_,..|la —awy || < ||la+b|| < |la+ J||. On the other hand |ja +J|| < ||la—
auy || for all A so ||a+J|| < liminfy_,.||a — auy ||. The result follows immediately.
(]

COROLLARY 3.4.12. The Banach *-algebra A/J with the quotient norm satisfies the
C*-identity, and hence is a C*-algebra.

PROOF. If a € A then by the Lemma,
l(a+J)" (a+J)|| = lla*a+J| = lim [la"au), —a"al| = lim [|a*a(u, —1)]]
A—roo A—roo

> lim || (1, — 1)a’a(u, — 1)[| = lim [|a(uy, = 1)[|* = lim lawy, —a||* = [la+J||*.
A—roo A—so0 A—so0

The other inequality ||(a+J)*(a+J)|| < |la* +J|||la+J| = |la+J|? is follows from the

fact that A/J is a Banach *-algebra with the quotient norm. (]
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EXAMPLE 3.4.13. If F C X, F closed, X locally compact Hausdorff,
Jr ={f € Co(X) | flr =0}
the closed ideal of Cy(X) of Exercise [3.4.7, then the C*-algebra quotient Cy(X)/JF is

naturally isomorphic to Cy(F), by the homomorphism f +Jr — f|F, that is, by the map of
restriction of functions to F.

COROLLARY 3.4.14. Ifa: A — B is a *-homomorphism between C*-algebras, then
the image of o is closed, and hence is a C*-subalgebra of B.

PROOF. The kernel ker(at) is a closed ideal in A. By standard algebra, o induces an
injective *-homomorphism &: A/ker(ot) — B. Since it is injective, it is isometric, and
hence its range is closed in B. (I

EXERCISE 3.4.15. Show that if a unital C*-algebra A has no non-trivial algebraic
ideals then it has no closed ideals either.

EXERCISE 3.4.16. Prove that Cy(R) is a closed ideal in the C*-algebras Cp(R) of
bounded continuous functions on R, C(nNR) the C*-algebra of functions of vanishing vari-
ation on R (see Exercise [2.4.10), and C,(R), bounded uniformly continuous functions on
R.

Deduce that R embeds as an open, dense subset of each of BR, nR and R". The term
‘compactification’ is generally used for a compact space containing R as an open, dense
subset.

5. Tensor products of C*-algebras

If A is any C*-algebra, and n any positive integer, then the *-algebra M, (A) of n-by-n
matrices with entries in A, is a C*-algebra. It is an example of a tensor product: in this
case, it is the tensor product A ® M,,(C). Another example, is the C*-algebra C(X X Y),
with X,Y compact Hausdorff: this C*-algebra turns out to agree with the tensor product
C(X)®C(Y) - tensor product is Gelfand dual to product of topological spaces.

We start with tensor products of vector spaces.

Let V; and V; be vector spaces over C. Their tensor product is a vector space denoted
V1 ® V; equipped with a bilinear map V; x Vo — Vi ® V5, usually denoted simply (vi,v2) —
v1 ® v2, and satisfying the following universal property: if f: V1 x Vo, — W is any bilinear
map to a vector space W then there is a unique linear map f: V; @ Vo — W such that
fi®va) = f(vi,v).

In other words, the diagram

V1><V2f*>W

| &

VieW,

can be made to commute, by a unique linear f and initial bilinear f.
Assuming the existence of such an object, notice that the assumption that (vi,vy) —
V1 ® 7 is bilinear, means that

(3.4 (7\.V1)®V2 =V ®(7\,VQ) 27\,(1)1 ®v2).
for all scalars A, vectors vy, v, and that

(3.5) (Vi +V)) @V = v @va+ Vi @va and vi @ (v +V5) = vi @ vy + v @ V5.
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To prove existence, one can construct V; ® V, in the following way. Consider initially
the free vector space with basis the elements of V| x V;. This, by definition, is the vector
space consisting of all formal, finite linear combinations of elements of V| x V;. Then let
V1 ® V, denote the quotient, in the category of vector spaces, of this vector space, by the
subspace spanned by the vectors

(MW1,v2) —A(v1,v2), (vi,Av2) —A(vi,v2)
and the vectors
(vi+ Vi) = (vi,v2) = (Visv2), (visva+vh) — (vi,v2) — (viuvy).

If one denotes the equivalence class of the basis vector (v1,v2) by v ® v,, then the symbols
vi @ v, clearly span Vi ® V5, satisfy the bilinearity relations (3.4) and (3.3), and it can be
easily checked that V| ® V,, together with the (bilinear) quotient map (vi,va) — v ® vp
satisfy the required universal property.

We record a basic consequence of the universal property of a tensor product.

LEMMA 3.5.1. if T: Vi = Wy and T, : Vo — W are two linear maps, then there is a
unique linear map
NihL:ViaV, =W oW,
such that (Ti @ Tr)(vi @ va) = Tivi @ Thvs.

EXERCISE 3.5.2. Show that if wy,...,w, is a basis for W then VW =W o ---dW
under the map
vawi (AM(w)v,..., A (w)v),
where A (w),..., A, (w) are the coefficients of w with respect to the basis.
Show that in the notation of Lemma3.5.1} T® 1w =T & T --- & T with respect to this
decomposition, for any T € End(V), where here 1y denotes the identity operator on W.

EXERCISE 3.5.3. Although by definition every element of a tensor product V; ® V; of
vector spaces can be written in the form ) ; v; ® w; for some vy,...,v, € Vi and wy,...,w, €
V,, it is less clear when two such expressions are equal in V| ® V5. The following exercise
helps with this.

a) If V1,V, are vector spaces, show that any element of V; ® V, can be written in
the form Y ;v; ® w; where the w; are linearly independent. (Hint. Prove it by
induction on n where v=1Y" ,v; ®w;.)

b) Prove that if wy,...,w, are linearly independent vectors in V; and vy,...,v, and
Vi,...,v, are arbitrary vectors in V,, then Y;v; ® w; = ¥;v; ® w; implies v; = v}
for all i. (Hint. Think about applying maps f® 1: V; ® Vo, — V,, where f € V'
is appropriately chosen.)

¢) Prove that if ey, ...,e, is a basis for V| and fi,..., fi, a basis for V, then {e; ®
fili=1,...m,j=1,...,m} is a basis for Vi ® V». Deduce that C" ® C" =
C". Thus if V; and V; are finite-dimensional vector spaces then dim(V; ® V») =
dim(Vl) dim(Vz).

Now let A and B be a pair of algebras; their tensor product A ® B in the category of
vector spaces has a natural structure of a algebra with

(Za,- @b;)- (Zci ®d;) = Zaici ®bd;.
i i i.J

In particular, if End(V;) denotes as usual the linear maps V; — V;, i = 1,2, then End(V;)
are algebras, and so End(V;) ® End(V;) is an algebra.
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Now, according to Lernma for any 77 € End(V}) and T» € End(V;) there is a
unique linear map 71 ® T> € End(V; ® V,) such that (T} @ T») (vi ® v2) = T1vi @ Thv;. This
produces a map

End(V;) x End(V2) — End(V) ® V2)
mapping a pair (71,73) to T} ® T». It is easy to check that this map is bilinear. Hence by
the universal property it determines a linear map

(3.6) End(V;) ® End(V2) — End(V; ® V),

mapping the tensor 7 ® S to the corresponding endomorphism. This map is easily checked
to be an algebra homomorphism.

LEMMA 3.5.4. The algebra homomorphism (3.6) is injective; it is surjective if Vi and
V, are both finite-dimensional.

PROOF. Let Y 7;®S; € End(V;) ® End(V2), and suppose that its action on V| @ V5 is
the zero operator. By Exercise[3.5.3p), we may assume without loss of generality that the
T; are linearly independent in End(V}). Now the hypothesis implies that

(3.7) Y (T V') (Siw.w') =0

1

for all v,v' € Vi, w,w’ € V5, from which it is immediate that the operator L := Y (S;w,w')T;
is the zero operator, since (Lv,V') is equal to the expression and so is zero, for all
v,V The linear independence of the 7; now implies that each (Siw, w )y =0. Asw, w were
arbitrary vectors in V,, each S; = 0.

Surjectivity of holds for dimension reasons when V; and V; are finite-dimensional,
since

dimEnd(V; ®V5) = (dim(V;) dim(V2))? = dim(V;)? dim(V)? = dim End(V; ) dim End (V5)
= dim(End(V)) ® End(V»))

We leave the converse to the reader.
O

Now let A and B be a pair of algebras; their tensor product A ® B in the category of
vector spaces has a natural structure of an algebra as well, with

(Y ai@b)- (Y ci®d) =Y aic;@bd;.
i i ij
If A, B are *-algebras, then so is A ® B, using

(Zai ®b,’)* = Za;‘ ®bj‘
We call A ® B with this (*-)algebra structure the tensor product in the category of
(*)-algebras.

EXAMPLE 3.5.5. Let A be a C*-algebra. Then the tensor product A ® M,,(C) in the
category of *-algebras is isomorphic to the *-algebra M,,(A) of n-by-n matrices with entries
in A (c.f. Exercise[3.2.14). The map sends a® T € A® M, (C) to the matrix (a7 );; := aT;;.

EXERCISE 3.5.6. Prove that the map just described is an isomorphism of *-algebras
A®M,(C) =M,(A).

EXERCISE 3.5.7. Prove that M,,(C) ® M,,,(C) = M,,,,(C) for any positive integers n,m
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EXERCISE 3.5.8. Prove that if A,A’,B,B’ are algebras (or *-algebras), o: A — A’
an algebra (or *-algebra) homomorphism, : B — B’ another, then there is a unique (*-
)algebra homomorphism o0 ® B: A® B — A’ ® B’ mapping a ® b to o(a) @ B(b). Prove
furthermore that oo ® P is injective if o and P are each injective. (Hint. To prove injectiv-
ity, adapt the proof of Lemma using more general linear functionals than the inner
product functions S — (Sv,V') used there.)

EXERCISE 3.5.9. Let A,B be two *-algebras, let t: A — End(H), p: B — End(K)
be two representations of A, B as linear operators on vector spaces H, K. Prove that there is
a unique representation

TRp: AQB— End(H®K),
such that
(r@p)(a®b) =mn(a) @p(b) € End(H) ® End(K) C End(H ® K)

for alla € A,b € B. Prove that T® p is injective if T and p are each injective.

Tensor products in the category of Hilbert spaces

If Vi and V, are Hilbert spaces, their tensor product V; ® V, can be made into a pre-
Hilbert space by setting
(3.8) (v @ v, Vi @15) i= (v, V) ) (v, V).
By the universal property of tensor products, it determines a corresponding sesquilinear
formV; @ Vo x Vi @V, — C.

LEMMA 3.5.10. The sesquilinear form on Vi @V, determined by (3.8)) is non-degenerate.

PROOF. Indeed, suppose otherwise, that there is an element x of V| ® V; such that
(x,y) = 0 for all y. We may write x = ¥ v; ® w; where the w;’s are linearly independent.
The assumption then implies that

<v®w,2vi®wi> =0
i

for all vectors v € V|,w € V,. We may re-write this in the form
Z(w, vvpyw)) =0, W e Vi, weV,.

In particular, for every v € Vi, the linear functional

W (w,Z(v, Vi)w;)
is the zero linear functional on V. Since it is inner product with the vector Y (v,v;)w;
we conclude that this latter vector is zero in V,. Since the w;’s were assumed linearly
independent, (v,v;) = 0 for all i. Finally, since v was arbitrary, we get that v; = 0 for all i.
Hence x = 0. O

DEFINITION 3.5.11. The tensor product Vi ® V, of two Hilbert spaces V| and V; is
defined to be the completion of the vector space tensor product of V; and V, with respect

to the norm
1Y vi@wil? ==Y (viv) (wi.wj).
i.j
In particular, |[v@w|| = ||v|| - |w]|| for all vectors v € H,w € K.
The inner product (-, -) extends to the completion, so that the completion (still denoted
Vi ®V,), is a Hilbert space.
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Of course the tensor product in the category of Hilbert spaces involves a completion,
and is not the same as the tensor product in the category of vector spaces. However, we
will use the same notation, assuming the context makes it clear which we are using.

If H and K are Hilbert spaces, H ® K, unless otherwise specified, refers to the Hilbert
space completion of H and K.

EXERCISE 3.5.12. Prove that if {e;}c; is an orthonormal basis for H and if {e}}jg
is an orthonormal basis for K then {¢; ® e;»},-g, jes is an orthonormal basis for H @ K.

LEMMA 3.5.13. Let H and K be Hilbert spaces, T € B(H), S € B(K) bounded linear
operators. Then there is a unique bounded linear operator T @ S: H® K — H ® K such
that

(TRS)(veaw)=Tve Sw.

,and (TRS8)* =T*® S*.

PROOF. Start off with the tensor product of H and K in the category of vector spaces.
By Lemma there is a unique linear endomorphism 7' ® S on this vector space, such
that (T ®S)(v@w) =T (v) ®S(w). In order to show that T ® S extends to a bounded linear
operator on the completion, i.e. the Hilbert space tensor product, we show that

n
HZ{ Tvi @ Swill <IT||- S]] - (|} vi @ will
P
for each finite collection of vectors vy,...,v, € H,wi,...,w, € K.
We show this for S = idg. The case T = idy is similar, and together, these two partial
results imply the result desired.
We can find a finite orthonormal basis ey, ...,e, for the span of wy,...,w,, and in
this way re-write the vector ) v; ® w; in the form Y u; ® e; for some collection of vectors
ui,...,un. We compute

(9 [(Te)(Luee)l =L Tuoal =Y (Tue e Tujoe)
i,

—-}2 Tu;,Tuj)(ei.e;) EZHTMAV < T Y il

= ||T||2 Ay w@el* =TI 1Y vi©wi.
This proves the claim, and also proves, as sketched above, that 7 ® S is bounded, and hence
extends continuously to the Hilbert space tensor product H ® K to itself, and, furthermore,
that |7 @ S|| < [T - ||S]|.
If € > 0 then we can find a unit vector & € H and a unit vector 1 € K so that ||TE|| >
IT|| —¢, ||Sn]| > ||S|| — €. Then the unit vector & @1 satisfies

(T @S)Een)| = ITE@ S|l = [TE[lIsn] = (I —&)(IS] —e),

whence | T ® S|| > ||T||||S]| follows by letting € — 0.
The statement about the adjoints is left to the reader to prove.
(]

EXERCISE 3.5.14. Prove directly using the definitions, that if 7 > 0 is a positive
operator on H such that
(Tv,v) > Allv||?
for all nonzero vectors v € H, then

(T @ x.x) > Ax|?
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for all nonzero vectors x € H ® K. (Hint. Start by proving it for x in the algebraic tensor
product, and write such an x in the form x = Y} v; ® w;, where the w;’s are orthonormal
vectors.)

EXERCISE 3.5.15. Let A and B be self-adjoint operators on Hilbert spaces H, K. Prove
that
Spec(A®1+1®B) = Spec(A) 4 Spec(B)
and that
Spec(A ® B) = Spec(A) - Spec(B).
The first set Spec(A) 4+ Spec(B) refers to all sums A+ u, with A € Spec(A), u € Spec(B).

Tensor products in the category of C*-algebras

If A and B are C*-algebras, we may complete their algebraic tensor product, that is,
the tensor product in the category of *-algebras, which we, for the moment, denote by
A ®g1¢ B, to a C*-algebra A ® B, using the following method.

Let m: A — B(H) be a representation of A, p: B — B(K) a representation of B.
By Exercise @ they combine to give a *-algebra homomorphism T®p: A ®ae B —
B(H) ®ag B(K). By Lemma [3.5.13] the algebraic tensor product B(H) ®.1, B(K) can be
viewed as a *-subalgebra of B(H ® K). Therefore we obtain a representation T ® p of
A ®a1g B on H® K mapping a ® b to the bounded operator w(a) ® p(b).

DEFINITION 3.5.16. The minimal (or spatial) tensor product AR B of two C*-algebras
A and B is the completion of their tensor product A ®qi¢ B in the category of *-algebras,
with respect to the norm

(3.10) 1Y ai@bi = sup 1Y ai @billzp == |} 7(ai) @ p(bi)|

where the supremum is taken over all representations T,p of A, B.

The minimal tensor product, although it may feel somewhat inexplicit, has the advan-
tage of satisfying the following important universal property.

PROPOSITION 3.5.17. IfA1,A2,B1,B; are C*-algebras, andif o.: A1 — By and o : Ay —
Bj are *-homomorphisms, then there is a unique *-homomorphism

o R0: Al ®Ary - B ®@B)
such that (] @ o) (a1 @ az) = o1 (ar) @0 (az).

PROOF. The maps o; combine to a *-homomorphism o; @ 0z : A} ®gu1g A2 — By Ralg
B;, we need to show that that it extends continuously to the completions i.e., that it is
contractive with respect to the spatial tensor product norms, defined in (3.10). Let m; be
representations of B;. Then m; o ¢; are representations of A;. It is immediate then that if
xXEA| ®algA2 then

[(m @m) (o @) (x)) || = [[(moo @ mp000)(x)]| < [|x]|-
Taking sups over all 7,7, gives that
([ (ot ®02) (x)[| < x|

as required.
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EXERCISE 3.5.18. Suppose that T ~, T are unitarily equivalent representations of A,
and that p ~,, p’ are unitarily equivalent representations of B. Prove that the representations
n@p and T’ @ p’ of A ®q, B are also unitarily equivalent. Deduce that ||-[|lzp = |||l

EXERCISE 3.5.19. If A is a *-algebra and 7, p are two representations of A as bounded
operators on Hilbert spaces H, K, write T < p if 7 is unitarily equivalent to a subrepresen-
tation of p. That is, there is an orthogonal decomposition of the Hilbert space K = K’ & K"
such that with respect to this decomposition

Ple) = [p/(()a) p”?@}

for a pair of representations p’,p” of A on K’,K”, such that p’ unitarily equivalent to 7.
Start by checking the easy fact that if T < p then ||n(a)|| < ||p(a)| for all a € A.

a) If A and B are *-algebras, T < T are representations of A, p a representation of
B, prove that t® p < ' ®p, and hence that ||-||zp < |||z

b) In the definition (3.10), prove that it suffices to take the sup over only injective
representations T,p. (Hint. By the GNS theorem A has at least one injective
representation po. Then p := @ py is still injective, and T < p.)

¢) Suppose B has a representation pg with the property that any representation of B
is unitarily equivalent to a subrepresentation of some number (possibly infinite)
of copies of pg. That is, suppose that for all p, there exists an index set A such
that

P < OreaPo-
Prove that in the definition of the norm (3.10) on A ® B, it suffices to use the
single representation pg for B.
d) Prove that B := M, (C) satisfies the property of c) for pg: M,(C) — B(C") the
standard representation.

EXAMPLE 3.5.20. Let A be a C*-algebra. Then the tensor product of *-algebras
A®M,(C) (in the category of *-algebras) is isomorphic to M,,(A), as discussed in Example
Under this identification, if T: A — B(H) is an injective representation of A, and
if po: M,(C) — B(C") is the standard representation of M,(C), then the tensor product
representation T ® po can be identified with the representation

TI:(TH) TC(Tln)
f: M,(A) ->BH® ---®H), ®(T)=| -
71:(Tnl) 7r(Tnn
of M,,(A) on H" = H® --- @ H. Note that it is obviously injective. Furthermore,

sup|[n(7;)| < [|1%(T)|| < n sup||m(T;)]l,
ij j
holds for any T, so that M, (A), or, equivalently, the algebraic tensor product A ® M,,(C),
is already complete with respect to ||-||z. Thus, it is a C*-algebra.
Note that a C*-algebra can have only one norm, so norm produced by 7 in the previous
paragraph is actually independent of T amongst injective representations of A.

EXAMPLE 3.5.21. Another extremely important example of a tensor product is the
tensor product A ® X of any C*-algebra, with the compact operators (say, on a separable
Hilbert space.) The norm on the tensor product in this case is rather easy to understand.
The compact operators % (H) has a unique irreducible representation, the obvious one, on
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H. Choosing any injective representation of A on a Hilbert space L gives a tensor product
representation
A® K —B(L®H).

Another way of describing this is as follows. Fix an orthonormal basis eq,e», ... for H. The
tensor product Hilbert space L ® H can then be identified with L& L& --- and operators
on L® H can be represented as N-by-N matrices A with entries A;; in B(L). Elements of
the algebraic tensor product of A and finitely supported elements of X (H) correspond to
matrices with only finitely many nonzero entries. The entries can be considered elements
of A, or as operators on L by the given representation.

The tensor product A ® X is thus the closure of this algebra M..(A) of infinite matrices
(with only finitely nonzero entries) with entries in A.

C*-algebras A and B such that A ® X is isomorphic to B® X are said to be Morita
equivalent. Since X ® K = K, A is Morita equivalent to A ® X, for any A.

PROPOSITION 3.5.22. For any pair of injective representations n: A — B(H) and
p: B— B(K), the norms ||-||np are equal,.

That is, in computing the norm on A ® B, we can do so with any, fixed pair of injective
representations. This is obviously quite helpful in thinking about specific examples, where
typically, there is an ‘obvious’ such pair.

PROOF. Suppose that Tt and p are injective representations on H, K. Let p’ be another
injective representation. Let x = Y a; ® b; € A ®q, B. Let (P,) be a sequence of finite-rank
projections in B(H) with P, of rank n, and P, — & for all £ € H. By Exercise|1.2.24]

IT|| = sup [|(P, ®idk)T (P, ®@idk)|, VT € B(H @ K).

In particular, this applies to the operator T = ¥ 7t(a;) ® p(b;) and implies that
1} ai @ billx.p = sup || (Pam(a;) Py @ p(bi)]].
Therefore, to prove that ||-||zp = |||l it suffices to fix n and prove that

(3.11) 1Y Pam(ai) P @ p(Bi) | = [} Par(ar) Py ' (Bi) .

By the definitions, the left hand side of this equation is the operator norm on B(P,H ®
K), and the right-hand side is the operator norm on B(P,H ® K'). On the other hand,
M, (C) ® B (equivalently, M,(C) ®@qg B), is a C*-algebra, and has a unique norm. Now
let i: M,(C) — B(P,H) be the inclusion, then the representation i ® p: M,(C) ® B —
B(P,H ® K) is injective and so results in the same norm on M,(C) ® B as does the one
i®p’ using p’ instead (as p’ is also assumed injective) because M, (C) ® B is already a
C*-algebra. This proves the equality (3.11). Now, reversing the roles of @ and p in the
obvious way gives that

Flzp = ll-ll.pr
as required.

The above proof is due to N. Brown and N. Ozawa.

EXERCISE 3.5.23. Prove that if X is any locally compact Hausdorff space and A is
any C*-algebra, then Cp(X) ® A = Cy(X,A), where Cy(X,A) has the C*-norm explained in
Exercise [[LT.11]
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We conclude this chapter with two basic results about the spatial tensor product.

PROPOSITION 3.5.24. Let {A;,0;j | i < j} be an inductive system of C*-algebras with
injective structure maps. Then {A; ® B,0;; ®idp | i < j} is another inductive system (with
injective structure maps), and

(hﬂAi) ®X®B= @Ai ®B
i i
for any C*-algebra B.

PROOF. Choose an injective representation 7: ligiA,-. If ¢;: A — ligiA,- are the
canonical inclusions, then the representations o ¢;: A; — B(H) are also injective. Fix-
ing an injective representation of B, we can compute the norm on A; ® B using ||-||no¢;,p-
The norm of an element of the algebraic inductive limit li iAi ® B isits norm in A; ® B,
for i sufficiently large. and hence its ||-||zog;,p norm. On the other hand, the norm on
(li_n;iA,-) ® B is the ||-||z, norm. Since this reduces to the ||-||zog;,p Norm on elements of
di(A;) C 1i_n>1iA,-, for sufficiently large i, the two ways of completing are the same, proving
the result. O

Finally, we prove the C*-algebraic version of the injectivity part of Exercise[3.5.8]

PROPOSITION 3.5.25. IfA1,A2,B1,By are C*-algebras, and if o.: A1 — Byand 0 : Ay —
Bj are injective *-homomorphisms, then

0 ®ap: A1 ®Ay — B1 ®B;
is also injective.
This follows from the following

LEMMA 3.5.26. Suppose that A,B are unital C*-algebras and i: B — A an injective
*-homomorphism. Then iQidp: BQD — A® D is an injective *-homomorphism, for any
C*-algebra D.

PROOF. From Exercise, the map i ®idp: B®ug D — A ®qe D is injective on the
algebraic tensor product, and extends to a C*-algebra homomorphism i ® idp: B&Q D —
A ® D, which we need to show is isometric. Thus, it suffices to show that if x € BRyg D C
B®D, then ||(i®idp)(x)| > |lx||. But by Proposition[3.2.13] given any representation T of
B, there is a representation T’ of A such that T < @'|. It follows that t®p < 7'|p ® p for
any representation p of D, and hence that

||'||7t,P < ||'H7t’|3,p'

Taking sups over all  and p gives ||x|| < ||i(x)||. That is,
as required.

i(x)|| > ||x]| for all x € B®41e D,

O
EXERCISE 3.5.27. This exercise does Example again, using tensor products.
Let A, ;= M>(C) ® --- M (C) (n-times). Let @,: A, — A, be the map ¢,(T) =T ®
Ly (©)-
a) Prove that
A A Bay
is an inductive system of C*-algebras and that

limA, = U(2%),
% n
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with U (2*) the UHF algebra of Type 2.
b) Letv= [(1) _Ol] and let o, : A, — A,, be the C*-algebra automorphism of con-

jugation by the unitary element v®@---®@v € My(C) ® - -- @ M2(C) = A,. Prove
that the family {o,: A, — A, };;_, assembles to give an automorphism of U (2%)
of order 2.

EXERCISE 3.5.28. Let ®: A — B be a surjective *-homomorphism of unital C*-
algebras.

a) Prove that 7 has the ‘path-lifting property’: if y: [0, 1] — B is a continuous path in
B, and if a € A with ©t(a) = y(0), then there exists a continous path ¥: [0,1] — A
such that ¥(0) = @ and To¥ =1. (Hint. Paths in A correspond to elements
of the C*-algebra C([0,1],A), and ® determines a surjective *-homomorphism
c([0,1],A) — €([0,1],B).)

b) Show that the restriction of 7 to a map As, — Bs, to the space of self-adjoints in
A, to the space of self-adjoints in B, has the path lifting property.

c) Show that the restriction of 7 to a map U(A) — U(B) also has the path-lifting
property. (Hint. Start by showing that if (u;)c|,] is @ path of unitaries with
ug =1 € A, then for some € > 0, then the portion (u)c[o of the given path with
0 <t <eg, lifts to a path (ii);c[g by using a logarithm to write u, = e™ for a
path (x;),c[o, of self-adjoints.)

6. Structure of crossed-products by proper actions of discrete groups

A condition on a group action G x X — X which ensures that the space of orbits G\ X,
with the quotient topology, is HausdorfT, is that the action is proper (see Proposition [3.6.4]
below). The space of orbits can thus be studied purely topologically, since the quotient
G\X is a reasonable topological space (unlike the space of orbits of irrational rotation on
the circle.)

Before proceeding to a study of crossed products from proper actions, we make a
remark about ‘noncommutative spaces.” In this book, I define a noncommutative space as
a Morita equivalence class of C*-algebra. Many of the key invariants of C*-algebras do not
distinguish between two Morita equivalent C*-algebras, one of the most important being
the space of unitary equivalence classes of irreducible representations, which, at the risk of
over-using the term, we sometimes refer to as the spectrum A of A. As as set, the meaning
of A is clear, but it also has a topology which we do not discuss in this book. But if A is
commutative, this reduces to the Gelfand spectrum of characters of A. In general, A is non-
Hausdorff. However, it is sometimes possible to get quite a satisfactory parameterization
of A, as a set. This is the case with crossed products from proper actions.

DEFINITION 3.6.1. An action G x X — X of a discrete group on a locally compact
space X is proper if for every pair K, K’ of compact subsets of X, the subset {g € G| g(K)N
K' # 0} of G, is finite.

EXAMPLE 3.6.2. Some examples of proper actions are:

a) Any action of a finite group is proper.

b) The action of Z on R by translation is proper, or of Z" on R".

¢) The translation action of a discrete subgroup G C G’ of a locally compact group
G', on G/, is proper.
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The action of the integers by irrational rotation is definitely not proper. Indeed, no
infinite group can act properly on a compact space; proper actions of infinite groups are
always on noncompact spaces.

EXERCISE 3.6.3. Prove that if G is a discrete group and H is a subgroup, the left
multiplication action of G on G/H is proper if and only if H is finite.

The following is a standard result from basic topology and we omit the proof.

PROPOSITION 3.6.4. If G is a discrete group acting properly on a locally compact
Hausdorff space X, then G\X with the quotient topology, is locally compact and Hausdorff.

This means that the quotient space G\X, is a perfectly reasonable topological space,
whose homology, cohomology, etc can be computed — in the case of a proper action. So
there is in a sense no need for noncommutative C*-algebras at this point, if one is interested
only in the quotient space. However, the quotient space contains no information about the
isotropy groups of points of X. The noncommutative C*-algebra crossed product Cp(X) »
G contains this additional information, as we show.

Before going on, we describe some interesting geometric examples of finite group
actions and proper actions.

EXAMPLE 3.6.5. Let D4 be the dihedral group of symmetries of a square. We can
realize D, as generated by a counter-clockwise rotation R of the plane through 7§ radians,
and the reflection of the plane S across the x-axis. These two group elements, and the group
of order 8 they generate, commute with the translation action of Z? on the plane R? and
hence descend to homeomorphisms of the 2-torus T2. Thus Dy acts on T2. The infinite
group of maps of the plane generated by D4 and Z?, which can be easily checked to be the
semi-direct product Z> x Dy is an infinite group which acts properly on R?.

EXERCISE 3.6.6. Let F C T? be the projection to the torus of the triangle {(s,t) €
R? [0<s<t, 0<t< % in the plane. Show that the restriction of the quotient map
7t: T? — D4\T? to F is a homeomorphism. That is, G\T? = F. Compute the isotropy
groups Stabp, (x) for all points x € F.

EXAMPLE 3.6.7. The infinite dihedral group D.., is the group of homeomorphisms of
R generated by the translation 7'(s) = s+ 1 and reflection S(x) = —x. By construction, Do
acts on R, and it is rather clear that the action is proper.

EXERCISE 3.6.8. Prove that the quotient space D \R is the interval [0, %] Compute
the isotropy groups at points of [0, %]

The following construction is a very general way of producing (free and) proper ac-
tions.

Let M be a finite complex and G = wt; (M), the fundamental group of M. Let X = M,
the universal cover of M. Then G acts on X, by ‘deck-transformations,’ that is, so that

n(gx) =n(x), Vx€X, g€,

with T: X — M the covering map.
This G-action is always proper and free, and the quotient space G\X is homeomorphic
toM.

EXERCISE 3.6.9. Let X be the geometric realization of the Cayley graph of the group
IF». Prove that the left translation action of [, on itself induces an action on X. Prove that
this action is proper.
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EXAMPLE 3.6.10. Let G be the group PSL,(Z). It acts by Mobius transformations
on the upper half plane X := {z € C | Im(z) > 0}. A matrix g = {CCI 2} acs by the trans-

formation
(2) = az+b
8= xd

EXERCISE 3.6.11. Prove that the action described above is proper. Is it free? Find all
(conjugacy classes) of non-trivial isotropy.

More generally, any Fuchsian group acts properly on the hyperoblic plane; such
groups may have torsion, and fixed-points.

EXERCISE 3.6.12. Find an example of a noncommutative discrete group G which acts
properly by affine isometries of the plane R

We now determine the spectrum of a crossed product by a simple proper action with
isotropy.

Let the group Z/2 act on I := [—1, 1] by the homeomorphism 6(x) = —x. The crossed-
product A = C(I) x Z /2 is the same as the corresponding twisted group algebra, i.e. there
is no completion involved. Elements of A = C(I) x G can be written as sums f + g[c],
here [c] denotes a unitary in A such that [6]f[0]* = f oc. The algebra multiplication in the
crossed-product is determined by this rule and that ff’ is the usual product of functions,
and that [6] = [6]*, i.e [6]* = 1, the unit in A.

Choose any x € 1. We define a C*-algebra representation

.. C(1) X Z)2 — B(C?) = M,(C)

5 ) el

The induced *-homomorphism C(I) X Z/2 — M»(C) is given by

by the covariant pair

fx) el }
3.12 T (f+glo]) = .
( ) o(f g[ ]) L,(_x) f(=x)
If x # 0 then x # —x, and hence we can find a function g such that g(—x) = 0 but
g(x) =1, or the other way around. For the first choice, we have m,(g[c]) = 8 (1) and

0

m,(g) = {(1) 8] and for the second choice of g, T (g[c]) = {] 0 O}

0
0} and T, (g) = [0 i
Hence, for x # 0, the range of

m,: C(I)}7Z/2 — M(C)

contains all matrices. Thus 7, is a surjection for all x # 0. It is also clearly an irreducible
representation, since its range contains all M>(C). Finally, T_, is unitarily equivalent to T,
for all x # 0.

REMARK 3.6.13. The unitary [(1) (1)] gives a unitary conjugacy between the repre-

sentations T, and T_,.
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Now consider what happens when x = 0. The representation 7ty : C(I) X Z /2 — M»(C)
is given by
0 0
s +elo) = |10 40,

The collection of matrices of the form

<

with a,b € C, forms a C*-algebra naturally isomorphic to C*(Z/2): it is the matrix picture
of C*(Z/2) acting by the regular representation on [>(Z/2) = C?. These matrices are

¢ b} with
a

simultaneously diagonalizable with unit eigenvectors % [H , eigenvector of [ b

1 1 a

V2 —1] b

The conclusion is that the representation T splits as a direct sum of two 1-dimensional
representations: namely the spans of the two given eigenvectors. Thus

eigenvalue a + b, and an eigenvector of [ Z with eigenvalue a — b.

T 2Dy,
with
e:C(I)xZ/2—C*"(Z/2) = C, e(f+g[o]) = f(0)+g(0),
and
x: C(I)xZ/2 = C(Z/2) — C, &(f +g[o]) = f(0) —g(0).

REMARK 3.6.14. In a suitable topology on the spectrum A, with A = C(I)~Z/2, the

two characters € and %, form a ‘double point.’” Actually, as a topological space, A admits
the following description. Take the intervals [—1,0] and [0, 1], form their disjoint union,
and identify any nonzero x in [—1,0] with —x in [0, 1]. The resulting identification space Z

[~LOJu[0. 1]/ ~
carries a quotient topology.
EXERCISE 3.6.15. The quotient topology on Z is not Hausdorff, but it is 7.

The space just described parameterizes the spectrum of C(I) x Z/2, by the map as-
signing to the equivalence class of nonzero x in the disjoint union, to the (class of the )
irreducible representation [T, and assigns to the two 0’s in Z, the two characters € and §
of C(I) x Z/2 into which my splits.

PROPOSITION 3.6.16. The C*-algebra C(I) x Z/2 is isomorphic to the C*-algebra

C(1 %22 Ma(C)) ::{T:I—>M2((C)|T(—x):[(l) é}T(x)-[(l) é},VxEI}.

The isomorphism is given by considering the formula (3.12)) as specifying a matrix-
valued function, which is easily checked to transform as stated.

In this particular example we can go further. A matrix-valued function 7' on / such
that

0 1 0 1
T(—x) = [1 0} T (x)- [1 0} , Vxel,
is completely determined by its restriction to the ‘fundamental domain’ [0,1] C /. More-

over, the condition implies that 7' (0) commutes with {(1) é] .
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COROLLARY 3.6.17. The crossed-product A := C(I) X Z/2 is isomorphic to the C*-
algebra

{F: 0,1] = Ma(C) | £(0) commutes with ﬁ (1)}}

Its space of irreducible representations is naturally parameterized by the closed interval
[0, 1] with a double point at 0 added, by the parameterization described above.

We now extend these ideas to general proper actions.

DEFINITION 3.6.18. Let G be a discrete group acting properly on X. Let p: G —
U(L?G) be the right regular representation. Let & := % (/*(G)), and denote by C(X x ¢ K)
the C*-algebra of bounded, continuous functions

fi X=X
such that

(3.13) flgx)=p(g)f(x)p(g) ",

as operators on [2(G).

THEOREM 3.6.19. The C*-algebras Cy(X) x G and C(X x ¢ K) are canonically iso-
morphic.

PROOF. We will construct an isomorphism t: Cyp(X) x G — C(X x ¢ K) by specifying
a covariant pair, as follows.
Set

n(f)(x)(en) := f(hx), T(g)(x)(en) :=egn. [f€Co(X), x€X, gheC,

where in each case we have given the action of the operator 7t(-)(x) on the standard basis
{enynec of 2(G). If g € G, we are regarding 7t(g) := A(g), to be the constant, operator-
valued function on X.

If f € Co(X) and g € G then

(3.14)  [n(e)n(f)n(g) "] (x)(en) = n(g)m(f)(x)n(g) ™" (en)
=n(g)n(f)(xX)(eg1;) =(g) (g hx) g1y, = f(g~ ' hx)ey
whence
n(g)n(f)m(g) ! =n(fog™),
so that we have defined a covariant pair.

For fixed x € X, and f € Co(X), the operator 7t(f)(x) on [?(G) is multiplication by the
function on G with value f(g~'x) at g € G. This function on G vanishes at infinity since
the G-action is proper, since, as a *-homomorphism Cy(X) — C»(G) it is Gelfand dual
to the orbit map G — X, g+ gx, which is a proper map, since the G-action is assumed
proper.

Hence 7t(f)(x), and more generally, finite combinations (Y, f¢[g]) (x) € Co(X)[G] are
compact operators on [%(G), for any x € X.

Next, if g € G, and f € Cy(X), then

(3.15)  [p()n(f)(x)p(8) '] (x)(en) = p(g) f(x)(eng) = p(g) f(hgx)en, = T(f)(x)(gx).

This shows that 7t(f) satisfies (3.13), so is an element of C(X x¢ X). If g € G, then
n(g) = A(g) is a constant, operator-valued function, and also satisfies (3.13)), since A(g)
commutes with p(g).
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This shows that our homomorphism maps Cy(X) x G to C(X X X). The fact that it
is an isomorphism is not difficult, and is left to the reader. O

Choose x € X. Then the fibre of X xg X — G\X over the orbit Gx € G identifies
with ?((lz(G)), by choosing a representative point x € X in the orbit. We obtain a *-
homomorphism

T C(X x6 K) — K(I*(G)).
The kernel ker(m, ) is an ideal, and 7, itself is a representation of C(X x ¢ X). The condition
(3:13) implies the following:

LEMMA 3.6.20. The representation T.: C(X x¢ K) — K (I*(G)) of evaluation of a
section at a point of Gx maps the C*-algebra C(X X K) isomorphically into the C*-
algebra

KUZ(G))StabG(x)
where Stabg(x) := {h € G | gx = x} is the stabilizer of x, and for H C G a subgroup of G,

K(1*(G)" :={T € K(’(G)) | p(W)Tp(h)~' =T Vg € H}.
EXAMPLE 3.6.21. In the example of Z/2 acting on I by reflection, the space X X
K (1*(G)) and associated C*-algebra, amounts to the following. Here X =1 = [—1,1],
the generator of Z/2 is 6(x) = —x, and, evidently, we can use the fundamental domain to
identify G\X with [0, 1].
We have already described (Corollary[3.6.17]and discussion) a family of *-homomorphisms

s C(I) % G — My (C) = K (1*(Z/2)), x€0,1],
and we noted several facts:

e The range of 7, for x > 0 is M (C), and the range of 7y consists of matrices which
commute with (1) (1) — and thus is a copy of C*(Z/2) = C*(Stabg,(0)).

e For x = 0, m, splits into a direct sum of two 1-dimensional representations, i.e.
characters,

e Co(X)xG—C.

These factor through the restriction map C(I) x G — C*(G) induced by the evalu-
ation of functions in C() at 0, and the *-homomorphisms C*(Z/2) — C induced
by the two group characters € and .

All of this data may be thought of as describing a ‘bundle’ of C*-algebras over [0,1]. The
fibre at any x € (0, 1] is M2(C). The fibre at x =0is Ca C.

Of course every point x € [0, 1] determines an ideal, ker(m,). The origin x = 0 deter-
mines two ideals, the kernels of the two characters.

EXERCISE 3.6.22. Describe the two ideals ker(€) and ker () explicitly in C(I) x Z/2.

Finally, we describe the spectrum (the space of irreducible representations) for a gen-
eral proper action, omitting as always any discussion of the topology. (This is explicitly
described in [68])).

THEOREM 3.6.23. Let G be a discrete group acting properly on X. Then the set of
equivalence classes of irreducible representations of Co(X) % G is naturally parameterized
by the set

—

UyerStabg(x)
where F C X is a set of representatives of the orbits.
The explicit parameterization is discussed in the proof.
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We require the following:

LEMMA 3.6.24. Let G be a discrete group, and H C G a finite subgroup. Let p: H —
U(I?G) be the representation induced by the right translation action of H on G. Then there
are isomorphisms

Co(G/H) x H = K (I*G)! = C*(H) ® K(I*(G/H)),
where K (I?G)H denotes compact operators which commute with p(H).

PROOF. The representation of Cy(G/H) on [*(G) by multiplication operators lands in
K(I?G)H. If we let G act on [>G by the left regular representation we obtain a covariant
pair and isomorphism

Co(G/H) x G — K(I’G)H,

and we leave it as an exercise to check that this is an isomorphism.

Next, choose a collection of coset representatives g; € G for the cosets in G/H. This
gives a decomposition of Hilbert spaces I2(G) = @;I%>(g;H) corresponding to the spatial
decomposition of G into cosets. The action p(h) of h € H maps each factor to itself, by
a conjugate of the right regular representation of H on [?>(H). Since the coset representa-
tives parameterize the points of G/H, our decomposition corresponds to a tensor product
decomposition [*(G) = I>(H) ® I>(G/H). The representation p of H corresponds to the
tensor product py ® 1, where py is the right regular representation of H on [%(H). It fol-
lows that the compact operators which commute with p(H) are exactly the elements of
K (I*(G/H))®@C*(H), with C*(H) acting on [?(H) by the left regular representation. That
is,

K(1*(G/H)) & C"(H) = K(I*G)",

proving the result.
O

PROOF. (Of Theorem [3.6.23). Suppose that m is an irreducible representation of the
C*-algebra Cyp(X) x G. Then = is strictly continuous and so extends to a representation
of M (Co(X) x G), which is clearly also irreducible. The latter C*-algebra contains its
centre Co(G\X) =2 Cy(X), the bounded, continuous and G-invariant functions on X, and
as the centre in an irreducible representation must act by scalar multiples of the iden-
tity, it follows that 7 determines a character of Co(G\X), and the characters are point
evaluations a points, i.e. orbits, there exists an orbit Gx such that n(h) = h(Gx) - 1 for
h € Co(G\X) C M (Cy(X) x G), where 1 is the identity operator. Now if f € Cp(X) and
S vanishes on a neighbourhood of the orbit Gx, then by an easy exercise there exists a
G-invariant function % such that h|gy = 0 and Af = f. Since n(h) = h(Gx) = 0 it follows
that (f) = 0. We deduce that T vanishes on the ideal Cyp(X \ Gx) x G and hence factors
through the *-homomorphism

Co(X)x G — Co(Gx)x G

and an irreducible representation of Cy(Gx) x G. The exercise below shows that Co(Gx) x
G is stably isomorphic to C*(Stabg(x)). Stably isomorphic C*-algebra have the same
irreducible representations, and the irreducible representations of C*(H) for a finite group
H are the irreducible representations of H. The result follows.

O
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Let us summarize the results of this section. Any irreducible representation of Cop(X) »
G, with G discrete acting properly, factors through the orbit restriction map

Co(X) X G — Cy(Gx) x G2 Cy(G/H,) x G,
for some x, with H, = Stabg(x). Using the isomorphisms
Co(G/Hy) x G = K(I*G)™ = C*(Hy) ® K (I*(G/H.),
we deduce that an irreducible representation y of H, determines a representation T, of

Co(G/H,) x G, on Hy ® [*(G/H,). The association o — T is called induction.
One can picture the spectrum of Cy(X) X G in the following way. Take the set

X = {(x,0) | x € X, € Stabg (x)}.

Each (x, ) refers thus to an equivalence class of irreducible representation of Stabg(x).

The group G acts on X diagonally: if o is an irreducible representation of Stabg (x)
and g € G then g conjugates the stabilizer subgroups at x and gx, and combining with o
gives a an irreducible representation of Stabg(gx). Taking the quotient by this action gives
aspace G\X. This maps bijectively to the space of ireducible representations of Cy(X) x G:
there is a canonical bijection between the two sets given by

G\X = Co(X) % G, (x,) > T

The topology on X induces a Hausdorff locally compact topology on X and the quotient
topology on G\Y is then Hausdorff, but this topology does not match the official definition
of the topology of the spectrum (which we have omitted in these notes). The latter is not
Hausdorff, unless the action is free.






CHAPTER 4

MODULE THEORY OF C*-ALGEBRAS

When one first encounters algebraic topology it is usually in connection with contour
integration in complex analysis, or line integrals in multivariable calculus, typically over
the plane, or the plane with punctures, or holes. Such integrals are insensitive to small
deformations of the curves, and suggest studying the curves up to homotopy. Since such
regions of the plane are locally simply connected, the local properties of curves from this
point of view are unimportant, they are locally homotopic to line segments, but the global
properties of the curves can effect values of line integrals, and looking at the ensemble of
all curves up to homotopy reveals topological properties of the region.

Vector bundles and their role in topology is analogous. A vector bundle over X com-
pact Hausdorff is a locally trivial family of vector spaces over X. Any two such vector
bundles of the same rank are locally isomorphic, by definition, but they may not be glob-
ally isomorphic. The tangent bundle to the 2-sphere is not isomorphic to the trivial bundle
of the same rank, as one can prove using the Poincaré-Hopf Theorem (see [34].)

The complex linear space of continuous sections of a complex vector bundle is a C(X)-
module by fibrewise scalar multiplication. Swan’s Theorem, or the Serre-Swan Theorem
(see [152]) asserts that the C(X )-module of continuous sections of a vector bundle is finitely
generated projective as a C(X)-module, that is, a direct summand of a free and finitely
generated C(X)-module. The concept of projective modules over a ring was introduced
by Cartan and Eilenberg in 1956. Projective modules are more general than free modules,
but retain some of the properties. Over the ring A = Z, any finitely generated projective
module is free, and by the Quillen-Suslin Theorem [133] a significantly deeper result, the
same is true for polynomial rings like A = C[xy,...,x,]. But let

A= Clxp,x2,x3]/ (X + x5 4+23 — 1)
be the ring of polynomial functions on the 2-sphere. Then the module

M .= {(flvf29f3) CABAPA | xfx+yf2+Zf3 :0}

is the module of (algebraic) sections of the tangent bundle and is finitely generated and
projective over A but not free (for the same reason as above. ) The group Ko(A) of a ring
A classifies finitely generated projective modules (which I often abbreviate f.g.p.) over the
ring (see [[146] for an introduction to algebraic K-theory) and when applied to C*-algebras
generates the homology theory which is one of the main topics of this book.

The module I'(V) of sections of a vector bundle V over compact X is a f.g.p. right
C(X)-module, and for a general C*-algebra A it seems reasonable to consider f.g.p. mod-
ules over A to be ‘noncommutative vector bundles.” One can often construct such modules
from geometric ideas and the theory of Morita equivalence, one of the central topics of this
book, and the subject of the next chapter.

Morita equivalence for C*-algebras is based on the concept of Hilbert modules. A
Hilbert module is a generalization of a Hilbert space in which the scalar multiplication is

145
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by elements of a C*-algebra A and the inner product is A-valued. The basic example is the
space I'(V) of section of a vector bundle, since a Hermitian metric on the bundle gives rise
to a C(X)-valued inner product by applying it pointwise to sections. But Hilbert modules
over noncommutative algebras are ubiquitous in C*-algebra theory and Noncommutative
Geometry. We discuss a number of them in the following chapter.

Hilbert modules are discussed in Blackadar’s book [26], and the book [116] is an
excellent source, also for spectral theory and unbounded operator theory for operators on
Hilbert modules. For original source material on Hilbert modules see Kasparov’s work,
[108].

1. Vector bundles

A section of a surjective map ©: E — X between topological spaces, is a continuous
map s: X — E suchthat wos =idx. If Z C X, a section of E on Zisamap s: Z — E such
that tos = idy.

DEFINITION 4.1.1. Let X be a locally compact Hausdorff space. A real, or complex
vector bundle over X is a locally compact Hausdorff topological space E together with a
continuous surjective map T: E — X, satisfying the following additional properties.

a) The fibres E, := p~!(x), x € X are all (real or) complex vector spaces.

b) The vector space operations are fibrewise continuous.

¢) For each p € X there exists a neighbourhood U of p and continuous sections
$1,...,8p of T: E — X on U such that the vectors s (x),...,s,(x) are linearly
independent in E, forall x € U.

We will be primarily interested in complex vector bundles in this book. But real vector
bundles arise naturally in geometry. Any real vector bundle can be made into a complex
vector bundle by complexifying the bundle fibrewise.

A vector bundle map T : E — E' between vector bundles over X is a continuous map
such that T restricts to a (real or complex depending on whether the bundle is real or
complex) linear map E, — E/, for all x € X. Equivalently, ' o T = T.

The identity map idg: E — E is a vector bundle map. We say that a vector bundle
map T: E — E' is an isomorphism if there is a vector bundle map T’: E’ — E such that
ToT'=idg and T'oT = idg.

The space of sections of a vector bundle E is the C(X)-module of continuous maps
s: X — E such that mos = idx. The space of sections is clearly linear; it is also a C(X)-
module, using the module multiplication

(s/)(x) 1= s(x) - f (x),
for a section s and continuous function f € C(X). The C(X)-module of sections of E is
denoted I'(E).

EXAMPLE 4.1.2. The first projection map pr; : X x C" — X endows the project space
X x C" (with the product topology) with the structure of a complex vector bundle. Con-
dition c) of Definition is met since we may take U = X and s;(x) := (x,e;) where
el,...,ey € C"is the standard basis of C". Similarly, X x R” is a real vector bundle.

Such bundles are topologically uninteresting. More generally, we call any vector bun-
dle t: E — X trivial if it is isomorphic, as a vector bundle, to a product bundle X x C" (or
X xR").

Generally, we denote by 1, the trivial bundle over X of rank n (real or complex, de-
pending on the context.)
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Note that the space I'(E) of sections of a trivial bundle E = X x C" is C(X,C")
C(X)", a free C(X)-module.

If &: E — X is a vector bundle and Z C X is a subspace, the restriction E‘Z of EtoZ
is the topological space ! (Z) with projection map E, — Z the restriction of 7. It is an
easy exercise to check that £, is a vector bundle over Z.

Triviality, or local triviality, can also be described in terms of sections.

PROPOSITION 4.1.3. A vector bundle n: E — X over X is trivial if and only if there
is a finite collection si,...,s,: X — E of sections of n: E — X such that the vectors
51(x),...,84(x) form a basis for E, for all x € X.

In particular, a vector bundle with 1-dimensional fibres is trivial if and only if it has a
non-vanishing section.

PROOF. Given r linearly independent sections sy, ...,s,: X — E, define a vector bun-
dle isomorphism @: X x C" — E by @((x,(t1,...,t,)) :=1151(x) + -+ tys,(x). Then ¢
is fibrewise an isomorphism, and is clearly continuous and a bundle map, so is an isomor-
phism of vector bundles.

Conversely, if ¢: X x R" — E is a vector bundle isomorphism, define s;(x) := @(x,¢;),
where ¢; is the ith standard basis vector of C*. Then s,...,s, are fibrewise everywhere
linearly independent sections as required.

O

In particular, every vector bundle ©: E — X is locally trivial in the sense that every
point of X has a neighbourhood U such that E|y is trivial. Typically, the corresponding
isomorphisms @: E|y — U x C" are called local trivializations of E.

The Lemma suggests that the failure of a vector bundle ®: £ — X to be trivial can
only depend on the global topology of X, since it is automatically locally trivial.

The following Example (of a real vector bundle) gives a bit of intuition for how a
vector bundle can twist around a topologically interesting space (like the circle) in such a
way as not to be trivial.

EXAMPLE 4.1.4. (The Mobius bundle). Let E = [0, 1] x R/ ~ where ~ identifies the
points (0,7) and (1,—1), for all + € R Thus, E is obtained by taking a vertically bi-infinite
strip, and identifying the sides with a twist. Projecting to the first coordinate determines a
map from E to the unit interval with endpoints identified — that is, to the circle S'.

To show that E is a vector bundle, let U C S' be the image of the open interval (0,1) C
[0,1]. We denote points of S! by their equivalence classes [x]. This notation reflects, of
course, an implicit choice of representative x. There is a unique choice on U, however, and
we can just define s([x]) = [(x,1)] € Efy. This is a non-vanishing section on U.

Now let U’ be the image in S' of [0,1]\ {3}. We define a section s’ on U’ by setting
s'([x]) :=[(x, 1)] for x < % and s/ ([x]) := [(x,—1)] for x > 1. This procedure makes s’ well
defined at the endoints, and yields a continuous map s': U’ C S' — E which clearly does
not vanish anywhere.

EXERCISE 4.1.5. Prove that there is a canonical bijective correspondence between the
space of sections I'(E) of the Mdbius bundle, and continuous maps f: [0, 1] — R such that
f(0) = —f(1). Deduce, using the Intermediate value Theorem, that E is not trivial.

EXAMPLE 4.1.6. (The tangent bundle to the n-sphere). Consider the n-sphere S”,
the space of unit vectors in R”*! with respect to the usual Euclidean metric. The tangent
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bundle T'S" is the vector bundle over S” given by
TS":={(x,v) € " x R | x Lv}.

The first coordinate projection §” x R"*! — §" restricts to a continuous surjection 7t: TS" —
S". It is clear that with the usual vector space operations of R”, each fibre n~! (x) is a vector
space; it is the orthogonal complement of x and so is a linear subspace of R"*!,

To prove that it’s a real vector bundle, if x € §", let p, . : Rt — R be the orthogonal
projection to the linear subspace {x} C R"*! followed by any, fixed, identification x =
R™. Let p,1 (y) denote the restriction of p 1 to 7,,S", for any y. Then it is easily checked
that as long as y lies on the same side in S" of the hyperplane x* as x, the linear map
p.L(y): T,8" — R" is a vector space isomorphism. Since these isomorphisms obviously
vary continously, they trivialize 7'S" in a neighbourhood of x.

EXAMPLE 4.1.7. (The Hopf bundle). The following procedure defines a nontrivial
complex vector bundle over n-dimensional complex projective space CP", the space of
1-dimensional complex subspaces of C"*!. To describe the topology on CP", we can
identify the set of 1-dimensional subspaces of C"*! with the quotient of the space C"*!\
{(0,...,0)} of nonzero vectors in C"*! by the equivalence relation which identifies two
nonzero vectors if they are scalar multiplies of each other. With this identification, we can
give CP" the corresponding quotient topology.

There is a completely canonical (continuous) family of 1-dimensional vector spaces
parameterized by the points L of CP": set

H:={(Lyv)|veL}cCP" xC"!

with the subspace topology of CP" x C"*!. The first projection map pr; : CP" x C**! —
CP”" restricts to a surjection t: H — CP".

I claim that w: H — CP" is a vector bundle. First, let us describe points of CP" by
their homogeneous coordinates: if L is a line in Crt! and (205 ---»,2zn) 18 a point on the line,
denote by [zp,. . .,z,| the equivalence class of the nonzero vector (zo,...,2x)-

Let

U;:= {[(Z(),. . .,Zn)} | Zi 7'é 0} c CP*,

fori=0,1,...,n. Then each U; is open and U!_,U; = CP". Since we are dealing with a
one-dimensional vector bundle, to verify Condition c) of the definition of vector bundle, it
is sufficient to produce a non-vanishing section s;: U; — H on each U;. Since on Uj, the
coordinate z; does not vanish, we can set
20 Zn
5i([z0s .- -»2n)) == (Zi o ).

This is well defined , continuous, and non-vanishing on Uj, since the ith coordinate is 1.

The 1-dimensional vector bundle H is usually called the Hopf bundle, or sometimes,
‘canonical line bundle.’

A section of H is thus a continuous map s: CP" — C"*! such that s(L) € L for all L.

EXAMPLE 4.1.8. (Induced bundles). Let I" be a discrete group, acting properly on X.
Then there is a natural way of associating a vector bundle over I'\ X to any finite dimensonal
representation ©: I' — GL(V), V a complex vector space. As a space, let X XV be the
quotient of X x V by the equivalence relation (gx,mt(g)v) = (x,v), that is, the quotient of
X x V by the given group action. The first coordinate projection X x V to X induces a well
defined map w: X xrzV — I'\X.

The fibres of & are clearly copies of V.
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LEMMA 4.1.9. nt: X xprV — I'\X is a complex vector bundle.

PROOF. Let x € X. There is a neighbourhood U of x such that g(U) NU = 0 for all

non-identity elements g € I'\ {e}.
O

The following is an excellent and important exercise.

EXERCISE 4.1.10. Let T =R/Z, T' = 7. Both T and T’ are circles, clearly, but
they have different roles in the following construction. Define an equivalence relation on
R X T’ x Cby (x,%,2) ~ (x+n,%x(n)z). Let L be the quotient space.

The coordinate projections define a map ©: L — T x T’. Show that L is a rank-one
complex vector bundle over T x T’, whose restriction to each slice 7' x {} is the induced
bundle R x 7, C from the 1-dimensional representation .

EXERCISE 4.1.11. Let ®: E — X be a vector bundle (either real or complex). Prove
that the function x — dim(Ey) is a locally constant function on X. Deduce that the fibres
of a vector bundle over a connected space all have the same dimensions. This common
dimension is the rank of the vector bundle.

EXERCISE 4.1.12. Prove thatif t: E — X is a real or complex vector bundle over a
locally compact space, then 7 is an open map.

We close this section with an important definition.

DEFINITION 4.1.13. Let ¢: X — Y be amap and : V — Y be a vector bundle over
Y. Then, the pulled-back bundle ¢*(V) is the vector bundle over X defined as follows. As
a space,
¢ (V) :={(xv) €X XV 0(x) =(v)},
topologized as a subspace of X x V. The restriction pry |(p*(V) — X of the first coordinate
map pr;: X XV — X supplies the vector bundle projection; note that the fibre of pr; |¢*(V)
over x € X is Vy(y), so the fibres have natural vector space structures.

It takes only a small amount of thought to check that ¢*(V) really is locally trivial.
Indeed, suppose that V C Y is the domain of a chart with local sections sy, ...,s,. Let U :=
¢ (V) CX. Then s 0@,...,s, 0@ are continuously defined on U and by the definitions
are linearly independent sections of ¢*(V).

DEFINITION 4.1.14. If ¢: X — Y isamap and ®: V — Y is a vector bundle over Y,
¢* (V) denotes the vector bundle over X described above.

For a simple example, the pull-back of any vector space (in other words, vector bundle
over a point) to any compact X under the map from X to a point, is a trivial bundle over X.

EXERCISE 4.1.15. Prove that if Z C X is a subspace and i: Z — X is the inclusion
then i* (V') = V|, for any vector bundle V over X.

EXERCISE 4.1.16. if E is the Mobius bundle over the circle T and f: T — T is the
map f(z) = 2%, prove that f*(E) is trivial.

Direct sums and tensor products of vector bundles

Let V and W be vector bundles over X. Their direct sum V & W, is defined as a
space to be the (closed) subspace of V| x V, (with the product topology) consisting of all
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(vi,v2) such that w; (v;) = Ty (v2). By the definitions, there is an obvious (continuous) map
7: V1 ®V> — X. And each fibre 7! (x) is just V, x W, which can be endowed with the
usual product vector space structure, making it the direct sum vector space Vy ® W,.

EXERCISE 4.1.17. The direct sum V; @ V, with projection map defined above, is a
vector bundle.

REMARK 4.1.18. Itis easy to check that there are two natural inclusions i: V —V &W
and j: W — V @&W, that these are vector bundle maps, and that the direct sum construction
is a categorical co-product: if V| and V, are vector bundles, W a third vector bundle, and
i1 and iy the inclusions V; — V| @ V5, then for any pair of bundle maps ¢;: V| — W and
©y: Vo — W, there is a unique vector bundle map @: V; &V, — W such that ¢oi; = @,
and Qoir = Q3.

The tensor product V@ W of two vector bundles V,W over X, is defined in roughly the
same way. It will be the vector bundle whose fibre at x is V,, ® W,.. Thus, as a set, V| @V, is
by definition, | | cy Vx ® W,. There is of course a natural projection from this set to X.

In order to topologize the tensor product, let us cover X by open sets U on which
both V and W are trivial. Fix such U. Suppose then that V|y = U x R and W|y =
U x R™ by a certain pair of isomorphisms. It follows, by taking the tensor product of these
isomorphisms, that we get a canonical set bijection | |,cyy Vi @ Wy and U x RF®R™, which,
furthermore, maps each V, ® W, linearly and isomorphically to R¥ @ R"™.

We can now specify a collection of subsets of | |y Vi ® U, by taking images, under
this isomorphism, of open subsets of U x R¥ @ R,

As U varies, the collection of all open subsets so obtained, forms a basis for a topology
on | |,ex Vi ® Wy, as the reader will easily check, and makes V ® W into a vector bundle
over X.

EXERCISE 4.1.19. Let V,W be vector bundles over X. Let HOM(V, W) be defined as
a set to be | |,cx Hom(Vy, Wy). Topologize this in such a way as to make a vector bundle,
and prove that the fibrewise evaluation maps V, ® Hom(V,,W,) — W, piece together to
give a natural vector bundle map V @ HOM(V,W) — W. Furthermore, the vector space
Hom(V,W) of vector bundle maps from V to W, is precisely the space of sections of
HOM(V,W), by the definitions.

EXERCISE 4.1.20. If V is a vector bundle, the dual V* of V is the vector bundle
V* =HOM(V,X x 1), where 1 denotes the trivial line bundle over X (real if one is working
with real bundles, complex else.) Thus V* is the vector bundle whose fibre at x € X is the
dual V¥ of the vector space V.

Prove that if V and W are vector bundles over X then HOM(V,W) = V* QW as vector
bundles over X.

EXERCISE 4.1.21. Prove that V ® V* is trivial for any complex line bundle V. (Hint.
Identify it with HOM(V,V) and deduce the existence of a non-vanishing section.)

2. Finitely generated projective (f.g.p.) modules and vector bundles: Swan’s
Theorem

Gelfand’s theorem interprets the class of commutative C*-algebras geometrically, in
the sense of identifying them with continuous functions on their spectra. The Serre-Swan
Theorem identifies the finitely generated projective module theory of a commutative C*-
algebra, with the vector bundle theory of its spectrum. This idea is essential to the devel-
opment of K-theory.
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The first observation is that projection-valued functions on a compact space X deter-
mine canonical vector bundles over X.

LEMMA 4.2.1. Let X be a locally compact Hausdorff space and p: X — M,(R)
(respectively M,(C)) be a continuous idempotent-valued map. Let E := {(x,v) € X x
R" | p(x)v = v} (respectively {(x,v) € X x C" | p(x)v = v}), equipped with the subspace
topology; let m: E — X, be the restriction of the first coordinate projection to E.

Then E is a real (respectively complex) vector bundle over X.

Thus, the fibre Ex of E at x € X is the range of p(x), a subspace of R".

Before going to the proof, we review one of the standard tools of vector bundle theory.
The property of locally compact Hausdorff spaces stated in the Lemma is called paracom-
pactness.

LEMMA 4.2.2. If X is a locally compact Hausdor{f space, and if U = {Uq }qcq is any
open cover of X then there exist
o Anopen cover V ={V;}ic; of X, such that every V; is contained in some Uy, and
such that if F C I then NicpV; # 0 only if F is finite.
o A family {p;}icr of continuous functions p; € C.(X) of compact support, such
that 0 < p; < 1foralli €I, supp(p;) CV,, and such that ¥ ;c;pi(x) = 1 for all
xeX.

We refer to the data consisting of the locally finite refinement ¥V = {V;};c; of U, in
the above Lemma, and a collection of functions {p; };cs, subordinate to V, as a partition of
unity subordinate to the cover U.

Partitions of unity are useful for proving the following facts about vector bundles.
A Euclidean structure on a real vector bundle ©: E — X is a family {(-,-)x | x € X} of
inner products on the fibres of E such that for any two continuous sections sy,s, of E,
the function x — (s (x),s2(x)) on X is continuous. A Hermitian structure on a complex
vector bundle w: £ — X is a family of Hermitian inner products on the fibres of E, which
is continuous in the same sense.

PROPOSITION 4.2.3. Any real vector bundle over a locally compact space has a Eu-
clidean structure, and any complex bundle has a Hermitian structure.

PROOF. If {U;,@;} is an atlas for the real vector bundle E, and {p; | i € I'} is a subor-
dinate partition of unity, then we can set, for e, e’ € Ex,

(e.¢)x =} V/pilx) (@i(e).9i(e"))

where the right-hand-side refers to the usual inner product on R".
This defines a Euclidean structure on E. The complex case is similar.

With partitions of unity in hand, we now prove Lemma4.2.1]

PROOF. (Of Lemmafd.2.T). We just do the real case; the complex case works exactly
the same.

Let xop € X. Then p(xp) is an idempotent matrix in GL(n,R), with range a subspace
Ey CR". Letvy,...,v be a basis for Ey (assuming Ej is not the zero subspace, otherwise
omit this step) and extend it to a basis vi,..., Vg, Vgi1,. .., v, for R Let f: X — M, (R) by
setting f(x) equal to the n-by-n matrix with columns

p(x)vi, p(xX)va, .o, p(X)Vks Vit1s- - Vne
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Then f takes an invertible value at x, and hence takes invertible values in a neighbourhood
U of xy. In particular, the vectors p(x)vy, ..., p(x)vy must be linearly independent for x € U,
and so they form k linearly independent sections of w: £ — X on U. This results in a local
trivialization of E on U as required.

O

We will denote the vector bundle t: E — X defined by an idempotent-valued function
p: X — M,(R) by Im(p). A section of Im(p) is by definition a continuous map s: X — C”
such that s(x) € Im(p(x)), or, equivalently, such that p(x)s(x) = s(x) for all x € X.

We recall the following general definition.

DEFINITION 4.2.4. If A is a ring, not necessarily unital, then a finitely generated
projective module (f.g.p. module) over A is a right A-module of the form p-A”", where
p € M, (A) is an idempotent.

We typically abbreviate finitely generated projective module to f.g.p. module.
EXERCISE 4.2.5. Let L and L' be f.g.p. modules over A. Prove that their direct sum
L@ L is an f.g.p. module over A. If L =2 pA™ and L' =2 gA™ then L L' = (p ® q)A"™™,

where p @ q is the block matrix [g 2} .

EXERCISE 4.2.6. If A = % is the non-unital C*-algebra of compact operators, then
f.g.p. modules over X correspond to finite rank projections in X.

Now set A = C(X), X compact, so that A is unital. If p: X — M,,(C) is a continuous,
idempotent-valued function, as in Lemma then the C(X)-module I'(Im(p)) of sec-
tions of Im(p) is exactly equal to pC(X)". Therefore, it is a finitely generated projective
C(X)-module.

We prove below that every vector bundle has the form Im(p) for some p, and hence
that I'(E) is finitely generated projective for every vector bundle E over a compact space:

LEMMA 4.2.7. Lett: E — X be a real vector bundle over a compact Hausdor{f space
X. Then E is isomorphic to a sub-bundle of a trivial bundle X x R" for some n. Further-
more, if p: X — M,(R) is defined by setting p(x) equal to the orthogonal projection onto
E; CR", then p is a continuous, projection-valued map and Im(p) = E.

In particular, the C(X)-module T'(E) is a finitely generated projective C(X)-module
for any vector bundle E over X.

PROOF. Suppose Uy,...,U, is a finite cover of X such that E|y, is trivial for all i. Let
@;: E|y, — R" the corresponding trivializations. Let p; be a partition of unity subordinate
to this cover, which we assume has m elements. Denote elements of V by pairs (x,v),
where 1(v) = x. Define a vector bundle map ®: E — X x R"®--- GR" by

4.1) P(x,v) = (x, ®ipi(x) - 9i(x,v)) € {m(e)} xR" @ --- BR".

@ is well defined since p; is zero outside of U;, the domain of ¢;. For x € X, if ®(x,v) =0
then p;(x) - @;(x,v) = 0 for each i whereas @;(x,v) # 0 for every i such that x € U;, and
pi(x) # 0 for at least one i. So @ is fibrewise injective and so defines fibrewise injective

vector bundle map E — X x R™™.
O

For example, if X x C” is a trivial bundle, or is isomorphic to one, then its space of
sections is C(X,C") 2 C(X)®---®C(X), a free C(X)-module. The existence of non-
trivial vector bundles over X, in general, is equivalent to the existence of finitely generated
projective C(X)-modules, which are not free.
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EXAMPLE 4.2.8. (Following Example4.1.7). Let X = CP! and n: H — CP' the Hopf
bundle. Then by the very definition, H = Im(P) where p: CP! — M,(C) is the following
projection valued function. A point of CP! is a line L in C2, by definition. So we let P(L)
be orthogonal projection onto this line.

To find an explicit formula for P is not difficult, using basic linear algebra. In terms of
homogeneous coordinates on CP',

1 2> wz ]
P(lzw]) = 75— | - .
()= i B o

Note also that if we restrict it to the natural copy of C C CP! by z+ [z, 1] we get the

projection-valued map

1 2
p: C—=M(C), pz)= i [ZZJ ﬂ )

on C. It has the property that

. 1 0
timpo= g ]
In particular, it extends continuously to the one-point compactification C* of C, which, of
course, is the same as CP!.

EXERCISE 4.2.9. Find an explicit formula for a projection-valued function p: §? —
M;3(R) whose image Im(p) is the tangent bundle 7'S.

LEMMA 4.2.10. IfE and E' are vector bundles over X compact, then E = E' as vector
bundles if and only if T(E) 2 T'(E’) are isomorphic as C(X)-modules.

PROOF. One direction is clear; we prove that if T: ['(E) — ['(E’) is a module isomor-
phism, then E = E’.

First observe that if s is a section of E then supp(s) C U if and only if ps = 0 for all
p € C.(X\U), and since ps = 0 if and only if T(ps) = pt(s) = 0, we see that supp(ts) =
supp(s) for all sections s of E.

From this it follows that if s; and s, are two sections of £ which agree at a single
point, then t(s;) and T(s;) also agree at that same point.

Now let (x,v) € E. Choose any section s,,: X — E such that s, (x) = v. Set

Tv:=1(sy)(x) € EL.

By the observations above, Tv does not depend on the choice of section s, taking value v
at x, and we leave it to the reader to check that 7: E — E’ is a vector bundle isomorphism.
d

Before stating Swan’s Theorem, we formalize a definition. As noted above, the di-
rect sum of two f.g.p. modules is again an f.g.p. module, corresponding to taking the
direct sum of projections. This sum operation is obviously compatible with isomorphism
of modules. Hence it endows the set of isomorphism classes of f.g.p. modules with a
semigroup structure with [L] + [L'] := [L® L]. This sum operation matches direct sum of
vector bundles.

With these remarks, we have the following fundamental result:

DEFINITION 4.2.11. If A is a C*-algebra, we let P(A) denote the semigroup of iso-
morphism classes of f.g.p. modules over A.

If X is a locally compact space, Vect(X) denotes isomorphism classes of complex
vector bundles over X, also a semigroup under direct sum of vector bundles.
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THEOREM 4.2.12. (Swan’s Theorem). Let X be a compact metrizable space. Then the
assignment E — T'(E) descends to an isomorphism of semigroups Vect(X) = P (C(X)).
In this correspondence, trivial vector bundles correspond to finitely generated free

C(X)-modules.

EXERCISE 4.2.13. (The Poincaré line bundle) Let T = R/Z and I'(®P) be the linear
space of continuous functions f on R x T with the property that

f(s+n,t) =e 28" f(s,1)

for all (s,t) € R x T,n € Z. Give I'(P) the structure of a (right) C(T?) = C(R? /Z?)-module
by
(- @)(s:1) := F(5,0)9(s.1).
a) Check that the module structure maps I'(P) to itself.
b) Find a C(T x T)-valued inner product making I'(?) into a right Hilbert C(T x T)-
module. Prove that it is finitely generated and projective.
¢) Prove that I'(P) is the section module of a rank-one complex vector bundle L
over T x T; describe the bundle concretely. (See Exercise |4.1.10] and Exercise
4.4.11])

Remarks on projective modules vs idempotents vs projections

We finish this section with a brief discussion of the exact relationship between finitely
generated projective modules, and the idempotents which go along with them.

Assume A is a ring, unital or not.

If pA™ and gA™ are isomorphic projective modules over A, with o : pA™ — gA™ the
isomorphism, B': gA™ — pA”" its inverse, then we can extend o to an A-module map
A" — gA™ which is zero on (1 — p)A”, which we denote by a. Note that o is given by
the left multiplication action of an m-by-n matrix with entries in A; similarly, B € M, (A).
Multiplying these matrices one way gives oy = p, and multiplying them the other way
gives o = g.

Conversely, if o0 € My, (A) and B € M, (A) with afy = p an idempotent in M, (A) and
Ba = ¢ an idempotent in M,,(A), then the projective A-modules pA™ and gA™ are isomor-
phic; the isomorphism is multiplication by the matrix o and its inverse is multiplication by
the matrix f3.

PROPOSITION 4.2.14. Let A be a ring. Then two finitely generated projective modules
pA™ and gA" are isomorphic if and only if there exists O € My, (A),B € My (A) such that
oaf = p, Po=g.

We call this algebraic equivalence of idempotents. If A is unital, then a special case is

similarity, as in the following easy

EXERCISE 4.2.15. Prove that if A is unital, and p,q € M,,(A) are similar, i.e. if there
is an invertible u € M,,(A) such that upu~' = g, then p and g are algebraically equivalent.

PROPOSITION 4.2.16. If A is a unital C*-algebra and p and q are similar idempotents,
then they are unitarily equivalent.
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PROOF. Suppose that apa~! = g. Then ap = ga, and taking adjoints, pa* = a*q. It
follows that pa*a = a*qa = a*ap so that p commutes with a*a. Hence it commutes with
la| = (a*a)%. Write a = ula| in polar decomposition. We get

up =ala|”'p=apla|~" = gala| " = qu

and hence upu* = q.
O

LEMMA 4.2.17. If A is a unital C*-algebra then every idempotent in A is similar to a
projection.

Furthermore, if p and q are algebraically equivalent projections, with oy = p and
Ba = g, then there is a partial isometry u € My, (A) such that uu* = o and u*u = .

PROOF. The idea of the proof is to think of A C B(H) for a Hilbert space H. The
range of e is a closed subspace eH of H, and H decomposes as an orthogonal direct sum
eH @ (eH)" and e has a block matrix representation

Y

. . . 1
for some operator R. Let p be the operator with matrix representation p = {

0 0} and s

1

0 1
show that p and s are actually in the C*-algebra A. To see this, compute with the matrices
that

4.2) p(l+ee*+e'e—(e+e*)) =ee*

. . . R . 1 .
the operator with matrix representation s = . Itis clear that ses™" = p. It remains to

Since 1 +ee* +e*e— (e+e*) =1+ (e—e*)(e—e*)*, itis astrictly positive and in particular
invertible element of A. Hence by (4.2) we get

4.3) p=ec*(1+(e—e*)(e—e)*) "

andso p € A. Sincee—p = {8 ﬂ we get 1 +e— p =5, so that s € A as well.

For the second statement, suppose that p = o/ and ¢ = f'o for some o/, f’ € A. Let
o = pa'q and B = gP'p. Then the equations oy = p and o = g still hold, but now o and
B satisfy pog = o and gfp = .
Now
p=p'p=Ppaap <l BB,
and similarly
q=q"q=oBPo < |B|*- oo
Hence o* ot is invertible in gAg and B*B is invertible in pAp. Set u = B|B|~!, the partial
isometry in the polar decomposition of B € pAp. Then u*u = p is immediate. Also, uu™* is
a projection, since u is a partial isometry. Since |B| € pAp, it follows that p|B|~2 = |B| 2.
Using this we get

quu” = gB|B| *B* = gBp|B|>p* = BIBI*P" = uu’

since gfp = B. This shows that uu* is a subprojection of g. On the other hand,
q=qq" = BooB* < [ot]*Bp*
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and since BB* = uP*Pu*, we get g < ||o|>up*Bu* < ||ct||?||B||>uw*. Putting things together
gives

" < q < o[BI - wae*

which implies that uu* = q.
O

DEFINITION 4.2.18. Let A be any C*-algebra. Two projections p € M,(A) and g €
M,,(A) are said to be Murray-von Neumann equivalent if there is a partial isometry u €
My (A) such that uu* = p and u*u = q.

This discussion shows that as far as classifying projective modules over a unital C*-
algebra, the problem is equivalent to classifying Murray-von Neumann equivalence classes
of projections in M (A).

The following exercise shows that Murray-von Neumann equivalence is not very far
from unitary equivalence.

EXERCISE 4.2.19. Let p and g be projections in a unital C*-algebra A which are
Murray-von Neumann equivalent. Let v is the partial isometry implementing the equiva-
lence, with v*'v = p,w* =g,

a)

is a unitary satisfying
p O . |¢g 0
ool o)

p 0 q O . .
Thus, {0 O] and [0 O} are unitarily equivalent.

b) The unitary u is connected by a continuous path of unitaries in M>(A) to the

identity [(1) ﬂ (Consider the path

b costv 1 — (1 —sint)w*)
T (1 —sint vt —1 costv* ’

which connects u to {_01 (1)} ,forr €10,%].
The latter matrix can then be connected with [(1) ﬂ by the same trick.)

EXERCISE 4.2.20. Let X be compact Hausdorff. Prove that if p: X — M, (C) and
q: X — M, (C) are continuous, projection-valued functions, and if || p — ¢|| < 1 as elements
of the C*-algebra C(X,M,(C)), then Im(p) = Im(g) as vector bundles.

REMARK 4.2.21. This implies a certain ‘discreteness’ of the space of isomorphism
classes of vector bundles over a compact, second countable topological space: prove that
this set is countable, using the fact that the C*-algebra C(X) ® M, (C) is separable, for all
n.
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3. Multiplier algebras
Let A be a C*-algebra, possibly not unital.

DEFINITION 4.3.1. A multiplier of A is a linear map L: A — A such that
o L(ab)=L(a)bforalla,b € A,
e L is adjointable in the sense that there exists a linear map L*: A — A such that
L(a)*b = a*L* (D) for all a,b € A.

EXAMPLE 4.3.2. Suppose that A is an ideal in a larger C*-algebra B and x € B. Then
left multiplication by x defines a multiplier L,: A — A (with adjoint L} = L,+). This con-
tains the following two examples:

a) Any bounded, continuous function f on X locally compact Hausdorff, defines by
pointwise multiplication, a multiplier of Cy(X).
b) Any bounded operator T € B(H) defines a multiplier of X (H ), by multiplication.
For the first example, A = Cy(X) is an ideal in the C*-algebra B = C(X), and in the second,
A= X(H) is an ideal in B =B(H).

EXERCISE 4.3.3. The Szego projection Py is a self-adjoint multiplier of C*(T).

EXERCISE 4.3.4. If A is a unital C*-algebra then A = M (A) by mapping x € A to the
left multiplication operator L,: A — A (whose adjoint is Ly+).

The linear map L*: A — A specified by Definition4.3.1] provided that it exists, is both
right A-linear: L*(ab) = L*(a)b for all a,b € A, and unique. We call it the adjoint of L.

LEMMA 4.3.5. Multipliers are bounded: there exists C > 0 such that ||La|| < C||a||
forall a € A.

PROOF. This is a standard exercise in the Closed Graph Theorem. Note that A is in
particular a Banach space, so the Closed Graph Theorem applies to a multiplier L: A — A;
to show that it is bounded it suffices to show that the graph {(x,y) € AGA |y =L(x)} is
closed.

So let (ay) C A, a), — a, and suppose that L(a; ) — b. We need show that L(a) = b.
But if ¢ € A then

(b—L(a))*c = lim (L(ay) — L(a))*c = lim L(a), —a)*c = lim (a), —a)L*(c) =0

A—roo A—roo A—roo
so the result follows from Exercise
O

EXERCISE 4.3.6. Prove that the adjoint operation on M (A) is conjugate A-linear in
the sense that (Ta)* = a*T*. Also, prove that L** = L for any multiplier L.

It is easy to check that a linear combination or product (that is, composition) of mul-
tipliers is again a multiplier, whilst the set M (A) of multipliers has an obvious adjoint
operation as well, so M (A) is a *-algebra containing A. If L is a multiplier and a € A, L,
the multiplier of left multiplication by a, then the composite multiplier Lo L, maps b to
L(ab) = L(a)b which shows that Lo L, = L;(4), s0 A is a right ideal inside M (A). Since it
is also closed under adjoint, it is a left ideal as well.

Set

IL]| = sup [IL(a)]l;

flall<1

then ||L|| defines a norm on M (A), which restricts to the given norm on A.
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EXERCISE 4.3.7. Show that if L; and L, are multipliers then ||LiLz|| < ||L1]| - [|L2]],
and if a € A and L, the corresponding multiplier then ||L,|| = ||a]|.

LEMMA 4.3.8. If L is a multiplier; L* its adjoint, then ||L| = ||L*||.
PROOF. We argue as follows: if a € A then
IL*(a)l| = sup [[b"L*(a)|| = sup [[L(b)*al < sup [L(b)"]|
fl6*]1<1 ll6*]<1 [l6*]l<1
= sup {[|IL(b)|| = [ILI],
o<1
The first step is by Exercise and the last step is because ||x|| = ||x*|| for x in a
C*-algebra. Therefore |L*(a)|| < ||L|| and so ||L*|| < ||L||. Replacing L by L* completes
the argument.
O

LEMMA 4.3.9. ||[L*L|| = ||L||? for all multipliers L.

PROOF. Since ||L*L|| < ||L*||||L|| by Exercise[4.3.7] and ||L*|| = ||L|| by Lemma[4.3.8]
|IL*L|| < ||L||>. On the other hand

IL°LI| = sup |[L"L(a)l| = ~sup [[b"L’L(a)|| = sup [|L(b)"L(a)]|
lall<1 lall 15l <1 lalIp] <1
> sup ||L(a)*L(a)l| = [IL]*.
Jall<1
O

LEMMA 4.3.10. In the multiplier norm, M (A) is complete.

PROOF. Let (L)) be a Cauchy net of mutipliers, then Ly — L where L is some bounded
linear operator on the Banach space A, since the space of all bounded linear operators on a
Banach space is complete in the operator norm. So it suffices to show that L is a multiplier.
It follows immediately from the continuity of multiplication in A that L is right A-linear.
So we are reduced to showing that L is adjointable. But since L) — L in norm, it follows
from Lemmathat L3 converges, and it is easy to check that it converges to the adjoint
of L.

O

DEFINITION 4.3.11. We say that a net (L;) in M (A) converges in the strict topology
to a multiplier L if L;(a) — L(a) and L} (a) — L*(a) for all a € A.

For example, by the definitions, if (#;) is an approximate unit in A, then the net (L,,)
converges strictly in M (A) to 1, the identity of M (A).

Similarly, if L is any multiplier of A, then L(x) = lim;_e L(#;x) = lim;_yeo L(1;)x. The
conclusion is that the net (L(u;)) (or, if one prefes, the net (i;) itself), converges, in the
strict topology, to L. That is, the map

A— M(A)
is a strictly continuous map.
PROPOSITION 4.3.12. If X is locally compact Hausdorff, then the natural map gives
an isomorphism M (Cy(X)) = Cp(X), with Cp(X) the C*-algebra of bounded continuous

functions on X. The strict topology corresponds to the topology of uniform convergence on
compact subsets.
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PROOF. Since bounded continuous functions clearly act by multipliers of Cy(X), here
is a natural *-homomorphism Cj,(X) — M (Co(X)). We leave it to the reader to verify that

Ifl= sup gl
8€Co(X).llgll<1

for any f € Cy(X), so the inclusion Cj(X) — M (Cy(X)) is isometric.

Let (u;) be an approximate unit for Cy(X), and L a multiplier of Cy(X), then since
u; — 1 strictly, the net of functions L(u;) converges strictly as well, as multipliers of Cy(X).
It follows that the functions L(u;) converge uniformly on compact subsets of X. Let f be
the target function. It is clearly bounded, as ||L(u;)|| < ||L|| for all i, so that the functions
L(u;) are all uniformly bounded by a fixed constant, giving that f is as well, and L(h) = fh
forany h € Cy(X). SoL=L;y.

Hence Cy(X) = M (Co(X)).

(I

A non-degenerate homomorphism o.: A — B is one for which 0((A)B is dense in B.

COROLLARY 4.3.13. If A is any C*-algebra, then M (A) is a unital C*-algebra con-
taining A as a closed and strictly dense ideal.

In particular, if : A — B is a strictly continuous x-homomorphism, then @ extends
uniquely to a *-homomorphism M (A) — M (B).

Non-degenerate *-homomorphisms are strictly continuous, and hence extend.

If I C R is a bounded open interval, then the inclusion i: Co(I) — Co(R) does not
extend to the multiplier algebras, so is not strictly continuous or non-degenerate. Indeed,
M (Co(R)) = Cp(I) and M (Co(R)) = Cp(R) and there is no reasonable way to extend a
bounded continuous function on / to a bounded continuous function on R.

EXERCISE 4.3.14. Let H be a Hilbert space. Prove that M (X(H)) = B(H), and
prove that the strict topology on B(H) corresponds to the strong* operator topology on
B(H), in which a net (7;) of bounded operators converges in the strong* topology to T if
and only if lim; ;. 7;§ = TE and lim; ., 7;*€ = T*E for all § € H.

EXERCISE 4.3.15. Let a.: A — B be a *-homomorphism. Prove that ai(A)B is dense
in B if and only if o maps any approximate unit for A to an approximate unit for B. These
are thus equivalent ways of defining non-degenerate *-homomorphism.

EXERCISE 4.3.16. If o.: A — B is a *-homomorphism then o(A) is strictly dense in B
if and only if a is non-degenerate.

EXERCISE 4.3.17. Suppose m: A — B(H) is a non-degenerate representation of A on a
Hilbert space in the sense that T(A)H is dense in H. Prove t: A — B(H) is non-degenerate.
Hence it is strictly continuous and extends to a *-homomorphims M (A) — B(H).

EXERCISE 4.3.18. Let A be faithfully and non-degenerately represented as bounded
operators on a Hilbert space H. Prove that

M(A) =2 {T € B(H) | Tn(a) and n(a)T € n(A), Va € A}
as C*-algebras. Describe the strict topology on M (A) in terms of the Hilbert space.

EXERCISE 4.3.19. Let X be a locally compact Hausdorff space and A be any C*-
algebra. Prove that M (Co(X) ® A) is the C*-algebra of bounded, strictly continuous maps
X — M(A).
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4. Hilbert modules

DEFINITION 4.4.1. A Hermitian right A-module is a complex vector space which is
also a right A-module, with C-linear A-multiplication, with the following piece of addi-
tional structure. We require a Hermitian A-valued form on E: a map

(-, )t EXE—A
C-linear in the second variable, conjugate linear in the first, and such that

e (x,ya) = (x,y)aforall x,y € E,a € A,
e (x,y) = (y,x)* and (x,x) > O forallx € E,
e (x,x) =0only x=0.

The support of E is the closed C-linear span of the set (x,y) of inner products of elements
of E, and we say E is full if supp(E) = A.

If E is complete with respect to the norm ||x||> := ||(x,x)||, then we say E is a right
Hilbert A-module. In this case, we also refer to (-,-) as an (A-valued) inner-product.

EXERCISE 4.4.2. If E is a Hermitian right B-module with form (-,-), then

(xb,y) = b"(x,y)

forall x,y € E,b € B.

The fact that ||x|| := || (x,x) ||% is a norm is proved below.

Sometimes we refer to a right semi-Hermitian A-module, if the form (-,-) is possibly
degenerate, i.e., if there exist nonzero x € E such that (x,x) = 0.

Occasionally, when the need arises, we will denote an A-valued inner project in the
form (-,)4. We will mostly only do this when there is more than one inner product under
consideration at the same time (when we discuss strong Morita equivalence.)

The most basic example of a right Hilbert A-module is A itself, with

(a,b) :=a"b.

Note that ||{a,b)| = |la*a|| = ||a||* so that the norm defined as above by the inner product
agrees with the original norm on A.

EXAMPLE 4.4.3. Let A = M,(C) and let E be the linear space Myx,(C) of k-by-n-
matrices with complex entries. If x,y € My, (C) then x*y € M, (C), and if a € M,,(C) then
xa € M, (C) so that My, (C) is a right Hilbert A-module.

EXAMPLE 4.4.4. Ais aright Hilbert A-module over itself, for any A, with right module
structure right algebra multiplication, and inner product {(a,b) := a*b. It is full.

More generally, if J is a closed right ideal in a C*-algebra A then J has the structure of
a right Hilbert A-module with the evident right multiplication, and inner product {a,b) :=
a*b € A. Its support is J.

For instance, we could put A = Cy(X), J = Co(U ), where U C X is an open subset.

More generally, let ©: E — X be a Hermitian vector bundle over X. Let E denote
sections of E which vanish at infinity. We define a Cy(X)-valued form

(51,52)co(x) (%) := (51(x),52(x)).
We obtain a right Hilbert Cy(X)-module.
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EXERCISE 4.4.5. Suppose X is locally compact Hausdorff and ‘£ is a right Hilbert
Co(X)-module. Since the support of £ is an ideal of Cy(X), it has the form Cy(U) for some
U C X open. In this notation, prove that

U= ﬁfeann(f)fﬁl (O>’
where ann(E) :={f € Co(X) |Ef =0VE € E}.
EXERCISE 4.4.6. Prove that if xo € X is any point, and if we view C as a (right)
C(X)-module by evaluation of functions at xo, then there is no C(X)-valued inner product

making C (with this C(X)-module structure) into a Hilbert C(X)-module, unless x( is an
isolated point of X.

DEFINITION 4.4.7. The standard Hilbert A-module of rank nis A" .= A& --- B A with
right A-module structure (xi,...,x,)a := (x14,...,x,a) and inner product

n
(x,y) := Z xXix;.
i=1

The standard Hilbert A-module of rank N, denoted AY, is the completion of the collec-
tion of finitely supported sequences (x,);_; of elements of A, with right module structure
(xn)a := (xna) and inner product

(x,y) = Z X, Yns
n=1

the completion taken with respect to norm

3l = 4 [ Y il
n=1

EXERCISE 4.4.8. Prove that

AN = {(x6)0 | X0 € A Vn, Zx;‘xn converges in A}.

n

In slightly different terms, if H is a (separable) Hilbert space, A is a C*-algebra, then
the algebraic tensor product A ®c H (of vector spaces) has a natural A-valued Hermitian
form (a®E&,b®n) :=a*b- (§,M). The completion of the algebraic tensor product is then a
right Hilbert A-module A ®c H.

Fixing an isomorphism H 22 {?(N) determines an obvious unitary isomorphism of right
Hilbert A-modules A @¢ H =2 AN.

EXAMPLE 4.4.9. For&,m € C.(R) let (-,-) be the following C*(Z)-valued inner prod-
uct:

@4 &)= X (] Errmn(d) -l

nez

Note that (.4) is in the group algebra C[Z], because &,1 are compactly supported.
Give C.(R) the right C*(Z)-module structure

(4.5) (& [A)(x) :==&(x+n).

Then C,(R) completes under this inner product to a right Hilbert C*(Z)-module £z k.

EXERCISE 4.4.10. Exhibit an explicit isomorphism Ez = L*(R) @ C*(Z).
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EXAMPLE 4.4.11. Let G be a discrete group acting properly and co-compactly on a
locally compact Hausdorff space X.

Consider the linear space of continuous functions f: X — C*(G) such that f(gx) =
[g] - f(x) for all x € X. Here we are using group algebra notation, with [g] € C[G] C C*(G)
the unitary generator corresponding to g € G.

Define for two such functions fi, f>, an element

(fi.f2) € C(G\X)®C*(G) 2 C(G\X,C*(G)),
by
(f1,£2) (%) :== fi(x)" f2 (x),

where x is the orbit of x. The expression on the right is well defined , i.e. does not depend
on the choice of x, since by the equivariance condition on the functions,

fi(gx)" f2(x) = ([el /1)) ([e] 2(x)) = fi(x)*[8] (8] 2 (x) = fi (x)" fo ().
We define a right C(G\X) ® C*(G)-module structure by
(f-8)(x) == f()[g]. [-o(x) = fx)9(x).

EXERCISE 4.4.12. Check that the above determines a Hermitian right C(G\X) ®
C*(G)-module.

EXERCISE 4.4.13. Prove that Egx is f.g.p. as a right C(G\X) ® C*(G)-module.
We now return to the general theory of Hilbert modules.

LEMMA 4.4.14. Let E be a semi-Hermitian right A-module (Definition with
semi-Hermitian form {-,-): E X E — A. Then

(4.6) L(y,x)L(xy) < [[L(x.x) | - L(y.y)
holds for all x,y € E.

The Lemma generalizes the Cauchy-Schwarz inequality.

PROOF. Fix x,y € E, a € A and ¢t € R. Then the positivity condition on L gives
4.7y 0< L(xa—ty,xa—ty) = L(xa,xa) — L(ty,xa) — L(xa,ty) + L(ty,ty)

=a"L(x,x)a— t(L(y,x)a + a*L(x,y)) + tzL(y,y).

Now set a = L(x,y), then we derive that 2ta*a < a*L(x,x)a+t*L(y,y), that is,
(4.8) 20L(y,x)L(x,y) < L(y,X)L(%,x)L(x,y) +1*L(7.y)

In the case L(x,x) = 0, we get 2tL(y,x)L(x,y) < t’L(y,y) for all ¢ € R, whence it is
immediate that L(y,x)L(x,y) = 0 as well. Otherwise, suppose L(x,x) # 0. Since a*ba <
||b]] - @*a holds for any a,b in a C*-algebra, L(y,x)L(x,x)L(x,y) < ||L(x,x)]|| - L(y,x)L(x,y)
holds, and hence from (@.8) we get

4.9) 21L(y.x)L(x.y) < [[LGex)|| - L(y.x)Lix.y) +12L(y.y)
Set t = ||L(x,x)|| and perform simple algebra to get
L(y,x)L(x,y) < [[L(x %) [ L(».y)

as required.
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THEOREM 4.4.15. (The Cauchy-Schwarz inequality for semi-Hermitian A-modules).
If E, with A-valued inner product (-,-) is a semi Hermitian right A-module then

(4.10) e P < o)l 1)l
forall x,y € E.

EXERCISE 4.4.16. If E,(-,-) is a Hermitian right A-module with, prove that ||x|| :=
|| ¢, x) ||% satisfies the triangle inequality. Hence it is a normed linear space, and can be
completed, if necessary, to a Banach space.

In the semi-Hermitian case, ||-|| is a semi-norm, and we may mod out by zero-length
vectors to get a Banach space.

EXERCISE 4.4.17. Let E be a semi-Hermitian right Hilbert A-module, ||x||? := || (x, x)||
the induced seminorm on E.

a) Prove that forallx € E, a € A,
inequality may be strict.
b) Prove that

xal| < ||x|| - ||a]|. Show by an example that the

2
[Ix[I” = sup [y
[yll<1

foranyx € E.

EXERCISE 4.4.18. Let E be a right Hilbert A-module with support J C A.

a) Prove that J is a closed ideal in A.

b) Prove that if a € J then xa = 0 for all x € E implies a = 0. (Hint. Show that
a*{x,y) = 0 for all x,y € E and deduce that a*J = 0.)

¢) Prove that if A is unital then x- 1 = x for all x € E, where 1 € A is the unit.

d) Prove that if (i, ) is an approximate unit for the support ideal J then lim; _, ., xu) =
xforallx € E.

EXERCISE 4.4.19. Let ‘£ be a right Hilbert A-module.

Prove that the right multiplication action of A on £ extends to an action of the multi-
plier algebra M (A) on ‘E. (Hint. Show that if (a,) C A with a,, — a strictly, then(§ - a,) is
a Cauchy sequence of vectors in E.)

EXERCISE 4.4.20. Let p be a projection in a C*-algebra A. Prove that pA is a closed
right ideal in A and hence is a right Hilbert A-module, with inner product {pa, pb) := a* pb.
Check that its support is the closed (2-sided) ideal ApA generated by p.

REMARK 4.4.21. The focus on (semi-) Hermiitian right modules in the discussion
above is by convention; a (semi-) Hermitian /eft A-module is defined analogously to right
modules; the (semi-)Hermitian form is then required to be conjugate linear in the second
variable, linear in the first, and satisfy a(x,y) = {ax,y), for all a € A,x,y € E, but othe-
wise all axioms and the corresponding results (especially the Cauchy-Schwartz inequality)
remain the same.

EXERCISE 4.4.22. Suppose t: Y — X is a smooth submersion between smooth mani-
folds. Let V = ker(Dm) C TY be the ‘vertical tangent bundle.” Then the inclusion V — TY
of vector bundles restricts on each fibre 77! (x) to an isomorphism

Vg =T (1 (%)
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Assume that V' admits an orientation and Euclidean structure; it then admits a smoothly
varying family of volume forms ®, on the fibres. Define a Hermitian form

(n): CC() = C(X), (Em)(x) = /n

Show that CZ*(Y) completes in this way to a right Hilbert Co(X )-module Z;.
Such Hilbert modules play an important role in families index theorems.

EOM(y) oy

L)

5. Operators on Hilbert modules, tensor products and applications

It turns out that for Hilbert module maps, bounded does not imply the existence of an
adjoint, so this has to be assumed to obtain a C*-algebraic structure on the Hilbert module
maps.

DEFINITION 4.5.1. Let E| and E; be Hilbert A-modules. An A-module map 7': E| —
E, is adjointable if there exists an A-module map 7*: E; — Ej such that

4.11) (Tx,y) = (x,T"y), Vx€Ej,y € E;.

The collection of adjointable operators E; — E» is a *-algebra denoted B(E|, E»).
When E| = E; we write B(E), which we will show shortly is a C*-algebra.

EXAMPLE 4.5.2. A multiplier L: A — A of a C*-algebra A is an adjointable A module
map, with adjoint L*.

EXERCISE 4.5.3. Let A be a C*-algebra and T be an n-by-n matrix of multipliers T;;
of A. Prove that matrix multiplication by 7 is an adjointable operator on A”. What is the
matrix of 7*?

EXERCISE 4.5.4. Let E = A" the standard rank n Hilbert A-module. Let M,,(A) act on
E by matrix multiplication. Prove that this gives a *-isomorphism M, (A4) = B(E).

Returning to the general situation, the uniqueness of the adjoint of T: E| — E», if it
exists, follows from a standard argument from Hilbert space theory:

& (7 =T)y) = (6 Tiy) = (6 T3 y) = (Tx,y) = (Txy) = 0.
for two A-linear maps satisfying (@.1T). In Lemma [4.3.5] we proved that multipliers are
bounded; we leave it as an exercise to adapt the proof cosmetically to work for general
adjointable operators.

EXERCISE 4.5.5. Using the Closed Graph Theorem along the lines of the proof of
Lemma[4.3.3] prove that an adjointable operator 7: E; — E; is bounded in the respective
Hilbert module norms: there exists C > 0 such that || Tx|| < C||x||, Vx € E;.

The operator norm ||T|| for T € B(E},E>) an adjointable operator, is defined in the
usual way by
IT]| = sup [|Tx].
[lx<1
LEMMA 4.5.6. Let A be any C*-algebra and E a right Hilbert A-module. Then B(E),
with the operator norm, is a C*-algebra.

PROOF. The proof works exactly the same as it does when A = C, where we are
talking about bounded operators on a Hilbert space. If T is adjointable, and x € E is a unit
vector, then by the Cauch-Schwarz inequality

(4.12) T = (T2, Tx) | = [KT* Tx.x) | < (7Tl < | T°T|| < |77 - 1|7
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Thus || Tx||?> < ||T*||||T | for unit vectors x, and hence taking sups, we get
2
(4.13) ITI° < (I77T | < IT*[IT]|-

Interchanging the roles of 7' and T™* gives that || T'|| = ||7*|| and making the corresponding
adjustment to (#.13) we deduce without further ado that ||T||> = ||T*T||.
t

In particular, this gives another proof that M, (A) is a C*-algebra for every A, since
M;,(A) = B(A")
by Exercise

EXERCISE 4.5.7. Here is an ‘easy’ proof that any element of the form a*a in a C*-
algebra A, is positive (i.e. Spec(a*a) C [0,00)), the content of Theorem It follows
from our general results above that M>(A) = B(A @A) is a C*-algebra. Choose any a €
A. Consider the element a@ = {2 % € M>(A). Since a is self-adjoint, it generates a
commutative C*-algebra, the basic Gelfand calculus applies, and 4 has real spectrum and
@* has positive spectrum.

But Spec(a?) = Spec(a*a) USpec(aa*), as the reader will verify from the matrix form
of @2.

Why does this in fact not give an easier proof than the one given after Theorem[3.1.7]’

(Hint. In the proof of the key Lemma |4.4.14| we needed a*ba < ||b|| - a*a for any a,b
to prove Cauchy-Schwarz and that B(E) is a C*-algebra, and in particular that M»(A) is a
C*-algebra. But this statement already implies positivity of any a*a, what we are trying to
prove, by setting b = aa™.)

If E1, E> are right Hillbert A-modules, and x € E»,y € Ej, let
(4.14) Ocy: E1 — Ea, 0,,(2) :=x(y,2).

From the right A-linearity of the inner product, 6, is right A-linear, i.e. is a module map,
and clearly has range xA the rank one submodule of E, generated by x.

EXERCISE 4.5.8. Let E, E» be right Hilbert A-modules.

a) If x € E»,y € E then 6, is adjointable and Oj,y =0,

b) If E; is a third right Hilbert A-module, x € E3,y,x' € E,,y',z € Ej, then 0.y 0
By = Oxpya)y-

¢) If Esz is a third right Hilbert A-module, T: E; — E3 an adjointable operator,
x € Ey,y € Ey, then T 00,y = 07,,. Similarly, if T: Ey — E», x € E3,y € E»,
then 0, , 0T = 0, 7+,.

d) Prove that [|6,[| < [lx][ - |-

EXERCISE 4.5.9. If E is a right Hilbert B-module and x € E, prove that the operator
T:E—B, T(z):=(x,7)

is an adjointable operator E — B between Hilbert B-modules, and that 7*(b) = xb. Check
that 7*T = 0, and that TT* is multiplication by (x, x).

DEFINITION 4.5.10. If E| and E, are Hilbert modules, a finite linear combination of
operators E; — E; of the form (4.14) is a finite rank operator Ey — E;. A norm limit of
finite rank operators E; — E» is a compact operator E1 — E,. The collection of compact
operators E; — E, is denoted X (E|,E).
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Note that our definition of ‘finite-rank’ operator 7 on a Hilbert module requires that
T has an adjoint. This is thus a stronger notion, even just in the case of operators on
Hilbert spaces, than just requiring that the range of T be finite-dimensional, since there are
unbounded linear functionals on any Hilbert space.

As with bounded operators we just write X (E) for the compact operators E — E.

EXERCISE 4.5.11. Let E1 = E> = E. Prove that the the collection of finite-rank op-
erators zxjexj,yj: E — E (finite sum, A; € C,x;,y; € E), is a *-subalgebra of B(E), an
algebraic ideal in B(E). Deduce that K (E) is a closed ideal of B(E).

The previous exercise shows that K (E) is a closed ideal in B(E) and hence is a C*-
algebra in its own right.

The quotient C*-algebra B(E)/ X (E) is a Hilbert module version of the Calkin alge-
bra.

EXERCISE 4.5.12. Use the result of Exercise [£.5.11] to deduce that if E is a Hilbert
module and 7 € B(E), then T € X (E) if and only if T*T € K(E). (Hint. Consider the
question in the Calkin algebra B(E)/ X (E).)

PROPOSITION 4.5.13. If A is a C*-algebra, regarded as a right Hilbert A-module,
then K(A) = A, and B(A) = M (A).

PROOF. Firstly, adjointable operators on the right Hilbert A-module A are precisely
multipliers of A by definition of multiplier. So B(A) = M (A). If x,y € A, the rank-one
operator 6, ,: A — A is the map 6, ,(a) = xy*a, thus is left multiplication by xy* € A, so it
is in the image of (the isometric *-homomorphism) A — M (A) = B(A). Hence the closed
span of the 8., is in the image, so X (A) is contained in the image. Conversely, let x € A,
then xx* € K (A) since it equals O, as an operator. Hence x*x is compact, whence so is x,

by Exercise .5.12]

(]

EXERCISE 4.5.14. Let A be a C*-algebra.
a) Generalize the Proposition 4.5.13| and prove that K (A") = M,(A) for all n =
1,2,
b) Prove that B(A") = M, (M (A)) (c.f. Exercise4.5.3) for any n = 1,2,.... Hence
if A is unital then
B(A") = K(A") = M, (A).
¢) Prove that X(AN) 2 A® K.
d) Prove that B(AY) = M(A® KX).
The folowing result is very useful. It’s proof is easy.

LEMMA 4.5.15. Let A and D be C*-algebras and let p: A — M (D) be a non-degenerate
*-homomorphism. Then p induces a canonical *-homomorphism
(4.15) B(AY) — B(DY),
which agrees with p ®idg on the closed ideal A ® K = K(AN). Moreover, (4.15) is
injective if p is injective.

EXAMPLE 4.5.16. Let 7 be the right Hilbert C*(Z)-module of Example[4.4.9} the
completion of C.(R) with respect to the C*(Z)-valued Hermitian form

(€m):= ) (€ -nm)n] € CZC C(Z)

nez
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(using group-algebra notation). Here & - n denotes the function (& -n)(x) = &(x+n); this
formula for & - n also determines the right C*(Z)-module structure.
If feC.(R),let A(f): Ezr — Ezr be the map A(f) of convolution by f:

MOEW = [ e —y)dy.

EXERCISE 4.5.17. Prove the following.

a) Prove thatif f € C.(R) C C*(R), then A(f) is an adjointable right Hilbert C*(Z)-
module map, and that A determines a C*-algebra homomorphism

C*'(R) — B(Z:Z’R).

b) Prove that A(f) acts by a compact Hilbert C*(Z)-module operator on Ez g, for
all f € C*(R).

c) Let D be the densely defined, unbounded operator D = i ;—x, acting on compactly
supported functions in C*(R). Prove that 1 +D? extends to an invertible bounded
operator on ‘7z, and that (1 +D?)~! is a compact Hilbert C*(Z)-module map
(it follows from part b).

A remark on f.g.p. Hilbert modules

Finitely generated projective modules (f.g.p.) have already been studied in the case of
commutative C*-algebras A = C(X); they correspond to complex vector bundles over X,
by Swan’s theorem. Recall that a finitely generated right A-module E is finitely generated
projective (or f.g.p.) if there exists an idempotent e € M, (A) such that E is isomorphic
to eA". We have already proved that if A is unital then ] every idempotent is similar to
a projection, and so the module is isomorphic as a module to pA”, for some projection
p € M,(A), which has the structure of a right Hilbert A-module as a subset of A”, and
which is also orthogonally complemented in A” with orthogonal complement (1 — p)A™.

LEMMA 4.5.18. Let E be a right Hilbert A-module. Then if the identity operator
idg: E — E is compact, then E is f.g.p.

PROOF. If the identity is compact, there exist x1,...,X;,Y1,...,yn € E such that ||idg —
Y6, < 1. This makes the finite-rank operator Y ;0,, ,, invertible. If S € B(E) is its
inverse, thenidg = SY;0,,,, = ¥ Osx, 5,

So we may as assume assume, after replacing x; with Sx; for each i, that };0,, ,, = idg
to begin with. Therefore, we have the identity

(4.16) x=Y x(yi.x) VxeE.

Applying (4.16) to x = x; and taking the inner product with y; give sthe identity

(4.17) Yixj) = Y Gaxi) (yin X))

1

Let p € M,,(A) the matrix p;; := (yi,x;). The above identity can be written

(4.18) Drj = Zpkipij~
i
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Hence p is an idempotent. We claim that the f.g.p. module pA” is isomorphic to E. Let
T: E— A" by the map T (x) = ((y1,x),...,{yn,X)). Let S: A" — E be the map

Slay,...,an) = inai.

Then T'Sa = pa, as is easily checked, with p the projection matrix above, and any a € A,
and STx = x, for all x € E, from (@.16). So T defines an isomorphism from E onto the
direct summand pA” of A”.

O

EXERCISE 4.5.19. Give an example of an f.g.p. module over C(S?) which is not a
free module.

Tensor products of Hilbert modules

Let E be a right Hilbert A-module, E’ a right Hilbert B-module. Their tensor product
in the category of complex vector spaces may be completed to a right Hilbert A ® B-module
using the inner product

(4.19) (X1 ®@y1,X2®@y2) = (x1,X2) @ (y1,y2) EAQB.

The result is called the external product and denoted E Q¢ E’.

Another very important construction involves bimodules. We consider a right Hilbert
B-module E together with a *-homomorphism ©t: A — B(E). Algebraically, such an object
is an A-B-bimodule (one has two multiplications, on the right by B and on the left by A,
and these multiplications commute). Taking into account this extra structure, we might
refer to this data as specifying a right A-B Hilbert bimodule, but the terminology is a bit
cumbersome.

Algebraically, an A-B-bimodule defines a map from right A-modules to right B-modules
by the tensor product construction described below. The procedure can be ‘Hilbert-ized’
and is important, especially in KK-theory.

Suppose E is a right Hilbert A-module and that E’ is an A-B Hilbert bimodule in the
above sense, with T: A — B(E’). Form the quotient of the C vector space tensor product
E ®c E’ (aright B-module), by the right B-submodule generated by the elements

(4.20) xa®y—xQmn(a)y.
In the algebraic setting, the tensor product just defined, is usually denoted E @4 E’.

We will retain the same notation for its completed version.

DEFINITION 4.5.20. In the above notation, with E a right Hilbert A-module, E’ a
right Hilbert B-module, and n: A — B(E ! ) a representation, we will let E ®4 E’ denote the
completion of the algebraic tensor product of modules described above, with respect to the
semi-Hermitian B-valued form

(4.21) (x1 @y1,X2 ®@y2) := (y1,7({(x1,%2)) y2)B.

EXERCISE 4.5.21. Check that (.21) annihilates the relation (4.20) and descends to
give a semi-Hermitian B-valued form on E Q¢ E’.

The completion E ®4 E’ is a right Hilbert B-module containing the algebraic version
as a dense sub-module.
We leave it to the reader to check the following:
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EXERCISE 4.5.22. In the above notation, if 7 € B(E), then there is a unique ad-
jointable operator T ® 1 on E ®4 E’ such that

(TR1)(x®ay) =T (x)@ay, VXxEE,yEE'.
The adjointof T® 1is T*® 1.

REMARK 4.5.23. Itis clear that T — 7 ® 1 in fact defines a *-homomorphism A —
B(E ®4E’). In particular, it is contractive, and hence automatic that | T ® 1| < ||T||, where
the norms are the respective operator norms.

EXERCISE 4.5.24. Let a: A — B be a *-homomorphism. The right Hilbert B-module
given by B itself has a representation of A by module maps on it using o:

a-b:=a(a)b.

So a *-homomorphism o: A — B determines a canonical A-B Hilbert bimodule E. Prove
that if o : A — B and B: B — C are *-homomorphisms then Eg., = Eq ®p Ep as right
Hilbert C-modules, where the tensor product is over the homomorphism B: B — C C
B(Eg).

EXERCISE 4.5.25. Let E be a f.g.p. Hilbert A-module, i.e. an orthogonally comple-
mented Hilbert submodule of A" for some n. Let a.: A — B(‘E) be a representative of A
as bounded adjointable operators on a right Hilbert B-module E. Show that the algebraic
tensor product E4 ®4 E is already complete with respect to the tensor product Hermitian
form defined above, so that the tensor product in the category of Hilbert modules is the
same as the algebraic tensor product.

EXAMPLE 4.5.26. A particular case of the tensor product construction shows that if
A and B are C*-algebras and @: A — M (B) a *-homomorphism, then, regarding @ as a
representation of A in B(B), (by multipliers) we can form, for any right Hilbert A-module
‘E, the tensor product £ ®4 B. This results in a Hilbert B-module: the ‘pushforward’ of £
under @.

EXERCISE 4.5.27. Suppose E, is a right Hilbert A-module, that n: A — B(Ej) is
a non-degenerate representation as bounded adjointable operators on Ej, a right Hilbert
B-module. The non-degeneracy implies that the representation extends to the multiplier
algebra M (A).

By Exercise[4.4.19] the right multiplication action of A on Z, also extends to an action
of the multiplier algebra M (A).

Prove that in the tensor product of Hilbert modules

Fa ®a ng,
that the vectors
E-awan—E®aam
are zero even if a € M (A). (Hint. Compute, for a, — a strictly, a, € A,a € M (A),
1€ an@an—E&-a@an|* —0
directly, for vectors &, € E4, Ep), and n — oo.)
EXERCISE 4.5.28. Consider the right C*(Z)-module Ez of Example Every

point ® € T determines a *-homomorphism C*(Z) — C. Tensoring over this *-homo-
morphism gives the right Hilbert C-module Hy, := Ezr ®¢ C, that is, a Hilbert space.
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Prove that this ‘bundle’ of Hilbert spaces {Hy, | ® € T} can described as follows. For
each m, Hy, is the Hilbert space completion of the space of continuous functions ¢ on R
such that @(x+n) = @"@(x) for all integers n, and inner product

(@,y) = /01 o(0)y(t)dr.

Although all the Hilbert spaces H, are isomorphic to each other as Hilbert spaces, one
cannot find a continuous (in ® € T) family of such isomorphisms.

EXERCISE 4.5.29. This exercise follows from Exercise and give a geometric
interpretation of certain tensor products of Hilbert modules occurring in index theory.
Assume X,Y,Y’ are smooth manifolds. Let T: ¥ — X be a submersion with orientable
fibres. Let E the Hilbert Cy(X)-module constructed in the cited exercise. Let ': Y/ —
Z be another such submersion, E; the corresponding right Hilbert Cy(Z)-module. And
suppose that b: Y’ — X is a smooth map.
a) Y xx Y :={(»,y) | n(y) =b(y)} is a smooth manifold of dimension dimY +
dimY’ — dimX.
b) Let”: Y xx Y’ — Z the second projection map, restricted to Y xx Y’, followed
by ': Y/ — Z. Show that " is a smooth submersion with oriented fibres.
¢) The map b determines a *-homomorphism Co(X) — C»(Y’). By construction,
there is a natural representation of Co(Y’) in Ey. Hence we can take the product
of Hilbert modules Er ®c,(x) En- Show that

Er Qco(x) Ev = Enr
as right Hilbert Cy(Z)-modules.

EXERCISE 4.5.30. The following construction amounts to a type of GNS construction
for Hilbert modules.

Let A be a unital C*-algebra and @: A — C a state. Suppose that £ is a right Hilbert
A-module.

a) Prove that the sesquilinear form (§,1) := @((€,1)) makes E into a semi-Hermitian
right Hilbert C-module. So it’s completion is a Hilbert space L*(‘E,®).

b) Prove that any adjointable operator 7' on E determines a bounded operator on
L?(E,0), so that we obtain a representation

n: B(E) - B(L*(E,9))

of the C*-algebra B(E) on the Hilbert space L?(E, ¢).

c) Prove that if @ is a trace then ‘scalar’ multiplication by elements of A determines
a representation p: A — B(Lz(f,(p),) of the C*-algebra A (on the right; that is,
it is a representation of the opposite algebra A°P of A.)

d) Check that with the assumption that @ is a trace, that the two actions (represen-
tations) of A and of B(‘£) commute.

Application to the theory of crossed products

In Section [12| we introduced crossed product C*-algebras. Let G be a discrete (count-
able, as usual) group and A a G-C*-algebra. To form the crossed product, one first forms
the twisted group *-algebra A[G]. Previously, in order to make A[G] into a C*-algebra,
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we chose an injective representation of A on a Hilbert space. This begs the question of
the independence of the choice of representation. In fact there is a completely canoni-
cal representation of A as bounded (adjointable) operators on the right Hilbert A-module
I*(G.A) :={(ag)gec | Leegayas converges in A}, with A-valued inner product

(a.b) =) d;b,.
¢€G
Define a *-homomorphism
Mgt A[G] = B(I*(G,A))
from the *-algebra A[G] to the C*-algebra of adjointable operators on />(G,A) by the co-
variant pair
(4.22) M6 (8)(annec = (agn)heg:  Mg(a)(an)nec :== (h~" (@)an)heg-
It is left to the reader to check that
Aoa(h(a)) =Aag(M)Aag(a)hac(h)",

so that this is a covariant pair, and determines a *-homomorphism as required (see Exercise

[L.124]e)).

We may now give a much better definition of the crossed-product:

DEFINITION 4.5.31. The reduced crossed-product A x G of a discrete group G acting
by automorphisms of a C*-algebra A is the completion of the pre-C*-algebra (A[G], [|- ||, ;)-

REMARK 4.5.32. As a general matter regarding cross-products, the *-homomorphism
Mg A[G] = B(I*(G,A))

maps the group algebra A[G] into Hilbert A-module maps on /?(G,A). So we can represent
the operator corresponding to a given element of A[G] as a G-by-G matrix of elements of
A, by trivializing the Hilbert A-module /%>(G,A) in the standard way.

For example, if a € A, its matrix is diagonal with g~!(a) in the (g, g)th coordinate. If
g € Gis a group element, and A is unital, so that we can view the elements of G as (unitary)
elements of A[G], then A4 (g) has constant g-diagonal (collection of entries of the form
(h,hg)) with 1’s along it, so has the form

0o 1 0 -
0 1 0

0 1 o0

§= 0 1

0 0

0

Thus, the matrix representation of the general element of A[G] (not of A x G, of
course), has only finitely many nonzero diagonals.

PROPOSITION 4.5.33. Ifa.: A — B is a G-equivariant non-degenerate *-homomorphism,
then o extends uniquely to a *-homomorphism j(a): Ax G — B x G.
Moreover, j(Q) is injective if . is injective.

PROOF. The *-homomorphism

a®Ridg: AR K - B® XK
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is non-degenerate and extends to a *-homomorphism M (A ® X) — M (B® X). Since
M(A® K) =B(I>(G,A)) and similarly for B (by Exercise|4.5.14), we have a *-homomorphism,
which we denote by & from B(I*(G,A)) — B(I*(G,B)).

Let j(a): A[G] — B[G] denote the *-homomorphism determined by o.. We leave it to
the reader to check that

(4.23) AGpoj(a) =8okga: A[G] — B (I*(G,B)).
The equation (4.23)) implies that
@24 [j(@)(0)llzxc = | (A0 () 0| = [[(&(Aca ()] < [Aea )] = [lxllaxc

for all x € A[G], using the fact that any *-homomorphism is contractive. Hence j(o) ex-
tends continuously to a *-homomorphism A X G — B % G as claimed.
For the injectivity statement, injectivity of o implies that of o0 ® idg and then that of
its extension to a *-homomorphism B(/*(G,A)) — B(I*(G,B)).
O

EXERCISE 4.5.34. Prove that if A is unital then the inclusion C[G] — A[G] extends to
a *-homomorphism C*(G) = A x G.

We now relate the current definition of crossed product to an earlier one. Let A be a G-
C*-algebra and B a C*-algebra (without any G-action.) Let p: A — B be a non-degenerate
*-homomorphism.

We produce a *-homomorphism

Ind(p): A[G] — B(I*(G,B))
by defining
Ind(p)(a)(b®@ey) :=p(h ' (a))b@ey, Ind(g)(b®ep) :=b®@eg.
This is a covariant pair. We obtain a *-algebra homomorphism
Ind(p): A[G] — B(I*(G,B)).
As above, p determines a *-homomorphism p: B (A®[*(G)) — B (B®*(G)).
LEMMA 4.5.35. In the above notation, Ind(p) = poArga: A[G] — B(I*(G,B)).

Hence Ind(p) extends to a C*-algebra homomorphism A x G — B(I*(G,B)). It is
injective if p is.

The proof follows the same pattern as that of Proposition #.5.33]

COROLLARY 4.5.36. Ifp: A — B(H) is a representation of A on a Hilbert space, then
the map Ind(p): A x G — B(I*(G,H)) is a representation of A x G on I*(G,H). The latter
is injective if p is injective.

The proof consists merely of re-interpreting the target B(/*(G,B)) of Ind(p) as the

C*-algebra B(I?(G,H)), when B :=B(H).
As a consequence,

COROLLARY 4.5.37. Definitions d.5.31|and [I.12.7) agree, that is, produce the same
completion A x G of A[G), for any G, and any choice of injective representation involved

in Definition[I.12.7]




5. OPERATORS ON HILBERT MODULES, TENSOR PRODUCTS AND APPLICATIONS 173

EXAMPLE 4.5.38. Let A = Cy(X), where G acts on X, locally compact. To each orbit
Gxy C X of the action, we associate a representation
Tyt Co(X) X G — B(I°G),

of the crossed-product Co(X) x G as follows. Let evy, : Co(X) — C be the *-homomorphism
of evaluation of functions at xy: a representation of Cyp(X) on a one-dimensional Hilbert
space.

Applying the construction of Ind(evy,): Co(X) x G — B(I>G) above we see that

Ind(evsg) (F)(en) = ovag (17 (£)) = evag (o ) = F(h(x0)), glen) = egn:
Hence Ind(evy, ) is induced by the covariant pair
Co(X) = C»(G) C B(I*G), Gelfand dual to the orbit map G — X, g — gxo,
and G — U(I*>G), the left regular representation.

EXERCISE 4.5.39. Prove that the representation 7, associated to an orbit of G acting
on X is injective if and only if the orbit Gxg of xg is dense in X.

EXERCISE 4.5.40. If p: A — B is a non-degenerate *-homomorphism and H is a
Hilbert space then the tensor product (A ® H) ®4 B of Hilbert modules over p is canoni-
cally isomorphic to B® H as right Hilbert B-modules. Check that this identifies the map
p: BA®I*(G)) — B(B®I?(G)) discussed in the proofs with the map T — T ® 1.






CHAPTER 5

MORITA EQUIVALENCE

Modifying a C*-algebra A by replacing it with M(A) or M,(A) or A® X, has little
impact on the structure theory of the C*-algebra. It therefore seems reasonable to con-
sider a pair of C*-algebras A and B to be equivalent if A ® X and B® X are isomorphic.
This equivalence relation is called Morita equivalence, due to having been defined by Kiiti
Morita in 1958. Morita equivalent algebras have exactly the same spaces of irreducible
representations, primitive ideal spaces, tracial state spaces, finitely generated projective
modules, and other important invariants (see [29], [136] , [137], [138] and [139], and the
more recent [67] and the book [[134]). Morita equivalent C*-algebras are for most purposes
indistinguishable as objects of Noncommutative Geometry. Two commutative C*-algebras
are Morita equivalent if and only if they are isomorphic, so Morita equivalence only be-
comes visible as a new concept for noncommutative algebras.

Morita equivalence reveals the fundamentally important fact that the crossed product
construction for G-actions on spaces X, where G is a locally compact group, is actually
a form of quotient space construction (producing, however, a potentially noncommutative
space.) Suppose that G = Z/2 is the two-element group, acting on the 2-point space X by
interchanging the two points. The quotient of the action G\X is the one-point space. As
we discussed in Section [I2]of Chapter[I] we may realize C(X) as diagonal 2-by-2 matri-
ces, and these and the off-diagonal unitary flip matrix generate the crossed product algebra
C(X) » G, which is none other than M,(C). Thus the crossed product is Morita equiva-
lent to C = C(pt) = C(G\X). More generally, if G acts properly and freely on X, then
Co(X) x G is Morita equivalent to C(G\X). In [48] and [43] Connes speaks often of the
C*-algebra C*(F) of a foliation F acting as a kind of replacement for the (topologically
badly behaved) space of leaves M/ F of the foliation.

One of the most general results along these lines is due to Muhly, Renault and Williams
(see [125]]), which applies to locally compact groupoids with Haar system (see [133]))
which implies in particular that the restriction of the holonomy groupoid of a foliation
to a transversal results determines a Morita equivalence between the holonomy groupoid
and its (étale) restriction to a transversal. The C*-algebras of transversals are unital, if the
transversal is compact, and are in many ways much easier to analyze.

In particular these results apply to Lie group actions like the Kronecker flow on the
2-torus, which we discuss here. As we do not discuss groupoids much in these notes, we
restrict ourselves here to stating the special case of [125] for commuting group actions, and
only give an indication of why it is true by giving parts of the proof for special cases, see
[125] for the full proof of Theorem [5.1.15]and its more general version for groupoids and
their C*-algebras. The restriction of the Kronecker flow o along lines of slope 7 is Morita
equivalent to the irrational rotation algebra Ay, by restricting to an appropriate transversal.
This reduces the dynamics of the Kronecker flow to the dynamics of irrational rotation on
the circle.

175



176 5. MORITA EQUIVALENCE

A higher dimensional example of this general sort of discussion appears in classical 2-
dimensional hyperbolic geometry (see Section[7). If M is a hyperbolic surface, then weak
stable equivalence of geodesic flow on the unit sphere bundle SM is Morita equivalent to
the action of G := 7t; (M) on the boundary of hyperbolic space M = H?, again reflecting the
common ergodic theory technique of studying geodesic and horocycle flow by analyzing
the action of the fundamental group on the boundary of hyperbolic space (see e.g. [101]],
[151]]), which coincides with the intrinsically defined Gromov boundary dG if M is com-
pact (see Section . The Morita equivalence between the C*-algebra C(0H?) x G of the
boundary action of a surface group G = m; (M) on the boundary of the hyperbolic plane,
and C(SM) x R x R through the joint actions of geodesic and horocycle flow, also has con-
sequences for the problem of computing the K-theory of C(dH?) x G, as we discuss at the
end of this book. (See the Introduction of [[72] for more discussion of the example).

Finally, in this section we construct, using Morita equivalence, various examples of
‘noncommutative vector bundles’: that is, f.g.p. (finitely generated projective) modules
over various examples of noncommutative C*-algebras, from geometric ideas related to
dynamics. Such modules are data for K-theory. For instance the famous Rieffel mod-
ule over Ay is of this type (see Section [6). If G is a discrete group acting properly and
co-compactly on X, then the space of sections of any G-equivariant vector bundle over X
also determines a Morita equivalence bimodule (see Section[3)), this time between a unital
C*-algebra and an ideal in Cy(X) x G, and then an f.g.p. module over Cy(X) x G. This
determines a bijective correspondence between isomorphism classes of G-equivariant vec-
tor bundles over X and isomorphism classes of f.g.p. modules over the crossed product
Co(X) x G of some importance in K-theory (see [78] and references). We also discuss
examples for finite group C*-algebras, which is the special case of X a point: if wis a
finite-dimensional representation of a finite group then the C*-algebra commutant of 7(G)
is Morita equivalent to the ideal of C*(G) generated by the character, and in particular de-
termines an idempotent in C*(G). This correspondence between (equivalence classes of)
representations and (equivalence classes) of projections in C*(G) is called the Green-Julg
correspondence [103].

1. Morita equivalence

The most basic example of Morita equivalent algebras is the pair A and M»(A), for any
C*-algebra A. If t: A — B(H) is an irreducible representation of A, then

“(le ) =[5 wal

is an irreducible representation of M»(A) on H ® H. To go in the reverse direction, consider
the right Hilbert M>(A)-module £ given by A @ A, with the right M>(A)-module structure
by matrix multiplication, and inner product (x,y) := 0,, € B(A®A) = M>(A). There
is a natural (left) action of A by bounded Hilbert module operators on E by left scalar
multiplication: denote it p: A — B(‘E). Now if 7 is an irreducible representation of M;(A),
then the tensor product of Hilbert modules E ®yy, 1) H is a Hilbert space, A is represented
on it by @'(a) := p(a) ® 1, and this is an irreducible representation of A.

EXERCISE 5.1.1. Prove that the maps between representations of A and of M>(A)
described above send irreducible representations to irreducible representations, equivalent
representations to equivalent representations, and induce inverse maps on spectra.

Similar arguments should that the representation theories of A and of M,(A) XA ®
M, (C) and even of A® X are identical, where X is the C*-algebra of compact operators



1. MORITA EQUIVALENCE 177

on any (separable) Hilbert space. We will not prove this general statement, but the reader
should have it in the back of their mind. One way of defining Morita equivalent algebras is
by saying A and B are Morita equivalent if A ® X is isomorphic to B® X.

EXERCISE 5.1.2. If G is a finite group, then C*(G) is Morita equivalent in the above
sense to C(X) where X is a finite set. What is X?

The previous exercise illustrates what one loses, and what one does not lose, in passing
from a C*-algebra to its Morita equivalence class. In the case of C*(G) for a finite group G,
the noncommutative space is the set of equivalence classes G of irreducible representations
of G. What is lost, are the dimensions of those representations.

One of the fascinating points of C*-algebra theory is that Morita equivalence, a con-
cept from algebra, has a beautiful geometric interpretation in the context of group actions
and crossed products.

We will not prove the following Theorem but will discuss some aspects of the proof.
Our main interest will be in examples where it can be applied.

THEOREM 5.1.3. Let G and H be locally compact groups acting properly and freely
on X locally compact. Assume the actions commute. Then Cy(G\X) x H is strongly Morita
equivalent to Co(H\X) X G.

Notice that, applying the theorem to a free and proper action of G on X and setting H
to be the trivial group gives that Co(X) % G is Morita equivalent to Cp(G\X).

Morita equivalence is best understood in terms of the existence of certain kinds of
bimodules.

DEFINITION 5.1.4. Let A and B be C*-algebras.

A Morita equivalence A-B-bimodule is a linear space £ which is both a right Hilbert
B-module, with form (-,-)g: £ X £ — B, and a Hermitian left A-module, with form
A( )1 ExE — A, such that the two module structures commute

(ax)b = a(xb), Yace A,be B,x€ E,
the identities

(5.1) Az =x(y,2)p, and A(x,yb) = 4{(xb*,y), and {(ax,y)p = (x,a"y)s,

hold for all x,y,z € E,a € A,b € B, and such that the linear spans of 4(E, E) and of (E,E)p
are dense in A, B, respectively.
In this case we say A and B are Morita equivalent.

The term ‘Hermitian; used in reference to the inner products in Deﬁnition@]means,
in the case of 4(-,), that the form must be A-linear in the first variable, A conjugate-linear
in the second. Similarly, (-, -)p should be B-linear in the second variable, and B-conjugate-
linear in the first variable. See Definition [4.4.1] for the definition of ‘Hermitian.’

The paper [29] contains a proof of the following Theorem, relying on a result from
[36]. The uniqueness part is Theorem 2.8 from [36].

THEOREM 5.1.5. Let A and B be separable C*-algebras. Then a Morita equivalence
from A to B induces a isomorphism A® K — B® XK, which is canonical up to conjugation
by a unitary in M (B® X).

COROLLARY 5.1.6. A Morita equivalence between A and B induces a bijection be-
tween the sets of equivalence classes of irreducible representations of A, and of B.
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Indeed, since the compact operators has a unique irreducible representation A, the
irreducible representations of A ® X are all of the form T® A, up to equivalence, for some
irreducible representation of A.

EXAMPLE 5.1.7. Let A be a C*-algebra. Then M,,(A) is strongly Morita equivalent to
M,,(A) for any n,m.

Indeed, let E = M,;xpm(A). If S,T € E then ST* € M,(A) and S*T € M,,(A). This
provides two inner products

Mn(A)<"'>: EXE *}Mn(A), and <’7'>Mm<A): EXE %Mm(A)

The reader can easily check that the conditions are satisfied for this to constitute a strong
Morita equivalence bimodule.

Note that this contains the result that A is Morita equivalent to M, (A) for any A. More
generally, A is Morita equivalent to A ® X, as we show below, for any A.

EXAMPLE 5.1.8. The following is a fibred example of Example[5.1.7} Letn: V — X
be a complex vector bundle over X compact. Equip V with a Hermitian metric. Let EndV
denote the endomorphism bundle of V, and A := F(EndV), the C*-algebra of sections of
the endomorphism bundle. Let B = Cy(X). Then A and B are strongly Morita equivalent.
To find a bimodule, let £ = I'(V') with its standard structure of a right Hilbert C(X)-module

(s1,52) ) (%) = (51(x),52(%)) -
Define a left I' (EndV)-valued inner product by

['(EndV) <S1 > 52> ()C) - esl ()82 (x)"
We leave it to the reader to check that these definitions make £ into a Morita equivalence
bimodule.

PROPOSITION 5.1.9. Let ‘E be any right Hilbert B-module and J = supp(‘E). Then
K(E) is Morita equivalent to J.

PROOF. For a strong Morita equivalence bimodule, we use £ as a right Hermitian
B-module. Its support is thus the ideal J C B. We set

K(E) (x,y) 1= Oyy.
If T € K(E) (or more generally if 7 € B(E)) then T,y = 07y, so that 4 (z)(-,-) is K(E)-
linear in the first coordinate. Since 6y, = 6] ,, we get (x,y) x(z) = <y,x>*7((f). Exercise
[4.5.9)implies that ) {x,x) > 0 for all x € E. Also, 8,y = B+, by an easy computation

and hence () (x,yb) =g (x) (xb*,y).
Finally, (Tx,y)s = (x,T*y)p since compact operators are adjointable, and the condi-
tion (5.1) follows from the definition of 6,,. O

Since AQ X = K(A® 12), and since the Hilbert A-module A ® I2 has full support in A,
it follows that A is Morita equivalent to A ® X, for any A, as we have mentioned previously.

Returning to the general situation of a strong Morita equivalence A-B-bimodule, note
that the proof of the Cauchy-Schwarz inequality for semi-Hermitian right A-modules (see
Lemma [.4.14), works equally well for semi-Hermitian left A-modules, so that in the set-
ting of Definition[5.1.4]it holds that

laGe ) < HlaGex) - la ) s
as well as the corresponding statement

18]l < [ Cex)a] - 10y, y)8]
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for the B-valued Hermitian form.

Secondly, note that (5.1)) implies that left scalar multiplication by a € A acts on E, as
a right Hilbert B-module, as an adjointable operator. Its adjoint is scalar multiplication by
a*. That is, the left module structure is a C*-algebra homomorphism A — Bg(E), with
target the C*-algebra of adjointable operators on the right Hilbert B-module ‘E.

In the definitions above, there emerge two natural norms on E: in order to show that
they are the same, we temporarily denote

» el =[x )]

4, and that ||xb||g < ||x||g - ||p

[[xlla:= fla %)

It follows from our remarks above that ||ax|[a < ||a| - |||
forallxe E,ac A,beB.

)

LEMMA 5.1.10. If ‘E is a strong Morita equivalence A-B-bimodule then

lla (e x) | = | (x.x) ]|
forallx € E.
PROOF. If x € ‘E then
% = [l ¢ex)all> = 106 x)a e x)all = 1 x)ax,x)a

= [ {rfrdpall < lxlla - [leCex)slla < [lxl7 %113,

where we used the Cauchy-Schwarz inequality for (-,-)4, and the fact that ||zb||4 < ||z]||2||
for all z € E,b € B. Hence ||x||3 < ||x]|3 and the result follows by switching the roles of A
and B. O

PROPOSITION 5.1.11. Let ‘E be a strong Morita equivalence A-B-bimodule. Then
A= K (E) by the left multiplication action of A on ‘E, where K (E) is the C*-algebra of
compact operators on ‘E as a right Hilbert B-module.

PROOF. Left multiplication by a = (x,y)4 € A maps z € E to (x,y)az = x(y,2)p =

0, (2). So left multiplication by a € A of this form is a compact operator. Since the span
of the 4(x,y) is dense in A, the result follows.

(I

EXERCISE 5.1.12. Suppose A and B are unital, commutative C*-algebras. Show that
if they are Morita equivalent, they are isomorphic.

EXERCISE 5.1.13. Let A be a C*-algebra. A full corner of A is a C*-subalgebra of the
form pAp, where p is a projection in A for which the ideal generated by p in A is all of A.

a) Prove that the ideal generated by p is the closed linear span of ApA.
b) Prove that if B is a full corner of A, B = pAp, then Ap with inner products

alap,bp) :=apb*, (ap,bp)p:= pa’bp

and evident left A-module structure, and right B-module structure, is a strong
Morita equivalence between A and B.

¢) Prove that A can be realized as a full corner of ']((AN) = A ® K using any rank
1 projection p € K.

Finally, we address the adjective ‘equivalent’ in the term ‘Morita equivalent’ more
carefully. Suppose that A and B are Morita equivalent by a Morita equivalence A-B-
bimodule ‘E.
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We define a ‘conjugate’ bimodule as follows. Let £* be Z as an additive group, but
with the conjugate C-multiplication Ax := Ax, making it a C-vector space.
Denote elements of E* by X (where x € ‘E.)

PROPOSITION 5.1.14. If E is a Morita equivalence A-B-bimodule then E* defined
above together with the B-A-bimodule structure

bxa := a*xb*,
and inner products
B{%.9) = (x.y)p, (%.9.)a :=a (X)),

is a strong Morita equivalence B-A-bimodule.
Furthermore,

E*QAE=B, ERpE A,
as right Hilbert B bimodules, A-modules, respectively.

PROOF. We leave it to the reader to check that £* is a strong Morita equivalence B-A-
bimodule. To see why that £* ®4 E = B, recall that the tensor product E* ®4 ‘E is defined
as the completion of the algebraic tensor product over C with respect to the Hermitian
B-valued form

(5.2) (X1 @y, Qy2)p := (1, (X1,42)4-¥2)B- = (1, a{X1,%2)2)B-

Let
U: E*Q4E—B, UXx"®y) = (x,y)B.

Then U is a well defined B-bimodule map: to see that it is a bimodule map compute
U (bl . (f®y)b2) =U ()ﬁ@ybz) = <be,yb2>B = bT (x,y}Bbg.
Finally,

(5.3) U @y1)'UR®y2) = (yi.x1)8" (x2,y2)8 = (y1,X1(x2,Y2)B)B
= (y1, a(x1,%2) -y2)B,

which agrees with (10.17). Hence U is an isometry, and is clearly surjective so is an
isomorphism of right Hilbert B-modules.
(]

We close by outlining the proof of Theorem[5.1.3]in the case of discrete group actions.

Let G and H be discrete groups acting properly and freely on X locally compact. Let
A=Cy(G\X)xH and B=Cy(H\X) xG.

If§ € C.(X)and g € Gor H let g(§) := Eog~!. We consider functions on G\X to be
G-periodic functions on X, and similarly, functions on H\X are H-periodic functions on
X.

These comments supplies C.(X) with a Co(G\X) x H-Co(H\X) x G-bimodule struc-
ture, at least for the subalgebras of finitely supported elements in the respective crossed
products (elements of H act on the right by (&-/)(x) = h~!(£) to give a right action). Let

& (x) = &(x).

THEOREM 5.1.15. Let G and H be discrete groups acting properly and freely on X by
commuting actions.

On C.(X) define inner products
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(5.4) A&y =Y g (hg)(M)*[h] €A=Co(G\X) x H.
g€G,heH

and

(5.5) Ems:= Y, h(&)(gh)(n)[g] € B=Co(H\X)xG.
heH,geG

Then the corresponding completion of C.(X) is a Morita equivalence Co(G\X) x H-
Co(H\X) % G bimodule.

Note that if 7 € H, the sum ¥, g(§)(gh)(N)* = Leec g (§-A(N*)) is locally finite
(its restriction to any compact K C X is a finite sum of functions), because the G-action is
proper. It defines a G-periodic function on X. So the coefficients of the group elements [/]
in (5.3) are indeed elements of Co(G\X).

We will not prove the theorem here, but will remark on a few aspects of the proof.

EXERCISE 5.1.16. In reference to the inner products above, prove the following,
where &,1 € C.(X).

a) if k € H then [k]4(E,M) =4 (k(E),M).

(Hint.
Kagm) =Y (ke)(€)(khg)()"[kh]= ) (kg)(§)(hg)(m)*[h] =4 (k(§).M)
g€G,heH g€G,heH

by making the change of variables & — k~ '/ in the sum; remember the H and G
actions commute.)

b) Prove that if If f € Co(G\X) then f4(E,n) =4 (fE,M).

¢) Prove that if u € G then (§,n)p[u] = (.M - u).

¢) Prove thatif f € Co(G/H) then

Em)sf = &S5
d) Prove that 4 (€,M){ =&, ()

We close with a discussion of the positivity of the B-valued inner product defined in
Theorem [5.1.13] (the other inner product is similar) since it involves some ideas of impor-
tance.

To simplify things set H to be the trivial group, so we are looked at a Cp(G\X)-
Co(X) x G-bimodule giving the important special case of the theorem asserting that Co(G\X)
and Cy(X) x G are Morita equivalent, for a proper free action of G.

The Cy(X) x G-valued inner product is

(5.6) (0. W)cyx)uG = Y, 9-8(W)]g].
geG

The right Cp(X) x G-module structure is given by

(5.7) (8/) () :=EX)f(x), (8g)(x) := E(gx).
The left Co(G\X)-valued inner product is
(5:8) o) (@ V) =} 92(v)

geG

The left module structure lets f € Cp(G\X) act by multiplication on C.(X) by considering
f a G-periodic function on X.
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The problem is to show that

(0, 9)cyx)G = 0, Vo € Ce(X),
the positivity of ¢ \x) (@, ) being clear.

EXERCISE 5.1.17. If G x X — X is a proper action of a discrete group, a cutoff func-
tion for the action is a continuous function p € Cp(X) such that 0 < p < 1 everywhere,
and
(5.9) Y s(p)?=1

geG
a) Prove that if K C X is any compact subset, then there exists a cutoff function
p which equals 1 on K. If G\X is compact, such p may also be taken to have
compact support.
b) Show that if p is any cutoff function, then

(5.10) Py:=Y pg(p)g]
g€eG
is a projection in the multiplier algebra of Cy(X) x G. If p has compact support,
then P, is a projection in Co(X) x G.
c) Prove that the collection of cutoff-functions is a convex space, and that a path
between any two cutoff functions gives rise to a path of projections in Cp(X) X G
between the projections associated by (5.10) to them.

REMARK 5.1.18. If G is finite and X is compact, then the constant function p := ﬁ is
a cutoff-function. The associated projection (5.10) is the projection \Tgl Y.colel € C[G] C
C(X)xG.

LEMMA 5.1.19. Let @,y € C.(X). Let K C X be a compact subset containing supp(¢)U

supp(V), and p be a cutoff function which is 1 on K.
Then

O RV = (0, W)cy (x) xG-
holds in Co(X) x G, where, on the left-hand-side, we are considering ©,¥ as elements of
Co(X) % G, by the inclusion C.(X) C Co(X) X G.
PROOF. Since p =1 on supp(@) Usupp(y),
.11 9Py =Y pg(p)g(w)le]l = Y, 02lpw)(gl = Y. 92(W)[g] = (@.W)co(x)x G-
8eG geG g€G
O

The Lemma immediately implies the positivity result we are looking for, since now
for @ € C.(X) and p a cutoff function which is 1 on the support of @, we have

(9. 0)cy(x) 16 = PR = (Pp@) " (Po) > 0 € Co(X) X G.
The reader might have noticed that the verification of positivity of (-, '>C0(X)><1G above
does not use freeness of the G-action on X, which was one of the hypotheses of Theorem
[5.1.13] In the case of isotropy, the range of this inner product is not dense, but is an ideal

in Co(X) x G. (see Exercise[4.4.18).

EXERCISE 5.1.20. Deduce from Theorem [5.1.3|that if G is a locally compact group,
then Cy(G/H) » K is Morita equivalent to Co(K\G) x H, where K acts on G/H by left
multiplication, H acts on K\ G by right multiplication.
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EXERCISE 5.1.21. Let Z=R x T, with T =R/Z, so Z is a cylinder. Let R act on Z
by o4 (x,y) = (x+1t,y+1th), where i € R is a fixed constant, and the second coordinate is
understood to be mod Z. Let Z act on Z by n- (x,y) = (x+n,y). Clearly the two actions
commute.

a) Show that the given actions of Z and R are proper.
b) Show that the quotient Z/Z is the torus T2, and that the induced action of R on
T2 is the Kronecker flow

Bl (x.y) = (x+t,y+7it), x,y €R/Z.

¢) Show that the quotient Z/R is the circle T and that the induced action of Z is the
irrational rotation action n-x = x +nh.
d) Deduce that the crossed products C(T?) x pr R and A are Morita equivalent.

EXAMPLE 5.1.22. Let G be a locally compact group, H C G a closed subgroup, and
Y an H-space. Let H act diagonally on X := G x Y by h-(g,y) := (gh™!,hy). The quotient
is denoted G x Y. It carries a G-action by g- (g1,) := (gg1,y). The G-space X is said to
be induced from the H-space Y.

Since the given G and H-actions commute, and since G\X 2 Y as H-spaces, an appli-
cation of Theorem[5.1.3| gives that

Co(GxgY)x G is Morita equivalentto Co(Y) x H.

This fact is important, as an arbitrary proper action of a Lie group G can be shown to
be built locally from such induced spaces.

2. Finitely generated projective modules and Morita correspondences

An extremely important property of an A-B Morita equivalence bimodule is that it
induces a map from (isomorphism classes of) finitely generated projective modules over A
to f.g.p. modules over B. We discuss this below but begin with a special case.

LEMMA 5.2.1. Let A be unital, B a C*-algebra, J C B a closed ideal, and E be a
strong Morita equivalence A-J-bimodule. Then E is finitely generated projective (f.g.p.)
as a right B-module: ‘E = p-B" for some n, for some full projection p € M,(B), and,
moreover, A =~ pM, (B)p.

PROOF. By Exercise [4.4.18]the right scalar multiplication by J C A on E extends to
a right scalar multiplication by A, making £ into a right Hilbert B-module with support
J. Accordingly, we consider the given right J-valued inner product as being B-valued, and
denote it (-,-)p.

Now, I claim that there exist x1,...x, € E such that Y7 | 4 (x;,x;) = 1a.

Indeed, since ‘E is full as a left A-module, there exist a finite collection a;, b; in ‘E such
that Y 4{a;,b;) = ¢ where ¢ is close to the unit 1 € A, and hence is invertible. Replacing
each a; by cla; we may assume that we have found a;, b; such that

Y alaibi)=1.
We have
Y alai+biai+bi) =) alaia)+ Y albibi)+2=h
where h € A is clearly strictly positive. The claim now follows from putting
Xi = h_% (a,' -l—b,)
Let
U: E—J"CB", Ux:= ({x1,X)B,...{(Xn,X)B).
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The following calculation shows that U is an isometry of Hilbert B-modules:

(5.12) (U(x),U(x))p= Z(x;,x>§<xi,X>B = Z<X,xi>3<xi,x>3

i i
= Z(x,x,-(xi,x>3>3 = Z(x, Alxi,xi)x)p = (x,x)p.
i i
A similar calculation shows that U is adjointable with adjoint

U“:B" = E, U(bi,....b,) =Y xibi.

The range projection of U is given by the matrix of elements of J C B
p=UU" = ((xi,x)B),

and we have shown that ‘£ is isomorphic as a right Hilbert B-module to p - B". Finally, if

®: A—Bp(E), ®(a):= ((axi,x;)s)

then @ maps A isomorphically to the corner pM,,(B)p of B.
If n =1 it is easy to see that the projection p = (,&)p is full, for if |, € E then

since 4(E,E)N =M, E(E,M)p =M. Similarly E(€,n)p =n'. Hence
(n.n")s = (€EM)5.8E 1) = (M.&)spEN )5

It follows that the ideal generated by p in B is exactly the support of E, whence is B. If
n > 1 there is no great further difficulty and we leave the extension to the reader.
d

EXERCISE 5.2.2. Let J be an ideal in B and p € M, (J) be a projection. Show that
pB" = pJ" as right Hilbert B-modules

We now deduce the following important result.

THEOREM 5.2.3. Let A and B be C*-algebras and E an A-B Morita equivalence
bimodule. Then if L is a finitely generated projective Hilbert A-module, then L& E is a
finitely generated projective Hilbert B-module.

The assignment L — L ®4 ‘E is compatible with isomorphism and direct sum of f.g.p.
modules and defines a semi-group isomorphism

E.: P(A) — P(B),
where P(A), P(B) are the semi-groups of isomorphism classes of f.g.p. modules over A, B.

PROOF. We start with an f.g.p. module over A, for simplicity of the form pA, where
p is a projection in A. The more general case of p € M, (A) is left to the reader.

Consider pE C ‘E. We restrict the inner products on E to E’. Note that since p is a
projection, p‘E is topologically closed in E. Restricting the A and B-valued inner products
to p’E give inner products valued in pAp, and B. The support of the B-valued inner product
will be an ideal J in B. Thus, p‘E is a Morita equivalence bimodule between pAp and J.
Now pAp is unital, with unit p. By Lemma[5.2.1] pE is f.g.p. over J C B, and hence over
B as well. This proves the first statement.

Clearly mapping L to L ®4 E respects isomorphisms and direct sums. So it defines a
semigroup homomorphism P(A) — P(B).

Finally, if £* is the conjugate bimodule, it is a Morita equivalence bimodule from B
to A, and induces a map P(B) — P(A). The composition of the two maps is tensoring with
E ®p E* = B, and induces the identity map on P(A).

(]
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REMARK 5.2.4. The semigroup homomorphism ‘£, : P(A) — P(B) induced by an A-
B Morita equivalence ‘E thus has a simple description at the level of projections. In fact, if
p € A is a projection, and if & € £ such that 4(€,&) = p, then (€,&)g =: ¢ is a projection
in B, and ‘E.([p]) = [¢q]. More generally, if p =Y 4(£;,&;), then the matrix ¢ over B with
entries ((&;,&;)p is a projection in M,(B), and E.([p]) = [q].

DEFINITION 5.2.5. A Morita correspondence from A to B consists of the data in the
following diagram
A% cL B,
where C is a C*-algebra, o is a *-homomorphism, and ‘£ is a strong Morita equivalence
between C and the ideal supp(‘E) C B of B.

Suppose now that
Abchycs,
is a Morita correspondence. Set Ep := £ ®; B. Then Ep is a right Hilbert B-module. We
leave it as an exercise to check that E is exactly the same as E, but with the inner product
regarded as valued in B.
If Lis a f.g.p. module over A, then o, (L) := L®4 C is a f.g.p. right Hilbert C-module,
since 0. is a *-homomorphism. If C is unital, then Lemma[5.2.T| we obtain the following:

COROLLARY 5.2.6. Suppose that

A% cE jeB,

is a Morita correspondence with C unital. Then in the notation above, if L is a f.g.p. right
Hilbert A-module, then
Ol (L) K¢ Ep
is a f.g.p. module over B.
The Morita correspondence determines a semi-group homomorphism from the semi-
group P(A) of isomorphism classes of f.g.p. modules over A, to the semi-group P(B) of
isomorphism classes of f.g.p. modules over B.

EXAMPLE 5.2.7. If G is a Lie group acting properly on X, the following method
gives a geometric way of constructing f.g.p. modules over the crossed product Cy(X) x G,
involving only compact group actions, over lower-dimensional subspaces.

Since the action is proper, if x € X, H = Stabg(x), then H is compact. A ‘slice
theorem’ is available in this situation and implies (see [[68]]) that there exists an H-space Y
such that the map G xgY — X, [(g,¥)] — g, is a G-equivariant homeomorphism G x jy ¥ =2
U with an open and G-invariant subset of X. Hence Co(U) x G is an ideal in Cy(X) x G.
Since Cyp(Y) x H is Morita equivalent to Co(G Xz ¥Y) x G, by Example and hence
to Cop(U) x G, we obtain a Morita correspondence

Co(Y) x H % Co(v) x H 5 Coy(X) % G.

This shows that f.g.p. modules over the crossed product Co(Y) x H by the compact group
H serves as a supply of f.g.p. modules, ‘noncommutative vector bundles,” over Cy(X) x G.

3. Morita correspondences from equivariant vector bundles

Let G be alocally compact group acting properly on X. A G-equivariant vector bundle
m: V — X over a G-space X is a vector bundle w: V — X which is also equipped with a
group action for which
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a) ®: V — X is a G-equivariant map.
b) The action of any g € G maps the fibre V; linearly to the fibre V,,, for any x € X.

A vector bundle over a point acted on by a finite or compact group, is simply a finite-
dimensional representation of G.

EXAMPLE 5.3.1. Let G be the group SU,(C) of 2-by-2 unitary matrices with deter-
minant 1. Clearly G acts (linearly) on C?, so there is an induced action of G on the space
CP' of lines in C2. Let H be the Hopf bundle on CP! (see Example . IfLcCC?is
a line, spanned, say, by a vector (z,w) € C2, then g(L) is the line spanned by the vector
g (z,w). Moreover, g maps the line L to the line g(L) linearly, in the obvious way, sending
A-(z,w) € Lto A-g(z,w) € g(L). So the Hopf bundle over CP!, carries a natural structure
of a G-equivariant vector bundle over the G-space CP!.

EXERCISE 5.3.2. If G is a compact group acting on X and V is a G-equivariant vector
bundle on X, prove that there is a Hermitian metric on V making the G-action fibrewise
unitary. (Hint. Average an arbitrary Hermitian metric over G using the Haar measure.)

Extend this result to where G is possibly non-compact but acts properly, by using a
cut-off function.

DEFINITION 5.3.3. Let G be a discrete group acting properly on X and let: V — X
be a G-equivariant vector bundle on X. We define Ey to be the completion of the linear
space of compactly supported sections of V with respect to the inner product valued in
Co(X) x G and defined

EM)eyx)xe(x.g) == (E(x).g-m(g""x)).

Note that in the formula, the g_1

an equivariant vector bundle.
Give Ey the right Cy(X) x G-module structure by letting

€-g)(x) =g -&(gx), (& N)x):=E)f()

where the inner product on the right hand side is the Hermitian inner product on V.
These formulas satisfy the appropriate covariance condition and extend to a right mod-
ule multiplication by Cy(X) x G.

-action maps the fibre ng .. to the fibre V;, because V is

DEFINITION 5.3.4. If V is a G-equivariant vector bundle on X we let Ay denote the
C*-algebra of continuous bounded, and G-equivariant sections of the endomorphism bun-
dle End(V) over X.

Thus, a typical element of Ay is a bundle endomorphism a such that
a(grx) =g-s(x)-g ! VxeX.

Note that Ay is unital.
If € is a compactly supported section of V, and a € Ay, set

(a-8)(x) :=a(x)§(x).
Since a(gx) = ga(x)g™!, it follows that if € is a compactly supported section of V then
(5.13) [(a-&)-h)(x)=h""[(a-&)(hx)] = (h™"-a(hx) - h)h~" -&)(hx)
= a(x)h™" -g(hx) = [a- (§-h)] (x).
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and hence

(@) -h=a-(§-h).
Similarly

(@8- f=a- (& f)
for any f € Cp(X) x G. Hence the left multiplication action by a € Ay is a right Cp(X) x G-
module map.

Next, we define a left Ay -valued inner product as follows. If & and 1| are two compactly

supported sections of V, that is, elements of £y, they determine the rank-one module map
B¢, acting on Ey. Now if & is a section let (g€)(x) = ¢ (€(g™"x). Then with this notation

set
Ay <§’n>(x) = Z eg&,gn'
geG
We leave it to the reader to check that we can find a finite collection &1, ...,&, of

compactly supported sections of V such that

ZAV <§i»§i> = 1Av’
from which it follows that idy is a compact operator on £y and that the projection py with
matrix the entries
(&i.8)cox)xG
satisfies
Ey = py - (Co(X) x G)"
as right Hilbert Cp(X) x G-modules.

COROLLARY 5.3.5. If V is a G-equivariant vector bundle over X, a proper, co-
compact G-space, then the right Hilbert Co(X) x G-module ‘Ey together with its left Ay
action and inner-product defined above, is a Morita equivalence between the unital C*-
algebra Ay and the ideal generated by py. Thus,

Av L4y B (X)) %G
is a Morita correspondence between Ay and Cy(X) % G.
In particular
C— Ay 25 Co(X)x G

is a Morita correspondence from C to Co(X) x G, and ‘Ey is a f.g.p. module over Cy(X)
G.

EXAMPLE 5.3.6. A basic case where one can apply the theorem is to the trivial line
bundle 1 over any G-space X. Then A; = C(G\X). Our results above show that C(G\X)
is Morita equivalent to an ideal of Cy(X) x G. Thus, one always has the correspondence

C(G\X) % c(G\X) 25 Co(X) % G.

In particular, we see that any complex vector bundle V over G\X detetermines a canonical
f.g.p. module By ®¢(g\x) E1 over Co(X) x G. When the bundle is trivial, the projection
corresponding to the f.g.p. module induced by this procedure is the same as the projection
P, of Exercise manufactured from a cutoff function. It is full if and only if the
action is free.

Actually, all isomorphism classes of f.g.p. modules over Cy(X) x G arise from equi-
variant vector bundles from the above procedure. Theorem [5.5.10] of the next chapter
provides the exact statement.



188 5. MORITA EQUIVALENCE

4. Morita correspondences and representations of compact groups

Let X be a point, and G be a compact group, considered as acting on X. Then a
G-equivariant vector bundle over a point is a finite-dimensional representation ©: G —
B(Hy). As in the previous discussion, we endow the Hilbert space Hy with the structure of
aright Hilbert C*(G)-module £, with

(5.14) E-g:=mn(g v, &M (g) = (n(g Em).
Note that the inner product of two vectors is simply the corresponding matrix coefficient
of the representation, as a function on G.
For v,w € Er = Vg let 8,,,, be the corresponding rank-one operator in B(Hy). The
C*-algebra Ay from the vector bundle discussion above reduces to the commutant
Ap :=7(G) :={T € B(Hy) | T(g) =n(g)T, Vg € G}.
Ax(v,w) = Z Bgv,ow
gcG
of the representation T.

The C*-algebra Ay = m(G)’ is by definition a subalgebra of B(Hy), but since elements
of 7(G)’ commute with 1(G), they are C*(G)-linear, that is, define Hilbert C*(G)-module
maps on . Notice also that the span of the range of the 7t(G)’-valued inner product is all
of n(G)'. Indeed, suppose T € T(G)'. Let ey,...,e, be an orthonormal basis for Hy. We
may write T as a matrix, that is

T= ZTU egi’ej.
L
Since T commutes with ©(G), summing the above construction over G gives
(5.15) IG|-T = ZZTij'egei,gej :ZTi/ ‘Ax (€is€j).
§€G i.j ij

This shows that Er; has the structure of a Morita equivalence between Ay = n(G) and
an ideal of C*(G), namely the support of the inner product (-, -)c+(g). We discuss this ideal
in more detail below. In any case we thus obtain a Morita correspondence

1(G) 4 n(G) = ¢ (G)
and so the following result.

COROLLARY 5.4.1. Let m: G — B(V) be a finite-dimensional representation of a
finite group G. Let 1(G)" C B(Hy) be the C*-algebra of operators on Hy which commute
with ©1(G). Then

n(G) % n(G)y = c*(G)
with By, defined above, is a Morita correspondence from T(G)' to C*(G).

EXAMPLE 5.4.2. Let p: G — U(I>G) be the right-regular representation. Applying
the procedure above produces a Morita correspondence

p(G) % p(G) 2 C*(G).

But since p(G)' = C*(G), this is a Morita correspondence from C*(G) to itself. It is the
‘identity’, as the following shows.
EXERCISE 5.4.3. In the above notation:

a) Check (€,1)cx() =&+, where £*(g) = E(¢~!) is the adjoint of § as an element
of C*(G) and that £, = C*(G) as C*(G)-bimodules.




4. MORITA CORRESPONDENCES AND REPRESENTATIONS OF COMPACT GROUPS 189

b) Check this in another way by showing that if § € £, = I?(G) is point mass at the
identity then

o6y (6:8) = lygy-
and that (&,8)c+(G) = lc+(6)-

Returning to a general finite group, let & be irreducible. Then ©(G)’ = C by Schur’s
Lemma. Let v € Hy be a vector. Then

1
Eﬂ%%%mWWWdeﬁh
by (1.31). Therefore if v is a unit vector then

Gy (ev,ev) = 1.

(v.v)

where ¢ = difg‘i". We therefore obtain a projection
gz € C*(G), gn = (cv,cV)c+(G)-
We have
dim A, _
(5.16) 4x(8) = =g - (mle™vw).

a matrix coefficient of 7. It is a projection in C*(G) which maps under 7 to the rank-one
projection onto the span of v, by Exercise ??. Note that g really depends on v as well as
T, so it might be better to use the notation gr,. However, Exercise @] at the end of the
section shows that gr up to Murray-von-Neumann equivalence only depends on 7 and not
V.

EXERCISE 5.4.4. In the above discussion, if v{, v, are orthogonal vectors in Hy such
that gy (vi,vj). = &;; then g;; := (v;,vi)c+ () are orthogonal projections in C*(G): that is,

‘Iﬂ:,vi : %t,v]- = 0

PROPOSITION 5.4.5. Let G be a finite group and n: G — B(Hy) be an irreducible
representation and ‘Ey, be the Morita equivalence bimodule from C to C*(G) defined as
above. Then

FrZen-C(G)
as right f.g.p.C*(G)-modules, where gy is the idempotent (5.16)).

EXERCISE 5.4.6. In the above notation, if o and [ are inequivalent irreducible rep-
resentations of G then the projections go and gg are orthogonal projections in C*(G):
do."qp = 0.

THEOREM 5.4.7. Let G be a finite group. Then mapping a finite-dimensional repre-
sentation m: G — U(H) of G to the right Hilbert f.g.p. C*(G)-module ‘Ey, determines an
isomorphism between the semigroup Rep(G) of equivalence classes of finite-dimensional

representations of G, and the semigroup P(C*(G)) of isomorphism classes of f.g.p. right
C*(G)-modules.

This statement is generalized in the next section.

The use of Morita correspondences and the consequence of the Green-Julg isomor-
phism for finite groups may be interpreted in terms of KK-theory, which is discussed later
in this book. The definition of Morita correspondence

A% c LB,
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meshes perfectly with the definitions of Kasparov’s KK, and gives a cycle for KK (A, B).
The cycle is based on the right Hilbert B-module ‘Ep, together with the representation

A% C~ K(E)of Aon E.

EXERCISE 5.4.8. Suppose that ‘£ is a Morita equivalence bimodule from a unital C*-
algebra A to an ideal in B.
a) Show that if £;,&, € E such that 4(§;,&;) = 1,i = 1,2, then p; := (§;,&;)p are
projections in supp(E) C B.
b) Show that p; and p» as in a) are Murray-von-Neumann equivalent projections by
showing that if u = (€1,&,)p then u is a partial isometry in B such that uu* = p;
and u*u = p,. In particular, the f.g.p. modules determined by the projections p;
are isomorphic.
¢) If &; are as in a) and if 4(&;,&,) = 0, then p; and p, are orthogonal projections
in B, that is, p; - p» = 0.
d) Suppose that&,...,&, € E constitute a frame for ‘E in the sense that 4 (€;,&;) =
d;j for all i.j and that

n

Y aGi8)-&i=¢

i=1
for all £ € E. Show that if p; := (€;,&;) g then p; are orthogonal projections in B
and that p := p; +-- -+ p, is a unit for the ideal supp(E), that is, that pb =bp =b
for all b € supp(E).

e) Suppose now that £ = E; for an irreducible representation of G finite. The left
7(G)'-valued inner product on Ey is then the (conjugate) of the Hilbert space
inner product. If &i,...,&, is an orthonormal basis for Hy, then the projection
p € C*(G) obtained as in part d) is, up to a scalar, the character y; of 7.

5. Remarks on compact noncommutative spaces

Since it seems reasonable to consider unital C*-algebras as corresponding to com-
pact (noncommutative spaces), and in Noncommutative Geometry one should think up to
Morita equivalence, we formalize the following Definition.

DEFINITION 5.5.1. A C*-algebra B represents a compact noncommutative space if B
is Morita equivalent to a unital C*-algebra.

If A is unital, then B := A ® X is the simplest example, for B is Morita equivalent to
A. As we will see below, certain crossed products Cp(X) x G by proper actions of locally
compact groups, and other interesting examples from geometry, have compact underlying
noncommutative spaces. This has consequences for their f.g.p. module theory, and K-
theory.

Recall that a projection p € B in a C*-algebra is full if the ideal generated by p in B is
B.

EXERCISE 5.5.2. If p is a rank-one projection in X then 1 ® p is a full projection in
B:=A® X for any unital C*-algebra A.

PROPOSITION 5.5.3. A stable C*-algebra B = A represents a compact noncommuta-
tive space if and only if B contains a full projection.

PROOF. Suppose that B contains a full projection. Since p is full, pBp is Morita
equivalent to B. Since pBp is unital, with unit p, B is Morita equivalent to a unital C*-
algebra. Hence B represents a compact noncommutive space. Conversely, if B is stable
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and is Morita equivalent to A unital, then B =2 A ® X and since A ® X contains a full

projection, 1 ® p, for p a rank-one projection in > X, it follows that B does as well.
]

EXERCISE 5.5.4. Let A := ‘T be the Toeplitz algebra, , and P, the Toeplitz-Szegd pro-
jection. Consider the C*-algebra crossed product B. := C(Z) x Z, where Z = Z U {+eo} is
the 2-point compactification of the integers, on which Z acts by translation.

a) Prove that P, BP, = A, so that A is a corner in B.
b) Prove that the ideal in A generated by Py is the ideal Cy((—oo,4o0]) x Z of B.
Thus, 7 is Morita equivalent to Co((—N) x Z. In particular, the latter (non-unital)
C*-algebra represents a compact noncommutative space.

EXERCISE 5.5.5. Prove that Cy(R?) ® X contains no nonzero projection. Deduce that
Co(IR?) does not represent a compact noncommutative space.

More generally, if A and B are Morita equivalent, then their spectra: the spaces A and B
of equivalence classes of irreducible representations, are homeomorphic. Combining with
the fact that if A is commutative, then A is the usual Gelfand spectrum of A, one deduces

PROPOSITION 5.5.6. If X is locally compact Hausdorff then Cy(X) represents a com-
pact noncommutative space if and only if X is compact.

We are going to show below the following.

THEOREM 5.5.7. If G discrete acts properly and co-compactly on X, then Co(X) x G
represents a compact noncommutative space.

REMARK 5.5.8. Theorem[3.6.23]already already suggests that the spectrum of such an
example is compact. The Theorem provided a parameterization of the spectrum: the set of

—

equivalence classes of irreducible representations of Cy(X) x G, by the set LiycrStabg(x),
where F' C X is a set of representatives of the orbits. In particular, the spectrum has the
structure of a bundle over G\X with fibre over an orbit Gx the (finite) spectrum of the
isotropy group Stabg(x).

In order to prove that Cy(X) x G represents a compact noncommutative space, we have
to look more closely at the f.g.p. module theory of Cy(X) x G.

Let ®: V — X be a G-equivariant vector bundle over X. Thus, G is a complex vector
bundle, and G acts on V with an action for which the bundle projection t: V — X is G-
equivariant, and so that the action of each g € G is fibrewise linear. We may assume without
loss of generality that V possesses a G-invariant Hermitian metric.

Deﬁnitiondescribes a finitely generated projective right Hilbert A := Cy(X) % G-
module Ey, obtained by suitably completing the space of compactly supported sections
of V. Ey is the right A-module underlying a Morita equivalence between an ideal Jy
of Cp(X) % G and a certain unital C*-algebra. in particular, if the support ideal Jy, for
appropriate choice of V, can be arranged to be Cp(X) x G, then this would prove that
Co(X) » G represents a compact noncommutative space.

Let B=A® K, with A = Cy(X) x G. The bundle therefore determines an f.g.p. module
Ey and hence a projection py € M,(A) C B for some n. Let us observe first that all such
projections occur in this way. To see this, by Theorem the crossed-product Co(X) x
G can be identified with the fixed-point algebra

Co(X. %K)°
={f: X— K(lzG) | £ is continuous, and f(gx) = p(g)f(x)p(g) ' Ve € G, x € X.}
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Now suppose that p is a projection in M, (Co ) X ) Thinking of p as a map
X — K((I>G)" which is G-equivariant, the image p(x) C [*(G) for any x € X, is a finite-
dimensional, linear subspace V, C I?(G)" := I*(G) @ ---I*(G)..

EXERCISE 5.5.9. In the above notation:

a) Show that the family of subspaces {V; }ycx are the fibres of a vector bundle V
over X.

b) Show that if g € G, then the right translation operator p(g): I>(G) — [*(G) in-
duces a linear isomorphism V, — V,, for any x € X. Show that V has in this
way the structure of a G-equivariant vector bundle over X, and whose associated
f.g.p. module Ey over Co(X) x G, is isomorphic to py - (Co(X) x G)".

The observations above lead to a bijection between isomorphism classes of f.g.p. mod-
ules over Cy(X) x G, and G-equivariant vector bundles over X and the following Theorem
(see [78].)

THEOREM 5.5.10. If G is a discrete group acting properly and co-compactly on X,
then mapping a G-equivariant vector bundle V over X to the f.g.p. right Co(X) X G-module
Ey determines an isomorphism from the semigroup Vectg(X) of isomorphism classes of G-
equivariant vector bundles over X, to the semigroup P(Co(X) X G) of isomorphism classes
of f.g.p. modules over Co(X) X G, equivalently, the semigroup of Murray-von-Neumann
equivalences classes of projections in Cop(X) x GR K.

Recall that if V is an equivariant vector bundle then for each x € X, the fibre V; carries
a representation of the isotropy Stabg(x). Representations of compact groups decompose
into finite direct sums of irreducibles, and so we can ask whether a given irreducible rep-
resentation T of H := Stabg(x) is contained (up to isomorphism) in the representation of
HonV,.

DEFINITION 5.5.11. Let V be a G-equivariant vector bundle over X. We say V is full
if for every x € X, the representation of Stabg(x) on the fibre V, contains (up to isomor-
phism), every irreducible representation %, of Stabg(x).

The following result is due to W. Liick and Bob Oliver [120].

LEMMA 5.5.12. If G is discrete and acts properly and co-compactly on X then X has
a full G-equivariant vector bundle.

With these ideas we can now give the proof of Theorem[5.5.7] modulo the theorem of
Liick and Oliver Lemma[5.5.12

PROOF. Let V be a full, G-equivariant vector bundle on X, and py € Co(X) x G® K
a projection determining the corresponding f.g.p. module. As previously discussed, the
C*-algebra Cy(X) x G may be identified with the C*-algebra of continuous maps f: X —
K (I>G) which are G-equivariant, with G acting on X (I>G) by the action induced by the
right regular representation of G on L?>(G). In particular, if py € Co(X) x G is a projec-
tion, then for each x € X, with isotropy Hy = Stabg(x), py(x) is a finite rank projection in
K (I*G) which commutes with the right translation action p(H,): it projects to the fibre V,
of the corresponding equivariant vector bundle. Now, by ﬁxing an H-equivariant bijection
G = G/H x H, one can H,-equivariantly decompose V, = @;I>(H,) into a direct sum of (in-
finitely many) copies of /2(H,), and py (x) is a (finite) direct sum of projections py,pa,...
on [2(H,), each p; € p(H,)" = C*(H,). Now suppose that y, € H Then if ) does not appear
in the representation V,, it follows that y(p;) = 0 for each i. Allowing now for projections
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pv in matrix algebras over Cy(X) x G, we deduce that if py € P(Co(X) X G) ® X is the
projection associated with a G-equivariant vector bundle V, then V, contains an irreducible
representation y of Stabg(x) if and only if x(py) # 0.

In particular, if V is full, then w(py) # 0 for every irreducible representation 7 of
Co(X) x G, by Remark [5.5.8] Hence the ideal generated by py is all of Co(X) x G® X,
and the support ideal of ‘Zy is hence Cy(X) X G. Thus Cy(X) x G contains a full projection,
and is therefore Morita equivalent to a unital C*-algebra.

(]

Note that the proof shows that Cy(X) x G is Morita equivalent to the specific unital
C*-algebra of G-equivariant endomorphisms of a full vector bundle over X.

We conclude by noting that there are many interesting examples of compact noncom-
mutative spaces in the form of crossed-products C(X) x G, with the G-action not assumed
proper. Exercise noted that the crossed product C(T?) x pn R by the Kronecker flow

Br(x,y) = (x+ 1,y +1th),

with 72 € R, usually irrational, is Morita equivalent to the irrational rotation algebra Ay.

PROPOSITION 5.5.13. For any h € R, the C*-algebra C(T?) xgn R represents a com-
pact noncommutative space.

More generally:

THEOREM 5.5.14. If G is a locally compact group and H C G is a closed subgroup
with G/H compact, and if T C G is a discrete subgroup, then Co(G/T") X H is a compact
noncommutative space.

This follows from Exercise|5.1.20} which give a Morita equivalence between Cp(G/I") x
H with C(G/H) x T; the latter is unital.

6. Morita correspondences between irrational tori

Morita equivalence techniques can be used very fruitfully in connection with the irra-
tional rotation algebra, for example for the construction of f.g.p. modules from geometric
ideas.

Choose h € R, let G = Zh,H = Z, discrete subgroups of R, and X = R, with each
group acting by group translation on R. We apply Theorem [5.1.15]to the two commuting
group actions of G and H on X. The corresponding Morita equivalent crossed products
A =Co(H\X) x G and B = Cy(G\X) x H are respectively

A=C(R/HZ)xZ, B=C(R/Z)x hZ,

and the second crossed product we may identify with the crossed product C(R/Z) % Z of
the integers acting by translation by multiples of £, so that B = Ay, the irrational rotation
algebra.

EXERCISE 5.6.1. The crossed product A is naturally isomorphic to Ay 5.
(Hint. Show that addition of 41 on [0,%] (mod %) is conjugate to addition of 1/# on
[0,1] (mod 1.))

In any case, A is unital. We obtain the following.
COROLLARY 5.6.2. Define on C.(R) the inner products
c(r/nz)xz(&M) (x,m) Z&x nh) -n(x—nh—m), x e R/AZ, m € Z,

nez
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and
(EM)cwr/z)xpz(x,m) = Zf,.x amx—n—mh),x ER/Z, meZ

nez
Give C.(R) the C(R/hZ) x Z- C(R/Z) Xy, Z bimodule structure with

(n8)(x) =E(x—n), (f)(x) =f()E(x),  (En)(x) =E&(x+nh), (§F)(x) = f(x)E(x).

Then C.(R) completes to a Morita equivalence C(R/hZ) x Z- C(R/7Z) Xy, Z bimodule Ey,
that is, to a Morita equivalence A j;-Ap-bimodule.

From Proposition we obtain:

COROLLARY 5.6.3. The completion of C.(R) with respect to the right Ay-valued inner
product
(€.M)ay, (x,m) = ZE_,x n)N(x —n—mh)
nez
and right module structure

(&n)(x) =E(x+nh), (&f)(x) = f(x)E(x),
is a finitely generated projective Ap-module.

We will call Ep, the Rieffel module.

The proof of Proposition [5.2.1] gives a way of finding a projection py € A such that
Er = prAp as right Ap-modules.

We are going to need a real-valued function & of compact support such that
(5.17) Y E(x+nh)*=1.

nez

The resulting projections (§,&)4, € Ay as § varies while still satisfying the given condition,
are all Murray-von-Neumann equivalent to each other (by Exercise[5.4.8])

Now we have

crynz)«z (&8 (xm) = Y &(x—nh)&(x—nh—m), x e R/WL, meZ,

ne7z

Since the support of & has diameter < 1, every term in the sum vanishes if m # 0. If m =0
we have

crnz)xz(68)(x.0) =Y &(x— nh)?> =1 Vx € R/HZ.

nez

Hence ¢ (g /nz)xz(8.6) = 1.
The proof of Proposition now shows that py := (§,&)4, is a projection, and

®: By — Ap, ®(M) = (EM)a,

is a Hilbert module isometry with range prAy.
Thus

= Z&(x—n)ﬁ(xfnfmﬁ) =f+gU+(gU)",

in group algebra notation, where U corresponds to 1 € Z generates the action, and f(x) is
the function &(x)? (supported strictly inside [0, 1] and thought of as a function on T.) The
function g is g(x) = &(x)E(x — ).

One might think of & as taking the characteristic function  of an interval in T of length
h, and rounding it off slightly at the edges to make it continuous but still satisfy (5.17).
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EXERCISE 5.6.4. For f € C(T) =C(R/Z), let R (f)(x) = f(x —h).
Suppose f and g are real-valued continuous functions on T, supported strictly inside
[0,1] (we consider T = R/Z as usual.) Consider the self-adjoint

p:=f+gu+(gu)* €Ap.
Prove that
a) Prove that p is a projection if and only if 0 < f < 1, and

g=V[=r* &Ri(f)+fRn(g) =58 g&Rn(g)=0.
b) Now suppose that f is chosen, still compactly supported within [0, 1] such that

R, (f)+f+Ri(f) =1 onsupp(f). Prove that if we define g := /f — f2, then
the remaining two of the above conditions hold.

Thus, one gets a projection p = f + gu+ (gu)* by defining g := /f — f* where f
satisfies f 4+ Ry (f) = 1. Notice that with £ := (§,&)4, = &2 in the notation above previous
to the Exercise, then this condition corresponds exactly to (5.17). Such projections are
often called Rieffel projections.

EXERCISE 5.6.5. Show that if T is the trace on Ay,

oY fulnl) = / fdu
- T
with u normalized Lebesgue measure, then

©(pr) = h.

REMARK 5.6.6. Recall that if ©: A — C is a trace on a unital C*-algebra, then T de-
termines a map P(A) — R: indeed, if p € A is a projection, then t(p) € R only depends on
the Murray-von-Neumann equivalence class of p because of the tracial property of T. The
(positive) number t(p) is sometimes referred to as the Murray-von-Neumann dimension of
the module pA, and denoted dim<(pA). One extends T to projections in M, (A) by summing
the diagonal entries of the matrix, and applying T to the sum.

If T is the unique unital trace on C, then dim¢(L) is an integer for any f.g.p. C-
module, of course. Actually, it is a question of some interest to compute the range of this
construction, e.g. the set of possible values of T(p), for p a projection in A, or in M, (A),
when t: C*(G) — C is the canonical trace on the C*-algebra of a discrete group. If the
group is torsion-free, this range is conjectured to be the integers.

In any case, we see from the previous exercise that there are f.g.p. modules over
C*-algebras with arbitrary real numbers as their dimensions.

The above constructions can be generalized in the following way. Consider the group
GL;(Z). 1t acts by linear automorphisms of T2. Suppose % € R. Let Bj; be the crossed
product

Bﬁ = C(TZ) ><]Bh R,

where B" is the Kronecker flow on T? — see Exercise By the same Exercise, Ay,
is Morita equivalent to Bj. Let Ep denote the corresponding Morita By-Ap-bimodule.
An element g € GL,(Z) defines an automorphism of T2, which conjugates the Kronecker
flow along lines of slope £, to the Kronecker flow along lines of slope g(%), where if

g= [i Z] , then g(h) = fﬁﬁis Hence g defines an isomorphism g: By — By,). We
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obtain a Morita correspondence

Bg(ﬁ) LN Bj, —ﬁ>Aﬁ.

On the other hand, we have a correspondence

. E*
id g(h)
Ag(n) = Ag(n) — Bg(n)

We can then, in effect, compose the two correspondences, as suggested by the diagram

. E* -1
id (h) g Ep,
Ag(n) = Ag(n) — By(n) = Br — Ap.

To define this composition precisely, we pull back Ej under the isomorphism g~!. This
results in a Morita By 5)-Ax-bimodule (¢ )*E = g.(E). We then tensor the bimodules,
forming

(5.18) f;(h) ®Bg(ﬁ) 8+(En),

an Ag5)-An-bimdodule, and an equivalence.
This results in a Morita equivalence between A,) and Ay, yielding the following
interesting fact:

COROLLARY 5.6.7. If iand 1 are in the same orbit of GL,(Z) acting on R by Mébius
transformations, then the rotation algebras Ay, and Ay are Morita equivalent, so represent
the same noncommutative space.

The corollary also implies something interesting about the f.g.p. module theory of A.

COROLLARY 5.6.8. If g € GL1(Z), then the right Ap-module Ly given by forgetting
the left Ag(y)-structure on (3.18), is f.g.p. over Ap.

EXERCISE 5.6.9. Following Exercise [5.6.5) compute dim<(Ly), for g € GL2(Z), L,
as in the Corollary above, and dim; defined as in the discussion in Remark[5.6.6]

7. Morita equivalence and asymptotics in hyperbolic geometry

Endow D with the hyperbolic Riemannian metric ds”> = l—x% 5 (dx? 4-dy?). Thus,
infinitesimally, this metric is a positive scalar multiple of the usual Euclidean metric, but
the scalar factor increases as one moves out towards the boundary of the disk.

Geodesics in this ‘Poincaré disk’ model of the hyperbolic plane are straight lines
through the origin in I, together with arcs of circles perpendicular to oD.

Of course the disk admits a compactification D and boundary, o). What is particu-
larly interesting about this boundary relative to the geometry, is that if (x,) and (y,) are
sequences in D which remain a bounded hyperbolic distance apart, at least one of them

converging to a point of dD, then the other does as well, and

lim x, = lim y,,.
n—oo n—soo
This is because the hyperbolic metric blows up near the boundary, relative to the usual
Euclidean metric.

The isometry group of D with the Poincaré metric is the Lie group G of matrices of

the form g = [g Z] where |a|? — |b|> = 1. The action is by M&bius transformations

B az+b
"~ bz4a

8(2)
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EXERCISE 5.7.1. Such g maps D to itself, and extends continuously to a self-map of
D.

Inside G are many interesting lattice I', which are symmetry groups of various tes-
sellations of D by hyperbolic polygons, like the following tessellation by ideal hyperbolic
triangles.

(5.19) =

The group T of the tessellation is isomorphic to Z*Z/2. One of the generators,
say a acts by a parabolic transformation which fixes the top vertex of the central dark
triangle, and slides the central dark triangle to the right onto the adjacent white triangle.In
the process of doing this, it maps the left edge of the central dark triangle onto the right
edge. Likewise, a~! slides the dark triangle left onto the left white triangle.

The generator b acts by elliptic element of order 2 which rotates the central dark
triangle around the midpoint of its lower side, onto the white triangle below it.

In particular, if P is the central triangle, and Q is any other triangle which is adjacent
to (intersects) P, then Q = s(P) for one of these generators.

Take a geodesic in D. Assume it starts somewhere in the central triangle P.

Now as t increases, the geodesic passes into another, adjacent triangle, which has the
form Py = s1(P) for some generator s; € {a,a~',b} (unless it heads straight to one of the
ideal vertices of the triangle.) Next, it passes into a polygon P, adjacent to s; (P). It follows
that s; ! (P,) meets P. Hence for some generator 53, we have s, ' (P2) = s2(P), giving

P, = S]SZ(P).

Continuing in this way, we ‘code’ the geodesic by the sequence s, s>, ... of generators of
I.

The sequence of group elements g; = 51,82 = 5152,83 = 515253, ... represents a path
in the Cayley graph X (T, S) of I" with respect to the generating set S.

Note that if one started with a translate g(r) of the given geodesic, they are the same as
geodesics in M. The sequence g1, g2, ... € I obtained above, and converging to the bound-
ary point § € dI" would be replaced by the sequence ggi1,gg2,843,- - -» which converges to
g(&). That is, different choices of initial lift of the geodesic on M correspond to boundary
points in JI" in the same orbit of the I"-action on dI.
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Finally, observe that if one had another geodesic in M, lifting to a geodesic ¥ in D
which is asymptotic to r in the sense that they remain as t — oo, a bounded hyperbolic
distance apart, then the corresponding sequences of group elements (gx) and (g}) also
remain a bounded distance apart. Hence they converge to the same boundary point in dI.

The idea is then that a geodesic in M = I'\D, up to the relation of being asymptotic,
is equivalent to a I-orbit of the boundary point & € oI, where the ‘boundary’ oI" of the
group I, with given generators, is the space of all sequences of generators in which no s;
is followed by si_l. (This is a theorem: see [148] and related papers for exact statements.)
Closed geodesics in M correspond to periodic sequences. The (chaotic) geodesic flow
on M corresponds to the action of I" on its boundary. This argumentation shows that the
geodesic flow is effectively a subshift of finite type (these are discussed below.)

We now show how Morita equivalence enters into this dictionary. To avoid discussing
boundaries of groups at this stage, we work just with the geometry and natural boundary
of the hyperbolic plane.

Fix then any lattice I’ C G. Let M = G\D, a hyperbolic manifold (possibly with some
‘marked points.”)

Let SD be the unit sphere bundle (in the hyperbolic metric) of the tangent bundle
TD to the hyperbolic disk. A point of SD is a unit tangent vector v based at a point
z € D. By the exponential map in Riemannian geometry, v determines a unique geodesic
ry: (—oo,400) — D with r,(0) = z (with r, () = exp,(tv), exp the Riemannian exponential
map.)

This supplies a G-equivariant bijection between the set of geodesics in D and the 3-
dimensional manifold SID, such that

8(ry) (1) = rg() (1),
for all g,v,?.
Likewise, the set of geodesics in M :=T'\DD is in 1-1 correspondence with points of
the quotient manifold SM :=T"\SD.
Define an equivalence relation on geodesics r in M =T\ by

(5.20) [r1] ~ [ra] iff Tim d(ri (1), r2(1)) =0,

for some lifts ry,ry of the initial geodesics to geodesics in . We refer to equivalent
geodesics as strongly asymptotic.

Let (g/)rer be the geodesic flow: g,(r)(u) = g(u —t). This defines an R-action on SD
and, since it commutes with the I"-action on S, drops to an R-action on SM.

DEFINITION 5.7.2. Let d be the hyperbolic metric on M.
Let [r1] and [r;] be two geodesics in M :=T'\D.
We say then that [r;] and [r;] are asymprotic if there exists s € R such that

gs([n]) ~ [r2]

If r; and r, are two geodesics in D which converge to the same boundary point of D
then there exists s such that

Hmd(ri(2),r2(t+5)) =0,
t—roo
so that the boundary points parameterize certain 2-dimensional equivalence classes of

geodesics, with one direction corresponding to the shift in parameterization (geodesic flow)
and the other the horocycle direction.
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LEMMA 5.7.3. There is a natural bijection between asymptotic equivalence classes of
geodesics on M, and orbits of the I'-action on JD.

The bijection associates to an asymptotic equivalence class [r] of a geodesic on M ob-
tained by projecting a geodesic r in D, to the T-orbit of its endpoint r(4o0) = lim,_,e r(t) €
oD.

PROOF. If two geodesics on M = I'\D are asymptotic on M, then rescale one of them
to make the pair strongly asymptotic. So they have lifts r1, 7, such that d(r(¢),r2(¢)) — 0
as t — oo, It follows that 7| and r, converge to the same boundary point of dD. Conversely,
suppose that [r;] and [r;] are geodesics on M and that r; and r, are lifts converging to
boundary points in the same I" orbit. Replacing », by an appropriate I" translate, we get a
pair of lifts ri,r, which converge to the same boundary point. It follows that [r{] ~, [r2]
from Exercise ??.
O

We are now going to construct a group action whose orbits are the asymptotic equiva-
lence classes of geodesics on M.

To do so, we revert to our Lie group G = Isom (D) of Mébius transformations leaving
the disk ID invariant.

The G-action extends to ID and leaving 0ID invariant.

Choose a boundary point &; € dD and let

P:=Stabg (&) = {g € G| g(&) =&o}.

We will need two observations.

EXERCISE 5.7.4. Prove that for any z € ID there is a Mobius transformation p,: D — D
which fixes &y and maps 0 to z.

We now define an action of P on geodesics as follows.

Let K = Stabg(0), so K is the group of matrices in G of the form
e® 0
- [0 0

acting by the G-action by Mobius transformations kg(z) = €*®z. Clearly K acts simply
transitively on oID.

DEFINITION 5.7.5. If r is a geodesic in D, and p € P, let k € K the unique element
such that

r(+ee) = k(&o).
We define
p-ri=kpk ' (r).

Note first that p - r has the same endpoint as r, for any r, since if k(&) = r(+o),

p-r=kpk~!(r) and so
(p-r) (o) = kpk ™ (r(+00)) = kp(&o) = k(&o) = r(+2).

Suppose pi,pa € P. Let k € K such that k(&) = r(+), so pp - r = kpak~!. Now to
compute p; - (pz-r), we have that p; - r has the same endpoint as r, 0 k(§g) = (p2 - r) (+)
and hence

pi-(pa-r) = (kpik™ ") (kpik™") = k(p1p2)(r) = (p1p2) - -
This shows that we have defined an action.
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LEMMA 5.7.6. The P-action on the space SD of geodesics in D defined above com-
mutes with the G action on the space SD of geodesics in D. Furthermore, two geodesics
r1, 1y are asymptotic if and only if they are in the same P-orbit.

PROOF. We have already noted that p - r ~, r since have the same endpoint. Con-
versely, suppose r ends at &, let k(§y) = &, and suppose that ' ~, r. Since r’ ends at & as
well, and k(&) =&,

por=kpk™'(r). p-r' = (kpk™ (1)
for any p € P. Now since P acts simply transitively on D, there exists unique p € P such
that
P (pk™'(r'(0))) = r(0).

Now the geodesics kpk~!(r') and r have the same starting point and initial point so
p-r =kpk ' (F)=r
as claimed. O

Since the P-action commutes with the G-action on SD, it passes to an action on SM
and we can form the crossed product C(SM) x P.

COROLLARY 5.7.7. There is a natural bijection between orbits of the P-action on SM
and orbits of the T-action on dD.

The C*-algebras C(SM) x P and C(dD) x I" are Morita equivalent, for any lattice
Irca.

If I' C G is a co-compact lattice, then the inclusion I' — DD is in this case a quasi-
isometric equivalence in the sense of [91] and induces a homeomorphism C(d') x " —
C(dD) x I, where dI is the Gromov boundary. We discuss hyperbolic groups later in this
book. What is important for the present is that the Gromov boundary oI" with its [-action,
only depends on the abstract group I'.

COROLLARY 5.7.8. Let I" be a co-compact torsion-free discrete group of isometries
of the hyperbolic disk, M = T\D, a Riemann surface of genus > 2, and SM the sphere
bundle of M with the action of P defined above.

Then C(SM) x P and C(dT") x I are Morita equivalent.

See Section ] of Chapter 7 for more information on hyperbolic groups.

From a computational point of view, the Poincaré disk model of the hyperbolic plane
can usefully be replaced by the upper half plane model H = {z € C | Im(z) > 0} with
boundary 0H := RU {eo}. The Cayley transform

7—
cH— ID), Z)— ——

¢ 0) =

conformally maps H to the disk. Pulling back the hyperbolic metric gives the Riemannian
metric ds*> = yiz(d)c2 +dy?), and conjugates the orientation-preserving isometry group G of

the disk to the group PSL(RR) of matrices {Z Z} , with a,b,cd € R,ad — bc = 1, acting by

MGobius transformations leaving H invariant. The action continuously extends to H leaving
OH invariant.

EXERCISE 5.7.9. In reference to the above discussion, prove the following.
a) PSL(2,R) acts transitively on H and K := Stabpsy o r) (i) = SO(2,R). Hence
G/K = H by the orbit map at i.
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b) PSL(2,RR) acts transitively on 0H and Stabpgy,2,)(c°) is the group B of upper
triangular matrices in PSL(2,R). Hence 0H = G/B by the orbit map at co.

¢) A unit tangent vector in H, or, equivalently, a geodesic in H, is determined by
its base (the starting point of the geodesic) and the boundary point in dH it con-
verges to as t — oo. Moving the basepoint to i by an element of PSL(2,R) and
then moving the boundary point of the resulting geodesic to oo by application of
an element of k € K produces the unit tangent vector with base i and target oo.
Hence PSL(2,R) acts transitively on the space SH of geodesics in H. Moreover,
the action is free. Hence SH = PSL(2,R).

d) Fix the boundary point &y = oo, so B is its stabilizer. We refer to the definition of
the P-action on geodesics in D in Definition which now transplants to H
with P = B if &y was initially chosen to be (o). Prove that if p = [g alf 1] €B

then under the identification SH =2 G, we have

p-8=8p-
That is, the B-action on G corresponding to the B-action on geodesics is simply
right group multiplication.

Since right multiplication by B commutes with left multiplication by I', we obtain a
somewhat more algebraic version of Corollary

COROLLARY 5.7.10. The C*-algebras C(G/B) xI" and C(I'\G) x B are Morita equiv-
alent.

The group B of upper triangular matrices is isomorphic to the semi-direct product
group R x R. To see this, note that

ex 0|1 s]ler of [1 és
0 e2[[0 1] 0 ez [0 1)

So the group N of nilpotent matrices in B is normal in B and the group A of diagonal
matrices with positive entries acts by automorphisms of P, and, furthermore, B = AN is
clear, as is BNA = {e}. So there is a bijection between B and A X N, and the group
multiplication in B = AN is exactly the same as in the semi-direct product group N x A.

DEFINITION 5.7.11. Under the identification G = SH, geodesic flow g; on SH corre-

sponds to right multiplication by [602 E), ] . Horocycle flow hy is right multiplication by
e

) |

Horocycle flow A applied to a unit tangent vector based at z and pointing to co, maps it
to the tangent vector still pointing to oo but starting at z+ s. In particular it leaves the lines
Im(z) = const. invariant. M6bius transforms fixing H send this lines to circles tangent to
0H. They are called horocycles. Fix a geodesic r in H. Let & = r(+o0). There is a unique
circle passing through r(0) and tangent to 0H, that is, a unique horosphere L, and notice
that v is orthogonal to it. Actually, if w is any unit tangent vector based at a points of L
and orthogonal to L, then lim;_, 1, (t) = &. Moreover, For any such w, d(r,(t),7,,(t)) — 0
as t — co. The horocycles are the orbits under the horocycle flow. Therefore two unit
tangent vectors in SH are strongly asymptotic if and only if they are in the same orbit of
the horocycle flow.
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They are asymptotic, if they are in the same B-orbit, which is if and only if after
applying geodesic flow g to one of them, for some s, they are in the same orbit of the
horocycle flow.

EXERCISE 5.7.12. LetI" C SL,(R) be a co-compact lattice, acting by isometries of the
hyperbolic plane H := H?. Let M = I'\H, a compact Riemann surface with fundamental
group I'. Let

0’H = {(a,b) € 0H x 0H | a # b},
notation as in Gromov [91]]. The I action extends to an action on 0H.
a) Prove that if one quotients the sphere bundle SH by the geodesic flow action of
RR, the result is exactly 9°T.
b) By finding a commuting pair of group actions, prove that
Co(0*H) x T ~ C(SM) x4 R,
where X, denotes the geodesic flow and ~ Morita equivalence.

Horocycle and geodesic flow on unit tangent bundles of surfaces are prolifically stud-
ied in ergodic theory, see [112].



CHAPTER 6

TOPOLOGICAL K-THEORY AND CLIFFORD ALGEBRAS

Topological K-theory was invented by M. F. Atiyah and F.E.P. Hirzebruch. It forms a
generalized cohomology theory on compact (or locally compact) spaces, and the K-theory
K*(X) of alocally compact space is a ring, defined in terms of vector bundles. The book [8]
is an excellent source. Topological K-theory is fairly easy to define but its key properties
are based on the deep Bott Periodicity Theorem, which implies that K~/(X) is 2-periodic.
The Bott Periodicity Theorem also gives that K°(5?) = Z[H]/([H] — 1)? as a ring, where
[H] € K°(S?) is the class of the Hopf bundle. The Bott Periodicity Theorem, due to R. Bott
was originally phrased in terms of the homotopy groups of the unitary groups, see [30],
[31] and Milnor’s book [124]], which contains a statement and proof of the Periodicity
Theorem using Morse Theory. Famous applications of K-theory due to Adams include
to the Hopf invariant problem classifying maps of Hopf invariant 1, [2], to upper bounds
on the number of linearly independent vector fields on sphere [3] (a short proof of the
Hopf Conjecture), and perhaps most importantly of all, to the index theorem of Atiyah and
Singer. (see the survey [32].)

The Bott Periodicity theorem is proved in the context of C*-algebra K-theory in Chap-
ter[7and again by KK-methods in Chapter[I0] Equivariant versions of the Bott Periodicity
Theorem are essential for computing K-theory of crossed products. In this chapter we
establish the basic structure of topological K-theory (functoriality, homotopy-invariance,
long exact sequences, Bott Periodicity) without giving all the proofs, as these are cov-
ered in the chapter on C*-algebra K-theory. Clifford algebras (discussed extensively in the
book [118]]) naturally appear in connection with topological K-theory, as they do in ana-
lytic K-homology and KK-theory in connection with Dirac operators. Periodicities in the
representation theories of Clifford algebras in fact underlie the respective periodicities (2-
fold and 8-fold) which appear in complex and real K-theory (respectively). We give a brief
discussion of this beautiful result of Atiyah, Bott and Shapiro [[11] (the book [11] discusses
this and is an excellent general source for Clifford algebras.) The Thom Isomorphism
Theorem is stated and discussed, although we do not prove it.

1. The definition of K-theory, the K-theory of the circle

The collection of complex vector bundles over a fixed space X has a natural additive
structure: given two vector bundles V, W, their direct sum V & W is another vector bundle
of the same type.

It is rather easy to see that V & W only depends on the isomorphism classes of V and
W. Therefore, the direct sum operation descends to an addition operation on the collec-
tion Vect(X) of isomorphism classes of complex vector bundles over X, and similarly, the
collection of isomorphism classes Vectr(X) of real vector bundles over X, has an addi-
tion operation. Thus, each of Vect(X) and Vectr(X) has a natural structure of abelian
semigroup with identity (the zero vector bundle is the identity.)

203
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The Grothendieck completion of an abelian semigroup A (think of A = N the natural
numbers (including zero) under addition, or A = N* the nonzero natural numbers, under
multiplication) is the group defined in the following manner.

Let G(A) :=A x A/ ~, modulo the equivalence relation (a,b) ~ (¢,d) ifa+d+¢e=
b+ c+ ¢ for some € € A.

Denote the equivalence class of a pair (a,b) in G(A) by a — b.

It is easy to check that the operation (a —b) + (¢ —d) := (a+c¢) — (b+d) is well
defined . There is a natural pair of semigroup homomorphisms A — G(A), in product nota-
tion, mapping a € A to the equivalence class of (a,0), and respectively, to the equivalence
class of (0,a). We write simply a for a — 0, and —a for 0 — a.

Then it is easy to verify that —a is the additive inverse of a, and, more generally, the
additive inverse of a — b is b — a, in this notation.

Thus G(A) is a group.

REMARK 6.1.1. The condition, for a,b € A, that a = b as elements of G(A), says that
a—+¢€=>b+e¢forsome € € A, which is weaker of course than to say a = b as elements of A.
If the semigroup has the property that this implies that @ = b, we say it has the cancellation
property. Many semigroups of interest for us do not have this property; for them, G(A)
does not contain A injectively, but rather only a homomorphic image of it. This is the case
for A = Vect(X), for example, which fails cancellation in general. The real vector bundle
TS? satisfies TS? @122 13 = 1, @ 1 but 7'S? is not isomorphic to 1, (by the Poincaré-Hopf
Theorem, for example, since 752 has no non-vanishing section.)

EXERCISE 6.1.2. Prove that G(A) has the following universal property. Let f: A — H
be a semigroup homomorphism to an abelian group H mapping the zero element of A to
the identity of H. Then f extends uniquely to a group homomorphism f: G(A) — H such
that foi = f, where i: A — G(A) is the canonical map discussed in part b).

EXERCISE 6.1.3. Prove that the Grothendieck completion of the natural numbers (in-
cluding zero) N under addition, is the integers, and that the Grothendieck completion of
the nonzero natural numbers N* under multiplication, is the nonzero rational numbers Q*
under multiplication.

DEFINITION 6.1.4. If X is a compact space, then K°(X) is the Grothendieck comple-
tion of the abelian semigroup Vect(X) of isomorphism classes of complex vector bundles
over X.

KO(X) is the Grothendieck completion of Vectg (X).

We generally denote by [V] the class in K°(X) of a vector bundle V over X.
By Remark |4.2.21] the K-theory of X is a countable group for any compact second
countable Hausdorff space X.

EXERCISE 6.1.5. Prove that if x is any point of a compact Hausdorff space X then the
map V + dim(V,) determines a group homomorphism K°(X) — Z.

Deduce from this that if V is any nonzero real or complex vector bundle over a compact
space X, then [V] # 0 € K°(X). Similarly for real vector bundles.

In particular, K°(X) is not the zero group, for any compact X, because the subgroup
generated by the 1-dimensional trivial bundle [1] over X generates an infinite cyclic sub-
group (and similarly KO®(X) is never zero.)

The simplest example of a space is the 1-point space pt. Clearly Vect(pt) = N as
semigroups, by the map sending a vector bundle V over the point, which is exactly the
same as a finite-dimensional vector space, to its rank.
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Hence K°(pt) = Z. Similarly KO (pt) = Z. The following easy exercise implies that
for any finite space X, K°(X) is the free abelian group on the points of X.

EXERCISE 6.1.6. If a compact Hausdorff space X is the disjoint union of two clopen
(both closed and open) subsets U and V, then K°(X) 2= K®(U) @ K°(V), the direct sum in
the category of abelian groups.

We next compute K°([0,1]) and KO°([0,1].

THEOREM 6.1.7. Any real or complex vector bundle over [0, 1] is trivial. In particular,
Vect([0,1]) = N by the map V — rank(V), and K°([0,1]) = Z, KO°([0,1]) = Z.

Of course there is an analogous statement for real K-theory.

PROOF. By connectedness of [0, 1] and Exercise E has constant fibre dimen-
sion n, for some n.

The interval is covered by open subintervals on which F is trivializable, by definition
of vector bundle. By compactness, there exists a finite subcover of [0, 1] by such intervals.
Thus, we can find open intervals Iy, .. ., I,,, moving from left to right, overlapping, and such
that £ I is trivializable for k =1,2,...m.

Let sfk) be sections of E on I, everywhere linearily independent, i = 1,2,...,n. Mov-
ing from left to right along the interval we build n globally defined sections s; which are
everywhere linearly independent, as follows. Fix a point 7y € I NI,. We have two bases

sl(l) (to) and sl@ (o), i=1,...,nfor the fibre E;, of E at fo. Let A be the matrix defined by
2 1
Sl(» >(l‘0) = ZA,']'SE- )(l()).
J

Then A is invertible. And for each i the section x — ¥ ;(A™1); js(-z) (x) on I, agrees with s;

i
at fp € I} NI, and can thus be used to extend s,(l) on [0,7] C I; to I} UI,. We then choose a

point t; € I N 13, and continue this process until we have constructed n linearly independent
global sections of E, showing that it is trivial.
O

EXERCISE 6.1.8. Letvy...,v, and wy,...,w, be two bases for C". Let p and ¢g be two
points of the interval [0, 1]. Prove that there are n everywhere linearly independent sections
S1,...,8y of the trivial bundle [p,g] x C" such that s;(p) = v;, si(¢) =w;, i =1,...,n. (Hint.
This is equivalent to showing that GL,(C) is path connected.)

EXERCISE 6.1.9. Is it possible to do Exercise [6.1.8] in the case of two bases for R”
instead of C"? What additional hypothesis on the bases is needed?

Extending the argument of Theorem a little for complex vector bundles pro-
duces the following result — but it definitely doesn’t work for real vector bundles, since the
Moébius bundle is not trivial.

PROPOSITION 6.1.10. Any complex vector bundle over S' is trivial. Hence Vect(S') =
Nand K°(S') = Z.

PROOF. Cover the circle with a finite family 11,5, ...,I, of open intervals (in the
angular sense) such that E I is trivial for k = 1,...,m. By the argument of Theorem [6.1.7
we can take n linearly independent sections, call them s1,...,s, of E‘ : and extend them

one interval at a time to I} U, I} UL UI3 and so on, until they are defined on /; U --- U
I,—1. Proceeding to the next step produces two choices for our sections on /1 N1, for by
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extending the constructed sections on 1, to sections on I,,_; U, produces n sections
s’l, ...,s), which may not agree with the initially defined sections si,...,s, defined on I}, on
the intersection I} N 1.

To remedy this, choose two points z,w € S Vin I, N1, with w past z in the counter-
clockwise direction. The bundle E is trivial over I} N1, Let @: E o L NI, x
C" be a trivialization. Consider the basis (p(sl(z)),(p(sz(z)),...,(p(s,, (z)), and the basis
o(si(w)),0(s5(w)),....0(s,(w)), for C". By Exercise there is a family 7q,...,,
of everywhere linearly independent sections of the trivial bundle [z,w] x C" such that
1i(z) = @(si(z)) and t;(w) = @(si(w)), i = 1,2,...,n. We can then glue the sections ¢~ (#;)
to s at z and to s; at w. This produces the required family of n linearly independent sections
of Eon S'. O

EXERCISE 6.1.11. What goes wrong if one tries to run the same argument through for
the Mobius bundle?

The determinant map det: GL,(R) — R* is continuous for every n and so GL,(R)
has two components, since R* does.

Use this to show that if V is any orientable real vector bundle of rank n over the circle,
then V 2 1,,. Deduce that [M] — [1] € K% (S!) is 2-torsion, where M is the Mbius bundle.

Can you take a guess at the group KO?R(S 1) (we are still not in a position to prove it.)

The torsion class just discussed may be regarded as a special case of the following
construction.
Suppose G is a finite group acting freely on X compact, let X := G\X. And suppose
that
a:G—-U,

is a finite-dimensional, unitary representation of G. Let X x5 C" := X x C" / ~, where ~
is the equivalence relation (x,v) ~ (gx,0(g)v). The first coordinate projection descends to
a well defined map

6.1) T: Eq =X xgC" = G\X =X.

EXERCISE 6.1.12. In the above notation, answer the following.

a) Prove that w: Ey — X defines a complex n-dimensional vector bundle over X by
showing that it is locally trivial.

b) Show that the transition functions @: W — GL(C") are given by the action of
elements of G on C".)

¢) Prove that the Mo6bius vector bundle of Exampleis the bundle over R/Z =
S! associated to the character y(n) = (—1)" of the integers Z.

d) Since RP" is the quotient of §" by an action of the group Z/2, exhibit a cor-
responding one-dimensional real vector bundle L, over RP" for all n. For a
challenge, prove that L, @ L, is a trivial bundle.

PROPOSITION 6.1.13. If X = G\X for a free action of a finite group on a compact
space, and o.: G — U, is a representation of G on C", Ey the bundle over X defined
above, then

(62) (Gl ([Eo] = [1a]) = 0 € K*(X).
In particular; [Eq) — [1,] € K°(X) is always a torsion class, of order a divisor of |G|.

The proof uses a simple device that is slightly more general, so we give this slightly
more general statement.



1. THE DEFINITION OF K-THEORY, THE K-THEORY OF THE CIRCLE 207

Let T: X — X be a finite covering map. We define a push-forward operation on vector
bundles as follows. If E is a vector bundle over X, define a vector bundle m;(E) over X by
setting the fibre at x € X to be

(6.3) 3(E)x 1= Byen1,Ey.

EXERCISE 6.1.14. Prove that 7;(E)) defined above is a vector bundle over X. If E and
E’ are isomorphic vector bundles over X, then m;(E) and 73 (E’) are isomorphic.

The push-forward construction therefore gives rise to a group homomorphism
(6.4) . KO(X) —» K°(X).

LEMMA 6.1.15. In the above notation, let ©*: K°(X) — K°(X) be the map induced
by the finite covering map ©: X — X. Then

(6.5) nom. = |G| -idgo(g), eon” = |Gf-idgoqy)-

hold.
In particular, the push-foward rationally inverts the pull-back map.

EXERCISE 6.1.16. Verify that (6.3) holds.
We now prove Proposition[6.1.13]

PROOF. Letm: X — X the quotient map — a covering map. It is obvious that T* (Eg) =
X x C", that is, the pull-back of Ey to X is trivial. Hence

T ([Eal) = [1a]-
Applying the push-forward map 7. gives
T (0 ([Eo) - 1)) = 0 € K°(X).

By (6.5)
|Gl ([Ea] = [14]) = 0 € K°(X),
as required. (I

The above constructions show that torsion may exist in K-groups, but does not prove
it. In order to prove it, one needs more methods of actually computing these groups.

Clutching constructions, a homotopy description of vector bundles over spheres

We finish this section with a discussion of ‘clutching.” We restrict ourselves to com-
plex vector bundles for simplicity; the analogous discussion goes through for real bundles.

Let X = U UU’ be the union of two open sets, let E be a complex vector bundle over
U and E’ a complex vector bundle over U’, and let ¢: E|y~y: — E'|y~y’ be a bundle
isomorphism.

Then the clutching of E and E’ over @ is denoted E Uo E’, is defined as follows. As
a space, E Uy E’ is the quotient of E LI E" by the equivalence relation which identifies
(x,v) € Ex C E with (x,9(x)v) in E’. The projection maps E — U and E" — U’ splice
together to make a projection map n: EUpE' - UUU’ =X.

Each fibre of w has the structure of a vector space, since the glueing map ¢(x): E, —
E is linear for all x € U NU’, this is well defined on E Uy E’, and the addition and scalar
multiplication operators on E Uy E are easily checked to be continuous, fibrewise, with
respect to the quotient topology.
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EXERCISE 6.1.17. In the above notation, prove that ©: E Uy E’ — X is locally trivial
and that the isomorphism class of E U E” only depends on the homotopy class of the vector

bundle isomorphism ¢@: £ — E\/zmu" (Hint. A homotopy (r);c[o,1] of bundle isomor-
phisms E, = E"U ” is equivalent to a single bundle isomorphism pry (E )‘UNU, o]
nu’ %0,

pry (E’)‘UQU,X[O > Where pry - X x [0,1] — X is the projection. Now prove that E Ug, E' =
17 (pryE Ua pryE’), with f;: X — X x [0,1] the map f;(x) = (x,1).)

EXERCISE 6.1.18. Prove that if U and U’ are open in X, E and E’ are vector bundles
over U,U’, and if V is a vector bundle over X whose restriction to U is isomorphic to E, and
whose restriction to U’ is isomorphic to E’, then V' is isomorphic to the clutching E Ug E’,
using the clutching function manufactured on U NU’ by using first the isomorphism E’ =V
(on U) followed by the inverse of the isomorphism V = E (on U’).

Deduce from this that if a vector bundle is trivial over an open set U C X, then it is
isomorphic to a vector bundle which is actually equal over U to a product bundle.

The following exercise generalizes the clutching idea over two open sets, to an arbi-
trary collection of them.

EXERCISE 6.1.19. (Clutching using a cocycle).
Suppose that {U; }¢; is a cover of X by open sets. And suppose we are given a family
{9;j: UinU; — GL(n,C) | i, j € I'} of maps satisfying the cocycle conditions
o ¢;i(x) =id for all 4,
* 9ij(x)Qji(x) = Qix(x), Vi, j. k.
Then the relation ~ on | J;c; U; x C" defined (x,v) ~ (x,;j(x)v) forx € U;NUj, is an
equivalence relation, and the quotient space has a canonical structure of an n-dimensional
vector bundle over X.

EXERCISE 6.1.20. Let w: E — X be an n-dimensional real or complex vector bundle.
Suppose that {U;,®;}cs is an atlas for E, i.e. @;: E|y, — U; x C" is a local trivialization
forall i € I. Let ¢;; = @; 0 (p;1 the transition functions for the atlas, understood as maps
¢;j: UiNU; — GL(n,C). Check that they satisfy the cocycle condition and that the vector
bundle | |;c;U; x C* / ~ as in Exercise[6.1.19] is isomorphic to E.

EXERCISE 6.1.21. Let {@;;: U;NU; — GL(n,C)} be a cocycle as in Exercise[6.1.19]
which is a coboundary in the sense that there are maps y;: U; — GL(n,C) for which
¢;;(x) = y;(x)y;(x) ! for x € U;NU;. Prove that the ‘clutched’ bundle | |;c; U; x C" / ~
described in the Exercise|6.1.1Y|, is trivial.

EXERCISE 6.1.22. Let G be a finite group acting freely on X compact. Show that the
vector bundle E over X := G\X associated to a finite-dimensional representation o.: G —
U,,, may be considered as being obtained by clutching in the following way. Cover X by
the open images of sets U; C X for which g(U;) NU; = 0 for g # e. The quotient map
n: X — X restricts to a homeomorphism on each U;, and the composition (7t|Uj)*1 oT|y,
is a homeomorphism on U; NU; onto an open subset of X. Show that this homeomorphism
is the restriction of a group element g;; € G, and if we set @;; := o.(g;;) then the system
¢;j: UinU; — U, defines a cocyle, whose functions are locally constant.

EXERCISE 6.1.23. Prove that a pair of vector bundles can be ‘cluched’ over two closed
sets, as well as over two open sets. More precisely, let Aj,A> C X be two closed subsets

of X, let E; be vector bundles over A;, and let @: E; |A1m2 =N E2|AmA2 be a vector bundle
isomorphism. Forming the quotient space of Ej LI E; by the equivalence relation which
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identifies v € E; with @(v) € E,, results in a vector bundle over X = A; UA;, which is
isomorphic to E.

We close this section with a homotopy-theoretic description of vector bundles over a
sphere.

Let w: V — §" be a vector bundle over the n-sphere. Let §'} be the (closed) upper
hemisphere, $” the lower hemisphere, so that §7 NS" = sn-1

Let E be a k-dimensional complex vector bundle over S”. Since S, are each con-
tractible compact spaces, E|S,i is trivial. Fix trivializations

Ol : E‘S” — S X ck.
1

The restriction of o o o;! to 87 NS™ = §"~! is a bundle map §"~! x C" — §"~! x C,
which is equivalent to a map o: §"~! — GL(k,C). Let [0] € [S""!, GL(k,C)] be the
corresponding homotopy class of map.

EXERCISE 6.1.24. In the above notation, answer the following.

a) Prove that the homotopy class [of] € [$"~!, GL(n,C)] does not depend on the
choice of trivializations .. (Hint. Due to contractibility of S”., even the homo-
topy classes of the bundle maps o+ are uniquely defined.)

b) Using clutching to produce a map inverse to the construction above, prove that

Vecty (") 22 [$"!, GL(k,C)],

where Vecty(S") is the set of isomorphism classes of k-dimensional complex
vector bundles over the sphere.

EXERCISE 6.1.25. Let S% be the upper and lower closed hemispheres of the 2-sphere.

Prove that the Hopf bundle is obtained by clutching two trivial bundles over Si using the
GL(1,C) = C*-valued function
9: 52N =85 5 C, oz) =z
EXERCISE 6.1.26. Let w: V — X be an n-dimensional vector bundle over a compact
space. Let 7 (V) be the bundle of frames of V: a point of ¥ is a pair (x,v) where v is an n-
tuple (vy,...,v,) of linearly independent vectors in V,. Topologize F (V') to be a compact

space, and prove that the projection p: F (V) — X pulls V back to a trivial bundle over
FV).

Orientations on vector bundles

Let w: V — X be any real vector bundle. Due to local triviality, V has local frames.
Thus, for any point of X, there is a neighbourhood U of the point, and a frame e — i.e. a
collection of sections ey, ...,e, of V defined on U, such that e (x),...,e,(x) is a basis for
ViforallxeU.

If U’ is another, intersecting open set, with another frame €' on it, then we say the
frames are compatibly oriented on U NU' if e(x) and €’ (x) are compatibly oriented frames
of V, for all x € U, equivalently, e (x) A-- - ¢e,(x) is a positive multiple of €| (x) A--- Aej,(x)
in A"(V,) forallx e UNU'.

A vector bundle is orientable if there is a cover of X by open sets Uj;, and a collection
of frames e; on U; such that if U;NU; # 0 then e; and €] are compatibly oriented frames.
We call any such data an orientation on V.
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EXERCISE 6.1.27. The following are equivalent for a real vector bundle w: V — X.

a) V is orientable.

b) There exists an atlas {U;,;}ic; for V, for which the transition functions @;; =
0; o(p;l : UiNU; — GL(n,R) take values in the subgroup GL ™ (n,R) of matrices
of positive determinant.

¢) There exists an atlas {U;, ;}ic; for V, for which the transition functions @;; =
;0 (ijl : UiNU; — GL(n,R) take values in SO(n,R).

EXERCISE 6.1.28. Prove that if E — X is a complex vector bundle, then it is ori-
entable, when regarded as a real vector bundle.

2. Vector bundles on smooth manifolds

In this chapter we review some of the standard (real) vector bundles that come up in
smooth manifold theory.

An n-dimensional locally Euclidean space M is a Hausdorff, second countable topo-
logical space with the property that every point p € M has a neighbourhood U homeomor-
phic to an open subset of R". A smooth atlas on an n-dimensional locally Euclidean space
is a collection of pairs {U;, ¢; } with U; an open subset of M and ¢;: U; — R" a homeomor-
phism onto an open subset, such that UU; = M and @; o (ijl 19 (U;NU;) — @i(U;NUj) is
a smooth map, for all i.j. Each such pair is called a (smooth) local coordinate chart.

If ri,...,r,: R" — R are the usual coordinate projections, we can write @ = (x1,...,X,)
where x; := r; 0 @ and we can label points in U by their corresponding coordinate vectors
(X1, Xn)-

A maximal smooth atlas is a differentiable structure on M. A continuous function
f: M — Ris smooth if fo@~!: @(U) — R is smooth for every local coordinate chart on
M. C*(M) denotes the real algebra of smooth functions on M.

If p € M is a point, a point derivation X,,: C*(M) — R is a linear map satisfying the
Leibnitz rule

Xp(fe) = f(p)Xp(g) +&(p)Xp(f),

for f and g smooth functions on M.

The tangent bundle of M is the disjoint union TM = U,eyuT,(M) where T,(M) is
the real vector space of point derivations of C*(M) at p. There is an evident projection
n: TM — M; we want to show that TM can be given the structure of a vector bundle over
M.

EXERCISE 6.2.1. If X, € T,,(M) is a point derivation at p, and f € C*(M) is a smooth
function which vanishes in a neighbourhood of p, then X, f = 0. Deduce that X,,f, for
f € C*(M), really only depends on the germ of f at p (germs are discussed below.)

EXERCISE 6.2.2. Suppose that p € M and y: (—€,€) — M is a smooth curve such that
v(0) = 0. Show that y determines a point derivation Y (0) at p by

Y(0)f := (fov)(0).

All point derivations at p arise in this way (Exercise[6.2.3])

If p is in the domain of a coordinate chart @: U — R" with coordinates xi,...,x,, let
. |
a%| » denote the point derivation f — g—f;(p) = a(faijj)(p) at p.
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Taylor’s lemma asserts that if f is a smooth function in a neighbourhood of a point
p € R", then

JrZ,gl —pi)
of

where g1, ..., g, are smooth functions in a neighbourhood of p satisfying g;(p) = 3

Taylor’s Lemma extends more or less verbatim to points p € M in a smooth manifold
M, and to smooth functions on M. If (U,®), ¢ = (xl, ...,Xx") is a local coordinate chart,
then any f € C*(M) may be written

m+§g@@—

for a collection g, ...,g, of functions smooth in a neighbourhood of p.
Now, if X}, is a point derivation at p, then by the Leibnitz rule, and the fact that all the
x! — p’ vanish at p,

n
Xﬂ(f):Zgl(p Zal
= ax,
with g; the constants a; = X, (x; — ;) obtained by applying X, to the functions x' — p',
which vanish at p. That is, any X, for p € U, can be expanded uniquely in the form

p—Za, |,,, where a; = X, (x' — p').

It is also easy to check that the §| p are linearly independent at each p € U. Hence they
form linearly independent and spanning sections of TM |y := ' (U) C TM. This supplies
local trivializations of TM, and a basis for a topology, and TM therefore becomes a real
vector bundle over M of dimension n = dim(M).

EXERCISE 6.2.3. Show that all point derivations at a point p € X arise from the germ
of a curve, as in Exercise

The dual T*M of the tangent bundle also has a nice geometric description. Fix a point
p EM. Let A, be the algebra over R of germs (f,U) of smooth functions at p, which
vanish at p. Thus, f € CZ(U), p € U, f(p) =0, and two such pairs (f,U) and (g,V) for
which f = g on U NV are considered equivalent.

Now form 7; (M) := A, /A[%. This is the algebra of germs which vanish to first order
at p modulo the germs which vanish to second order at p.

Now if f is a smooth function defined in a neighbourhood of p, we let df(p) be the
classin A, /A% of the smooth f — f(p), which vanishes at p.

By Taylor’s Lemma, we can find smooth functions gi,...,g, in a neighbourhood of
p such that g;(p) = %( p). Applying Taylor’s Lemma to each such g; then yields smooth
functions 4;; in a neighbourhood of p such that

of S
gi(x) = 35 (p) + Z hij(x)(x) = p’).
=1
Substituting into the formula for f — f(p) yields

- i %(p)(xi =)+ L hi () (= p = p).
= i.j
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This immediately implies that
< ; )
df(p) = Zaidx’(p), where a; = a—){l(p)
i=1

since the germ ¥; ; h;j(x)(x' — p')(x/ — p/) vanishes to order 2 at p.

It follows that L,epAp /AIZ, can be given the structure of a real, n-dimensional vec-
tor bundle over M, with local sections given on the domains of coordinate charts by the
cosets dx!,...,dx". In fact, this vector bundle can be naturally identified with the dual bun-
dle T*M of the tangent bundle. To prove this, define a map A, /A127 — T,(M)* by letting

df(p) €Ay /Af, act on point derivations at p by
(df(p).Xp) :==Xp(f)

This formula is well defined , because any point derivation must vanish on functions which
vanish to order 2 at p, so that X,,(f) only depends on the coset of f modulo Alz,.

The details are left as an exercise.

A section of the tangent bundle is called a vector field on M. A section of T*M is
called a differential 1-form on M. A section of the exterior algebra bundle A*T*M is called
a differential k-form on M. Any differential k-form ® on M can be locally expanded into a
linear combination of the standard differential k-forms dx! := dx! Ad® A --- Adx', where
I=(i1,...,i;) is a multi-index: thus, on the domain of a local coordinate system, we can

write
0= Za[dx]
]

for some collection of smooth functions a; on the domain of the chart.

EXERCISE 6.2.4. A smooth manifold whose tangent bundle is trivial is called paral-
lelizable. Prove that the n-torus T" is parallelizable.

EXERCISE 6.2.5. Let M be any smooth manifold. Prove that the tangent bundle
T(TM), as a vector bundle over the space TM, is isomorphic to ©*(TM) & " (TM), where
n: TM — M is the projection map, and ©*(7TM) is the pull-back of the vector bundle TM
over M, to a vector bundle over TM.

Deduce that the tangent bundle to TM has a complex structure.

Smooth structures on vector bundles

DEFINITION 6.2.6. A vector bundle w: £ — M over a manifold, is smooth if E is a
smooth manifold, and if there exists an atlas for E consisting of smooth maps.

By an easy exercise, if E is smooth, then ©: E — M is a smooth map, and M embeds
by the zero section of E as a regular submanifold of E.

In this section, we show the important basic result that every vector bundle over a
smooth manifold may as well be taken to be a smooth vector bundle. This idea is an
important one in Noncommutative Geometry: it means that one may for purposes of K-
theory computations, assume that all the K-theory data is smooth. The proof we give here
is fairly C*-algebraic in nature.

THEOREM 6.2.7. Every real vector bundle ©: E — M over a smooth compact mani-
fold is isomorphic to a smooth vector bundle.
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REMARK 6.2.8. The theorem can be phrased a bit more concretely as follows: any
vector bundle E over smooth M be given a differentiable structure, and, moreover, one can
find a system of local trivializations of E which are smooth.

LEMMA 6.2.9. Let a be a self-adjoint element of a C*-algebra of norm < 1. Then if
lla—a?|| < § then % ¢ Spec(a).

PROOF. If a is self-adjoint then the functional calculus produces a *-isomorphism
C*(a) = C(Spec(a)) mapping a to f(t) =1, so |la—a?|| < § implies that |t —*| < § for
all € Spec(a), and hence that 1 ¢ Spec(a) since # — > assumes the value —3 there.

(I

LEMMA 6.2.10. Let M be a smooth compact manifold and let H € C*(M,M,(C))
be a smooth element of the C*-algebra C (M ,M”((C)). Let y be a continuous function
on Spec(H). Then if y extends to a holomorphic function on a neighbourhood in C of
Spec(H), then Y(H) is also smooth.

PROOF. Let  be an extension of y to a holomorphic function in a neighbourhood U
of Spec(H), and let y be a simple closed, positively oriented contour in U with Spec(H)
contained in its interior. By the holomorphic functional calculus

WlH) = 5 f ) 0w—r) .
As a function on X, thus,
WH)() = 3 §00e) 00 = H )

The usual technique of differentiating under the integral sign implies that this function of
x is smooth, because H is assumed smooth.
O

LEMMA 6.2.11. IfM is a smooth manifold and p: M — M,,(C) is a smooth projection-
valued function, then the vector bundle Im(p) is a smooth vector bundle over M.

PROOF. By definition, Im(p) is a subset of the smooth manifold M x R™. So to
show it has the structure of a smooth manifold, it suffices to show that it is a regular
submanifold of M x R™. Choose any point a € M. We have already shown thatif vy,...,v,
is a basis for R™ with the first k vectors a basis for Im(p(a), then the sections sy (b) :=
p(DYWi,...,5k(b) := p(b)Viyskt1(D) = Vis1s. .., Sm(q) := vy form a basis for R™ for all
g in a neighbourhood U of a. After possibly shrinking U we may also assume it is the

domain of a coordinate chart (U b ,x") for M.
Now if v € R™ and g € U then we can find unique scalars t!(v,q),...,t"(v,q) such
thatv=Y" 1'(v,q)v;. The functions ' are smooth, and are linear in v for fixed g. We now

make a local coordinate system for M x R™ around (a,0) by

(4:v) = (5" (@),- - X"(q),1' (,9), - 1" (v.9)).

This forms a coordinate system, and the last m — k coordinates of (¢,v) vanish if and only if
v has the form v =YX, #(v,q)P(g)v; which lies in x=' (U) C Im(p), so that locally Im(p)
may be represented as

{& .ot [ = =1, =0}

which is the condition for being a regular submanifold.
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Note that with this differential structure, the bundle trivializations are smooth, indeed,
in our local coordinates the bundle trivializations are, in the above notation,

o(q.v) = (g.1 (q.v),. ...t (q.,v)) € M x R*, for (¢,v) € Im(p).
O

PROOF. (Of Theorem[6.2.7). Let p: M — M,,(C) be a continuous projection-valued
function such that Im(p) = E. Since smooth functions M — C are dense in continuous
functions, by the Stone-Weierstrass Theorem, it follows that smooth, matrix-valued func-
tions M — M,(C) are also dense in continuous matrix-valued functions. So there exists
a sequence (H,) of smooth functions H,: M — M,(C) with H, — P in the C*-algebra
C(M,M,(C)). Since H”%H; — P as well, we may as well assume that the H, are also
self-adjoint.

In particular, there exists a smooth self-adjoint element H € C™(M,M,(C)) such that
|H—P|| <1 By Lemma 1 ¢ Spec(H). The spectrum of H is compact and does not
contain % and hence there exists a pair of open sets U,V C C such that UNV =0, V con-
tains Spec(H) N (3,+0), U contains Spec(H) N (—o, }). Let f be the function assuming
value 1 on V and 0 on U, then f is clearly holomorphic on U UV, and if yis a simple closed
contour in V encircling (1,+c0) N Spec(H), then f(H) is then smooth by Lemma
and is a projection, call it Q, since it is the image of a characteristic function on Spec(H)
under holomorphic (and hence continuous) functional calculus C(Spec(H)) — C*(H).

Since ||Q — P|| < 1, Im(Q) = Im(P) = E as vector bundles over M. Finally, an appli-
cation of Lemma [6.2.11] gives that Im(Q) is a smooth vector bundle, and we conclude that
E is isomorphic to a smooth vector bundle as initially claimed.

O

EXERCISE 6.2.12. Suppose that A C X is a closed subspace of a locally compact space
X and E a vector bundle over A. Prove that E can be extended to a vector bundle over a
neighbourhood of A. That is, prove that there exists an open neighbourhood U containing
A and a vector bundle E over U whose restriction to A is E. (Hint. Find a projection valued
map p: X — M,(C) such that Im(p) = E. Extend p to a map p: X — M,(C), argue that
for some neighbourhood U of A, 1 ¢ Spec(p(x)) for all x € U, and use the functional
calculus methods of the proof of Theorem [6.2.7] perturb j so that it is projection-valued in
a neighbourhood of A.)

3. Functoriality and homotopy-invariance

Let @: X — Y be a continuous map of compact spaces. The pull-back operation V —>
¢*(V) from vector bundles on Y to vector bundles on X, defined in Definition
can be easily checked to take isomorphic vector bundles to isomorphic vector bundles,
and respects direct sums. Hence it induces a homomorphism ¢*: Vect(Y) — Vect(X) of
abelian semi-groups. This results in a pair of abelian group homomorphisms ¢*: K°(Y) —
K%(X) and KO*(Y) — KO*(X).

It is routine to check that as maps on K-theory, or KO-theory, (¢ oy)* = y* o ¢*, for
@:Y —Zandy: X — Y, so that the assignment X +— K°(X), ¢ — @* defines a contravari-
ant functor from the category of compact Hausdorff spaces and continuous maps, to the
category of abelian groups and group homomorphisms (and similarly for KO°-theory.)

The main result of this section is the homotopy-invariance of these K-theory functors:
that is, that homotopic maps induce the same map on K-theory.
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LEMMA 6.3.1. Let V be a vector bundle over a locally compact Hausdorff space X
andY C X be a closed subspace. Then any section s: Y — V can be extended to a section
§: X —>VofVonall of X.

PROOF. For product bundles X x R", the result follows immediately from the Tietze

Extension Theorem. For trivial bundles, it follows as well, since if ¢: V i) X xR"is a
bundle isomorphism, s a section of V on a closed subset, ¥ C X, then Qo s is a section of a
product bundle on Y, and if ¢ is an extension of it to a section on X, then (p*1 ot 18 a section
of V which extends s on Y, as required.

Now let m: V — X be any vector bundle. Then X is covered by open sets on which
V is trivial. Let {U;}ie; and {p;}ics a partition of unity subordinate to this cover. Let
@i Viy, = U; x R" trivializations of V on each U;.

Now using the partition of unity, it will be enough to extend s|y;y to a section s;: U; —
V on U;. For then we may define s(x) = Y ;c; pi(x)si(x). The sum will be finite, for any
fixed x € X, because of local finiteness. And if x € Y, it equals s(x), because s;(x) = s(x)
for every i, since we are assuming s; extends s on U;NY, and since ¥ p;(x) = 1, for all
xeX.

So we are reduced to showing that any section of V|y, can be extended from U;NY to
U;. But by construction V|, is trivial, and hence, the extension property follows from our
initial remarks.

|

COROLLARY 6.3.2. If Vi and V; are vector bundles over X, and if Y C X a closed
subset, then any isomorphism Vi|y = Va|y can be extended to an isomorphism Vi |y = Va|y
on a neighbourhood of Y.

PROOF. Bundle maps V| — V; are exactly sections of the vector bundle HOM(V;,V5)
(see Exercise of Chapter E]) So an isomorphism V; |y — V1 |y, since it is a section of
HOM(V,V2) on Y C X, extends, by Lemma to a section on X, in other words, to a
bundle map T': V; — V, defined on all of X, and such that T'(y) is an isomorphism for all
y €Y. The result will then follow from the following

Claim. If T: Vi — V, is any vector bundle map, then the set

{x € X | T(x) an isomorphism }

isopenin X.
To see this, let xyg € X for which T (x() is an isomorphism. We may find trivializations
V1 and V; on a neighbourhood V of x(, and hence we can find a frame for V| and a frame
for V5, defined on V, and write T in terms of these frames, as a matrix. Let 7 be the
corresponding map U — M,(R) — it is continuous, and takes an invertible value at xg.
Since the inveribles GL(n,R) C M,,(R) are open in M, (R), it follows that T takes invertible
values in a neighbourhood of xg, so there exists U a neighbourhood of xy on which 7 takes
invertible values. It follows immediately that 7 is an isomorphism on U. This completes
the claim.
(]

LEMMA 6.3.3. Let X be any compact Hausdorff space and let iy,i;: X — X x [0,1]
be the maps io(x) := (x,0), i1 (x) := (x,1). Then ij = if: KO*(X x [0,1]) — KO°(X), and
similarly if; = i} as maps K*(X x [0,1]) — K*(X).
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PROOF. Letm: V — X x [0,1] be a vector bundle. For each 7, let i: X — X x [0, 1],
i;(x) := (x,7) be the inclusion of X as the slice at ¢. Let V; := i} (V), a vector bundle over
X. We show the following

Claim. In the above notation, there exists € > 0 such that V; 2V, if |[s —¢| < €.

To prove the claim, choose any ¢ and consider the bundle pri(V;) on X x [0,1], with
pry: X x [0,1] — X the first projection map.

Obviously, by the definintions, prj(V;) agrees on the nose with V on the slice X x
{t}, which is a closed subset of X x [0,1]. In particular, there is a bundle isomorphism
prj(V;) = V defined on the slice. By Lemma this extends to a bundle isomorphism in a
neighbourhood of the slice. A routine compactness argument implies that any such neigh-
bourhood contains one of the form X x (¢ —¢€,z +¢€). In particular, if [r —s| <€, V, is
isomorphic to Vj, as claimed.

The result we are trying to prove — that Vj is isomorphic to V| — now follows from
a routine compactness argument, producing a list of points 0 < #; < --- < €, < 1 of the
interval close enough to each other that V;, =V, ,i=0,1,...n.

d

COROLLARY 6.3.4. Let ¢y and @1 be homotopic maps X — Y, where X and Y are
compact. Then the induced group homomorphisms @} and @5: KO*(Y) — KO*(X) are
equal. Similarly, ¢ = @5: K*(Y) — K*(X).

PROOF. By definition of homotopy, there exists a map F: X x [0,1] — Y such that
F oiy = @g and F o i = @;. By functoriality and Lemma[6.3.3] we get

Qo= (Foip)* =igoF*=ijoF" = (Foi;)" =¢j,

which completes the proof.

Ring and module structures on K°

We close this section with a discussion of the very important ring structure on the
KO-group of a compact space.

If V| and V, are vector bundles over X, then their tensor product V; ® V; is a vector
bundle over X. If Vi = V| and V> = V] then V; ® V> = V] ® V;, so the tensor product
operation descends to an operation on the semigroup of isomorphism classes Vect(X)
(or on Vectr(X), if one is working with real bundles.) By the universal property of the
Grothendieck completion, tensor products on real and respectively complex bundles de-
scends to a pair of multiplication operations

K°(X) x K°(X) —» K°(Xx), KO°(X) x KO’(X) — KO°(X).

PROPOSITION 6.3.5. Under direct sum and tensor product, K°(X) is a commutative
ring with identity.

Similarly for KO(X).

EXERCISE 6.3.6. If X is compact and a = [E'] — [E?] € K°(X), b = [F!] - [F?] €
K%(X), then the ring product a-b € K°(X) equals the difference [(E' ® F') & (E*®
F)-[(E*®F") @ (E'®F?)).

The multiplicative identity of K°(X) is the class of the trivial line bundle over X (and
similarly in KO°-theory.)
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EXERCISE 6.3.7. If ¢: X — Y is a map of compact spaces, the induced map abelian
group homomorphism ¢*: KO®(Y) — KO%(X) is also a ring homomorphism. (Similarly
for complex K-theory.)

EXERCISE 6.3.8. Let A be a closed, contractible subspace of a compact space X.
Prove that K%(X) =2 K%(X /A), where X /A is the quotient space obtained by crushing A to
a point.

4. K-theory for noncompact spaces, higher K-groups

Everything we say in this chapter is equally valid for K-theory and KO-theory. We
mainly focus on K-theory.

Let X be locally compact Hausdorff, X its one-point compactification. Neighbour-
hoods of the point <o at infinity are complements of compact subsets of X, with the point
at co added. See Exercise of Chapter|[l| The space X* is compact Hausdorff. Let
€x: pt — X the inclusion of the one-point space as the point at infinity. It induces a map
g5 KO(X*) — K°(pt) = Z, and similarly induces a map KO®(X ™) — KO%(pt) = Z.

DEFINITION 6.4.1. If X is a locally compact Hausdorff space, we define K°(X) to be
the kernel of the map €} : K*(X*) — Z. Similarly, we define KO°(X).

EXERCISE 6.4.2. Prove that K°([0,1)) is the zero group.

REMARK 6.4.3. Elements in K®(X*) are differences [V;] — [V»] of stable isomorphism
classes [V1] and [V3] of vector bundles over X . At the level of vector bundles, the map
€} just maps a vector bundle V over X to its restriction V., to the point at oo; this results
in a vector space, and the corresponding integer is its dimension. Thus, €% ([V]—[W]) =
dim(Ve.) — dim(W.,).

In particular, K°(X) is always an ideal in the ring K®(XT). In particular, it is of course
a subring, and hence a (non-unital) ring in its own right.

Similarly KO(X)-theory is a ring, with the ring structure inherited from KO®(X ™).

EXAMPLE 6.4.4. K%(R) = 0. Indeed, by definition, K°(R) is the kernel of the aug-
mentation map € : KO(R+) — 7, while RT 22 81 is the circle, whose K° has already been
computed (Proposition ) to be infinite cyclic with generator the class [1] € KO(S!)
of the trivial line bundle on S'. If n[1] € K°(S!) is any element, then €} (n[1]) = n so & is
injective and K°(R) := ker(g},) is the zero group.

EXERCISE 6.4.5. Let E be a vector bundle over X. Prove that if F is trivial outside a
compact subset of X, then X is (isomorphic to) the restriction to X of a vector bundle over
X' to X. (That s, if E is trivial outside a compact set, then E ‘extends’ to a vector bundle
over XT.)

EXERCISE 6.4.6. From the previous exercise, check in detail that if X is noncompact,
then K°(X) can be described as formal differences [E'] — [E] where E' are each vector
bundles over X, each trivial outside a compact subset of X, and, such that each have the
same dimension outside some compact subset. Write down when two such formal differ-
ences correspond to the same element of K%(X).

Functoriality of K-theory for non-compact spaces involves a nuance. It is not func-
torial under arbitrary maps f: X — Y, but only proper maps, for these are precisely the
maps which extend continuously to maps fy: X+ — Y mapping the point at infinity to
the point at infinity. Due to this property, f4 o€x = €y, and hence by functoriality of KO°
or KO, €5 o f1 =€} and hence f} maps ker(€}) into ker(€}).
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Thus, a proper map f: X — Y induces maps f*: K*(¥) — K*(X) and f*: KO°(Y) —
KOY(X).

Suppose that X is already compact. Then  is isolated in X * (is an open set) and hence
KO(XT) =2 KO(X) o KO({}) 2 KO(X) o K(pt) = KO(X) @ Z, with €} corresponding to
the second projection map (by Exercise. It is immediate that ker(g} ) = K°(X), so we
recover our old definition of K-theory for compact spaces. The same remarks go through
verbatim for KO°-theory.

EXERCISE 6.4.7. Prove that a proper map is a closed map.

EXERCISE 6.4.8. Prove that if ¢: X — Y is a proper map and f € C.(X) is a continu-
ous, complex-valued function with compact support, then f o @ has compact support.

Two proper maps @o,¢;: X — Y are properly homotopic if there is a proper map
F: X x[0,1] = Y such that F oiy = @y and F oij = @y, with ip,i; the inclusions of X at
the endpoints, as usual.

PROPOSITION 6.4.9. If X and Y are locally compact Hausdorff and @y, @;: X =Y
are properly homotopic proper maps, then ¢y = Q] as maps K(Y) — KO(X). Similarly,
95 = }: KO'(¥) - KOO(x)

PROOF. For the proof, we restrict ourselves to complex K-theory. The same proof
works for the real version.

As before, it is enough to prove that the maps i, i : KO(X x [0,1]) — K°(X), are
equal. (Note that they are each proper.) By the definitions, it is sufficient to show that ig
and i] induce the same map K°((X x [0,1])") — K°(X ™).

Let H: Xt x[0,1] = (X x [0,1])" map any (x,7) € X x [0,1] to the image of (x,7) in
(X x [0,1])*, and let H(oo,t) = o for every ¢ € [0, 1]. The reader can easily verify that H is
continuous. It gives a homotopy between isr and if, as maps between two compact spaces.
Hence (i )* = (i]")* from Theoremm This proves the result. O

We can now define the higher K-theory groups of a space.

DEFINITION 6.4.10. For X locally compact Hausdorff, K" (X) is defined to be K’ (X x
R"), and likewise KO™"(X) := KO°(X x R").

EXAMPLE 6.4.11. Since K%(R) =0, (Example we have so far determined that
K%(pt) = Z and K~!(pt) = 0. The computation of K~(pt) and the computation of the
higher groups K=3(pt), K~*(pt),... , which turn out to be 2-periodic, will require the Bott
Periodicity Theorem.

REMARK 6.4.12. R" is obviously a contractible space, but it is not properly con-
tractible. Hence there is no a priori reason to suppose the K-theory or KO-theory groups
of R", equivalently, the higher K-theory groups K~"(pt), of a point, are uninteresting.
(And similarly for KO-theory.)

Since (R™)* =2 5", K~"(pt) := K°(R") is the subgroup of K°(§") consisting of differ-
ences [Vi] — [V»] of vector bundles over the sphere, of the same dimension. The difference
[H] — [1] is an example of such a difference, where H is the Hopf bundle.

The Hopf bundle is non-trivial, so there is no immediate reason to conclude that this
difference is zero in K° (8™) (in fact it is not); the difference, in fact, measures exactly the
non-triviality of the Hopf bundle.

K-theory classes from triples; K-theory ‘germs’
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One of the key points in the construction of K-theory or KO-theory classes from geo-
metric considerations is that they can be constructed on various interesting non-compact
spaces, by considering pairs of bundles, isomorphic to each other off a compact set. Since
many spaces (like manifolds) have interesting open subsets, one can often splice a K-theory
class for the (non-compact) open subset, into a K-theory class for X, with interesting re-
sults.

We start with some basic observations about the K-theory of open subsets of a space.

EXERCISE 6.4.13. Let U C X be an open subset. Show that mapping the complement
of U in X to the point at infinity of U results in a continuous map i*: X — U™ mapping
the points at infinity to each other.

The following constructions work in either K-theory or KO-theory; for brevity we
restrict ourselves to K-theory.

a) If iy: U — X is the inclusion of an open set in X, and i*: X* — U™ the map
described above, show that (i")*: KO(U™) — K°(X ") maps ker(g};) to ker(e).
Letiy!: KO(U) — K°(X) be the corresponding map.

b) Prove that if U % V and V 2% W are two open inclusions then (jy oiy)! =
jyloiy!: KO(U) — KO(W).

¢) Prove that the groups K°(U), as U runs over the open subsets of X, directed by
inclusion, and the group homomorphisms i!: K®(U) — K°(V), fori: U —V an
inclusion, make up a directed system of groups, and prove that

K°(X) 2 1imK°(U).
(X) % ()

d) Prove that (for X locally compact Hausdorff as usual), the result of c¢) holds if we
restrict the directed system just to the collection of pre-compact open subsets of
X.

As a consequence of the result in part d) of the Exercise, is that every K%-class for
X has the form iy;!(a) for some K-theory class a € K°(U), for an open and pre-compact
subset U C X.

DEFINITION 6.4.14. Let X be a locally compact space. A K-triple E for X (respec-
tively a KO-triple) consists of a pair E® and E' of complex (respectively real) vector bun-
dles over X, and a bundle map ¢: E® — E', which is an isomorphism on the complement
of a compact subset of X.

Two triples E = (E°,E',¢@) and F = (FO,F',vy) are isomorphic if there are vector
bundle isomorphisms o: E® — F? and B: E! — F! such that the diagram

EO*(P>E1

b

FOL-F1

commutes.

A homotopy of triples is a triple (EO,E 1,(p) over X x [0,1]; the inclusions ip: X —
X x [0,1] and i; : X — X x [0, 1] at the endpoints of the interval pull such a triple to a pair
of triples for X, which we call homotopic triples.

The support of a triple (V,W,@) is the set of points x € X for which @(x) is not an
isomorphism. The support is compact, by the definitions.

A degenerate triple is one for which @ is an isomorphism everywhere.
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On the collection of isomorphism classes of triples, we put the equivalence relation
generated by homotopy and addition of degenerate triples. Let L(X) denote the correspond
semigroup, with addition operation direct sum of triples.

We are going to describe the map L(X) — K°(X) — it can be shown to be an isomor-
phism, but we will not need this fact. The map is of most importance.

Suppose T = (E°,E', @) is a triple. Let U C X be any neighbourhood of its support, a
compact subset of X (U could be X, for example). We define a K-class [ty/] € K°(U) in the
following way. Let W and V be open subsets of X with supp(E) CW CW CV CV CU,
and V compact. Since V is compact, there is a vector bundle F over V such that E! @ F is
trivial on V. Adding the degenerate triple (F,F,id) to E results in a triple for V in which
the second vector bundle is trivial.

Instead of introducing new notation for this, we just denote by T = (E°,E!, ) the
triple we have constructed, for V, in which now the bundle E lisa product bundle.

We now proceed as in the examples. Let A=W and B C V' be the complement of W
in V, together with the point of infinity of V. Then A and B are closed in V.

Take the bundle E° on A, and clutch it to the trivial bundle E! = B x C" on B using the
clutching function E°|4p o E)mB =ANBXxC"= (B xC")|anp. The clutching results in
a vector bundle E on V*. The difference [E] — [1,] is in K°(V), where n = dim(E®). We
now set

DEFINITION 6.4.15. 1y := iy y!([E] —[14])) € KO(U) where iy y: V — U is the in-
clusion.

EXERCISE 6.4.16. In the above notation, if j: U — U’ is an inclusion of open sets,
then [ty/] = j!([tv]).

In particular, any triple T over X determines a class Ty € K°(U) for any neighbourhood
U C X of its support, and in particular, determines a class Ty € K°(X).

EXAMPLE 6.4.17. (The Bott element for R?). For (x,y) € R? let c(x,y): C— Cbe
multiplication by the complex number x + iy. We may interpret ¢ as a vector bundle map
from the trivial bundle R2 x C over R2, to itself.

Now, ¢ is a bundle isomorphism away from 0. Let U be any neighbourhood of the
origin (it could be all of R2), let A C U be a small closed Euclidean ball contained in U
and centred at the origin. Let B be the closure in Ut of U™ \ A. Thus, B consists of the
closure of the complement of A in U, together with the point at infinity of U.

On A we put the product bundle A x C, on B we put the product bundle B x C, and we
clutch them (see Exercise [6.1.23)) using the function ¢ on AN B. This results in a complex
vector bundle Hy on U™, and a class By := [Hy] — [1] € K°(U), where [1] € KO%(U ™) is
the class of the trivial line bundle on U™, because €;;(By) = 0.

EXERCISE 6.4.18. In the above notation, prove that the complex vector bundle Hp.
over (R?)* = 52 is isomorphic to the Hopf bundle.

Hence Bg2 € KO(R?) c K(5?) is equal to the difference [H] — [1], where 1 is the
trivial complex line bundle over S> and H is the Hopf bundle over S°.

EXERCISE 6.4.19. Verify that if i: U — V is an inclusion of neighbourhoods of the
origin in R? then iyy!(By) = Bv.

It will be a consequence of Bott Periodicity that K°(R?) is an infinite cyclic group
generated by Bp2.
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EXAMPLE 6.4.20. The system of ‘Bott elements’ By € K°(U), one attached to each
neighbourhood of the origin R?, suggests might be thought of as the specification of a kind
of a ‘germ’ of a K-theory class at the origin.

One can also get (1-dimensional, now) ‘K-theory ‘germs’ in this (informal) sense
around smooth curves in the plane, as we now show. In order to make things topologically
nontrivial, remove a finite set of points, let X = R2 \{p1,-..,pn} from the plane.

We consider a smooth closed curve C in the plane looping around some of these points.
By the Jordan Curve Theorem one can select a (smooth) field of unit vectors n(x) as x € C,
such that n(x) is perpendicular to the tangent of the curve at x. We can thus label points
in a neighbourhood of the curve by pairs (x,#) where x € C and t € R, but making this
pair correspond to the point x +n(x). Our labelling determines a natural diffeomorphism
and system of coordinates on the neighbourhood U of the curve consisting of points (x,)
where || <€. LetV=U xR. On U let ¢(x,t,s) :=t +is where (x,?) are the coordinates
as explained above, of a point of U.

One finds suitable closed sets A and B to argue that the bundle map ¢ determines, by
clutching, a canonical class in K°(V*) and then, by subtracting the class of a trivial line
bundle over AN B, a class in K°(V) = K%(U x R) = K~!(U), which can then be pushed
forward to a class Bc € K~ (R?\ {p1,...,pn})-

It can be shown that this ‘germ’ is a non-trivial K-theory class for X if the curve loops
around at least some of the points.

These examples of K-theory classes makes one think more of the fundamental group,
or first homology group, of a space.

Graded ring structure on higher K-theory

A graded ring is graded commutative if ab = (—1)%%pq for any homogeneous ele-
ments a,b of degrees da and 0b. It turns out that K*(X) := @7 (K™ (X) has a graded
commutative ring structure extending, in an appropriate sense, the ring structure on K°(X)
by tensor product of vector bundles.

Before proceeding, let X and Y be locally compact spacesand Z=X xY,x: Z — X
and 1y : Z — Y the projection maps. These will not be proper maps, if the spaces are not
compact. So if a € K°(X), it does not quite make sense to write T} (a) € K°(Z), as 7 being
not proper, does not give a map on K-theory. However, my (a) - @y (b) does in fact make
sense as an element of K°(X x Y), it’s ‘support’ is roughly speaking, the product of the
support of a and the support of b, which will be compact.

Suppose a = [E'] — [E?] for two vector bundles E on X, trivial and of the same di-
mension outside a compact subset K C X. Write b = [F'] — [F?], F' trivial and of the same
dimension off LC Y.

Let £ := 1t} (E"), F':= 1}, (F'). Then E' are trivial and isomorphic to each other
outside K x Y, and the F' are trivial and isomorphic to each other outside X x L.

Consider the vector bundles

and

Vi=(E*oF") @ (E'aF?).
Now E! = E? outside K x Y, so the first summand E' @ F! of V! is isomorphic to the first
summand £ ® F! of V? outside K x Y. By the same reasoning, the second summand of
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V! is isomorphic to the second summand of V2 outside K x Y. Therefore, V! is isomorphic
to V2 outside K x L.

On the other hand, outside X x L, the second summand of V! is isomorphic to the
first summand of V!, and, likewise, the first summand of V! is isomorphic to the second
summand of V2, so that in this case also, we see that V! is isomorphic to V2,

We conclude therefore that V! is isomorphic to V> outside K x L, a compact subset of
X x Y, and fixing the isomorphism, we obtain a triple (V!,V?, @) representing an element
of K%(X x Y), which we denote by 7t*(a) - *(b).

REMARK 6.4.21. The idea is that the product ©n*(a) - @*(b) should be represented by
the product, formally speaking,

(6.6) [E']—[E*)- ([F'] - [F?)),

the problem of course being that neither of the terms actually define K-theory classes for
X xY.

Howeyver, the first term ‘vanishes’ outside K x Y, and the second term vanishes outside
X X L, so the idea is that the product should vanish outside K x L, which of course is
compact, making the product define a K-theory class.

In fact, if one multiplies, somewhat formally, the equality (6.6) out, one obtains the
formal difference [(E' @ F') @ (E*>® F?)] - [(E*®F") @ (E' ©F?)], that is, one obtains
[Vi] — [V2] with V; defined as above.

EXERCISE 6.4.22. Construct an explicit formula for the isomorphism between V; and
V5 based on the assumed isomorphisms E! = E? and F! = F? (outside suitable compact
sets.)

By similar arguments (see Exercise[6.4.24) one can argue that there is a multiplication
operation between K-theory classes a € K(X) and K-theory classes ¢ € K((X x Y), with
values in K°(X x ¥), which we denote by () - .

Thus, K°(X x ) has the structure of a module over the ring K°(X). Similarly, K°(X x
Y) is a module over K°(Y).

PROPOSITION 6.4.23. The pairings and module structures defined above, are all well
defined , Z-bilinear, and associative in the sense that

x(a) - (my(a') -7y (b)) = (mx(a-d')) -7y (b),
and

(mx (a) - my (b)) -7y (') = mx (a) - (my (b D)),
fora,d e KO(X), b,b' € KO(Y).

EXERCISE 6.4.24. Let X and Y be locally compact spaces and let f: ¥ — X be any
map (not necessarily proper). Then there is a well defined , Z-bilinear multiplication op-
eration K(Y) x K%(X) — K°(Y) mapping a pair a € K°(X) and ¢ € K°(Y) to an element
f*(a)-c € K°Y), which makes K°(Y) into a module over the ring K°(X).

EXERCISE 6.4.25. Generalize the Z-bilinear multiplication operation K°(X) x K*(Y) —
K%(X x Y) developed above to a multiplication operation K°(X) x K°(Y) — K°(Z), pro-
ducing an element p3(a) - p3(b) from a € K°(X), b € K(Y), whenever p;: Z — X and
p2: Z — Y are two maps with the property that for any pair of compact subsets K C X and
Lcy, py(K)npy (L) is compact in Z.
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We may now define a graded ring structure on K*(X) = &2 (K (X).

Choose r,s > 0 and let T : R — R, 715 : R™™ — R be the projection maps. Then
for any locally compact space X, consider the maps p1 :=idy x Ty : X x R™™ — X x R”,
and po: X x R™ — X x RS, It is easily checked that pfl(K) N p;l(L) is compact in
X x R™3, for any compact K C X x R” and any compact L C X x R*. By Exercise
there is a well defined product class p(a) - p3(b) € KO(X x R¥*S) for any a € KO(X x R")
and b € K%(X x R¥).

DEFINITION 6.4.26. Ifa € K™"(X), b € K*(X), we let
anb e K- (x)
denote the class p}(a) - p;(b) described above.

The wedge product notation is requried to distinguish our graded multiplication from
ordinary multiplication, when the situation is ambiguous. If, for example, a,b € K~ (pt) :=
K%(R?), then since K°(X) is always a ring, for any X, and in particular for X = R?, we
can form a-b € K°(R?), whereas, a A b € K~#(pt) = K°(R? x R?), lies, of course, in a
different group. The two products are related by the following

EXERCISE 6.4.27. In the above notation, if §: R? — R? x R? = R* is the diagonal
map, then a-b =08*(a A b).

The multiplication a A b is easily checked to be associative, and by the definitions,
extends the usual ring structure on the summand K°(X). Recall that the latter ring structure
is commutative. The more general multiplication turns out to be graded commutative.

PROPOSITION 6.4.28. Ifa € K" (X) and b € K~5(X), then aAb = (—1)"bAa. That
is, K*(X) is a graded commutative ring.

We leave the proof as an exercise.

5. The long exact sequence of a pair

In ordinary cohomology, defined for spaces using chain complexes, the Snake Lemma
implies that associated to a closed subspace A C X is a long exact cohomology sequence.

The same is true of K-theory. We will just state the result here, as we will prove a
more general version of it when we discuss K-theory for C*-algebras.

THEOREM 6.5.1. Let A C X be a closed subspace of a locally compact space. Then
there exist natural maps 8: K~/(A) — K1 (X \ A) for which the sequence, infinite to the

left,
67) K A) S K0\A) S K L K(A) -

B KX\ A) » KO(X) — KO(4)

is exact, where i: X \ A — X is the (open) inclusion, j: A — X the (closed) inclusion.
This long exact sequence is natural with respect to maps (X,A) — (X',A") of pairs of
locally compact spaces.

We will know nothing about the range of the last map until Bott Periodicity. This
makes the long exact sequence not hugely helpful for computations.

EXERCISE 6.5.2. Let X be a compact space and Y C X a finite subset. Let X /Y be the
quotient space obtained by identifying all the points of ¥ with each other. Let: X — X /Y
be the quotient map.
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a) Prove that T*: KO(X/Y) — K°(X) is always injective.
b) Prove that ©* is an isomorphism if all points of Y lie in the same connected
component of X.

(Hint. X /Y can be identified with (X \ Y)". We get a long exact sequence from the
pair ¥ C X. On the other hand, X /Y comes with a natural basepoint and this generates
another long exact sequence. The second sequence maps naturally to the first; examine the
corresponding commutative diagram, and use the fact that K= (Y) is zero for any finite ¥ .)

Note that T* does not induce an isomorphism on K~ for i > 0; for example identifying
the endpoints of [0, 1] results in S!, and K~!(§!) = Z will follow from Bott Periodicity. But
K=1([0,1]) 2 K~ (pt) = 0. Nor is * an isomorphism even on K, if the connectedness
assumption is dropped (consider the 2-point space X.)

REMARK 6.5.3. The last exercise makes it a bit easier to visualize what space one is
dealing with in computing K~!(X), for X compact (say). By the definitions, K~!(X) =
KO(X xR) :=kerey : K°((X xR)") — Z. The space (X x R)" is thus what is of interest
here. We can consider it alternately as the quotient space X x [0,1] / ~ where the equiva-
lence relation collapses X x {0} UX x {1} to a single point. The exercise above shows that
this results in the same K° group as for the quotient space obtained by each of X x {0} and
X x {1} to (different) points.

EXERCISE 6.5.4. Deduce from Exercise[6.5.2] (and Remark [6.5.3)) that
KO(s%) =2 K°((S' xR) ")
by a natural isomorphism, and that as a consequence,
K(R?) =K~ '(s"),
(c.f. Exercise ) The same reasoning proves the more general result that KO(R") =
K~1(s"1) for all .

EXERCISE 6.5.5. Give another proof that K~!(S') = K°(R?) (even though at this
stage, we are still not in a position to say what either of these groups are), using the fol-
lowing method. The closed subset S! C ID generates a long exact sequence

6.8) S KYD) = KOs S KO(R?) — KOD) — KO(s).
Argue that the last map is an isomorphism and deduce that d is an isomorphism.

EXERCISE 6.5.6. Let A be a contractible subspace (that is, contractible as a topologi-
cal space in its own right) of a compact space X. Let X /A be the space obtained from X by
identifying A to a point. Prove that the quotient map w: X — X /A induces an isomorphism
n*: KO(X/A) — K°(X). (Hint. Define an inverse map K°(X) — K°(X/A) as follows. If
E is a vector bundle over X, find a trivialization E = 1,, of E restricted to A; one exists,
since A is contractible. If u: E‘ L 1, = A x C" is a trivialization, extend it to a bundle
map i from E to 1, in a neighbourhood of A. Now clutch the bundle 1, over a suitable
(slightly smaller) neighbourhood of A with E on the complement. This bundle now has a
single fibre over A and can be considered a bundle over X /A.)

An alternative description of K1 (X) and the boundary map for the long exact sequence
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We first discuss an interesting topological group, whose connected components are
relevant to K-theory.
Let A be a unital C*-algebra. Let Uw(A) be the group of all N-by-N-matrices with

entries in A, which have a block diagonal form with u a (square) unitary matrix in

u 0
0 1
M, (A), and 1 denoting the identity operator. There is an evident group structure on Us(A)
by multiplication, and we can regard, in the obvious way, all of the groups U(Mn (A)) as
subgroups of Uw(A).

We give U (A) the inductive limit topology): a subset U C U.(A) is open if and only
if UNU(M,(A)) is open for all n.

We are particularly interested in the path components 7 (Us(A)). If u,v € Uw(A) let
u ~ v mean that ¥ and v are in the same path component of U.(A).

Assume that # and v are unitary matrices of a fixed size n, understood as elements of

U.(A). Form the matrix ﬂ € U (A). With respect to the same block decomposition

o

cost —sint 1 0 0 -1
PUtR; = {sint cost } Then Ro = [O 1} and R% o {1 0 }
We have:

R I M

. . _1lu O u 0 v 0 .

We obtain a path of unitaries R, [0 v} R; between {O v} and [0 u] . That is,
u 0 v 0

o0 A

Now multiply both sides of this identity by [‘:) (1)] . We obtain
viu 0 1 0

o o gt ).

Taking u = 1 for example gives then that
vi 0 1 0

61 oo .

V*

0
59~

Of course, this is ~ [18} ﬂ , the group product of u and v in Us(A).

Multiplying (6.10) on both sides by the matrix { ﬂ , therefore, gives the identity

PROPOSITION 6.5.7. Let A be a unital C*-algebra. Then the group T (Uw(A)) of
path components of Us(A) is abelian. Moreover; if [u],[v] € Ty(Uw(A)) are two elements
of this group, with u,v unitary-valued matrices of the same size, then

b=l = 1[5 )1 € mo(U )
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Now suppose that X is compact Hausdorff and that A = C(X). If u: X — U, =
U(M,,((C)) is a continuous map, then we may consider it alternatively as a unitary ma-
trix in M, (C(X)), and then as an element of U.,(C(X)). We see that the group U. (C(X))
is the same as the group [X, U] of continuous maps X — U := U (C), where such maps
are multiplied pointwise in the obvious way.

Moreover, to say that two elements of U, (C (X )) are in the same path component of
the group, is equivalent to saying that the corresponding maps X — U., are homotopic.

EXAMPLE 6.5.8. The T = Uj-valued map on the circle S' C C defined by the inclu-
sion, determines a class [z] € K~!(S"). It will be a consequence of Bott Periodicity that
K~!(8") is infinite cyclic, and [z] generates it.

THEOREM 6.5.9. There is a canonical, natural isomorphism of abelian groups
K~ 1(X) 2 [X,U(C)].

Furthermore, under this identification, suppose that A C X is a closed subspace of X.
Then the boundary map &: K~'(A) — K°(X \ A) in the long exact sequence, sends the
K-theory class corresponding to a homotopy class u: X — U,, to the class of the K-theory
triple (1, 1,,1), where ii is any extension of u to a matrix-valued function ii: X — M, (C).

Indeed, a vector bundle over (X x R)* can be trivialized over the closure in (X x R)™"
of X X (—eo,0], and similarly can be trivalized over the closure of X x [0,0). The difference
of the two trivializations on the intersection = X of these two closed subsets (neglecting
the point at infinity) gives a unitary map u: X — U,.

The above description of the boundary map is very helpful in doing computations.

EXAMPLE 6.5.10. Consider the setting of Example [6.5.5] where we considered the
pair (ID,S') and the associated long exact sequence. It was argued there (or rather left to
the reader to argue) that §: K~'(S') — K°(ID) is an isomorphism. In example we
pointed out the tautological class [z] € K~!(S'). According to Theorem the boundary
map

§: KI(sh) —» K'(D)

maps [z] to the class of the triple (1, 1,z), since z can be extended in the obvious way from
amap S' to C* to a map D into C. But this also describes the Bott class Bp described in

Example .

In other words, the boundary map §: K~'(S') — K°(ID) maps the class [z] to the Bott
class B2 for the open disk.

6. Bott Periodicity, the 6-term exact sequence

Let X be any locally compact space. In this section we describe Bott’s celebrate Peri-
odicity Theorem. The key character is the Bott class Bg> € K~2(pt) = K°(R?) described

in Example
The graded ring K*(X) := &% K (X) is a (graded) module over the graded ring
K*(pt). Therefore, multiplication by the Bott element defines a map

Bx: K*(X) = K*2(X),

shifting degrees by —2.
The Bott Periodicity theorem in complex K-theory is the following statement.
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THEOREM 6.6.1. For every locally compact space X, the group homomorphism
Bx: K*(X) = K*%(X)
of multiplication by the Bott element B> € K~2(pt), is an isomorphism.

Periodicity says in particular that as an abstract group, K—2(pt) := K°(IR?) is isomor-
phic to the group Z of integers with generator the Bott element B> € K°(IR?). Further-
more, B]%z generates K—#(pt), [3%2 generates K~ (pt) and so on.

On the other hand we have already established (it was relatively easy, based on a com-
putation of K°(S!)) that K~!(pt) = 0. Combining this observation with Bott Periodicity
gives that all of the groups K3 (pt), K3 (pt), ... and so on, are zero.

Since we have already proved that K=!(§!) =2 K%(R?), we also get:

COROLLARY 6.6.2. K~!(S') =2 Z with generator the GL; (C)-valued function u(z) =
z. Moreover; the boundary map §: K=1(S") — KO(D) = KO(R?) for the long exact se-
quence associated to S' C D maps [z] € K~1(S!) to the Bott element Bg. € K°(IR?).

EXERCISE 6.6.3. Verify that the system of maps By satisfies the following two nat-
urality conditions: firstly, it is natural in X in the sense that if f: X — Y is a continuous,
proper map, then the diagram

*

KoY) ——K%(X) ,

N

k2 (x)
commutes. This says that B defines a natural transformation from the functor K° (from
locally compact Hausdorff spaces, to abelian groups), to the functor K2,

Secondly, By, is compatible with the ring structure on K-theory in the sense that

(6.14) Bx(ab) = Bx(a)b, a,b € K*(X).

EXERCISE 6.6.4. Use the graded multiplicativity of K-theory and (6.14) to deduce
that Bx (ab) = aPx (b) for all a,b € K*(X). (Hint. Prove it first for homogeneous elements
a € K7{(X) and b € K~/ (X). That is, By is a bimodule homomorphism of bimodules.)

Bott Periodicity also plays a role analogous to the essential Excision Theorem of co-
homology in the sense that coupling it with the Long Exact sequence results in a periodic
exact sequence of length 6, which makes it possible in principal to compute the K-groups
of spaces which are inductively made up of simpler pieces (simplicial complexes.)

Let A C X be a closed subset of X locally compact, and consider the associated long
exact sequence

6.15) =K 'A3SKIxX\A) S K x) DK A) —

B KX\ 4) = KO(X) - KO(4)
of Theorem By Bott Periodicity, K°(A4) = K~2(A) by the Bott map B4. Composing
Ba with the boundary map §: K~2(A) — K~ (X \ A) thus produces a map
(6.16) & :=80Bs: K°A) - K (X \A).

To describe this map, let E be a vector bundle over A, assuming that A is compact,
and p: A — M,(C) a projection-valued map such that Im(p) = E. Extend p to a contin-
uous map p: X — M,(C) taking self-adjoint values. As a self-adjoint of the C*-algebra
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C(X,M,(C)), we have available functional calculus, and in particular the T-valued func-
tion e(x) = e?™*. Applying this function, which is obviously continuous on the spectrum
of p, to p defines a unitary e(p) € C(X,M,(C)), that is, a unitary matrix-valued map on X.
Since the spectrum of p(x) consists of 0 and 1 alone, for x € A, the function e(p) takes
the constant value 1 (meaning the identity operator in M,,(C)) on A.
Hence it can be considered as a unitary matrix-valued function on (X \ A)* = X /A.

COROLLARY 6.6.5. Let A C X be a closed subspace of a locally compact space. Then
there is a natural (with respect to maps of pairs) 6-term exact sequence

KO(X\A) — K°(X) —— K%(4)

ST lﬁ
KA =—— K 1(X) =<— K 1(X\A4)
Moreover:

a) The boundary map 8: K~'(A) — K°(X \ A) maps the homotopy class of a map
u: A — GL(n,C) 1o the class of the K-theory triple (1,,1y,i), where u is any
extension of u to a map X — M,,.

b) The map &: K°(A) — K~1(X \ A) maps the class of a bundle E = Im(p), for
some projection-valued map p: A — M,(C), to the (homotopy class of the) U,-
valued map e(p): X /A — U,, described above, for any extension p: X — M, (C)
of ptoX.

EXERCISE 6.6.6. Compute the K-theory groups of a (closed) annulus a < |z| < b, and
of an open annulus a < |z| < b, respectively.

K-theory of spheres

We can view S" as the one-point compactification (R")™ so that, the pair consisting of
S" together with the closed subspace {eo} consisting of the single point ‘at infinity, gives
a 6-term exact sequence

(6.17) KO(R") —— K%(§") —— K°(pt)

| |
K (py) <— K71(8") <— K (®)

Let n be even. Plugging in what we know (the K-theory of R”, and of points), this
boils down to the sequence
Z .
0

from which it is immediate that K=!(5") = 0, and that there is an exact sequence

(6.18) 7= KO(S") —

|

3
0<—K(§") <—
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(6.19) 0—-7Z—-KYS")—»2Z—0,

which can be described as follows. The first map corresponds to the using the open em-
bedding of R” as an open subset of S” to map the Bott class Prs € KO(R") to KO(S"). If
i: R" — §" denotes this embedding, then, therefore, the first map Z — KO(S”) maps the
generator 1 € Z to i!(Bgrn), which we will call b.

On the other hand, the quotient map sends the class [1] of the trivial line bundle over
S" to the generator 1 € Z. It follows that the map Z @ Z — K°(S"), sending (n,m) to
nb+m|1], is a group isomorphism.

Now suppose that n is odd. Then plugging what we know into (6.17) gives the se-
quence

(6.20) 0— > KS") — 7.
S 8
0<~—K (" ~—7

The generator of the integers (the K° of a point) in the upper right corner, obviously is
in the image of the map from K°(S"), since it is the image of the class [1] of the trivial line
bundle on S”. So the quotient map is surjective, and so both connecting maps & vanish.

It follows that the map K~!(R") — K~!(§"), induced by the open embedding of R"
in ", is an isomorphism, and that K°(S") 2 Z with generator [1].

REMARK 6.6.7. In view of the fact that, rather than suspending a space X to define
it’s K~!-group, we can instead use Theoremand look for unitary-valued maps on the
space, it would seem reasonable to look for such a description of K~!(S") = Z, when n is
odd. We will do this once we have a bit of Clifford algebra theory in hand.

K-theory of real projective spaces

Real projective spaces RP" is the quotient space obtained by identifying antipodal
points x and —x of the sphere S”*. The case n = 1 is slightly special; in this case the map

(6.21) RP! — 8!, [z] > 22

is a homeomorphism of RP' with S! (but the other projective spaces are not homeomorphic
to spheres.)

PROPOSITION 6.6.8. K!(RP") =0 and K®(RP") = 7 /2 & Z with generators a certain
‘Bott element’ b € KO(RP"), of order 2, and described in the proof, and free generator [1],
the class of the trivial line bundle.

PROOF. We can think of RP? as obtained from the closed disk D by the equivalence
relation that identifies antipodal boundary points of the disk. Since no points of the inte-
rior D 2 R? of the disk are identified, D may be considered an open subset of RP? with
complement RP'.
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This generates a six-term exact sequence

(6.22) K'(D) — K°(RP?) —— KO(RP') .

| :
K!(RP!) <— K'(RP?) <——— K! (D)

By Bott Periodicity, K°(D) = Z with generator the Bott element B, and K' (D) = 0.
By the remarks above, K(RP') and K'(RP?) are both infinite cyclic, with generators
[1] € KO(RP') the class of the trivial line bundle, and the map (6.21)), a unitary-valued
map, the generator of K! (RP!). We denote it’s class [z2].

Inserting all this information into (6.22)) we get the diagram

(6.23) 7 — KO (RP?) —=7Z .
1)
7 <~— K'(RP?) <—0

To compute the vertical map J on the left, we take the known generator, the class of
22, of KI(RPI ), and we extend it from RP! c RP? to a map RP? — C. One can clearly
do this in a number of ways, for example, to simply take the extension to be defined by the
function z2, now defined on the whole closed disk.

Then we get a K-theory triple (1, l,zz) consisting of the trivial bundles 1 over D with
72 the bundle map between them, and we have

8([z%) = [(1.1.2%)].
Z
0

of (1,1,z) with itself. Since the latter represents the Bott element Bp for the open disk of
radius 1 around 0, we get that

(6.24) 8([2%]) = 2Bo-
Hence the vertical left map Z — Z induced by & is multiplication by 2.

Since the kernel of this map is trivial, and since K! (RP?) injects to the kernel of this
map, by the diagram, and since multiplication by 2 is injective, K! (RIP’Z) =0.

The diagram now shows that the map Z — K° (R]P’z) induced by the open disk D sitting
in RIP?, and the corresponding map K°(ID) — K°(RP?), vanishes on the even integers. We
obtain an injection Z/2Z — K°(RIP?). The corresponding element b of order 2 in K°(RIP?)
is simply obtained by mapping the open disk ID into RP?, and in this way allowing us to
view the Bott element By € KO(]D)) as a K%-class, which we are calling b, for RP2.

Our calculations show thus that

2b =0 € KY(RP?).
Finally, the class [1] € K°(RP?) of the trivial line bundle over RIP? is the other gen-

erator for K°(RP?); the two thus generate a copy of the group Z/2 @ Z. To check this,
observe that we have produced a group extension

0—7Z/2 - K(RP?) — Z — 0,

and any such extension is split, since Z is free abelian. This makes K*(RP?) =~ Z /2 ¢ Z as
claimed, and it is left to the reader to check that [1] can be taken to generate the copy of Z.

As a triple, this is homotopic to the triple (15, 15, { (z)} ). consisting of the direct sum
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EXERCISE 6.6.9. Here is an alternative proof that the boundary map in satisfies
8([2]) = 2Bp.

Consider RPP? as the quotient of the closed disk D by identifying antipodal points. Let
n: D — RP? be the quotient map. It restricts to a map S' = 9D — RP! ¢ RP? and so
can be considered as a map of pairs. By naturality of the connecting map, owe obtain a
commutative diagram

(6.25) KO(D) <2~ K!(RP!)

KO(D) ~—— KI(s")

Now check that 7* maps the generator [z?] for K'(RP') to [z?] € K!(S'), ie. to
2[z]. The lower map & thus has 8o 7*([z?]) = 2Bz, since we’ve already computed that
8([z]) = Br2- We conclude that t*(8([z*]) = 2Bg2. On the other hand, the restriction of
to D is the identity map. Hence 8([z%]) = 2b follows immediately, with b the Bott element,
considered as an element of K°(RP?).

EXERCISE 6.6.10. Recall the complex line bundle L over the 2-torus T? defined in
Exercise d.1.10] (see also Exercise[d.2.13).
a) Prove that KO(T?) is generated by the classes [1] of the trivial line bundle, and
the class [L].
b) In Example we discussed the K-theory ‘germ’ around the origin 0 € R?,
in the sense that in any neighbourhood U of 0, there is an associated ‘Bott class’
By € KO(U)). Since a small enough neighbourhood of any point of R? can be fit
into T, we obtain corresponding K-theory germs, which we still denote by By,
at points of T2. Show that

Bu = [L] - [1] e K(T?),
that is, [L] —[1] is the K-theory germ of a point of the torus.

7. Spin geometry and Clifford algebras

For a comprehensive treatment of Clifford algebras, spin representations, and Dirac
operators, containing far more detail than we are able to offer here, we refer the reader to
the excellent book [118]).

DEFINITION 6.7.1. The Clifford algebra Cliffg(V) of a Euclidean vector space V is
the unital algebra T'(V) /I, where
o T(V):=@5 V" is the tensor algebra of V.
e [ is the ideal in T(V) generated by the elements v @ w +w ® v+ 2(v,w), for
vwwevV.
The complex Clifford algebra of V is Cliffg (V) ®g C and will be simply denoted Cliff (V);
it is the one we will be primarily working with.
By the definitions, Cliff (V) is generated as a unital complex algebra by the elements
of V, with the relations

(6.26) vewtw-v==2(v,w), v,weV
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The grading on a Clifford algebra is quite important. A Z/2-graded algebra A is
an algebra, either real or complex, which, as a vector space, decomposes into a direct
sum of two subspaces A = A°@® Al in such a way that A;A; C Aifjmod2. One usually
refers to the elements of Ay as ‘even’, those of A| ‘odd’. One way of ensuring a Z/2-
grading on an algebra is to specify an automorphism €: A — A such that €oe = id. Then
A decomposes into a direct sum with even part A® := {a € A | €(a) = a} and odd part
Al:={ac A|¢g(a) = —a}. We call ¢ the grading operator.

PROPOSITION 6.7.2. Cliffg(V) and Cliff (V) are 2"-dimensional, 7./2-graded alge-
bras over R and C respectively, with in each case the grading operator the automorphism
of Cliffg (V) (or Cliff(V)) induced by the map €(v) = —v.

PROOF. We consider V as a subset of Cliffg (V) for the proof (and more generally),
and write vy - - - vk for the coset of vi ® - -- ® vy in Cliffg (V') := T(V)/I. The key relation
isv-w+w-v=—2(v,w). Fix an orthonormal basis ey,...,e, for V. Then the algebra
in Cliffg (V') generated by ey,...,e, already clearly contains V, and V, by the definitions,
certainly generates Cliffg(V) as an algebra, so Cliffg(V) is generated by ej,...,e,. Since
they are orthonormal, e;-e; = —e; - ¢; and e? = —1. It follows immediately that any product
e;, ---ej, in which k > n contains at least two occurrences of some e;, and moving them
adjacent to each other in the monomial, and cancelling them, results in a product of smaller
length. So it follows that every element of Cliffg (V') can be written as a linear combination
of monomials e;, - --e;,, withk <n, and iy,...,i a set of k distinct indices. We leave it as an
exercise to show that if one takes multi-indices i; < i, < --- < i in increasing order, then
the corresponding monomials e;, - - -¢;, are linearly independent, and so form a basis for
Cliffg (V). The basis is by definition in 1-1 correspondence with the collection of subsets
of {1,2,...,n} so the dimension of Cliffg (V) is 2". O

DEFINITION 6.7.3. Let V be a Euclidean vector space and e = {ey,...,e,} an or-
thonormal basis for V The corresponding volume element is the element I'(e) := e - --ey.

EXERCISE 6.7.4. In the above notation, prove that I'(e) only depends on the orienta-
tion class of the orthonormal basis. That is, prove that I'(e) = I'(¢’) for any e,€’, and the
sign is +1 if and only if e and €’ determine the same orientation on V.

EXERCISE 6.7.5. The transpose map on Cliffg (V) is the unique R-linear map x > x*
such that v/ := —v for all v € V, and (x-y)" = y'x for x,y € Cliffg(V). The adjoint on
Cliff (V) is similarly defined: the unique C-conjugate-linear map x — x* such that v* = —v
and (vw)* = w*v*,

The transpose map extends to a conjugate linear map on the complex Clifford algebra
Cliff (V) with the same properties, which defines an adjoint on Cliff(V) making it a *-
algebra.

LEMMA 6.7.6. If'V is any Euclidean vector space, then Cliff (V) has the structure of
a (Z/2-graded) C*-algebra with adjoint determined by conjugate linearity and the rules
(vw)* =w*v* and v* = —v, forve V C Cliff (V).

PROOF. Let ey,...,e, be an orthonormal basis for V. The monomials e;, ---¢;, in
Cliff(V), with i} < i.--- < i span Cliff(V) as a vector space, and they are linearly in-
dependent. We may therefore define an inner product (-,-) on Cliff (V) making it a (Z/2-
graded) Hilbert space for which the monomials e;, - - - ¢;, constitute an orthonormal basis,
and on which Cliff (V) acts by left multiplication.

We leave it to the reader that this is an injective *-representation. We thus obtain a
(finite-dimensional) C*-algebra structure on Cliff (V).
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LEMMA 6.7.7. LetV be Euclidean and oriented, letT" € Cliff g (V') the volume element
I':=ey---ey, for a positively oriented orthonormal basis ey, . . .e,.
a) IfniseventhenT? = (—1)2, I = (—1)2T, and T anti-commutes with the vectors
e, 1= 1,...n.
b) If n is odd then T? = (—1)
i=1,...,n

+1 +1 . »
T = (fl)nTF and I" commutes with the e;’s,

We leave the proof as an exercise.

EXERCISE 6.7.8. Prove the following about Clifford algebras.

a) Prove that a bijective linear isometry L: V — V' of Euclidean vector spaces,
extends uniquely to an algebra isomorphism Cliffg (V) — Cliffg (V’).

b) Prove that if V is any Euclidean vector space, then the orthogonal group O(V)
acts on Cliffg (V) by Z/2-grading preserving C*-algebra automomorphisms, ex-
tending the action of O(V) on V C Cliffg(V).

EXAMPLE 6.7.9. Endowing R" with it’s standard inner product. If n = 1, and e € R!
is a unit vector, then Cliffg (R!) is spanned over R by 1 and e and the map a + be + a + bi
defines an isomorphism of Z /2-graded real algebras Cliffg (R!) = C, where C (understood
as a an algebra over R) is graded by complex conjugation, €(z) := Z.

Forn=2lete; = (1,0), ex = (0,1), say. Then Cliffg(R?) is linearly spanned over R
by 1,e1,e; and ege;, and is isomorphic as a real algebra to the algebra of quaternions H,
by the formula @(a - 1+ bey +cey +deje) := a+bi+ cj+ dk. We can realize Cliff (R?)
as an algebra of matrices by mapping eq,e; and eje, to the matrices

cler) = ﬁ _Ol},c(ez) - [6 i)i],c(elez) = {? (’)]

EXERCISE 6.7.10. Check that the matrices c(e;) and c(ez) anti-commute, that ¢(e;)* =
—c(e;)) and c(e;)> = —1, i = 1,2. Produce an explicit formula for the image of a- 1 + be; +
cepyt+dejey € Cliﬁ(Rz).

EXERCISE 6.7.11. Prove that the even part Cliffg (R")° of Cliffg (R"), is isomorphic
to Cliffg(R*™!). (Hint. ClLff(R"') is generated by ey,...,e,— with relations e;e; +
eje; = —28;;. Map generators to Cliffg (R") by e; — e,e;, and check that the relations are
preserved.)

respectively.

We define two subgroups of the group of invertibles in the algebra Cliffg (V) as fol-
lows.
Pin(V) := {vi---vi | vi,..., vk unit vectors in V'}
Spin(V) := {vi--- vk | v1,..., v unit vectors in V, k even.}
Clearly both are subgroups of the group of invertibles of Cliffg(V).

EXERCISE 6.7.12. Prove there is a group homomorphism Pin(V) — {+1} C T map-
ping vy -+ v to (—1)¥. Deduce that Spin(V) is a subgroup of Pin(V) of index 2.

EXERCISE 6.7.13. Prove that Spin(V) is a compact, connected group. (Hint. To prove
it’s path connected, move a vector v along a path of unit vectors in V from v, to —v,_1,
we obtain a path v ---v,_1 - v in Spin(V) from v; ---v, to v; ---v,_». Now continue this
process.)
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EXERCISE 6.7.14. Prove that Spin; is diffeomorphic to the 3-sphere S*. (Hint. The
elements of Spin; may be uniquely written a+ beze; + cezex +deze; where A4+ +
> =1)

We now describe the spin covering p: Spin(V) — SO(V) of the special orthogonal
group, V Euclidean.

A short calculation shows that for V Euclidean, and v € V a unit vector, and if w € V,
then

(6.27) veow-v=v(=2(v,w) —v-w) =w—-2(v,w)v =refl | (W),

where refl | (w) is the orthogonal reflection of w through the hyperplane v determined by
v —thus refl | is an orthogonal transformation of V. Inspired by this calculation, we define
a group homomorphism

(6.28) p: Pin(V) = O(V), p(£1) =1, p(vi---v) == reﬂvlL ~-refl, € O(V).

which we will show below is well defined . Of special interest to us is the restriction of p
to a homomorphism Spin(V) — SO(V).

REMARK 6.7.15. If 6 € R and v and w are orthogonal unit vectors in V, then cos 0 v+
sin® w is also a unit vector in V, and hence (cos® v+ sin® w) - (—w) € Spin(V). A short
calculation shows that this equals cos®+sin®v-w, and that p(cos6+sin6v-w) is rotation
through an angle of 20 in the plane spanned by v and w (in the direction from v towards w.)

The main difficulty is that we need to prove that (6.28)) is well defined , since although
every element of Pin(V) is a product v; - -- v, in some way, there may be different repre-
sentations of it as such.

LEMMA 6.7.16. The expression (0.28) is well defined , and defines a surjective, 2-to-1
group homomorphism Pin(V) — O(V), and, its restriction to Spin(V) is a 2-to-1 group
homomorphism onto SO(V).

Since Spin(V) is connected, p is a nontrivial double cover of SO(V).

PROOF. If x € Cliffg(V) is an invertible in the Clifford algebra, then Ade(x)y :=
xye(x)~! defines an algebra homomorphism Cliffg (V) — Cliffg (V), where € is the grading
automorphism. A further easy check shows that Adg(xy) = Ade(x)Ade(y). Furthermore,
if x=v €V C Cliffg(V) then since €(v) = —v, and by the calculation above, we
get that Adg(v) =refl 1. The result follows: we have shown that (6.28) actually represents
the value Adg(v ---vx), and hence only depends on v; - -- v, as an element of the Clifford
algebra, and not on its representation.

Surjectivity of p: Pin(V) — O(V) now follows from the classical result of Cartan and

Dieudonné that the orthogonal group is generated by reflections.
O

EXERCISE 6.7.17. Prove that Spin, = T, and that the spin covering p: Spin, —
SO(2,R) = T corresponds to the map z + z* on the circle.

EXAMPLE 6.7.18. This example examines a bit further the geometry of, especially,
Spins, and the double covering Spin; — SO(3,R).

Firstly, Spin, is generated as a group by the elements v - w, where v,w € R? are unit
vectors. Let e}, ea,e3 be the standard orthonormal basis for R3.
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If v,v' € R3 are unit vectors, write v = ae| + bes + ce3 where a> +b* +c? =1,V =
dey+bey+c'e3 where (d')> + (V') +(c')> = 1.

EXERCISE 6.7.19. Multiply out v+’ and expand in the basis 1,e;e;,e1e3,eze3. Check
that the first coordinate is the dot product (v, v ), or inner product of v and v/, and that the
next 3 coordinates are those of the crossed-product v x /.

It follows from elementary properties of the dot and crossed-products, that the map
0: Sping — R*, 0(v-w) := (—(v,w),v x w) takes values in unit vectors in R*, and, in fact,
can be easily checked to define a diffeomorphism Spin; = s3.

Let us see what the double covering p: Spin; — SO(3,R) looks like in this picture.

EXERCISE 6.7.20. 3-dimensional real projective space RP? is by definition the space
§3/ ~ obtained by identifying antipodal points of the 3-sphere. Since every equivalence
class in RPP? is represented by a unit vector v € R* with z-coordinate > 0, we may also
consider RP? as obtained by taking the closed upper hemisphere in $* and identifying
antipodal points of its boundary. The map (x,y,z) — (x,y,2,1/1 —x2 — y* — 72) identifies
the upper hemisphere in S* with the closed 3-ball B>. Thus, we can consider RP? as the
space obtained from the closed 3-ball B3 by identified antipodal points on the boundary of
the ball.

If v € B? is a nonzero vector, with ¢ = ||v||, let a/(v) € SO(3,R) be rotation in the axis
determined by v, by an angle of 7z, in the sense determined by the right-hand-rule. Since
lim, o 0(v) = idgo(3,r), as is easy to check, o extends to a continuous map B> —SO(3,R).
Prove this map is a homeomorphism. Deduce that SO(3,R) = RP>.

By the preceding exercise, SO(3,R) may be identified with 3/ ~, where ~ identifies
antipodal points of the sphere. The diagram

Spin; — > SO(3,R)

F ok

$ —L ~RP3
commutes where T is the quotient map .

REMARK 6.7.21. Another interesting fact about the double cover p: Spin; — SO(3,R),
is that if it is followed by an orbit map SO(3,R) — S2, A — Ae, e a chosen fixed unit vector
in $2 C R?, then the resulting map p, : Spin; = §* — §? gives a famous fibration,

st — - ¢3

»

S2
called the Hopf fibration. It determines a non-trivial element of 7t3(S?).

REMARK 6.7.22. It can be checked that Spin(V) is a (compact, connected) Lie group
in a natural way, and it’s Lie algebra spin(V) can be identified with the Lie subalgebra
of Cliffr (V) spanned by the ¢; - ¢;, with i # j; the ¢; - e¢; with i < j form a basis, giving
a W—dimensional space (and it is closed under commutators, as the reader can easily
check.)
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The exponential map exp: spin(V) — Spin(V) in this case has the form of the con-
vergent series exp(X) =Y }fl—?, where X is supposed an element of spin(V) C Cliffg(V)
and X" has it’s obvious meaning of X multiplied by itself n times. The series converges in
the topology of Cliffg (V') (which as a linear space is just a finite-dimensional real vector
space) to an element of Cliffg(V), and to an element of Spin(V) if X € spin(V).

It is an easy exercise (plug in te; - ¢; into the power series for exp, use the basic prop-
erties of the Clifford multiplication) to see that exp(re; - e;) = cost + sinte; - e;. These
elements form a closed subgroup of Spin(V') isomorphic to the circle T. Thus, exp maps
the line through e; - e; to this subgroup (in a Z-to-1 fashion; it is a covering map.

To see the connection to the orthogonal group and the spin covering p: Spin, —
SO(n,R), let E;; be the n-by-n matrix with 1 in the 7, jth coordinate, —1 in the j, ith coordi-
nate, and zeros elsewhere. Then E;; is an element of the Lie algebra so(n,R) of SO(n,R)
and for any r € R, exp(?E;;) = cost +sin?E;; is rotation by ¢ in the plane spanned by e; and
ej, in the direction from e; to e;.

In particular, the identification of Lie algebras spin(R") and so(n,R), maps the ele-
ments ¢; - ¢; € spin(R") C Cliffg (R") to the matrices E;; of so(n,R).

8. Representation theory of Clifford algebras

Let V be a Euclidean vector space, that is, a finite-dimensional real Hilbert space. We
will usually refer to an C*-algebra representation ©t: Cliff (V) — End(W) on a (generally
finite-dimensional)( Hilbert space W as a Cliff (V))-module. Such representations we will
always assume to be non-degenerate (i.e. unital, i.e. 1 € Cliff (V) acts by the identity map
onW.)

We refer the reader to the book [[118]] for a proof of the following result.

THEOREM 6.8.1. For any even-dimensional Euclidean vector space V., there is, up to
isomorphism, exactly one irreducible Cliff (V') module S of dimension 295 Furthermore,
an orientation on'V determines a Z/2-grading on S, for which Clifford multiplication by
vectors are odd operators. _

Furthermore, any Cliff (V)-module of dimension 2%5% is irreducible.

If dim(V) is odd, there are, up to isomorphism, exactly two irreducible Cliff(V)-
modules of dimension 2%, and any Cliff (V)-module of dimension 2%, is neces-
sarily irreducible.

The isomorphism in the statement refers to the obvious notion of isomorphism of
Cliff (V)-modules.
In the case V is even-dimensional, if ¢: Cliff (V) — End(S) is an irreducible ClLiff (V)-

module, and if ey,. .., e, is an orthonormal basis of V, " := ¢ - - - ¢,, the volume (see Lemma
then the operator

gs:=i2 c(I)
satisfies €5 = €5,€2 = 1, and gsc(v) = —c(v)es for all v € V, and so determines a 7Z/2-

grading on S which is a Z/2-graded Clifford module.

Note that, conversely, if we assume from the beginning that S carries a Z/2-graded
Clifford module structure, with grading operator €, then since £g€ commutes with Cliff (V),
it is a multiple of the identity, by irreducibility, and in fact must be +1.

REMARK 6.8.2. One can always realize a given Cliff (V)-module, up to isomorphism,
by one in which the Clifford multiplication action by vectors v € V is skew-adjoint. We
sometimes call these Hermitian Cliff (V')-modules, if the context absolutely demands it.
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Indeed, fix any Hermitian metric on V, and then average it over the compact group
Pin C Cliff (V). This produces a metric with which Pin(V') acts by unitary maps. Since
also v> = —1 as an endomorphism of W, we get v> = —1 = —vv* (since v is a unitary) and,
cancelling the v’s, that v* = —v.

EXERCISE 6.8.3. Prove that the averaging of the previous Remark could have been
simply done over the finite subgroup of the invertibles in Cliffg (V') generated by a fixed
orthonormal basis ey,...,e, for V. (Check that these vectors really do generate a finite
subgroup.)

EXAMPLE 6.8.4. (The unique 7./2-graded irreducible Cliff (R*")-module.
If V is a Hermitian vector space, A*(V) its exterior algebra, then A*(V) inherits an
inner product from V by the formula

VIA - AV VA A = det((viv)).

In the obvious way, we equip A*(V) with a Z/2-grading.

Choose v € V. The operator of exterior multiplication A,: A*(V) — A*(V) is odd
with respect to the grading. We leave it as an exercise to check that it’s adjoint is given by
interior multiplication, defined on elementary products by

(6.29) Wi A-Aw) =Y (=D Wi v)wi A AW A Ay

-

i=1

Now forv eV let
c(v) =M iy
Clearly c¢(v) = ¢(v)*, and moreover, if wy ...w; € V, then
(6.30)
k
iy (WA Awe) = ) wi A Awe— Y (=D Wi v) VAW A AR A Awg

i=1

= ||vH2 — Aoy (W A Awg)

giving that
(A +iv)? = [Iv]]%.
Let
cy: V= End(A'V), cv(v):=i(h+iy),
then cy (v)? = —||v||? and ¢y (v)* = —cy (v).

In particular, the above discussion applies to V = C" with it’s standard Hermitian
structure. Define now

c: R =R"xR"— End(A"V), c(u,v) = cer(u+iv).
Then from the above discussion
c(u,v)? = —llut vl = —lufl> = V]I = =l (w,v)[*.

Since dim A*(C") = 2", this construction produces the unique irreducible representa-
tion of Cliff (R>").
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EXERCISE 6.8.5. Show that if n = 2, then up to isomorphism, the Cliff (R?)-module
constructed above is the Z /2-graded vector space C?, with grading operator {(1) _01} ,and
Clifford representation in which a vector (x,y) € R? acts by

. 0 x+iy
c(x,y) =i Lc—iy 0 }

REMARK 6.8.6. How do we construct the irreducible representations of Cliff(V)
when V is odd-dimensional? Then the orthogonal sum V &R is even-dimensional. Let
e1,...e, be an orthonormal basis for V, extend it by adding e,41 = (0,1) € V®R. Let S be
an irreducible Cliff (V @R)-module, with grading operator €s. Thus S is 2"% _dimensional.

Now, since n is odd, the vectors ey, ...,e, commute with I :=¢e;---¢, € Cliff (V) C
Cliff(V @ R) Therefore, the element y:= it c(T") satisfies Y =17, ¥> = 1, and Y com-
mutes with Cliff (V). Hence Cliff (V) leaves each of it’s 4-1-eigenspaces invariant. These
subspaces S realize the two irreducible Cliff (V)-modules.

For example, let n = 1, and the Cliff(R?)-module C? constructed in Exercise m
with

.1 0 X+iy
c(x,y)—lLC_l.y 0 }

The operator Y :=ic(1,0) is multiplication by the matrix [(1) (1)] whose +1 eigenspaces

are the subspaces x =y, and x = —y in C2, and on these two 1-dimensional subspaces, Clif-
ford multiplication by x € R is multiplication by the (real) scalar x € C, and respectively,
the (real) scalar —x.

So we get the two irreducible, one-dimensional complex representations of Cliff (R).

The following argument shows that when dim(V) is even-dimensional, then an ori-
entation on V supplies any irreducible irreducible Cliff(V')-module with a natural Z/2-
grading.

PROPOSITION 6.8.7. LetV be even-dimensional and oriented. LetT" € Cliff (V) be the
volume element associated to the orientation. Then T := % -T is self-adjoint, (2 =1,
and if S is an irreducible Cliff (V)-module, then the +1-eigenspaces of T induce a 7./2-
grading on S with respect to which Clifford multiplication by a vector in V is an odd
operator.

If n=dim(V) is odd, V oriented, T the volume element, then T acts by +1 in any
irreducible Cliff (V')-module, and the sign depending on which of the two irreducible rep-
resentations it is.

All of these statements follow from Lemma[6.7.7] Note that since v graded-commutes
with T, and hence I”, for any vector v € V, it follows that ¢(v) interchanges the +1
eigenspaces of I”.

EXERCISE 6.8.8. Let V be odd-dimensional and suppose that ¢: Cliff (V) — End(S)
is an irreducible Cliff (V) module. Recall that there are two such modules, up to isomor-
phism. Show that letting ¢/(v) := ¢(—v) we obtain the other one.

EXERCISE 6.8.9. LetA and B be Z/2-graded *-algebras (over C.) Their graded tensor
product AQB is, as a complex vector space, the same as their ordinary tensor product A® B,
but with the multiplication on homogeneous (i.e. either even or odd) elements

(a®b) - (c&d) := (—1)"  acbd, (adb)* := (—1)% a*&b*,
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and grading having even part (A®B)? := A°®B% © A'&B!, and odd part A°&B! ©A'&B°.
Prove that in this notation, there is a natural isomorphism

Cliff (V)&Cliff (W) = Cliff (V & W)
if V and W are Euclidean vector space (and V ® W is the orthogonal direct sum.)

EXERCISE 6.8.10. Prove that any Z/2-graded C*-algebra (i.e. a C*-algebra, which is
also Z/2-graded as a *-algebra), is isomorphic to a closed C*-subalgebra of B(H ) for some
graded Hilbert space H = H* @ H', in such a way that A? acts by grading-preserving (i.e.
‘even’) operators on H, and A! acts by grading-reversing (‘odd’) operators. (Hint. Extend
a faithful state for A? to A and apply the GNS representation to get a faithful Z/2-graded
representation.)

EXERCISE 6.8.11. Adapt the definition of the spatial tensor product of C*-algebras
(Definition [3.5.16)) to work for Z/2-graded C*-algebras, using Exercise [6.8.10)

EXERCISE 6.8.12. This exercise introduces a bit more material on Z /2-graded spaces
and algebras.

A 7Z/2-graded Hilbert space is of course a Hilbert space with a Z/2-grading. Suppose
that H; and H, are two Z/2-graded Hilbert spaces. Their graded tensor product H ®H, is
the same as H; ® H» as a Hilbert space, but Z/2-graded with grading operator €| ® €.

Suppose that T € B(H;) and S € B(H,). Assume that T, S,v; and v; are all homoge-
neous elements for the gradings. Define

(T&S) (vi&v) == (—1)P Ty, &Sv,.

Show that the above definition extends to a Z/2-graded *-representation of the Z/2-
graded algebra B(H;)®B(H,) on Hi®H,.

LEMMA 6.8.13. Assume that V and W are even-dimensional Euclidean spaces,

Cy: Cliff(V) — End(Sv), Cw . Cliff(W) — End(Sw)
are two 7./2-graded irreducible Clifford modules. Set Syaw = Sy &Sw, the graded tensor
product of graded vector spaces. Let cyzy : VOW — End(Syaw),
cvaw (v,w) i=c(v)®1 +1&c(w).

Then cyaw cy ®W: CLiff (V @ W) — End(Syew) is an irreducible Z/2-graded represen-
tation of CLiff (V & W).

PROOF. It is easily checked that cy (v)®1 + 1&cw (w) is an odd operator on the Z/2-
graded Sy &Sy . On the other hand, by definition of the multiplication in B(Sy )&B(Sw ),
we have

(6.31)
(cv(V)S11 + 1&ew (w))2 =y (v)2®1 — ey (V) &ew (W) + ey (v)Qew (w) + 1&cew (w)?
= —[vI? = wl* = = [l(v.w)I?
as required.
: . A . . dimV+dimW dim (VW) L. . .
Since dim Sy XSy = dimSy dimSy =2 2 =272 , this is an irreducible,
Z/2-graded representation, as required.
O

When V is even-dimensional and W is odd-dimensional, we proceed as follows.
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LEMMA 6.8.14. Suppose thatV is even-dimensional, W is odd-dimensional,
cy: Cliff (V) — End(Sy)
a 7./2-graded, irreducible representation of Cliff (V), and
cw: Cliff (W) — End(Sw)
an irreducible representation.
With respect to the decomposition Sy ® Sy = S?, X Sw D S‘l/ ® Sw, let
0 cv(V) @1+ 1®icw(w)
cy(V)®@1—1®icw(w) 0
Then cyaw cy ®W : CLff (V@ W) — End(Syew) is an irreducible representation of Cliff (V &
w).

cyaw (v,w) =

Finally, we deal with the case when V and W are both odd-dimensional:

LEMMA 6.8.15. Suppose that V and W are odd-dimensional Euclidean vector spaces,
and that cy : Cliff (V) — End(Sy) is an irreducible representation of Cliff (V), and ¢y : Cliff(W) —
End(Sw) is an irreducible representation of Cliff(W).

Set Sygw := Sy @ Sw ® Sy ® Sy, endow Syew with the Z/2-grading with even part
the first factor, odd part the second factor. Let

0 cv(V) @1+ 1Qicw (w)
cy(V)®1—1Ricw(w) 0
Then cyqw extends to an irreducible, 7./2-graded representation cygy : Cliff (V &
W) — End(SV ®Sw).

cyaw (v, w) :=

The two-out-of-three Lemma

Above we proved that a representation of Cliff(V) and one of Cliff (W) induced one
of Cliff(V @ W). A converse holds in the form of an important ‘2-out-of-3 Lemma’ for
K-orientations:

LEMMA 6.8.16. Assume thatV and W are even dimensional Euclidean vector spaces,
V ®W their orthogonal direct sum.

Suppose that cy : Cliff (V) — End(Sy) is a Z/2-graded irreducible representation of
Clff(V), and cygw: CLff(V @ W) — End(Syew) is a Z/2-graded irreducible represen-
tation of Clift(V @ W). Let

Sw 1= Homeyigr(v) (Sv,Svaw) :={T: Sy — Svaw | cv (V)T (s) = T(cv(v)s) Vs € Sy},
graded into even and odd operators. Define, forw € W, and T € Sygw homogeneous,
(6.32) ew(W)T == (=1)T cyaw(w)o T ogy
Then this extends to a Z/2-graded, irreducible representation of Cliff (W).

PROOF. We leave it to the reader to verify that (6.36) really is well defined (that the
indicated action of ¢y (w) maps the space of invariant operators to itself), and extends to a
7 /2-graded Clifford representation.

Since there a unique irreducible representation of Cliff (V') up to equivalence, the eval-
uation map

(633) Homcliff(V) (SV, SV@W) ®(C SV — SV@W
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is an isomorphism. As a result, In particular,

im dimSy ¢,
dim Homeygy) (Sv,Svaw) -2 3 =27 2

from which dim Sy = ZdimTW follows, and hence irreducibility.
O

LEMMA 6.8.17. Assume thatV and W are Euclidean vector spaces, one even-dimensional,
one odd-dimensional.

a) If W is odd-dimensional, V even-dimensional, cy: Cliff (V) — End(Sy) is a
Z/2-graded irreducible representation of Cliff(V), and cygw : CLff (VW) —
End(Syew) is an irreducible representation of Cliff(V @& W), let

(6.34)
Sw :=Homcygr(v) (Sv.Svaw) :={T: Sy — Svaw | cv (V)T (s) =T (cv (v)s) Vs € Sy},

(with no grading). Define, forw €¢ W, and T € Sygw homogeneous,
(6.35) cw(W)T = cygw(w)oT ogy

where €y is the grading operator on 'V Then cy : Cliff (W) — End(Sw) is an
irreducible representation of ClLiff (W).

b) If V is odd-dimensional, W even-dimensional, cy: Cliff(V) — End(Sy) is an
irreducible representation of Cliff (V), and cyew : Cliff(V ®W) — End(Syew)
is an irreducible representation of CLift (V ® W), Sy still as in (6.34), we let ey
be the 7./2-grading operator on Sygw induced by the orientation on W, and

ecwW)T :=ewocygw(w)oT, weW,T € Homcyg(v) (Sv,Svew)..

Then cw : Cliff (W) — End(Sw) is an irreducible, 7./2-graded representation of
CLff(W).

The verification of the above statements is a good exercise and is left to the reader.
Finally, we finish with the last case:

LEMMA 6.8.18. Assume that V and W are odd-dimensional Euclidean vector spaces,
V ®W their orthogonal direct sum.

Suppose that cy: Cliff (V) — End(Sy) is an irreducible representation of ClLiff(V),
and cygw: Cliff(V @ W) — End(Svew) is a Z/2-graded irreducible representation of
ClUff(V @ W), with grading operator €. Let

Sw = Homgpg(v)(Sv,Svew) :={T: Sy = Svaw | cvew (v)T(s) = T (cv(v)s) Vs € Sy }.
Define, forw € W, and T € Syqw homogeneous,
(6.36) cw(W)T :=icygw(w)oeoT
Then this extends to a Z/2-graded, irreducible representation of Cliff (W).
EXERCISE 6.8.19. In the notation of the Lemma, show that if one sets
Sw=A{T:Sv = Syaw | cv(V)T(s) = =T (cv(v)s) Vs € Sy}

then one also obtains another irreducible Cliff(W)-module (recall that when W is odd-
dimensional, there are, up to isomorphism, two irreducible Cliff (W )-modules).
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Representation theory of real Clifford algebras

We will be focusing on complex K-theory in the following, and correspondingly will
not discuss much the representation theory of the real Clifford algebras Cliffg (V) of a
Euclidean vector space. However, we give some examples of real Clifford modules below,
and an application to the problem of vector fields on spheres. Real Clifford algebra theory
is important in Riemannian geometry.

EXAMPLE 6.8.20. Cliffg(R!) = C, so a Cliffg (R')-module W, disregarding the grad-
ing for the moment, corresponds to a real vector space, together with a linear operator c(e),
where e = (1,0), with c(e)? = —idy, which we can view as a complex structure on W.
With this point of view, Clifford multiplication by e is multiplication by the complex scalar
icC.

In particular, W has real dimension a multiple of 2. Of course, 2 can be achieved (by
W := C, viewed as a module over Cliffg (R') = C by scalar multiplication.

There is a natural Z/2-grading with even part the real axis R in C, and odd part the
imaginary axis R, so that ¢(e) (multiplication by i) acts as an odd operator.

EXAMPLE 6.8.21. We have already seen that Cliffg (R?) = H, the real algebra of
quaternions. A Cliffg (R?)-module is therefore the endowment of a real vector space with
a ‘quaternionic’ structure,” with i, j, k acting respectively as c(e;),c(ez) and c(eje3).

Note that this forces W to have real dimension a multiple of 4. Using the standard
embedding of the quaternions in M,(C) (sending the unit quaternions to SU,) results in a
real representation of real dimension 4 of Cliff(R?).

EXERCISE 6.8.22. Suppose 7 is even. Let ¢: Cliff(R") — End(S) be a Z/2-graded
irreducible Cliff(R")-module. Let A be an n-by-n orthogonal matrix. Show that the map
/(v) := c(Av)) extends to a Z/2-graded irreducible Cliff(R")-module which is isomor-
phic, as a Z/2-graded module, to ¢, if det(A) = 1, and is isomorphic to ¢°P (the same
Clifford module, but with grading reversed), if det(4) = —1.

Some applications to vector fields over spheres

Some of the ideas above can be used to prove significant theorems about vector fields
on spheres. We give a rather simple such result here.

Let ¢: R" — Endg(W) be a Cliffg (R")-module, with dimg (W) = m. Endow W with
an inner product with respect to which Clifford multiplication by vectors is orthogonal,
whence skew-symmetric. Now, if & € R”, let Vz: §"~' — R™ be Vi (x) := c(§)x. Since
c(&) is skew-adjoint, (c(&)x,x) = 0. Hence c(§)x € T.S"~!. The map & — V; defines a
linear injective map from R” into the space of vector fields on S"~!.

For example, the construction in Example has a real counterpart, producing a
real representation

Cliff(R") — Endg (Aﬁi(R”)),
with ¢(v) := A, + i, (exterior and interior multiplication defined as in the complex case.)
The space on which the representation occurs is thus of real dimension 2". So we get n
linearly independent vector fields on $*'~!, e.g. there are 2 on S° by this method, 3 on
S7 and so on. One can do much better. We refer the reader to Michaelsohn and Lawson’s
book, or to the paper of Adams [1] for more information.
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9. Clifford algebras and K-theory: the Bott-Shapiro Theorem

Suppose that c: Cliff(R") — End(S) is a Z/2-graded Clifford module for R". Let
oc: R" = Homg(S4,5-), o5(€) :=c(§).
Then G, determines a vector bundle map R” x S; — R"” x S_ between the trivial bundles

R" x S4, which is invertible away from {0}. We get a K-theory triple (R" x S, R" x
S_,c.) and a corresponding class [6.] € KO(R").

LEMMA 6.9.1. View Cliff(R") C Cliff(R""!) in the usual way.

Then if a Z./2-graded Clifford module ¢ : R" — End(S) is the restriction to Cliff (R") C
Cliff (R*™! of a representation ¢’ : Cliff (R"*') — End(S) over R**!, then the correspond-
ing class [o.] € K°(R") is zero.

PROOF. Let e¢,,1 be the n-+ 1 th standard basis vector of R"*t!, We show that there is

a vector bundle map ¢’: R" x S, — R" x S_ which agrees with 6, off a compact set, and
is invertible everywhere. The result will follow. To accomplish this, if v € R", ||v|| < 1, set

() = (v /1 vl ens).
and if [|v]| > 1 let &' (v) = 6 ().
O

This gives a rather direct argument that at least some candidates for classes in K°(R"),
when n is odd, are zero:

PROPOSITION 6.9.2. Ifn is odd then any Z./2-graded Clifford module c: Cliff (R") —
End(S) is the restriction of a 7./2-graded Clifford module for R"!, and hence [c.] €
KO(R™) is the zero class.

PROOF. Lete: S — S be the grading operator. Let e, ; € R**! act on S by ie. Since
by hypothesis, € graded commutes with Clifford multiplication by vectors in R”, we do
indeed obtain a representation Cliff (R"1) — End(S).

O

Now let n = 2m be even. Let ¢: Cliff (R") — End(A*C™) be the Z/2-graded Clifford
module of Example m Let B, := B, € K°(R") be the Bott generator of K(R") =
K™(pt).

PROPOSITION 6.9.3. With ¢ as above,

[0c] = Brr € K°(R") = K" (pt),
where Bgn is the Bott generator for KO(R™).

The following exercise gives a nice application to describing the K-theory of odd
spheres.

EXERCISE 6.9.4. Let n be odd. Let : R""! — End(S) be a Z/2-graded Clifford
module over Cliff (R"+1). Fix vy € §" C R**! and let
uc: 8" — End(S4)
be the map u(v) := c¢(v)c(vo)|s,. Then u is a unitary-valued function on §" and if c is
irreducible, the
[uc] € [8",Un] 2 K(87)
generates K~ (S").
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For each n, the collection of isomorphism classes of Z/2-graded Cliff (R")-modules
forms a semi-group under addition of modules. By taking the Grothendiek completion of

this semigroup, we obtain a Z/2-graded abelian group, which we denote by M, and let
M, = &7 (M,.
Note that M, has a natural ring structure, for if ¢;: Cliff(R") — End(S;) is a pair of

Z/2-graded Clifford modules over R” and R™ respectively, then their Z/2-graded ten-
sor product S;®S, is a Z/2-graded Cliff(R"*™)-module with c(vi,v2) := ¢1(v1)®1 +

1&c>(v2). This multiplication descends to M, to give a Z/2-graded ring structure to M.
To check all this is left as an 1 easy exercise for the reader.

Now, for each n let i: 9\/[,,+1 — M be the group homomorphlsm induced by the in-
clusion Cliff(R") — CIliff(R"*!). We consider the quotient fM J( ,,+1) It maps, by

Lemma to K" (pt)

Hence, by taking the direct sum of all these homomorphisms we obtain a homomor-
phism
(6.37) 0, = M, /i ( *+1) =@, 0.‘7\/[ /i ( ,,H) — @ (K" (pt) := K" (pt).

The Bott Periodicity Theorem now be stated in the following way.

THEOREM 6.9.5. (Atiyah-Bott-Shapiro) The map

0. — K*(pt)

of is an isomorphism of Z/2-graded rings.

The irreducible Cliff (R?)-module of Example in which Clifford multiplication

by (x,y) € R? acts by the matrix [ 0 . Xty , has thus an isomorphism class A in Q*

Then in this ring, A" is the class of Example (by a routine exercise.) The ring Q* is
isomorphic as a ring, to the polynomial ring Z[x] of polynomials in one variable, by the
map sending a polynomial f(x) = Y{_,ax* to = Yi_jarAr.

On the K-theory side, such a polynomial identifies with the K* (pt) element Y’} ax [3%2,
with Bg2 € K~2(pt) the Bott generator.

10. K-orientations and the Thom isomorphism theorem

The Thom isomorphism is a central result in K-theory (as is its analogue in ordi-
nary cohomology) because it allows the construction in topological K-theory of so-called
wrong-way maps.

Let: V — X be a Euclidean vector bundle over a locally compact space X.

Since each fibre V, := 7! (x) of V is a Euclidean vector space, we can form its Clifford
algebra Cliff (V;). The bundle of algebras {Cliff (Vy)},ex is easily checked to be locally
trivial as a bundle of algebras, and hence is, in particular, a complex vector bundle over X.
We denote it Cliff (V).

There is an obvious bundle-version of the idea of a Clifford module. By a Z /2-graded
vector bundle we mean a vector bundle equipped with a fibrewise Z/2-grading such that
the even and odd parts V* of V are themselves (sub-) vector bundles (of V).

DEFINITION 6.10.1. LetV be a Euclidean vector bundle over X.

By a Cliff (V)-module, we shall mean a complex, Hermitian vector bundle S over X, to-
gether with a vector bundle map c: Cliff (V) — End(S), whose restriction ¢, : Clff (V;) —
End(Sy), to each fibre of Cliff (V), is a Cliff (V;)-module.
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We sometimes require the bundle S to be Z/2-graded as a vector bundle, and for the
Cllifford action to be by (fibrewise) odd operators. In this case we refer to a Z/2-graded
Cliff (V)-module.

The case where the Clifford bundle is, fibrewise, an irreducible module, is particularly
important, and we will generally call the S of the previous definition a spinor bundle in this
case.

There is a fairly obvious notation of isomorphism of Cliff (V' )-modules: one requires a
fibrewise unitary bundle map S — S intertwining the two representations. In the case when
the modules are graded, we generally require the isomorphism to be grading-preserving.

DEFINITION 6.10.2. Suppose ®: V — X is a a real vector bundle over X locally com-
pact.
A K-orientation on V is a pair, consisting of

1) An inner product g on V.

ii) A fibrewise irreducible Cliff(V)-module, with V equipped with the Euclidean
structure from the metric in i). We require the module to be Z/2-graded if V' is
even-dimensional.

EXAMPLE 6.10.3. The zero vector bundle 0, over any space, can be K-oriented in two
different ways.

Indeed, the Clifford algebra of the zero vector space is C, graded as an algebra with
C* :=C, C™ :={0}. Of course the C*-algebra C has a unique irreducible representation,
on the one-dimensional Hilbert space C. Either choice of Z/2-grading on this Hilbert
space, setting C* := C, C~ := {0}, or setting C* := {0} and C* := C yield Z/2-graded
Clifford modules.

The Clifford algebra of the zero bundle is the trivial rank-one bundle, so a K-orientation
amounts to endowing the trivial line bundle over X with a Z/2-grading. Note that such a
grading might vary from component to component (of X).

DEFINITION 6.10.4. A spin®-structure on a smooth manifold X is a pair, consisting
of a Riemannian metric on X, and a fibrewise irreducible Cliff(TX)-module, which is
Z/2-graded if dimX is even. That is, X is spin® if the real vector bundle TX is K-oriented.

REMARK 6.10.5. In the applications of Index Theory (of Dirac operators) to geometry,
the slightly more rigid requirement of a spin structure is quite important, although we
do not discuss it much in these notes. A spin structure on a Riemannian manifold X is
the existence of an irreducible Cliffg (7X)-module, where Cliffg (TX) is the real Clifford
algebra of the tangent bundle. If a spin structure exists, X is a spin manifold. The 2-sphere
52 is a spin manifold.

It is completely obvious that a trivial Euclidean vector bundle X x R" bundle (with the
standard Euclidean metric fixed on the fibres) is K-orientable.

Furthermore, a K-orientation on a vector bundle determines an orientation on it, as the
following exercise shows.

EXERCISE 6.10.6. Suppose that V is an even-dimensional Euclidean vector bundle
over X. and ¢: Cliff(V) — End(S) a Z/2-graded irreducible Cliff (V)-module. If ey,... e,
is a local orthonormal frame for V, defined, say on a connected open set U, then we declare
this local frame to be positively oriented if Clifford multiplication by c¢(x, e (x) ---e,(x)) €
End(S,) equal to the grading operator € on S,, and call it negatively oriented if it equals
—& (one of these possibilities must occur, for all x € U).
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a) Check that the above prescription orients V.
b) Prove the analogous result (K-oriented implies oriented) for odd-dimensional
vector bundles.

In particular, the Mobius bundle over the circle is not K-orientable.

EXAMPLE 6.10.7. If ®: V — X has a complex structure (i.e. if it is isomorphic as a
real vector bundle to a complex vector bundle E), and equipped with a Hermitian metric,
and induced Euclidean metric, then V is K-oriented by letting

(6.38) S:=AG(E), c(v):=M+iv: AJE = AJE, VEE,,

where A, is external product with v and i, intterior product.
This all follows immediately from the definitions and the discussion in Example[6.8.4]

EXERCISE 6.10.8. Deduce from Example[6.10.7|that V &V is (canonically) K-oriented,
for any real vector bundle V (Hint. V@&V =2V ®g C as real vector bundles, the latter is a
complex bundle.)

DEFINITION 6.10.9. Suppose that V is a vector bundle over X, and c: Cliff(V) —
End(S) is a Z/2-graded Cliff (V')-module, and that L is a Z /2-graded Hermitian line bundle
over X. Let §' := S®L be the Z/2-graded tensor product of these two vector bundles,
endowed with the tensor product Hermitian structure, and the Cliff (V')-module structure

(6.39) c(v):=c(v)®id € End(S; ®L,) x€X,veV,,s€ Syl €L,

We call §' the Cliff (V)-module obtained from S by rwisting by L.
If S is an ungraded Cliff (V)-module, we twist in exactly the same way, dropping all
mentions of the gradings. The outcome is another non-graded Cliff (V')-module.

PROPOSITION 6.10.10. Let V be a Euclidean vector bundle over X. Then if V admits
one K-orientation S, then any other K-orientation S' on 'V is obtained by twisting S by
some Z/2-graded Hermitian line bundle L over X, as in (6.39)

In the case V is odd-dimensional, the same statement holds, with L ungraded.

PROOF. Assume first that V is even-dimensional, and c: Cliff (V) — End(S) is a Z/2-
graded irreducible representation of Cliff (V), and ¢: Cliff (V) — End($’) another. Let L
be the Hermitian vector bundle with fibres

L,:= HomChH(Vx)(Sx,S;) :={T € Hom¢(Sy,S.) | c(V)T = Te(v) W € Vi },

graded into even and odd operators.
Then L is a complex line bundle over X and §' 2 S® L as Z/2-graded Clifford modules.
In the odd-dimensional case, we simply drop the gradings and use the same argument.
d

LEMMA 6.10.11. If f: X — Y is a map and V is a vector bundle over Y, then a
K-orientation on 'V pulls back to a K-orientation on f*(V).

PROOF. Suppose ¢: V — End(S) is a spinor bundle for V, equipped with some Eu-
clidean metric. The pulled-back bundle f*V has fibre at x the Euclidean vector space V),
so f*V inherits a natural pulled-back Euclidean structure. And the associated bundle of
Clifford algebras has fibres Cliff (V(,)), which map to End(Sy(,)). This provides the pull-
back f*S of the spinor bundle for V with an action of Cliff(f*V) as required. d
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LEMMA 6.10.12. (The 2-out-of-3 Lemma). Suppose that
0-wLvEoo
is an exact sequence of real vector bundles over X. Then a K-orientation on any two of

them, determines a canonical K-orientation on the third.

PROOF. Choosing a splitting s: Q — V determines an isomorphism of real vector
bundles V = Q@ W. So need to prove that if V and Q is K-oriented, then so is Q, and if Q
and W are K-oriented, then so is V. This all follows from the bundle versions of Lemmas

[6.8.1316.8.14} [6.8.18]and [6.8.17]

(]

EXERCISE 6.10.13. On the tangent bundle T'S? to the 2-sphere, there are two natural
K-orientations that spring to mind. The first is based on the complex structure on S, seen
as CP'. The tangent bundle T'S? thus has a complex structure, and one builds an irreducible
Clifford module bundle accordingly (as in Example [6.10.7).

On the other hand, S2 is the boundary of the closed ball D3, with trivial normal bundle,
so that one has an exact sequence of vector bundles over S given by

0—-TS*—>TD = §>xC,

and TD? is also a trivial bundle and so canonically K-orientable.

So we get a canonical K-orientation on TS2, by the 2-out-of-3 result, the boundary
K-orientation.

Find the complex line bundle L which intertwines these two K-orientations.

DEFINITION 6.10.14. Let w: V — X be a K-oriented, even-dimensional Euclidean
vector bundle over X, with associated Z /2-graded irreducible representation ¢: Cliff (V) —
End(S).

On the total space V of V, define a K-theory triple by (7*S™,7*S™, 6y ), where oy (x,v) :=
c(x,v): SE—S;.

The associated class &y € KO(V') is the Thom class of V.

If V is odd-dimensional, identify V x R with the total space of the vector bundle V& 1,
where 1 is the trivial line bundle over X.

Since V and 1 are K-oriented, so is their sum, which is even-dimensional. We let in
this case the Thom class &y be the class in K~ (V) 22 K°(V @ 1) associated to the even-
dimensional K-oriented bundle V & 1.

The Thom class &y of a K-oriented bundle V thus lies in the group K~4mV (V), with
the superscript —dimV to be interpreted mod 2.

For the purposes of the following central theorem, recall that if T: V — X is a vector
bundle, then using pull-back by 7 and the ring structure on K*(V) gives the Z/2-graded
abelian group K*(V) the structure of a (graded) module over the Z/2-graded abelian group
K*(X).

THEOREM 6.10.15. (The Thom isomorphism theorem). Let V be a K-oriented vector
bundle over X locally compact. Then as a K*(X)-module, K*(V) is free and rank-one, and
is generated freely as a rank-one K* (X)-module by the Thom class &y € K~9™V (V). That
is, the map

(6.40) Ty K*(X) = K9V (V) 1y (a) == " (a)y,

is a K*(X)-module isomorphism.
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Furthermore, if f: X —Y is amap, then &y = f*(&v), so that the Thom isomorphism
is natural with respect to maps, and pull-backs of K-oriented vector bundles.

The last (naturality) statement means the following. Suppose thatif f: X =Y isa
map, V is a real vector bundle over Y, and f*V is given the pull-back K-orientation, using
f. There is an obvious extension of f to amap f: f*V — V.

Then naturality of the Thom isomorphism is the statement that the diagram

(6.41) K*(f*V) I K*(V)
L
I

K*(Y)

commutes.

The Thom isomorphism is a ‘bundle’ version of Bott Periodicity. If V' is a K-oriented,
n-dimensional vector bundle over X, with, initially, let us say, n even, then it’s restriction
to a point p € X can be identified linearly with R", and it’s K-orientation thus restricts to a
K-orientation on the real vector space R”.

Since there are only two possible K-orientations of R", for n even, up to equivalence,
the standard one, and it’s opposite, it follows that

Ev pt = £PBre € KO(R") = K" (pt).
The sign is positive if and only if the orientation determined on R" by identifying it with
V, and then taking the orientation determined by the K-orientation on V, agrees with the
standard K-orientation on R”. One can tell the difference as follows. Take a positively
oriented linear basis ey,. .., e, for R", so that as vectors in V, they form an orthonormal set
in V,,, and let sign, (V) = Lif c(e1 ) -+~ c(en) = €, and sign,, (V) := —1Lif c(e1)---c(en) =
—¢&, € End(S,), where S, is the spinor bundle at p, €, the grading operator at p.

PROPOSITION 6.10.16. IfV is a K-oriented n-dimensional vector bundle over X, then
the restriction of the Thom class for V to any point p € X is given by

(&v)l{py =sign, (V) - Bre € K™ (pt),
where Brn is the Bott generator of K" (R") and sign,, is defined as above.

Thus, intuitively, the Thom isomorphism restricts to Bott periodicity on the fibres of
any K-oriented vector bundle — but one must take care with the K-orientations.



CHAPTER 7

K-THEORY FOR C*-ALGEBRAS

Due to Swan’s Theorem topological K-theory for compact Hausdorff spaces X
may be equivalently defined in terms of isomorphism classes of finitely generated projec-
tive (f.g.p.) modules over C(X), and this suggests a definition of Ko-theory of C*-algebras
or indeed of any ring. At the latter level of generality the resulting theory is called alge-
braic K-theory, while when specialized to C*-algebras it is often called operator K-theory.
Operator K-theory retains the Bott Periodicity phenomenon of topological K-theory, while
algebraic K-theory does not, so the two differ in their treatment of higher K-groups. Op-
erator K-theory is Morita invariant, and is the correct homology theory for studying the
‘noncommutative spaces’ of Noncommutative Geometry.

K-theory has a number of applications in physics. In string theory, K-theory classifica-
tion refers to a conjectured application of K-theory to superstrings, to classify the allowed
Ramond-Ramond field strengths as well as the charges of stable D-branes (see [?], and
[143].) In condensed matter physics K-theory has also found important applications, spe-
cially in the topological classification of topological insulators, superconductors and stable
Fermi surfaces, see [113]].

Some of the first interesting results in operator K-theory came from the study of C*-
algebra inductive limits of finite-dimensional C*-algebras called AF-algbras. Such alge-
bras were first introduced by Bratteli [35], who showed how to classify them by means
of equivalence classes of certain graphs now called ‘Bratteli diagrams.” However, this
method of classification was unsatisfactory from a computational point of view. G. Elliott
[70] showed that AF algebras are classified by their Ko- groups, together with the natural
ordering on K¢ induced by the semigroup of finitely generated projective modules, and in
the unital case, the order unit corresponding to the rank-one free module, all of this data
comprising the dimension group of the algebra. Elliot’s result generated several decades of
activity on classification of simple C*-algebras by K-theory invariants (see [71]). An AF
algebra is determined by successively refining partitions of a totally disconnected space, a
procedure important in coding in dynamics. Following Elliot’s work, I. Putnam et al clas-
sified minimal homeomorphisms of Cantor sets using dimension groups [131] (and more
recently Z?-actions, see [89].)

K-theory of group C*-algebras C*(G) for discrete groups G is a question of great inter-
est due to ramifications in topology (e.g. the Novikov Conjecture, see [111]]) and geometry
(e.g. problem of existence of positive scalar curvature metrics [92]). The Baum-Connes
Conjecture (see [20]) provides a (conjectural) method of computing the K-theory of group
C*-algebras, or more generally groupoid C*-algebras, or C*-algebra crossed products. Fi-
nite group C*-algebras and crossed products by (some) proper actions of discrete groups
are amenable to fairly direct methods and we treat them in this chapter. Computation of the
K-theory groups of the irrational rotation algebra Ay, which involves an infinite group and
a non-proper action, requires more advanced methods (like KK-theory) , and we discuss it

249
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at the end of the book. In this chapter we summarize with proof all of the important proper-
ties of operator K-theory, following rather closely the efficient presentation of Higson and
Roe in [99].

1. Basic definitions of C*-algebra K-theory

If A is a a unital ring, and L; and L, are f.g.p. modules over A, their sum L; G Ly, as a
right A-module, is also f.g.p. Obviously L; & L, = L, ¢ L as A-modules, and this addition
operation is well defined on isomorphism classes of f.g.p. right A-modules. We write [L]
for the isomorphism class of L.

The collection of isomorphism classes of finitely generated projective modules over A
defines a commutative semigroup M (A). If A = C(X), this semigroup is in 1-1 correspon-
dence with the semigroup Vect(X) of isomorphism classes of vector bundles over X, as
we have already proved.

We may think of f.g.p. modules as kinds of ‘noncommutative vector bundles,” and we
correspondingly define

DEFINITION 7.1.1. If A is a unital ring, and in particular, if A is a unital C*-algebra,
Ko(A) is the Grothendiek completion of the semi-group M (A) of finitely generated pro-
jective (f.g.p.) right A-modules.

An element of Ko(A) is a formal difference [L] — [M], of isomorphism classes of right
f.g.p. A-modules L,M.

Two such formal differences [Li] — [L»] and [L}] — [L}] are equal in Ko(A) if there
exists an f.g.p. module L such that Ly ®L, L= L) S Ly B L.

EXAMPLE 7.1.2. M (C) =N and Ko(C) 2 Z. Indeed, an f.g.p. module £ over C is
exactly the same as a finite-dimensional complex vector space, and isomorphism of f.g.p.
modules over C corresponds to linear isomorphism of C-vector spaces. Since a vector
space over C, or any field, is determined up to isomorphism by its dimension, M (C) =2 N
by the map E — dimc(‘E). Taking Grothendiek completions we get Ko(C) = Z by the
map [E;] — [E2] — dim¢ (E;) — dime (E).

EXAMPLE 7.1.3. Let t: H — CP' be the Hopf bundle. Then by the very definition,
H = Im(P) where p: CP' — M,(C) is the projection-valued function p: CP! — M,(C)
mapping a line L C C? to orthogonal projection pr; onto that line. In terms of homoge-
neous coordinates on CIF’I,

P(l2]) 1[|Z2 WZ]_

TP WE Lo WP

We can restrict p to C C CP!, i.e. set

2
pi €O, ) =plt) = [ 5]

on C. Note that

Z—r0

1mmm=E8}

that is, p on CP' takes the value Ll) 8] at ‘infinity’ — the point with homogeneous coor-
dinates [1,0].
The class

(7.1) Brz == [p] — [1] € Ko(R?)
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is the Bott element for R?, already discussed in the context of topological K-theory. Bott
Periodicity implies that K(R?) is infinite cyclic with generator Bg»

If A is a C*-algebra, we let
Mo (A) == M,(A),
n=1

the *-algebra of infinite N-by-N matrices with entries in A, which have only finitely many
nonzero terms. Recall that two idempotents p,q € M, (A) are algebraically equivalent if
there exists u,v € M,,(A) elements such that uv = p, vu = g. We have already seen that if A
is a unital C*-algebra, then any idempotent is algebraically equivalent to a projection, and
two projections are algebraically equivalent if and only if they are Murray-von-Neumann
equivalent: ie. if and only if there is a partial isometry u € M,,(A) such that uu* = p,u*u =
q.

If A is a unital ring, we set P(A) to be the collection of algebraic equivalence classes of
idempotents in M(A). If A is a unital C*-algebra, this is equivalent to looking at Murray-
von-Neumann equivalence classes of projections, and we normally take this latter picture
as defining P(A), when A is a C*-algebra.

EXERCISE 7.1.4. Let p,q € M,(A) be projections, where A is a C*-algebra. Show

that
a) The partial isometry
_or
! L J
gives a Murray-von-Neumann equivalence between the projections [g 2] and
q O
0 p|°
b) If pg =gp =0 € M,(A), so that p+ ¢ is a projection, then the partial isometry
_|r 0
“_L J
. . p+qg O p O
gives a Murray-von-Neumann equivalence between 0 0 and 0 4|

¢) Prove thatif p ~ p’ € M,(A) and ¢ ~ ¢’ € M,,(A), then

p O [P O
|:0 q:| |: 0 q/ e M2n (A)’
where ~ means Murray-von-Neumann equivalence.

This shows that ~-equivalence classes of projections in P(A) can be added.

From the exercise, the collection P(A) has the structure of a commutative semigroup
under the addition operation

r+ld=h o).

corresponding to the direct sum operation on f.g.p. modules.

PROPOSITION 7.1.5. If A is a unital C*-algebra, then the map sending the Murray-
von-Neumann equivalence class [p] of a projection p € M,,(A) to the isomorphism class of
the f.g.p. A-module pA" in Ko(A) defines an isomorphism

P(A) = M(A).
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Hence Ko(A) is naturally isomorphic to the Grothendiek completion of the abelian
semigroup P(A).

EXERCISE 7.1.6. Let p and g be projections in M« (A) such that [p] = [g] € Ko(A).
Then for some &, p @ 1; is Murray-von-Neumann equivalent to g ® 1, as projections in
M (A), where 1 is the k-by-k identity matrix.

(Hint. By the definitions, p ® e = g @ e for some projection e. Now e® 1 —e is
Murray-von-Neumann equivalent to 1 for suitable k, by Exercise b), and the result
follows.)

Due to Swan’s Theorem, K¢ for unital C*-algebras as described above generalizes
topological K-theory for compact spaces:

PROPOSITION 7.1.7. K°(X) = K((C(X)) for any second-countable compact Haus-
dorff space X.

PROOF. The semigroup Vect(X) of isomorphism classes of vector bundles is isomor-
phic to the semigroup of isomorphism classes of f.g.p. modules by mapping the bundle
E — X to the f.g.p. module I'(E) of sections of E. Lemma[4.2.10| proved that E = E” if
and only if [(E) = T(E').

O

We next compute Ko (B(H)), for any Hilbert space H.

LEMMA 7.1.8. If H is a Hilbert space, and p,q are projections in B(H), then p and
q are Murray-von-Neumann equivalent in B(H) if and only if they have the same rank as
operators on H.

PROOF. if p and g have the same rank, their ranges are isomorphic as Hilbert spaces.

Let u: pH — gH be such a unitary isomorphism, and extend it to H = pH & (pH)* by
setting it equal to the zero map on (pH)* . Then uu* = q, u*u = p.

O

COROLLARY 7.1.9. If H is finite-dimensional, then Ko(B(H)) = Z. If H is infinite-
dimensional, Ko(B(H)) = {0}.

PROOF. First let H be infinite-dimensional. Let p € B(H). If p has infinite rank,
then apply the lemma to the projections {](; 2} and {g 8} to get that they are Murray-
von-Neumann equivalent in B(H & H) = M, (B(H)). Hence [p] + [p] = [p] € Ko. Hence
[p]=0.

If H is finite-dimensional, B(H) = M, (C) for some n, and a projection in M,(C) is
determined up to equivalence by its rank.

O

We now continue with the general theory.

If a: A — B is a *-homomorphism, then it induces, by applying o pointwise to the
entries of a matrix, a C*-algebra homomorphism M, (A) — M,,(B) for all n and a *-algebra
homomorphism Mw(A) — M« (B). Such a *-homomorphism maps projections to projec-
tions, and maps partial isometries to partial isometries, and hence induces a canonical
semigroup homomorphism

0.: P(A) — P(B).
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which then determines a group homomorphism
o Ko(A) — Ko(B).
It is obvious from the definitions that if f: B — C is another *-homomorphism, then
(Boa), =Psoa: Ko(A) — Ko(C).
Hence the assignment
A—Ko(4), a—a,

defines a functor from the category of unital C*-algebras and *-homomorphisms, to the
category of abelian groups, and abelian group homomorphisms.

EXERCISE 7.1.10. Let A be a unital C*-algebra and p € A be a projection. Then p
determines a *-homomorphism o, : C — A. Such a *-homomorphism determines a group
homomorphism (o). : Ko(C) — Ko(A). Check that (o,).([1]) = [p]. Formulate and
prove a more general statement, where p is allowed to be in a matrix algebra M, (A) over
A.

EXERCISE 7.1.11. If A is any unital C*-algebra, then the inclusion

A= My(A), i(a):= {8 8]

of A as a corner of M,(A), determines an isomorphism
i Ko(A) 2Ky (M”(A))

EXERCISE 7.1.12. This exercise describes functoriality in terms of f.g.p. modules.
Let A and B be C*-algebras and o.: A — B be a *-homomorphism.

a) If E,4 is af.g.p. module over A, then the algebraic tensor product
0 () :=E4 @4 B

of the right A-module E4 over the homomorphism o: A — B, with the left B-
module B, gives a f.g.p. module over B.

b) If £4 and £} are isomorphic f.g.p. A-modules, then o..(Z4) and o (E}) are
isomorphic f.g.p. B-modules.

c) If E4 = pA” for a projection p € M,,(A), then the pushed-forward module o, (4 )
is isomorphic to o(p)B".

We are going to study the properties of the Ko-functor. Firstly, it is clearly additive in
the following sense. Suppose A, B are unital C*-algebras. Firstly,

M, (A% B) 2 My(A) & M,(B), and Mw(ASB) = M.(A)©M.(B),

as *-algebras. Since *-algebra isomorphisms send projections to projections, and partial
isometries to partial isometries, it follows that

PABB)=PA)DP(B)
as semigroups, and hence
Ko(A®B) = Ko(A) ®Ko(B).

More exactly:
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LEMMA 7.1.13. Let A, B be unital C*-algebras, is: A —-A®&Bandip: B—A®B,
the inclusions and pry: A®B — A and prg: A® B — B the projections. Then

(ia)« + (ip)«: Ko(A) @ Ko(B) = Ko(A®B)
is an isomorphism of groups, with inverse
(pra)« @ (prp)«: Ko(A®B) — Ko(A) ©Ko(B).

We now extend the Ko-functor to (possibly) non-unital C*-algebras. Let A be any
C*-algebra, unital or not, and A" its unitization (see Definition(1.1.14). As a vector space
AT = A®C, but with algebra multiplication and adjoint

(@A) - (bop) = (@b+ b+ pa ), (@) = (1)

and the supremum norm makes A" a C*-algebra.
If A is already unital, then the map

(7.2) v: AT - A®C, y(a,A)=(a+i-1,A)
is an isomorphism with the direct sum C*-algebra A ® C.
Let

e: AT = C, gla,A) =M
Then ker(e) = A, embedded in the first copy of A*. By functoriality of K¢ for unital
C*-algebras, we obtain a group homomorphism

€ K()(A+) — Ko(C) 2 Z.

DEFINITION 7.1.14. If A is any C*-algebra, unital or not, we define Ko(A) to be the
kernel of the homomorphism €, : Ko(AT) = Ko(C) 2 Z.

LEMMA 7.1.15. Definitions and[7.1.14)agree for unital C*-algebras.

PROOF. The isomorphism identifies €: AT — C with the projection prg: A &

C — C. Since Ky is additive (for unital C*-algebras), Ko(A ® C) = Ky(A) ® Ko(C) and

under this isomorphism, (pr¢ ). becomes the second projection map of groups (see Lemma
[7.1.13). The kernel of the second projection map Ko(A) & Ko(C) — Ko(C) is Ko(A).

[

REMARK 7.1.16. Suppose A is non-unital, let A™ be its unitization, £: A — C the
augmentation.

Suppose that E is a f.g.p. module over AT, with class [E] € Ko(A™T). Let [1] e Ko(A™)
be the class of the free A™-module given by A™ itself. And suppose that

[E] —m[1] € Ko(AT)
is in the kernel of
S K()(A+> — K()((C) =7.
Since
AT, C2C
as right C-modules, by the obvious map b ® A — €(b)A, application of €, to the given
difference gives the formal difference in K(C) of the isomorphism classes of £ ®4+ C

and C. The isomorphism Ko(C) — Z is of course by taking the complex dimension of a
complex vector space, and the difference is thus mapped to

dim¢ (E ®p+ C) —m.



1. BASIC DEFINITIONS OF C*-ALGEBRA K-THEORY 255

For this to be zero means therefore that
m = dimc(E ®4+ C) —m.

So, rather generally, we can parameterize Ko(A), for A non-unital, by isomorphism
classes [Z] of f.g.p. modules over AT, the corresponding classes being

[E] —dimg(E®4+ C) - [1] € Ko(A) C Ko(A+).
Before proceeding, we prove a useful lemma, which implies in particular that the Ko-

group of a separable C*-algebra is always a countable abelian group.

LEMMA 7.1.17. IfA is a unital C*-algebra and p,q € A are projections with ||p—q|| <
1, then p and q are unitarily equivalent.

PROOF. Leta = pg+ (1 —p)(1 —¢q). Then

l—a=(2p-1)(p—q)
Since ||pg|| < 1 and ||2p — 1]| < 1, we see that |1 —a|| < 1 and so « is invertible. Since
pa = pq =aq,a 'pa=q, and p,q are similar. From Proposition |4.2.16|they are unitarily

equivalent (using the unitary u = a(a*a)_% in the polar decomposition of a.)
]

COROLLARY 7.1.18. IfA is a separable C*-algebra then Ko(A) is countable.

The proof is left as an exercise.
Two projections p, g in a C*-algebra A are homotopic if there is a continuous, projection-
valued map p: [0, 1] — A with values p, ¢ at the endpoints.

COROLLARY 7.1.19. IfA is a unital C*-algebra and p,q € A are homotopic projec-
tions, then p and q are unitarily equivalent, and in particular, are Murray-von-Neumann
equivalent.

PROOF. By compactness of the interval we can find 0 =7y <t < --- <t, =1 such
that || p(tx) — p(tx+1)|| < 1 for all k. The result follows from Lemma|7.1.17
O

The converse is almost true as well:

PROPOSITION 7.1.20. Let p,q be Murray-von-Neumann equivalent projections in a

unital C*-algebra A. Then [g 8} and {g 8} are homotopic.

PROOF. Assume v is a partial isometry in A such that v¥v = p,w* = q. By Exercise
[.2.19|of Chapter 4, the matrix
o v 1—w*
T vtv—1 v*

0

is unitary, is connected by a path of unitaries to {0 1

},and

upu* =gq.

The result follows.
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EXERCISE 7.1.21. Suppose p is a projection in A (unital). Let R, =

cost —sint
sint  cost |’

Show that Ry {g 8} R;, 0 <t < % is a path of projections between {g 8] and [8 2} ,

EXERCISE 7.1.22. Suppose p, g are projections in A and pg = gp = 0. Show that
g 0 |p O
AR

p+q 0] and [p

0 . . .
0 0 0 q] , where R; is the rotation matrix

gives a path of projections between [

cost —sint
sint  cost |’

EXERCISE 7.1.23. Let p € M5 (C(T)) be the projection

=3z i)

Find a loop u(z) of unitaries in M»(C) such that

; E H € My (C(T)).

upu* = —

Note that p is the restriction to T C C of the Bott projection of Example

DEFINITION 7.1.24. Two *-homomorphisms o.: A — B and B: A — B between unital
C*-algebras are homotopic if there is a *-homomorphism

v: A— C([0,1],B)

such that
¥(a)(0) = a(a), ¥(a)(1) = B(a). YacA.

Such a homotopy determines a 1-parameter family (04 );c[o,1] of *-homomorphisms
A — Bby oy(a) :=1(a)(t), with 0p = a, and o} = [, which is continuous in the sense that
for each a € A, the map [0, 1] — A,  — o, (a), is continuous.

COROLLARY 7.1.25. Ifo: A — B and B: A — B are homotopic *-homomorphisms,
then o, = B«: Ko(A) — Ko(B).

PROOF. Assume A and B are unital; the general case is dealt with by taking unitiza-
tions.

For any n, y induces a *-homomorphism M,(A) — C([0,1],M,(B)), and a family of
*-homomorphisms which we still denote by o, : M,(A) — M,(B). If p € M,(A), then
q(t) := a,(p) is a path of projections in M, (B) between a.(p) and B(p) Hence these two
projections determine the same class in Ko (B).

O

EXERCISE 7.1.26. A C*-algebra A is contractible if the identity homomorphism and
zero homomorphisms A — A are homotopic.
a) Prove that if A is contractible (unital or not) then Ko(A) = 0.
b) Prove that if A is any C*-algebra, then the C*-algebra Co([O, 1),A) is con-
tractible.
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EXERCISE 7.1.27. Let p: [0,1] — A be a path of projections in a unital C*-algebra
A. Use the proof of Lemma to show that there is a continuous path of unitaries
(ur)1e[0,1) such that
Pt = upruy.
(Hint. The proof of Lemma(7.1.17) shows that if o € [0, 1] is any point, and

as:=pips+ (1= p)(1 - py)
then ay is invertible for |t — s| sufficiently small, and

Ug = as(a;‘as)f%

is a unitary such that
usptu: = Ps
holds.)

EXERCISE 7.1.28. Let w: A — B be a surjective C*-algebra homomorphism between
unital C*-algebras. Prove that if ( pt)te[o,l] is a path of projections in B, p; € A is a projec-
tion such that (1) = p1, then there is a path (p;);c[,1] of projections in A, ending in p,
and such that (p,) = p; for all ¢.

That is, show that the map P(A) — P(B) induced by a surjective *-homomorphism,
has the path lifting property. (Hint. Use Exercise [7.1.27]and the fact proved in Exercise
that the restriction of T to the unitary group U(A) has the path-lifting property.)

We next discuss a technique with broad applications in Noncommutative Geometry,
in preparation for proving continuity of K¢ under inductive limits.

DEFINITION 7.1.29. Let A4 be a unital *-subalgebra of a unital C*-algebra A. We
say that A4 is spectral in A if 4 is dense in A, and whenever 7 is a positive integer and
a € M,(A4) and f is a holomorphic function on Specy(a), then f(a) € M,(A).

Notice that if A4 is spectral in A and a € A4 is invertible in A, then a~! € 4, since
flz)= % is holomorphic on Specy (a).

It follows that the spectrum of a € A4, as an element of A4, is the same as its spectrum
as an element of A.

EXERCISE 7.1.30. If M is a compact manifold, then C*(M) is spectral in C(M) for
every k € NU{co}.

EXERCISE 7.1.31. Suppose A; C Ay C --- C A is an increasing union of unital C*-
subalgebras of a fixed unital C*-algebra A. Show that 4 := J;_; A, is a spectral *-
subalgebra of A; in fact, show that it is even closed under continuous functional calculus.

We have already remarked that Ko, as defined in terms of idempotents in M (4), is
defined for any algebra (in fact any ring), and in particular for any *-algebra. Moreover, if
A C A happens to be spectral, then since it is closed under holomorphic functional calculus
in A, it follows easily that the idempotent picture of K agrees with the projection picture,
with algebraic equivalence corresponding to Murray von-Neumann equivalence, because
any spectral 4 will be closed under the operation of taking square roots of strictly positive
elements and hence polar decompositions of elements of 4 which are invertible in A, end
up having their constituents in 4. (A spectral subalgebra is very nearly a C*-algebra).

Thus in the following, we will understand that K as defined in terms of projections
and Murray von-Neumann equivalence, extends directly to spectral *-subalgebras. With
this convention:
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THEOREM 7.1.32. Suppose A is a unital C*-algebra and A C A is a spectral *-
subalgebra.
Then the homomorphisms

ix: P(A) = P(A), ir: Ko(A) = Ko(A)
induced from the inclusion i: A — A, are isomorphisms.

LEMMA 7.1.33. Let A be a unital C*-algebra and p a projection in A. Ifa € Ais a
normal element with |la — p|| < 9, then

Spec(a) C B5(0)UB;s(1) C C,
with Bg(+) the disk of radius 8.

PROOF. Suppose A ¢ Bg(0) UBg(1), i.e. that min{|A|,|1 —A|} > 3. Then A— p is
invertible in A. And

. _ _ 1
1= p) =l = max{A] 7% [T =7} < &
Consequently

3.3 10=p) " O—a) 1] = =) A=)~ = p) ' (= )]
< A=p) "l lla—pll < 1.

Hence (A — p)~' (A —a) is invertible, and hence so is A — a. O

PROOF. (Of Theorem [7.1.32). Let p € M,(A) be a projection. By density of M, (4)
in M, (A) there exists i € M,,(4) such that ||h— p|| < 5. By replacing / with %, we may
assume that £ is self-adjoint. By Lemma 1 ¢ Spec(h), and hence the characteristic
function ) := 1] is holomorphic on Spec(h). Since M,(A4) is spectral in M,(A), the

projection g := x(h) is in M,(A). Also, ||x(h) —h|| < § since § ¢ Spec(h), and hence

11
lg=pll < llg=hl+[lh=pl <5+ =1

so that p and g are unitarily equivalent and hence Murray-von-Neumann equivalent in A

by Lemma|7.1.17] and hence i.([q]) = [p] € Ko(A).

We have shown that i,.: P(4) — P(A) is surjective.
Injectivity is similar. Suppose p,q are projections in M, (4) which become Murray-
von-Neumann equivalent in M, (A), by a partial isometry u such that

wu=p, uu* =q.
It follows from density of M, (4) in M,,(A), that we can find a contraction x € M, (4) such
that ||x — ul| < %. As
[Ix°x = pll = ll"x = ox"u o u —wu] < ([l 4 [Jul D] = wef] < 2] —u],

we have that ||x*x — p|| < 1. Similarly |lxx* — g < 1.

By Lemma [7.1.33] Spec(x*x) U Spec(xx*) C B% (0) UB% (1). Soyx = Xjo.1) 3 in the
proof of the same Lemma, is continuous on the spectra both of x*x and xx*, and ||y (x*x) —
x*x|| < 4, whence [|x(x*x) — p|| < 1 so p is unitarily equivalent to p’ := y(x*x) in A by
Lemma|7.1.17| Similarly, ¢ is unitarily equivalent to ¢’ := y(xx*). We show that p’ and
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¢ are Murray von-Neumann equivalent in 4. Let f(¢) = @ a continuous function on
Spec(x*x) USpec(xx*) satisfying
tf(2)? =x(t) Vt € Spec(x*x) USpec(xx*).
Set
vi=xf(x"x).
Since A4 is spectral and x € 4, v € 4 as well.
Since x*x commutes with f(x*x),
Vi = Fxx)xxf(x"x) = fx*x)2x x = g (x*x) = p.
Now notice that
x(x*x)fx = (o)
for any positive integer k. It follows that
xh(x*x)x* = h(xx®)xx*

for any polynomial / and hence for any continuous function. In particular, taking h = f2,
we see
W = xf (" x) 2" = xg(x*x)%x" = g ) 2xaxt =y (") = ¢,

so that p’ ~ ¢’ in 4 as claimed.

In the course of the proof, we proved the following, which will be used again:

LEMMA 7.1.34. If A is a unital C*-algebra, x € A, p,q are projections in A, then if
there exists x € A such that ||x*x — p|| < % and ||xx* —q|| < %, then p and q are Murray-
von-Neumann equivalent in A.

We next verify the continuity of K¢ under inductive limits. Suppose that {A;, @;;}ics
is an inductive system of C*-algebras, A := limA; the inductive limit. Let @;: A; — limA;
be the associated C*-algebra homomorphisms. The homomorphisms ¢; and the homomor-
phisms @;; all determine maps (@;)., efc between the appropriate K-theory groups. By
functoriality of Ky,

(1))« © (@)« = (Qix)
for all relevant indices i.j,k so we obtain an inductive system {Ko(A;), (@;;)«} of abelian
groups.
Similarly, ¢; 0 @;; = ¢@; implies (¢;)« o (@;j)« = (9;)«. Hence, by the universal property
of inductive limits of groups, we obtain a unique group homomorphism

b HEK()(A) ~ K (h_n}A,)

THEOREM 7.1.35. If{A;, @ij}ics is an inductive system of C*-algebras, and @;: A; —
limA; the associated C*-algebra homomorphisms, then {Ko(A;), (@)} is an inductive
system of abelian groups, and

lim Ko (4) = Ko (n_n;A,»).
The isomorphism is induced from the coherent family of group homomorphisms
(01)+: Ko(Ai) — Ko(limA;)
induced by the @;.
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PROOF. For the proof we will assume first that all of the C*-algebras A; are unital,
and that the structure maps of the system are unital *-homomorphisms. This implies that
the inductive limit A is also unital. The general case is dealt with by unitizations.

Observe first that 4 := U;c;9;(A;) is spectral in A, and the map P factors through the
isomorphism Ko (4) — Ko(A). So we are reduced to showing that

b I;IIEK()(A,') — Ko(ﬁl)
is an isomorphism.

If p is a projection in M, (A), then p € M, (9;(A;)) for some i. Let h € M,(A;) self-
adjoint with @;(h) = p. Then h? —h € ker(¢;) = {a € A; | lim;_,«||@;:(a)|| = 0}, so that for
jlarge enough || ;i(h)* —@;i(h)|| < 3. Since @;0@;;(h) = @;(h) = p, due to the definitions,
by replacing h € Aj by @;;i(h) € Aj, we may as well have assumed from the beginning that

. 1
he Ay k=1, ¢i(h)=p, 1> ~hl < ;.

Then § ¢ Spec(h), and g := y(h) is a projection in M,(A;) such that ||g— h|| < 1. Hence
loj(g) —pll=Ill9;q) — ;)| < llg—hl < % so that @;(q) is unitarily equivalent to p in

M, (A) and
®([q]) = (9,)«([q]) = l@,()] = [P].
This shows that ® is surjective.
Injectivity: suppose that p and ¢ are in M,(A;) whose @;-images are Murray-von-
Neumann equivalent by a partial isometry u in M, (9;(A;)) C 4, with, say, u*u = p and
uu* = g. We can lift u to an x € A;. As previously, we have

Jim 951 (x) = @5(p) | = 0
and similarly
lim[19ji(x);i(x)" ~ @si(q) | = 0.
Moreover, the image in ligKo(A,-) of the class of @;;(p) in Ko(A;) is the same as the image

of [p] in this inductive limit of groups, and similarly for g. So we may as well have assumed
from the beginning that

. 1, . 1
xEM(A4)), [¥x—pl < 3 I —all < 5.

By Lemma|7.1.34] p and g are Murray-von-Neumann equivalent in A;. Hence [p] = [g] €
ligKo(Ai), as required.
(I

EXERCISE 7.1.36. Complete the proof of Theoremby showing that if limA; =

A then hﬂA;L = A" with unital structure maps, and using the unital case proved above to
complete the argument.

REMARK 7.1.37. The proof Theorem [/.1.35|is really just an amplification of that
of Theorem In fact, if an inductive system has injective structure maps, then
Ko(ligA,-) = ligKo(A,-) is a direct consequence of Theorem[7.1.32} because then the union
A := Uie19i(A;) is spectral in the C*-algebra limit A, and the following basic exercise in
the definitions:

COROLLARY 7.1.38. If K is the C*-algebra of compact operators on a Hilbert space
H, then Ko(K) = Z, under an isomorphism sending 1 € Z to the class [p] € Ko(K(H))
of any rank-one projection.
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PROOF. Indeed, X (H) = ligIB%(V), the inductive limit of the C*-algebras B(V), as
V ranges over the directed set of finite-dimensional subspaces of H. The structure maps
B(V) — B(V'), for V C V', are by setting T € B(V) to be zero on the orthogonal comple-
ment V- of Vin V',

For each finite-dimensional Hilbert space V, Ko (IB%(V)) = 7Z. A generator for the Ko-
group can be taken to be the class of any rank-one projection py. With V fixed, any two
such projections are unitarily equivalent in B(V) and so determine the same Ko-class for
B(V).

Now if if V C V’, then the image of py in B(V’) under the structure map is the projec-

tion [%V 8} , (with respect to the decomposition V/ =V @V, and this image is clearly

also a minimal projection in B(V”). Hence the induced maps Ko (B(V)) — Ko (B(V')) are
the identity maps Z — Z, for every inclusion of subspaces. The result follows.
d

More generally:

COROLLARY 7.1.39. Let p € K(H) be any rank-one projection. Then the C*-algebra
homomorphism o,: A - A® K, o(a) := a® p, descends to an isomorphism Ko(A) =
Ko(A® X).

PROOF. Write A® K = limM, (A) as an inductive limit. Since M,,(A) and A have the
isomorphic K-theory for all n, Ko(A ® X)) = ligKo(Mn (A)) = li_n>1Ko(A) =~ Ko(A). The
statement regarding the projection is left to the reader.

O

COROLLARY 7.1.40. (Morita invariance of K-theory). If A and B are Morita equiva-
lent then Ko(A) = Ko(B).

This follows immediately from the fact that if A and B Morita equivalent then they are
stably isomorphic: that is, A ® X = B® X as C*-algebras, and the fact observed above
that Ko(A) = Ko(A ® X) for any A.

On the other hand, this argument gives no hint as to what map a Morita equivalence
might induce on K-theory, since (the proof of) Corollary[7.1.40|appeals to the theorem (not
proved in these notes) that Morita equivalent C*-algebras are stably isomorphic (actually
the proof of this theorem is not very constructive and knowing it would not help much
anyway.)

We give a better description of the Morita invariance of K-theory in the next section.

COROLLARY 7.1.41. For the UHF algebra U (d™),

= ~ 1

Ko(U(d™)) = Z[5),
the additive subgroup underlying the subring of Q generated by 7. and %.

If N is the universal UHF algebra of Example|l.11.10, then

Ko(N) =Q,

with Q as a group under addition.

PROOF. We just do the case d = 2, since it is typographically simpler. The UHF is
the inductive limit of the system

C CM(C) - Mp(C) = My (C) — -
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where the structure maps between adjacent C*-algebras are of the form
A O
it
A rank-one projection in M7 (C) is thus identified in the inductive limit with a rank-two
projection in My.1(C). The Ko-group of each My (C) is Z with 1 € Z correspond-
ing to the class of a rank-one projection. It follows that the maps Z = K (Mzn ((C)) —

Ko (MZ}H»I ((C)) 2 Z induced by the corresponding structure map, is multiplication by 2.
Thus

Ko(U(2%)) 2 limZ,
where in the inductive limit on the right hand side, the structure maps are given between
adjacent groups by multiplication by 2. The result follows from Example[I.T1.3]

The second assertion follows from similar arguments and Exercise [I.11.4]
(]

EXERCISE 7.1.42. Model the Cantor set X as X :=[];_;{0,1}. For an element y :=
(it,--5ik) € {0,1} x---x {0,1} = {0,1}", let U, C X be the clopen set of all sequences
(x,) starting with u. Let , be the characteristic function of U,. Then X is the inverse
limit of the spaces {0,1}" + {0,1}"*!, with §" = § x - - x S where the maps drop the last
coordinate, and C(X) & 1i_n>1C({O, 1}"), in such a way that a delta function at a point u €
{0,1}", defining an element of C({0,1}"), corresponds under the map into the inductive
limit, to the the characteristic function .

Prove, using compactness of X, that if f € C(X,Z) is any continuous, integer-valued
function on X, then f is a finite, Z-linear combination of the x,’s. (Hint. Start with f a
characteristic function of a clopen set.)

Deduce that the natural map

C(X.Z) - K°(X)

is an isomorphism, with C(X,Z) the group, under addition, of integer-valued, continuous
functions on X.

EXERCISE 7.1.43. This exercise explores the Ky-group of the C*-algebra C*(G) of a
finite group.

For any such group, the representation ring Rep(G) of G, as a group, is the Grothendieck
completion of the semigroup of unitary isomorphism classes of finite-dimensional unitary
representations of G.

Elements of the representation ring can be designated [nt;] — [] where 7; are finite-
dimensional unitary representations of G.

Prove that the Green-Julg correspondence determines an isomorphism

Ko(C*(G)) = Rep(G).

And if 7 is irreducible, then this isomorphism maps the class [ex] € Ko(C*(G)) of the

projection ey := difg‘[" Xk € C*(G), with y the (conjugate) character of T, to the class

[T] € Rep(G) of the representation 7.

In particular, Kg (C* (G)) is a finitely generated free abelian group with free generators
the classes of the projections ey, with T an irreducible representation of G.

See Theorem



2. MORITA INVARIANCE AND APPLICATIONS 263

EXERCISE 7.1.44. Let G be the group Z/2 acting on the interval I := [—1,1] by
6(x) = —x. Compute the K-theory of the crossed-product C(I) x Z/2. (Hint. The interval
is Z/2-equivariantly contractible. Use the homotopy-invariance of K-theory.)

EXERCISE 7.1.45. Let A be unital and B =A ® K. Let B™ be the unitization of
B, &: Bt — C the augmentation, and 1 the unit of B*. Prove that if p is a projection
in BT such that €(p) = 1 then [p] — [1] = [p'] — [1,] for some n, where p’ € M,,(A) and
1, € M, (A) C B" is the unit of M, (A).

(This follows from Theorem[7.1.35]but try to prove it as directly as possible yourself.)

Prove the generalization of this statement where p is allowed to be in a matrix algebra
M,,(B").

2. Morita invariance and applications

The Morita invariance of K-theory (Corollary) means that K%(A) only depends
on the noncommutative space (the Morita equivalence class) determined by A. Thus, K°
is effectively a theory on noncommutative spaces. Actually, as we show below, Kg has a
simpler definition for the class of compact noncommutative spaces.

Recall that for a C*-algebra A, not necessarily unital, P(A) denotes the semigroup
of isomorphism classes of f.g.p. modules over A, equivalently, of Murray-von-Neumann
equivalence classes of projections in the *-algebra M. (A).

DEFINITION 7.2.1. If A is a C*-algebra we define Koo(A) to be the Grothendiek com-
pletion of P(A).

Thus, Kqg is defined similarly to Ko, but without the unitization. Observe that due
to X® K = K, Koo is stable: Kop(A) = Koo(A® X). There is clearly a canonical map
Koo(A) — Ko(A). Note that if A = Cy(R?) then Kgo(A) = {0} by Exercise So
Koo definitely differs from K. The following shows that the discrepancy is due to Cy(RR)
representing a non-compact noncommutative space.

THEOREM 7.2.2. Ifa C*-algebra B represents a compact noncommutative space, then
Koo(B) = Ko(B).

PROOF. It suffices to prove the statement for B = A ® X where A is unital, but then

B =1limM, (A), and so Ko(B) = lim Ko (M, (A)), the isomorphism being that induced by

the system of *-homomorphisms ¢, : M,(A) — B, placing matrices in the top left corner as

usual. The imagine of a K-theory class [p] — [g] € Ko(M,,(A)) in Ko(B) is then a difference

[p] — [g] of classes of projections in B (and not in B™). Similar remarks hold for projections
in matrix algebras over M,,(A), of course this essentially changes nothing.

O

EXAMPLE 7.2.3. We have already encountered the following examples of compact
noncommutative spaces.

a) If G discrete acts properly and co-compactly on X then Cyp(X) x G represents a
noncommutative space by Theorem[5.5.7]

b) If G is a locally compact group and I' C G a discrete subgroup and H C G a
co-compact subgroup, then Cy(G/T") x H represents a compact noncommutative
space by Theorem This contains the example C(SM) x P of Corollary
5.7.8] of the geodesic/horocyclic flow on the unit tangent sphere of a compact
Riemann surface. It also contains the crossed products By, = C(T?) x pn R of the

Kronecker flow on T2 (Proposition|5.5.13})
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We have already noted that if L is an f.g.p. module over A and E is a Morita equiva-
lence between A and B then L ®4 E is an f.g.p. module over B. Tensoring with ‘E in this
way gives a semigroup isomorphism P(A) — P(B) (Theorem|5.2.3). Combining this with

Theorem we get:

COROLLARY 7.2.4. Let ‘E be a Morita A-B equivalence bimodule. If A (equivalently,
B) represents a compact noncommutative space, then the map

E.: Ko(A) = Ko(B), E.([L]—[L]):=[L®aE]—[L ®a E]
is an isomorphism.

By combining Theorem and Theorem we obtain the following alternative
description of the Ky-theory of the orbifold C*-algebras Cy(X) x G, G discrete, acting
properly and co-compactly.

COROLLARY 7.2.5. If G locally compact acts properly and co-compactly on X, let
K% (X) be the Grothendiek completion of the semigroup Vectg(X) of isomorphism classes
of G-equivariant vector bundles over X.

Then if G is discrete, then K%(X) 2 Ko(Co(X) x G), induced by the map Vectg(X) =
P(Co(X) % G) of Theorem/|5.5.10,

EXERCISE 7.2.6. Let G be a finite group acting freely on X compact. Define a map
... K(X) — K°(G\X) by the composition of the map

KO(X) = Ko(C(X)) = Ko(C(X) x G)
induced by the inclusion C(X) — C(X) x G, and the isomorphism
Ko(C(X) % G) =2 K°(G\X)
induced by the Morita equivalence C(X) x G ~ C(G\X).
a) Show that if V is a vector bundle over X then 1. ([V]) is the class of the vector
bundle V on G\X with fibres
VGX = BgecVer

b) Let m: X — G\X the quotient map. Show that (t.on*)([V]) = |G| [V] for any
vector bundle V over G\X.
¢) Suppose o is a finite-dimensional representation of G on Hy and let Vi, := X X
Hy =X X Hy / (x,v) ~ (gx,a(g)v) be the induced vector bundle on G\X. Show
that % (Vy,) is trivial. Deduce that
|G- ([Va] = dim(Va)[1]) =0,

where 1 is the trivial line bundle over G\ X/ Hence [Vy] —dim(Vy,)-[1] € KO(G\X)
is a torsion class.

3. Higher K-theory, loops and unitaries

Higher K-theory groups are described as in topological K-theory by suspension.

DEFRINITION 7.3.1. If A is a C*-algebra, i = 0,1,2,..., then we define K;(A) :=
Ko(S"A), where S"(A) = Co(R") ® A.
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It is clear that K; is functorial with respect to *-homomorphisms, and stable (that is,
Morita invariant), for all i. Bott Periodicity will tell us that the groups K;(A) are actually
automatically 2-periodic, and hence there are in effect only two of them.

In topological K-theory, we noted that a vector bundle over (X x R)™ can be trivialized
over the closure in (X X R)" of X x (—eo,0], and similarly can be trivalized over the closure
of X x [0,e0). The difference of the two trivializations on the intersection = X of these
two closed subsets (neglecting the point at infinity) gives a unitary map u: X — U,. The
argument shows that homotopy classes of such u’s give a group isomorphic to K~!(X).
(See Proposition[6.5.7). We now extend the construction to noncommutative C*-algebras.

Let A be a unital C*-algebra. Recall (see Proposition and the that U.,(A) denotes
the group of all N-by-N-matrices with entries in A, which have a block diagonal form

[g ﬂ with u a (square) unitary matrix in M,(A), and 1 denoting the identity operator.

There is an evident group structure on U..(A) by multiplication, and we can regard, in the
obvious way, all of the groups U(M,(A)) as subgroups of Uw(A).
Clearly U (A) is the inductive limit of the groups
U,(A) :={u € M,(A) | uis unitary}.

We give it the corresponding inductive limit topology): a subset U C U (A) is open if and
only if U NU(M,(A)) is open for all n.

We write u,v € Uw(A) let u ~ v if u and v are in the same path component of Us(A).
The quotient Ty (Us.(A)) is an abelian group, by Propositionm

PROPOSITION 7.3.2. If A is any unital C*-algebra, then K;(A) is naturally isomor-
phic to the abelian group T (Uoo (A))

PROOF. By definition , K;(A) := Ko (S(A)) is the kernel of the augmentation homo-
morphism €, : Ko ((S(A)*) — Z, and in particular is a subgroup of Ko ((S(A) ™). The latter
consists of equivalence classes of projections in S(A)™, and a projection in S(A)™ is a loop

p:[0,1] = M,(A)
of projections in A, such that p(0) = p(1) € M,(C) C M,(A). Any projection in M,(C)

is unitarily equivalent to for some k, and conjugating the loop by this unitary

Iy O
0 Onfk
gives an equivalent loop with

b0 =r=[g ol

so we replace the original loop with this one without change in notation.
By Exercise|7.1.27) there is a path of unitaries u: [0,1] — M, (A) with u(1) =1, and

p(t) =u(t)p(Du(r)", t €[0,1].
We have
p(0) =u(0)p(1)u(0)* = u(0)p(0)u(0)*

lok 8} . Therefore it has a block-diagonal

=5 ]

for some pair of unitaries v € My(A) and w € M,,_4(A).

and hence u(0) commutes with p(0) = p(1) = [

form
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We map
K1 (A) — Mo (Uoo(A))
by sending [p] to [v]. We leave it to the reader to check that this assignment is well defined

on K-theory classes [p], and that it is a group homomorphism. To construct an inverse, let
veUy,(A) C My (A) be a unitary. Then

v 0
0 v*
is a unitary which is in the same path component of U (A) as the identity 15,, € M5, (C) C
M, (A), by (6.13). Let, therefore,
u: [0,1] = Uyy(A)

be a unitary-valued function such that

w0 =l o) un=[g )
Now let
P [0.1] = Ma(A), p(t) :=u(r) [16" 00} u(t)".
Note that

b0 = o] =it

so that p is an element of S(A)™. If now g: [0,1] — My, (A) is the constant loop ¢(t) =
Im O
[ 0 Om:| , then
[p] — [g] € Ko(S(A))
and maps to [¢] under our construction above.
O

To define K for non-unital C*-algebras in terms of unitaries, let A be possibly non-

unital. Then the augmentation homomorphism
e:AT = C
induces a group homomorphism Ue(A™) — U.(C) and then an induced group homomor-
phism
7o (Uee(A™)) = 7 (U (C)).

PROPOSITION 7.3.3. For any C*algebra A,
K (A) 2 ker(g, : T)(Us(AT)) = 19(Us(C)).

We leave the proof to the reader, using the ideas and constructions from the unital
case.

In fact, since K;(C) = K~!(pt) = 0, the augmentation homomorphism &, is actually
the zero map, so actually

Ki(A) 2K, (A+) =M (Um(A+))

holds for any A.
One should take a bit of care with this statement, however. It is not true in KO-theory
(since it is no longer true that KO~ (pt) = 0.)
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REMARK 7.3.4. The discussion above shows that we now have two different ways of
describing K, (C) = K~2(pt). The first is the definition

K1 (C) := Ko (Co(R?)),

defined as a certain subgroup of K°((R?)*) = K°($?) (the kernel of the augmentation
homomorphism.)

On the other hand, K°(R?) = K~ !(R) = K, (Co(R)) and according to the discussion
above,

K (Co(R)) = 1o (Ua(C(T))
since Co(R)* = C(T).

Therefore, the ‘unitary description’ in this case produces a group isomorphism
(7.4) ker(e,) C K°(8%) — o (Us (C(T)) 2 [T, Us),
the last group being homotopy classes of maps T — U.., a group under pointise multipli-
cation of homotopy classes (another and briefer way of describing (Uoc (Cc (T)) J)

It is not difficult to check that this isomorphism is the clutching construction of The-
orem If E — S is any complex vector bundle, it can be trivialized over the top and
bottom S% of the sphere. On the equator T = 5> ﬁS%r, one obtains, by following the inverse
of the one trivialization, followed by the other, a map

T x C" — GL,(C),

and such a map determines a unique homotopy class u(E) € [T,GL,(C)] 2 [T, Us].
Notice that u([1]) is the zero element of the group [T, U]. However, [1] € K°(§?) is not
zero. Thus, clutching directly describes a group homomorphism

K%(8?) — [T, U.]

which annihilates the class [1] of the trivial bundle, and maps the class [H] € K°(S?) of the
Hopf bundle H — S? to the class of the unitary z: T — C. In particular, it maps

B=[H"]-[1]
to the class [Z] of the unitary zZ € C(T).

EXERCISE 7.3.5. Let u € U(A) be a unitary in a unital C*-algebra A. It determines,
by functional calculus, a *-homomorphism

C(T) — C(Spec(u)) — A,

where the first map is restrictions of functions on the circle T to the spectrum of u, and
second is functional calculus for u.

The Cayley transform 7: R — T is T (x) = ;‘—jri It maps the point at infinity of R to
1 € T, and gives a natural identification of R with the open subset T — {1} of the circle.

Since there is a *-algebra inclusion of the ideal Co(T — {1}) C C(T) we obtain a *-
homomorphism

o, : Co(R) C C(T) — C(Spec(u)) — A,

with the last map functional calculus.

By functoriality of K-theory o, determines a group homomorphism

(Otu)* Ky (CQ(R)) — K (A)
Prove that

(0)(B) = [ud;
where B € K; (Co(R)) = K°(IR?) is the Bott element.
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Deduce that if Spec(u) C T is a proper subset of the circle, then [u] = 0 € K;(A).
(Hint. The unitary z|gpcc(u) € C(Spec(u)) is connected by a path of unitaries in C(Spec(u))
to1.)

4. The long exact sequence

We now develop the long exact sequence in K-theory associated to an ideal J C A of a
C*-algebra. For this it will be convenient to describe a ‘relative’ version of Ky, similar to
the ‘K-theory triples’ discussed previously.

DEFINITION 7.4.1. Let A be a unital C*-algebra and J C A an ideal. Lett: A —A/J
be the quotient map

A relative triple is a triple (p,q,x) where p,q are projections in M, (A), for some n,
X € M,(A), and

n(x)"n(x) = p, w(x)n(x)" =q.

A triple is degenerate if x*x = p and xx* = g in A.

A homotopy of triples is a triple of continuous paths p;,q, and x;, in M, (A), ¢ € [0,1],
such that (py,q;,x;) is a triple for all r. We say the endpoints (po,qo,xo) and (p1,q1,x1) are
homotopic triples.

EXERCISE 7.4.2. Show that (p,q,x) is a relative triple, and x’ € A with x —x’ € J, then
(p,q,x') is a relative triple which is homotopic to (p,q,x). (Hint. Straight line homotopy.)

The reader might recognize the similarity to the K-theory triples (E°, E', @) we intro-
duced in connection with K-theory of noncompact spaces X. Let U C X be an open subset
and ¢: E® — E! be a vector bundle map which is an isomorphism on X \ U.

Then the triple defines a relative triple for the ideal Co(U) in Cp(X), since @[x\y is
an isomorphism between the two bundles, and hence determines a Murray-von-Neumann
equivalence between projections po, p such that E' = Im(p;).

For example, let X = D the closed unit disk in C, and z € C(D) the usual complex
variable, here considered as a bundle map from the trivial line bundle 1 on D, to itself.

Then its restriction to d is unitary, and hence (1,1,z) defines a relative triple for the
ideal Cy(D) of C(D).

DEFINITION 7.4.3. The relative group Ko(A,A/J) is defined to be the free abelian
group with one generator for each homotopy class of relative triple (p,q,x), subject to the
relations

a) (po,q0.x0)+ (p1.g1.x1) = (Po D P1.q0 D g1,%0 Dx1 ), for any pair of triples (po, go,xo)

and (p1,q1,x1);
b) Degenerate triples are zero.

REMARK 7.4.4. Let A be any C*-algebra, A™ its unitization. Then A is an ideal in A™,
with quotient map €: AT — A" /A 2 C. By definition Ko(A) =ker(e,) with e, : Ko(AT) —
Ko(C) 22 Z the induced group homomorphism.

Define a map

(7.5) Ko(AT,ATJA) = Ko(A)

by sending a triple (p,q,x) of elements of M,(A™) to [p] — [¢q] € Ko(AT). The element
g(x) =:v € M,(C) is a partial isometry with v*v = g(p),w* = €(g), by the definitions,
whence [p] — [¢] € ker(g.), so our map has range in Ko(A).

Conversely, if [p] — [g] € ker(e.) = Ko(A) with p,q € M, (A"), then the projections
€(p) and €(q) in M,,(C) determine the same K-theory class for C and hence have the same
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rank. There is then a partial isometry z € M,,(C) such that z*z = €(p) and zz* = €(g), so if
x € M,(A™) is any lift of x under € then (p,q,x) is a relative triple for the ideal A in A™,
which maps to [p] — [g] under (7.3). Hence the the map is surjective. Injectivity is left to
the reader as an exercise; the conclusion is that

(7.6) Ko(A) 2 Ko(AT,AT/A).
So ordinary K-theory is a special case of the relative theory.

EXERCISE 7.4.5. Let A,A’ be unital C*-algebras, J C A and J' C A’ ideals. Then a
*-homomorphism

o:A—A
which maps J into J, induces a group homomorphism
Ko(A,A/J) = Ko(A",A')T").

LetJ C A, A unital. Then J™ can be identified with a C*-subalgebra of A. The inclu-
sion maps the ideal J into A. So we have an induced map

(1.7) Ko(J) = Ko(Jt.JH/T) = Ko(A,A/T)

which we call the excision map. (The first isomorphism is a case of (7.6)).

We are going to show that the excision map is an isomorphism. We prove it in several
steps.

As in our discussion of K-theory triples for noncompact spaces, we start by showing
that the first projection in a relative triple can be taken to be ‘trivial,” without changing the
class of the relative triple.

LEMMA 7.4.6. Any relative triple for the ideal J of A is equivalent to a relative triple
in which

. [1(; 8} € My (C) C My(A),

for some k and n.

PROOF. Suppose that (p,g,x) be a relative triple with p,q,x € A for simplicity. Note
that (1 —p,1 — p,1 — p) is a degenerate triple. Adding it to the original triple gives the
equivalent triple (p® 1 — p,q’,x’) for some ¢’,x’.
cost —sint

Using rotation matrices R, = | .
sint  cost

} we construct the homotopy of triples

0 0 0 . . .
([15 0] +R [o X _p] R!.Riq/ R \RixRY).

10 —1 . 0 0 1-p O oz
As R%— [1 0 conjugates 0 1—p to 0 0 , at thet—zend of the path,

we get a triple of the required kind, and at the + = 0 end of the path we get the cycle
(p®1—p,q,x'). The result follows.
O

LEMMA 7.4.7. Any relative triple is equivalent to one of the form (p,q,x), where x =
up for some unitary u € M,,(A) connected to the identity in M,,(A) by a path of unitaries,
and satisfying upu* = q mod J.
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PROOF. As in Exercise[4.2.19] let (p,q,x) be a triple. Let

e [ 7(x), 1— Tt(x)n(x)*}
w(x)*n(x) — 1 m(x)* )

1
in M, (A/J). Since a path of unitaries starting at the identity can be lifted undern: A —A/J
to a path of unitaries starting at the identity in M(A), we get a unitary u € A, connected to
the identity, and such that ©(u) = w. Then, working mod J, we compute

p 0] X l—xx*{ |p O |[x O
“lo ol T |xx=1 x ||o o/ " |o o

since xp = x mod J and (x*x—1)p = 0 mod J, due to x*x = p mod J. The triple

(6 o5 o-[s o)
x 0

is a degenerate perturbation of the cycle we started with, and [O O] —u [g 8] isin J by

Then w is unitary in M;(A/J) and is connected to the identity [(1) O} by a path of unitaries

the computation just done. So the triple we started with is equivalent to

p 0 1g O p O
0o o o o] «[o o]
The fact that upu* = g mod J follows from the construction of u, which equals w mod J.
This proves the Lemma. (]

LEMMA 7.4.8. Any triple (p,q, pu) where u is a unitary in M,(A) connected to the
identity by a path of unitaries, and such that upu® = q, is equivalent to one of the form

(p»q.p).

Note that if one has a triple of the form (p,q, p) then by the definitions, it must be that
p—qel.

PROOF. Let (u)[o,1 be a path of unitaries with u; = u and up = 1. Then

(p.ui uquuy, puy )
is a path of triples. When ¢ = 0 we get (p,uqu*,p). When t = 1 we get (p,q, pu), the

original triple. The result is proved.
d

THEOREM 7.4.9. For any ideal J in a unital C*-algebra A, the excision map (1.7) is
an isomorphism.

PROOF. We prove surjectivity and leave injectivity as an exercise.
Suppose that (p,q,x) is a relative triple. By Lemma|7.4.6] it is equivalent to a triple

in which p = and in particular, p is in the range of the inclusion J* — A. Next,

Iry O
0 o
by Lemma the triple can be replaced by one in which x = up, where u is a unitary
in A, connected to the identity by a path of unitaries, and by Lemma [7.4.8] the unitary u
can be removed by a homotopy, to get a triple now of the form (p,q, p). The projection p
Ly

0 0
previous steps, except having zeros added to it. In particular, since p — g € J. Now since

remains of the form { for some m, since p has not been changed through any of the
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= 16” 8] , both p and ¢ are in the range of the inclusion J* — A. The excision map
sends [p] — [g] to the class of the triple (p,g,x) as claimed, and so excision is surjective.
O

5. The long exact sequence

As a consequence of the excision isomorphism, we deduce the existence of the long
exact sequence in C*-algebra K-theory, as follows.
Let A be unital, J C A an ideal. Let a.: Ko(A/A/J) — Ko(A) be the group homomor-
phism
o([(p.g-¥)]) = [p] — 9] € Ko(A).
LEMMA 7.5.1. The sequence of groups
Ko(A,A/J) 5 Ko(A) =5 Ko(A/J)

is exact in the middle.

PROOF. Clearly 7, o o is the zero homomorphism, so ran(a) C ker(n*). To show
the other equality, let [p] — [¢] € Ko(A), where p,q are projections in M, (A) for some
n, such that 7. ([p] — [¢]) = 0. Then by Exercise[7.1.6] 7(p) ® 14 is Murray-von-Neumann
equivalent to t(g) @ 1y, for some , so there exists z € M, (A /J) such that z*z =w(p) ® 14,
727" =n(q) @ 1x. Let x € M;11(A) be any lift of z. Then (p,q,x) is a triple such that

a([(p.q.x)]) = [p] - [q]- .

COROLLARY 7.5.2. Let J be an ideal in a unital C*-algebra A, Then the sequence of
groups
Ko(J) = Ko(A) = Ko(A/J)

is exact in the middle.

The proof is easy, by the Excision theorem.

Let F be any functor from the category of C*-algebras and C*-algebra homomor-
phisms, to the category of abelian groups. Since F is a functor, the inclusion i: J — A of
an ideal in a C*-algebra determine a sequence of group homomorphisms

F(i) F(n

F) 2 ma) 29 pag).

The functor is called half-exact if this sequence of group homomorphisms is exact in the
middle. The functor is homotopy-invariant if F(ot) = F(B) for any pair of homotopic
*-homomorphisms o, 3: A — B.
We have proved so far that the functor Ky is both homotopy invariant and half-exact.
We are going to show that any half-exact, homotopy-invariant functor determines a
long exact sequence of the form
7.8) F) 2 Fa) 2% Fasn

5 r(sr) 25 psay 257, p(s(a /)

2i 2
3 p(s2r) 250, prstay EE0 p(s2arn) S -

This will in particular hold for the functor Ky.
Letw: A — A/J be the quotient map. We define two auxilliary C*-algebras.
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Let

(7.9) Cr:={(a.f) cA®C([0,1],A/) | f(0) =0, () n(a)},
={f:0,1]=A[f(0) e J}.

called the mapping cone of T.
There is an obvious inclusion i: J — Q, as constant functions. There is also a map
p: Q — J, defined p(f) := f(0). Clearly p: i = id;. On the other hand,

u(f)(s) = f(zs)
gives a homotopy between i o p and the identity homomorphism Q — Q.
That is, i and p are homotopy-inverses of each other.
Let k: J — Cy be the inclusion j(a) := (a,0).

LEMMA 7.5.3. k induces an isomorphism k. : K, (J) — K, (Cr).

PROOF. Consider the map

(7.10) a: Q= Cr, a(f) = (f(1).mo ).
Note that (mo f)(0) = 0 since f(0) € J. The kernel of o is the ideal {f € Q| f(1) =
0, o f = 0} and such f map into J. It follows that
ker(o) 22 Co((0,1],J),
which is a contractible C*-algebra (Exercise [7.1.26). The sequence of groups
(7.11) Ko (ker(oc)) — Ko(Q) = Ko(Cr)
is exact in the middle, and Kg (ker((x)) is the zero group by the above discussion. Hence
Oly 2 K()(Q) — Ko(Cﬂ;)
is injective.
Now the composition
J50%cp
equals k. Hence k, = o, o i, and i, is an isomorphism and o is injective.
Hence £, is injective.

For surjectivity of k. observe that k actually embeds J as an ideal in Cy. It is the kernel
of the map

B: Cx— C((0.1.4/J), B(a.f) = .
We obtain a sequence of groups
(7.12) Ko(J) £ Ko(Cr) = Ko [C((0,1],4/)]

and Ko [Co((0,1],A/J)] is the zero group, since Cy((0,1],A/J) is contractible.
This shows that k, is surjective.
([l

Note that S(A/J) := {f: [0,1] = A/J | f(0) = f(1) = 0} is an ideal in C;. We let
s: S(A/J) — Cy be the inclusion.

DEFINITION 7.5.4. The connecting homomorphism, or boundary homomorphism,
0: Kl(A/]) — Ko(])

is defined to be the composition

(7.13) Ki(A/) = Ko(S(A/7)) 2 Ko(Cr) 5 Ko(),
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where the first map is induced from the inclusion s: S(A/J) — Cy and the second map
is the inverse of the group isomorphism k. : Ko(/) — Ko(Cr) induced by the inclusion
k:J— Cyp.

We now take our extension 0 —J — A — A/J — 0. It generates the sequence of
groups and group homomorphisms

(7.14) Ko(7) £ Ko(4) ™ Ko(A /).

which is exact in the middle.
The sequence 0 — Co(R) @ J — CH(R) ® A — Cop(R) ® A/J — 0 is still exact, and
writing Co(R) ® J = SJ and so on, we get a sequence of groups

(7.15) Ko(SJ) = Ko(SA) — Ko (S(A(A/T))
which by the definitions can be written
(7.16) K (1) 25 K, (4) 25 K (A/)).

It is exact in the middle.

We then connect the end of (7.16)) with (7.14)) using the boundary map (7.13)). to get
the spliced-together sequence

11D Ki() B KA) B K (A/) S Ko() £ Ko(d) 25 Ko(a/J).
LEMMA 7.5.5. In reference to (1.17), we have ker(0) = ran(m.) and ran(9) = ker( ).

PROOF. Consider the diagram

Here s is the map induced by the inclusion s: S(A/J) — Cr of S(A/J) as an ideal in Cg,
P« is induced by the map Cp — A, whose kernel is the image of s, and k: J — Cy is the
inclusion as constant functions.

The diagram commutes by the definitions. The top row is exact in the middle because
it comes from a short exact sequence of C*-algebras. It is now apparent that ran(d) =
ker(j.), as claimed.

Now consider the exact sequence

(7.18) 0-SA/MN St a—o.

where g(a, ) = a. It generates a connecting map 9’ fitting into a sequence

(7.19) K (S(A/))) = Ki(Cr) = Ki(A) 9K, (S(A/T)) =5 Ko(Cx) — Ko(A).

and ran(d’) = ker(s,) by what has already been proved, while ker(s,) = ker(d) by the
definitions, so we get that
ker(d) = ran(d’).
But the map 9’ is simply equal to 7. as a map K;(A) — K;(A/J). The result follows.
]
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THEOREM 7.5.6. Let J be an ideal in a C*-algebra A. Then there exist connecting
homomorphisms 9: Ki+1(A/J) — K;(A), for each i = 0,1,..., making the sequence of
groups and group homomorphisms

(720) - — Kp(J) 5 Kp(A) =5 Ko(A/T)
SKI() B K (A) B K (a))
% Ko(J) 25 Ko(4) =5 Ko(A/T))

exact (with nothing known about the right end-point), and with the following naturality
property.

If ©: A1 — Ay is a *-homomorphism, mapping an ideal J| C Ay to an ideal J, in A;,
then the diagram
(7.21)

Kiti(/1) —=Ki1(A)) — Kip1 (A1 1) —Kio1(Jl) —Ki1(A) —— -

L |

Kit1(2) —= Kit1(A2) —=Ki11(A2 /) —= K1 (o) —=K;_1(A2) ——---

commutes, with the top and bottom being the long exact sequences associated to the ideals
Ji CAyand Jy C As.

An explicit description of the connecting homomorphism

We finish this section with a fairly specific description of the connecting homomor-

phism
8: Ki(A/J) :=Ko(S(A/)) — Ko(J).
of Definition associated to an ideal J C A.

Assume A is unital, so C C A naturally, by multiplying against the unit of A. The
quotient mapping is unital. So we also have a copy of C in A/J.

We consider S(A/J) to be the C*-algebra of continuous f: [0,1] — A/J with f(0) =
f(1) =0. Then its unitization S(A/J)" is the C*-algebra of continuous f: [0,1] — A/J
such that f(0) = f(1) e CC A/J.

On the other hand, the mapping cone Cy is the C*-algebra of pairs (a, f) in the direct
sum A & C([0,1],A/J) such that £(0) =0 and f(1) = n(a). Its unitization C; is pairs
(a,f) where f: [0,1] — A/J with f(0) € C C A/J and f(1) = wn(a). As above, we have
a natural injective *-homomorphism s: S(A/J) — Cy and it extends canonically to a *-
homomorphism

(7.22) s S(AMN)T =G s(f) = (£0). 1)

Note that f(0) = f(1) € C in this formula, so s(f) lies in C;. The other ingredient in the
boundary map is the inclusion k: J — Cy. It extends to a *-homomorphism

(7.23) k:Jt = Cf, k(a) = (a,7(a)),

for a € J* understood as a C*-subalgebra of A. Note that the restriction of the quotient
map 7 to J T, has kernel exactly equal to J.



5. THE LONG EXACT SEQUENCE 275

Now take a projection p € S(A/J) ™. Itis aloop of projections: a continuous, projection-
valued map p: [0,1] — A/J with p(0) = p(1) = A € C. By the path-lifting property of
projections, p lifts under the quotient map m: A — A/J to a path

p:[0,1] = A

of projections in A such that 5(1) = A. We know that t(5(0)) = p(0) = A, so that 5(0) — A
maps to zero under the quotient map 7: J* — A and hence p(0) —A € J, whence p(0) € J ™.
We set

(7.24) Twist(p) := [(0)] € Ko(J 7).

Now consider the image of [p] under s, : Ko(S(A/J)") — Ko(Cy). By the definitions, see
(7:53:3), the class s.([p]) is the class of the projection in C; given by the element

(p(0).p) € Cy.

On the other hand, consider the map k: J* — C;, given by (7.23). By its definition,
k.([p(0)]) € Ko(Cy) is the class of the projection (5(0), p(0)) € Cy.

LEMMA 7.5.7. In the above notation, the projections (j(0),p(0)) and (p(0),p) in
C; are homotopic.
In particular,

k. ([5(0)]) = s.([p]) € Ko(Cq).

PROOF. Let g5 € C be the projection g, := (p(s), ps), where py: [0,1] — A/J is the
projection-valued map py(t) := p(ts). For each s € [0,1], ©(p(s)) = p(s) = ps(1), and,
moreover, p,(0) = p(0) € C, so g, really is in C7 . It is clearly a projection. When s = 0,
since py is the constant function p(0) we obtain the projection

(5(0).p(0)))

and when s = 1 we get, since p; = p,

(p(1),p).

Moreover, p(1) = p(1) = p(0) € C, by construction, and so the two endpoints of our path
are the two given projections, as claimed.
U

Now let p,q € S(A/J)" be projections such that [p] — [g] € Ko(S(A/J)) = ker(e.),
with €: S(A/J)" — C the usual augmentation.
I claim that

8([p] — lg]) = Twist(p) — Twist(q) € Ko(J).
Indeed, from Lemma

s«([p] = la]) = s.([p]) = 5:([q]) =k« ([p(0)]) — k< ([g(0)]) = k. (Twist(p) — Twist(q))
and hence
8([p) — lq)) := (k" 05.)([p] — [g)) = Twist(p) — Twist(q)
follows.
The extension of this argument to where the projections are matrix-valued, is routine

and is left to the reader. In fact it essentially follows from simply replacing A by M,,(A), J
by M, (J), etc, in the given argument.
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THEOREM 7.5.8. Let J C A be an ideal, A unital. Let p: [0,1] — M,(A/J) be a
continuous, projection-valued map with p(0) = p(1) € M,(C) C M,(A/J). Let p(1) be a
lift of p(1) € My, (C) to M,(A), and let p: [0,1] — M,(A) be a lifting of the path p with
P(1) prescribed as in the previous sentence. Then p(0) € J* C A, and if

Twist(p) := [5(0)] € Ko(J"),
then the connecting map
5: K (A/)) = Ko(J)
satisfies
8([p] - [g]) = Twist(p) — Twist(q),
for any group element [p] — [q] € K1(A/J).

EXERCISE 7.5.9. The Mischenko element 3 defines a canonical loop of vector bundles
over the circle T, which is the boundary of the closed disk D. Since D" & S2, the 2-sphere,

Twist(B) € K°($?).
Show that Twist(B) = [H] is the class of the Hopf bundle.
Finally, we complete this section by describing the connecting map
5: K (A/)) = Ko(J)

in terms of the description of K;(A/J) as equivalence classes of unitaries in (matrix alge-
bras over) A/J.

LEMMA 7.5.10. IfA is a unital C*-algebra and a € A with ||a|| < 1, then

a —(1—aa*)2

7.25 =
(7:25) v (1—a*a)2 a*

is a unitary in M (A).
PROOF. This follows from a direct calculation using the fact that
a(l— a*a)% =(1- aa*)%a
(see Exercise[2.5.11}) O

Now let w € M,,(A/J) be a unitary. We need to describe the corresponding cycle for
Ko(SA) and describe its twist, which will be a cycle for Ko(J), so there will be two steps
in the calculation.

Firstly, looking back at the proof of Proposition we need to find a path of uni-
taries w: [0,1] = M, (A/J) such that

(7.26) w(0>=[”g H w(l)z[lg N }

From this is obtained a loop of projections in M;,(A) by setting

pi=wt) | g [

In the second step, the twist Twist(p) is by definition obtained by lifting this path of

projections in A/J to a path of projections in A, starting at {1(;1 (? ] eM,(JT) C M,(A).
n
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We can carry out both steps at once quite efficiently, however. Let a € M,,(A) be any
lift of u € M,,(A/J) to an element of A with |ja]| < 1. Set
ar:=t-1,4+(1—1t)-a € M,(A).
Then ||| < 1, and hence
P
(7.27) ult) = a o —(-adq):
(1—dafa,)? ar

I, O
0 1,
the path w :=mou: [0,1] — M2,(A/J) is as required by (7.26). We obtain the loop of
projections in M, (A/J),

is unitary in M»,(A). Note that n(ag) = n(a) = u and that u; = = 12y Therefore

b=t | g [

This loop, however, has a ready-make lift to a path of projections in j, € M»,(A) starting

at L0 since we may set
0 0, Y

po)i=u) [ o] s

with u(z) the path of unitaries in (7.27) .
This lifted path has endpoints

. 1, 0
=g o
and
1] * % 4
798)  5(0) — a —(1—aa*)2 {ln 0] a (1—a*a)2
(7.28) 5(0) (l—a*a)% a* | 0 0, —(l—aa*)% a
_ aa* a(l—a*a)%
(l—a*a)% 1—aa* |

which is a projection in M5, (A). By the definitions,
Twist(p) = [5(0)] — [1,] € Ko(J").
We have proved the following.

THEOREM 7.5.11. Let u € M,(A/J) be a unitary representing a class [u] € K,(A/J).
Let a € My(A) such that ||a|| < 1 and (a) = u.
Set

(7.29) q:= | ] € M, (A).

I, O
0 0,

8([u]) = [q] = [1a] € Ko(J),
holds, where &8: K1(A/J) — Ko(J) is the connecting map in the long exact sequence.

Then q is a projection in Ma,(J™") such that m(q) = [ } € M, (A/J), and
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6. Examples of the connecting homomorphism

We start by considering an extremely important instance of an exact sequence of C*-
algebras: namely the sequence

0— X(H)—B(H)— QH)—0,
where Q(H) =B(H)/ % (H) is the Calkin algebra. This exact sequence generates a long

~

exact sequence of K-theory groups, and noting that K;( X)) = K;(C), it has the form

(730) - = Ka(C) = Ka(B) — Ka(Q) >
K1 (C) - Ki(B) = K1 (Q) >
Ko(C) = Ko(B) = Ko(Q)

At this stage, we are interesting in computing the connecting maps 8. Using the iso-
morphism K¢ (C) = Z, the first of these connecting maps boils down to a group homomor-
phism

5: K (Q) — Z.

In order to compute it explicitly, we start with a general lemma.

LEMMA 7.6.1. Suppose that A is unital and J C A is an ideal.
Suppose that u € M, (A/J) and that u lifts to a partial isometry v € M,,(A). Then

8([u]) =[1=vv]—[1 =w'] € Ko(J),
where 8: K1(A/J) — Ko(J) is the connecting map of the previous section.

PROOF. From Theorem|7.5.11]

w* v(1—v*v)2
(l—v*v)%v* 1—v*v
v*v)2 = 1 —v*v s projection to the kernel of v and so the off-diagonal entries in the matrix
q are zero. We get

[g] = (1] = DV ]+ [T = vy = [1a] = [T =v"V] = [T = 7]

where g = € M, (A). Since v is a partial isometry, (1 —

as claimed.
O

LEMMA 7.6.2. If u € Q is a unitary, then u has a lift to B(H) which is a partial
isometry.

PROOF. Let a € B be any lift of . Then it has a polar decomposition a = v|a| where
v is a partial isometry from ker(a)* to ran(a). If t: B — Q is the quotient map, then

u=n(a) = n(v)n(lal).
Now it follows from the definitions that the projections vv* and v*v satisfy
aviv=a, w'-a=a.
Hence, projecting these equations to the Calkin algebra we get

u-t(v)'w(v) =u, a(V)t(v)"-u=ue Q.
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Since u is unitary, we get
n(v)'n(v) =1, n(v)n(v)* =1.

Hence 7(v) is unitary in the Calkin algebra, and hence (|a|) is also unitary, and is also
positive. Any positive unitary in a C*-algebra must be equal to 1. Hence

u=m(v).

So v provides the required lift of u to a partial isometry in B.
O

COROLLARY 7.6.3. Let H be a separable Hilbert space, Q =B(H)/ K (H) the Calkin
algebra of H. Let u be a unitary in M,(Q) for some n, representing a class [u] € K;(Q).
Lift u to a bounded operator

T:H®---H—-H® --®H.
Then T is Fredholm, and
O([u]) = Index(T) € Ko(XK) = Z,
where

S: K](Q) — K()(‘](:) ~7

is the connecting homomorphism of the exact sequence
0—-X—-B—-Q—0.

PROOF. Since M, (Q(H)) = Q(H & ---H) we assume for simplicity that u € Q from
the start. If T is a lift of u to B(H) then T is essentially unitary and hence Fredholm. Its
Fredholm index Index(T) € Z is therefore well defined , and independent of the lift.

By Lemma(7.6.2] we can find a lift 7 which is a partial isometry. By Lemma[7.6.1]

8([u) =1 =T"T| = [1 = TT"] = [Prier(r)] = [Plier(r+)] € Ko(X),
the isomorphism Ko( %) = Z maps [Pryer(r)] — [Prier(r+)] to the difference of integers
dim ker(T') — dim ker(7*) = Index(T)

as required.

COROLLARY 7.6.4. Let
8: K (T) = Ko(K) = Z
be the connecting homomorphism of the Toeplitz extension
0—-KX—T—C(T)—0.
Then if u € M,,(C(T)) is a unitary, lift u to a matrix of Toeplitz operators on I*(N) and let
T, P(N)& @ (N)
be the associated generalized Toeplitz operator. Then T is Fredholm and
O([u]) = Index(T,),
where Index(T,,) is the Fredholm index of T,.
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PROOF. We have a commutative diagram of C*-algebras and homomorphisms

(7.31) 0 X T C(T) 0
\Lid li l‘t
0 X B Q 0

The map i: 7 — B is the natural inclusion; the map t: C(T) — Q maps f € C(T) to the
image of
Ty € B(A(N)) /K (I*(N)) =2 Q(I*(N)).

By naturaity of connecting maps with respect to *-homomorphisms, the diagram

(7.32) K-1(T) —% Ko(X) = Z

s
Ki(Q) —=Ko(X) =Z

commutes, where the 8’s on the top and bottom are associated to the two exact sequences.
The result follows from Corollary
(]

The connecting homomorphism for the boundary extension of the disk.

We next consider a more purely topological instance of the connecting homomor-
phism, i.e. one which involves only topological K-theory of spaces.
Consider the exact sequence of C*-algebras

(7.33) 0 — Cy(D) — (D) — C(AD) = C(T) — 0

of C(T) by Co(ID), with ID the open disk. Since D is compact and contractible, K~ (D) =
K~!(pt) = 0 and K°(D) = K°(pt) = Z. Since K°(T) = Z with generator the class of the
trivial line bundle over T, the restriction map C(D) — C(T) induces a surjection on K°.
Hence we get an exact sequence of groups

(7.34) 0K (T) % K'D) > Z -0,

where J, denotes the connecting homomorphism; we subscript it by 7 (standing for ‘topo-
logical’) to distinguish it from the Toeplitz connecting map.

The map K°(D) — Z is induced by the C*-algebra homomorphism Co(ID) — C(DD)
and the isomorphism K°(ID) 2 Z due to contractibility of the closed disk.

The following exercise is a good one, and does not require Bott Periodicity to solve it.

EXERCISE 7.6.5. Prove that if U C X is an open subset of a compact, contractible
space X (so that Ko (C(X)) = K°(X) 2 Z), then the C*-algebra inclusion Cy(U) — C(X)
induces the zero homomorphism

K(U) = K°(X).

(Hint. Let i: pt — X be an inclusion of the one-point space in X mapping the point to
X € X; contractibility of X implies that i*: K°(X) — Z is an isomorphism, for any choice
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of xp. But the point xp can be moved to be disjoint from the support of any K-theory class
for U, since any such class has a compact support inside U.)

From the exercise,
&: K I(T) — K°(D)

is an isomorphism of groups.
Now let z: T — C the inclusion, so z € C(T) is unitary and defines a class [z] €
K~!(T). Tt lifts to the inclusion z: D — C, an element of C(D) of norm < 1.

By Theorem[7.5.11]
VAR D

7.35 = eM(C(D)).
( ) q Zm 1— |Z\2 2( ( ))
is a projection in M;(Cy(ID)™) such that and
(7.36) 8([z]) = [g] —[1] € K°(D).

EXERCISE 7.6.6. Let @: R?> = C — D be the diffeomorphism

z

$=

Show that

(9) == 1],

the projection-valued map p: C — M, (C) defined in Example[7.1.3} the class [p] —[1] is
a representation of the Bott element p € K(R?). This shows that the isomorphism
¢ : K°(D) — K°(R?)
satisfies
¢* (8:([z])) = Bre € K°(R?).

Thus, up to the canonical isomorphism K°(ID) 22 K°(RR?), the class 8([z]) is the Bott ele-
ment.

Since it is going to play a significant role in what follows, we review the construction
of the ‘Bott element.” It’s initial source was the Hopf bundle H over CP'. The Hopf bundle
has a rather convenient representation in terms of a projection: the map p: CP! — M, (C)
is the projection-valued function p: CP' — M,(C) mapping a line L C C? to orthogonal
projection pr; onto that line. In terms of homogeneous coordinates on CP!,

1 [P oWz
PEw) = raep [ZW w2

Under the standard embedding of C as an open subset of CP!, z — [z,1] we obtain the
restriction p of P to C, given by the formula

o= |t )

TR Z

Thinking of CP!' as (R?)™, note that p takes the value

==y o)
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and at the origin 0 € C, takes the value

=0 1

The Bott element is by definition
B:=[p] - [1] e K°(R?).

As noted above, the particular choice of homeomorphism R? 2 D maps p (and )
into a corresponding projection, and K-theory class, for Co(D), with D the unit disk; the
formula of this new, projection-valued function on the disk, is conveniently given by

2 _ _
(7.37) a0 =|. \/H—W Zvlikl'ﬂ € M (C(D)).

— conveniently because this is precisely the formula for the projection involved in the for-
mula produced by us for

9([]) € Ko(Co(R?)),
with & the connecting homomorphism for the disk and the closed disk.

1 0 . S
0] . In particular, since it is constant
on the boundary, we can extend it (by the same constant matrix value to a function §: C —

M,(C), and even further to C* = (R?)~M,(C), with value Ll) 8} at oo,

Note that on the boundary of the disk ¢(z) = [

EXERCISE 7.6.7. The projections ¢ and p are homotopic as projections in Co(R?)™*.
(Hint. Argue that the composition of the map @: R* — DD of Exercise and the open
embedding D — R? is homotopic to the identity map R? — R?, through a homotopy of
open embeddings fixing the point at infinity.

From the Exercise above, [p] — [1] and [¢] — [1] define the same element of K°(R?).
Note that g (or §) can be re-scaled into an arbitrarily small disk around 0 € C, or, of
course, moved into a disk centred at another point. One thus obtains varieties of formulas

for projection-valued functions on (R?)*, all taking the constant value [(1) 8} outside of

a small open disk in the plane. The classes [g] — [1] are equal to the Bott element 3 in the
group K°(R?). We have already discussed classes defined in this manner; we call them
K-theory ‘germs,” and the one under discussion was referred to as the ‘K-theory germ of a
point in R?.” The general outcome of that discussion was that one can produce a K-theory
class for R? in the following way.

Take a point p € R> = C and let ¢(z) = z — p, which is non-vanishing away from
p. Now let B be any closed ball around p and B’ = C\ int(B) U {e}. Each are closed,
contractible subsets of (R?)* and we can clutch the trivial bundles B x C and B’ x C over
BN B’ = 0B using the clutching function z — p. This results in a complex line E bundle
over S, and the difference [E] — [1] € K°(R?) equals the Bott element f.

One can obviously use more general clutching functions than z — p. Any complex-
valued continuous function with p as as isolated zero determines enough data to use it to
clutch two trivial bundles, one defined over a neighbourhood of p, one defined over its
complement in S, to produce a vector bundle over S2.

Let us fix p = 0 and clutch using the closed disk D = D and DY, its complement in
(R2)*. The intersection DN T’ = T is the circle. If u: T — U, is any unitary valued
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function, let Eq be the vector bundle over §? defined by clutching D x C" and D' x C"
using @. Let
b(@) = [Eq] — [1,] € K°(R?)
be the corresponding ‘Bott-type’ element. It is an element of K°($?) which is in the kernel
of the augmentation homomorphism
e KO(8%) = KO((R*) ") = K%(pt) = Z

and hence defines a class in K°(R?).

It is an easy exercise to check that if u and u’ are homotopic U,,-valued maps, amongst

such maps, then the vector bundles E, and E,; are homotopic vector bundles on S2, and
hence are isomorphic. In particular, since the clutching function

b ?

is homotopic to the constant clutching function [é ﬂ we obtain that

EZEBZ ~ S2 X (Cz,
isomorphic as vector bundles, and thus in K°($?) it follows that
[E:] + [E] = [12] € K°($?)
holds, so that
[E:] = [1]+[E] - [1] =0 € K°(S?).
Hence
b(z) = —b(z) € K°(S?).

EXERCISE 7.6.8. Let E, be the bundle over 2 obtained from u: T — U, as in the
above discussion. Let o: S? — S2 be the extension of a linear, isometric map (an element of
O(2,R).) Such a map restricts to amap o.: T — T, and u o a is another clutching function
determining a bundle E,o4 over S2.

Show that

Euoa = o' (E,)
as vector bundles over S2.

Combining the discussion above with the exercise we obtain the following simple
result.

PROPOSITION 7.6.9. Ifa.: R?> — R? is an orthogonal map,
o KO(R?) — K°(R?)
the induced map, then

o (B) = det(av) - B,

with det(at) the determinant of the matrix o, and B is the Bott element.

PROOF. The Bott element in the notation of the discuss above, is given by

B=>b(2),
where z: T — C is the usual coordinate. Since o is homotopic to either the identity map
R? — R? or to the complex conjugation map, through elements of O(2,R), the result

follows from the above discussion.
O



284 7. K-THEORY FOR C*-ALGEBRAS

A K-theoretic perspective on the Toeplitz index theorem.

A pseudo-Toeplitz operator T =T, + S, for u: T — C* smooth, say, and S a smoothing
operator on the circle, is Fredholm, and has a Fredholm index
Index(T) := dim ker(T') — dim ker(T™).
We have shown that this ‘analytic index” admits a K-theoretic interpretation involving the
Toeplitz algebra and the Toeplitz extension:
Index(T) = &([u]),
where
8: K UT) > Ko(K) =2
is the connecting map for the Toeplitz extension.

The essential idea leading to the Atiyah-Singer index theorem, is that this index also
has a purely topological K-theoretic interpretation. That is, it can be described purely
in terms of a certain fopological K-theoretic invariant of the symbol, which involves no
noncommutative C*-algebras.

We describe this more general statement now, assuming Bott Periodicity, which im-
plies that K°(D) = Z - Bp, where Bp is the Bott element of the open disk. Consider the
connecting homomorphism

8 : K (T) - K()
associated to the exact sequence
0 — Co(D) — C(D) — C(T) — 0.
Now for u the symbol of T as above, set
(7.38) Index;(T):=n <= &([u]) =n-Pp € K°(D).
Then

THEOREM 7.6.10. If T is a pseudo-Toeplitz operator on T with symbol u, then
Index(T) = Index, ([u]),

where [u] € K~(T) is the K-theory class determined by u.

EXERCISE 7.6.11. Let i: D — R? be the inclusion of ID as an open subset of R2. It
determines a map

il: K°(D) — K°(R?).
Let Bp € K°(ID) be the Bott element of the disk (7.36). Let @: R? — I the diffeomorphism
of Exercise[7.6.6] Bg2 the Bott element for R2. Prove that
i'(Bp) = 9" (Bn).

The proof only involves some simple homotopies.

EXERCISE 7.6.12. If u is a non-vanishing function on T, define Index, ([u]) by (7.38).
Let E, be the vector bundle over S? obtained by clutching the trivial vector bundles % x C
over the top and bottom hemispheres, using u: Si NS? — C*. Prove that

[Eu] — (1] = Index; ([u]) - [H*] € K°(S?),

where H* is the dual of the Hop bundle.
This gives another way of looking at the topological index.
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7. The external product operation on K-theory

While K-theory group of a commutative C*-algebras has a natural ring structure (in-
duced by the tensor product of vector bundles, fibrewise), the K-theory of a noncommuta-
tive C*-algebra has in general no natural ring structure.

Formally, the fibrewise tensor product of two vector bundles E — X and E’ — X may
be interpreted in the following way. First, one forms the external tensor product of the two
bundles, forming the bundle over X x X whose fibre at (x,y) is Ey ®E§, which can easily
be checked to be a vector bundle over X x X.

Then one restricts this vector bundle over X x X to the diagonal, a copy of X inside
X xX.

This results, obviously, in precisely the (fibrewise) tensor product bundle E @ E'.

The first step makes sense for noncommutative C*-algebras. The second step involves
the diagonal map &: X — X x X, whose Gelfand dual is the multiplication map C(X) ®
C(X) — C(X). The multiplication map makes sense for general C*-algebras but is not a
*-homomorphism, unless they are commutative, and so it does not induce a product at the
level of K-theory.

In this section we describe the extension of the first step to general C*-algebras. We
will show that tensor product (of f.g.p. modules) gives rise to a natural bilinear map

Ki(A) xK;(B) > Kiy;j(A®B), (x,y)— x&y

for any A, B, which we will call the external product.

We start with A and B unital.

We have already defined (see Equation (4.19)) the external product of two Hilbert
modules over A, B, respectively, which is then a Hilbert module over A ® B.

Observe that the external product of a finitely generated free right A-module E4, and
a finitely generated free right B-module Ep, in this sense, is a free right A ® B-module.
Indeed, choosing an isomorphism E4 = A" and an isomorphism Ep = B™, we obtain an
isomorphism on the algebraic tensor product E4 ®¢ Ep with A” @ B" = (A ® B)"", where
the tensor product is algebraic, that is, to the direct sum of nm copies of the algebraic tensor
product A ®c B of A and B.

Now completing this direct sum with respect to the Hermitian form above, results in
the direct sum nm copies of the C*-algebraic tensor product A ® B of A and B.

If E4 and E) are isomorphic, then they have Hermitian forms and an isometric iso-
morphism between the two corresponding Hilbert modules. It follows that E4 Q¢ Ep =2
E) ®c Ep, if Ep is a right B-module. By similar such simple arguments, one verifies that
one obtains a well defined ‘external product’ operation on K-theory, as summarized by the
following

PROPOSITION 7.7.1. Let A and B be unital C*-algebras. If Ex and Ep be finitely
generated projective A, B-modules, respectively, Ex ® Ep their external tensor product, then
E4 ®c Eg is finitely generated projective over A Q B.

1. Defining

[EA]®[Ep] := [E ®c Ep],
gives a well defined , Z-bilinear map
(7.39) ®: P(A) x P(B) — P(A®B),
on the semigroups of isomorphism classes of f.g.p. modules, and consequent Z-bilinear

map
Ko(A) x Ko(B) — Ko(A® B).
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2. The pairing (T.46)) is natural in the sense that if o.: A — A’ and B: B — B are *-
homomorphisms between unital C*-algebras, aQp: AQ B — A’ ® B’ their tensor product,
then

(7.40) o ([Ea])©B4 ([Es]) = (0@ B)+ ([Ea]®[EB]) € Ko(A' @ B')

holds, for all f.g.p. modules E4 over A, and Ep over B.
3. If x € Ko(A) and [1] € Ko(C) denotes the positive generator of Ko(C), then under
the identifications AQ C =2 A, CRA XA,

holds for all x € Ko(A).

REMARK 7.7.2. If one is thinking of projections, rather than f.g.p. modules, let
p € My(A) and g € M,,(B) be two projections. Then p® g € M,(A) ® M;,(B). Choos-
ing any bijection between {1,...,n} x {1,2,...,m} =2 {1,2,...,nm} gives an isomorphism
M, (A) ®M,,(B) = M,,,,(A® B). The projection p ® g so defined, orthogonally projections
(A® B)™ to an isomorphic copy of the external product of modules pA” ®c gB™.

EXERCISE 7.7.3. Suppose E — X and E' — X' are vector bundles over X, X’ (com-
pact). Prove that the section module of the external product of the two bundles, a bundle
over X x X', defined at the beginning of this section, is isomorphic to the external product
['(E) ®c T'(E") of Definition 2?.

EXERCISE 7.7.4. If 1,, = C" is the trivial rank »n free C-module, then

~

[1,]&x = nx
for any A unital, any x € Ko(A).

EXERCISE 7.7.5. Recall that P(C) = N and Ky(C) = Z. Show directly that the ex-
ternal product

P(C) x P(C) — P(C®C) = P(C)

defined above corresponds to multiplication of natural numbers.
Analogously, show that

Ko(C) x Ko(C) — Ko(C®C) = Ko(C)

corresponds to multiplication of integers.
You can use Exercise [7.7.4]to show, more generally, that the external product map

Ko(C) xKp(A) = Ko(C®A) =Ko(A)
identifies with the obvious Z-multiplication map
7 X KQ(A) — K()(A).

The external product on the Ky-groups of a pair of possibly non-unital algebras is
slightly more complicated to define. Suppose A and A, are two, possibly non-unital alge-
bras. Let€;: AT — Cand &: A2+ — C the usual augmentation *-homomorphisms. They
induce *-homomorphisms

e1®@ 1,1 Al ®A] - CoA] =47, and 1, @€ A] ®A] —A[.

Let
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(741) w: A ®A7 — AT ®A7,
TC(Cl] ®Cl2) = ((]Af ®€2)(a1 ®a2), (81 ® IA;)(al ®a2)).

be the direct sum of the *-homomorphisms 1 At @& andg; ®1 Af

Note that (A] ®A;)* embeds in Al+ ®A2+ by extending the obvious embedding A ®
Ay — AT ®A§r and then extending it to the unitization by mapping the unit to the unit 1 ® 1
of AT ®A7.

LEMMA 7.7.6. For m as in (T4]), the map Ko((A1 ® A2)") = Ko(A] ®AJ) induced
by the inclusion (A] @ A)T — Al+ ®AS, maps Ko(A| @ Ay) to the subgroup ker(m.) C
Ko(AT ©A7) of Ko(AT ©47).

Note that (omitting subscripts)

ker(m) =ker(g; ® 1), N ker (1 ®¢€),.

PROOF. The restriction &) ® 14, of €1 ® 1A2+ to AT ®Aj has kernel A| ® A>. Hence the
sequence
0—+AI®A > AT ®A; = Ay — 0
is exact. It is actually split exact, using the splitting A, — Al+ ®Aj, ap — 1 ®ap. Hence
we obtain an exact sequence of Ky-groups

0— KO(A] ®A2) — Ko(AT @Az) — Ko(Az) — 0.
The quotient map is the map induced on Ko from €; ® 14,. Therefore, Ko(A| ®A;) embeds
in Ko(A] ®A,) as the kernel of (g; ® 14, ).
On the other hand, Ko(A] ®A») injects in Ko(A] ® A5 ) as the kernel of (1A1+ ®€2)4.
by arguing similarly with the exact sequence

0—Af ®A) > A ®A] = A —0,

which is also easily checked to be split exact.
Putting these two observations together, we conclude that Ko(A; ® A;) injects natu-
rally into Ko(A] ®A3) with kernel

(7.42) ker((g1 ® 14,)) ﬂker((lAT ®€)s).

Note that the (injective) map on Ko-theory induced by the inclusion A, — A identifies the
kernels of (€ ® 14, )+ and (&) ® 1A2+)*. Hence (7.42)) is the same as the subgroup ker(,),
by the additivity property of K.

d

From the Lemma, we obtain the following recipe for taking external products in the
non-unital case.

Let Aj,A; be two, possibly non-unital algebras, AI-Jr their unitizations, the map 7 de-
fined as above. Suppose x € Ko(A1), y € Ko(A2). So x € Ko(A[) is in the kernel of
(e1)+: Ko(A]) = Z, and y € Ko(AJ ) is in the kernel of (€5).: Ko(A;) — Z, and

Since (€)«(y) =0,

(1A|+ ® 32)*(x®y) = x®(82)*(y) =0,
where we have used Proposition [7.7.1]2). Similarly,
(6191, ). (xy) =0.
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Hence
7. (x®y) =0
and therefore x®y € Ko(A] ® AY) is in the kernel of m.: Ko(A] ® AJ) — Ko(A]) &
Ko(A3). Applying the identification of this subgroup with Ko(A; ® Az), we obtain there-
fore a map
(7.43) Ko(A1) x Ko(A2) = Ko(A1 ®Az)
for arbitrary C*-algebras A, B. Furthermore, for any n if we replace in (7.43)) the C*-algebra
A; by S"(A}) = Cp(R") ® Ay, then we obtain a bilinear pairing
(744) K, (A1) x Ko(A2) := Ko (5"(A1)) x Ko(A2) = Ko(S" (A1) ®A)
= Ko(Co(R") @A @A) 2K, (A] ®A,),

which plays a role in part 3) of the Theorem below.

THEOREM 7.7.7. Let A and B be C*-algebras.

1.There is a Z-bilinear pairing
(7.45) Ko(A) x Ko(B) = Ko(A® B)

mapping (x,y) € Ko(A) x Ko(B) to their external product x&y.
2. The external product is natural in the sense that if ou: A — A’ and 3: B— B
are *-homomorphisms 0 B: AQB — A’ ® B' their tensor product *-homomorphism, then

(7.46) o (X)&BL () = (0@ B). (x&y) € Ko(A'®B')
holds, for all x € Ky(A) and y € Ko(B).
3. If
(7.47) 0=2J—2A—=A/J—=0
is a c.p. split exact sequence of C*-algebras and B is any C*-algebra, so that
(7.48) 0—-J®B—ARB—A/J®B—0
is also short exact, then
(7.49) I(x®y) = d(x)Ry

forall x € Ki(A/J) =Ko (S(A/J)) and y € Ko(B). The boundary map on the lefi-hand-
side is the K-theory connecting map for the exact sequence (1.55), and the boundary map
on the right-hand-side is the K-theory map associated to the exact sequence ([T.47).

PROOF. The statement 2 follows routinely from Proposition [7.7.1] For 3, we recall
that definition of the boundary map
(7.50) 3: K1(A/J) = Ko(J).
By definition, K;(A/J) = Ko(S(A/J)), and S(A/J) is naturally isomorphic to the ideal

{f € Cx | f(1) =0}, where Cy, is the mapping cone of the quotient map. The inclusion
s: S(A/J) — Cy induces a map

(7.51) 5. Ko(S(A/T)) = Ko(Cr).
On the other hand the inclusion
(7.52) k:J— Cr, k(a):=(a,0),

induces an isomorphism

(7.53) ky: Ko(J) = Ko(C).
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The boundary map 9 is defined
(7.54) 0:=k; ' os.: Ki(A/J) — Ko(J).

On the other hand, the sequence

(7.55) 0—-J®B—-A®B—A/J®B—0.
This implies by an easy exercise that
A/J®B=A®B /J®B.

Associated therefore to the ideal / ® B in A ® B, we have the quotient map, which we
denote

Tp: AQB—A®B/JR®B,

and its mapping cone, which we denote by Cy,, the inclusions kg: J ® B — Cg, and
sg: S(A/J) ® B) — Cry.
On the other hand, in a natural way

Cry 2Cr®B,
and under this identification, the inclusion
sp: S(A®B/J®B) — Cy,

identifies with s® 1p: S(A/J) ® B — Cx ® B. In particular, by part 2) of the Theorem, if
x €Ko(S(A/J)) and y € Ko(B), the

(7.56) (58)«(x&y) = (s @ 1) (x®y) = 54 (x) D).

Similarly, under the identification Cr, = C; ® B, the inclusion kg: J ® B — Cy, for the
ideal / ® B C A ® B identifies with k ® 15. Hence

(kB)* = (k® 1): K()(J@B) — Ko(Cn®B)

and thus

(7.57) (kp); ' = (k@ 1);': Ko(Cr®B) — Ko(J ®B)

Now functoriality of & with respect to *-homomorphisms gives

(7.58) (k@ 1), (ks (X)Gy) = kik; 5. (x) By = 5, (x) Dy.
Since (k® 1), is an isomorphism, we get

(7.59) (k@ 1) (5:(x)®y) = ks (x)y

and under our standard identifications this says that

(kp): ' ((s8)« (x®y)) = kus(x) &y

giving

as required. U
We conclude this section with an extension of the external product
(7.60) Ko(A) x Ko(B) = Ko(A®B), (x,y) € Ko(A) x Ko(B) — xRy

to a bilinear pairing
Ki(A) xK;(B) = Ky j(A®B).
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This is very easily done. If
x € Ki(A) := Ko(Co(RY) @A), y€K;(B):=Ko(Co(R/)®B),
then the product already defined gives an element
x®y € Ko(Co(R) @ A® Co(R7) @ B).
Re-arranging factors gives a canonical isomorphism
Co(R) @A Cy(R) @ B2 Cy(R' xR @ A®B.

Futhermore, we can identify Co(R’ x R/) with Cy(R*/) by identifying a pair x € R and y €
R/ with the element (x,y) = (X1,...,X;, V1, -, yj)of R*J. This gives a further isomorphism
with Cy(R™*/) ® A ® B, so that we may interpret the product x®y already defined for Ko-
classes as lying in K j(A ® B).

If one identifies a pair (x,y) € R’ x R/ with the element (y,x) = (y1,...,Y,X1,--.,X;)
instead, the two differ by a permutation of the coordinates of sign (—1)¥. This accounts
for an important graded commutativity of the external product, acting on higher K-theory:

THEOREM 7.7.8. The external product of Theorem extends to a more general
bilinear, natural pairing

Ki(A) x K;(B) = Ki1;(A® B)

mapping x,y to x®y. The generalized external product is graded commutative in the sense
that if x € K;(A) and y € K;(B), then

x&y = (=1)7 0. (y&u),
where 6: BQA — A ® B is the flip isomorphism.

The sign is of course material only when both classes x and y involved in the product,
are odd-dimensional classes.

EXERCISE 7.7.9. Let A, B be unital C*-algebras and u € A be a unitary. Let p € B be
a projection. Show that the external product

[ul&[p] € Ki(A®B)
is represented by the class of the unitary

up+1®(1—p) € A®B.

8. The Bott Periodicity theorem

Let B € K°(R?) = Ko(Co(R?)) be the Bott element.
External product with B, discussed in the previous section, defines a map

(7.61) Ba: Ko(A) = Ka(A) := Ko(Co(R*) @A), Balx):=P&x, x € Ko(A),

and for any C*-algebra A. We aim to show that it is an isomorphism.
We start with some general remarks about f3.
The first point is that the map

BA : Ko(A) — K2 (A)
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is natural in A in the sense that if o.: A — B is a C*-algebra homomorphism, then the
diagram of groups and group homomorphisms

(7.62) Ko(A) — > K, (A)

commutes.

In the language of functors, B is a natural transformation between the functors K¢ and
K> (each is a functor from the category of C*-algebras and C*-algebra homomorphisms,
to the category of abelian groups, and group homomorphisms.)

The second important point is that § commutes with external products in the sense that

Bacs(x&y) = Ba(x)&y.

This statement is merely the associativity of the external product, since the left-hand side
is B&(x®y) and the right hand side is (P&x)&y.

In order to invert Bott Periodicity, we will define a similar, natural transformation of
functors: a group homomorphism, for each A,

o4t Ka(A) = Ko(A),

using the Toeplitz extension.
Let A be a unital C*-algebra. The first step in defining o4 is the rather trivial one of
identifying

(7.63) K2 (A) :=Ko(Co(R?) ®A) = K1 (Co(R) ®A).
Now let 7 be the Toeplitz algebra. Form the exact sequence of C*-algebras
0 X®A—->T®RA—C(T)®A— 0.
There is an associated connecting homomorphism
34 Ki(C(T)®A) = Ko(K @A) 2 Ko(A).

Now, identify R with the open subset T\ {1} of the circle, using (say) the Cayley transform.
This gives an embedding

i: CO(R)®A C C(T)®A.
Putting things together we obtain the map

. N
(7.64) oa: Ko(A) =K (C(R) ®4)) 5 K (C(T) ®A) - Ko(A).

LEMMA 7.8.1. o is a natural transformation Ky — Ko, which commutes with external
products in the sense that
(7.65) Oaes(XxRy) = o4 (x) Ry

forany x € K»(A) and 'y € Ko(A).
Furthermore,
ac(B) = [1] € Ko(C),
where B € K»(C) = Ko(Co(R?)) is the Bott element, and [1] is the class of the unit 1 € C,
the generator of Ko(C) = Z.
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PROOF. The first two statements are obvious. For the last one, recall that the unitary
in Cy(R)* =2 C(T) corresponding to the projection p € Co(R?)* defining the Bott element
is the inclusion z: T — C. We have already proved that

d¢c([2]) = Index(Tz) = —Index(T;) = 1,

where Tz is the Toeplitz operator with symbol z, and Index is the Fredholm index. This
proves the Lemma.
O

COROLLARY 7.8.2. The transformations o and B satisfy

o 0B =idky (),

for any C*-algebra A.

PROOF. Both transformations are natural with respect to external products, and we
may write any x € Ko(A) as the external product

x=[1]&x
where [1] € Ko(C) is the generator. We get
(@4 0 Ba) (x) = s (Be([1])&x)
since B commutes with external products. By the same reasoning with o
= o (Be([1])) &x = o (B)&x
and by the Lemma
= [1]&x =x.
O

THEOREM 7.8.3. (Bott Periodicity). The Toeplitz transformation 0. and the Bott trans-
Sformation B are inverse to each other. That i,

0 0Ba =idgya), Paooa =idk, ),

for any C*-algebra A.
Therefore, K-theory is Bott periodic: K;(A) = Ki12(A) for any C*-algebra A, any
non-negative integer i.

The proof boils down to a ‘rotation trick’ initially devised by Atiyah, to reduce left-
invertibility of the transformation B, to right invertibility, which has already been proved

in Corollary
PROOF. Letx € Kp(A) := Ko(Co(R?) ®A). We want to show that
(Baoou)(x) =x € Kz(4) = Ko(Co(R*) ®A).
By definition, o (x) € Ko(A) and
(Baoa)(x) = P&ou (x).
By commutativity of the external product this equals
O (OCA (x)®[3) >

where
6: AR CH(R?) — CH(R*) @A
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is the flip homomorphism. Moreover, since o0 commutes with external products, our prod-
uct can be re-written as

(7.66) G Oy (r2) (PEB)).-

Now, the naturality property of o with respect to *-homomorphisms is thatif v: B —
B’ is a *-homomorphism, then

o ((idgy(r2) @ V)« (1)) = Vi (@5(x)).
Applying naturality to (7.66) gives that it equals

(7.67) Oy (r2) ((idy r2) @ 0) £ (BEx)).
By commutativity of ®, this can be re-written

(768) uA@Co(Rz) ((ldCO(RZ) ® G)* o G; (.X®B)
where

0 (R ®A®CH(R?) — Co(RY) @ Co(R?) @ A
is the flip homomorphism given permuting the factors cyclically:
o(feaaf):=fof®a
By functoriality of K-theory we can write as

(7.69) (XA®C0(R2) [((idCO(RZ) ®G) OG,)*(B®X):| = aA@CO(Rz) ((GI/)*(B®X))

with ¢ the composition

Co(R?) @A ®Cy(R?) o, Co(R?) @ Co(R?) @A M Co(R?) @A ® Cy(R?)
— which just flips the first and third factors (of Cp(R?). It is therefore homotopic to the
identity *-homomorphism because the flip homomorphism
Co(R?) ® Co(R?) — Co(R?) @ Co(R?)
is already homotopic to the identity homomorphism, since Co(R?) ® Co(R?) = Cy(R?)

and our homomorphism is induced by the corresponding map R* — R*, which is matrix

multiplication by [10 102
2

Since 6 is homotopic to the identity and since, by definition, B&x = B¢, (B2)a (X) We
can write as
(7.70) OCA@;CO(RZ)(B@X) = ((XA®C0(R2) o BCO(R2)®A)(X) =X
the last step by Corollary [7.8.2]

} , an orthogonal matrix with determinant 1.

This concludes the proof of Bott Periodicity.

The 6-term exact sequence

Suppose now that J C A is an ideal. The associated long exact sequence
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T71) = Ko (J) 5 Ky (A) 25 Ko (ALT)
LK) S Ki(A) B K (A7)
% Ko(J) 25 Ko(A) =5 Ko(A/T))

give no information about the final map m..: Ko(A) — Ko(A/J). However, by naturality of
the Bott Periodicity isomorphism [, the diagram

=~

0(A) —>Ko(A/J)

%\LBA gJ{BA/]

Ka(A) —> K (A /)

(7.72)

and the range of 7, : Ko(A) — Ko(A/J) identifies under Bott Periodicity with the range of
e Ko(A) = Ka(A/T).
which equals the kernel of the connecting homorphism
3: Ka(J) = K (J),
by exactness of the long exact sequence. Let

§: Ko(A/J) Baa, Ka(A/7) S K (J)

be the indicated composition.
Then the periodic sequence

i

(7.73) Ko(J) —— Ko(A) —> Ko(A/J)

ﬂ &

is exact.

THEOREM 7.8.4. For any ideal J in a C*-algebra A, the sequence (1.73) is exact.
Furthermore, the sequence is natural with respect to *-homomorphisms, and the boundary
maps commute with external products.

The map &' : Ko(A/J) — K;(J) has a particularly simple description. Assume that A
is unital. Let p € M,,(A/J) be a projection. Lift p to a self-adjoint H € M,,(A). Note that
H? — H € J. Using functional calculus for self-adjoints, we form the unitary

mH e M, (A).

Identifying J* with the C*-subalgebra of A generated by J and the unit 1 € A, I claim
that > ¢ J*. Indeed, for w: M, (A) — M,(A/J) the quotient map, since p = nt(H) is a
projection, its spectrum consists of 0 and 1, and hence ¢?™” = 1. Hence

eZ™H — 1 mod J,

proving the claim.
We call the map associating to a projection p the corresponding exponentiated unitary
e”™H [ alift of p to a self-adjoint in A, the exponential map
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PROPOSITION 7.8.5. In terms of the description of Ky(J) as 7o (Us(J ")), the homo-
morphism

& K()(A/J) — K](])

is the exponential map.

EXAMPLE 7.8.6. Let A =Cy([0,1)), a contractible C*-algebra containing Cy((0,1))
as an ideal with quotient C, under the map evaluating a function at 0. The 6-term exact
sequence looks like

(7.74) KO((0,1)) ——> K°([0,1)) —— K(pt)
] -
K1 (pt) <—— K1 ([0,1)) ~— K1 ((0.1))
Substituting into the sequence the identities
K°((0,1)) =K°([0,1)) =K' ([0,1)) =K' (pt) =0, K°(pt) =Z

gives the exact sequence

(1.75) 0= Kpt) =Z LK ((0,1)) >0,

so that & is an isomorphism.

The generator of K°(pt) is the projection 1 € C, and lifting it to Cy([0,1)) in this
case amounts to extending the function 1 at 0 to a continuous, real-valued function f(¢) on
[0,1). There is an obvious explicit such extension:

ft):=1-1.
Applying the exponential map to f we get the unitary function
u(t) — ezm(lfz) — efzrcir

on the interval [0, 1]; notice that u assumes the same value 1 at each endpoint, so it is a
unitary in Cy ((0, 1)) *.of course, under the standard identification

Co((0,1))" =c(T),
this unitary is nothing but the usual complex (conjugate) coordinate Z: T — C.
EXERCISE 7.8.7. Consider the extension of C*-algebras
(7.76) 0—-C(T-{1})=C(T)-C—0

obtained by removing a point (say, the point 1 € T).
By direct computation using the ‘exponential map’ description, as in the discussion
above, show that the connecting map
§: Ko(C) » K (Co(T—{1})) =K ' (R)

is the zero map.
This is also clear from the 6-term exact sequence. Why?

A homology theory on the category C* of C*-algebras and homomorphisms, is a se-
quence of functors
F,: C* = Ab

to the category of abelian groups satisfying the following two axioms.
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a) Homotopy invariance: if o,3: A — B are homotopic *-homomorphisms then
F,(a) = F,(B) for all n.
b) Long exact sequences: if

07545 B0

is an exact sequence of C*-algebras then there exist group homomorphisms
O,: Fy(B) — F_1(J)

for all n so that the sequence

Fu(i) Fy(m)

D) Y B4y B g B) 2 B () -

The homomorphisms 8, are required to be natural with respect to maps between short exact
sequences — we leave it to the reader to formulate the condition exactly.

A homology theory is stable if the following holds. Let p € X be a rank-one pro-
jection, it induces a *-homomorphism i: C — %, and more generally a *-homomorphism
ia: A — A® K for any A. Stability is the condition that F,(i4) is an isomorphism for all
A, and all such projections p.

Joachim Cuntz has given a proof (see [S7]) that any stable homology theory on the
category of C*-algebras automatically satisfies Bott Periodicity. This is a typical example
of a rigidity theorem about K-theory. Another, due to Nigel Higson (see [95]) asserts
that any functor F: C* — Ab exhibiting homotopy invariance, stability and split exactness
(maps split exact sequences of C*-algebras to short exact sequences of abelian groups),
factors through KK: that is, KK is the universal such functor.

Such very strong rigidity results are in stark contrast with the situation with homology
theories on spaces.

9. Some orbifold K-theory computations

In this section we will draw from the material developed in Section [6]about the basic
structure of crossed-products Cy(X) x G of discrete groups, acting properly on spaces X,
and the strong Morita equivalence results of Section, together with the Morita invariance
of K-theory, to compute the K-theory of some of these examples.

If G acts properly on X then the C*-algebra Cp(X) x G) is isomorphic to the fixed-point
algebra C(X X X), where X := X ({*(G)), and the ‘fixed-point algebra’ C(X x¢ X) is
by definition the C*-algebra of all bounded f: X — % such that f(gx) = p(g)f(x)p(g)~"
for all x € X, where p is the right-regular representation of G.

A good way to think of these functions is as sections of a bundle of C*-algebras over
G\X. The fibre of this bundle at an orbit Gx is K (I>G)", where H = Stabg(x), that is,
compact operators on /?(G) which commute with the right translation action of H on [%(G).

As we have shown, actually

K(*G)" = C*(H)® K (I*(G/H)).
Given our results on finite groups, C*(H) decomposes into a direct sum

c* (H) = @[G]eﬁ K(Vs)

of matrix algebras, with the summands parameterized by the points H, the irreducible
representations of H. This induces a direct sum decomposition of L?(G) respected by the
action of K (I2G)". Putting everything together we obtain

(7.77) K(PG)" = @y K(P(G/H) @ V).
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We can summarize all of this in terms of the idea of a bundle of C*-algebras. if
A =Cp(X) x G and Agy is the “fibre’ at Gx, then

Ay = K(I*G)H = @[G]Gﬁﬂ((lz(G/H) ®Vs), where H = Stabg(x).

In particular, in each fibre, one can single out the ideal corresponding to the €-coordinate
in the direct sum. This gives an ideal J in Agy, and the quotient is given by

(7.78) Ac/ i = K(PO)T = @ K(P(G/H) @ Vo).

Of course A, /J, = 0 if x has no non-trivial isotropy.

The bundle of ideals {J,} corresponds to the ideal Jx discussed in the section on
Morita equivalence, by the definitions: it is the ideal corresponding to the range of a certain
inner product involved in a Morita equivalence between Jx and C(G\X).

PROPOSITION 7.9.1. Suppose that G acts properly on X, with only a finite set of
orbits with non-trivial isotropy. Let Jx the ideal of Co(X) x G discussed above. Then
Co(X) x G / Jx is isomorphic to a direct sum of compact operators. More exactly, if
F C G\X denotes the set of points with non-trivial isotropy, then

~Y 2
379 QX)%G | = Ster Sy K (PG Vo),
where St;b-ax) denotes, as usual, the collection of irreducible representations of the finite
group Stabg(x).

In particular, the K-theory groups of the quotient Co(X) x G / Jx are very easy: the
Ko-group is

PGreF @stﬁaG\(X)B[G]#

and K-group of the quotient is the zero group.
The 6-term exact sequence associated with the exact sequence

0-Jx > CX)XG—=Co(X)xG/Jx =0

has has therefore the form

0
(7.80) 0= K*(G/X) = Ko(Co(X) % G) = Sexer Sy 10 L

5K H(G\X) = K1 (Go(X) % G) = 0.
Now we recall Corollary which asserts that in this situation, Ko(C(X) x G) can
be described completely in terms of G-equivariant vector bundles on X.
Suppose that E — X is a G-equivariant vector bundle over X, and x € X, then the
fibre E, carries, by the assumptions, a representation of the compact group Stabg(x). This
results in a canonical group homomorphism

KZ(X) — Rep [(C*(Stabg(x))] -

On the other hand, in our discussion above of the structure of Cy(X) x G, there is, for any
x € X, anatural *-homomorphism

Ko(Co(X) x G) — Ko (C*(Stabg(x)))).

by restriction to the orbit of x. These two maps fit into a diagram
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(7.81) K%(X) ————— Rep(Stabg(x))

| |

Ko (CO(X) X G) ——Kp (C*(Stabc(x)))

where the vertical map on the left was discussed above, the vertical map on the right is the
Green-Julg isomorphism.
Interpreting Ko (Co(X) x G) in this way as K%(X) allows us to describe the exact

sequence as follows.

THEOREM 7.9.2. Let G be a locally compact group acting properly on X with only
Sfinitely many points in G\X having non-trivial isotropy. Then if F C X is a set of represen-
tatives of these points, then there is an exact sequence

(7.82) 0 —K°(G/X) — Ko(Co(X) x G) =K% (X) 2 ®rerRep* (Stabg(x))

5 K(G\X) = K (Co(X) % G) — 0.

where, for any finite group H, Rep*(H) denotes the free abelian group with one generator
for each non-trivial irreducible representation of H.

What can we say about the map 9 in the above sequence? In fact, it is rather subtle.
It turns out that the question has to do with forsion in the K-theory of G\X, and reflects a
somewhat more general result, to the effect that it is much easier to compute rationalized
K-theory of crossed-products of the kind we are discussing, than it is to compute ordinary,
integral K-theory.

THEOREM 7.9.3. The connecting homomorphism & vanishes rationally. In particular,
if the group K~ (G\X) has no torsion, then § is the zero map.

We will actually show, more precisely, that
m-8(x) =0, Vx € Ko(Co(X) x G),
where m is the least common multiple of the cardinalities of the subgroups Stabg(x).

PROOF. This is equivalent to showing that mx lifts to an element of Ko(Co(X) x G)
under the map r, of (7.82),

(7.83) m-x=r.(y), y€Ko(Co(X)» G) =KF(X).
In order to do this, fix a point x with non-trivial isotropy. Denote
H := Stabg(x).
Let U be an H-slice at x: thus for some neighbourhood V of x, the natural map
GxygV—=U
is a homeomorphism. We have already discussed that there is a natural ‘induction” map
Vecty (V) — Vectg(G xg V) = Vect(U),

applying in this situation. To induce an H-equivariant vector bundle on V to a G-equivariant
vector bundle on U, we form
EV =G X v E,
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defined similarly as with G x g V. Let 15 denote in this argument the trivial H-equivariant
vector bundle, over whatever space, say, W, is under discussion. Thus, 17 = W x C with
the trivial action of H on the factor C. Similarly for 1g, the trivial G-equivariant vector
bundle. Induction clearly maps 1y € Vecty (V) to 1 € Vectg(U).

Letp: H— U(V,) be a unitary representation of H. We can view V,, as a H-equivariant
vector bundle over the 1-point H-space {x}. Inducing it results in a G-equivariant vector
bundle Vp over the orbit Gx. Now consider the restriction of Vp to U — G- x. I claim that
for some positive integer m, m - Vp = Vp G- Vp, is isomorphic, as a G-equivariant vector
bundle over U — G - x, to a multiple k- 15 of the trivial G-equivariant vector bundle over
U —Gx.

Note that if we can prove this, the extension problem has been solved for x := [V,] €
Rep(H). Indeed, take the G-equivariant vector bundle Vp over the G-invariant open set
W1 :=U = G Xy V obtained by inducing the H-equivariant vector bundle W; x V,, (with
diagonal H-action.) On the G-invariant open set W, := X \ Gx take the trivial G-vector
bundle k- 1g = W> x C*¥ with k = dim(V,,)m. Now glue these two G-equivariant vector
bundles together to form a G-equivariant vector bundle over W; UW, = X. The its class
y € K%(X) is the required lift of x.

In order to prove the claim, we only need to observe that H acts freely on V*:=V\ {y},
and due to this,

K% (V) =K (H\V*)

by a map sending the class of the H-equivariant vector bundle V x V,, to the class of the
induced bundle [V xy V,] € K%(G\V*). We have already proved (Exercise that in
this situation, exists m so that m- [V xy V,] = k- [14], with [1] € K°(H\V) the class of the
trivial line bundle. (And m is a divisor of |H|.) It follows that the bundles V* x V, and
V* x Ck, with H acting trivially on C¥, are H-equivariantly isomorphic, for some k, over
V* =V \{y}. Now inducing this result to K%(G x5 V\ G-x) = K%L (U \ G-x) gives the
required statement.

O

EXERCISE 7.9.4. Compute K, (C(I) x Z/2), where the generator u of Z/2 acts on
I:=[—1,1] by u(x) = —x.






CHAPTER 8

THE INDEX THEOREM OF ATIYAH AND SINGER

The elliptic operator D = d/dx acting on the circle T = R/2miZ has discrete spec-
trum the integers. In particular, the dimensions of the kernels of the continuously varying
family of operators D + A, for A € R, jump discontinuously as A crosses an integer point.
But the Fredholm index given by the difference dimker(D + A) — dim(ker D* 4+ L) is con-
stant in A. An observation going back to Gelfand, is that, more generally, elliptic oper-
ators on compact manifolds are Fredholm, and that the Fredholm index (see Section
dimker(D) — dim(ker D* of an elliptic operator is invariant under small perturbation of D:
it is a homotopy invariant. Gelfand inquired whether there was a formula for the Fredholm
index of any elliptic operator involving topological data of the manifold.

The Index Theorem was announced in [12] in 1963 with a proof sketch using cobor-
dism; a full proof using K-theory appeared in 1968 in the papers [13]], [14], [15], [17].
Theorems of this type had already appeared: namely the Riemann-Roch Theorem (see
[140], [141]) and the Hirzebruch Signature Theorem. One of the questions answered by
the Index Theorem has to do with the A-genus of a manifold. This is a characteristic class
which can expanded into an infinite series involving the Pontryagin classes (see [142]),
which are certain closed forms of even degrees (see [34]) the first few terms in the A-genus
are Ag =1, A = —ﬁpl, Ay = ﬁ(—4p2 —|—7p%). A fact proved earlier by Borel and
Hirzebruch was the curious fact that the integral of the A-genus of X over X, which is al-
ways a rational number, is an integer if X is a spin manifold (see Remark for the
definition of spin manifold). The Index Theorem explains this integrality: [y A(X) is equal
to the Fredholm index of the spin Dirac operator on X.

Explicit characteristic class formulas for the index are discussed further in Section
[8] but in this chapter we establish the basic Fredholm and spectral theory of Dirac-type
operators and state the K-theory version of the Index Theorem. A lot of geometry and
analysis goes into defining the ‘analytic index’ (Fredholm index) of an elliptic operator.
But the Dirac operator on a spin®-manifold, twisted by a vector bundle, has as its ultimate
source a spin®-structure, and a vector bundle, and each of these are bits of topological
data, which can be combined in a completely different manner using primarily the Thom
Isomorphism in topological K-theory, to produce an integer called the topological index.
The equality of the topological index and the analytic index of the Dirac operator twisted by
the bundle, is the K-theory statement of the Index Theorem, and truly remarkable identity.

The most important lesson to be drawn from the Atiyah-Singer results for the purposes
of this book, is that elliptic operators on manifolds define, by a process of twisting and the
extraction of an analytic index from the twisted operator, group homomorphisms from the
K-theory of the manifold to the integers. As pointed out by Atiyah, it thus seems that
suitable equivalence classes of elliptic operators, are in a relation of duality with equiv-
alence classes of vector bundles, i.e. K-theory classes. This is the idea which led to the
formulation of K-homology by Kasparov [111], as is discussed in the next chapter.

301
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1. Differential operators on Euclidean space

A differential operator (of order < m ) on R" is a linear operator on the complex vector
space C°(R"), of the form

(8.1) (Df)(x) =Y, au(x)D*f(x)
o <m
Our notation is that

aotl 8(12 a(Xn n
— e — (x‘ = o,
0 3 O Oty * | 2, i
ox;' ox, ox|" far}

D% := (—i)

The Fourier transform allows us to re-write this as follows. If f € C.(R"), or, more

generally, if £ € L' (R"), then its Fourier transform f is the function on the dual group R”
defined |

£ - —ix-§g

7€) = [ fweax

Let S(R") denote the Schwartz space of infinitely differentiable functions on R” such

that for all o, 3 there exists a constant Cyg such that [D*f (x)| < Cog(1+ x| )B for all x € R".
It is routine to check that f € S(R") implies f is in S(R"). So Fourier transform defines a
linear map

F: S(R") — S(Rn).
The Fourier inversion formula says that f € S(R") then

(82) 10 = [ Feyesae.
Differentiating (8.2) under the integral sign and using that D%(e™%) = £%¢™*S we see that

Df () = [ olxE)e"f(E)dE

where 6(x,§) = ¥joj<m da (x)§, an infinitely differentiable function of (x,§) which is poly-
nomial in & of order < m. The top order term of the symbol is called the principal symbol

given by
op(r.8) = Y au(x)E"
|ot|=m
Directly in terms of G, using a limit:
0p(8) = Jim T
The symbol is elliptic if its principal symbol satisfies 6,,(x,§) # 0 for & # 0. The operator
D is an elliptic differential operator of order m if its principal symbol is an elliptic symbol
of order m.
EXAMPLES.1.1. A=Y" | — % is an elliptic operator of order 2 on R", the Laplacian.
It has constant coefficients, and 6(x,§) = —|§|>.

EXERCISE 8.1.2. Let Diff (R") denote the collection of operators of the form (8.
a) Show that if § and T are differential operators of orders m,m’, then ST is a
differential operator of order m +m'.
b) Check that the commutator of differential operators [%,a] has order zero, for
any coordinate x;, and any smooth function a.
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¢) Extend the result of b) to show that if S and T are as in a), then the commutator
[S,T] = ST — TS is a differential operator of order m +m' — 1.

d) Deduce from c) that if S and T are as above, then the principal symbol of the
differential operator ST of order m+ n?/, is the pointwise product of the principal
symbols of S and T':

o3 (1.8) = o (1.8) - o5 (x.£).

An important special case of part c) of the Exercise above is that if f € C*(R") is a
smooth function, acting by multiplication on CZ°(R"), and if D is a differential operator of
order m on R", then the commutator

f.D]
is a differential operator of order m — 1. In the important special case m = 1, this means
[D, f] is order zero, and thus is a bounded operator, as long as f” is bounded.

In the applications of elliptic operator theory one usually works not with Hilbert
spaces of scalar-valued functions aq, but Hilbert spaces of matrix-valued functions. Fix
a positive integer m. For f: R" — C™ a smooth, vector valued function, with entries
Sx) = (fi(x),.-.,fm(x)), and o a multi-index, set D*f := (D*f,...D%f,,). Now, as
above, if we are given a family of smooth functions

ag: R" — M, (C),
for various multi-indices o, with || < m as before, we can define an operator
Cr(R",C") — CZ(R",C™)
by setting,
= Y aux)(D*f)(x), feCI(R".C").
o <m
The symbol of such an operator, and the principal symbol, are defined just as in the scalar
case, and now are matrix-valued functions

c: R"xR" — M,(C)

(and similarly for 6,.) The symbol is elliptic if 6,(x,§) is invertible in M, (C) for all
non-zero &, and all x € R".

Slightly more abstractly, if V is any finite-dimensional Hilbert space, then the partial
differentiation operators % acton C°(R",V); to see this one can define the action directly,

J
by a limit, in the usual way, or one can fix a basis for V, and identify C*(R",V) with
functions valued in C™ for some m, by expanding vectors into their coefficients. Functions
valued in C™ can then be differentiated component and it is easily checked that the result
is independent of the choice of basis for V. A differential operator D on CZ*(R",V) is then
one of the form
(8.3) = Y au(x)(D*f)(x), feCT(RY).
|ot|<m
The coefficients ag are smooth functions R” — End(V), the symbol 6: R" x R7— End(V)
is defined as in the scalar case by
= ) au(x)E",

|of <m

and the principal symbol is the top-order part as before. Ellipticity means that 6, (x,§) is
invertible if § # 0.
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EXAMPLE 8.1.3. Let m =2, n = 2 and define a matrix-valued function

— T 0 &-i
Y 2 _ 1 2
(8.4) 0: R°xR2 - M(C), o(x,&) =i |:§1 +its 0 ] .
Then 6 is elliptic, for det 6(x,&) = ||§||> # 0 if § # 0.
The associated operator on C:*(R?,C?) is

0 9 _ ;0

5 5 ox lay

9=

[}

called the Dolbeault operator. Note that if fi, f> € C*(R?) then 9 [?
2

J> is anti-holomorphic, and f} is holomorphic, by the Cauchy-Riemann equations.

] = 0 if and only if

The previous example might remind the reader of Clifford algebras. In fact the map
c: R? = B(C?) in [84) satisfies 6(§) = —o(&)*, and 6(E)? = —||€||*, for & a vector in R,
This is no accident. Let

c¢: Cliff(R") — End(S)

be a Cliff (R"”)-module; we may as well assume that it is one of the irreducible represen-
tations of Theorem@]— the unique one, if 7 is even. We will build an associated Dirac
operator D. The operator will act on the space C:°(R",S) of smooth, compactly supported
functions s: R" — S.

The Clifford module structure gives, for each unit vector & € R”, a linear operator c(&)
on the Hilbert space S, which is Z/2-graded, if n is even, and with the properties that

c(&)* = —1, c(&)" = —c(&).
and c(&) is odd with respect to the grading, in the case n is even.
Let&y,...,&, be the standard orthonormal basis for R”. For each i we form the com-
position of the partial differentiation operator a% and the Clifford multiplication operator
c(&;). Adding them up gives a differential operator with constant coefficients

n

(8.5) D:= fc(&i) % =Y —ic(&)-Di.
i=1

ii=1
on C(R",S).
Note that D is elliptic. Indeed, it’s symbol is given by the self-adjoint operator

o(x,&) = —iic(éi) -&; € End(S).
i=1

Hence

o(x.)’ = *Zﬁié/‘C(ﬁi)C@i)-

Since

c(&i)e(§)) = —c(&j)c(Ei
for all i # j, and c(&;)> = —1 this equals

ia% — )P

a nonzero scalar multiple of the identity operator on S, provided that £ # 0.
Although D is an unbounded operator, it is formally self-adjoint. Indeed, ¢(&;) obvi-
ously commutes with ai as linear operators on CZ°(R",S). The spin representation space
X



1. DIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE 305

S is, by assumption, a Hilbert space, with an inner product. We endow CZ°(R",S) with the
inner product

(5,5') = /R (5.5 ()., 5.5’ € CT(RNS).

In this notation, integration-by-parts gives that

() = (s

ax]'

Bx j
so that partial differentiation is a skew-adjoint operator. Since the operator c¢(&;) on CZ*(R",S)
is also skew-adjoint, for any vector & € R", we get that D, a real linear combination of com-
positions of two skew-adjoint operators, is formally self-adjoint, i.e.

(Ds,s') = (s,Ds'), s,s' € C*(R",S).

Finally, we note that if we give the linear space C°(R", S) the Z/2-grading induced by
the Z/2-grading on S, then the Dirac operator D an odd operator Ci°(R",S) — CZ(R",S),
i.e. interchanges the even and odd parts of C2°(R",S).

EXAMPLE 8.1.4. The simplest example of all of a Dirac operator is D = —i % acting
on CZ(R). This is associated to the Clifford module

c: Cliff(R) - C

of its positive irreducible representation on the one-dimensional spinor space S = C, which
maps the unit vector 1 € R C Cliff (R) to the scalar i.

We conclude this section with some general remarks regarding changes of coordinates.

Differential operators on R” are local, in the sense that if D is such an operator, thus,
of the form 8.3), and if p € C°(IR") is supported in an open set W C R”, then Dp is also
supported in W.

It follows that any such operator D restricts to an operator

Dly: C2(U) — €2 (U)
for any open set U C R". We let Diff (U) be the algebra of differential operators on U it

is generated by the partial differentiation operators % and the multiplication operators by
J

smooth functions f € C*(U).

Now, suppose that ¢: U — V is a diffeomorphism between two open subsets of R".
Let Ty: CZ(V) — CZ(U) be the linear map of composition with ¢,

(Tp.)(x) = f(0(x))-
Let ¢1,...,0, be the coordinate functions of q>. Then by the Chain Rule
0 Bq),

87 Z 8x, Cox; j o, &
from which it follows that

L 3 . 9
| _ ! Iy, 2
T 5y =G, 00 ) g,

as operators on C2* (V).
Since

T¢_1ofoT¢:fo(|)
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as (multiplication) operators on C;°(V), for any f € C*(U), and since such functions,
and the partial differentiation operators, generate Diff (U') as an algebra, it follows that
conjugation L — T¢71LT¢ by Ty maps Diff(U) to Diff(V), in a canonical manner.

EXERCISE 8.1.5. If L € Diff(U), ¢: U — V a diffeomorphism, T, the operator of
composition with ¢ as above, and if 67 € C*(U) is the principal symbol of L, then the
principal symbol of T¢*1LT¢ € Diff (V) is given by

(8.6) o’;¢,1LT¢ (x.8) =R (0% Dy 1,0-E), xeV, LR

where ‘D1, - & is shorthand for

2. Differential operators on manifolds

See Chapter 6 Section 2] for background on vector bundles on smooth manifolds, like
the tangent and co-tangent bundles.

DEFINITION 8.2.1. Let M be a smooth manifold, and L: C(M) — C(M) be a linear,
local operator: that is, L leaves the subspaces C2°(U) invariant, for every U C M open.

We say that L is a differential operator of order m on M if for every p € M, there exists
a coordinate chart

¢o: U —>R",
such that the operator
T, 'LTy: C7(R") = C7(R")
is a differential operator of order m on R”, where
Ty: CZ(R") = CZ(U)

is the operator of composition with the chart ¢.

The discussion preceding the Definition shows that L is differential of order m on M
if and only if for every manifold chart ¢: U — R", the operator T¢’1LT¢ is differential of
order m.

EXAMPLE 8.2.2. D= —i % is a differential operator of order 1 on the circle T =R/Z,
with 6 the usual angular coordinate.

EXAMPLE 8.2.3. One of the most important differential operators in Riemannian
geometry is the Laplacian operator on a Riemannian manifold. Let M be a manifold,
equipped with a Riemannian metric. Let g be the coefficient matrix in a chart with coordi-
nates xi,...,Xy,, then locally

af
(8.7) A (Vdetg- (g ij==).
/= Wzax, &g
It has order 2.
Suppose L is a differential operator of order m on M, and that in the domain U C M of
a coordinate chart, with coordinates xi,...,x,, L can be represented in the form

(8.8) Lly =Y a,D"
u
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with a,, smooth functions on U, D; := —ia%, differentiation in the coordinate direction x;,
and D, the corresponding product of such operators, according to the multi-index u. We
are assuming that the top-order part of this operator is in degree m.

Recall that a smooth function f in a neighbourhood of a point p € R" vanishes to
order 1 at p if f(p) = 0. It vanishes to order 2 at p if it is a product of two functions each
vanishing to order 1 at p, and so on.

Let J; be the algebra of germs of smooth functions at p which vanish to order k at p.
By definition, J}, .| JZ D

Then the cotangent bundle 7*M, has fibre J ,1, /J 2 by definition. The differential 1-form
df of a germ of a smooth function at p, is by definition the class modulo JI% of f— f(p).
The duality with the tangent bundle pairs a tangent vector v at p and an element df of
T;M, to produce the derivative by v of f at p. This process annihilates constant functions,
and functions which vanish to order 2 at p.

In fact, vanishing to order 2 at p might be rephrased in terms of differential opera-
tors by observing that f € Jg is equivalent to saying that (Df)(p) = 0 for all differential
operators D of order 1, defined in a neighbourhood fo p.

LEMMA 8.2.4. Let D be a differential operator of order m on R", and f € C2(R") be
a smooth function which vanishes to order m+ 1 at p. Then (Df)(p) = 0.

PROOF. Suppose first that m = 1. If f vanishes to order 2 at p, then f = f f> with f;
vanishing to order 1 at p. Hence for any i,

37];(”) - aaf (p)-12(P) +11(p): %(p) =0,

since each of fi, f> vanish at p.
This implies the result for m = 1, and the general result follows from induction.

O

LEMMA 8.2.5. If fi and f» each vanish to order 1 at p and f| — f> vanishes to order
2 at p, then f{" — f3" vanishes to order m+1 at p.

PROOF. We use the identity

(89) A =B=h-n) a0 =57,
If f; € J) and fi — f» € J; then it follows that the first term is in J2'*!. By induction,

m-l_ el e J'. Hence the second term is also in J;’f“.

O
As a corollary:

LEMMA 8.2.6. If D is a differential operator of order m in a neighbourhood of p, and
iffe J,l7 is a germ of smooth function at p, then the value of D(f™) at p only depends on

the coset of f in J;/JI% —that is, depends only on df € Jp/Jg =T,M.
As a consequence, the symbol can be defined in the following natural way.
DEFINITION 8.2.7. If D is a differential operator of order m, its principal symbol G is

the function on 7*M whose value at a point df € le‘ M, is the value

im

D) ().
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EXAMPLE 8.2.8. Suppose D is Lie derivative with respect to a vector field V on M,
or an open subset. Then for p € M,f a smooth germ of a function at p, then (Df)(p) :=
V(f)(p)- This is a linear function of the coset df € T,y M. If in a coordinate system near p,
centred at O for convenience, the vector fieldis V =Y ;q; - %, and if f =x;, sodf = dx;
then

V) =La 2L (p) =a,
so that in cotangent coordinates &1, . ..&,, the syml;ol is given by
op(x.8) =i-Y ail;,
which is (except for the multiplication by i) precisely the pairing between 7,;M and T,M,
applied to the value of the vector field V(p) and the cotangent vector d f.

EXERCISE 8.2.9. Show that the symbol of the Laplacian is given in local coordinates

by
oa(x8) =—Y (¢ ij(x) &8, EeTM.
i.J
That is, the symbol of the Laplacian on M is the Riemannian metric

oa(x.8) = —[g]%.

on the co-tangent bundle.

Our discussion of differential operators on R” contained variants involving an auxil-
lary (finite-dimensional) Hilbert space. In the context of manifolds, the interesting exam-
ples of elliptic differential operators related to geometry are operators not on Co°(M) but
on the spaces of smooth sections of a smooth vector bundle ©: S — M over M: we use
the notation C2°(M, S) for this linear space of smooth, compactly supported sections. More
generally, we consider pairs of vector bundles, and maps between their spaces of smooth
sections.

DEFINITION 8.2.10. A differential operator of order m
D:CZ(M,ST) = C*(M,S™)

between sections of a pair of bundles ST,5~ over M, is a linear operator which is, firstly,
local, and secondly, such that every point of M has a neighbourhood U such that the re-
striction D: C*(U,St) — C(U,S™) can be written in local coordinates on M in the form

(8.10) (Ds)(x) = Y au(x)-(A'D")(As) (x), s € CZ(U,ST|v)

|| <m
for some (any) smooth trivialization A: S*|y — U x C" of the bundle St over U, and a
family a, € CZ(U,Hom(S™,57)) of bundle maps ST — S~.

Of course any section T € C*(M,EndS) of the endomorphism bundle of a single
bundle S, that is, any bundle map S — S, defines a differential operator of order zero. Such
an operator commutes with multiplication by smooth functions on M.

EXAMPLE 8.2.11. Suppose that T: S — M is a vector bundle over M and that V is
a connection on S. Then V restricts to a connection on S|y for any open subset. Pick U
with S|y is trivial, with A: S|y — U x C" a trivialization. On the trivial bundle U x C" we
always have the trivial connection

VI (51, sn) = (X (s1),. .. X (s2)),
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where (sq,...,$,) is a section of U x C".

Hence A~!- V'V .. A is another connection on S|y .

Now any two connections V! and V2 on S| differ by an End(S)-valued 1-form: that
is, a bundle map 7™ — End(S), given by the pairing

(X,s), = Vys —Vgs,

where s is a section of S|y and X is a tangent vector. This expression is C*(M)-linear in
the variable s since

Vi (fs) = Vi(fs) = X(f)s + fVis = X(f)s + fVs.
by the connection property. Hence (X,s)(p), for any p € U, only depends on the value of
X at p, and the value of s at p.

In particular, any covariant derivative Vy, for V a vector field on M, is locally the
sum of a section of End(S), and a conjugate, as above, of Lie differentiation by V, acting
on sections of a trivial bundle. In particular, it locally has the form specified in (8.10).
Therefore, Vy is a differential operator of order 1 on CZ°(M,S).

EXERCISE 8.2.12. Prove that if D is an order 1 differential operator D: C*(M,S*) —
C2(M,S™) between sections of a pair of bundles over M, and if f € C*(M) acts on sections
of each of these bundles by multiplication, then the commutator [f,D] is an operator of
order zero, and in particular, is a bounded operator.

DEFINITION 8.2.13. Let D: C*(M,S*) — C*(M,S™) be a differential operator of
order m between section spaces of a pair of bundles S* over a smooth manifold M.
The symbol of D is the smooth bundle map

op: T (ST) = w*(S7)
mapping a covector & :=df € T, M, where f is smooth and vanishes to order 1 at x, and
an element w € S}, to

(8.11) op(x,df) -w:=D(f"s)(x) €S,

where s is any smooth extension of s to a smooth section defined near p.
D is elliptic if op(x,&): S§ — S is invertible for every & # 0 in T M.

The formula (8:11) is well defined , since if s and s’ are sections that agree at x, then
s — s’ vanishes at x, and hence the section f™ (s —s’) vanishes to order m + 1 at x, and by a
slight generalization of Lemma , we deduce that D ( S (s—s )) vanishes at x.

The de Rham and Laplace operators

The de Rham operator is the simplest example of an elliptic differential operator en-
coding topological information about the manifold on which it is defined. Let X be an
n-dimensional compact, oriented manifold, A*(7X) ® C the complexified exterior bun-
dle of the co-tangent bundle, Q*(X) the space of smooth sections of this bundle, i.e. the
space of smooth differential forms on X.

The de Rham differential

d: Q" (X) - Q*(X)
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is determined uniquely by the following two conditions, the first local, and described in
a local coordinate system, and the second algebraic, and applying to forms o, B of some
degrees, perhaps different:

dfzzg—fidxi,fec‘”(X), d(aAB) =daAB+(—1)%aAndp, a.pecQf(X).

The Riemannian metric on X is a Euclidean metrlc on TX and has an associated matrix
in each local coordinate system, with entries g;; := ( I > Let g/ be the i, jth entry of

the inverse matrix and g the determinant of the matrix. If xy,...,x, is a positively oriented
coordinate system then the n-form ,/gdx; - - - dx, defined on the coordinate patch does not
depend on the (oriented) coordinate system used, so using an oriented atlas one pieces
these forms together to give the volume form dvol on X.

A metric on the bundle of k-forms is defined in a local coordinate patch by

(8.12) (,B) = — Y V1. g"VEA, By, oy,

where o = Y A, dx,, B =Y Bydxy, with u,v multi-indices of length k.
The Hodge * maps k-forms to n-forms and is uniquely defined by the requirement

(o, B)dvol = B A xo.

Note that if o, are k-forms, and we take their fibrewise inner-product by (8.12)), and
integrate, we obtain exactly

(o, B) ::/Xoc/\*ﬁ.

This is extremely convenient, since by Stoke’s theorem and calculation, one sees that

(8.13) 0= /dB/\*Oc /dB/\*OH— /[3/\d (xat)
= (o, dB) — (50.,B)
if & is defined by
S(a) := (—1)"™ v dxa,
a map from k-forms to k — 1-forms. Hence the operator
Dar :=d+9,

acting on Q*(X), is formally self-adjoint. Giving Q*(X), and its ambient L?-completion to
a Hilbert space, using the inner product above, the Z/2-grading into even and odd degree
forms, we see that DqR is grading-reversing.

The Laplacian on X is A := (d + 8)*> = d8+8d.

EXERCISE 8.2.14. In the notation above:
a) Show that on 1-forms o0 = Y A;dx;, we have 8(at) = — \}Z Y % (Aig"\/3).

b) Show that Af = — L%, 2 ((/ggi 3L ).

¢) If f € C*(X) then the commutator [f, Dqg] is the operator of left wedge-product
by the 1-form d f, which is, in particular, a bounded operator.

d) The symbol of Dgg is given by 6(x,&) = Ag +i¢, where A is exterior multiplica-
tion by § and i is interior multiplication by &.
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3. Analytic aspects of elliptic operators

An unbounded operator D: dom(D) C H — K between Hilbert spaces consists of a
domain dom(D) C H, typically a dense subspace of H, and a linear operator D: dom(D) —
K. We say D is closed if its graph

{(vww) e H®K | w=Dv}

isclosed in H ® K.

The adjoint of D has domain consisting of all vectors & € H such that n — (&,Dn)
extends from dom(D) to a bounded linear functional on H. If § € dom(D*) then by the
characterization of bounded linear functionals on a Hilbert space, there exists unique £ € H
such that (§,Dn) = ({,n) for all € dom(D). We define D*§ := .

EXAMPLE 8.3.1. In the language of distributions, if f € L?>(R) then the distributional
derivative f of f is the unique continuous linear functional § — C mapping g to — [ g'f.
To say that the distributional derivative is in L> means that this linear functional extends to
a bounded linear functional on H and hence is given by pairing with an L>-function (denote
fHonR.Hence — [g'f= [gf/,forallg € S.

By the definitions, it follows that f € dom(D*) if and only if the distributional deriva-
tive f of fisin L?, and in this case D* f = —f".

EXAMPLE 8.3.2. If {a,} is a sequence of complex numbers, then D defined on the

subspace
dom(D) :={§ € P(N) | } |G- 0|* < oo

by multiplication by the sequence, defines an unbounded operator on /?(N). The domain of
D* is the same as the domain of D (exercise), and D* multiplies by the conjugate sequence
{ou}

Some unbounded operators are not closed, indeed some admit no closed extension. If
the closure of the graph of D is a graph, then D is said to be closable. It then extends to a
closed operator on a potentially larger domain.

A useful class of closable operators is the class of symmetric operators. D is symmetric

if (DE,n) = (€,Dn) for all &,n € dom(D).
EXERCISE 8.3.3. If D is symmetric then D is closable.
The following exercise gives a more general class of closable operators.

EXERCISE 8.3.4. A ‘“formal adjoint’ of a densely defined operator D: dom(D) C H —
H is alinear operator D* : dom(D) — H such that (Dv,w) = (v, D*w) for all v,w € dom(D).

a) If D has a formal adjoint, then D is closable.

b) Let M be a manifold with a Borel measure u which is locally smoothly equivalent
to Lebesgue measure. If X is a vector field on M, then X defines an unbounded
operator C*(M) — L*(M). As such X has a formal adjoint X* and X* = —X + @
where ¢ € C*(M).

¢) Any differential operator D: C*(M) — L*(M), M as in b), admits a formal ad-
joint, and hence is closable.

The operator i% with domain C°(R) is symmetric. Hence it is closable. Its closure

has domain the first Sobolev space
H'(R)={{€*(R)| /Rlﬁ(ﬁ)lz(l +IE?) dE < oo},

the space of L>-functions whose distributional derivative is in L.
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DEFINITION 8.3.5. A densely defined unbounded operator D is self-adjoint if D = D*.

An operator D: dom(D) C H — K is invertible if there is a bounded operator Q: K —
H such that DQ and QD are the identities on K, dom(D), respectively.

The spectrum of an unbounded operator D is the collection of A € C such that A — D
is not invertible.

The following exercise gives a criterion for a closed, symmetric operator to be self-
adjoint.

EXERCISE 8.3.6. Let D be symmetric and A = o+ i} € C.
a) If v € dom(D) then
I(D=Mv|* = [(D— v+ B?[Iv]]*.
b) If B # O then ker(D — L) = {0}.
¢) If D is closed and B # O then D — A has closed range.

d) If D is also closed then ker(D* £i) = {0} then D is self-adjoint.
d) If D is closed and symmetric and if Spec(D) C R then D is self-adjoint.

PROPOSITION 8.3.7. A densely defined symmetric and closed operator is self-adjoint
if its spectrum does not contain R.

We omit the proof (see [S3]]).
Self-adjoint unbounded operators have functional calculus, as with bounded operators,
as we now demonstrate.

LEMMA 8.3.8. Let D be a self-adjoint operator on H. Then D *i are invertible and
U := (D—i)(D+i)~! extends continuously to a unitary operator on H.

EXERCISE 8.3.9. Let D be multiplication by x on L?>(R). Show that U := (D—i)(D+
i)~! is multiplication by the Cayley transform C: R — T, defined C(t) = i and that
1 € Spec(U) but 1 is not an eigenvalue of U.

Suppose now that f is a bounded, continuous function on R. If C: R — T is the
Cayley transform then foC~! is a bounded, continuous function on T\ {1}, and extends to
a bounded Borel function on T with a single point of discontinuity at 1 € T, which implies
that {1} has spectral measure zero, and making f(D) := (foC~!)(U) well defined, and
giving a method of doing functional calculus f — f(D) for bounded continuous functions
on R. If f vanishes at oo then f o C~! vanishes at 1 and is continuous on T so one can
avoid the Borel theory (not discussed in these notes) for f € Cy(R). To deal with general
F€C(R), let

o: Co(R) = B(H), aoff):= f(D).
be the C*-algebra homomorphism just described. It is based on the Cayley transform
and functional calculus for the unitary U, and the latter defines a unital *-homomorphism
C(T) — B(H), and it follows that o is non-degenerate and so extends by strict continuity
to a *-homomorphism C,(R) = M (Co(R)) — B(H). This gives meaning to f(D) for
f € Cp(R) as required.

THEOREM 8.3.10. If D is a densely defined self-adjoint operator on H, there is a
unique unital C*-algebra homomorphism f — f(D), from Cp(R) to B(H), which maps
—to (D+i)7L

We will for the most part be using the theorem in connection with formally self-adjoint
elliptic operators on compact manifolds. The closures of such operators have discrete
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spectra with finite multiplicities, and are in particular self-adjoint, and even orthogonally
diagonalizable, so that f(D), for f bounded on R, has an obvious meaning in this case, and
one does not have to appeal to the Cayley transform to define it.

Returning to elliptic operators (Definition [8.2.10), such an operator acts by definition
between the spaces I (S¥) of smooth sections of a pair of Hermitian vector bundle. These
linear spaces can be completed to Hilbert spaces L?(S*) by fixing a measure u on X and
defining

&)= [ (E@M0) du).

In the following, we assume that S~ = ST so that one has a densely defined operator on a
single Hilbert space L*(S).

THEOREM 8.3.11. Let X be a compact manifold, let u be a probability measure on X,
and S — X a Hermitian vector bundle. Let D be an order 1 elliptic operator defined initially
on the space of smooth sections I°(X,S) of S. Assume that D is formally self-adjoint (or
symmetric):

<DS1,S2> = <S1,DS2>, Vs1,80 € Cm(X,S).

Then D has a canonical extension to an unbounded, self-adjoint operator on the Hilbert
space H := L*(X,S) of L*-sections of S. Furthermore, the spectrum of D is a discrete
subset of R, consisting of eigenvalues A such that

a) Each \h-eigenspace H,, is finite-dimensional and consists of smooth sections of S.
b) A section s € L*(X,S) is smooth if and only its Fourier coefficients with respect
to an orthogonal basis of H of eigenvectors of D, is a Schwartz function on

Spec(D).

The simplest example is of course D = —i% on C*=(T). It has spectrum Z, and eigen-
functions 7" corresponding to 7.

EXERCISE 8.3.12. Let

1

9 )
J X J aila

be the Dolbeault operator of Example

a) Prove that 0 commutes with translations of R? and determines a symmetric ellip-
tic differential operator on sections of the trivial 2-dimensional complex bundle
over the 2-torus T? = R?/Z?.

b) Show that the spectrum of d consists of the numbers ++/n2 + m2, for n,m € Z.

¢) The (scalar) Laplacian on T2 with the flat metric is —% — %. What are the

eigenvalues of A? If one lists them in increasing order tp < u; < pp < --- show
1
that y, ~n2.

EXERCISE 8.3.13. Let X be a smooth manifold and S;,S, Hermitian vector bundles
over X. Fix a Borel probability measure of full support to define L?-spaces of sections.

Show that the Hilbert spaces L>(X,S; @ S,) and L*>(X,S;) ® L*(X,S,), are identical,
and deduce that the Hilbert space direct sum of an elliptic operator on sections of S; and
an elliptic operator on sections of S, is an elliptic operator on sections of S & S3.



314 8. THE INDEX THEOREM OF ATIYAH AND SINGER

4. Dirac operators

In this section, we specialize to what is for us the most important class of elliptic op-
erators, the Dirac operators. These are built from Clifford algebras on manifolds. See
Section[7} B and [9] of Chapter 5 for background on Clifford algebras and their representa-
tions (Clifford modules).

Let X be a Riemannian manifold. The Fundamental Theorem of Riemannian geom-
etry asserts that there is a unique connection V€ on the tangent bundle 7X of X, called
the Levi-Cevita connection, which is both torsion-free, and compatible with the metric.
Torsion-free means that VLY — VECX = [X, Y], and compatibility with the metric asserts
that

(VECY.Z)+ (¥.VE°Z) = X ((1.2)),
for vector fields X,Y,Z.

Lete,...,e, be a (pointwise) orthogonal frame for the tangent bundle 7X, defined on
an open subset U C X. For each vector field V on U there is a family of smooth real-valued
functions ®;;(V') such that

(8.14) ViCei =Y wij(V)e;.
i

This expression is C*(U)-linear in the variable V. Note that @;;(V) = (ViCe;,e;). Com-
patibility of VI€ with the metric gives

(ViCeiej) + (i, ViTe) = V((eie;) =0
for all i, j. Hence
@i (V) + @;(V) =0,
so that the matrix 0 (V') defined by its coordinates ;;(V) is skew-symmetric and lies in the
Lie algebra so(n,R) of SO(n,R). The connection 1-form of V'C is the map

(8.15) o: TU — so(n,R),

defined on U, and depending on the initial choice of frame, and determined by the ;.
More exactly, if E;; denotes the matrix in so(n,R) with +1 in entry (i, j), —1 in entry (j,i),
then
(D(V) = Z(O,'j(V) -E,'j ESO(”,R).
i<j

Note that one can recover the connection V€ from the 1-form ® in (8:15). The
frame ey,...,e, for TU gives an identification of smooth vector fields I'*(7U) on U, with
C*(U,R"), and in terms of this identification, we have

O
(8.16) Vy(0):= (V(61),....V (o)) +0(V)- | |,
On
for 6 = (61,...,0,) a smooth R"-valued function on U.
EXERCISE 8.4.1. Suppose the frame ey,...,e, is transformed into a frame e’l, ... ,e,’l

by the action of an orthogonal matrix g € SO(n,R), where
(8.17) e =Y gije;.

J



4. DIRAC OPERATORS 315

Show that the 1-form in terms of the new basis is given by
o' (v) = Adg (0(v)),
where
Ad : SO(n,R) — End(so(n,R))
is the adjoint representation.
Now suppose that
p: Cliff(R") — End(A)
is a representation for Cliff (R"). It restricts to a representation of Spin,, and differentiating
gives a representation
p«: spin, — End(A)
of the Lie algebra spin,,.

The Lie algebras spin, and so(n,R) of the Lie groups Spin, and of SO(n,R) are
naturally isomorphic, by differentiating the standard double covering Spin,, — SO(n,R).
On the other hand, there is a natural embedding of spin, in CLff(R"). Putting things
together, one checks that under the resulting embedding of so(n,R) in Cliff (R"), the matrix
E;; with +1 in entry (i,), —1 in entry (j,i), and zeros elsewhere, corresponds to the
Clifford algebra element

eje; Cliﬂ(Rn).
With these preliminary remarks aside, we define a connection 1-form
wp: I'"(TU) — End(A)
depending on our initial choice of frame, by setting
1
(8.18) oA(V) = 3 Y ij(V)-c(eiej) € End(A),
i<j
for a vector field V on U.

DEFINITION 8.4.2. Let U C X be an open subset of a Riemannian manifold on which
an orthonormal framing ey, ...,e, of TX is defined. If p: Cliff (R") — End(A) is the spin
representation, then the composition

Cliff(TU) 2 U x Cliff(R") — End(U x A),

where the first map is induced by the frame, defines a Cliff (TU)-module. The spin con-
nection on the product spinor bundle S := U x A, whose sections we understand as smooth
maps 6: U — A, is given by

(8.19) Vi (6) =V (o) +ws(V) o,

where @, is the 1-form valued in End(A) give by (8.18), and V(o) is the usual Lie deriva-
tive of a vector-valued function.

The crucial property of the spin connection constructed locally above is the following.

LEMMA 8.4.3. If VS is the spin connection on sections of U X A as above, w: U —
R" C Cliff (R") is a smooth map, and 6: U — A is a smooth section of U X A, then

(8.20) Vx(c(w)-6) =c(w)-Vx(c) +c(V¥w) -©
where VY€ is the Levi-Civita connection.

The proof is left as an exercise.
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DEFINITION 8.4.4. Let S be a Cliff(TX)-module, a Hermitian vector bundle, with
Clifford multiplication c: Cliff(TX) — End(S). We say that a connection V5 on S is
compatible with the Clifford module structure if

(8.21) Vi (c(w)-6) =c(w) - Vx(o) + C(V],;Cw) -G

holds for all smooth vector fields w on X, and smooth sections s of S. The connection VS
will be called a Dirac connection if it is compatible with the Clifford multiplication, and
compatible with the Hermitian metric on S.

We aim to prove the following.

PROPOSITION 8.4.5. Every fibrewise irreducible Cliff (T X)-module has a Dirac con-
nection.

LEMMA 8.4.6. Suppose c: Cliff (TX) — End(S) and ¢': Cliff (TX) — End(S’) are
two Clifford modules over Cliff (TX), and that U : S — S’ is a unitary bundle isomorphism
intertwining the two Clifford multiplications.

Then if V is a Dirac connection on S, then the conjugate V' := UVU* connection is a
Dirac connection on S'.

PROOF. The conjugate connection is defined
(8.22) Vi (s) :=UVx(U*s)

for a vector field X and smooth section s of §'. It is easily checked that V' is a connection.
If 51,57 are smooth sections of S, X a vector field, then

(8.23) (Vi (s1),52) + (51, Vi (52)) = (UVx (U"51),2) + (s1,UVx (U"s52))
= <V%(U*S1),U*52> + <U*S1,V%(U*52)> :X(<U*S1,U*Sz>) :X(<S1,52>)

shows that it is compatible with the metric. Finally, the assumption Uc(w)* = ¢/(w) for a
tangent vector field w, and the assumed Clifford compatibility of V, gives

UVxU*(c(w)s) = c(V}(C (w))s+c(w)UVx(U*s)
so the conjugate connection is Clifford multiplication compatible as well. ]

LEMMA 8.4.7. if S is a fibrewise irreducible Cliff (TX)-module and L is a complex
Hermitian line bundle over X, then S® L is a fibrewise irreducible Cliff (T X )-module with
module structure

c(w)(s®1) :=c(w)s®1,
forweT X, seScandl €L, xeX.

Finally, we recall the following result observed earlier.

LEMMA 8.4.8. If S and S’ are two fibrewise irreducible Cliff (T X )-modules, then there
is a Hermitian line bundle L and a unitary isomorphism of Clifford modules S = S' @ L.

PROOF. Set L := Homcygr(rx)(S,S'), the bundle of bundle maps S — S’ which com-
mute with the Clifford module structures. Then L is a complex line bundle, with a natural
Hermitian structure, and the obvious map S® L — §' sending s® T to T(s) is a bundle
isomorphism intertwining the Clifford multiplications.

]
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PROOF. (Of Proposition [8.4.5). Let S be a fibrewise irreducible Cliff (7X)-module.
If U C X, with the restricted Riemannian metric, then S|y is also a Cliff(TU)-module,
which is fibrewise irreducible. Suppose that U has a globally defined orthonormal frame.
The frame gives a unitary bundle isomorphism 7U =2 U x R" and an induced isomorphism
Cliff (TU) 2 U x Cliff (R"). Composing this isomorphism with the product Cliff (U x R")-
module U X A, gives a new, fibrewise irreducible Cliff (TU)-module. Therefore, there
is a complex Hermitian line bundle L over U such that S|y ® L =2 U x A. If U is also
contractible, every line bundle is trivial, and hence we get a unitary isomorphism

S|U§UXA

of Cliff (TU )-modules.

On the other hand, we have already shown in Lemma[8.4.3|that U x A has a Cliff (U x
R")-compatible connection, and hence a Cliff (TU )-compatible connection. Hence S| has
a compatible connection as well.

This shows that compatible connections exist locally. We may then piece them to-
gether using a partition of unity {p;}, setting

V=) piVi,
i

where {U; }ies is a locally finite open cover of X by contractible open sets U; each of which
has a globally defined orthonormal frame, and V; is a Clifford-compatible connection on
S|y,

(]

We are finally in a position to define the Dirac operator associated to a spin®-manifold.

DEFINITION 8.4.9. Let X be a spin® Riemannian manifold. Let ¢: ClLff(TX) —
End(S) be an irreducible Clifford module, and V5 be a Dirac connection on S. The Dirac
operator is the differential operator on sections Ci° (M, S) of the spin bundle, given locally
in terms of a local orthonormal frame e, ..., e, of TX by the formula

(8.24) D=Y c(e)-Ve: C7(X.S) = CT(X.S),

where V,, is covariant differentiation by e;.
EXERCISE 8.4.10. The expression (8.26) is independent of the frame.
EXERCISE 8.4.11. D is elliptic (see Definition[8.2.13])

EXERCISE 8.4.12. If f € C*(X) is a smooth function, acting on smooth sections of
S, then the commutator [f, D] is the endomorphism of S given by Clifford multiplication
by the tangent vector dual under the metric to d f (that is, to the gradient Vf of f.) (Hint.
Compute using a local orthonormal frame.)

PROPOSITION 8.4.13. The Dirac operator is an order 1 elliptic, differential operator
on sections C(X,S) of the spinor bundle. The symbol of D is the composition of the bundle
isomorphism T*X = TX given by the Riemannian metric, and the Clifford multiplication
¢: TX — End(S).

In the case X is even-dimensional, D is 7/ 2-grading-reversing, and so maps C(X,S™)

to C2(X,57).
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In the case when X is even-dimensional, the fact that D is grading-reversing means
that, with respect to the decomposition C¢°(X,S) = C(X,ST) & C(X,S™), D has a 2-by-2
matrix decomposition

(2 %]

-0
and the (formal) self-adjointedness of D implies that D} =D_.
In particular, we may apply Theorem 8.3.T1|to the Dirac operator D, as it is formally
self-adjoint (and elliptic).

DEFINITION 8.4.14. Let X be a compact spin®-manifold of even dimension. Let D be
the Dirac operator, acting on smooth sections in L?(X,S), for some probability measure u
on X, and Z/2-graded spinor bundle § — X.

We define the analytic index of D by

(8.25) Index¢(D) := dim(ker D) —dim(kerD_),

where D, is the restriction of D to H, = C*(X,ST), D_ the restriction to H_.
The symbol € refers to the grading.

We relate this index to the ordinary Fredholm index of bounded operators in the next
section.

The index defined above may be described in the following equivalent way. The op-
erator D is self-adjoint with kernel ker D = ker D? and squaring D gives the direct sum of
D, D and D’ D,. Hence kerD is the direct sum of kerD, and kerD? . The Fredholm
index is the graded dimension of kerD. Indeed, with respect to the Z/2-grading,
kerD, is contained in the even part H, of the Hilbert space of sections, ker D_ in the odd
part. If in a graded Hilbert space we define the graded dimension of a subspace W to be

dimg :=dimWNH; —dimW NH_,
then by these remarks

dimsker D = dimker D —dimker D", = Index(D,) = Index¢(D),

the same as (8.23).

EXAMPLE 8.4.15. Let X = T2, the 2-torus, which we regard as RZ/ZZ.
The Dirac-Dolbeault operator
o
5= L. |9 =
m L0
z4

where & = 2 42 acts on sections of the spinor bundle coming from the complex struc-
9z~ ox dy

ture. The bundle is trivial, isomorphic to T? x C2, so that the spinor grading corresponds
to grading the first factor of C? even and the second odd. An exercise in Clifford algebras
shows that the corresponding Dirac operator is given by the above matrix.

Under Fourier transform, L*(T?) = [>(Z?) and the with respect to the associated
canonical orthonormal basis {€; m tn.mez, With e, (x,y) = exp (21i(nx + my)) we compute
that

T
Therefore, up to unitary equivalence, the Dirac operator on T? is the operator

b 0

1 0 .0 B .
<ax +lay> (enm) = (—m+in)ey p.
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acting on [2(Z?) @ I?(Z?*), where M is the diagonal operator in the standard basis with
entries the m +-in.

The kernel of a% is the holomorphic functions on T2 and the cokernel the anti-holomorphic
functions, and each space is one-dimensional, consisting of constants. Hence

= 0 0
Indexg(d) = dimker 5% dimker %= 0.
We end this section with a definition of a more general class of operators, but which
are defined in the same way as the Dirac operator. Only the irreducibility requirement on
the Clifford module structure has been dropped.

DEFINITION 8.4.16. Let X be a Riemannian manifold. Let ¢: Cliff(TX) — End(S)
be a Clifford module, and VS be a Hermitian connection on S satisfying the compatibility
condition of Definition [8.4.4] (a Dirac connection).

The associated Dirac operator is the differential operator on sections C°(M, S) of the

spin bundle, given locally in terms of a local orthonormal frame ey,...,e, of TX by the
formula
(8.26) D=Y c(e;) Ve : CT(X.8) = CT(X.S),

where V,, is covariant differentiation by e;.

We call such operators Dirac-type operators, or simply, Dirac operators.

An advantage of the more general definition is that if D; and D, are Dirac-type op-
erators on sections of spinor bundles S; and S, respectively, determined by two Clifford
module structures and connections, then the direct sum of the bundles S; @ S, has a direct
sum Clifford module structure, direct sum connection, and hence Dirac-type operator.

Similarly, if D is a Dirac operator associated to a spinor bundle S and connection
VS, and if E is a vector bundle over X, then the tensor product S ® E of vector bundles
over X has an obvious Clifford module structure and connection (see Definition [8.6.1)
making a new operator typically denoted Dg and called D ‘twisted’ by E. This procedure
is essential in understanding the connection between K-theory and the index theory of the
Dirac operator.

EXERCISE 8.4.17. Let D; be Dirac-type operators on sections of Clifford modules
Si, i = 1,2 over a compact Riemannian manifold X, determined by choice of compatible
connections on S;.

Show that under the identification L*(X,S; © S,) = L*(X,S;) ® L*(X,S)], (see Ex-
ercise the orthogonal direct sum D & D, of the two operators identifies with the
Dirac operator associated to the direct sum Clifford module S & S,, with the direct sum
connection.

5. Bounded transforms of Dirac operators

It is convenient to translate the index of a Dirac operator on an even-dimensional
compact manifold, defined in the last section as Index (D) := dimker D — dimkerD_, or,
equivalently, as dimker D —dimker D’ , of the operator acting on smooth sections (of the
spinor bundle) into a Fredholm index of an ordinary bounded operator on a Hilbert space.
This allows us to make use of the tools of functional analysis in index theory. The general
procedure is the motivation for the definitions of KK-theory.
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By Theorem [8.3.11f (or Theorem [8.3.10)) we can apply functional calculus to a Dirac
operator D. If D is elliptic and self-adjoint, acting on sections I'™*(X,S) C L*(X,S) of a
spinor bundle, and if j( is a bounded function on R, then the spectrum of D is discrete and

(D)= ), x(\) -pry,
A€Spec(D)
where pr, is projection to the A-eigenspace. The sum converges in the strong operator
topology, and all the eigenspaces are finite-dimensional.

An important example for our purposes will be %(0) = 0 and x(n) = sign(n) =

n#0, so

n
]

X(D) = F = @respec(D)A>0PTa — Prespec(D) A<0PIA,
Note that ker(Fp) = ker(D), and that F2 — 1 has finite rank equal to the dimension of the
kernel of D.

Now suppose that S is a Z/2-graded bundle, such as for example happens if S is the
spinor bundle for an even-dimensional spin®-manifold, and D is the Dirac operator. Let
e: L*(X,S) — L*(X,S) be the grading operator, and assume that D anti-commutes with €:
De = —eD. If s € Hy, then

D(es) = —eDs = —\-¢€s.
Hence es € H_; if s € Hy,. In particular, € maps ker(D) to itself, and F' thus anti-commutes
with €. That is, F is an odd operator with respect to the grading.

We may describe things as follows. The Hilbert space H decomposes as H = HT @
.H~. The restriction of the Dirac operator D to H" gives a densely defined unbounded
operator D : H™ — H™, its restriction to H~ an operator D_: H~ — H™, and so we may
write D as a 2-by-2 matrix

p-]2 ]

D, 0
Since D is self-adjoint, D_ = D% .
For example, squaring D gives
D?— DiD, 0
0 D,D* |~

If D happens to be actually invertible, that is, if ker(D) = {0}, or in other words, if 0 ¢
Spec(D), then it follows that

D=

0 D_(D*D_)"

F=D|D|"! = 1
D, (D\Dy)" 2 0

(recall that D = D? )
In the general case, D+ prye(p) is invertible, and the above formula applies to describe
the operator (D + prie.p). On the other hand

X(D) = X(D + prkerD) — PTker(D)
and one gets a corresponding explicit formula for F.
We have thus verified the easy

PROPOSITION 8.5.1. Let y, € Cp(R) be the normalizing function defined y(n) = £1
according to the sign of the nonzero integer n, and x,(0) = 0.

Let D be the Dirac operator on a compact, even-dimensional spin®-manifold M, with
a corresponding self-adjoint extension on H := L*(M,S). Let F := (D), using functional
calculus for the self-adjoint unbounded operator D.
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Then F is self-adjoint, odd (with respect to the grading on H), the restriction Fy : Hi —
H_ of F to Hy is Fredholm, and Index(F) = Index(D. ) := dimker(D. ) — dimker(D_).

Describing the index of D in this way is more flexible, because we know for example
that the index of a Fredholm operator does not change under compact perturbation. Such
compact perturbations can appear if one changes the normalizing function. Suppose that
%: R — [—1,1] is any continuous, odd function, such that

lim x(1) = £1.

We call any such y a normalizing function. An example is the sign function used above to
define F from D.

If D is a self-adjoint operator such that y(D) is compact for all y € Cy(R), and if %,
and ¢/ are any two normalizing functions, observe that

#(D) =¥ (D) = (x—%)(D)
andy —% € Co(R). The following easy Exercise shows that (D) —x'(D) € K(H).

EXERCISE 8.5.2. Let M be a compact manifold, S a complex vector bundle over M,
and D be the self-adjoint extension of an elliptic operator on I'*(M, S), on the Hilbert space
L*(M,S).

Then if y € Cy(R), then the (bounded) operator y(D) obtained by functional calculus
for D, is a compact operator on L>(M,S).

COROLLARY 8.5.3. Let D, acting on the graded Hilbert space H = LZ(X,S), be as
in Theorem Then if i, is any normalizing function then F := (D) is a bounded,
self-adjoint Fredholm operator on H such that F> —1 € K(H) and F is odd with respect
to the grading on H. Moreover; if %/ are any two such functions, then (D) —%/(D) is a
compact operator.

In particular, as the Fredholm index does not change under compact perturbation, the
index of the bounded Fredholm operator (D) does not depend on the choice of normaliz-
ing function.

EXERCISE 8.5.4. For a self-adjoint unbounded operator D on a Hilbert space H, the
condition

(1+D*~ ' € K(H).
is equivalent to the condition
v(D) € K(H)
for all y € Cy(R). (Hint.
A+D) = (i+D) Y (=i+D) ' =TT",

where T = (i+D)~!, and compactness of TT* implies that of T, for general bounded
operators 7. This shows that y. (D) is compact for the particular functions Wy () :=
(+i+1)~", and these generate Cy(R) as a C*-algebra.)

EXERCISE 8.5.5. Suppose D is a self-adjoint unbounded operator on a Hilbert space.
Show that

(I+M+D) ' =1+ +D) " =1+ +D) =M (1 +A+ D)L

for all A > 0. Deduce that (1+2A; +D?)~! is compact if and only if (1+A; +D?)~ ! is
compact.
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We can use the above observations to prove that making different choices of some
of the data (like the connection on §) when constructing D from a given spin®-structure,
results in F’s which are compact perturbations of each other. This in particular shows the
fact that changing such data does not change the analytic index. To prove this we will use

the particular normalizing function % (¢) =¢(1+ tz)’%, which has the integral formula

(8.27) (1424 = %/mr%(umﬂ)*‘dx
0

— the integral converges absolutely for each ¢ because

AI(I+A+2) <2,

LEMMA 8.5.6. Let x(t) = t(1 +t2)_% and F = (D), where D is a self-adjoint un-
bounded operator on a Hilbert space H such that (1 —i—Dz)’1 is compact.

Then for v € dom(D), the the integral %f(;x’ k_%D(l +A+D?)" d\ converges in the
topology of H to Fv.

[ST[N

We write accordingly, sometimes:
1 00
(8.28) Fi=x(D) = E/ 2 ED(v+ 14D di.
0
with it understood that the integral converges in the strong topology.

PROOE. Since |(1+A+x?)""| < - for all x € R, it follows from the properties of

1+
functional calculus that ||(14+A-+D?)~!| < ﬁ Hence the integral
IO B Y A | 2\—1
(8.29) (1+D?) 22%/ A3 (14 A+ D) dn
0

converges norm absolutely in X (H). In particular, if v € domD, then
IDA+A+D*) || = (1 +A1+D*)'Dv|| < ||Dv||- (1+A) !

and so the integral
1 oo
(8.30) Fvi= %/ A D(1+A+D?) "'y dr,
0

converges norm absolutely in the Hilbert space to Fv.
]

COROLLARY 8.5.7. Suppose D1,D; are unbounded self-adjoint operators on a Hilbert
space H such that Dy — Dy is bounded. Then (1+D?)~" is compact if and only if (1 +

D%)’1 is compact. Furthermore, if this is the case, and F; := Dj(1 —|—Di2)’%, then F| — P>
is compact.

PROOF. We use the integral formula of Lemma One first computes that if A > 0
then

831) A+1+D)'—(A+14+D)'=A+1+D)(DF—D)(A+1+D3)7".
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Applying the Lemma gives
(832) (14+D3)"%—(1+D3)?
:/0 A (1 A+ DY) (D2 — D)(1 + A+ D2)"\dh
:/()wx*%(1+x+0%)*1(D1(Dl —Dy)+ (D1 —D2)D2)(1+ A+ D3) " 'dA.
:/Omx*%(1+x+0%)*‘Dl(Dl—Dz)(1+x+D§)*1dx

+/°°7r%(1+x+D%)*‘((DI—Dz)Dz)(1+7»+D%)’ld7~-
0

The operator (1 + 7»+D%)’1D1 is bounded with norm < (1 + 7»)’7, since 1+{+x2 <

(1 —4—7»)’% for all x € R. The operator (1+A+D3)~! is bounded with norm < (1+24)~!
And D| — D, is bounded. Hence the first term is a norm absolutely convergent integral of
bounded operators. Similarly for the second term.

Now suppose that (1+D?)~! is compact. It follows that (1 +A+ D?)~! is compact
forall A (Exercise and i = 1,2. Moreover, ((D; —D2)D;)(1+A+D3)~! is bounded,
for all A. Hence the integrand in the second term is compact operator valued, so the second
term is compact.

For the first term, factor out the compact operator (1 + A+ D%)_% from the inte-
grand. The operator (1 +7H—D%)’%D1(D1 —Dy)(1+A+D3)~" is bounded since (1 +
7»+D%)’%D 1 is bounded (a contraction), and D — D; is bounded. Hence the integrand in
the second term is the product of a bounded operator and (1 + A+ D%)_ %, S0 is compact.

We have proved that if (1+D?)~! is compact and D; — D, is bounded then (1 +D3)~!
is compact, as claimed.

Next, we multiply (8.33) by D; to get

(8.33) Di(1+D3) "2 —Dy(1+D%) 2
:/Omr%(HHD%)*lD%(Dl—Dz)(1+x+D§)*1dx

+/O°°x—%pl(1+x+0%)—l((nl—Dz)Dz)(1+7»+D%)‘ld7»~

where the integrals converge strongly. The operator (1+A+D?)~!D?(D; —D;) is bounded
with norm < ||Dy — D,||. The operator (1+A+D3)~! is compact with norm < (1+21)~!
It follows that the first term is an absolutely convergent integral of compact operators.

Consider the second term. The operator D (1 +2A+ D?)~! is compact with norm <
¢! +7\«>_% as observed above. The operator (D; —D;)D>)(1+A+D3)~! is also compact,
with norm < M(l + ?»)’% . It follows that the second term above is a compact
operator, as claimed.

We have therefore showed that Dy (1 +D3)~ L D1(1 —|—D2)’% is compact. Since
Di(1+D3)" 2 —D2(1 +D3)~ 1= (Dl D>)(1+D3)~ Yisa compact operator, we deduce
that D (1 + D%)’f —Ds(1 +D%)" is a compact operator, as claimed.

(I

We record that we have established the following fact.
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COROLLARY 8.5.8. Let D be a self-adjoint, unbounded operator on a Hilbert space
H, with (1+D?*)~! compact.

Then ker(D.) are finite-dimensional vector spaces. Furthermore, if D and D' are
two such operators with a dense common domain and D — D' bounded, then Index(D) =
Index(D’).

REMARK 8.5.9. As an easy consequence, the index of a Dirac operator associated
to a spin®-structure on M compact, does not depend on the choice of connection on the
spinor bundle, since changing the connection only changes the Dirac operator by a bounded
perturbation.

The next result we establish here is particularly important for index theory in odd
dimensions. The key point about the interaction between the operators of multiplication
by smooth f € C*(M) on sections of a spinor bundle, and the action of the Dirac opera-
tor, is that the commutator [D, f] is bounded. The next result shows that this implies the
commutator [F, f] is compact.

LEMMA 8.5.10. Let D be a densely defined self-adjoint operator on a Hilbert space
H such that (1+D?)~! € K(H).

Let a be a bounded operator on H, leaving the domain of D invariant, and such that
the commutator |a, D) is bounded.

Then, for any normalizing function X, the commutator

[a,x(D)]

is compact.

PROOF. By Corollary [8.5.3]it suffices to prove the second assertion for the particular

normalizing function
1

x(1) :=1(1+2%)72.
Using the integral formula (8:28)) and some algebra we get

834) [a.F] = %/Ooo}»_%[a,D](K—H—sz)‘ldk

—s—%/wx*%D(k—H+D2)*1[a,D2](7u+1+D2)’1d7»
0

all a priori in the strong topology. However, all of these integrals are absolutely operator
norm convergent integrals of compact operators. Indeed, The first integral converges since
(1+A+D?)~"is compact, [|(14+A+D?)""|| < r1x. and [a,D] is bounded.

Consider the second term. Using [a, D?] = [a,D]D + D[a, D], we see it breaks into the
sum

1 00
(8.35) E/ A ADOA 14+ D) [0, DID(A+ 1+ D)\ dh,
0
1 o0
+E/ A" ID(A+1+D*) "' Dla,D](1 + A+ D*)~'dr
0
Now ||D(1+A+D?)~| < (14+1)~2 whence |[D(14+A+D?)~![a,DID(1+A+D?)"!| <
|[a,D]|| - (1 4+X)~! for some constant and so the first term is a norm convergent integral

of compact operators and hence is a compact operator, and the same remarks apply to the
second term. O
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Some of the technical results of this section are used in the next to define maps on K-
theory groups, whose computation in two different ways, constitute the Index Theorem(s)
of Atiyah and Singer.

6. The K-theory Index Theorem(s)

An essential observation of Atiyah was that an elliptic operator can be ‘twisted” by
a vector bundle to produce another elliptic operator Dg. Moreover, since the twisted op-
erator is again elliptic, it is Fredholm, and has an index. Following this reasoning, one
concludes that a Dirac operator D on an even-dimensional manifold, determines a group
homomorphism K°(M) — Z. A slightly different procedure defines a group homomor-
phism K' (M) — Z if M is odd-dimensional, again by a construction with the Dirac opera-
tor on M, but a slightly different one.

These facts suggested to Atiyah that it might be possible to organize elliptic operators
(e.g. Dirac operators) into a homology theory dual to the cohomolology theory K-theory,
at least for compact manifolds. The idea led to Kasparov’s K-homology, discussed in the
next chapter.

In this section we describe the Index Theorem in these terms. We start by defining
twisting by vector bundles.

Index maps in even dimensions: twisting

Let D be a Dirac (type) operator (Definition [8.4.16) ) on sections of a spinor bundle
S — X, where X is a Riemannian manifold. Thus, for a Dirac connection VS on S, and a
Clifford module structure ¢ on S, D acts on smooth sections of S by

Zc (Veus)(x), s€T™(S),

with (e;) a local orthonormal frame for TX.

We show that D can be ‘twisted’ by any complex vector bundle E — X as follows.
Choose a Hermitian metric and compatible connection V£ on E.

The bundle S ® E admits the Clifford module structure cg(§) :=c(§) @ 1g, : SxQE, —
SyQE,, forxe X, e T.X.

The bundle S ® E admits a tensor product connection V5S¢ := VS ® 14+ 1@ VE as
well, defined as follows. On the algebraic tensor product I'"*(X,S) ®c=(x) [™(X,E) of the
two C*(X)-modules of sections, and for X a vector field on X, the formula

VYZE( (Y sion): ZVXS,®1‘,+S,®VX[,

is well defined (that is, satisfies VS%E (sf @1) = V(s ®@ ft) for f € C*(X)). Now sections of
this form are dense in all sections, and the connection condition is easily checked. More-
over, it is compatible with the tensor product Hermitian metric.

Therefore S ® E has a structure of Clifford module, and has a compatible connection.
From this data one builds as discussed above, the associated Dirac (-type) operator.

DEFINITION 8.6.1. Let X be a compact Riemannian manifold, D a Dirac operator
on X and E — X a vector bundle over X. The Dirac operator D twisted by the complex
Hermitian vector bundle £ — X is the Dirac type operator defined with respect to a local
orthonormal frame bv

DE_):CE IVSE, seT™(X,SQE),
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with V3®E and ¢ as above.
Locally, if s ® v is a simple tensor section of S ® E then

De(s®v) =Y c(ei) Ve s@vtc(e)s@Viv.
i

The Dirac operator twisted by E is again of Dirac type. Hence D is elliptic, and ex-
tends to a self-adjoint, unbounded, grading-reversing operator on the Z/2-graded Hilbert
space L*(X,S®E), and has a Fredholm index Index (Dg) := dimker (D) + —dimker (Dg)—.

EXERCISE 8.6.2. In the above notation:

a) A different choice of connection on £ — X differs from the original one by an
End(F)-valued one-form, and the corresponding twisted Dirac operators dif-
fer by a bounded operator. Deduce (see Lemma that the analytic index
Index(E) does not depend on the choice of connection on E.

b) If E,E’ are two bundles then Indexe (Dgg ) = Indexe (Dg ) +Indexe (Dg). (Hint.
Exercise [8.4.17})

¢) If E and E’ are stably isomorphic vector bundles (that is if E®F X E'©F
for some vector bundle F). then Indexg(Dg) = Indexe(Dgs). (Hint. Start by
assuming E = E’ and show that Dg and D are unitarily conjugate modulo order
Zero operators.)

The results of the previous exercise allow us to make the following

DEFINITION 8.6.3. Let X be a compact Riemannian, even-dimensional spin®-manifold.
The analytic index map K°(X) — 7 determined by the spin®-structure is the group homo-
morphism [E] — Index,(Dg), for E — X a complex vector bundle over X.

EXAMPLE 8.6.4. The Dirac-Dolbeault operator d on L>(T2,C?) has index zero. But

twisting o by the Poincaré line bundle over T? gives an elliptic operator on T2 with index
L.

We conclude with some further remarks about twisting.
Let p € C~(X,M,(C)) be a smooth, projection-valued function, and E := Im(p), the
(Hermitian) vector bundle with

Ey:=range(p(x)) CC", xeX.
Associated with p is a canonical connection on E, the Grassman connection, defined by
Vxs (x) := p(x) dxs (x),

if s € C*(X,C") is a smooth section of the trivial bundle in the image of p. The symbol dx
denotes the trivial, or de Rham connection

dx (s1s...s8n) = (X(81),...,X(s0))-

EXERCISE 8.6.5. Show that the Grassmann connection is a connection compatible
with the metric on E.

Suppose now that D is a Dirac-type operator on a Clifford module S equipped with a
compatible connection. Following the discussion described above, using the Grassmann
connection on E, we obtain an operator Dg on I? (X,S®E).

We can describe the same operator as a compression.
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EXERCISE 8.6.6. In the above notation, let P be the projection on the Hilbert space
L*(X,S)" = L2(X,S") = L*(X,S® 1,) obtained by fibrewise projecting S, ® C" to S, ® E,
using 1 ® p(x). Then the range of P is the subspace L?(X,S® E), and

PDP = Dg

up to lower order terms, as densely defined operators on L?(X,S® E).
In particular, Indexe (Dg) = Indexe (PDP).

Index maps in odd dimensions: Toeplitz operators

In the case of an odd-dimensional spin®-manifold with Dirac operator D acting on
sections L*(X,S) of a spinor bundle, there is no Z/2-grading available, with respect to
which D is odd, so as D is moreover self-adjoint, there is no reasonable sense in which D
has a Fredholm index, unless it be zero.

The right kind of index theory to do in odd dimensions is instead that involved in the
Toeplitz Index Theorem.

Let X be odd-dimensional, Riemannian, spin®, and D the Dirac operator, acting on
sections of S. We use the same notation for its extension to a self-adjoint unbounded
operator on H := L*(X,S). Since we are in odd dimensions, there is no grading. Being
self-adjoint, the spectrum of D is real, and splits into its positive and negative spectrum
(and zero), and accordingly H splits into an orthogonal direct sum Hy>q ® Hy o of two
closed subspaces.

DEFINITION 8.6.7. The Dirac-Szego projection pp is the projection to the closed
spectral subspace H) > spanned by the non-negative eigenvectors of D.
Alternatively,

Pp = X[0.) (D),
in the sense of functional calculus.

Note that pp = % where F = (D),  the normalizing function 2X[0,00) — 1.
LEMMA 8.6.8. Let f € C*(X), regarded as a multiplication operator on H = L*(X,S).
Then the commutator [f, pp)| is compact.

PROOF. By Lemma [8.5.10] since the commutator [f,D] is bounded, the commuta-

tor [f,x(D)] is compact, for any normalizing function ¥. Since 2pp —1 =%(D) up to a
compact operator for any normalizing function Y, [f, pp] is compact.

(]

DEFINITION 8.6.9. Let X be odd-dimensional Riemannian spin®, let D be the (self-
adjoint) Hilbert space Dirac operator on H = L*(X,S), pp := X[0.) (D) the Szegd projec-
tion.

The Szego projection extends to H" = L*(X,S ® C") by applying it coordinate-wise.
We use the same notation. Now let # be a smooth, unitary-valued function in C(X, M, (C)),
it acts by a unitary multiplication operator on H" by applying it fibrewise.

Then the associated Dirac-Toeplitz operator is the operator T, := ppupp + (1 — pp),
acting on H := L*(X,S®C").
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LEMMA 8.6.10. Ifu and v are smooth functions in C* (X,M,(C)), then the operators
Tuv - TMTV7 Tu* - Tu*

are compact.
In particular, T, is an essentially unitary operator on H", for any u taking unitary
values.

This follows from Lemma|8.6.8} we leave the details to the reader.

DEFINITION 8.6.11. Let X be a compact Riemannian, odd-dimensional spin®-manifold.
The analytic index map K'(X) — 7 determined by the spin®-structure is the group homo-
morphism [u] — Index(T},), for u a smooth, unitary-valued function in C(X,M,(C)), and
T, the associated Dirac-Toeplitz operator of Definition

EXAMPLE 8.6.12. The simplest example is of course the Dirac operator on the circle.
The corresponding theory of Toeplitz operators was discussed in Chapter [T}

The results above imply that we may define an index map
KYX) = Z, [u] — Index(T;,),

where T, is the Dirac-Toeplitz operator associated to u € C* (X,M,(C)), and, of course,
Index is the Fredholm index.

We now give the K-theory statement of the Index Theorem.

If E — X is a complex vector bundle over a compact even-dimensional spin®-manifold
X, then the integer Index(Dg) defines an invariant which depends on solving some differ-
ential equations. The Atiyah-Singer Index Theorem describes this integer in purely topo-
logical terms.

As observed in the previous section, the Fredholm index Index(Dg) only depends on
the isomorphism class of the bundle E. Moreover, it is additive,

Index(Dggr) = Index(Dg) + Index(Dg/).

It follows that our analytic invariant Index(Dg) only depends on the K-theory class [E] €
KO(X).

Exactly parallel remarks hold for the odd-dimensional case. If X is odd-dimensional,
T, the Dirac-Toeplitz operator associated to a unitary in C*(X,M,(C)), then Index(T),)
only depends on the path component of u, in C*(X,U,), since the Fredholm index itself is
homotopy-invariant in this sense.

Recall that Bott Periodicity states that for every n =0, 1,2,.. ., there is an isomorphism
K™(R") = Z, with 1 € Z corresponding to a certain Bott generator 3,,. Now suppose that

X CcR?

is a closed submanifold, with spin®-structure. Let T: v — X be the normal bundle to TX in
R", so that TX &v = TR". By the 2-out-of-3 Lemma for K-orientations (Lemma/|6.10.12))
the given K-orientation on 7X and the standard K-orientation on R” induces a unique K-
orientation on v. Therefore, the Thom Isomorphism of Section [I0] applies and gives an
isomorphism
K* (X) o~ K*fdimV(V)
Finally, let
G:v—R?
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be the open embedding onto a tubular neighbourhood of X in R", associated with the
normal bundle. Then ¢ induces a group homomorphism

¢! K*(v) —» K*(R").
For the following, recall that every smooth compact manifold can be embedded in R".

DEFINITION 8.6.13. Let X be a smooth compact spin®-manifold, and choose an em-
bedding X C R”. Then in the above notation, if a € K*(X), then the spin number spin®(a)
of a is defined by the equation

¢! (n* (a)&y) = spin®(a) - Bn.
with B, € K™(R") the Bott generator, T: v — X the projection for the normal bundle,
K-oriented by the K-orientation on X, and &, € K~4MV(v) the Thom class.

If X is even-dimensional, only classes in KO(X ) have nonzero spin® numbers, and if
X is odd-dimensional, only classes in K!(X) have nonzero spin® numbers. This follows
immediately from the definitions. Proving that the spin number is well-defined requires
of course more work than we have given. We refer the reader to the papers of Atiyah and
Singer, or the more recent [79].

EXERCISE 8.6.14. Prove that if u € C*(T) is a unitary, then spin®([u]) = —wind(u).

THEOREM 8.6.15. (the Atiyah-Singer Index Theorem). Let X be a compact, spin®-
manifold. Then if X is even-dimensional, and E — X is a complex vector bundle, Dg the
Dirac operator on X twisted by E, then

(8.36) Index(Dg) = spin®([E]).

If X is odd-dimensional and T, is a Dirac-Toeplitz operator asscoiated to u € C*(X,U,),
then

(8.37) Index(7,) = spin®([u]).

The Atiyah-Singer K-theoretic formula for the index leads to ‘local formulas,” like the
formula | 4
u
Index(T) =—=— | —

ndex(T.) 2mi JT u

for the index of a Toeplitz operator.
0 9 _ ;0

If 0 = o ay] acting on its domain in L?>(T?,C?), and E — T? is a

J - d
ox + la*y
complex vector bundle over T?, then

Index(Dg) = /11‘2 c1(E),

where ¢ (E) is the first Chern class of E. (For more general Riemann surfaces there is a
further, ‘curvature’ term, which vanishes on the flat ']I‘z.)

We will discuss local formulas more in connection with our discussion of the Heat
Equation proof of the Index Theorem in Section[/| Although the original statement of the
Index Theorem [12] involved such formulas, that is, was formulated in terms of cohomol-
ogy, the paper [13] states and proves it in terms of K-theory (as above); the cohomology
version, using the Chern character isomorphism, is deduced from it in [15].






CHAPTER 9

K-HOMOLOGY AND NONCOMMUTATIVE GEOMETRY

This chapter deals with some of the key aspects of the geometric part of the subject
of Noncommutative Geometry. Connes’ program for a Noncommutative (Riemannian)
Geometry is based on using ideas from classical Index Theory to endow potentially non-
commutative C*-algebras with further geometric structure. For example, the C*-algebra
C(M) for a compact smooth manifold M contains the dense and holomorphically closed
subalgebra C* (M), and the geometry of M leads to many interesting functionals on C*(M),
like ©(f,g) = [, fdg, where Yis a closed curve in M. Such v defines a closed 1-current: a
continuous linear functional Q!(M) — C. From the point of view of the algebra C*(M) it
defines a cyclic 1-cocycle (see Example[9.2.3). Such cocycles pair with K-theory classes,
in this case with classes in K~ (M). In [40], [41], [43]] and see [48], A. Connes developed
the theory of cyclic cohomology, a ‘noncommutative’ analogue of de Rham homology of
currents, and this was one of the steps initiating Noncommutative Geometry as a subject.
The irrational rotation algebra Ay, with its certain natural subalgebra A7 of ‘smooth’ el-
ements, is the source of interesting examples of such cocycles. The differential structure
on Ay is specified by an R?-action determining two transverse flows and derivations 8;, 5,
and if 7 is the standard trace, then

v (b0, ,0%) =1 (aOS(a1)82(a2) —a%8,(a")8, (az))

is a cyclic 2-cocycle analogous to the curvature tensor of Riemannian geometry (see [48]),
and it enters into several index formulas for elliptic operators over the noncommutative
torus (see Section[12])

The idea of studying Riemannian geometry by studying spectra of appropriate geo-
metrically defined operators goes back to Hermann Weyl (see [24], or the book [145]) who
showed that the volume of a bounded domain in R" can be determined from the spectral
asymptotics of the Dirichlet boundary value problem of the Laplacian (see Kac’s famous
paper [106])). A refinement of Weyl’s asymptotic formula due to Pleijel and Minakshisun-
daram provides a series of local spectral invariants for compact Riemannian manifolds
involving derivatives of the curvature tensor. Their method was based on certain asymp-
totic expansions. Asymptotic expansions of the heat kernel e ' where A = D? for a Dirac
operator D on a compact spin®-manifold M, give rise to an almost instant ‘local’ proof
of the Index Theorem insofar as it identifies the index with the integral of an appropri-
ate smooth function on M, and the only remaining problem being to identify the function
explicitly. This is the Heat Equation proof of the index theorem. This proof is quite dif-
ferent from the K-theory proof. The heat equation proof is discussed in Section [/} See
the books [142]] or [25] for detailed expositions of the heat equation proof. What is most
important for our purposes is that the heat equation argument also applies in ‘noncommu-
tative’ settings, and leads eventually to the Local Index Theorem of Connes and Moscovici
[53] discussed in Section[8] This very general result applies to spectral triples, or cycles,
and zeta functions of the type Tr(aA™*), with a an element of a *-algebra play a big role.

331
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The index formula assigns to a spectral triple a certain cyclic cocycle for periodic cyclic
cohomology, the noncommutative analogue invented by Connes of de Rham cohomology
(see [46], [48]). Cyclic cocycles pair with K-theory classes, and the work of Connes and
Moscovici amount to an explicit description of a Chern character for K-homology. We
discuss only the minimum of cyclic cohomology in this book — essentially enough to for-
mulate the Connes-Moscovici theorem, and study simple examples. The book [119] is a
good treatment of cyclic cohomology.

Topological invariants of elliptic operators and spectral triples are organized by K-
homology, which is a generalized cohomology theory on C*-algebras dual to K-theory
defined in terms of cycles and relations: the cycles in K-homology are ‘abstract elliptic
operators,” or Fredholm modules. K-homology defined this way is a special case of KK-
theory, and was developed by Kasparov [111]], but it was preceded historically by another
model involving equivalence classes of C*-algebra extensions by Brown, Douglas and
Filmore (see [65]), which has a beautiful application to the classification of essentially
normal operators. The book [99]] gives a complete and detailed account of both of these
theories, and the important connections between K-homology of non-compact spaces, and
coarse geometry. The paper [21] gives an excellent modern treatment of Dirac operators
and their role in K-homology.

Connes and co-authors have shown that spectral triples give a new perspective on
the geometric interpretation of the detailed structure of the Standard Model in particle
physics, and of the Brout-Englert-Higgs mechanism. See [37], [38], [39]. The book [84]
discusses extensively the use of spectral triples in physics, and [S0] is an essay on the
interplay between Noncommutative Geometry and physics. The book [84] is concerned
almost entirely with spectral triples and their use in physics. See [22] for connections
between Noncommutative Geometry and Solid State Physics.

1. Fredholm modules and their pairing with K-theory

Suppose ¢ : R — [—1,1] is a normalizing function: % is odd, and lim,_, 1} () = £1.
Lemma[8.5.10] (and Exercise[8.5.4) of Chapter 8 imply the following.

LEMMA 9.1.1. Suppose H is a Hilbert space and D is a densely defined self-adjoint
operator on H such that (1+D*)~! € K(H). Suppose A is a C*-algebra represented on
H by bounded operators containing a dense subalgebra A~ C A leaving the domain of D
invariant and such that [a, D] is bounded for a € A™.

Then if y is a normalizing function, then F := (D) is self adjoint, and

[a,F] € K(H), YacA, F*—1¢ X(H).

If H carries a Z/2-grading with respect to which D is an odd operator, then F is also
odd.

The Lemma applies to elliptic differential operators D on sections of vector bundles
over smooth manifolds, due to the results of the previous chapter.

EXERCISE 9.1.2. Suppose D is a densely defined self-adjoint operator with discrete
spectrum, and assume D odd with respect to a Z/2-grading with (self-adjoint) grading
operator €. Suppose that y is an odd normalizing function. Show that % (D) anti-commutes
with €.

Atiyah’s idea, motivated by the Index Theorem, and specifically Lemma [9.1.1} was
that one should be able to define a theory dual to K-theory (called K-homology) with
cycles specified by the following data.
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DEFINITION 9.1.3. Let A be a C*-algebra. An even Fredholm module over A is a
triple consisting of a Z/2-graded Hilbert space H, a representation

n: A— B(H),

as even operators (preserving grading) and a self-adjoint, odd (reversing grading) operator
F on H such that

n(a)- (F>~1) € K(H)
for all a € A.

An odd Fredholm module is defined the same way, except we drop the assumption of
a Z/2-grading.

EXAMPLE 9.1.4. For any normalizing function ¥, let F = |7, acting as a multiplica-
tion operator on /(7). Then the triple (>(Z),A,F = yz) is an odd Fredholm module over
A:=Cx(Z), where A: C*(Z) — B(H) is the regular representation.

EXAMPLE 9.1.5. 1. If X is an even-dimensional spin®-manifold and D is the Dirac
operator on sections of the HermitianZ /2-graded bundle S — M, then the triple (H :=
L?*(X,S),m, Fp := x(D)) with the representation : C(X) — B(H) by multiplication oper-
ators, and ¥ a normalizing function, defines an even Fredholm module and corresponding
class, the Dirac class [D] € KKo(C(X),C). The Hilbert space H is graded by the grading
on S.

2. If X is an odd-dimensional spin®-manifold and D is the Dirac operator on sec-
tions of the Hermitian bundle S — M, then the triple (H := L*(X,S), =, Fp := x(D)) with
the representation ©: C(X) — B(H) by multiplication operators, defines an odd Fredholm
module and corresponding class, the Dirac class [D] € KK, (C(X),C).

There is an obvious notation of unitary equivalence of a pair of Fredholm modules,
and unitary equivalence classes of Fredholm modules admit a direct sum operation.

DEFINITION 9.1.6. Equivalence of Fredholm modules is the equivalence relation gen-
erated by the following two relations:

1. A Fredholm module (H, 7, F) is degenerate if n(a)(F* —1),[rn(a), F] are both zero
for all a € A.

2. Two Fredholm modules (H;,T;, F;) are operator homotopic if Hy = Hy = H, ) =
T, =T, and F}, F; are connected by a path in B(H ) through operators F; for which (H, T, F;)
are Fredholm modules.

EXERCISE 9.1.7. Prove that if (H,,F) is a Fredholm module, and (H, =, F’) is an-
other, such that F — F' € K (H), then the two Fredholm modules are operator homotopic.
They are called compact perturbations of each other.

REMARK 9.1.8. Any Fredholm module over unital A can be replaced by an equivalent
one, in which the representation is non-degenerate. If n(1) = p € B(H), then we compress
the Fredholm module by the projection p

(pH, T, pFp).

This results in an equivalent Fredholm module, because the original Fredholm module
differs from this one by a compact perturbation of a degenerate Fredholm module, namely

((1=p)H,0,(1—p)F(1 = p)),

where 0 denotes the zero representation.
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DEFINITION 9.1.9. The analytic K-homology
KK, (A,C) :=KK((A,C) 2 KK, (A,C)

of a C*-algebra A is the Z/2-graded abelian group generated by the equivalence classes of
even/odd Fredholm modules over A, modulo the relation x +y = [x @ y], where & denotes
direct sum of Fredholm modules.

The following result is useful for theoretical purposes, e.g. for cyclic cohomology.

PROPOSITION 9.1.10. Every Fredholm module is equivalent to one of the form (H, T, F)
where F? = 1.

PROOF. Let (H,,F) be an even Fredholm module over A. Then F = 2 16 for

u: Hy — H_ with uu*™ — 1 and u*u — 1 each compact. Applying the trick of Lemma(7.5.10}
consider the operator w: H. ® H_ — H_ & H, given by matrix multiplication by

e u —(1—uu*)'/?
T (liu*u)lﬂ u*
LetVy:=H,®H_ and V_ := H_ ® H,, and A be represented on V1 by 4 ®0 on V,
and T_(a) ® 0 on V_. Let & denote the direct sum of these two representations. Let H =
M(}) ] , then (A, %, F) is a Fredholm
module over A with F2 = 1, and it is a compact perturbation of the direct sum of (H, T, F)
and a degenerate.
The odd case is dealt with similarly.

Vi @ H_, with grading as notation indicates, F= [S}

O

It is a special case of Kasparov’s KK-theory, and we will discuss its general functori-
ality properties in that context in the next chapter.
The reader will find it easy however to do the following exercise.

EXERCISE 9.1.11. Prove that a *-homomorphism o: A — B between C*-algebras
induces a pair of group homomorphisms KK;(B,C) — KK;(A,C) by replacing the repre-
sentation 7 in a Fredholm module by o a.

Pairing of even Fredholm modules with even K-theory classes

Suppose that (H, 7, F) is an even Fredholm module over A.

Consider the operator F. We know that F = F*, and that F? — | is compact. Further-
more, F is odd with respect to the grading. So with respect to the orthogonal decompositon
H = H, ®H_, the operator F and representation have the forms

r=lo S o[ )

where U: HY — H™ is an essentially unitary operator, with the property that
n (a)U—-Un"(a) € K(H",H")

is a compact operator for all a € A.
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Now suppose that p is a projection in A. Since Tt(p) commutes mod compact operators
with F, the operator

9.1) n (pUn"(p): n* (p)H = (p)H™
is a Fredholm operator. Then we make the definition
9.2) ((H,m,F),p) :=Index(n~ (p)Un* (p)).

EXERCISE 9.1.12. Show that this ‘index pairing’ is invariant under changing the Fred-
holm module to either a homotopic one, or perturbing it by a degenerate. Show that if A
is unital and 7 is non-degenerate then pairing (H, T, F') with 1 € A gives the ordinary Fred-
holm index of U.

To define the pairing of (H,T,F) with a projection not necessarily in A, but in M, (A),
for some n, observe that (H®---H,n®---®T,F @ ---F) is also a Fredholm module over
A, where the Z/2-grading is induced by €@ --- @ €. Hence, if p € M,,(A) is a projection,
then we can pair p with the original Fredholm module by first forming a direct sum of n
copies of (H,T,F), compressing the operator with the projections 7+ (p) as in (9.1), and
taking its Fredholm index, that is, the index of:

n(pU@---eUn (p):n'(pH @ en'(pH" —»n (p)H &---on (p)H™
We obtain a bilinear pairing
K()(A) X KK()(A,C) — 7,
generalizing the pairing
(ID),|E]) := Index(Dg)
between Dirac operators and (K-theory classes of) vector bundles over X (that is, general-
izing the analytic index map of Definition [8.6.3).

Pairing of odd Fredholm modules with odd K-theory classes

The pairing
K (A) x KK (A,(C) — 7.
between K (A)-classes and odd Fredholm modules generalizes the pairing
([D],[u]) :=Index(T,,)

between Dirac operators on odd-dimensional compact manifolds, and (K-theory classes
of) unitaries in C(X,M,,(C)).

Assume that (H,,F) is a non-degenerate odd Fredholm module, Then P :=
B(H) satisfies

F+1
7 €

P*=P, PP—P, [P,n(a)] € K(H).
It follows that if # € A is a unitary, then
PuP+(1-P) € B(H)
is an essentially unitary operator and we can set
9.3) ((H,m,F),u) := Index(Pn(u)P+1—P).
EXERCISE 9.1.13. In the above notation, show that
a) Pr(u)P+ (1— P) is an essentially unitary operator.
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b) Show that the pairing does not change if the Fredholm module is replaced
by an operator homotopic one, or under addiing a degenerate (odd) Fredholm
module to it.

c) Show that if u is replaced by another unitary, connected by a path of unitaries to
u, then the pairing does not change.

The pairing above extends to unitaries in M,,(A) by the same procedure as in the even
case.

We close this section with a beautiful example of a Fredholm module due to Julg and
Valette [[102].

EXAMPLE 9.1.14. The following example is based on the free group [, on two gen-
erators a,b. The Cayley graph of this finitely generated group is (by definition) the graph
with vertices labelled by elements of F,, and for each generator s € S = {a,a”!,b,b~'},
there is an (oriented) edge from g to gs. For the group [, this results in a tree:

(fih
* <o >0
a Mig! ba b
b~! b~!
[
a A a o
*<9 >0 b o <9 >0
a’Elzfl b a! a N ba Eh
§b71 o A g = }bfl
a’i'h a” lZl a” ll’l a’i'h
*<—9o >0 *<—9 >0 "< >0 *<—9o >0
b 1 b~ b
a Kig! a Mo a Nw™! a Mo
b
b b~ b1 b
7ii 7'
sk, b b S<tBe
— —1 b —1 —1 b
a ﬁlu a a a a a 5&1
v —1 —1
v ], o1 30
a"_a). 1 -1 .a;“_a).
b1 b b b1
' a K~ a Mo bl a KMm~! a Mo '
%b‘l L, yb! b= | yb!
a’ rlzz cfﬂ b cfi b a rth
<9 >0 <o >0 <o >0 <o >0
b*l Ab Ab b71
>
' g’ﬁhfl a”! a | oa ih
~1 |
¥b e e ¥b
8 £ bl <t
¥ b~
a Aig! a ih
b*l b*l b*l
a’'ya
.(—ib—t.l
¥

Let X be the set of vertices of the tree, and X! the set of geometric (unoriented) edges.
Let {e,},xo be the corresponding orthonormal basis of /?(X?) by point masses at vertices,
and similarly {e} .y, an orthonormal basis for /2(X").

Choose any basepoint w € X°. Define

by: P(X%) = 2(x1),
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by setting b(e,) = 0 if v = w is the basepoint. Otherwise, v # w then there is a unique path
of geometric edges between v and w and we let s(v) be the first edge in this edge path, and
set b(ey) = eg(y).-

Thus, b, (e,) = e; means that one of the vertices of s is v, the other is a vertex one unit
closer to w than v.

EXERCISE 9.1.15. b,b}, =1 and b},b,, = 1 — p,,, where p,, is projection to the basis
vector e,,.

*

In particular, F := [bO b(ﬂ satisfies F2 — 1 has rank one, and so is compact.
w

The group I, permutes the vertices and edges of the tree, and we obtain two unitary
representations
mo: F2 = B(A(X%), m:F*—B(A(X").
By Exercise of Chapter 2, these representations extend to representations of
C*(Fy).

EXERCISE 9.1.16. Show that

71 (8)bwTo (g)il = bg(w)
for any vertex w and any g € I, and that if w,w' are any two vertices then (b,, — b, )(e,) =
0 unless v lies on the path between w and w'.
Now we let w be the basepoint of the tree, and just denote by b the corresponding
operator b,,.

0 bx
b 0

Use the observations above to show that for 1 = wy ®m; and F = [

[m(a),F] € K (F(X°)®*(X")), VaeC*(F).

Therefore, (1*(X®)@1*(X"),n,F) is an even Fredholm module over C*(FF,). Note
that b,, has Fredholm index 1. Hence pairing (classes) of projections in C*(IF5) with
the Fredholm module (12(X°) @ {*(X'),m, F) determines a nonzero group homomorphism
KQ(C* (Fz)) — 7.

EXERCISE 9.1.17. Let F be the Fredholm operator above, and vy the grading operator
on I2(X%) @12(X") (y= 1 on the first factor, Y= —1 on the second factor).
Verify that the commutator [1t(a), F] has finite rank for @ € C[[F;] and that

9.4) %Trace('yF[F,n(a)}) — 1(a)

where 7 is the trace on C*(IF2), T(¥, a,[g]) = a..

In combination with Connes’ character formula (Theorem [0.3.3), this implies that the
group homomorphism 1, : Ko(C*(F,)) — R induced by the trace takes integer values.
Since the trace is also faithful, this implies the remarkable result that C*(F,) has no non-
trivial projections (the Kadison Conjecture.)

2. Cyclic cohomology

DEFINITION 9.2.1. Let A be an algebra.

a) An n+ l-linear function ¢: A x ---A — C is a cyclic n-cochain if

0. = (10l ... ).
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b) The Hochschild coboundary b of an n+ 1-linear functional ¢ (not necessarily
cyclic) on A is the n+ 2-linear functional
bo(a,....a"") =Y (=1)0(d,....ala/ ", at ) + (= 1)o@ % d ).
=0
A Hochschild n-cocycle is a an n + 1-linear functional ¢ on A such that bp = 0. A cyclic
n-cocycle is a cyclic cochain which is also a Hochschild n-cocycle, i.e. b = 0.
EXAMPLE 9.2.2. A Hochschild 0-cocycle, equivalently, a cyclic 0-cocycle, since the
cyclic condition is trivial, is a linear map T: A — C such that 0 = b1(a’,a') = 1(a%a') —
7(a'a). This shows that that cyclic O-cocycles are traces on the algebra A.

EXAMPLE 9.2.3. A p-dimensional de Rham current on M is a continuous linear func-
tional on the Fréchet space Q”(M). If C is a p-dimensional current, then the p + 1-linear
functional

9.5) QU0 oo f?) = [ ot A nag

is a Hochschild p-cocycle which is a cyclic p-cocycle if C is closed: thatis, if Cod: Q*(M) —
C is zero, d the de Rham differential.

In particular, if @ is a closed, n — p-dimensional form on an oriented compact manifold
M then

9.6) QU ennf)i= [ o edf? Ao
M
defines a cyclic p-cocycle on C*(M).

DEFINITION 9.2.4. The Hochschild cohomology of A is the quotient of the linear
space of Hochshild coycles by the subspace of coboundaries. The cyclic cohomology of A
is the space of cyclic cocycles modulo the subspace of cyclic coboundaries.

The cyclic cohomology of A is denoted HC*(A).

REMARK 9.2.5. A converse to Example holds. For example, observe that any
Hochschild 1-cocycle ¢ on C* (M) determines a 1-dimensional current

(Co.fdg) = 0(f.8)-
By an easy exercise thi current is closed if ¢ is a cyclic cocycle. The Connes-Hochschild-
Kostant-Rosenberg Theorem [41] extends this result to an embedding of the Hochschild
cohomology of C*(M) into the space of currents (continuous linear functionals on the
space of differential forms) on M, mapping cyclic cocycles to closed currents.

EXAMPLE 9.2.6. Let A be an algebra and 8: A — A be a derivation: 8(ab) = ad(b) +
8(a)b. Let t: A — C be a d-invariant trace in the sense that To 8 = 0, Then
9.7) o(a,a') =1 (aoﬁ(al))

is a cyclic 1-cocycle on A. Indeed, the cyclic condition t(a%,a') = —1(a',a®) follows from

1(a°8(a") +1(a'8(a”)) = 1(a"8(a") +1(8(a%)a') = (108) (a’a') = 0.

The Hochschild cocycle condition b = 0 is checked similarly and is left to the reader.

A concrete example is proved by a flow {0 };cr on a compact manifold M, and an
o-invariant measure. Let A be the algebra C*(M). The flow generates a vector field X and
corresponding derivation

8: C”(M) — C™ (M), 3(f) =X(f).
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Suppose that u is an o-invariant probability measure on M. Let ©(f) := [, fdu, a trace on
C*(M). Differentiating the equality

| rooudu= [ rau
M M
true for arbitrary f € C*(M) gives that

(9.8) /M X(f) du=0.

Hence 108 = 0.
The Ruelle-Sullivan current is the continuous linear functional on 1-forms

(Co @) = /M ®(X) du.
It is a closed current since
(Codf) = [ X(af) du= | X()du=0
by ©.3).

Every 1-form is a linear combination of 1-forms of the kind fdg, for f,g smooth.
Evaluating Cy, on fdg gives [, fX(g) du, or in other notation,
(Ca. fdg) =T(f3(g)).
the associated cyclic cocycle (9.7).

For purposes of K-theory there is an important variant of cyclic cohomology called
periodic cyclic cohomology. This is defined as follows.

DEFINITION 9.2.7. Let A be an algebra and C"(A) all n+ 1-linear maps ¢: A® -+ ®
A — C. The B-operator B: C"(A) — C"~!(A) is defined by B = AB(, where

(A09)(d,....a" ") ==Y (-1)" Wg(al ,a/ T, .a’ )

and (By9)(d°,...,a" ) == 0(1,d°,...,a"").

Combining B with the Hochschild operator b of Definition we obtain a complex
of length 2: set

C™(A) =B oCH(A), C°YA) = (A),

Then b+ B maps C*(A) to C°%(A) and C°3(A) to C*V(A).

DEFINITION 9.2.8. The periodic cyclic cohomology of A is the cohomology of the
complex

C*(A) <> C°4(A).

under the operator b + B.

Periodic cyclic cohomology is the direct sum of the even periodic cyclic cohomology
HCP(A) and odd periodic cyclic cohomology HCP!(A). A class in HCP?(A) is repre-
sented by a finitely supported tuple (¢2)7_, where ¢ € C*(A), and (b+ B) (0o + ¢2 +

04 +--- = 0) , meaning that b + Bdosi» = 0 for k=0,1,2,.... A class in HCP!(A) is
described in a similar way.

REMARK 9.2.9. If ¢ is a cyclic n-cycle, then (0,...,0,9,0,---) defines a cocycle in
the b+ B complex, supported in the single dimension n because by definition b¢ = B¢ =0
for cyclic cocycles.
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EXERCISE 9.2.10. In the notation of Example [9.2.3| if C is a p-dimensional current
and @c the associated p + 1-linear map of Example 0.2.3] then Boc = p@gc. (giving
another proof that @c¢ is a cyclic cocycle if C is closed.)

The following theorem shows that the periodic cyclic cohomology of C* (M) is exactly
the even/odd de Rham cohomology:

THEOREM 9.2.11. The map sending the class of a closed, k-dimensional current C €
QK(M)' to the class in HCP*(C™(M)) of the cyclic cocycle ;9c, where ¢c is as in [©.3)
induces a grading-preserving vector isomorphism of Z/2-graded vector spaces

H)r (M) = HCP* (C*(M)),
where Hip (M) := @22%MH§R(M)'

We describe the pairing between periodic cyclic cocycles and idempotents and uni-
taries in matrix algebras over A.

If @ is an n+ 1-linear functional A® - -- ® A — C, it induces an n + 1-linear functional
¢ f Trace: My(A)®---Mi(A) — C by

(¢ # Trace) (® @m®,...,a" @m") := Trace(m® - --m")o(d’,...,a").

THEOREM 9.2.12. Let A be a unital algebra and [¢] € HCP®V(A) be an even class,
represented by a mixed-degree (finitely supported) cochain (@ )y Let e € Mi(A) be an
idempotent. Then

- 2k)!
9.9 (@,e) := Z (—l)k%((pzk fTrace) (e,e, - ,e)
k=0 :
only depends on the Murray-von Neumann equivalence class of e, and the periodic cyclic
cohomology class of §.

Let [9] € HCP°Y(A) be an odd class, represented by a mixed-degree (finitely sup-

ported) cochain (Q41)y_- Let u € My(A) be an invertible. Then

] (=)
9.10 JU) = —— Trace uil,u,~~-,u*],u
(9.10) (,u) mg(%m i ) ( )
only depends on the class of u in the abelianization of GL;(A) and the periodic cyclic
cohomology class of @.

See [87] and [88] for the proofs.

REMARK 9.2.13. The constants in the pairings of Theorem [0.2.12) are chosen so that
the following holds: recall that the Chern character Ch(E) or Ch(e) of the class of a vector
bundle or, equivalently, of an idempotent e € C*(M) ® M,,(C), is represented by the closed
differential form Trace(exp(—Rg)), where Rg is the curvature of a Hermitian connection
on E. The Chern character of a unitary U € C*(M) ® M,,(C) is represented by the closed
differential form

3 2k!
];)(—l)karace(ufldu)ZkJrl‘
Then: |
(locl, [e]) = ([C],Ch(e)), and ([oc],[u]) = \/quc],(?h(u»

hold for any closed current C on M.
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3. Finitely summable Fredholm modules and Connes character formula

Connes’ character formula supplies a Chern character map from K-homology to peri-
odic cyclic cohomology. This results in a pairing between K-homology classes which are
finite dimensional in a suitable sense, and K-theory classes, which is one of the seminal
results of Connes’ early development of Noncommutative Geometry.

DEFINITION 9.3.1. Let p € [1,00). A Fredholm module (H,, F) over A is p-summable
if
[t(a),F] € LP(H)
for dense a € A, where L”(H) is the p-Schatten ideal (Sectionof Chapter 1).

One sometimes refers, in the definition, more explicitly to the *-subalgebra A” C A of
elements a € A such that [n(a),F] € LP(H), which may of course be strictly smaller than
A (but is required to be dense by the definitions.) Thus, one might speak of a Fredholm
module over A, which is p-summable over A*.

Finitely summable, non-degenerate Fredholm modules, are generally delicate to con-
struct and depend on geometric constructions. The classical examples of them are elliptic
pseudodifferential operators T of order zero on sections of vector bundles over a compact
manifold. We have not discussed general pseudodifferential operators in this book. How-
ever, the Toeplitz projection T = P, , projecting L>(T) to the Hardy subspace H?, is an
example of one, as are, more generally, the operators 7 = y(D) for suitable normalizing
functions ), and D a Dirac operator. The main relevant properties of pseudodifferential
operators are the following:

a) the *-algebra of pseudodifferential operators contains the class of differential
operators, and is closed under holomorphic functional calculus. Since an elliptic
self-adjoint operator D on a compact manifold M has discrete spectrum, we can
always find a normalizing function ¥ which is actually holomorphic on Spec(D),
and hence the corresponding sign operator F := y(D), is pseudodifferential of
order zero.

b) If T is a pseudodifferential operator of order o on a compact, d-dimensional man-
ifold, then the singular values of T are O(n% ). In particular, on a d-dimensional
compact manifold, a pseudodifferential operator of order o < —d 1is trace-class.
(Weyl asymptotics).

¢) The pseudodifferential operators are filtered by order, and

order([S,T]) = order(S) +order(T) — 1.

This implies in particular that the commutators [f, T'] are also pseudodifferential
operators of order —1, for f € C*(M) and T of order zero, because multiplication
by a smooth function is a also a pseudodifferential operator of order zero.

Combining these facts gives that the principal values of [f,T] are O(n_ﬁ) if T has
order zero. It follows immediately that [f,7T] € LP(H) for p > d.

THEOREM 9.3.2. Let M be a compact manifold and H = L*>(M,E) be a (possibly
graded) Hilbert space of sections of a bundle over M. Let n: C(M) — B(H) the represen-
tation of C(M) by multiplication operators, and let F be a pseudodifferential operator on
H of order zero such that F> — 1 is compact. Then for f smooth on M, the commutator
[f,F] is in the Schatten class LV (H) for all p > n.

In particular, (H,n,F) is a p-summable Fredholm module for p > n.
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Such Fredholm modules are generic in a sense, for smooth manifolds: every K-
homology class for C(M), where M is a compact smooth manifold, is represented by a
pseudodifferential operator of order zero in the sense of the Theorem above, and hence is
represented by a p-summable Fredholm module for p > dim(M). Therefore, the dimen-
sion of the manifold M is reflected to some degree in the order of the ‘infinitesimals’ [f, F],
as F ranges over all pseudodifferential operator representatives of all K-homology classes.

The situation for general C*-algebras is much more delicate. M. Puschnigg [130] has
proved that the group C*-algebras C*(I") of lattices I' C G in higher rank Lie groups, have
no non-degenerate finitely summable Fredholm modules over them.

However, we discuss some constructions connected to hyperbolic groups (like lattices
in rank 1 Lie groups) in the next section, which yield (interesting examples of) finitely
summable, non-degenerate Fredholm modules in connection with boundary actions of hy-
perbolic groups.

Suppose that (H,w,F) is a p-summable Fredholm module, p-summable over a *-
subalgebra A” C A, with F2=1.1fd"...,a" € A=, and if n > p, consider the expression:

©.11) o, ") = % Trace! (FIF,a"][F,a"|[F, - [F.a"]),

where Trace’(T) := Trace(eT ) if H is Z/2-graded, with grading operator €, and Trace(T) =
Trace/(T') otherwise. The commutators [F,a’] for i = 1,...,n are all in LP(H), and there
are at least p of them so their product is trace-class, so the expression is well defined
provided that n > p.

THEOREM 9.3.3. (Connes’ Character Formula) Let (H,n,F) be a p-summable Fred-
holm module over a C*-algebra A, p-summable over a subalgebra A~ C A. Then if
n =2k+ 1 is an odd integer greater than or equal to p, then

(9.12) o(d,....d") = %Trace(F[F,aO] - [F,d")

defines a cyclic cocycle on A%, and
(9.13) O(uu . uu ) = (=12 (W], [(H,®, F)])

for any unitary u € A, with the right-hand-side the index pairing (9.3) in KK-theory be-
tween the class [u] € Ki(A) (where u € A C A) and the class of the odd Fredholm module
(H,m,F) in KK;(A,C).

If n =2k is even, € the grading of the Fredholm module, then

1
(9.14) o(d,...,d") = ETrace(eF[F,aO] - [F.a")
defines a cyclic n-cocycle, and if e € A” is an idempotent then

o(e,....e) = (=1)* - ([e]. [(H.m.F)])

where the right-hand-side is the analytic index pairing in KK-theory of between
the class in Ko(A) of the idempotent, and the class of the Fredholm module (H,T,F) in
KKo(A,C).

DEFINITION 9.3.4. The Chern character of (H,m,F) is the class in periodic cyclic
cohomology of the cyclic cocycles (9.12) (odd case) and (9.14) (even case).

EXAMPLE 9.3.5. A good example of the character formula applies to the Fredholm
module over C*(IF,) of Julg and Valette, described in Example [9.1.14] As in Exercise
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9.1.17] one computes that
1
ETrace’((F[F,a]) =1(a)

where T: C*(IF;) — C is the standard trace t(}¥, a;[g]) = a., and a € C[F,] C C*IF,).
Thus, Connnes’ character formula shows that

t(e) = Trace'(FIF, ) = ([e].[F])

where [F] € KKo(C*(F2),C) is the class of the Fredholm module of Julg and Valette, and
e € C[F,] is a projection in the group algebra. By Exercise below, this statement
can be improved to allow a € A4 where A4 is an isospectral dense subalgebra, and thus one
having the same K-theory as C*(IF»).

As a consequence, the trace T takes integer values on projections. Since 7T is faithful
this implies that the famous conjecture of R. Kadison holds for C*(IF,): the C*-algebra
C*(IF,) contains no idempotents other than 0 and 1. (We can think of this result as asserting

the connectedness of the ‘noncommutative space’ [F,.)

EXERCISE 9.3.6. Use the results of Exercise [2.5.27] to prove that there is a dense
subalgebra 4 C C*(IF,) which is isospectral in C*(IF, ), has a norm with respect to which it
is complete, and in addition satisfies [n(a),F] € L!(H) foralla € 4.

Deduce that the group ring C[F,] may be replaced in Exampleby A, which has
the same K-theory as A.

EXAMPLE 9.3.7. The simplest 1-dimensional example of the Chern character involves
Toeplitz operators on the circle, discussed in Section 9] of Chapter [[| where F = 2P, — 1,
with P, the Szego projection, an operator on L?(T). The following Exercise shows that
the cocycle involved in the Chern character can be simplified as follows:

EXERCISE 9.3.8. Show that the cyclic 1-cocycle ¢ in the formula (9.12) when n =1
and F = 2P, — 1, with Py the Szego projection satisfies

(. f1) = Trace(f[P+. f']),
for f0, f! € C=(T). Deduce (we did this in Chapter 2, see (I.53)) that

olf.8) = [ £(8)¢(©)de.
for f,g smooth on T.

The reader will now see that our proof in Chapter 2 of the Toeplitz index theorem was
in effect an application of Connes’ Chern character formula for the Toeplitz 1-summable
Fredholm module over C(T).

We end with an Exercise about p-summable odd Fredholm modules which will be
used in the following section.

EXERCISE 9.3.9. Let A be a unital C*-algebra, let T : A — B(H) be a representation,
and let P be a projection in B(H ). Denote by s(a) := Pr(a)P the corresponding compres-
sion: a completely positive linear map.

a) (H,m,F :=2P — 1) is a Fredholm module for A if and only if s(|a|?) — |s(a)|* €
K (H) for all a € A.
b) (H,n,F := 2P — 1) is p-summable (Definition over a dense subalgebra

ACAif (s(|a]?) - |s(@)?)"/* € LP(H) forall a € 4.
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(Hint. Let I1(a) = (1 — P)n(a)P; this is the lower left corner of the 2-by-2 matrix defined
by the decomposition of © with respect to P.

[ pPn(a)P Pr(a)(1-P)
™) = (1 - Pym(@)P (1-P)n(a)P)

Using the relations
[(a),P] =1l(a) —I1(a")",  TI(a) = (1 - P)[n(a),P]

we see that (7, P) is a Fredholm module if and only if I1(a) € K (H) for all a € A, and that
(m, P) is p-summable over 4 if and only if II(a) € LP(H) for all a € 4. Now

(a)*(a) = Pr(a*)(1 — P)n(a)P
= Pr(a*a)P — (Pn(a)*P) (Pr(a)P) = s(a*a) —s(a)*s(a)

shows that [TI1(a)| = \/s(|a|?) — |s(a)|?.)

4. Fredholm modules from boundary actions of hyperbolic groups

The examples of (finitely summable) Fredholm modules we have seen so far come
from bounded transforms of Dirac operators and other pseudodifferential elliptic operators
on compact manifolds. The module of Julg and Valette (Example[9.1.14) is a 1-summable
Fredholm module over the C*-algebra C*(IF;). The free group is a special case of a Gro-
mov hyperbolic group, which we define below. A hyperbolic group is a finitely generated
group G with a kind of large-scale negative curvature property. To such a group, or more
generally, to a Gromov hyperbolic space, one can associate an asymptotic boundary, which
can be used to compactify the space or group, and in the case of a group the boundary JdG,
which is a compact metrizable space, carries an action of G. The example of the crossed
product C(dF,) x I, of the free group Fy acting on its boundary dF, has already been
discussed in Example[I.12.16] Any discrete, co-compact group of isometries of the hyper-
bolic plane is Gromov hyperbolic, and the boundary of such a group is the boundary of
the disk, the circle. The crossed products C(dG) x G for such G are Morita equivalent to
foliation C*-algebras (discussed in Section[7) encoding asymptotics of geodesic flow.

In general, the crossed products C(dG) x G of hyperbolic groups acting on their
boundaries, are of significant interest in dynamics. If G is torsion-free, then every g € G
acts by a homeomorphism with exactly two fixed points, and under the g-action, points of
dG are attracted to the one fixed-point and repelled by the other. If G is not cyclic, the
action is always minimal. A result of [1]] implies that the action is also amenable and that
the crossed products are nuclear C*-algebras.

For current purposes what is interesting about these examples is that they have a very
rich Fredholm module theory. For compact manifolds, every K-homology class (equiva-
lence class of Fredholm module) is represented by an zero order elliptic pseudodifferential
operator (indeed, in the spin°-case, by a Dirac-type operator), see Theorem [9.3.2] and re-
marks following it, and in particular by a p-summable Fredholm module for p > dimM.
As we discuss below, the noncommutative spaces C(dG) x G have an analogous property.
This depends on the existence of one particular Fredholm module over C(dG) x G which
is constructed from a certain metric-measure structure on the boundary.

We now explain some of this in detail.

Let G be a finitely generated group with generating set S, which we assume is closed
under inverses. The word length |g| of g € G is the minimal n such that g = s;---s, for
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s; € S. The distance between two group elements is d(g;,g2) := | gl_1 g2|- This gives G the
structure of a metric space.
The Gromov product is defined as

1
(81,82) = 5 (Ig1|+[g2| —d(g1.82)) -
DEFINITION 9.4.1. G is 8-hyperbolic for 8 > 0, if

9.15) (81,82) > inf{(g1,h), (g2,h)} —

See [93] for an excellent exposition of the theory of hyperbolic groups.

The basic example is the free group F» on two generators, say a, b, whose Cayley graph
we drew in the previous section. The Cayley graph gives a way of visualizing the group.
Let X be its realization. It has a natural graph metric. It is also connected in the strong
sense that if x,y € X then there is a geodesic between them: an isometric map r: [0,/] — X
such that r(0) = x, r(I) = y. Here [l = d(x,y) in the graph metric. If g € [F,, considered as
a vertex of X, the word length |g| agrees with the distance from g to the basepoint e € X.

Notice also that the group [, acts naturally by translation on the vertices of the tree,
and isometrically on X (with quotient a wedge of two circles.)

Suppose that g1, g> € [F», thought of as points of the graph X. The rays in X from e to
g1 and g, respectively agree on some initial segment, and then diverge: observe then that
(g1,82) is the length of the initial segment, as in the picture below. Group theoretically,
the initial segment corresponds to reduced expressions g = pu; and g» = puy, for some

up,uz, and <g1’g2> = |p|

/ g1=pa
(81.82)
i
X‘
g =pb

From this discussion, the reader should be able to easily verify that [F, is O-hyperbolic.
EXERCISE 9.4.2. Prove that I, with the given generating set, is O-hyperbolic.

REMARK 9.4.3. The same kind of ‘tripod’ interpretation of the Gromov product exists
for general hyperbolic groups, up to an error controlled by 8.

Every hyperbolic group has a boundary, a compact, metrizable space giving a kind of
(compact) ‘geometry at infinity’ invariant under the group. The dynamics of this interesting
action, and the structure of the crossed product C*-algebra C(dG) x G, encode, large-scale
geometric information about the group.

In the case of the free group, the boundary of the realization of the Cayley graph X may
be defined to be the collection of ‘rays’: isometric maps r: [0,00) — X such that r(0) = e,
where e € X is the basepoint, corresponding to the identity of the group. Reducing such a
ray to the vertices gives a bijection with the collection of infinite reduced words s1s253 - - -
in the generators S = {a, al,bb! }, and has a natural Cantor set topology. We denote the
boundary by dIF;.

The boundary can be glued to X, or to IF, itself, to compactify either of them. Let X =
X UJF,. Suppose that & = 515353 - - - € dF, corresponding to a ray re with r(n) =sy-sp.
If x € X, let r, be the geodesic in X from e to x. Now if N is a large positive integer, in X let
Un (&) be the collection of points x € X, or boundary points € dIF2, such that r,(¢) = re(¢)
for t > N, respectively ry(t) = re(t) fort > N. Then {Uy | N = 1,2,3,...} gives a system
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of neighbourhoods of & in X. We may similarly compactify the discrete space IF; itself by
this method: set Uy (&) to be all boundary points or group elements which are represented
as finite or infinite words #;t, - - -, such that; = s; fori = 1,2, ...,n.

Then we obtain a system of neighbourhoods of § € F, := [F, UdF,.

EXERCISE 9.4.4. Let (x,) and (y,) be sequences in [F, C X which remain a bounded
distance apart. Show that if x,, — & for some boundary point &, then y,, — & as well.

We may alternatively define the boundary using all geodesic rays, modulo an equiva-
lence relation, instead of just rays emanating from the basepoint e. Indeed, if r: [0,00) — X
is a geodesic ray starting at any point (vertex, say) p € X, then we can first construct a ray
starting at the basepoint e € X by concatenating the unique path [e, p] from p to x with the
ray, and eliminating cancellation (which results if the original ray passing through e).

Since if g € [F,, acting isometrically by translation on X and r is any ray, then g(r) is
a ray, we obtain the following.

LEMMA 9.4.5. The I, action by translation on X extends to an action by homeomor-
phisms of 2, leaving the boundary JoF, invariant.

Note that the action of [, is simple to describe in terms of ‘infinite words.” If § =
s152 -+, g € Fp, write g as a reduced word, form the concatenation gsis; - - - and make any
necessary cancellations to get an infinite reduced word.

EXERCISE 9.4.6. Let g € F,. Show that the sequence (g"),cz converges as — =-co to
a pair QZF and ﬁ; of distinct points in dF, which are fixed by the g-action on dIF;.

Next, we observe that the boundary JdF, comes equipped with a natural family of
metrics, and this is true for general hyperbolic groups as well. To define these metrics
geometrically we extend the Gromov product {-,-) to the boundary, as in the picture below,
where &;,&, are rays starting at e € X and diverge at p € 5.

élzpalaZ"'
amo2
<§]7a2> /

%
& = pbiby -

In the notation of the picture, (§1,&2) = |p|.
EXERCISE 9.4.7. For any € > 0, the formula
d(E;,&)) = e t&rk)

gives a metric on JF, generating the topology on dF,. The F, action on dF, is by bi-
Lipschitz homeomorphisms with respect to this metric.

The theory of boundaries of general hyperbolic groups proceeds along similar lines.

DEFINITION 9.4.8. Let G be a Gromov hyperbolic group, with respect to a generating
set S.
a) A sequence (x;) C G converges to infinity if (x;,xj) — co as i, j — oo.
b) Two sequences (x;), (y;) converging to infinity are asymprotic if (x;,y;) — oo as
i — oo. The asymptotic relation is an equivalence on sequences converging to
infinity.
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¢) The boundary of X, denoted dG, is the set of asymptotic classes of sequences
converging to infinity. A sequence (x;) C G converges to € € oG if (x;) converges
to infinity, and the asymptotic class of (x;) is &.

d) The Gromov product on dG X dG is defined as follows:

(&.&) ;= inf { liminf (x;,x]) : x; = &, x; = &'}

LEMMA 9.4.9. In the above notation, if & = &/, then (£,&) = oo. If & #£ &/, then the
sequence (x;,x;) is bounded whenever x; — & and x; — &/, hence (€,E') < eo. Moreover,

9.16)  (£,&) <liminf (x;,x}) <limsup (x;,x}) < (E,E)Y+28 (5 = &xi —&).

DEFINITION 9.4.10. A visual metric on dG is a metric dg satisfying dg < exp(—¢€(-,-))
for some € > 0, called the visual parameter of ds.

We have noted that F, has visual metrics of any visual parameter € > 0. In general,
the parameter is is bounded above by %

LEMMA 9.4.11. Let € > 0 be such that €5 < 1/5. Then there exists a visual metric dg
on dX, having visual parameter €.

See [157, Prop.5.16] for the proof.

LEMMA 9.4.12. Let d; and dg be two visual metrics. Then:
a) dg and dy are Holder equivalent: dgl/ s d;,/ 8/;
b) The metric space (0G,dg) has finite Hausdor{f dimension. For €,€ in the allowed
visual range, the relation €. hdim(dG,d,) = € hdim(0G,dy ) holds between the
corresponding Hausdorff dimensions.

¢) The corresponding Hausdorff measures are comparable: yg < .

Putting the above results together we conclude that any visual metric on the boundary
of a hyperbolic group G determines a compact metrizable topology on dG and these topolo-
gies are all equivalent because any two visual metrics are Holder equivalent. The group G
acts by Lipschitz maps with respect to any visual metric, and hence by homeomorphisms
of dG. Therefore the crossed product C(dG) x G is defined.

The source of the Fredholm module we are going to construct is a remarkable conver-
gence property of Hausdorff measure with respect to a visual metric. We first describe this
in the case of G = IF,.

Let u be Hausdorff measure with respect to the metric on [F, with visual parameter
€ = log3. Then u is equidistributed around the boundary, as one looks out at the boundary
from the basepoint e. If w € 5, let U, be all boundary points, considered as infinite
reduced words sys; - - -, which start with the reduced form of w. Equivalently, in terms of
the Gromov product, if |w| = k, then

Uy ={€ € dF2 | (C.w) >k},

and geometrically, U,, consists of endpoints of geodesic rays r starting at e which pass
through the vertex w.

EXERCISE 9.4.13. In the notation above, if n € U,,, show that U,, is the metric ball
B, 1u/(M), with respect to the metric d on JIF, defined above.

As w ranges over Sy := {g € F» | |g| = k}, we obtain a partition
oF, = u‘w‘:kUw.
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As |Sy| = 4-35! and the measure of all the U,,’s will be the same,

3 2k
u(Uy) = 4 3
We may think of uin terms of probability: If one starts at e € [F, and walks (at unit speed) in
arandom way along edges X without every going back along the same edge just traversed,
then the walk defines a unique geodesic ray. In particular, any such infinite walk will
terminate at a boundary point & € F,.

A path starting at e then involves a choice of 4 possible initial edges to step along,
then 3 possible edges, then 3 again and so on. The probability a walk will pass through a
given vertex w is % .37k and this is the same as the probability the walk will eventually
terminate in U,,.

The measure u depends on choice of the origin as basepoint. If x € F,. let u, be the
measure defined in the same way, but with basepoint x € Fy, and u,(U) for U C dF; is the
probability that a random geodesic ray starting at x ends in a point of U. Note that if x is a
vertex, so a group element, then

px = xi (1),
where

[, f@due= [ ) dute)

is the pushed-forward measure. The measures u, are all equivalent and in particular u is
quasi-invariant under [, so

_ d(x.p)
J 100 @ = [ & T @aute)

We compute below the probability distribution

o(x.8) = ‘“jj;f‘)@.

and show that as x — & approaches a boundary point € FF,, the the measures u, accumulate

at a delta distribution at &,
Let x € . Let |x| = n. Partition the boundary into the sets

Cr(x)={&€dF, | (E,x) =k}, k=0,2,...,n—1,
and G, (x) :={§ € dF2 | (x,&) > n}.
LEMMA 9.4.14. Ifx € Fy C X then
o(x,&) = 3~ H+260),
In particular;, 6(x,&) = 37"k for & € Cy(x)).

PROOF. We work in terms of reduced words. So if x = x; - - - x,, reduced, then C,,(x) is
all & = &,&; - - - beginning in x, which has measure % -37". On the other hand ’

X! (Cu(x)) = IF2\ C1 (xn),
as one easily checks, and hence has measure 1 — % = %. From this we see that
p(x 1 (Gu(x)))

#(Co(x))
and the same argument holds for smaller subsets. Hence

o(x,&) =3" =37 M8 - vE € g (x).

= 3"5
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On the other hand,
xH(Co(x)) =Cn(X 7,

as one easily checks. So an inversion of the previous argument shows that x~! is uniformly
expanding by a factor of 3". That is,

6(x,E) = 3", VE € Co(x).

The intermediate cases are left to the reader to check.
O

We have shown that if |x| = n, then 6(x) is a discrete Gaussian probability distributions
on the boundary taking the values 37"+ for k =0,1,...,n.

0.2

0.15

0.1

0.05

We state the general result.

COROLLARY 9.4.15. Let G be a Gromov hyperbolic group and u Hausdorff measure
with respect to a visual metric. Then the orbit Gu of u in Prob(dG) accumulates only
at point masses on G. Moreover, as g — & in G, g.u — O in the space of probability
measures.

PROOF. We verify this for the free group only, where the proof is quite easy.
Choose a test function yy,, for some w, with |w| = n. It suffices to show that

limu(Uy) =0 if & ¢ U,
x—&

So choose & ¢ U,, = C,(w). Then (§,w) =k some 0 <k <n—1. Since x — &, for
large enough x, (x,w) = k as well, and then (x,m) = k for all | € U,,. Hence o(x,n) =
3-Wl#2(xn) = 3=I+2k This shows that

(U = [ olem)dut) 0

as x — oo, as claimed.
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Fix a hyperbolic group G with Hausdorff measure u with respect to a visual metric on
the boundary.

We now show that the convergence property of the Corollary gives rise to an odd
Fredholm module over the crossed product C(dG,) x G. For the representation, we use the
regular representation of the crossed product C(dG) x G on I?(G,L*(9G,u)), defined by
the covariant pair

9.17) Ay(0) (ZW&,) =Y (" owndn, Ml (Z‘I’h&:) =Y v

where ¢ € C(dG), g € G, and Y, W, € (*(G,L?*(9G, u)).
We introduce some statistical concepts related to the construction.

DEFINITION 9.4.16. The G-expectation and the G-deviation of ¢ € C(dG) with re-
spect to u are the functions E¢ : G — C and 6¢ : G — [0,0) given as follows:

Eo(g) = /ac"’ogd“: /ang*u, oo = \/E(j0]2) — |Eo[>.

Due to Corollary the G-deviation 6¢ of any ¢ € C(dG) is a Cp-function on
G. In fact one can make a stronger statement. We compute the deviation in the free group
example for characteristic functions, and give the general statement without proof, see [81]
for the general result and proof.

LEMMA 9.4.17. Let w € F5 and U,, be all boundary points & = £,&; - - - which start
with w. Then
oXu, € P (Fz)
for all p > 2, where G is the F-deviation.

More generally, if G is a Gromov hyperbolic group, u a visual measure from a visual
metric dg, and ¢ € C(dG) is Lipschitz then 60 € IP(G) for p > max{2,hdim(dG,d¢)}.

PROOF. Choose any x € F, C X. We compute (U, ). Suppose first that (x,w) < |w|,
that is, suppose x does not belong to the sector of the graph determined by w. A random
path starting at x will then enter U,, if and only if it passes through w. There are %S_d(x’w)
paths of length d(x,w) emanating from x, and exactly one of them passes into U,,. It

follows that
_4 —d(x,p)
ue(Uy) = 33 )

Therefore

4 4
oxu, (x) = \/ px(Uy) — e (Uy)* = \/33d(x,w> - (5)2372(1()6”) < const- 37%d(x’p)'

On the other hand suppose (x,w) > |w|, so that x lies in the sector determined by w. In this
case, a random path starting at x will leave the sector if and only if it passes through w. So

. . ! S
by a similar calculation we find that 6y, (x) < const.3~2¢(“*) in this case as well. Hence

Y oxw, (x)? < const. ) 3-540P) congt. i Yy 3= 5d(xp),

x€lF, xelF, n=0|x|=n
- _np N _mp
< const. Z Z 372 < const. Z 3=zt
n=0|x|=n n=0

and the series converges if p > 2.
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Proceeding with construction of a Fredholm module, we identify /G with the constant-
coefficient subspace of £2(G,L*(dG,u)). Let Ppg be orthogonal projection to this sub-
space. Then Pp; is given by coefficient-wise integration:

P[2G<Z\Vh5h> =Y (/th,u> 3.

We form the triple
(9.18) (*(G,L*(0G, 1)) My, F :=2Pp — 1)

where A, is the representation (9.17). The condition we need to get a Fredholm module
is that the commutators [F,A,(a)] = [Ppg,T,(a)] are compact for a € C(dG) x G. Since
Pp clearly commutes with A,(G), it suffices to analyze the commutators with functions
¢ € C(dG), and even Lipschitz functions, since they are dense. But the projection Py,

compresses the space restriction 7»,,|C<3G) to multiplication by the G-expectation on ¢>G:

Ppghu(0)Ppg = M(EQ)
for all ¢ € C(dG). Referring to Exercise(9.3.9] let 5,(0) := PpgAu(0)Ppg. Then

V/5ul1012) — [s4(0)2 = M(9).
The result now follows from Exercise and Lemma

THEOREM 9.4.18. Let G be a Gromov hyperbolic group, u a visual measure from a
visual metric dg. Then the triple of (9:18) defines a p-summable odd Fredholm module
over the crossed product C(0G) x G for any p > max{2,hdim(0G,d;)}.

The significance for K-theory of these Fredholm modules will be discussed in the next
section.

We conclude with some exercises illustrating further structure in these “Type III” ex-
amples of noncommutative spaces.

EXERCISE 9.4.19. Let G be a Gromov hyperbolic group and u a visual probability
measure on dG such that dg—;“ is continuous for all g € G (such measures exist), where

gs+u is the pushed-forward measure (g.u)(A) := u(g~'A), or, equivalently, satisfying the

change of variables
/ fogdu:/ fdgu
oG oG
for f € C(dG).

a) The formula o;(Y. f,[g]) =X fgkg [g] defines a 1-parameter group of automor-
phisms of C(dG) x G, a time evolution.

b) Let H := DgeGL*(0G, g.u). For ¢ € C(9G), let T(9)(v® ;) := dv @ e, and for
g€ Gletn(g)(v®e,) :=vog ! ®eg,. Show that m(g) is unitary and that these
formulas specify a covariant pair and induced representation n: C(dG) x G —
B(H).

¢) Let U: 12(G) ® L2(dG,u) — H be the unitary U(v®ey) :=voh ! @ e, (prove
it is unitary). Show that U conjugates the representation A, of the Fredholm
module (9.18)), to the representation , and conjugates Pp; to the projection P
on H which is the direct sum of the projection operators to the constant functions
in L?(9G, g.u) for every g € G.
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d) (Seealso Exercise. Show that the time evolution (G, );cg analytically ex-
tends to C in the sense of Exercise[I.12.29)and that the KMS condition t(6_;(a)b)
T(ba) for a,b € C(dG)[G] holds for t: C(dG) x G — C the state T(¥ fo[g]) =
[ fedp.

e) Let & be the densely defined derivation of C(dG) x G defined by differentiating
the time evolution (G, );cr (see Section . Show that

5(ng[g]) = ing 10g7‘g (8]

d) Let B be the densely defined operator B := @®,clogAg on H. Show that (€"),cr
is a 1-parameter group of unitaries inducing the time evolution (G;);cr of a) in
the sense that (o, (a)) = e"Bn(a)e~8 for all a € C(dG) x G. The operator B is a
direct sum of Busemann functions, which are important in hyperbolic geometry.

f) Show that (o;),cr analytically extends to a family (G;).cc of algebra homomor-
phisms C(dG)[G] and that t(ab) = ©(b6_;(a) where 7 is the state T(¥. f,[g]) :=
Jag fedu (T satisfies a KMSg condition at inverse temperature § = 1.)

5. Fredholm modules from extensions

There is a general method associating an odd Fredholm module over A to a (completely
positively split) C*-algebra extension of A by K. The method is called the Stinespring
construction.

DEFINITION 9.5.1. A linear, unital map s: A — B between two unital C*-algebras, is
completely positive if s®id: A @M, (C) — B® M,(C) is a positive linear map for all n.

EXERCISE 9.5.2. Lets: A — B be a positive unital, linear map, where A is commuta-
tive. Show that s is completely positive.

The following result is discussed in detail in the book of [99]

THEOREM 9.5.3. Assume A is a separable, nuclear C*-algebra. Then 1. If 0 — K —
B A — 0 is an extension of A by the compact operators, then there exists a completely
positive map s: A — B such that Tos = ida.

2. Ift: A— Q(H) is a *-homomorphism, then there exists a c.p. map s: A — B(H)
such that Tos = idy, where n: B(H) — Q(H) is the quotient map.

The two statements are equivalent, as the reader can check without much difficulty.

The reason that c.p. split extensions are important is that combining a c.p. split exten-
sion of A by the compact operators results in a Fredholm module. The procedure is called
the Stinespring construction.

LEMMA 9.5.4. Let H be a Hilbert space and s: A — B(H) a completely positive map.
Define a sesquilinear form (-,-)s on the algebraic tensor product A H by
(9.19) (Y ai®&. ) bjonj)a =) (& s(aibym;).
i J ij
Then:
a) The completion of A® H with respect to (9.19) is a Hilbert space H.
b) The left multiplication action of A on A ® H determines a representation ©: A —
B(H).
¢) The map P(Y;a; ®¢&;) :=Y,;1®s(a;)&; extends continuously to a self-adjoint
projection on H with range unitarily isomorphic to H.
d) s(a) = Pn(a)P, up to the unitary identification of part c).
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e) The commutators [n(a),P] are compact (resp. in the Schatten class LP) for dense
a € A iff the elements (s(|a|*) — |s(a)|2)1/2 are in K(H) (resp. in LP(H)) for
dense a € A.

PROOF. a) - d) are routine. For e) proceed as in Exercise[9.3.9write [rt(a), P] =I1(a) —
I(a*)* where I(a) = (1—)n(a)P, then I1(a)*II(a) = s(a*a) — s(a)*s(a), and the result
follows.

[

DEFINITION 9.5.5. A B.D.F.-cycle for a unital C*-algebra A is a non-degenerate *-
homomorphism t: A — Q(H), where Q(H) = B(H)/% (H) is the Calkin algebra of a
Hilbert space H, together with a completely positive map s: A — B(H) such that

t(a) =Tos,
where T: B(H) — Q(H) is the quotient map.

The Stinespring construction shows the following:

PROPOSITION 9.5.6. Ift: A — Q(H), with splitting s, is a B.D.F. cycle for A, then
the triple (H,T,F := 2P — 1) is an odd Fredholm module over A. It is p-summable if and
only if there is a dense *-subalgebra A C A such that \/s(|a|?) — |s(a)|? € LP(H) for all
ac A

The last part follows as in Exercise9.3.9

REMARK 9.5.7. Actually the class in KK (A, C) of the Fredholm module of a B.D.F.
cycle does not depend on the splitting s, but only on its existence. This is because of the
homotopy-invariance properties of KK, and the convexity of the space of c.p. splittings.
Furthermore, if A is nuclear, then every T: A — Q. is c.p. split. See [99] for an extension
discussion of nuclearity and completely positive maps.

EXAMPLE 9.5.8. B.D.F. cycles arise from completely positively split extensions by
the compact operators. Suppose
0 K(H)SBL A0

is an extension of A by the compact operators on H. Since M (X (H)) =2 B(H) the inclusion
i extends to a *-homomorphism i: B — B(H).
Leta € A, lift a to b € B under p, and set

T(a) :=7(i(b)) € Q(H).
EXERCISE 9.5.9. 7Tis a *-homomorphism.

The map 7 is called the Busby invariant of the extension.
Now suppose that s': A — B is a completely positive map such that pos’ =id4. Let
s=1ios": A— B(H). Then the map T and the splitting s comprise a B.D.F cycle for A.

The following proposition shows that the boundary map associated to a c.p. split
extension of A by the compacts, is an instance of a Kasparov product.

PROPOSITION 9.5.10. Let 0 — KX — B — A — 0 be a c.p. split extension of A by the
compact operators. Then the map K| (A) — Z induced by pairing with the odd Fredholm
module in Proposition[9.5.6] agrees with the boundary map

5: Ki(A) > Ko(K)=Z
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associated to the extension.
That is:
([t).a) = 3(a),
where [1] € KK/ (A,C) is the class of the extension (of the associated B.D.F. cycle), and
6: K1 (A) = Ko(X) = Z is the connecting homomorphism of the extension.

EXERCISE 9.5.11. Prove Theorem[9.5.14]by comparing the description of the bound-
ary operator d in Theorem[7.5.11|of Chapter 6, with the description of the pairing between
K-theory and Fredholm modules given in pairing (9.3).

We now illustrate these ideas by re-visiting boundary actions of hyperbolic groups. Let
G be a Gromov hyperbolic group, as in the last section, with boundary dG. The boundary
0G can be glued to G to make a compactification G = G UG of G: a compact Hausdorff
space containing the (discrete) subspace G as an open subset, with complement JG.

We obtain a C*-algebra extension

(9.20) 0 — Co(G) = C(G) — C(3G) — 0.

Since all of the maps in this sequence are G-equivariant, it generates an extension of C*-
algebras

0—=Cy(G)xG—=C(G)xG—C(dG) x G — 0.

Using the left regular representation of G on /*(G) and the usual representation of Cy(G)
on [*(G) by multiplication operators, we obtain a canonical isomorphism Cy(G) x G =
K (I*G). So with this identification of the ideal in the sequence above we get an extension

(9.21) 0— XK —C(G)xG—C(0G)xG— 0
We call it the boundary extension.

LEMMA 9.5.12. Let G be hyperbolic and u normalized Hausdorff measure with re-
spect to a visual metric dg on 0G.
1. The G-expectation

E: C(3G) > Cy(G), E(0)(g) = /a _dogdy

is a (completely) positive, G-equivariant map which splits the restriction *-homomorphism

C(G) — C(9G).
2. The G-equivariant expectation E induces a completely positive map
C(9G) x G — C(G) x G C B(I*G)
by

(9.22) 5: C(0G) 1 G = B(IG), (Y dglg]) ==Y Mey,Mg).

with A the left regular representation, My, multiplication by \y. The c.p. map s splits the
restriction *-homomorphism
r: C(G) x G — C(dG) x G,
ie. ros=Iidc@e)xe-
The Lemma follows from Corollary 0.4.135] which asserts that
im [ dogdu=o(t)
for all ¢ € C(9G).
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PROPOSITION 9.5.13. The boundary extension 1) of a hyperbolic group is c.p.
split by the expectation map s of (9:22). The Fredholm module obtained by applying the
Stinespring construction (Proposition[9.5.0) is unitarily isomorphic to the Fredholm mod-

ule (9.13).

PROOF. The c.p. map s: C(dG) x G — B(I>G)G-equivariant in the sense that s = E
on functions in C(dG) x G and for them E (g(¢)) = A(g)E(9)A(g)* where A is the left
regular representation and E is the G-expectation. It follows that the vectors

0lg] ®ex — O @ eg € C(OG) x GRI*(G)

are null vectors in the inner product (9.19). Hence they are zero in the Stinespring Hilbert
space H. On the other hand if 0Re,, YRe, € H then their inner product is given by

(0@ eq W @en) = (eq. E(OW)en) = 8o E(OW) ().

So H breaks into an orthogonal direct sum of the subspaces obtained, for each g € G, by
completing C(dG) with respect to the inner product

o) = [ @v)osdu= [ dwdie.

The Stinespring projection is the direct sum of the projections to the constant functions
in each L?(dG, g.u). The representation of C(dG) x G is the representation 7t of Exercise
[0.4.19 so the Stinespring construction has produced precisely the Fredholm module of
Exercise[9.4.19]c), which is unitarily equivalent to (9.18).

d

COROLLARY 9.5.14. Let G be a Gromov hyperbolic group, then the connecting ho-
momorphism 8 of the boundary extension (9.21)) is given by pairing with the Fredholm
module (I*(G,L*(0G,u)), 1, F := 2Pag — 1) in the sense of (9:3). That is,

([u). (P(G.L*(9G 1)), My, F := 2P — 1)) = 8([u])
forany [u] € K;(C(9G)] X G).

One can show (see [81]]) that this pairing is nontrivial (nonzero) for groups G of zero
Euler characteristic, such as discrete, co-compact groups of isometries of hyperbolic 3-
space H°.

It would be a very nice thing if one could find a (finite-dimensional) spectral repre-
sentative (in the sense of the next chapter) of the boundary extension class, rather than just
a finitely summable Fredholm module. However, this seems to be unlikely or impossi-
ble with the usual definition of spectral cycle because the C*-algebras C(dG) x G have no
nonzero tracial states, because the boundary action leaves no probability measure invariant.

EXERCISE 9.5.15. Let ¥ be the characteristic function of all boundary points in JlF,
which are endpoints of infinite words sy, - - - with s; = a (where F; is generated by {a,b}).

Show that % is Murray-von-Neumann equivalent in the group algebra C(dF,)[F,] C
C(dFy) x F, to a proper sub-projection of itself, i.e. ¢ ~ ¥’ where ' + %" =%, some }” a
projection orthogonal to .

Deduce that if T is a tracial state on C(dF,) x I, then t()") = 0.

Extend the argument to prove that C(dF,) x F, has no tracial states.

(Hint. Experiment with partial isometries of the form S = - [x] € C(dF;)[F3], for x a
generator. )
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A fundamental class for boundary actions of hyperbolic groups

If M is a compact, n-dimensional oriented manifold, so that one can integrate n-forms
on M, the cohomology and homology of M exhibit Poincaré duality. In de Rham theory
this duality is the non-degeneracy of the pairing

(fod.[B]) == | onB

between classes of closed forms in dimensions k and n — k. One may phrase this alter-
natively as the fact that the map [o] — PD([at]), where PD([al]) is the class of the closed
current B — [,, A B, is an isomorphism H*(M) — H,_(M).

If M is a compact spin®-manifold, then the class [D] € KKo(C(M),C) of the Dirac
operator on M turns out to generate a similar kind of duality. If [E] € K°(M) is the class of
a complex vector bundle, then twisting D by E and applying the methods of the previous
chapter gives a class [Dg] € KKo(C(X),C). With some work (explained in the chapter on
KK-theory) one can upgrade this to a map

K*(X) — KK, (C(X),C),

which is a K-theoretic version of Poincaré duality.

Note that the orientation assumption on M has been slightly upgraded to K-orientation.

One of the interesting features of Noncommutative Geometry is that this special fea-
ture of (oriented) manifolds amongst locally compact spaces, appears in a quite wide vari-
ety of situations in operator algebras as it applies to dynamics. It appears in the situation
of hyperbolic groups G acting on their boundaries, for example.

The main ingredient to this duality for the noncommutative spaces C(dG) x G is a
certain Fredholm module obtained by enriching the Fredholm module for the boundary
extension class in KK (C(dG) x G, C) which we have discussed above, using some further
structure.

Let G be a hyperbolic group.

From the definition of the Gromov boundary if (x;) and (y;) are two sequences in the
metric space G (with the word metric from a finite generating set) such that for some C > 0,
we have d(x;,y;) < C, then by the definition of the Gromov product

1 1
(9.23) (xisyi) > §<xi,xi> + §<yi,yi>,

and hence if (x;) converges to a boundary point, then (y;) is asymptotic to (x;) and hence
converges to the same boundary point.

LEMMA 9.5.16. Let G be Gromov hyperbolic. Then if v, is the unitary induced by

right translation by g € G then the commutator [My,v,] is compact for any ¢ € C(G).
PROOF. If h € G, ), € I*(G) the corresponding standard basis element then

(Mo, vel(en) = (0(hg) — 0(h)) eng = (Myve)(en)

where y(h) = 0(hg) — ¢(h), so it suffices to show that y is a Cp-function on G. Since
G is compact, and ¢ is continuous on G, it suffices to show that if (h;) is a sequence in
G converging to a boundary point & then ;g — &, which is immediate from (9.23) and
surrounding discussion, since d(g;,g;h) = |h| is bounded as i — oo.

O
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The following important result is obtained by combining the results of [1]) and [64]],
which establish a notion of amenability for group actions and prove that the boundary
action of a hyperbolic group is amenable and hence that the crossed product C(dG) x G is
nuclear.

LEMMA 9.5.17. For any Gromov hyperbolic group, the C*-algebra C(dG) x G is
nuclear:

COROLLARY 9.5.18. A *-homomorphism A: C(0G) x G — Q(I*>G) is obtained by
mapping ¢ € C(9G) to the class mod K(I>G) of the multiplication operator Mg, where ¢

is any extension of 0 to a continuous function on G, and mapping g € G to the class mod
K of the left translation operator ug.

Let J: 1>(G) — [>(G) the unitary induced by inversion on G, J(e;) = e,-1. Then a
*-homomorphism p: C(0G) x G — Q(I?) is defined by p(a) = J\(a)J.

The homomorphisms A and p commute and determine a *-homomorphism

1: C(3G) % G ®C(3G) 1 G — Q(G), t(a®b):=Ma)p(b).

The *-homomorphism is c.p. split and therefore determines a B.D.F. cycle for C(dG) x
G ®C(dG) x G and class

A € KK (C(dG) x G ® C(dG) x G,C).

REMARK 9.5.19. The amenability of the action on G on dG implies (see [64]) that any
covariant pair determines a *-homomorphism defined on the crossed product C(dG) x G,
whence the given covariant pairs determine *-homomorphisms A and p from C(dG) x
G — Q. The fact that A and p commute follows from Lemma [9.5.16] The fact that two
commuting *-homomorphisms with domain C(dG) x G combined to a *-homomorphism
T on the tensor product also follows from amenability of the action.

The class A acts as a ‘fundamental class’ in K-homology of the crossed products, as
we discuss in Section 2| of Chapter 10 in connection with duality in KK-theory.

6. Spectral cycles and Fredholm modules

The disadvantage of the formulas of Theorem [0.3.3] describing the index pairing of a
finitely summable Fredholm module with projections or unitaries, is that the formulas are
not local. In fact, if one applies them to the classical situation of a zero order pseudodif-
ferential operator F on a compact manifold, then one does not obtain an analogue of the
Atiyah-Singer formulas: the expressions Trace(F[F, f°]---[f, f"]) involve taking the trace
of a product of a sufficient number of operators (of order —1, so that the result is trace-
class) and this produces a quite different formula from one involving only the integral over
the manifold of a single explicit function. (In very simple situations, like that of Toeplitz
operators, one may take n = 1, there is no product of operators involved, and the character
formula is already ‘local,” as we have already established in Section[9])

REMARK 9.6.1. Section |4) discussed an example of a finitely summable Fredholm
module over C(dG) x G coming from measure-theoretic aspects of the action of a hy-
perbolic group G on its boundary. The Chern character of this Fredholm module can be
computed by Connes’ character formula Theorem[9.3.3]to be a cyclic cocycle over a dense
subalgebra of C(dG) x G, which is a sum over the group G, of the statistical covariance
functions

C<g’¢"">:/ac(¢'“’>°g‘(/aG¢°g>'</aG"’°g>’ € G0,y € C(3G).
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The function ¢ decays as g — oo to zero due to the convergence property of Hausdorff
measure (sufficiently rapidly that it is in /?(G) for p > 2). The resulting formula is not
computable (not ‘local’) because it involves a sum over the group. Thus, the situation for
this example is roughly similar to that of pseudodifferential operators. What would be
desired, in this case, is a formula which does not involve any sums over the group.

The Atiyah-Singer formula, in contrast to these examples, translated into the language
of cyclic cohomology, involves cyclic cocycles which have the form (9.6), which are of an
entirely local, geometric nature.

The difference between the Atiyah-Singer formula and the formula provided by Connes’
Chern character, is due to the fact that there is a great deal of loss of spectral and geometric
information in passage from a self-adjoint elliptic operator D, like a Dirac operator to its
sign F := (D). Although some important information is retained, e.g. the boundedness of
the interaction, through commutators, [F,a], of the operator F with the algebra of observ-
ables, the concept of length has been in a sense lost when one replaces D by /(D) (although
the notion of angle has not been lost, which is why Fredholm operators can sometimes be
thought of as corresponding to a conformal structure, rather than a Riemannian structure.)

The Local Index Formula is based on enriching the notion of Fredholm module to
involve a suitable notion of length, by requiring an unbounded self-adjoint D whose sign
is F. Suitable hypotheses on D and A then give rise to a good noncommutative analogue of
integration on a manifold, using the residue trace (or the Dixmier trace, which we discuss
less here, see [48]].)

We fix the standard branch of A~* defined for Re(s) > 0. Suppose that D is a densely

defined self-adjoint operator with discrete spectrum ~ né, with finite spectral multiplici-
ties. If D is invertible then |D| > 0 and we may apply A~ to |D| using functional calculus.

CONVENTION 9.6.2. If D contains zero in the spectrum, there is some difficulties
about defining 0° so we define Tr(|D|~*) to be Tr((|D|+¢€)~*) for € > 0 small. If ¢ > 0 is
another choice, the resulting functions will differ by a function which extends analytically
to C. The same remarks apply to Tr(a|D| ™) for a a bounded operator. Therefore, making
such minor alternations to |D| make no difference to the pole structure of the zeta functions.
(An alternative fix is to simply add the projection pyerp to |[D|. The new operator |D| +
Pkerp has no kernel, and it makes sense to define complex powers of it.)

To avoid cluttering up notation, we will simply write Tr(a|D|™*), with the above re-
marks in mind.

DEFINITION 9.6.3. Let A be a unital C*-algebra and A” C A a dense *-subalgebra.
Letd > 1.

An d-dimensional even spectral cycle for A C A is a triple consisting of a Z /2-graded
Hilbert space H, a representation

n:A— B(H)

by even operators, and a densely defined self-adjoint operator D on H which is odd with
respect to the grading, whose domain is invariant under A*, and such that [n(a),D] is
bounded for all a € A*, and such that, furthermore that:

a) (1+D?*) /2 ¢ LP(H) forall p > d.
b) The analytic function

Tr(m(a)|D| ™), Re(s)>d

extends to a meromorphic function on C, for every a € A™.
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An odd spectral cycle is defined the same way, except we drop the assumption of a
Z./2-grading.

REMARK 9.6.4. 1. Definition [9.6.3] is similar, but not identical, to Connes’ defini-
tion of spectral triple, which consists of a triple (A*,H,D) where A” is a *-algebra, H
is a Hilbert space carrying a representation of A, and D is an operator, satisfying the
conditions of Definition 2. Often in examples of d-dimensional spectral cycles the
principal values u, of D are 0(n$ ), n — oo, a condition slightly stronger than a). Condition
a) is often called finite summability.

EXERCISE 9.6.5. Let D be self-adjoint, invertible, and (1 +D*)~! is compact. Show
that if Re(s) > 0, then (14 D?)~%/2 € L1 (H) if and only if |D|~* € L' (H), and if this holds
for Re(s) > n then Trace((1+ D?)~%/?) — Trace(|D|~*) extends to an analytic function on
Re(s) >n—2.

The methods of Section [3] show

PROPOSITION 9.6.6. If D = (H,T,D) is an even spectral cycle for A C A and ) is a
normalizing function, then (H,m,%(D)) is a Fredholm module over A.

Similarly in the odd case.

Hence a spectral cycle (H,n,D) determines a class in KK;(A,C) and an induced
group homomorphism K j(A) — Z, where j =0 if the cycle is even and j =1 if the cycle is
odd.

The group homomorphisms are induced by the corresponding Fredholm modules, by
the method discussed in Section [T}

We generally denote by [(H, T, D)], or sometime just [D], the class of a spectral Fred-
holm triple in KK, (A, C), but of course we really mean the class of (H,,¥ (D).

EXAMPLE 9.6.7. LetD = —i%, acting on C*(T) initially. It extends to a self-adjoint
operator with domain the first Sobolev space H'(T) = {f € L*(T) | ez |f(n)?(1+1%) <
oo}, Its spectrum is 21Z. Hence (14 D?)~! is compact. The principal values of |D|~! are
U, ~ n and hence the triple is 1-dimensional.

The C*-algebra C(T) and the smooth subalgebra C*(T) C C(T) act by multiplication
operators on L*(T), C*(T) leaves dom(D) invariant and [D, f] = f’ is bounded for f €
c=(T).

We prove in Corollary[9.9.4]that if f € C*(T) then the zeta function Tr(f|D|~*) extend
mermorphically to C, with a simple pole at s = 1, and residue there equal to [y f(x)du
where u is normalized Haar measure.

The corresponding Fredholm module is (L?(T),, F := 2P, — 1) where T is the repre-
sentation by multiplication operators, P, the Szeg6 projection.

In particular, the pairing of this spectral cycle with K-theory is the pairing with the odd
Fredholm module (L?(T), 7, P, ) and we have already observed that this pairing is given by
the Toeplitz index map

u— Index(T,,),

where T, is the Toeplitz operator with symbol u.

EXERCISE 9.6.8. Suppose (H,n,D) is an odd spectral cycle for A C A, and that T is
a bounded operator on H leaving dom(D) invariant and such that T commutes with T(A).
Prove that (H,mt,D + T) is a spectral cycle for A C A, and that the Fredholm modules
associated to D and D+ T are compact perturbations of each other. (See Lemma[8.5.7).
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We now show how a spectral cycle over A” C A gives rise to a trace on A, called the
residue trace.

The Local Index Formula of Connes and Moscovici describes the Chern character of
a spectral cycle (and hence its pairing with K-theory classes) in terms of residue traces of a
more general kind; these more general residue functionals behave more like distributions,
as they do not necessarily extend from A™ to A.

Before discussing the Residue Trace we prove several technical results.

To shorten notation slightly, let, A := |D|. If A is not invertible, perturb it by a small
positive constant to make it so, or add the projection to its kernel.

LEMMA 9.6.9. Let A be a strictly positive unbounded operator on a Hilbert space
with discrete spectrum.

Let C be the contour in the complex plane given by the straight line, Re(\) = €, for
€ > 0 small enough to miss the spectrum of A. C is oriented straight downwards. Then for
all s with Re(s) > 0,

7‘\'_L =S _ A1
(9.24) A= jéc A (o= A) L.

The integral converges absolutely in K (H).
More generally, if (;) is the usual binomial coefficient, p =0,1,2,..., then

§ —s—p:L% “S(L—A) P!
(9.25) <p)A 5 AT 8)

PROOF. The function A~*(A —A)~'dA is valued in % (L*R). Since
IA=2)7" = O(AI™Y), A = =,

[A=5(A—A)~Y| = O(J]A|=*~!) as |A| — oo, and hence the integral converges absolutely
if Re(s) > 0. Now the remaining statements follow from the following application of
Cauchy’s formula: I claim that if Re(z) > 0 and Re(s) > 0 then
1 AS
T =—109 —dz
¢ 2ni Jeh—z ¢
For the proof let Cg be the right half-circle of radius R centered at 0, oriented clockwise,
and Cp the union of Cg with the segment of the imaginary axis from Ri to —Ri, then by
Cauchy’s formula if 0 < |z| < R then
1 AT

= d\.
. 2ni Jo, A —z

On the other hand |i‘—:;| = O(R*"!) for A € Cg and R — o and since the length of Cg

is TR, $c, ;:—:; d\ = O(R™*) as R — oo, and in particular ., ;‘—:; dh — 0 as R — o and

Re(s) > 0. O

LEMMA 9.6.10. In the notation of Lemma suppose a € A”. Then [n(a),A™"]-
ASTis bounded, Re(s) > 0.

PROOF. To lighten notation, we just write a for 7(a).
For a € A~ let §(a) = [a,A].
By (0.29),
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-1
9.26) @A) =5 / = d.

We have
[a.A=2)""] = (A= 8) '@, AjA—A) " = (A= 4)"'8(a)(A —A) !
Putting this into gives

1 1
9.27) 0,87 = 5 / A (h—A) ' 8(a) (h—A)~dA
Now,

928) (A—4)""'8(a) =8(a)(A—4)"" = [8(a), (A —4)7]
=8(a)A—A) "' = A=A (@)(A—A)).
Plugging into and using Cauchy’s formula (9.23)) gives

©.29) 2ntifa, A~ / A (A —A)2d\+R, = 8(a) (?) ASTULR,
where the remainder term Ry is
Ro= f 20— 4) 18(@) (- ) 2.
c

Notice that R,A? is bounded.
Now iterate the argument with R; to get

_ 52(“) —s -3 1 —s —1s3 -3
(9.30) Rs—z—m_/ck (A—A) d?»—}—z—m_/ck A=A)""&(a)(A—A)7d)L

_ <_2S> & (a)A 2 +R.

27

where R/A3 is bounded.
Proceeding inductively, we get an expansion

(9.31) 2mi[a,A™"] = <_ls> S(a)A*S*I 4 (_;) Sz(a)A*“‘*Z 4.
+ (_ks> & (a)A™>* 4 RW
(k) Ak+1 : 1 : s+
where Ry A" is bounded, valid for Re(s) > 0. Multiplying the expansion by A**" gives
(9.32) 2mia,A—|ATT! = <_1s> 8(a)+ (_;) P (a)A " 4
- (7:) & (@)a* + R At

and all the terms up to the remainder term are bounded, while if X > Re(s), then the last

term is bounded as well.
O
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We now show that a d-dimensional spectral cycle on A™ gives rise to a (positive) trace
onA.

THEOREM 9.6.11. Suppose that (H,n,D) is a d-dimensional spectral cycle for A~ C
A. Then
Res Tr(a) := Res;—yTr(n(a)|D| ™)

is a positive trace on A”.
In particular, Res Tr extends to a trace on A.

PROOF. We have
ab|D|™* —a|D|**b|D| ™ = alb,|D|~*/?] D[/

By the Lemma, a[b, |D|~%/?]-|D|'*$/2 =: T is bounded. We have thus shown that ab|D|~* —
a|D|*/?b|D|~*/*> = T|D|~*~" with T bounded. Now |D| 5! is trace-class for Re(s) >
n— 1. Therefore,
(9.33) Tr(ab|D|~*) — Tr(a|D|*/>b|D|*/?)
extends to a function y analytic on Re(s) > n— 1.

Hence Tr(ab|D|~*) = Tr(a|D|*/*b|D|~*/?) + y and reversing the roles of a and b
gives

Tr(ab|D|™*) = Tr(ba|D|™*) + v/

for ' analytic for Re(s) > n— 1. Taking residues at s = n gives the tracial property
Res Tr(ab) = Res Tr(ba).

This proves the tracial property. An analogous argument shows that

Ress—, Tr(aa*|D|™*) = Resg—, Tr(a*|D|*a*)
and since Tr(a*|D|*a) > 0 for all s with Re(s) > n
Ress—, Tr(a*|D|%a) = lim+(s —n)Tr ((a*|D|¥a) >0
s—1

we deduce positivity.
O

The idea of constructing a trace using residues is essential in Noncommutative Geom-
etry. An alternative approach uses the Dixmier trace. Both methods produce functionals
which encode geometric information. In the classical situation, the following theorem (for
the statement see [100]], for proof see [142]) summarizes why this idea is important. It is
based on a theorem of Weyl.

EXAMPLE 9.6.12. (Weyl) Let M be an n-dimensional compact Riemannian spin®-
manifold, and D be a twisted Dirac operator on M, i.e. a twist of the Dirac operator on M
by a vector bundle.

Then if f € C*(M) then the analytic function

Trace(f|D|™*), Re(s) > n,

extends meromorphically to C, has a simple pole at s = n, and
Res;_, Trace(f|D|™* / fdu,

with du volume measure on M, and ¢, the constant
dim(S)

2vm)"-I(1+3)

Cp =

[S1R
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where S is the bundle on which D acts (so being an irreducible Clifford module has dimen-
sion depending only on n.)

The reason for the meromorphic extendibility property lies in certain asymptotic ex-
pansions of the heat kernel, discussed in the next section.

Note that taking f = 1 in the theorem and D the Dirac operator, we see that the spec-
trum of |D| determines the Riemannian volume.

Weyl’s result suggests the philosophical idea that a spectral triple over A~ C A over a
dense subalgebra of a C*-algebra, may endow, in a sense, the corresponding ‘noncommu-
tative space’ with an analogue of Riemannian geometric structure.

7. The heat equation proof of the Atiyah-Singer Index theorem

The meromorphic extension property for zeta functions Tr(a|D|™*) affiliated with
spectral cycles may seem quite mysterious. In this section, we describe the classical situ-
ation and explain why this extension property follows from the heat equation method and
gives a local formula for the index of a Dirac operator.

Suppose that D is a self-adjoint operator with singular values A, ~ O(né ). For exam-
ple, D could be the Dirac operator on a compact Riemannian spin®-manifold of dimension
d.

Let A = D?. The eigenvalues u, of A grow like ni asn — oo, Hence Tr(TA™¥) is finite
for Re(s) > 4 and arbitrary bounded operators T

By definition of the I'-function and making a change of variables t — Az, for any A > 0,

we have
F(s):/ ts_le_tdt:ls/ e Mdr.
0 0

from which

A7T(s) = A / #le M,
0
Summing over A € Spec(A) gives

(9.34) [(s)-Tr(A™) = /0 ) 1 Tr(e"™)ar.

The semigroup of compact operators e "2 is called the ‘heat semigroup.’ It satisfies the

heat equation: the partial differential equation
d

(5 + Ak () =0,

with initial condition k;(x,y) — 8,y ast — 0.

In physical terms, if u € C*(X) is a smooth function, describing the temperature at
points of a Riemannian manifold, then

(e ) = [ keyut)dy

where A is the scalar Laplacian, describes the distribution of temperature at time t > 0. As
t — oo, as heat tends to flow into cooler areas, the temperature becomes evenly distributed
across the manifold.

(9.35)

EXERCISE 9.7.1. Let A be any densely defined self-adjoint positive operator on a
Hilbert space H with (1 +A?)~! compact. Assume the eigenvalues of A grow at most
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O(n*) for some p € R . Let A be any bounded operator. Prove that AA™* is trace class for
Re(s) > % and that

9.36) D) Tr(Aa~) = [ "¢ Trae ).
0
In the situation of Dirac operators one has a spinor bundle S and D is the Dirac operator
acting on a dense subspace of L?(X,S), with respect to a measure u on X. The operator
A := D? is an even operator with respect to the gradings, and the operator ¢ "2 acts as an
integral operator with kernel &;:

(")) = | Key)u(s)du().

where here k; takes values in endomorphisms of the bundle S, so that k; (x,y) € B(Sx,Sy)
for all x, y.

We have, since the trace of a smoothing operator like fe
along the diagonal:

~A is its integral of its kernel

LEMMA 9.7.2. If D is the Dirac operator on X, f € C*(X), acting on L*(X,S) by
multiplication, then

Te(fe ™) = [ )T (s (5.) duo).
where k; is the heat kernel for A.

Now assume X is even-dimensional, that S is Z/2-graded.

Then 0 D
b= [D+ 0+]
and
Al {Dim 0 ]
DD x
so that

Ind(D) = dimker(D, ) — dimker(D_),

"
_tA |:etD+D+ 0 :l

e = o—1D+Dx

while on the other hand

IfT = C g is a compact operator on the Z/2-graded Hilbert space L*(X,S), let
Try(T) = Tr(A) — Tr(D), the graded trace. Then with this notation
Try(e ™) = Tr(e P+P+) — Tr(e "P+P%),

Since DD’ and D’ D, have the same nonzero eigenvalues and multiplicities, expressing
the above trace as a sum of eigenvalues gives through the resulting cancellation that

Trs (eitA) = Tr(projkerD) - Tr(projkcr(D*) = IHdeX(D).
We obtain the McKean-Singer formula:

THEOREM 9.7.3. If D is the Dirac operator on a spinor bundle S over X compact
Riemannian, then

Tndex(D) = Tr, (e ™) = /X Try (ks (x, ) dia(x)

foranyt > 0.
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This formula is useless for actual computation, since

Tr(e_’DiD*i):/XTr (k" (x,x)) du(x)

each individually diverge to o as t — 0, while only their difference converges.

What is perhaps remarkable, is that one may precisely quantify these divergences by
means of an asymptotic expansion, in which the coefficients are geometrically defined
distributions on the manifold X.

The result goes back to Minakshisundaram and Plejel; see the book [145]] for an expo-
sition.

THEOREM 9.7.4. Let X be a compact Riemannian manifold with volume measure u =
(detg) > dx (locally) the volume, let A be the scalar Laplacian, a densely defined operator
on L2(X,u).

Then there exist Ay smooth functions on X such that for any f € C*(X), there is an
asymptotic expansion

Tr(fe ') ~ (4mr) 7% : (/ f-Ax d,u)
ast — 0.

For the exact meaning of ‘asymptotic expansion’ we refer the reader to more special-
ized texts, e.g. [145] or [142]. We will look at some specific examples in the sections to
follow, where the meaning of ~ will be made precise.

We now give an indication of why asymptotic expansions imply meromorphic ex-
tendibility of certain zeta functions. Recall the formula (9.36) for the zeta function in
terms of the Mellin transform of the heat trace. Let f € C*(X). Then

(9.37) T(s)-Tr(f-A~) = / FITE(f e ),
0
Observe first that .
/ FITE(f e i
1

is an entire function of s, due to uniform expondential decay of Tr(f - e"A) fort > 1. So,
we have, up to an entire function, since the asymptotic expansion for fe~2 is based on the

kernel &/ (x,y) = f(x)k: (x,y):

(9.38) F(s)~Tr(f-A""):/l Sy (f // 57V F(x) ke (x, x)dx

N/X/Oltr%*‘Ao(x)f(X)dx_y/X/o tsfjAl(x)f(Xde
1 1
+/ / #TI A (0) f(x)dx
S_i /AO F(x)dx

—l—S—*—I—l /A[ dx+

where we have used LemmalI.7.14]of Chapter[I]to compute the trace of an integral operator
with smooth kernel in terms of the integral of the kernel over the diagonal.
Similar reasoning applies to the Dirac operator D on sections of a spinor bundle S.
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THEOREM 9.7.5. Let D be a Dirac-type operator on sections of a bundle S — X, X
compact K-oriented and d-dimensional. Let A = D?.

Let k; be the heat kernel, solving the heat equation % +A.

Then there is an asymptotic expansion

_d _d _d
Sk (x,y) ~ F(X)Ao(6,y) 172 + F(R)AL(xY) 172 + f0) A (e )t T2 4
where Ai(x,y): Sy — Sy are smooth linear operator valued maps, defined in a neighbour-
hood of the diagonal in X x X.
Hence, the zeta function Tr(fA™*) extends to a meromorphic function on C with poles
at %, % —1,---, and residue at % —k given by

[ 76) ekt
X

In particular,

Resx:%Trace(fA*S):/Xf(x)~’I‘r(Ad/2(x,x))dx.

Furthermore, if X is even-dimensional, S graded, then the endomorphisms Ay are all
even with respect to the grading. Let Ay = A,j ©A; . Then

Index(D) = / Trs(Aq/2(x,x)) dx = Res, %Trs(Af“'),
. A

where Tt is the fibrewise graded trace.

The previous result is a sort of ‘in-principal’ index theorem, as it produces a formula
for the index which is a difference of integrals of a pair of functions Aj/z- But it requires

more work to compute Aif/z explicitly. (See [10]). We will state the result below for the
spin Dirac operator.

EXERCISE 9.7.6. This exercise is about the method of translating ‘asymptotic expan-
sions’ into meromorphic functions with pole structure determined by the expansion. The
basic example of an asymptotic expansion is a Taylor series. Let f be a smooth function in
a neighbourhood of 0 € R.

a) Let f ~ Y " a,t" be the Taylor series of f att = 0. By definition, ~ means that
=Y gat* = O(|t|"™1) ast — 0, for all n. Show that the function

1
(9.39) Ys) = /0 SV,

defined initially and analytically for Re(s) > 0, can be meromorphically ex-
tended to C, and that the poles are simple, parameterized by the natural numbers,
and that the residues are the coefficients a,, of the power series.

b) Suppose that f(¢) — 0 exponentially quickly as # — 0 in the sense that =% f(¢) —
0 for every positive integer k. Prove that extends analytically to C.

We now describe the Atiyah-Singer formula for the Dirac operator on a spin manifold,
twisted by a vector bundle. The answer should involve topological information about the
vector bundle. The case of a spin®-manifold is similar, but slightly more complicated, and
we omit it.

‘Local’ invariants of vector bundles are supplied by Chern-Weil theory. If Rg is a
Hermitian connection on E, an End(E)-valued 2-form, by locally trivializing E we may
represent R locally as a matrix of 2-forms. There are of course many natural constructions
with matrices with entries in a ring, like the ring of 2-forms. One may form Trace(RE ), for
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example, locally, giving a 2-form. This actually is independent of the choice of trivializa-
tion of E used, since the trace is invariant under conjugation. So Trace(RE) is a globally
defined 2-form. Similarly Trace(R?) is a globally defined even-degree form, and so on.

Suppose now that f(z) = Y~ yan2" is a power series defining a function analytic in
a neighbourhood of zero in C. Note that the ring of matrices with entries differential
forms on any manifold M is nilpotent, because there are no differential k-forms on M if
k > dimM. In particular, if Rg is the curvature of a complex vector bundle E then Rt =0
for k > 4. We may thus apply f to Rg, defining it as f(Rg) := Y;_oaxRf. The sum is
actually finite, and is a differential form.

Let g(z) = sm}i{iz/z) Then g is analytic at z = 0 and expands into a power series. We

may apply the discussion above to the function

f(A) :==exp <;Trace log g(A))

If Ry, is the curvature of M, we obtain a differential form

A(M) := f(Ru).
The Chern character ch(E) of E is the class of the differential form
R 3 R
T TRE) = 1" £,
race(e "F) n;)( ) iy

This is a finite sum of even-dimensional closed differential forms.

THEOREM 9.7.7. (The Atiyah-Singer Index Theorem) If D is the Dirac operator on a
spin manifold M and E — M is a complex vector bundle, then

Tndex(Dg) = /M A(M) A ch(E).

The index has been expressed in terms of the integral over M of certain canonical
differential forms associated to the bundle and the spin structure. To compute the index
explicitly therefore is reduced to computation of these differential forms, which is a local
problem.

8. The Atiyah-Singer and Connes-Moscovici Local Index Theorems

The proof of the following basic Lemma is quite easy using KK-theory, and we defer
it.
PROPOSITION 9.8.1. If D is a Dirac operator on an even-dimensional compact spin®-

manifold M then Index(Dg) = ([E],[D]), the pairing between the K-theory class |E] for
C(M), and the K-homology class [D] € KKo(C(M),C) in the sense of Section][l]

The Local Index formula of Connes and Moscovici gives a formula for the K-theory/K-
homology pairing between the class in KK, (A, C) of a spectral cycle for a C*-algebra, and
the class of a projection in K, (A). The formula is ‘local’ in the sense that it involves the
distributions which appear at poles of zeta functions (like Trace(a|D|™*)), and is compati-
ble with the K-theory-Fredholm-module pairing we have already defined.

In this section we state the Local Index Theorem, starting with a translation of the
Atiyah-Singer formula into the Connes-Moscovici framework of cyclic cohomology. The
elegant short paper [128] by R. Ponge was one of our main sources and we refer the reader
to the article for further information and proofs.
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Let M be a an even-dimensional spin manifold and A(M ) the corresponding genus,
(represented by) a mixed-degree differential form on M which is nonzero only in even
degrees. The spin structure therefore defines a current on M of mixed degrees

ocn—>/MA(M)/\(x.

It is closed, because A (M) is a closed differential form.

THEOREM 9.8.2. Let

O (fO,.. 1) = :

(2k)!

/ fodfl dfn /\AA(nf2k)(M)
M

Then @ := (Qu)7_,) defines a class in HCP®(C*(M)), and if e € C*(M) @ M,(C) is a
smooth idempotent, defining a smooth complex vector bundle E — M, then

Index(Dg) = ([E], [D]) = ([¢]. [¢]) = i Pu(ee,....e).
k=0

The general Local index Theorem of Connes and Moscovici runs along similar lines.

DEFINITION 9.8.3. Let (H,m,D) be a spectral cycle for A~ C A.

a) By definition dom(3) is all 7 mapping dom(9) to itself such that 3(7") extends to
abounded operator on H. If T € B(H) maps dom(D) to itself, let §(7') = [T, |D|].
We say that spectral Fredholm module is regular over A~ if A* and [D,A™] are
both in N, dom(d").

b) Let P9 (A™) denote the algebra generated by the 8*(a)’s, a € A™. Say (H,=,D)
has simple dimension spectrum if there exists a discrete subset I' C C such that
Trace(T'|D|~*) meromorphically extends to C with simple poles in I for every
T €99 (A™).

THEOREM 9.8.4. Let (H,T,D) be an even, finite-dimensional spectral cycle for A~ C

A with with the meromorphic continuation property and simple dimension spectrum. Let
A=D’

Set
Do (ao) = Ress:() (F(s) . ’I‘r(gaOAfs))
For k>0, set
(9.40)
on(d’,....a*) = Z Ck,o - Resg—oTr (eao [D,a'1®) ... [D,a? (oczk)|D|—2(\oc\+k)_S> .
a>0
where

(| +k)c,;é =2(— D)ol (ot + 1) (0 + 0t +2) - (04 + -+ - + Olg + 2K).

Then the sequence (@ )y defines an even cochain in the (b, B) bicomplex and a class
in HCPY(A*). It is cohomologous to the Chern character (Definition of (H,m,F),
where F = %(D), X a normalizing function.

Let (H,m,D) be an odd, regular, n-dimensional spectral cycle for A~ C A with with
the meromorphic continuation property and simple dimension spectrum. Let A = D?.
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For k> 0, set
(94]) (p2k+1(a0,...,a2k+l)
=27 Z Cro - Ress—oTr (aO[D,al](al> e [D,a2k+1}(a2k+l)|D‘_2(‘a‘+k)_1_s) .

o>0

where

T(la +k+1/2)c s = (=)ol (o + 1) (o + o +2) - (0 + -+ oy + 2k + 1),

oo

Then the sequence (©+1)5_ defines an odd cochain in the (b,B) bicomplex and
a class in HCPI(A“). It is cohomologous to the Chern character (Definition m of
(H,m,F), where F = (D), X a normalizing function.

9. Zeta functions and the Local Index Theorem for the circle

The Local Index Theorem provides a formula for the index pairing of a K-homology
class for a C*-algebra, represented by a suitably regular spectral cycle. The formula in-
volves certain functionals arising as residues from zeta functions, making them have a ‘lo-
cal’ character. These functions agree in the commutative case of a smooth manifold with
the distributions which appear in the Atiyah-Singer formula in the heat equation approach.

In this section we work out this framework in detail from scratch, for some very basic
examples: the crossed products C(T) x I for a finite group of rotations of T. We set aside
the group for the moment and focus on C(T).

We identify T = R/Z (it has volume 1.) Set D = —i %. The Laplacian on the circle is

A= f%, densely defined on L?(T) and diagonalizable with eigenvalues 4n°n?, n € Z.
The first problem is to prove the meromorphic extendibility of the analytic functions
Tr(fA*) for f € C=(T). If f =1 this is equivalent to the problem of meromorphically
extending the Riemann zeta function since Tr(A™*) = ¥, n~%*. We show how the heat
equation method produces such a continuation.
The solution to the heat equation (9.35)) on R is

(x—y)?
4¢ )

as the reader may verify. Thus the operator e™' is an integral operator with kernel k;.
Notice that this is a group convolution operator on the group R:

ke(x,y) = (47U)7% exp(—

tA

2
e Bu=f,xu, where f;(x)= (47tt)*% exp(—%),
That is: e~ € C*(R) for all # > 0: the heat semigroup is contained in the C*-algebra of
R.
For the Laplacian on the circle we have
(9.42) e A = Y 674“2’"2pn,

nez
where p, is projection to the span of z”, the integral operator with kernel

Pn (x’y) _ eZTcin(xfy).

Substituting this into the series gives that

k;(x,y) _ Z ef4n2tn2+27tin(x7y)’
nez



370 9. K-HOMOLOGY AND NONCOMMUTATIVE GEOMETRY

Therefore, e " € C*(T) is again given by a convolution, this time on the group T = R/Z:

e~ Lt — kt *u, kt Z ef4rl:tn +271:mx
nez

This description of the heat kernel &, (x,y) on T, by the formula

k (x,y) — Z 674n2tn2+2nin(x7y)’
nez
is ‘spectral’ rather than geometric, producing a function of ¢ in the class of functions known
as O-functions, and without any closed form.
However, we can argue in this case that the heat kernel on the circle, being locally
Euclidean, agrees with the heat kernel on Euclidean space up to an exponentially small
error. This will produce a rather trivial asymptotic expansion of the form

Te(fe ™) = ()3 - /T Fx)dx+r(t)

where r(¢) — 0 exponentially fast as # — O: that is, ¢ *r(t) — 0 as t — 0 for any positive
k. We may then apply Exercise(9.7.6)
2
The formula (47|:t)’% exp(— %) for the heat kernel on R can be periodized because
it decays rapidly at infinity.

LEMMA 9.9.1. Ifk; is the heat kernel on T then

(x—y+n)?

9.43) k(ry) = Y (4m) 2 exp(—

ne7z

)

PROOF. By an easy calculation, the formula satisfies the heat equation. As ¢ — 0 it

converges to the distribution Sx,y, so it satisfies the initial condition as well.
O

REMARK 9.9.2. In the above constructions there appeared the identity

() —4m2tn® +2minx
e A4 = ,
\/ 4t ngi ;
where k; (x,y) = k;(x —y), with k, the heat kernel on the circle. The left hand side of (9.44)
is geometric and is obtained by forming the periodization ¥,,c7 k& (x-+n) of the heat kernel
on R. The right hand side is spectral in nature: from the point of view of the right hand
side, k; is the element of L*(T) with Fourier series

Zefémztnz . p2minx Zf 271:mx

A 2.£2 . . .
where f(£) = ¢=***&". From our discussion of Fourier transforms, f;(x) = Tl "
Hence the identity (9.44) is nothing but the Poisson summation formula (Theorem[T.13.21)

Y filxtn) =Y, fi(m)e ™.

nez nez

(9.44) ki (x)

COROLLARY 9.9.3. Ifk; is the heat kernel on T then
ko (x,x) = (4mt) "2 +r(t)

where r(t) — 0 exponentially fast as t — 0.
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PROOF. From (9.43) when x =y we have
1[2n2
(9.45) k(xx) = Y (4mr)"2e " = (ne) " 4r(1),
nez

where
2.2

i 4mr) 76747[" .

Application of the integral test shows that r( ) vanishes to infinite order at t = 0.
O

Following the methods discussed in the previous sections (see Exercise[9.7.1) we ob-
tain a continuation of the zeta function Tr(fA™*) for f € C=(T):

T(s)- Tr(fA™) = /0 L /T f(x)k,(x,x)dxdt:z% / 1 / P (74 4 r(e)) s
zle/ﬁ/ol/Tf( P zdxdt+—/ /f £ r(t)dxdt
where e(s) is entire.

(= Af<x>dx> (=) e
Since I'(}) = /T we get:

COROLLARY 9.9.4. Let A be the Laplacian on T = R/Z. Then if f € C(T) then the
Sfunction Tr(fA™*), Re(s) > 1, extends meromorphically to C with a single simple pole at
s = é and
(9.46) Res,_y Tr(fA™") = 5 / flx

where dx is Lebesgue measure on T.

COROLLARY 9.9.5. The triple consisting of the Hilbert space L*(T), the operator
D=—ig 4 © (x, and the representation of C(T) by multiplication operators, defines an odd, 1-
dlmenswnal regular spectral cycle over C*(T) C C(T) with the meromorphic continuation
property and simple dimension spectrum consisting of the single point {1/2} C C.

Now to get a mildly noncommutative example, let I' 2 Z /n be a finite group of rota-
tions, generated by U. We consider the crossed-product C(T) x I". The group I is repre-
sented on L?(T) by the unitary action induced by the given action on L*(T).

Since differentiation on T commutes with rotations, the group I of unitaries on L*(T)
commutes with D = —i % and we obtain therefore a spectral cycle over the crossed prod-
uct C(T) x T, with only one issue remaining: the meromorphic continuation property for
elements of C=(T) xT.

Let & # 0 be any nonzero real number and suppose that Uy, is a rotation unitary on
L*(T): ie. (UrE)(x) = &(x —h). The Fourier transform of Uy, acting on [%(Z) is the
diagonal operator with entries ®" = e~ >*""_and hence looking in the Fourier transform
picture we see that Us A~ is, up to a constant, the diagonal operator with entries @"|n| =2
Hence

Tr(UpA™ —2an >,

But we will not try to understand this series, but rather use the heat equation approach.
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LEMMA 9.9.6. If i+ 0 and f € C(T) then the analytic function Tr(fUrA™*) initially
defined for Re(s) > %, extends analytically to C.

PROOF. As discussed above, T'(s) - Tr(fUpA ™) ~ [i """ Tr(fe "2)dz. The operator
fUre ™ is an integral operator on L*(T) with kernel g, (x,y) := f(x)k,(x + &, y), where k;
is the heat kernel. By Lemma[9.9.1]

gi(x.y) = (dmt) "2 Y f(x) exp

nez

( (x+ﬁ4ty+n)2)

and hence

n 2
ax) = (am) 2 B o) -exp ().

nez 4
We have, thus,

[(s) - Tr(fURA™) N/Olt“'fl/jrg[(x,x)dxdt.

The function [} g;(x,x)dx — 0 exponentially fast as # — 0. The result then follows from
Exercise
]

COROLLARY 9.9.7. Let I' C T be a finite group acting on T by the group multipli-
cation, and let 7: C(T) x T — B(L*(T) the representation in which f € C(T) acts by
multiplication, and group elements act by translations. Then the triple

(L2(11‘),n,D ii)

is a 1-dimensional regular spectral cycle for C*(T) x T C C(T) x I with the meromorphic
continuation property and simple dimension spectrum consisting of the point 1/2.
Ifa= Y ay[y] € C*(T) xT then

1
5 -Resy_ypTr(aA™) = / ae(x)dx = / aedu=1(a),
2 T T
where t: C(T) x I' — C is the trace induced by normalized Lebesgue measure on T.

What does the Local Index Theorem[9.8.4]say about this situation?

In general, if (H,7,D) is a 1-dimensional regular spectral cycle for A~ C A with sim-
ple dimension spectrum then inspection of the Local Index Formula shows that there is a
nonzero residue only when oo = 0 = k, where we see the class of the cyclic 1-cocycle

¢(a®,a") = const. - Resszl/zTr(aO [D,a'|A™),

where A = D?, for an appropriate constant.
As differentiation D on the circle commutes with the group action, the commutator
8(a) := [D,a] for any a € C(T)[I'] is given explicitly by
9.47) () ag [g]) = ) [D.ag] [g] = ), —idj [g].
geG geG geG

with g’ the angular derivative of g. In particular 8 maps C=(T)[I] to itself. Let T be the
trace

(9.48) T:C(TyxI'=C, 1 Z aglg]) == / ae(x)dx.
geG T
Sorting out the constants and applying Corollary we get:
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THEOREM 9.9.8. Let T be a finite subgroup of T =R/Z acting on C(T) by trans-
lation. Let §: C*(T) xT' — C=(T) x T be the derivation (9.47), and T be the normalized
trace 948) on C(T) x " — C. Then

(9.49) o(a’a") :==1(a"8(a"))
defines a cyclic 1-cocycle on C*(T) x T and
=l oty = ZL
(1, 1D]) = o9 ) = o™ 8(w)

for any unitary u € C*(T) x T, where (-) is the index pairing
K (C(T)«T') x KK (C(T) xI',C) — Z.

REMARK 9.9.9. the group I to be trivial we recover the Toeplitz Index Theorem
since 72 - @(u~ ' u) = 2 - [ 2 = —wind,(0) for u € C*(T) a smooth unitary,
and the index pairing ([u], [D]) is by the definitions equal to the Fredholm index of the
Toeplitz operator 7.

10. Heisenberg spectral cycles and irrational rotation

In the last section we examined an example of a 1-dimensional spectral cycle over the
crossed product C(T) x I" of C(T) by a finite order group. Since such actions are free,
the crossed product is Morita equivalent to the quotient I'\T, which is T again. On the
other hand, the irrational rotation algebra A5 := C(T) X3 Z, the crossed product by a dense
subgroup of T, is a simple C*-algebra and not commutative even up to Morita equivalence
because it is simple. It has a 2-dimensional, rather than 1-dimensional, nature, containing
the two one-dimensional C*-algebras C(T) and C*(Z) = C (Z) 2 C(T), which give it a sort
of twisted, (noncommutative) 2-dimensional product structure. Ay is often referred to in
Noncommutative Geometry as a noncommutative torus.

In order to exhibit an example of a 2-dimensional spectral cycle over Ay, we perturb
the differentiation operator % on L?(R) by adding x to it, which produces a 2-dimensional,
noncommutative ‘Heisenberg’ geometry based on the Dirac Schrédinger operators x £
d/dx. This Heisenberg geometry is actually another way of thinking of the irrational tori
Ap.

The Heisenberg group is the matrix group

1 x z
H={|0 1 y| |xyzeR}
0 0 1

The Lie algebra h of H is the tangent space at the identity of the group, is the Lie
algebra of 3-by-3 strictly upper triangular matrices. Let X,Y be the elements

010 0 00
X=10 0 0|, Y=10 0 1},
0 0 0 0 0 0
of hh. Then
0 0 1
X, Y]=Z:=|0 0 Of,
0 0 0

while Z is central in §.
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Now let ® be any irreducible representation of H. Since it is irreducible and ©(Z)
commutes with t(h), ©(Z) is a multiple of the identity operator:

n(Z) = h,

for some f € R, a ‘Planck constant.’

The name ‘Heisenberg group’ is motivated by these relations, which have the same
form as the canonical commutation relations in quantum mechanics, where x and % model
position and momentum operators.

From the above remarks, we obtain a classification of irreducible representations of H.
Either /1 =0, in which case ©(Z) = 0 and hence 7t(X) and ©(Y) commute, which implies the
representation is 1-dimensional, and is completely determined by the pair of real numbers
(m(X),n(Y)), or A # 0, in which case one can show that the representation is isomorphic
to the following interesting representation 75 of b by unbounded operators on L?(R). Let

d
Tx(X)=x, and m,(Y)=h—.
K(X) n(Y)=h—
Then [x, h%] = h, so the required identity is satisfied to give a representation.
To see what the canonical anti-commutation relations have to do with rotation alge-
bras, observe that application of functional calculus to the operators x and % produces the
operators

i d
U= eme’ Vg = eQnﬁdX

bl

2Tix

where u is multiplication by the periodic function e“™* and

(vi)&(x) = E(x — ).

We have

vy =e ™y,
Now let

Ay = C(T) NﬁZ,
where Z acts on the circle T := R /Z with generator the automorphism induced by transla-
tion by hmod Z. If U € Ay = C(T) x, Z is the generator U (t) = ™ of C(T) and V}, the
generator of the Z action in the crossed-product, then a quick computation shows that

UV =e VU € Ay,
and it follows that we obtain, for each A. a representation
Th: Ap — B(L*(R))

of Ay on L*(R).
Before proceeding, we make note that Az has a natural ‘smooth structure’, and corre-
sponding subalgebra A7 C Ay analogous to the algebra of smooth functions on T2.

DEFINITION 9.10.1. The *-subalgebra A7 C Ay is given by the collection of all a =
Y. fuln] € Ag such that f;, is smooth for all n and supn€Z||f,$l) |n* < oo forall k,1 = 1,2,....

REMARK 9.10.2. The notation a =Y., f,[n] has a specific meaning for crossed prod-
ucts such as C(T) x Z, and does not imply convergence in the sense of series. But if
a € 1'(G,A) then the series converges norm absolutely in A x Z. This in particular holds if
a € A%, so that the expansion a = Y f,[n] is a norm absolutely convergent series in A X G
for smooth a.
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EXERCISE 9.10.3. Show that §; and &, defined on AY
1Y fuln)) =Y fulnl, 82} fuln]) =Y infuln].
are well defined , and define derivations of the algebra AT.

We are going to fit the Heisenberg representations discussed above into a family of
spectral cycles using the properties of the harmonic oscillator

e,
H .= 7@ +Xx .
a second-order elliptic operator on R, whose domain we will take initially to be the Schwartz
space S(R).
LetA=x+ %, with initial domain the Schwartz space S(R) — the ‘annihilation’ op-

erator. The operator A* = x — % is a ‘creation operator.” The reason for these terms is as

follows. Firstly, observe that
(9.50) AA*=H+1, A"A=H-1, [A,A"] =2, [H,A]=-2A, [H,A"]=2A"

X2
Now set W := /T-e~ 2 € L*(R). In quantum mechanics, o is called the ground
state, and the states inductively defined by v := (2k)’% - A*yy_| the excited states. Due

to HA* = A*H +2A*, from (9.50)), we see by induction that yy is a unit-length eigenvector
of H with eigenvalue 2k + 1:
(9.51) Hyy = (2k) 2 -HA" Wiy = (2k) 7 - (A"H +24")&;_,
_1 * *
=(2k)72 - ((2k—1) A"y + 247y 1) = (2k+ 1) - Y.
It follows from [H,A] = —2A that
Ay = V2k - Wio1, AT = V2k+2 Wi

2
The eigenvectors of H are given by & = Hi(x)e™ > where Hy is the kth Hermite polyno-
mial. This follows from induction using the recurrence

() = (2K) 72 (i1 (x) = By ()

to define the polynomials. The vectors {y} form an orthonormal basis for L?>(R) by an
easy exercise in the Stone-Weierstrass Theorem. Each yy is in the Schwartz class S(R).
With respect to this basis, H is diagonal with eigenvalues the odd integers 1,2,3,...:

1 0 ---
0 3 0
H= 0o 0 5
0 -0 .-

In particular, H has a canonical extension to a self-adjoint operator on Lz(R), and
f(H) is a compact operator for all f € Cy(R), and a bounded operator for all f € Cp(R).

REMARK 9.10.4. The previous observations were made originally by Dirac, who ob-
served that the ‘ladder’ (or creation/annihilation) operators could be used to avoid solving
a lot of differential equations in order to determine all the eigenvectors (energy states) of
the harmonic oscillator, one only had to solve one, since the others can be computed by
iteration of creation operators.
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The *-algebra D generated by the unbounded operator A is called the Weyl algebra. It
contains A* and hence H. It contains every differential operator

d am
f0+f1 7"‘ +fn1 7

on R with polynomial coefficients.
If f € L*(R), let (f(n)) denote the sequence of its Fourier coefficients with respect to
the eigenbasis {W; }rez for L*>(R) for H discussed above.

LEMMA 9.10.5. if f € L*(R), then f € S if and only if (f(n)) is a rapidly decreasing
sequence of integers:
[f(n)| = 0(n™")

for any k.

PROOF. If f € § then Hf is in S, as is clear from the definition of H. Similarly,
H*f € S for all k. Since

HEf(n) = 2n+1)k- f(n),

and since this is an L>-sequence (since H* f € S as already observed), and hence bounded,
we get, for each k a constant C such that

(2n+1)"|f(n)] < Gk
and so
[f(m)]=0(n™")
follows.
Conversely, suppose that f € L?(IR) and that (f(n)) is a rapidly decreasing sequence.

The eigenvectors  are Schwartz functions. It follows easily that f =Y f (n)y, €8 as

well.
O

Let D be the unbounded operator

0 A
]

on L2(R) @ L*(R), defined initially on Schwartz functions; it admits a canonical extension
to a densely defined self-adjoint operator. We have

, [H-1 0
D[o H+1

H 0
0 H+2
states described above, and invertible.

Next, writing just a rather than 75 (a) in the notation temporarily, since # is fixed, we

compute
[ D] ~[un )
Ifa =Y f,[n] then

[a.A] =) [fu Alln] + fulA an +nfaln] = 81(a) —i8(a),

and hence 1+ D? = ] which is diagonal with respect to the basis of excited
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where 8;,8,: A} — A5 are the derivations of Exercise(9.10.3| Similarly, [a,A*] = §;(a) +
i65(a). These expressions are all well defined on the smooth subalgebra A7. Hence

b 9 - oo "3

DEFINITION 9.10.6. Let A7 C Ay := C(T) x4 Z as in Definition|9.10.1
The Heisenberg cycle is the even, 2-dimensional spectral cycle over A7 C Ay, given
by

(LZ(R)@LZ(R),nh@nh, D= {2 ‘%*D.

where A = x+ %.
We denote by [Dj] the class in KK (A, C) of the corresponding Fredholm module:
given by

grows linearly, so the principal values

0 AH~+2)?

L*(R)® L*(R),n;, 1y, F:=x(D)=
(() (R), s Oy x(D) AR 0

using the normalizing function y(x) = x(14x?)'/2,

Note that the parameter & only appears in the representation.
o |H-1

The spectrum of A := D~ = { 0 H—|—1}
of D, i.e. the eigenvalues of |D| = H'/2, are O(n'/?). So the cycle is 2-dimensional.
Establishing the meromorphic continuation property and simple dimension spectrum will
be the task of the next section.

We close with noting that the x £ d/dx construction determines a spectral cycle over
a much larger algebra than A;. Continuous periodic functions, e.g. elements of C(T),
are special cases of bounded, uniformly continuous functions on R. Other examples are
Lipschitz functions, or functions with continuous, bounded first derivative.

DEFINITION 9.10.7. Let C,(R) be the C*-algebra of all bounded uniformly continu-
ous functions on R.

The following exercise shows that the Heisenberg spectral cycle is defined over C,(R),
modulo the issue of the meromorphic continuation property.

EXERCISE 9.10.8. Let C;’(R) be all f € C;’(R) with bounded derivatives of all orders.
Show that C;°(R) is dense in C,(R).

If D is as in Definition[9.10.6| then [D, f] is bounded for f € Cj;(R). We have already
noted that [D, Uy is bounded for the unitary Uy, induced by translation by o € R.

LetI" C R be any countable subgroup (possibly dense) of the real numbers. Inside the
crossed product C,(R) x T, let (C,(R) x I')* denote all elements Y. fy[y] in the crossed

product such that Yy || f#k) || - [¥]* < o for all k,1 positive integers. Then the derivations

S AM) =Y A, &AM =Y M- A
Y Y Y v

extend to (C,(R) x T')™.

PROPOSITION 9.10.9. For any countable subgroup I' C R, let T be the standard rep-
resentation of the crossed product C,(R) x T C B(L*R), then the triple

<L2(R) GI2(R),nem, D= Lg ‘%*D .
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defines a 2-dimensional spectral cycle for (C,(R) xT')* C C,(R) x T.

EXERCISE 9.10.10. Let o be a smooth flow on a compact manifold M and p € M. If
feCM)let f,(1) = f(ou(p)).
a) Show that f}, is uniformly continuous.
b) Show that f, € C;°(R) if f € C*(M).
¢) Show that the Heisenberg triple of Proposition[9.10.9|restricts to a 2-dimensional
spectral cycle for (C(M) x [[])* C C(M) x T for any subgroup I C R, acting on
M by the flow (an action of R.)

The next exercise provides an interesting example of the method of the former exer-
cise, where the compact manifold M is T2,

EXERCISE 9.10.11. Let i,u € R be rationally independent and (o )zcr, (Br)ser the
Kronecker flows o (x,y) = (x+12,y+ fit), Br(x,y) = (x+ 2,y + ut).

a) o and B determine connected dense subgroups Ko and Kp of the compact Lie
group T2.

b) Suppose 0,,(0) = B;(0) for some s, € R. That is, suppose (s,sh) = (z,7u). Show
there exist integers n,m such that s =f+n and t = % + gfy Deduce that
KaNKp is countable.

¢) Show that the rank-two free abelian subgroup A of R generated by ﬁ and ﬁfjﬂ
is dense in R and is isomorphic to Ko N Kg.

d) Prove that the crossed product C(T?) x A is (canonically) isomorphic to A ®A,.

The spectral triples over Ay ® A,, obtained by using part d) and the method of Exercise
[0.10.10]seem to play the role of KK-duality classes (our construction produces in particular
a cycle for KK (A ®A4,,C).)

11. The harmonic oscillator residue trace

In this section we establish the meromorphic continuation property of Definition[9.6.3|
of spectral cycle, for the Heisenberg cycles. of Definition [9.10.6, If A = D? where D is

as in the Definition, then A = {H(; ! H(—)i— J where H is the harmonic oscillator H =
2
-4 12

Since Tr(aA™*) = 2Tr(aH~*) up to an entire function, the meromorphic property of
the Heisenberg cycles depends on proving that Tr(aH ~*) extends to a meromorphic func-
tion on C, where a is in a suitable class of operators on 12 (R), and H is the harmonic
oscillator. We will do this in this section. The only pole is at s = 1 and the residue func-
tional Res;—; Tr(fH *) defined there as some interesting properties.

Let f € C,(R) be a bounded, uniformly continuous function.

We consider the zeta function Tr(fH —*) where H is the harmonic oscillator, which is
analytic for Re(s) > 1.

THEOREM 9.11.1. If f € C,(R) and Re(s) > 1 then
1 1
(9.52) I'(s) - Tr(fH )= —= / /ts_lcschrf(xv cotht) e dxdt + y(s)
2y Jo Jr
where () extends to an entire function.
REMARK 9.11.2. We make some remarks about the statement.

a) Recall that cscht = 1/sinhz.
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b) If f =1 is constant (9.52) gives that

, 1 ! IR
I'(s) - Trace(H *) ~ —/ /t‘“lcschte*)‘2 dxdt = f/ " ceschr dt.
2ymJo Jr 2 Jo

Now cschr has a Laurent series expansion at t = 0, with a simple pole at t =0
and residue 1. So cscht = % + h, where h is analytic at t = 0. Hence

1 1 1
/t“‘cschtdt:/ tS*ZdtJr/ " h(r) dr.
0 0 0

The first term equals (1/2) - - for Re(s) > 1 and evidently extends to a mero-
morphic function. The second term extends analytically to Re(s) > 0. Hence we

get

1
Res, Tr(fH!) = X

¢) The slightly awkward factor of 1/2 disappears if we use A instead of H: thus,
Res;— Tr(fA™) = 1.
Before proving the Theorem we show how we can use the integral formula of the

Theorem to produce meromorphic continuations of some zeta functions.

LEMMA 9.11.3. If f € C,(R) admits n successive bounded anti-derivatives, VE2f M f,
then Trace(fH ") extends analytically to Re(s) > 1— 3.

PROOF. By Theorem[0.T1.1]

1

9.53) T(s)- Tr(fH ™) ~ 5~ cschr - /R F(x/eothr) - e dxd.

1
2\/ﬁl 0

Let F =! f, then integration by parts gives

1 1
9.54) = ﬁ/ ts_lcschtvtanht/ F(x\/cotht)xe_"zdxdt
0 R

1 1
= ﬁ/ r*~!eschrv/tanhz - (1) dt,
0

with 0(r) = f F (x/coth) xe ™ dx. The function #*~! cschrv/tanhz - 6(t) is ~ £=3/2 - ¢(r)
ast — 0, and is integrable over [0, 1] for Re(s) > % if ¢ is continuous and bounded as t — 0.
This is indeed the case for us since by assumption, F is bounded.

So we have verified analyticity for Re(s) > 1. Repeating the argument, if 2f =! F is
the second anti-derivative then the previous expression can be written

1 1
(9.55) — / *"!cschttanhr / 2 f(xV/cotht) (1 — 2x)e*x2dxdt
Vvr Jo R

which is analytic now for Re(s) > 0 if 2f is also bounded. One repeats this argument 7
times and the statement follows.
(]

The cohomological equation in dynamics refers to the differential equation
Xu=f

where X is a generating vector field for a smooth flow & on a compact manifold M. Let
pEM, feC(M)and

(9.56) fp(t) = f(ou(p)).
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Then f, € C,(R). If f € C*(M) then f, € C;7(R).

An obstruction to solving the cohomological equation for given f is the mean of f
with respect to any o-invariant probability measure u. This follows from differentiating
the equation [y, uo 0y du = [}, udu, which gives that [,, Xu du =0, that is, [}, fdu =0 if
Xu = f has a solution.

Lemmaimplies a connection to the harmonic oscillator zeta functions Tr(f,H )
(for any p € M. Suppose the flow has trivial cohomology in this sense: thus, suppose that
if f € C*(M) and [, fdu = 0 implies f = Xu for some smooth u.

Now suppose that f € C*(M) is arbitrary. Then g := f — [, f du has u-integral zero.
Hence the obstruction vanishes and g = Xu for some u. It follows immediately that g, = u;,
and u, is bounded on R since u is smooth on M, and so f, = [}, fdu+ u;, where u is
bounded, and applying Lemma[9.11.3]and repeating the argument gives:

PROPOSITION 9.11.4. Let o be a smooth flow on M with generator X, and u any
o-invariant measure with trivial cohomology. Then for any f € C*(M), Trace(f,H )
extends meromorphically to C and

Res,— Trace(f,H ™ 2/ fdu

forany pe M.

Only fairly simple flows have trivial cohomology in this sense. The standard periodic
flow on the circe has it. In fact, let f be continuous and p-periodic on R with zero mean:
¥ f(t)dt = 0. Then F(T) := fOT f(¢t) dt is also continuous, p-periodic, with zero mean.
This shows that the cohomological equation is solvable even for continuous functions, if
they have zero mean.

Hence:

COROLLARY 9.11.5. If f is continuous and p-periodic then Trace(fH ) meromor-
phically extends to C with a simple pole at s = 1 and

Res;— Trace(fH ™" 2p / §i0)

PROOF. f:= f—u(f) has zero mean. Applying the previous lemma gives that f has
bounded anti-derivatives of all orders; the result follows from Lemma[9.11.3} and Remark
9.11.2] O

Examples of f € C,(R) with the meromorphic extension property but are not periodic,

are given in the following Exercise.

EXERCISE 9.11.6. Suppose £ is an irrational number satisfying a Diophantine condi-
tion: there exists 0 < y < 1 such that |nfi+m| > (n>+m?)~3. for all n,m € Z. Let o be
the Kronecker flow on T?:

o (x,y) = (x+1,y+1h), (xy) e R?/Z?.

If X is the generating vector field, show that the cohomological equation Xu = f has a
smooth solution for every smooth f € C*(T?). If f; is the restriction of f to the orbit of
(0,0) € T2, fo(t) := f(t,ht), deduce that Tr(foH*) meromorphically extends to C and
that

Res,—(fH* / fdu,

with u normalized Lebesgue measure. Such fj are of course not periodic.



11. THE HARMONIC OSCILLATOR RESIDUE TRACE 381

We now proceed to the proof of Theorem A computation of the heat kernel
of e~ follows from solving a differential equation: the heat kenel k; satisfies (% +H)-
¢; = 0, where ¢;(x) = [k (x,y)0(y)dy, for ¢ € S(R), and ¢ > 0, together with the initial
condition lim;_,o ¢; = ¢. Consider the ansatz

ke (x, y)—exp(zx +bxy + 2y +c,)

Setting this equal to 0 and solving for coefficients gives the ordinary differential equations
a
?t :atz—l:btz, c',zzat.

Solving these gives
1
ar = —coth(2r+C), by =csch(2t+C), ¢ = —3 logsinh(2t +C)+D

Using the initial conditions we get C =0 and D = 10g(27r)_%. See [25].
We obtain the following, called Mehler’s formula [123].

LEMMA 9.11.7.
1 (x+y)? (x—y)2>
——¢X —tanht- —COthl"i
V27 sinh2¢ P ( 4 4

PROOF. (Of Theorem [9.11.1} The operator H™* is trace-class for Re(s) > 1, and
the operator-valued integral [ #*~'e~""dt converges in norm to I'(s) - H~*. Hence if a €
B(L*R),

9.57) ki(x.y) =

(9.58) [(s)-aH ™ = /O e gy,

and taking traces gives

(9.59) I['(s) - Trace(aH ) = /0 ) * ' Trace(ae ') dt.
Furthermore, if a is any bounded operator then

/ " "Trace(ae " )dr
1

extends to an analytic function on C. Hence
1
(9.60) ['(s) - Trace(aH ") —/ " Trace(ae ™) dt.
0

extends analytically to C.

Now let f € C,(R), seta = f. Then fe ' is an integral operator with kernel f(x)k (x,y),
and hence Trace(fe ") = [ f(x)k (x,x) dx. Applying Mehler’s formula Lemma
gives

1 2
9.61 I'(s) - Trace(aH ~* / / e M g,
©-eh (5): \/2ﬂ:sinh2t R )
Making the change of variables x —> ives

g g ﬁ g

cotht Jeothr)e™
(9.62) I'(s) - Trace(fH* m/ Ff(xVcothr)e™ dxds.
The result follows from the identity s?ﬁﬁhz’, = csch’r.
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If Trace(fH *) meromorphically extends past Re(s) = 1, then the residue of the pole
at s = 1 defines defines, up to the factor of 1/2, a kind of ‘mean’ of f € C,(R). In certain
examples of flows where f = g, for p € M, f(t) := g(a;(p)), we have noted (Proposition
that this spectrally defined mean agrees with the geometric mean [,, fdu over the
manifold.

The spectrally defined mean does not require meromorphic continuation, but only
existence of the limit lim,_,1+ (s — 1) Trace(fH ~*), which is a weaker condition which we
now discuss.

DEFINITION 9.11.8. Let D C C,(RR) be the closed linear subspace of all f such that

(9.63) Res Tr(f) :==2 lim+(sf 1) Trace(fH )
s—1
exists.
THEOREM 9.11.9. If f € C,(R) thenfe D if and only if
9.64 W(f) == 1i e dxdt
(9.64) )= Jim - = e x

exists, and if this holds, then Res Tr(f) = w,(f).
PROOF. Choose € > 0. Since I'(1) = 1 by Theorem|9.11.1{we have for Re(s) > 1

1 !

(9.65) lim Trace(fH°) = lim i / /t“lcschtf(x\/cotht) e dxdt
s—1+ s—1+ 2\/> 0 JR

In the proof, we noted that the part of the integral corresponding to ¢ > & extends ana-

lytically to C. Hence it contributes zero to the limit, and we may choose & > 0 small

enough that |¢cscht — 1| < € for 0 < ¢ < 9, so that |cschr — %\ < Eforr <d. Let ¢s(r) =

Jr f(xV/cotht) -e~*dx, then

8 1 £
s—1
(9.66) \/0 £ (esche — ) 0(0)dt] < ——-|f]

by a brief computation. Letting € — 0 we see that the limit on the right hand side of (9.63),
if it exists, equals the limit

s 2 —x2
9.67) lim 2 f / / F(x/oothr) - e dxd.

LetA = 1 and substitute # — * in the above expression, and, noting 8% = lash— oo,
we deduce that

. lim (s — 1)Trace(fH ") = Ii het) - e dxd.
(9.68) S_1>r1n+(s )Trace(f im —— \f / /fx cotht dxdt

A—so0 2

Since Lipschitz functions are dense in C;’(R) and 9D is closed, we may assume f is
Lipschitz, and it follows that

9.69) | / / F(xV/eothr®) — f(xt~ z) < dxt|
l o
< const.&iﬁm/ |V cotht®* — ¢~ 2| dt
*J0

which — 0 as A — co. This proves the result. O

The theorem can be expressed this way:
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THEOREM 9.11.10. Let ug = ﬁe’xzdx, the Gaussian probability measure on R. For
teRY letpr: R— R, pi(x) =1x, and py == (pr)«to. Then

1
lim / ppdt =Res Tr € D
0

A—roo0

in the weak topology on D'
We deduce the following.

COROLLARY 9.11.11. If f € C,(R) and lim7_, 4o, + ) £(t)dr exists, then f € D and

9.70) ResTr(f):Tgrilw% o

In particular, if o is an ergodic flow on a compact smooth manifold M, u an o-invariant
probability measure, f € C(M), f,(t) := f(04p), then for a.e. p € M, f, € D and

Res Tv(f,) = [ fdu
fora.e pcM.

PROOF. Integration by parts, the change of variables u — ut”, and a slight re-arrangement
gives

1 1 X
9.71) / / Ft™))e ™ dxdr =2 / / / Flut™)xe ™ dudxdt
0 JR 0o JrRJo
1 xt M 5 1 1 xt—h 5
= 2/ /tk/ Sf(u)xe™ dudxdt = 2/ / 77»/ f(u)x*e™ dudxdt
0 JR 0 0o JRxt™" Jo

Now letting A — oo and using the hypothesis that L := limz_ 4o % fOT S(t)dt exists gives

1
(9.72) lim / / ™)) e dxdt = Ly
A= JO JR
By Theorem[9.11.9]
1 1
9.73) Res Tr(/) = lim - /O /R Pt e dxdt
giving (0.70).

The second statement follows from combining the first with the Birkhoff Ergodic The-
orem.

O

We next produce some estimates related to group translation operators on L?(R).

LEMMA 9.11.12. Let Uy, be the unitary induced by translation on the real line by
o #£0. Then if f € Cy(R) and a = fUy then

1 o o?
9.74 (s) - Tr(fULH ™) = / "~ cschtexp(—— cotht dt
( ) (s) r(f o ) 2@ ) xp( 2 )/Joc,t(f)

where po(f) = [g f(xVcothr + Oc)e_"zdx.
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PROOF. The argument proceeds as in the proof of Lemma [9.11.7, The operator
fUqe ™ is a compact integral operator with kernel

ki(x.y) = f(x)ki(x — ).
Hence for Re(s) > 1,

(9.75) T(s)-Te(fUgH ™) = /0 ) /R "V, (x — o, x)dxdt

oo 2x — 2 2
= / / ! (2nsinh2t)7%f(x) exp (—()640‘) tanht — % cotht) dxdt
0 JR

Basic manipulations yield (9.74).
|

LEMMA 9.11.13. If f € C4(R), o € R nonzero, then the function ¢rq(s) :=I'(s) -
Trace(fUyH ™), Re(s) > 1, extends to an analytic function on C. There are constants C,
and C depending holomorphically on s such that

o2
(9.76) 07a(s)| < (Gl 0 ¢l ) e % - 7]
forall s € C.

PROOF. The point is that not only does Trace(fUyH ~*) meromorphically extend to
C, the formula defines ¢ (s) by a direct integral formula valid for all s € C.

As shown above, a suitable family of states pq, on C,(R), and a constant which we
omit,

2

(9.77) F(s)~Tr(fUaH*S)~/ t‘“lcschtexp(—%cotht),ua,t(f)dt
0
1 o2
:/ t“'cschtexp(—Tcotht),uu,t(f)dt
0
2

+/mf—1 eschr exp(— 2= cotht) pes (f)dr = &1 (s) + Eals).
1 4

Consider first {;(s). Since ““;A and %ht are bounded on [0,1], we can bound the
integrand of g (s) by
2
2 p) B=
A change of variables gives

/1 2 Bgy — /mtﬂe*B’dr.
0 1

If Ay = fg"tﬂe’”dl then A; = P

|Jo 572 Prdr| < const.pReGe
that

5t %AS+1, by integration by parts, and it follows that
~PB where the constant does not depend on B or s, and hence
o2

Gl < ClIf] oW s
We can bound &, (s) as follows
(9.78)

I 2 2 oo 2
o o o
| eschrexp(— - coth) s (F)at] < [le 5 - [ Veschedr = e 5 | ]
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d

Lemma [9.11.13] assists with the meromorphic extension problem for Trace(aH %),
with a = ¥ ocr faUs an element of a crossed product C,(R) x I", where I' C IRy is a sub-

group.
The easiest case is that of a cyclic subgroup, and this produces a very strong result.
If f € C,(R) xT for I C R a subgroup, let fy the coefficient of f at the identity 0 € T".
Let D™ denote the subspace of D C C,(R) of f such that Trace(fH —*) meromorphi-
cally extends to C with a simple pole at s = 1.

THEOREM 9.11.14. Let a € C,(R) X Z, where I € R is nonzero, a =Y, fy[n]. Then,
if fo € D, then Trace(aH *), Re(s) > 1, meromorphically extends to C, with a simple
pole at s =1, and

1
Resy— Trace(aH ) = ~Hu (fo),

where p, is the uniform mean of fo (9.64).
PROOF. Suppose first that f has expansion f =Y f,U,x with fo = 0. Then

['(s) - Trace(fH ") = ZTrace(fnUnﬁHﬂ) = Z¢n(S)

where ¢, (s) abbreviates ¢y, ,(s) of Lemma(9.11.13] The series converges absolutely and
uniformly on compact subsets of C because of the bound

|0n(s)] < (C;ﬁ*ZRC(S)anRe(s) +C§’) e*@i)nz‘

due to the Lemma, shows that ¢,, — 0 exponentially fast as n — Foo.

In the general case, f = f — fo, Trace((f — fo)H *) extends to an entire function for
arbitrary f € C,(R), and Trace(foH *) to a meromorphic function with the stated pole
structure if fy € D™ by definition, see Theorem [9.64] for the equivalent condition to being
in D.

(I

COROLLARY 9.11.15. Ifa € Ay := C(T) xp, Z, then Trace(wy(a)H ~*) meromorphi-
cally extends to C with a simple pole at s = 1 and

1
Res;—1Tr(aH ) = E’C(a),

where T is the standard unital trace on Ap,.

The Heisenberg cycle Definition[9.10.6|over the irrational rotation algebra Ay, defines
a regular spectral cycle over Ay C Ay with the meromorphic continuation property over
the whole C*-algebra Ap,.

DEFINITION 9.11.16. A finitely generated subgroup A C R with word length function
|- |r satisfies a Diophantine property if

o = C o
for some y > 0 and C > 0.

DEFINITION 9.11.17. Let Br := C,(R) x I', where I' C R is a countable subgroup.
Then BY denotes the completion of the (twisted) group algebra C;; (R)[I'] with respect to

the family of semi-norms py,,(f) = Yger|| fy(”” - vy
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REMARK 9.11.18. By consists of operators in C,(R) X I' whose expansions f =
Y oer foUq have rapid decay in the sense that

(9.79) YA ol < o0, Vim,n > 0.

acl’
It is not difficult to prove that By is closed under holomorphic functional calculus.

THEOREM 9.11.19. Suppose I' C R has a Diophantine property as in Definition
9.11.16| let f € By and assume fy € D. Then Trace(fH *) meromorphically extends
to C with a simple pole at s = 1 and Res,— (f) = %,uu ()

PROOF. Write f = Y ocr faUa € BR C B(L*(R)) and assume fy = 0. It suffices to
prove that Trace(fH ~*) extends to an analytic function on C. This equals
Z Trace(foUoH ) = Z O fo(S)
acl acl
where ¢, is as in Lemma(9.11.13| and it suffices to show that this is an absolutely summa-

ble sequence of analytic functions, uniformly on compact subsets of C.) Shorten notation
0¢ := Trace(foUoH *). By the same Lemma

. lo?
(9.80) 0a()] < (Clor 0+l ) e | fu

for all s € C. Since there are potentially infinitely many o with small absolute value, the
exponential term is no longer of any use and we disgard it, obtaining a polynomial bound
for ¢o(s) of order |a[* for u = —2Re(s) € R. Since I is finitely generated, there exists
a constant Cr such that || < Cr - |ar for all o € I. Combining with the Diophantine
assumption gives that
Clalr < Jof < C'lalr
If u>0 we get
"ol < fof < C”aulf

Hence

Y lfall -l <C Y Nl fall el

ol oel’
and the last term is finite by (9.79).

If u < 0 then we use the bound

o < const.|ot|

Again, Yoer|| fall - |ot|*" is finite by assumption on f (9.79).

12. The Local Index formula for the Heisenberg cycles

In the paper [40], Alain Connes described an invariant of a finitely generated projective
module over Ay, generalizing the first Chern number of a complex vector bundle over T2.
This construction is one of the key motivating examples in Noncommutative Geometry.

Connes’ construction is the following. Let A be any C*-algebra endowed with a pair
o and B of commuting flows, inducing an action of R? by automorphisms with (s,7) acting
by a0 ;.

Let 8;: A — A be the densely defined derivations

81 (a) :=1lim Gi(a) —a Pila) —a

, 0(a):=lim————, a€cA”,
=0 t 2(61) t1—r>I(1) t “
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where A = N, ,dom(8") N dom(d™), the *-subalgebra of elements such that (s,t) —
o (B (@)) is smooth.
Let t: A — C be a R%-invariant tracial state.

DEFINITION 9.12.1. In the above notation, Connes’ invariant of a f.g.p. module €A,
where e is a projection in A%, is given by

1
ci(e) := ey (e[d1(e),02(e)]).
We call 8(e) := e[d;(e),d2(e)] the curvature of e and c|(e) the first Chern number of e.
The curvature of e is an A”-module endomorphism of the f.g.p. module eA™.

THEOREM 9.12.2. (Connes, [40]) ) The number

c1(e) 1= 5t (eB1(6).B2(e)

only depends on the equivalence class of e in Ko(A).
Moreover, ¢1(1) =0, ci(EQE') = c1(E) +c1(E'), and ¢ thus determines a group
homomorphism Ko(A) — R.

It is reasonable to use the term ‘curvature’ here, for suppose X is a manifold and
e: X — M,(C) is a smooth, projection-valued function, with E — X the corresponding
complex vector bundle. Then the curvature of the Grassmann connection on E is given by
the End(E)-valued 2-form
0 =e-deAde.

If X = T? with the standard R?-action and n = 1, then this is the same as the curvature
defined by Connes because the derivations J; correspond to differentiation in the two coor-
dinate directions.

EXAMPLE 9.12.3. Let A € R and Ay = C(T) X, Z the corresponding rotation algebra,
with u € Aj; the generator of the Z-action. Then the R2-action with o, (f) = f(x —1),
oy (u) =u; B, (") = e™u”, B, (f) = f, gives rise to the derivations

S1 (Y. fuln)) = Y fulnl. Sa(Y fulnl) = Yin- fuln],

which up to scale we have already discussed (see e.g. the discussion before Proposition

P.10.9)

Integrality

In the case of A = C('H‘Z), with the standard T2-action, the first Chern number Defi-
nition of a smooth projection-valued function e: T? — M,,(C), is an integer. This
is a standard result of topology based on the fact that the first Chern class (and all Chern
classes) can be defined using cohomology with integer coefficients.

But it also follows from the Atiyah-Singer Index Theorem, which states that

Cl (E) = Index(éE),
d J

the index of the Dolbeault operator l 5 g X ay] twisted by E.

ox " 9y
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The following computation, due to Connes ([42]) shows that the Chern number, at least
of the Rieffel projection, retains this integrality property in the case of the noncommutative
rotation algebras Ay, with their standard T2-actions.

THEOREM 9.12.4. Let py, € A, = C(T) x, Z be the Rieffel projection (Exercise[5.6.4]

of Chapter 4.) Then
ci(pr) =+1.

PROOF. For brevity, for f € C(T) understood as always as a 2n-periodic function on
R, let f™(x) := f(x — h) denote the action.

The Rieffel projection is given by

pr=f+gu+g u

where f and g are suitably chosen functions. For a € (0,1), and € > 0 small, f equals
zero on [0,a] and on [a+ fi+€,2n], and f =1 on [a +€,a+ Fi+€]. We design f so that
S+ f(x+h)=1. We setg V f—f*on [a+Hh,a+¢€+ 1] and is zero otherwise. We

then have to compute ¢;(e) = 7=1([81(pr).82(pr)]. We first compute

O81) 5t(81(pn).a(pn)] = (' —&") 2 ((e8) " g8 ) + (207~ 1)

Multiplying this on the left by pp produces a terrific mess, but we are only interested in its
trace, so the only part which is relevant is

9:82) 2" 2r ((se) e ) + (07 1M)
which we want to integrate over T.

Setu=g?,v= f— f The integral is given by
(9.83) /uv’ +f (u'ih - u') + /)"

The middle term is

/fu’h /fu—/hu' /fu:—/vu.

Hence we are reduced to computing

/uv—vu—i— uv /2uv—vu—3/uv

by integration by parts. Next, since f* =1 — f on supp(g), we can replace [’ — ™ by
—2f" and get

©O86) —6 [ (1= ==6[rr+6[rF

=3[ [Py =3-2=1.

where the integration is understood to be restricted to the support of g.
This completes the calculation. (]

We now re-state the Local Index theorem, for 2-dimensional spectral cycles.

THEOREM 9.12.5. Let (H,T,D) be an even, 2-dimensional regular spectral cycle over
A% C A with the meromorphic continuation property (over A”.)

Let [D] € KKo(A,C) be the class of the triple. Let A := D?, and let € be the grading
operator on H. Let Ax = A+ prye, p, which is invertible.

Define functionals
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e Yy: A— (C,
Yo(a) :=Resg—o ['(s) - Tr(ea(A+K) ™),

and
o Yy ARARA — C,,

1
v (a.a',d?) = EResszl (ed’[D,a'|[D,a?]A™).

Then if e € A™ is a projection, then

() 1D]) = wole) —vale— 5. e.0)

where (|e|,|D]) € Z is the pairing between the Ko(A)-class [e] and the KK (A,C) class
D]

The following Lemma shows that in the case of the Heisenberg cycles, the zero-
dimensional part of the Chern character formula of Theorem [0.12.5] comes from taking
the pole at s = 1 of the zeta function Trace(aH *) discussed in the previous section.

LEMMA 9.12.6. Ifa € B(L?*(R) and Re(s)1 then
['(s)Tr(ea(A+ projiep) ) = 2Trace(aH ') +y(s),

where \y(s) extends to an entire function. In particular, if Wy is the functional b) in Theorem
9.12.5 and if Trace(aH ~*) meromorphically extends to C then

Yo(a) = Res Tr(a) := 2Res;—) Trace(aH *).
PROOF. We refer to Theorem [0.12.5] The Hilbert space for the Heisenberg triple is

0 x—d/dx .
xid / dx 0 . The kernel of D is
1 xz

4e” 2,

the direct sum of two copies of L?(R), and D =

the same as the kernel of x+ d/dx, and is spanned by the ground state Yo (x) =7
H-1 0
and A = [ 0

H+1

H-1+p 0
[ 0 H+1
second is odd and so the meromorphic function whose pole at s = 0 gives ¥o(a)

] where H is the harmonic oscillator. If p = proj.,p then A+p =

} . The first copy of the Hilbert space L*(R) is even in the grading, the

(985) T(s)Trace(ea(A+p)*) = T(s) - Te(a(H — 1+ p) ) = I(s) - Te(a(H + 1))

for a € C,(R)[R4]. Applying Mellin transform and small calculation gives

:/ *~!sinhz - Trace(ae ~")dt + E(s)
0

where
E(s) = / e - Trace(e ™ — ¢ " +P))dt = Trace(ap) / 11 —edt,
0 0
giving that E (s) extends meromorphically with a simple pole at s = —1, and in particular,

E(s) is analytic for Re(s) > —1. Hence

Wo(a) = Res;—o /0 r*~'sinht Trace(ae ") dt.
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Since sinht ~t ast — 0,

=

(9.86) Yy(a)= Resszg/ t*Trace(ae "M)dt = Res,— / * I Trace(ae ")dt
0 0

= Res,—; Trace(aH ).
O

We now apply the Local Index formula to the general Heisenberg cycles associated
to flows which are cohomologically trivial in the sense that the cohomological equation
Xu = f is smoothly solvable for arbitrary smooth f of zero mean.

Let B=C(M) x A, for a flow ot on M and A C R a Diophantine subgroup (Definition
[0.IT.16). Let u be an o-invariant measure, X generate the flow, and assume that Xu = f is
smoothly solvable for any smooth f such that f;, fdu=0. Fix p € M and let t: C(M) x
A — B(L?*(R)) the corresponding representation, with T(f) = f,, f,(t) = f(04(p))-

We have shown that B* C B has the property that Trace(m(b)H ~*) has the meromor-
phic extension property and that

Res,— (T(b)H ") = 1,,(b).

where T,,: B — C is the trace induce by u, and b € B~.
Let 6¥,6% be the derivations of B defined

S(f) =X(/f): 8 (Ua) =0, 85(f) =0, 8 (Ux) = 0.

LEMMA 9.12.7. In the above notation, the functional ¥, of Theorem[9.12.3]b) is given
on B* by

(9.87) P (b%,b", %) =1, (a8 (a")8% (a*) — a°8%(a" )5 (a?))
forall by,by,by € B™.

PROOF. Note that

81(6) = [1(b). 0). 8a(0) = [n(b).
Expand [D,a'][D,a?] as a block matrix
B x—d/dx,b"| [x+d/dx,b? 0
Db D6 = | | }0[ ] [x+d/dx,b'] [x—d/dx, ]

We deduce that

(9.88) %Ressler (eb° [D,b'] [D.b*] H )
=Res,_ (0° [x,b'] [d/dx,a®| H™*) —Res,_ Tt (b° [d/dx,b"] [x,b*] H*)
=1, (b°8;(b")82(b%) — b°8,(b")8, (b?))
0
We have thus proved the following.

THEOREM 9.12.8. Let B=C(M) x A, for a smooth flow o on a compact manifold M.
Let A C R a Diophantine subgroup. Let u be an O-invariant measure, X generate the flow,
and assume that Xu = f is smoothly solvable for any smooth f such that [y, fdu = 0.
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Then the Chern character of the Heisenberg cycle determined by a point p € M is
given by T, — T, where T, is the trace on B determined by y, and T, is the cyclic 2-cocyle
for B given by

w(B°,b',b%) = 1, (b°85 (") 3% (b?) — bO8%(b")8%(b?))
on B”.
COROLLARY 9.12.9. Let h € R and Ay := C(T) xy Z the corresponding rotation

algebra.
Let [Dy;] be the class of the Heisenberg cycle (Definition

(Lz(}R) ©I2(R), Th, D = x+2/dx xg/dx] ) .
Then the Chern character of [Dy)] is given by T — hty, where
T (d,a',d®) =1 (a051 (a")8(a?) — a8, (a")§, (az)) .
COROLLARY 9.12.10. Let e € A}, be a projection, [e] € Ko(Ap) its class. Then
([e], [Dr]) = t(e) =h-c1(e),

where c|(e) is the first Chern number of e (Theorem|9.12.2)).
In particular,

([prl. [Da]) = [A]
where |11 is the greatest integer < h.

To round off the discussion, we will also compute the index data for another spectral
cycle, which has been intensively studied.

DEFINITION 9.12.11. The Dirac-Dolbeault spectral cycle for A7 C Ay, is defined as
follows. The Hilbert space is L?(T?) @ L?(T?), evenly graded. The operator is

9 )
0 ax—lay‘|

0:=
d | :0
a‘i’lafy 0

The representation is two copies of the representation A: Ay — B (L?(T?)), which is spec-
ified by the covariant pair

(ANE) (v.y) = FOE(xY), (W(n)E) (x,y) = ™ E(x —nh,y).

EXERCISE 9.12.12. The Dolbeault cycle is 2-dimensional, and is regular with the
meromorphic extension property over A7

PROPOSITION 9.12.13. Let [d] € KK(Ax,C) be the class of the Dolbeault cycle.
Then if e € AT, is a projection, then

([0).[e]) = c1(e).

REMARK 9.12.14. The previous corollary implies the integrality of the first Chern
number, for any projection e € Ay.

The proof of Proposition 9.12.13] is left as an exercise: note that for the Dolbeault

operator, one has
92 92
wty 0
92 92
0 =ty

&=

)
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and the kernel of 9 is 2-dimensional: spanned by a copy of the constant functions in the first
L?(T?), and by a copy of the constant functions in the second copy as well. Cancellation
implies that the Oth functional W associated to this spectral cycle is zero.

Finally, we note that we may draw the following strong corollary, which only depends
on the spectral triples we have constructed above, and the computation of their index pair-
ings by the Local Index Formula (and not on computation of the K-theory of Az, which is
a deeper result requiring a strong form of Bott Periodicity. )

COROLLARY 9.12.15. Suppose h € R is nonzero. Then if T: Ay — C is the trace,
T.: Ko(Ar) — R the induced group homomorphism, then

T (K()(Aﬁ)) =7Z+hZ C R.

PROOF. If e € AY is a projection, then application of our results above gives that
t(e) + hici (e) is an integer. On the other hand, c;(e) is an integer. This implies t(e) =
m + nh for a pair of integers m,n. Finally, A} is dense and holomorphically closed in A,
so any projection in Ay is represented by a projection in A%.

(]

The problem of identifying the range of the map Ko(A) — Z induced by a trace on A,
in specific situations, usually crossed products, is called the Gap labelling problem.



CHAPTER 10

AN INTRODUCTION TO KK-THEORY

KK-theory is one of the most important achievements of the field of Noncommutative
Geometry. KK-theory was invented by Kasparov [109], [110],[111], motivated by ideas of
Atiyah ([9]) and was further developed by Connes and Skandalis [52], who introduced an
axiomatic approach to the intersection product (the composition operation in the category
KK) and produced applications to families and foliation index theorems. The article [18]
gives an important description of KK-theory in terms of unbounded operators.

KK-theory gives a language in which is is possible to formulate disparate problems
and theorems in geometry and topology, ranging from questions about positive scalar cur-
vature metrics on smooth manifolds, or homotopy invariance conjectures in topology to
classification programs in dynamical systems, the topology of orbifolds or of coarse geo-
metric spaces, to the representation theory of Lie groups. KK-theory provides a unified
framework for studying K-theory and the many important variants of it used in different
contexts: equivariant K-theory [147], coarse K-theory [76], twisted K-theory [63]], [143],
groupoid-equivariant K-theory [154], K-theory with R, R/Z or Z /k coefficients [61], [62]
and [6], [S]. Many of these variants are important in physics, for example twisted K-theory
is used in connection with String Theory (see e.g. [144], [121]) while KK-theory coupled
with the tools of spectral cycles and Connes’ Chern character yields new insight into parts
of solid state physics like the Quantum Hall Effect (see [48], [23]].)

Some of the deepest mathematical results about KK-theory are in effect attempts at
equivariant generalizations of Bott Periodicity, called the Baum-Connes Conjecture (see
[19] for an early version.) The eventual formulation of the conjecture appeared in [20]. The
conjecture concerns the K-theory of crossed-products A x G, for a G-C*-algebra A, with
G a locally compact group (or groupoid), and asserts, roughly speaking, that for purposes
of computing K-theory of the crossed product, A x G may be replaced by P®A x G for a
specific (up to G-equivariant homotopy) proper G-C*-algebra P (see [122]), for which the
K-theory may always in principal be computed by repeated excision arguments, because
P is proper. The best results to date are the Higson-Kasparov Theorem (see [98]), proving
the (strongest form of the) conjecture for amenable groups, Tu’s generalization of it to
amenable groupoids [154], and Lafforgue’s work [117]] proving the conjecture for uniform
lattices in SL3(R), amongst other things, using the full technical power of KK-theory,
adapted to Banach algebras. The conjecture is now known to be false in general [96], but it
is nonetheless true in many cases, and the various proof techniques (the Dirac-dual-Dirac
method) developed to tackle it remain powerful tools.

The category of C*-algebras and *-homomorphisms has a tensor product operation:
the (spatial) tensor product of two C*-algebras is a C*-algebra, and the tensor product of
a pair of *-homomorphisms is a *-homomorphism. This structure holds in KK as well,
making it a symmetric monoidal category. In such categories there is fairly standard no-
tion of duality (see [73]]). Two C*-algebras are dual in KK if left tensoring by A, a functor

393
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KK — KK, is left adjoint to left tensoring by B. The Baum-Connes Conjecture for a dis-
crete group I with compact classifying space BI' is, roughly speaking, a conjectured KK
duality between C(BI") and C*(T) (see [74]). Self-duality for C*-algebras is quite special.
The C*-algebra of continuous functions on a spin®-manifold is a self-dual C*-algebra,
and the duality is induced by the Dirac operator, a theorem due to Kasparov [111]. Self-
duality almost characterizes smooth manifolds amongst compact spaces, which suggests
that if there were noncommutative examples, they might be deserving of the term ‘Non-
commutative Manifolds’ (see [49] for a discussion of this concept). Connes produced the
first example of such a duality: the irrational rotation algebra Ay [48]], [49], with a duality
induced by the Dirac-Dolbeault operator discussed in the previous chapter (see [66] for a
recent treatment of this example.) Some time following this the paper [104] proved that
the Cuntz-Krieger algebras O4 and Oy are KK-dual, following this with a duality between
the stable and unstable Ruelle algebras of a Smale space in [105], and in [72] it is proved
that the crossed products C(dG) x G of boundary actions of Gromov hyperbolic groups are
self-dual in KK. None of these examples from dynamics have anything to do with mani-
folds, which does indicate that there do exist genuinely new manifold-like structures (like
Poincaré duality) in the world of noncommutative C*-algebras.

In this chapter we give a basic overview of KK-theory and its main properties, con-
cluding with a proof of Bott Periodicity and one of its equivariant generalizations, and
a brief discussion of duality. Our main goal is to illustrate the power of the axiomatic
description of the intersection product in computing with concrete examples. The reader
who has read the rest of this book should hopefully find the definitions and examples of
KK quite natural.

1. Basic definitions of KK

Kasparov defines the Z/2-graded bivariant groups KK, (A, B), where A and B are C*-
algebras, in a very similar way to the way in which we have defined analytic K-homology.
The definition goes essentially unchanged, except that H is replaced by a right Hilbert
B-module.

DEFINITION 10.1.1. Let A and B be C*-algebras. A Fredholm A-B-bimodule is a
triple (‘£,m, F), where
a) ‘E is aright Hilbert B-module.
c) m: A — B(E) is a *-homomorphism, i.e. a representation of A by adjointable
Hilbert B-module operators on E.
d) F € B(E) is a self-adjoint Hilbert B-module operator, satisfying

(10.1) n(a)- (F? 1), [n(a),F] € K(E)
for all a € A.
The bimodule is even if it carries the additional data of a Z/2 grading
E=E'GE",

on E, into orthogonal B-submodules, with respect to which elements of A act as even
(grading-preserving) operators, and the operator F acts as an odd (grading-reversing) op-
erator.

Otherwise, the bimodule is odd.

Clearly, a Fredholm A-C-bimodule is the same as a Fredholm module, as in the previ-
ous section.
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For any A, B, the triple (0,0,0), consisting of the zero Hilbert B-module, understood
as a Z/2-graded bimodule, in the only possible way, the zero representation of A, and the
zero operator, is a Fredholm A-B-bimodule.

The triple (A,id4,0), where A acts on the left on the Hilbert module A by left multipli-
cation, and where the grading is A = A™ (in other words, A~ = {0}, is an even Fredholm
A-A-bimodule, for any A. (Its class in KK((A,A) will be that of the identity morphism).

There is an obvious definition of unitary isomorphism of such bimodules, and one
can clearly take the direct sum of two of them. Let ;(A,B) denote the corresponding
semigroup of unitary isomorphism classes of even (if i = 0 ) and odd (i = 1) Fredholm A-B
bimodules. It has a certain natural functoriality. If f: B — B’ is a *-homomorphism, then
form the right Hilbert B’-module

EQpB,
using tensor product of Hilbert modules: that of the right Hilbert B-module E, and the
right Hilbert B'-module B’, over the representation B — B’ C M (B) = B(B). If a € A let
it act on £ ®p B’ by T(a) ® 1, and form the operator F ® 1. The corresponding triple is a
Fredholm A-B’-bimodule B (‘E, T, F). It is even or odd according as the original one was.
Thus B determines a semigroup homomorphism

(10.2) Bi: E(A,B) — E(A,B).

It is even more straightforward thatif o: A’ — A is a *-homomorphism, then it induces
a semigroup homomorphism

(10.3) of: £(A,B) — E(A,B),

simply by replacing the representation 7 in an A-B-bimodule by 7o .

If a Fredholm A-B-bimodule (£, , F) has the property that all the terms in (10.29) are
zero, not just compact, then we say it is degenerate.

As a particular case of the (forward) functoriality of the E(A, B) semigroups, note that
the point evaluations at t = 0 and r = 1 give two *-homomorphisms

€0.€1: C([0,1]) = C,

and then semi-group homomorphisms
(10.4) (€0)+, (€1)«: E(A, C([0,1])®B) — E(A,B)
for any A, B.

DEFINITION 10.1.2. Two Fredhom A-B-bimodules are homotopic if they are uni-

tarily isomorphic to the endpoints (&;).(E,®,F) of a Fredholm A-C([0, 1]) ® B-bimodule
(E,m,F).

LEMMA 10.1.3. If (E,m,F) is a degenerate Fredholm A-B-bimodule,then (E,m,F) is
homotopic to the zero bimodule (0,0,0).

PROOF. The homotopy uses, in the even case, the Z/2-graded right Hilbert B® C(I)-
module Cy([0,1), E), graded by the grading on ‘E. The representation of A is by

(R(@)€) (¢) := m(a)&(1),
and the operator
(FE)(1) :=F (8(1)).

The triple (Co([0,1),E), &, F) is a Fredholm bimodule because the operators
f(a)- (F* 1), [®(a),F]
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are actually zero, and hence compact (which would not be the case if we merely assumed
that t(a) - (F> — 1) and [rt(a), F] were merely compact.)
The endpoints of our homotopy clearly are respectively the zero bimodule, and our
degenerate one, proving the result.
O

EXERCISE 10.1.4. Show that if B1,B2: B — B’ are homotopic *-homomorphisms,
then

(B1)«(E.m.F)
is homotopic to

(B1)+«(E,m,F)
for any Fredholm A-B-bimodule (E,,F).

DEFINITION 10.1.5. Let A, B be C*-algebras.

Then KKy(A,B) is the quotient of the semigroup %y(A,B) of Z/2-graded (that is,
even) Fredholm A-B-bimodules, by the equivalence relation of homotopy.

KK (A, B) is defined in exactly the same way, using odd bimodules.

A Kasparov morphism A — B is an element of KK, (A, B) := KK (A,B) KK (A4, B).

REMARK 10.1.6. In order to immediately correct an apparent conflict of notation, we
point out the following. It is possible to define the equivalence relation(s) on cycles deter-
mining KK as we did with K-homology in Section[I|of Chapter[d] by using the equivalence
relation on cycles generated by addition of degenerates, and operator homotopy (a homo-
topy {F,},e[o,l] of operators in the norm topology, but where none of the other data varies.)

In the end it turns out that these two approaches agree. Thus, two cycles are homo-
topic if and only if, and addition of degenerates, they becomes operator homotopic. This
somewhat remarkable result is due to G. Skandalis ([149]].)

LEMMA 10.1.7. With the direct sum operation, KK;(A,B) is a group, i = 0,1. A
*-homomorphism o.: A — B defines a grading-preserving group homomorphism

o, : KK.(D,A) — KK.(D,B),
for any D, and similarly a group homomorphism

o : KK, (B,D) — KK, (A,D),
, for any D.

PROOF. Let (‘E,m, F) be an even Fredholm A-B-bimodule.
Consider the triple (—E,n, —F), where —E denotes ‘£ but with the opposite grading.
The sum of (£,7,F) and (—E,®,—F) is

(E®@—E,n®ONF®—F).

Now let

~ cost - F sint

B= 1 Gins —cost~F} €B(ZS-%).
Using the operators F; we get a homotopy between (E® —E,n O, F © —F) and the
degenerate bimodule

0 1
(E®—E,ndm, [1 O])'
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For odd Fredholm bimodules, we use exactly the same method, but dropping any
discussion of gradings. The additive inverse of a triple (E,,F), where £ is an odd A-
B-module, is obtained by simply replacing F' by —F; the same operator homotopy and
argument above shows that summing these two cycles gives a homotopy to a degenerate.

This shows that KK, (A, B) is a group. The functoriality statements follow from the

maps on cycles given in (10.2) and (10.3).
O

EXAMPLE 10.1.8. A *-homomorphism &.: A — B determines an element of Fy(A,B)
by setting EF =B, £~ =0, t:=0: A — B= X(E) and F := 0. The corresponding
degree-zero Kasparov morphism is denoted

[O(,] S KK()(A,B).

EXERCISE 10.1.9. Suppose o,: A — B are homotopic *-homomorphisms. Prove
that [o] = [B] € KK (A, B).

More generally, if Z is a Hilbert B-module and ©: A — % () is a representation of
A as compact operators on B, then we can assign the grading £% := £, E~ := {0}, set
F := 0, then we obtain a cycle (£,7,0) € Ey(A,B), because the terms in (I0.29) are all
compact.

This situation applies in particular if £ is the underlying right B-module of a strong
Morita A-B-bimodule, in which 7 is the left action. Combining these observations gives:

PROPOSITION 10.1.10. A Morita correspondence from A to B in the sense of Defini-
tion determines a Kasparov morphism

[£] € KK (A, B).

EXERCISE 10.1.11. Suppose that (B,x,F) is a cycle for KK (A, B), where the right
Hilbert B-module is B. Thus, t: A — B(B) = M (B) is a *-homomorphism, and F is a
self-adjoint multiplier of B, such that w(a) - (F> — 1), [r(a),F] € B, for all a € A. Let o be
the class of our cycle.

Let 6: B — B be an automorphism, [6] € KK(B,B) its class. Show that o ®p [0] is
represented by the triple (B,con,6(F)).

EXERCISE 10.1.12. If % is a normalizing function, then the triple (Co(R), 1,%)) is
a cycle for KK, (C,Cp(R)) (it represents the Bott element.) Let B € KK, (C,Co(R)) be
its class. Let t: Cp(R) — Co(R) be t(f)(x) = f(—x), [1] € KKo(Co(R),Co(R)) its class.
Show that
B®Rcy(r) [t] = =B € KKi(C,Co(R)).

Kasparov morphisms also appear naturally in connection with K-theory of non-compact
spaces. Let (E*,E~,u) be a K-theory triple for X. Thus, E* are complex vector bundles
over X and u is a bundle map E* — E~ which is invertible off a compact subset of X.

We can put Hermitian metrics on E*, making the spaces of Cy-sections Co(X,E™)
into right Hilbert Co(X )-modules E*. Form the Z/2-graded Hilbert Cy(X)-module E :=
E' @ E~. We can also assume without loss of generality (by a simple homotopy) that u is
unitary off a compact set. Hence the Cy(X )-module operator

0 ux
Feln ).
acting on E, is self-adjoint, and F2 — 1 is compact, because (because F> — 1 vanishes off a
compact set.)
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The triple (Z,1,F) is a Fredholm C-Cy(X)-bimodule and gives a corresponding ele-
ment of KK (C,Co(X)).

A particular case of a triple is when X is actually compact, and then the bundle map
E* — E~ can be taken to be the zero map. The procedure above produces a corresponding
Kasparov morphism. These observations show that one has a natural map

K%(X) = KKo(C,Co(X))

for any locally compact space X. It can be shown to be an isomorphism.

More generally, let A be a C*-algebra (perhaps not unital) and (p,q,u) be a relative
triple (Deﬁnition for (AT,A), where A" is its unitization. So p,q,u € M,(A"), and
uu* — 1, u*u— 1 and upu* — g all lie in the ideal M,,(A) of M,,(A™), for some n. Such triples
are by definition cycles for Ko(A).

Now any a € M,,(A") is in the multiplier algebra of M,,(A), and hence defines a Hilbert
A-module map

a: A" — A"
by multiplication, and if a is actually in the ideal M,,(A) C M,,(A"), then a acts as a compact
operator on A”.

PROPOSITION 10.1.13. If (p,q,u) is a relative triple for A™ over A, and
w:=qup: pA" — gA",

new oan 1 . |0 W
((pA ®gA", 1,F = [W 0

PROOF. The assumption implies that

then the triple

is a cycle for KKo(C,A).

u*qu = p mod A.
Write
w'qu=p+s, seEA.
We have
w'w = (qup)*qup = pu*qup = p(p+s)p = p+ psp,
which is a perturbation of p by an element of pM,,(A)p, and hence by a compact operator
on pA".
Therefore w*w — 1 € K(pA™), and similarly ww* — 1 € K(pA™). The result follows.

O

EXERCISE 10.1.14. Show that unitarily equivalent relative triples map under the above
construction to unitarily equivalent KK-cycles, and that degenerate triples map to degen-
erate KK-cycles.

THEOREM 10.1.15. IfA is a 6-unital C*-algebra, then the map on cycles defined by
Proposition|10.1.13|descends to a group isomorphism

K()(A) — KK()((C,A).
We will sketch the proof of the theorem modulo two important technical theorems.

1. The Stabilization theorem .

The Stabilization Theorem for Hilbert modules asserts that if A is a c-unital C*-
algebra, then any right Hilbert A-module E is a direct summand (in the sense that it
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is orthogonally complemented) in the standard Hilbert A-module A ® [>. To be explicit,
E® F = A®I? for some Hilbert A-module ¥, and where the direct sum is in the category
of Hilbert modules, and the isomorphism is a unitary isomorphism of Hilbert modules. See
[108]] (or the book [26]) for proofs of the Stabilization Theorem.

2. Kuiper theorem.

Kuiper’s theorem [114] asserts the contractibility of the unitary group of B(H). The
theorem is generalized in [60] to Hilbert modules and implies

THEOREM 10.1.16. Let A be any C*-algebra and M*(A) := M (A® K). Then
Ki(M*(A)) =0, i=1,2.

The theorem is what is needed to prove Theorem [I0.1.15]in the following manner:

PROOF. (Of Theorem |[10.1.15).
Let

D: Ko(A) — KKo(C,A)
be the map constructed using relative triples, above. We construct a map

¥: KKy(C,A) — Kop(A)
inverting ®. Consider the exact sequence of C*-algebras
(10.5) 0AR K — M(A)— Q°(A) = 0.
where M*(A) := M(A® KX) and Q°(A) = M*(A)/A® K. The associated long exact se-
quence in K-theory of Theorem gives an exact sequence
(10.6) ---Kx(Q°(A)) > Ki(4) = Ky (M2(4))

= Ki1(Q'(4)) > Ko(A) = Ko(3°(4)) = Ko(Q'(4)).
and by Kuiper’s Theorem, K;(M*(A)) =0, i=0,1, so

8: K1(0"(4)) = Ko(4)
is an isomorphism. So it remains to show that

KKo(C,A) = K (Q°(4)).

Suppose that (‘£,7,F) is a cycle for KKo(C,A). We may assume that t: C — B(E) is
unital, otherwise replace the cycle by the one obtained by compressing everything by the
projection ®(1). The original cycle is then the direct sum of this one and a degenerate
cycle. So we may assume that the representation involved in our cycle is unital, so the
cycle has the form (E,1,F).

Next, using the Stabilization Theorem, there exists Hilbert A-modules F + such that

EroFr=AQL,
and we may assume in addition, without loss of generality, that ¥+ = F ~, by a unitary w.

Let F =F o F .
We now modify our cycle (£, 1, F) by adding to it the degenerate cycle

(7J{3 fb.
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This results in a cycle for KK((C,A) in which the only remaining variable is the operator
F, which has the form
0 u
=l

ueBARI) =M (A),
is an essential unitary. In particular, u defines a class
[u] € Ki(Q'(4)).
We let W be defined on the cycle we started with by
d([u]) € Ko(A),

where 8 is the connecting map in the exact sequence (10.6).
Notice that if the cycle, reduced to one of the form

where

2 2 0 M*
(A®l @A@l,l,{u 0})

is degenerate, then u is actually unitary in M*(A), and hence by the exact sequence (10.6),
8([u]) =0.

Finally, if two Kasparov cycles are operator homotopic, then they determine homotopic
unitaries in Q°(A), as we leave it to the reader to check. Since the equivalence relation
defining KK can be taken to be operator homotopy and addition of degenerates, we obtain
a well defined map
KKy(C,A) — Ko(A).
The fact that it inverts @ is left to the assiduous reader.
O

There is also an isomorphism K;(4) = KK;(C,A) for any A. Indeed, arguing as
in the proof above, one shows that KK;(C,A) = Ko(Q*(A)). Indeed, if (£,7,F) is an
odd Fredholm C-A-bimodule, with E =2 A ® [2, then F defines a self-adjoint contraction
in M*(A) such that F2—1 € A® K. If P = £ then P is self-adjoint and P2 — P €
A® X, whence P defines a projection in Q*(A). This determines a map KK;(C,A) —
Ko(Q°(A)) and applying the exponential map Ko (Q°(A)) 5K (A) gives an isomorphism
KK (C,A) 2 K, (A). The inverse map is more tricky to compute, if K;(A) is described in
terms of unitaries in matrix algebras over A, as to find a KK cycle mapping to the class of
a unitary involves lifting the unitary under the exponential map

See the Exercise below. We state the result:

COROLLARY 10.1.17. For any separable C*-algebra A, K;(A) = KK;(C,A), i =1,2.

EXERCISE 10.1.18. If (€, =, F) is an odd Fredholm A-B bimodule with F = 0, then
(E,m,F) is equivalent to the zero bimodule. Why is this not also true if the bimodule is
even?

EXAMPLE 10.1.19. Identify C(T) with {f € C([0,1]) | f(0) = f(1)}. Let £ C C(T)
be the ideal Cy((0, 1)), a right Hilbert C(T)-module. Let F € B(E) be the operator £ — £
of multiplication by the function f(¢) = ¢. Then F is self-adjoint and F? — 1 € K(‘E), so
(E,m,F)is acycle for KK, (C,C(T) = Ko (Q*(C(T))), where 7 is the scalar multiplication
representation of C on ‘E. The class of this cycle maps under the exponential map to the
class [z] € C(T) of the unitary z € C(T).
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2. Category structure of KK

The most important result about KK-theory is that it has a category structure: Kas-
parov morphisms can be composed in a manner extending, roughly speaking composition
of *-homomorphisms. From this categorical point of view, the index pairing between K-
theory K, (A) = KK, (C,A) and K-homology KK, (A, C) discussed in Section|[I]is nothing
but composition of morphisms: a morphism C — A and a morphism A — C compose to
give a morphism C — C, equivalently, an integer, since KK, (C,C) = Z.

For any A separable, let 14 € KKy(A,A) be the class of the Fredholm A-A-bimodule
(A,id,0), where id: A — %K (A) = A is the representation of A as left multipliers.

THEOREM 10.2.1. For any A, B there is a bilinear pairing
(10.7) KK, (A,B) x KK, (B,C) — KK,(A,C)
mapping a pair of morphisms f € KK;(A,B) and g € KK (B,C) to a morphism
f&pg € KK;y j(A,C),

a) The Kasparov product gives KK the structure of a 7/2-graded category, with
objects (separable) C*-algebras, and morphisms A — B the elements of the 7./2-
graded abelian group KK (A, B). For any A, the element 14 € KK (A,A) defined
above acts as the identity morphism from A to A.

b) Ifa: A — A’ is a *-homomorphism, (0] € KKo(A,A") its class, then a*(f) =
[a]&a f € KK.(A,B) for any f € KK.(A',B). Similarly o..(g) = gRal0] €
KK, (B,A) for any g € KK, (B,A).

¢) Ifa: C— C' is a *-homomorphism and f € KK, (A,B), g € KK.(B,C), then

0 (f©B8) = fOB0(8).
d) Ifo: A— Bis a *-homomorphism [0 € KKo(A, B) the class defined in Example

10.1.8| then mapping o. to [0] determines a functor from the category of separa-
ble C*-algebras and *-homomorphisms, to the category KK.

Let C* — alg be the category of separable C*-algebras and *-homomorphisms. Let
C:C"—alg —+ KK

be the canonical functor discussed above. Exercise [[0.1.9] shows that C is homotopy in-
variant. The following shows that the KK functor is stable. It is easily proved, we establish
this Morita invariance of KK in the next section.

PROPOSITION 10.2.2. (Stability). If p € K is a rank-one operator on a Hilbert space
then the *-homomorphisme: A — A® XK, e(a) := a® p, induces an isomorphism
e.: KK, (D,A) 2 KK,.(D,A® X)
for any D, and an isomorphism
¢ KK, (A® X,D) — KK, (A,D)
for any D.

A functor F: Cx —alg — Ab from the C*-algebra category to the category of abelian

groups, is split exact if the following holds. If O ENJORN D/J — 0 is an exact sequence

of separable C*-algebras which is split by a *-homomorphism s: D/J — D then 0 M

D M) D/J — 0 is a split exact sequence of abelian groups.

The following is proved in [95], see also [26].
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PROPOSITION 10.2.3. Let O i> D5 D/J — 0 be an exact sequence of separable
C*-algebras, which is split by a *-homomorphism s: D/J — D.
The the following sequences of abelian groups are split exact for any A, B:

0= KK.(A,J) 25 KK,(A,D) & KK, (A,D/J) — 0,
and '

0 — KK.(D/J,B) = KK.(D,B) 1 KK.(J,B) — 0.
The splittings are given by s, and s* respectively.

In the paper [95], N. Higson proved the following remarkable result. It shows that
KK-theory has an extremely strong uniqueness property.
Let C* — alg be the category of separable C*-algebras and *-homorphisms. Let

C:C"—alg— KK
be the canonical functor discussed above.

THEOREM 10.2.4. Let F: C* —alg — A be any functor from the category of sepa-
rable C*-algebras to an additive category. Assume that for every X € Obj(A), the func-
tor Homy (X,F(-)) is a homotopy-invariant, stable and split exact functor into abelian
groups.

Then F factors through KK: there exists a functor F: KK — A such that F o C = F.

The category of C*-algebras has a tensor product operation, which extends to KK by
way of the external product operation.

This gives KK the additional structure of a symmetric monoidal category, which we
now explain.

Let a: A — B be a *-homomorphism, and D any other C*-algebra. Then o ® 1p: A ®
D—B®D, and Ip®@a: D®A — D® B are *-homomorphisms. The tensor product of
two *-homomorphisms o;: Ay — By and 0z : A» — B3 is the *-homomorphism

o ®op: Al ®Ay — B1 ®Ba,

obtained by the composition

ol ®1A2 131 R0l
AlRA) — Bl ®A; ———— B ®Bs.

EXERCISE 10.2.5. Suppose y € KK, (A, B) is a morphism represented by the Fred-
holm A-B-bimodule (E,n, F). If D is any C*-algebra, then the triple (£ ®¢c D,T® 1p,F &
1p) is a Fredholm A ® D-B ® D-bimodule. Denote its class in KK.(A ® D,B® D) by
y&clp.

Verify that the map

KK,(A,B) - KK,(A®D,B®D), f+ f&clp
is a well-defined group homomorphism.

Similarly, £+ 1p&c f defines a group homomorphism KK, (A, B) — KK, (D®A,D®
B).

Based on the Exercise, and the existence of the Kasparov product, we may define the
external product of two Kasparov morphisms as follows:

DEFINITION 10.2.6. Let a; € KK, (A,B1), ap € KK, (A2,B,). Their external prod-
uct is the Kasparov morphism 0 ®c 0 given by the Kasparov composition

(061®([;1A2) QB 24, (131®c0(2) € KK. (A1 ®Al, B ®Bz).
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THEOREM 10.2.7. If oy € KK;(A1,B1) and 0y € KK(A2,B,), 6: A]®A; = Ay ®A
and T: B1 ® By — By ® By are the flips, then

a1 &con = (—1)7 6*1, (e &cay ).

Thus, external product is graded commutative.

If a3 € KK (A3,B3) then (a1 @c0n)Rc03 = o Q¢ (0@c0s3). External product is
associative.

The identity 1¢c € KKo(C,C) acts as a unit under the external product operation;
x®clc = 1c®cx = x.

Let A be a C*-algebra and for any X,Y let T4: KK.(X,Y) - KK, (X ®A,Y ® A)
be the map Ta(f) := f&cla. Then ta(xRcy) = Ta(f)Rata(y) for any x € KK, (X,X'),
y € KK, (Y,Y').

An analogous statement holds for T, with T (f) := 14&¢f.

See [111] for the proof.

EXERCISE 10.2.8. Let A,A’, B be separable C*-algebras and
feKK,(A,A"). Letc: A® B— B®RA and 1: B A’ — A’ @ B the flips. Show that

o*(f&clp) =T (1g&c f).

EXERCISE 10.2.9. Let A be a C*-algebra and t4 be the functor KK — KK which on
objects maps D to D ®A, and on morphisms maps f € KK(Dy,D,) to f&14 € KK, (D; ®
A,Dy®A). Show that T4 (xQcy) = Ta(f)©ata(y) for any x € KK, (X,X), y € KK.(Y,Y").

EXERCISE 10.2.10. Suppose a € KK, (C,A), b € KK, (C,B),c=a&ch e KK, (C,A®
B), f € KK.(A,A’) and g € KK, (B,B') are all homogeneous elements with respect to the
grading. Show that

@asp(focg) = (—1)P (abaf)éc(b@pg) € KK.(C,A' @ B).

Kasparov combines the Kasparov product and the external product (see [111]), mainly
for purposes of notation, to obtain the following ‘cup-cap’ product operation in KK.

DEFINITION 10.2.11. The cup-cap product
(10.8) KK, (A,B1 @ D) x KK,(D®A2,B;) — KK,(A] ®A,B| ® By)

is defined
o ®poy == (0 &cla,) O opea, (1, Octe) .

We occasionally use this notation. This general cup-cap product is clearly associative
and bilinear, since it is built from the external product and Kasparov composition.

As an application of these operations, we now describe the process of twisting an
elliptic operator by a vector bundle (see Section[5) in KK-theoretic terms.

If D is an elliptic order one differential (odd) operator on sections of a Z/2-graded
bundle S — X, where X is a smooth compact manifold, then D defines a class [D] €
KKy(C(M),C). If E — X is a complex vector bundle, one can construct the twisted oper-
ator Dg, which is again elliptic order one, and also defines a class [Dg] € KK (C(X),C).
What is the relationship between these classes?

Letd: X — X x X the diagonal map, then J defines the multiplication *-homomorphism
C(X)®C(X) — C(X) and §,: KK, (C(X),C) — KK,.(C(X x X),C). Set

A:=38,([D]) € KKo(C(X) 2 C(X),C).
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We will verify in the next section, once we have defined the Kasparov composition, that
the class [Dg| € KKo(C(X),C) of D twisted by a complex vector bundle E — X, satisfies

[DE] = [E]éc(u)A € KKo(C(M),C),
where we are using the notation of Definition [10.2.11] Thus, [Dg] is the image under a
map
(10.9) AN: KKo(C,C(X)) = KKo(C(X),C), ANx:=x@cunA.

Such maps, using both the composition operation and the external product operation, are of
great importance in KK-theory. One reason is that if X is spin® and D is the Dirac operator,
then AN is an isomorphism. This means that the K-homology of C(X) is generated by the
single class of the Dirac operator, as a module under the twisting action of bundles.

EXERCISE 10.2.12. Let X be any locally compact space. Using external products and
the diagonal map 8: X — X x X

a) Describe the ring structure on K*(X) = KK, (C,Cy(X)) in KK terms.
b) Show that KK, (Cy(X),C) is a module over the ring KK, (C,Cy(X)) = K*(X).

The above discussion fits into a rather general notion of duality for C*-algebras, of
which there are a number of interesting examples.

DEFINITION 10.2.13. Separable C*-algebras A and B are dual in KK, with a dimen-
sion shift of n, if there exist classes

AcKK,(A®B,C), AcKK,(C,A®B),
such that, in the notation of Definition [I0.2.T1] satisfying

-~

6. (A)@aA=1p, A&pG*(A) = (—1)"14,
where 6: A® B — A® B is the flip.

PROPOSITION 10.2.14. Given A,B dual as in Definition[[0.2.13| the map
K. (A) = KK,(C,A) = KK,1,(B,C), x€KK,(C,A) — x&aA
is an isomorphism with inverse the map
KK, (B,C) = KK, ,(C,A), v+ AQgy.

We leave the proof to the reader, it is an excellent exercise. (See [73]]).
We say a C*-algebra exhibits Poincaré duality if A is self-dual.

THEOREM 10.2.15. Let X be a compact spin®-manifold, [D] € KK,(C(X),C) the
class of the Dirac operator on X. Let m: C(X x X) — C(X) the multiplication homo-
morphism, Gelfand dual to 8: X — X x X. Let v be the normal bundle to the smooth
immersion 8, then v carries a canonical K-orientation. Let & € K™"(v) be the corre-
sponding Thom class, and ©: v — X X X the tubular neighbourhood embedding. Set
A= !(§) € KK,(C,C(X) ® C(X))and A := m*([D]) € KK, (C(X) ® C(X),C). Then A
and A induce an n-dimensional duality between C(X) and C(X).

The C*-algebra C(X) has Poincaré duality in KK-theory.

In [72] the following result is proved.

THEOREM 10.2.16. Let G be a torsion free Gromov hyperbolic group, 0G its Gromov
boundary. Then C(dG) x G exhibits Poincaré duality in KK-theory. It is induced by the
class A € KK (C(dG) x GRC(dG) x G,C) of the B.D.F. cycle o
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EXERCISE 10.2.17. Let G be a finite group. Let A be the left regular representa-
tion of G on [°G and p the right regular representation. They commute and determine
a *-homomorphism y: C*(G) ® C*(G) — K(I>G). Prove that A := [y] € KK¢(C*(G) ®

C*(G),C) induces a Poincaré duality for C*(G). Describe the corresponding class A as
that of a suitable projection in C*(G) ® C*(G).

REMARK 10.2.18. The famous Baum-Connes assembly map for discrete groups with
compact classifying space BG also has the form of a duality, albeit not Poincaré duality.
Let X be a locally compact and G-compact model for its classifying space £G for proper
actions, and Zg x the Mischenko module of Example [4.4.11]

Then [£¢ x] € KKo(C,C*(G) @ C(BG)) determines a duality map

KK, (C(BG) ® Dy,D>) — KK, )(D1,C*(G) ® D),

conjectured to be an isomorphism in general.
The Baum-Connes conjecture has been verified for the classes of amenable groups,
and hyperbolic groups, see the discussion in the Overview to this chapter.

For other examples of KK-duality in connection with hyperbolic dynamics, see [104]
and [105].

3. The axiomatic approach to the Kasparov product

What is of principal interest in KK-theory is the calculation of specific Kasparov com-
positions in geometric examples. This is made possible by an axiomatic description of
the Kasparov composition due to Connes and Skandalis [52]]. The existence of at least
one cycle satisfying the axioms is a hard technical theorem due to Kasparov, but the proof
is not constructive so is not overly helpful in dealing with concrete situations. We have
(therefore) omitted any discussion of the proof of Theorem [10.5.3]in this book, but instead
will focus on the axiomatic approach and how to use it.

THEOREM 10.3.1. Let (‘E1,m1,F1) be a cycle for KK, (A, B), defining a class x, and
(B, mp, F2) a cycle for KK (B,C), with class y. Let

z = f1 ®B ZZ,

the Hilbert module tensor product over the *-homomorphism n: B — B(E,), and a right
Hilbert C-module.
Let
n: A= B(E), n(a) =71(a)® lg,.

In addition, assume that u € B(‘E) is a bounded operator satisfying the following condi-
tions:

a) m(a)- (w'u—1), n(a)- (uu* —1), [7(a),u] € K(E) for all a € A.

b) For all § € ‘Ey, the operators

(10.10) iTeoFy —uoT; € B(%E, E), —iTz o F; — uto T: € B(E, E)
are compact operators, where T : £y — E is the operator
T(n) == &@m.
c) Forany a € A, the operators
(10.11) n(a)- (Fu+u*F) -n(a*), n(a) (Fiu*+uF)-n(a")

are positive in the C*-algebra B(E)/ K(E).
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Then the Kasparov composition
x®py € KKo(A,C).

is represented by the triple (E® E, R BT, F := B 16} ).

The axioms present certain relationships between the operators Fj, F> and the opera-
tor F. These relationships guarantee that any two F’s satisfying the axioms, are actually
operator homotopic, as we show below.

The axioms for the intersection product may be rephrased as follows. Firstly, the
conditions on u when phrased in terms of F' € B(‘E @ E) assert that
(10.12) n(a)- (F?—1), [n(a).F] € K(EDE),
where here T denotes the direct sum of two copies of the original representation. Let

~ |0 —iR

= |:in 0 :| EB(E D E).
For § € Ey, let Tg: Ey @ Ey — EDE, be the direct sum of two copies of Tt Then the
connection condition b) asserts that
(10.13) T&szF'Tg

is a compact operator. Finally, the alignment condition can be written as follows: let

Fi = [ y ﬂ |
The alignment condition c) says in this notation
(10.14) n(a)- [F1,F];-m(a)* >0 mod K(E®E).
where [, ]; denotes the graded commutator
[A,B];:=AB+BA
of two (odd) operators on a graded space.

PROPOSITION 10.3.2. Let F and F' be two self-adjoint, odd operators on ‘E® E

which satisfy conditions (10.12)), (10.13) and (10.14)). Then there is a path of self-adjoint

odd operators F; between then, also satisfying the axioms.

See [149] for the straightforward proof.
Although we will be studying mainly intersection products of KK-classes, we state
the version of the axioms for a KKg-pairing as well.

THEOREM 10.3.3. Let (‘Ej, 1y, Fy) be a cycle for KK (A,B), defining a class x, and

(B, M, F2) a cycle for KKo(B,C), with class y. Let
=% 5,

the graded Hilbert module tensor product over the *-homomorphism n: B — B(‘Ey), and
a right Hilbert C-module.

Let

n: A= B(E), n(a) =7(a)® lg,.

and use the same letter for the diagonal representation on the 7./2-graded E @ ‘E.

Suppose that F € B(E @ E) is an odd, bounded operator satisfying the following
conditions:

a) nt(a)-(F*—1), [n(a),F] € K(E)foralla € A.
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b) Forall € ‘E,

(10.15) TtoF, —FoT € B(E)
is a compact operator, where Tz : By — E is the operator
T(n) =g,
c) Forany a € A, the operators
(10.16) n(a) - [Fi, Flsn(a)*

is positive in the C*-algebra B(E)/ K (E), where [-,-|s denotes the graded com-
mutator F1F + FF).

Then the intersection product
x&py € KKo(A,C).
is represented by the triple (E® E, BT, F)).

EXAMPLE 10.3.4. If £ is a Morita A-B-equivalence bimodule, and A: A — B(E) is
the left action of A, we givef E the Z/2-grading with £+ = £, £~ = {0}.

Then the triple (‘£,A,0) defines a Fredholm A-B-bimodule, because by Proposition
[5.1.T1] the left action of A is by compact operators.

We define a ‘conjugate’ bimodule as follows. Let E* be E as an additive group, but
with the conjugate C-multiplication Ax := Ax, making it a C-vector space.

Denote elements of E* by x (where x € E.)

Then E* together with the B-A-bimodule structure

bxa := a*xb*,
and inner products
B(%Y) = (x.y)B, (L.3,)a =4 (X)),
is a strong Morita equivalence B-A-bimodule.

THEOREM 10.3.5. The class [E] € KKo(A, B) of an A-B Morita equivalence bimdule
is an invertible. The inverse is the class of the conjugate bimodule [E*].

PROOF. The proof is simply the observation that
E'QAE=B, ERpE A,

as right Hilbert B bimodules, A-modules, respectively. As we have noted already, the
bimodule A itself defines the identity morphism in KK (A,A)]. So this proves that [£*] ®4
[£] = 1p € KK((B,B).

To see why that £* ®4 E = B, recall that the tensor product £* ®4 ‘E is defined as the
completion of the algebraic tensor product over C with respect to the Hermitian B-valued
form

(10.17) (X1 @Y1, Qy2)8 = V1, (K1.%2)4-y2)B. = V1, a{X1,X%2)¥2)B.

Let
U: E°®4E—B, UX*®Yy):=(x,y)s.

Then U is a well defined B-bimodule map: to see that it is a bimodule map compute

U (b1 - (X®y)by) = U (xb} @ yba) = (xb],yb2)p = bj (x,y)sba.
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Finally,

(10.18)  U(x1 @y1)*U(%@y2) = (y1,x1)8 - (x2,y2)8 = (y1.x1 (x2,¥2)8)B
= (1, a{x1,x2) - ¥2)B,

which agrees with (10.17). Hence U is an isometry, and is clearly surjective so is an
isomorphism of right Hilbert B-modules.
d

EXAMPLE 10.3.6. Let D be the Dirac operator on sections of a spinor bundle S — X.
So, for some connection V5 on S, and some Clifford module structure ¢ on S, D acts on
smooth sections of S by

(Ds)(x) = Zc(ei)(Vis)(x), seT™(S),

with (e;) a local frame for 7X. From D we obtain a class
[D] € KKo(C(X),C), [D] = class of the triple (L*(S),m,F :=x(D)).

Now choose any Hermitian metric and compatible connection VE on E. Let V:= VS ® 1 4+
1 ® VE, the tensor product connection. Set

(10.19) ce(x,8) i=c(x,E) @1, : SxQREy — Sy QE,,

this gives S ® E the structure of a Clifford module over TX. With respect to a local or-
thonormal frame eq,...e, we set

(Dg)s(x) = ZCE(ei)(Vis)(x), sel”(SQE).

The ellipticity of Dg implies that (1 +D%)’1 is compact, and Dy commutes mod bounded
operators with multiplications by smooth functions f € C*(X), so we get a class

[De] € KKo(C(X),C), [Dg] = [(L*(S®E),m, Fg := x(Dg))] .
To the bundle E we associate the Kasparov triple
[[E]} == [(T(E),p,0)] € KKo (C(X),C(X)),

where p denotes the multiplication acton of C(X) on I'(E).
Then the twisting procedure may be translated into the KK-theory framework by the
following

PROPOSITION 10.3.7. In the above notation,
[[E]l ®c(x) [D] = [DE] € KKo(C(X),C).
Furthermore,
Index([Dg]) = [E] Q®c(x) [D] € KK((C,C) =Z.

PROOF. We leave the second statement as an exercise. To check the first, since the
triple defining [[E]] has the zero operator, it is not needed to check alignment, and we
only need to check that the operator Fg := x(Dg), satisfies the connection condition b) of
Theorem [10.3.31 We show first that

T};D —Dg T&
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is bounded, for & € I™°(E) a smooth section of E. Let s be a smooth section of S. Let(e;)
be a local orthonormal frame for TX. Let cg be as in (I0.19). Then

(1020) (1D D) (5)(x) = eler) (V39)(x) 95(x) — Ler(enVil& o))
_ ZC(ei)(VfS) (x) ®E(x) — Zc(gi)(vfg) (x) ®s(x) — ZE;(X) ®C(€i)(v}ss) (x)
=Y clei)s(x) @ VF (§)(x)

Since & € I'°(E) is fixed, this is (clearly) a bounded operator on spinor sections s.

EXERCISE 10.3.8. Use the integral formula (8:30) to prove that boundedness of the
operators 7eD — Dg T in the above argument implies compactness of the operators T F' —
Fr Té-

d

EXAMPLE 10.3.9. Let X = T2, the 2-torus, which we regard as R/Z and use notation
like x,y,.. for points in it.
- 0o 2
0= 3 0z
Lz 0

The Dirac-Dolbeault operator
where a% = a% +i %, acts on sections of the spinor bundle coming from the complex struc-
ture. The bundle is trivial, isomorphic to T2 x C?, so that the spinor grading corresponds
to grading the first factor of C2 even and the second odd. An exercise in Clifford algebras
shows that the corresponding Dirac operator is given by the above matrix.

Under Fourier transform, L2(T?) = [?(Z?) corresponds to the standard basis 7475 €
C(T?) C L*(T?). These are eigenvectors for a@ as one checks:

) ) )
—(z5) = (E)x —Hay) (2425) = 2mi(a — ib)z925.

Therefore, up to unitary equivalence, the Dirac cycle for T? is the triple

- 0 M o
12 Zz @12 Zz ’n’a:: |: 27t1(a+1b):|)
( (Z)el(Z) Moni(a—iv) 0
where Moyi—ip) is the diagonal operator in the standard basis with entries 2mi(a — ib) .
The representation 7t: C(T?) — B(I?(Z?)), involves a Fourier transform. It is defined by

n(f) = Af),
where A: C*(Z?*) — B(1>(Z?)) is the regular representation.

Let [d] denote the class in KKo(C(T?),C) of this (spectral) cycle.

Note that the kernel of a% is the holomorphic functions on T2, its cokernel the anti-
holomorphic functions, and each space is one-dimensional, consisting of constants. How-
ever, this fact is also obvious from the diagonalized picture of it, for the kernel of a — ib is
one-dimensional, happening when a = b = 0, and likewise for a + ib.

We are interested in the result of twisting the Dirac-Dolbeault operator by the Poincaré
bundle P (see Exercise over T2, whose right Hilbert C(T?)-module of sections is

[(P)={f e CR?) | f(x+1,y) =e T f(x,y), Vr.y,€R,necZ}.
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To ‘find’” elements in I'(P), let f € C.(R). Then the series
Fley) =) flxtn)e™

nez
is, for each point x, finite, and f defines an element of P.
EXERCISE 10.3.10. Let L?(‘P) denote the Hilbert module tensor product I'(P) c(12)
L?(T?). Prove that f f given above extends to a unitary isomorphism
L*(P) = L*(R),

The action of C(T?) on (the left) of ['(P) by fibrewise multiplication determines an action
on L?(P): what representation p of C(T?) on L?>(R) corresponds to it?
Show that under this isomorphism the operator

d
D= 0 J X — ar
X+ ax 0
on L*(R) @ L*(R) satisfies the connection axiom for the triple (L?*(R) ®L*(R),p,D) to
represent the Kasparov product [[P]] ®¢ () [d] € KKo(C(T?),C).
EXAMPLE 10.3.11. We now study an example of an external product.

PROPOSITION 10.3.12. Ler x € KK (C,Co(R)) be the class of the odd Fredholm C-
Co(R) bimodule (Cy(R), 1,%), where , is a normalizing function, acting as a (self-adjoint)
multiplier of Co(R).

Let B2 € KK(C,Co(R?)) be the Bott class. Then

x&cx = B2 € KKo(C,Co(R?)).

PROOF. For purposes of the proof, we will represent the Bott class by the (even)
Fredholm C-Cy(R?) bimodule

1 0 x—i
2 2 y
@E)eaE).L s | 7))

We wish to compute the image of (x,x) under the external map
KK, (C,Co(R)) x KK (C,Co(R)) — KKo(C,Co(R?)).
By definition of the external product, which is defined in terms of the internal product,
(10.21) X®cx =x®cy(r) (lgy®r) CX)-
The class 1¢,r) ®x € KK;(Co(R),Co (R?)) is represented by the cycle
(Co(B?). a1, 1 97).
where 1 (f)(x,y) = f(x).

The intersection product and therefore the external product is represented by a cycle
with Z/2-graded module the direct sum of two copies of

Co(R) ®cy(r) Co(R?) = Co(R?).

The operator will be of the form

where u is going to be a suitable multiplier of Cy(R?).
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We set
X+ iy
VIt )2
We show that it satisfies the axioms for the intersection product (T0.2T) stated in Theorem

1031

We refer to some of the notation of the Theorem. The module ; is Co(R). The mod-
ule , is Co(R) ® Cop(R) = Cy(R?). The connection axiom (T0.10) refers to the operator
denoted T there, for § € E; = Cp(R). We can assume & is compactly supported.

The Hilbert Co(IR?)-module operator 7z maps E, = Co(R?) to the tensor product
E1 @cy(r) (Co(R) ® E) which is isomorphic to Co(R?) as a Co(R?)-Hilbert module. With
this identification, T; : Co(R?) — Co(IR?) is the multiplier by the bounded function & 1.

Similarly, the operator iT¢F> — uT; identifies with a right Co (R?)-module operator
Co(R?) — Co(R?), and it is multiplication by the bounded function

(10.23) E(x) - (ix(y) —u(x,y)).

The axiom requires that (T0.23) vanishes as (x,y) — oo, since this is equivalent to com-
pactness of the corresponding Hilbert module operator. Since the support of & is assumed
compact, the requirement then is that u(x,y) — iy, (y) — 0 as y — oo and x remains within a
compact set, which is clearly true in the present case where the statement is that if C is a
constant then

(10.22) u(x,y) ==

= Xty - 24 —0, asy— oo, x| <C,
V42432 /142

which is clear by direct computation.
The connection axiom is therefore satisfied.
For the positivity, or alignment condition (10.11]) , we need to verify that

ux,y) = ix(y)

(Fi®l)u+u" (F1®1) >0 mod compacts.

On the right Hilbert Co(R?)- module Cy(R?), F; ® 1 acts by % ® 1, which, using the standard

normalizing  is ( ® 1) (x,y) = \/;‘72 We therefore get that
+x

(Fiol)u+u" (Fi®1) =2y Re(u)

from which we see that the alignment condition is satisfied if Re(«) is > 0 on [0,0) and
< 0 on (—o,0]. Evidently this is satisfied by « as in (10.22).

REMARK 10.3.13. The word ‘alignment’ is suggested by the requirement here, that
the requirement, that appears above, that the real part of u should be positive (respectively
negative) on Ry x R, that is, in the same places where y ® 1, is positive (negative).

O

Note that since x € KK (C,Cp(R)) has degree 1, the graded commutativity of the
external product implies that

x®@cx = —0,(x®@cx) € KKo(C,Co(R?)),

where 6: Co(R?) — Cy(R?) is induced by the coordinate flip R? — R2. As x ®¢ x = Bg2
is the Bott element, by the result above, this is equivalent to

(10.24) 6. (Bg2) = —Pge.
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EXERCISE 10.3.14. Prove (10.24) directly using the definition of B> € KKq(C,Co(R?))
presented above. The map ¢ flips the coordinates, 6(x,y) = (y,x).

We close with a discussion of the compatibility of the K-homology/K-theory pairings
defined in Section [I] with the Kasparov composition.

THEOREM 10.3.15. The group isomorphism Ky(A) — KKo(C,A) identifies the pair-
ing Ko(A) x KKo(A,C) — Z of Section with the combination of the Kasparov composi-
tion

KK()(C,A) X KK()(A,(C) — KK()(C,(C)
and the index isomorphism KK (C,C) = Z.

PROOF. Let A be unital for simplicity, let p € A be a projection and E; = pA. Suppose
that (H=H* ®H~,x,F) is a cycle for KK((A,C), let o be its class. Then T4H = pH,
a Z./2-graded Hilbert space, and pFp € B(pH) is an odd operator on pH, and the pairing
of [p] and o defined in Section [1|is given by the Fredholm index of pF. p, where F, is
the restriction of F to H,. All that needs to be proved is that pF p satisfies the connection
condition of the Kasparov product, which we leave as an exercise.

O

To deal with the odd pairing, let A = C(T), identify T with 7 := (0,1) with the end-
points identified, and note Cy([) is then an ideal. The function ¥(z) =¢ on [ is a self-adjoint
multiplier of Co(7) and x> — 1 € Co(I), so we have a right Hilbert C(T)-module Co(), and
a Fredholm C-C(T)-bimodule (Co(I), 1,%).

LEMMA 10.3.16. The class of the triple (Co(I), 1,%) in KK (C,C(T)) equals the class
of the unitary generator [z] € C(T) under the identification KK (C,C(T)) 2 K, (C(T)).

Now let u € A be a unitary in a unital C*-algebra. Then Spec(u) C T = I'", the
one-point compactification of I = (0,1). Functional calculus defines a *-homomorphism
C(T) — A and then restricts to a *-homomorphism o, : Co(I) — A, which pushes the triple
(Co(1),1,%) for C(T) to one for A, given by the triple (Co(1) ®¢,1) A, 1, X @ 1).

This procedure defines a group homomorphism K;(A) — KK;(C,A) which agrees
with the homomorphism K¢ (A ® Co(I)) — KKo(C,A ® Co(I)) of Theorem when
combined with the identification of Ko(A ® Cy(I)) with the unitary picture of K;(A). We
get:

THEOREM 10.3.17. The group isomorphism K, (A) — KK, (C,A) defined above iden-
tifies the pairing Ki(A) x KK (A,C) — Z of Section|l|with the combination of the Kas-
parov composition

KK, (C,A) x KK (A,C) — KK (C,C)

and the index isomorphism KKy (C,C) 2 Z.

EXERCISE 10.3.18. Let A be unital and J C A an ideal. Suppose ¥, € A is self-adjoint
and 3> — 1 € J. Then the Fredholm C-J-bimodule (/, 1,%) defines a class [x] € KK;(C,J).

a) Show that XTH projects to a projectionp € A/J and that §([p]) = [x] € K1(J),
where &: Ko(A/J) — K;(J) is the connecting map (the exponential map) in the
6-term exact sequence for J C A.

b) Ifi: J — A is the inclusion show that i, ([x]) = 0 € KK, (C,A).

¢) Why does this not show that the triple of Lemmal[I0.3.16]defines the zero element
of C(T)?
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4. The Bott Periodicity Theorem in KK-theory

In this section we compute the single most important example of a Kasparov compo-
sition — one which results in an important type of proof of Bott Periodicity. The beauty
of this Dirac-Schrodinger proof is that it is built in a way that reflects the geometry of R.
These strong geometric features lead to an equivariant version of the Periodicity Theorem
of fundamental importance for computing, for example, K-theory of crossed-products by
the integers Z.

i .. . . oy

Lety: R — [—1,1] be a normalizing function, which we generally take ¥ (x) = i

but most of the discussion below applies to any normalizing function. Let

Fr € B(E1), (Fi§)(1) =x(1)-8(1),

that is, F; is multiplication by the bounded continuous function . Clearly F12 —11is com-
pact, since it is multiplication by the Co-function y(¢)?> — 1. We obtain a cycle (i, 1,F)
for KK (C,Cy(R)).

DEFINITION 10.4.1. Let
x € KK (C,Gy(R))

be the class of the odd Fredholm C-Cy(R)-bimodule (Cy(R), 1, Fy). We will call it the Bott
morphism.

Next, let ‘£, := LZ(R), D, the self-adjoint extension of the densely defined unbounded
operator —i<, on L*(R). Let F, € B(L’R) be x(D2), (note, it is the Fourier conjugate of
F1), so that

= X(Dz).
If f € CZ(R), then
[f’DQ] = _if/7
and in particular, the commutator is bounded for smooth and compactly supported func-
tions. Furthermore, p- (1+ D3)~! is a compact operator for any p € C°(R). It follows
that

[/.Da(1+D3)"2] € K(L'R)
for any f € C°(R), and hence for all f € Co(R). In fact, all of these statements can be

checked directly by taking Fourier transforms.
Therefore (L?R, 7, D, ) is an odd, Fredholm Cy(RR)-C-bimodule.

DEFINITION 10.4.2. Let
y e KK; (C()(R),(C)
the class of the cycle (L*(R), T, F>), where n: Cy(R) — B(L?(R)) is the representation by
multiplication operators. We will call it the Dirac morphism.

Finally, we let [x+ %] € KKy (C,C) be the class of the spectral Fredholm module over

C given by <L2(R)@L2(R),1,D:— { 0

_d
d YT } ) The corresponding Fredholm
X+ 7 0

module has operator

bl

1
0 AH+2)" 2
Fi=x(D) = lAHi ( : )

.. 2 . . .
see Deﬁmtlon A=x+ % and H = — j7 + x2 is the harmonic oscillator.
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LEMMA 10.4.3. The equality

X®CO(R))’ =[x+ %} € KKy(C,C)
holds.
PROOF. The tensor product of Hilbert modules for the intersection product is
E = E Qcyr) 2 = Co(R) &) L*(R) = L*(R).
So the intersection product will be represented by a Fredholm module of the form
(L*(R)®L*(R),1,F)
where F is a suitable odd, self-adjoint operator. We need to check that

1
0 AH+2)?
F=x(D)= [AH‘% ( 0 )

satisfies the axioms for the Kasparov product.

The Fredholm condition has already been verified: (D) is Fredholm, as we showed

in the previous section. Thus, (L?>(R) @ L*(R),F) is a cycle for KKo(C,C).
We first discuss the connection condition b), which states that

iTéFz — uTy;, —iT&Fz — M*Té

are compact operators, where u = AH =2 and € € Co(R). We may assume that & is smooth
and compactly supported. The operator T; is multiplication by & on L?(R). Tt follows that

the connection condition boils down to

(10.25) iRE—Ew

is a compact operator, for any & € C2*(R), where F, = y(—i-L) as before. Since Tz com-

mutes mod K (L*R) with F; and with u, we are reduced therefore to showing that

(10.26) (iF> — u)E.
0o —4
is a compact operator. Let D), := { d de] . Then D), is self-adjoint and
dx
d2
L
(05 = [ e _4 .
dx?
Therefore
2 _ 1 .
=[Oy A0 B o )
L(1-4: 0 i, 0
We have

0 —ih—-u*| |0 —iF 0 u* . f
LFQ—M 0 }_ L‘Fz 0 }_ [u o} = x(D2) = (D).
Now if £ € C.(R) then Mg (D), — D) is bounded. By Lemmam
(x(D3) —x(D)) M

is compact. This verifies the connection axiom.
We now verify the alignment condition. We will need the following Lemma.
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Let C be the downward-oriented vertical line R(s) = % in the complex plane. The
contour misses the spectrum of H and we have for any s € C with R(s) > 0,

1
H = o [ 01
21 Jc ( )
The integrand is a function valued in & (L’R). Since

IA=HE) " =O(M ™). A = e,

we get that |[A~S(A—H)~!|| = O(J]A|~*~!) and hence the integral converges absolutely if
Re(s) > 0.
If T is, say, an operator on the Schwartz space of R, then

T, (—H) ) = (o H) (T H] (= H) !
by algebra, and hence we get
1
(10.27) T, H°] = f/x*S(x_H)*l (T H]-(h—H)"\d
21 Jc
LEMMA 10.44. If f € C*(R), f' and f" are both bounded, and Re(s) > 0 then
[f,H’S]H% is bounded.

PROOEF. Since AH -2 and A*H -1 are bounded, it follows that %H -1 is bounded.
From this we get [f,H}H’% =(f" —|—f’%)H’% is bounded. It follows that [f,H](A —
H)~'H? is bounded uniformly in A € C. By Cauchy’s formula

1
[f.HS|H? = —,/K‘S(k—H)_l[f,H](X—H)_lH%d?u.
2mi Jc

This is an absolutely convergent integral of bounded operators, so is bounded.

We need to show that

Fiu+u*F; > 0 mod compact operators.

X
0

bounded operators, it follows that the same matrix commutes with % (D) modulo compact

In this case, F is the multiplication operator ). Now as commutes with D modulo

. . 1 1
operators, and it follows that x commutes with u = AH~2 and A*H ™2 mod compact oper-
ators. Thus

xu+uy ~x (utu)
= (AH2~H75A") oy (AHTE —ATHTY) = 2qxH ™3 =2fH7,
where f(x) = x*(1 +x2)’%.
So since f%H’lf% > 0 it suffices to show that
Ri=fH 21— f1H ' f2 = f1[f2,H 7]
is compact, equivalently, that R*R is compact. We have:

R'R=[f2,H 3 |f[f?,H 7).
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Since the first and second derivatives of f > are both bounded, Lemma|10.4.4|applies

and gives that the commutator [f 3 H _%}H ? is bounded, and hence lf 2 H ~2] is com-
pact. On the other hand, f is a bounded perturbation of x, from which we deduce that

[f%,H_%](f—x)[f%,H_%] is compact. So it remains to show [f%,H_%}x[f%,H_%] is
compact. But xH™? = (A —|—A*)H’% =: T is bounded. We get

[F. B2l 2 B3] = [f2.H 2| TH2 f2. H 3]
is compact and H? [f%,H’%] is bounded by Lemma [10.4.4| and [f%,H’%] is compact, so

R*R and hence R is compact as claimed.
d

COROLLARY 10.4.5. We have
x®cym) Y = lc € KKo(C,C).
PROOF. The operator A = x+ % acts by a weighted left-shift in the basis described
above, and it follows that
ker(A) = Cyy,
while
ker(A*) = {0}.
In particular:

Index(D) = ker(A) —ker(A*) = 1.
Since the Fredholm index parameterizes KKy (C, C), this concludes the proof.
O

As with Atiyah’s arguments in topological K-theory, a simple rotation trick proves that
x and y are actually two-sided inverses of each other in KK:

LEMMA 10.4.6. With x,y the Bott and Dirac morphisms,

y&cx = 1g,m) € KKo(Co(R),Co(R)).
We will use the following
LEMMA 10.4.7. Let x € KK;(C,Cy(R) the Bott element. Then
Leyr) ®X = —x® Ly g) € KK1(Co(R),Co(R?)).
PROOF. Let6: Cy(R?) — Co(R?) the map
o(f)(xy) = f(y,—x).

By Exercise the class (1¢yr) ®x) ®c,(r2) [0] is represented by the isomorphism
class of the following triple. The right Co(R?) module is Co(R?). The left action of Cp(R)
is given by letting f act by multiplication by the function (x,y) — f(y). The operator is
given by the multiplier (x,y) — %(—x). Since x(—x) = —y(x), these computations show
that 6 maps the cycle for 1¢,r) ® x to a cycle identical to that for x ® 1, (r), except that
the operator { ® 1 for the latter cycle has been replacing by —x ® 1. Since replacing the
operator by its negative makes the additive inverse in KK, we have shown that

(Ley(®r) ®%) ®cym2) [6] = —x® Ly (w)-
The conclusion follows from observing that ¢ is homotopic to the identity automorphism

of Co(R?), since it is induced by a rotation of the plane.
O
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PROOF. (Of Lemma|10.4.6). The external product ®¢ over C is graded commutative.
Hence

y&cx = —x@cy.

By definition,
(10.28) —x®cy = —(x®lgym)) By ®2) (1o ®)OY)
By the Lemma, x® l¢r) = — l¢,(r) ®x. Substituting into the above, we arrive at

= +(1gy(r) @%) Bcym2) (Ley®) ®Y) = ley®) © (X @y () Y)-
The result follows from x ®¢, )y = lc.

We have established the following.

THEOREM 10.4.8. The Bott and Dirac morphisms x and y are KK -equivalences. In
particular, A® Co(R) is KK -equivalent to A, for any separable C*-algebra A.

PROOF. We have already shown that
y&cx=lgr), ¥Bcywr)y = lc-

It follows that x®14 € KK;(A4,Co(R) ®A) is a KK -equivalence for any A, with inverse
y®14, by Theorem|10.2.7|(in the notation of the Theorem, x&¢ 14 = Ta(x).) O

EXERCISE 10.4.9. Prove thatif t: Co(R) — Co(R) is T(f)(x) = f(—x), then
[1] = —1¢y®) € KKo(Co(R),Co(R)).

5. Equivariant Bott periodicity and the K-theory of crossed products

In this book we have given two proofs of Bott Periodicity: the Toeplitz proof, and the
KK-proof. There are several other well-known proofs. Atiyah has proved Bott Periodicity
using elementary linear algebra applied to matrix-valued Laurent polynomials on the circle.
Joachim Cuntz has given an extremely general argument that Bott Periodicity is forced by
basic properties of the K-theory functor (half-exactness, and stablity.)

The merit, however, of the ‘Dirac-Schrodinger proof” we have given in the previous
section, is that it is based on the geometry and analysis of the real line R, and is, in a certain
sense, essentially translation-invariant, a feature not possessed by the other proofs alluded
to above. More precisely, the cycles we constructed in the previous section determine cy-
cles in equivariant KK-theory, and the equivariant version of the Bott Periodicity theorem
still holds for subgroups of R.

This ‘equivariant’ KK-theory is a theory defined on G-C*-algebras, for G a locally
compact group, by making several simple and fairly obvious changes to the definitions, to
make them equivariant. G-equivariant KK-theory is equipped with a descent construction,
which is a functor from the category of G-C*-algebras to the category of C*-algebras
mapping an object A to the crossed product A x G.

Combining the equivariant Bott Periodicity Theorem with descent results in a number
of very strong statements relating to the K-theory of crossed products by subgroups G C R.

Equivariant KK-theory contains many special cases of interest, like equivariant K-
theory, and K-homology — and representation theory. In equivariant KK-theory for com-
pact groups, for example, the ring KKf((C,(C) is (supported in degree zero and) isomor-
phic to the representation ring R(G) of the group. While KK-theory morphisms form a
group, that is, a Z = KK((C,C)-module, KKG-morphisms form a module over the ring
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KK§(C,C) = R(G). So the representation ring acts as ‘scalars’ in this theory, as the in-
tegers did in ordinary KK. For compact groups, KK{(C,C) = {0} (the duals of compact
groups are discrete noncommutative spaces) but for non-compact groups this is no longer
the case, making things slightly more complicated, but there is still a module structure of
KKY over KKY(C,C).

Let G be a locally compact group and B be a G-C*-algebra, that is, a C*-algebra with
a strongly continuous action of G on B by C*-algebra automorphisms.

DEFINITION 10.5.1. A G-equivariant Hilbert B-module ‘E is a right Hilbert B-module,
together with a C-linear action of G on ‘E, satisfying

8(8b) = ¢(8)g(b), V& € E.b€ B, (g(§).gM)) =s((&m)). EneE.

Note that B itself is a G-equivariant right Hilbert B-module, with the given action. We
emphasize that in a G-equivariant Hilbert B-module g € G does not act by a right Hilbert
B-module map, unless the action on B is trivial: we have g(&b) = g(&)g(b).

EXAMPLE 10.5.2. Let X be a compact space with an action of G, and let ®t: V — X
be a G-equivariant Hermitian vector bundle over X (Section [3). Assume that the G-action
preserves the Hermitian metric on the bundle in the sense that

(8(r1),8(72)) () = (V1:V2)xs VX EX, V1,12 €Vy.

Then the module I'(X,V) of continuous sections of V, endowed with its canonical
C(X)-valued inner product from the metric, has the structure of a G-equivariant Hilbert
C(X)-module by g(s)(x) = g (s(¢'x)), for a section s € T(X, V).

DEFINITION 10.5.3. Let G be a locally compact group and A and B be G-C*-algebras.
A G-equivariant Fredholm A-B-bimodule is a triple (E, T, F), where

a) ‘E is a G-equivariant right Hilbert B-module.
¢) m: A — B(E) is a G-equivariant *-homomorphism, i.e. a representation of A by
adjointable Hilbert B-module operators on E such that

g(n(a)8) =7(g(a)g(§), VacA S E, g€
d) F € B(Z) is a self-adjoint Hilbert B-module operator, satisfying
(10.29) n(a)- (F>=1), [n(a).F] w(a)-(g(F)—F) € K(E)
foralla € A, g€ G.
The bimodule is even if it has a Z/2 grading
E=FE" &L,

on E, into orthogonal B-submodules, with respect to which elements of A act as even
(grading-preserving) operators, and the operator F acts as an odd (grading-reversing) op-
erator, and G acts by even operators.

For an odd bimodule, we drop any mention of gradings.

There is an obvious notion of unitary isomorphism of such triples. Homotopy is de-
fined in the same way as before, using the C*-algebra C([0,1)), viewed now as a G-C*-
algebra with trivial G-action.

DEFINITION 10.5.4. For any pair of G-C*-algebras A and B let KK(A,B) be the
quotient by homotopy of the set of (isomorphism classes) of G-equivariant Fredholm A-B-
bimodules.
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Equivariant KK-theory has the same basic formal properties as the non-equivariant
version. If A is any G-C*-algebra, the Fredholm A-A-bimodule A, with the given action,
the left multiplication operation of A on itself, and the zero operator F, defines a cycle
whose class is denoted 14 € KKo(4,A).

THEOREM 10.5.5. Let G be a locally compact group. For any G-C*-algebras A,B
there is a bilinear pairing (the Kasparov composition)

(10.30) KKY(A,B) x KKY(B,C) — KKS(A,C)
mapping a pair of morphisms f € KKY(A,B) and g € KKJG(B,C) to a morphism
f&pg € KK{ (A.C),

a) The Kasparov composition gives KK the structure of a 7. /2-graded category,
with objects (separable) G-C*-algebras, and morphisms A — B the elements
of the Z/2-graded abelian group KKS(A,B). For any A, the element 1, €
KK (A,A) defined above acts as the identity morphism from A to A.

b) Ifa: A — A’ is a *G-equivariant *-homomorphism, [0 € KK§ (A,A) its class,
then o (f) = [o]& 4 f € KKS(A,B) for any f € KKS(A',B). Similarly o..(g) =
g&alo] € KKG(B,A") for any g € KKY(B,A).

c) If a: C — C' is a G-equivariant *-homomorphism and f € KK*G(A,B), g€
KKY(B,C), then

o (f©pg) = [Ep0(g).

The external product &¢ also extends to KK with the same formal properties and
relation to the Kasparov composition. We omit the statements.

For purposes of studying K-theory of crossed products, the key point about equivariant
KK-theory is that it comes equipped with a descent map.

The crossed product construction may be thought of as a functor, from the category of
G-C*-algebras to the category of C*-algebras, sending a G-C*-algebra A to the C*-algebra
A % G, and a G-equivariant *-homomorphism o: A — B to the corresponding integrated
form og: A x G — B x G. Descent extends this functor to a functor KK¢ — KK, agree-
ing with the one just described on objects, and on the the KK“-morphisms provided by
equivariant *~homomorphisms.

The descent construction is based on the following observations about G-equivariant
Hilbert modules. Firstly, let A be a G-C*-algebra. Then A is a G-equivariant right Hilbert
A-module as well. The algebra multiplication in A X G extends the twisted convolution
operation on C.(G,A) given by

(axb)(t) z/a(s)s (b(silt))ds,

G
with ds Haar measure. The adjoint is given by a*(s) =s~' (a(s™")*) times a possible
factor of the modular function of the group if it is not uni-modular. This cancels with the
change of variables s — s~ ! giving the integral expression

(@ *b)(1) = /G s~ (als)*b(st)) ds,

describes the inner product (a,b) on A x G when viewing the latter as a right Hilbert A x G-
module.

The formula extends to any G-equivariant Hilbert A-module (see [111] for further
details).
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LEMMA 10.5.6. Let A be a G-C*-algebra and ‘E a G-equivariant right Hilbert A-
module. On C.(G,E) define the right A x G-valued inner product

€)= [ 57 (Ea(s).Ealor)) ds

and right C.(G,A)-module structure by

(&a) (1) ::/Gﬁ(s)s (a(s™'t) ds.

Then the resulting completion is a right Hilbert A x G-module, denoted E % G.

If (£,m,F) is a G-equivariant Fredholm A-B-bimodule, then the construction above
produces a right B x G-Hilbert module £ x G. On the other hand, if T € B(E) then T
acts by an adjointable right £ % G-module operator on E x G by extending the formula
(TE)(t) =T (§(r)). The group G acts by module operators by (g&)((t) = &(g~'¢). This
defines a covariant pair and consequent *-homomorphism B(E) x G — B(E x G). So F
determines an operator F on E x G. Finally, the G-equivariant *-homomorphism t: A —
B(‘E) determines a *-homorphism Tig: A x G — B(E) x G C B(E x G). It is a routine
exercise to show that (£ x G,ng, Fi) defines a Fredholm A x G-B x G bimodule.

THEOREM 10.5.7. The construction above determines a functor ji: KK¢ — KK,
called descent, which on objects maps a G-C*-algebra A to A X G, and which extends the
crossed product functor.

We make the following final point about the machinery of equivariant KK-theory: the
axiomatic approach to the Kasparov composition is essentially exactly the same as in the
non-equivariant case except for some small obvious modifications. We now proceed to use
these tools to prove the equivariant Bott Periodicity theorem for subgroups G C R.

The translation action of R on R gives Cy(R) the structure of an R-C*-algebra or G-
C*-algebra for any countable subgroup G C R or G = R itself with the standard topology.

LEMMA 10.5.8. Let G =R or G a countable subgroup of R (with the discrete topol-
0gy), let y, be a normalizing function.
a) The cycle (Co(R),1,%), in which Co(R) is regarded as a G-equivariant right
Hilbert Cy(R)-module, is an odd G-equivariant Fredholm C-Cy(R)-bimodule.
b) Give LZ(R) the unitary action of G induced by the translation action on R. The
% commutes with G with this action, and hence F := x(—i%) commutes with
G as well. The triple (L*(R),M,F) is an odd G-equivariant Fredholm Cy(R)-C
bimodule.
We let

oG € KK{(C,Co(R)),Be € KK (Co(R),C)

be the classes of the cycles in a), b) respectively.

PROOF. the only additional comment regards a): for s € R fixed, note that x(x +s) —
% (x) — 0 uniformly in x, for fixed s € R. So s()) — % is a compact multiplier of Co(R). O

Now consider the cycle (L?(R) & L?(R),1,F := (D)) for KK§ (C,C), where

d
D:{ 0, x_dx},
x—&-ﬁ 0
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where G acts on L?(R) by the translation action, as in the definition of B above. Note that

if s € Rthen s(D)—D = [(s) 3

], which is bounded. Applying Lemma |8.5.10| gives that

s(F) —F is compact.
We let
Yo € KK (C,C)

be the class of this cycle.
LEMMA 10.5.9. In reference to the three examples above:
06 ®cy(r) Be = Yo € KK (C,C).

The proof is exactly the same as in the non-equivariant case: one verifies that the
Dirac-Schrodinger triple satisfies the axioms for the Kasparov product.

THEOREM 10.5.10. o and Bg are inverse KK?-equivalences, that is,
a®c,®) B =1c, POco=l¢gw)-
Moreover, if A is any G-C*-algebra, then
a®1s € KKS(A,Co(R) @A), B 1s€ KK (CH(R)DA,A)
are inverse KKS-equivalences.

PROOF. By linearly deforming the G action on R to the trivial action, (let g act at time
t by translation by 7g) we obtain a homotopy between the cycle for Y defined above, and a
cycle which is identical except insofar as the G-action is trivial. Since the Fredholm index
of the Dirac-Schrédinger cycle is +1, Y6 = 1¢ € KK§(C,C).
The second statement follows from the general mechanics of KK.
(]

Consider the morphisms o and Bg of Theorem If A is any G-C*-algebra
we get morphisms g ® 14 € KK{(4,C(R,A)) and Bg ® 14 € KK;(Cy(R,A),A). Here
Co(R,A) carries the diagonal action of G.

Applying the descent functor j: KK¢ — KK to these morphisms then gives mor-
phisms j(Bg) € KK;(Cp(R,A) x G,A x G) and j(ag) € KK (A x G,Co(R,A) x G). They
are inverse KK-equivalences, since descent is a functor.

COROLLARY 10.5.11. If G C R is R with the usual topology, or any countable sub-
group, and A is a G-C*-algebra, then Co(R,A) x G and A x G are KK -equivalent.

The power of this theorem is quite simple to see. Suppose that A = Cy(X), for a locally
compact Z-space X. Then the diagonal action of Z on R X X is a proper action. In fact it
is a free and proper action, and therefore

Co(RxX)xZ ~Co(R xzX),

where R x 7 X is the quotient of R x X by the diagonal group action, and ~ is strong Morita
equivalence.
If G =R, then the same remarks apply, and since R xg X = X, we obtain

COROLLARY 10.5.12. Let X be a G space where G is R or Z, and X be a G-space.
a) If G =Z then C(X) x Z is KK;-equivalent to C(R x7X).
b) If G =R then C(X) x R is KK;-equivalent to A.
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The second statement is called the Connes-Thom Isomorphism.

An integer action on X is determined by where the generator 1 goes. Say that two
Z actions are isotopic if the corresponding pair of homeomorphisms can be connected to
each other by a continuous path of homeomorphisms.

It is not at all obvious that the K-theory K. (Co(X) x Z) of the crossed-product, only
depends on the isotopy class of the action, although one would imagine this must be true.
It follows, however, from equivariant Bott Periodicity.

COROLLARY 10.5.13. Iftwo Z-actions are isotopic, then the K-theory groups of the
corresponding crossed-products K, (Co(X) X Z) are isomorphic.

PROOF. Itis obvious that isotopic Z-actions lead to homeomorphic mapping cylinders
R xz X. The result follows from ordinary homotopy-invariance of K-theory.
O

For the case of the irrational rotation algebra Ay := C(T) x Z, defined by letting the
homeomorphism be rotation by an irrational angle / € R/Z, we obtain

COROLLARY 10.5.14. Ko(Ap) = Z @ Z, with generators the class [1a,] of the unit
in Ap, and the class [py) of the Rieffel projection, and K| (Ar) = Z © Z with generators
the class [z) of the unitary complex coordinate on T, and the class [u] of the generator
u € C(T) xZ of Z in the crossed-product.

PROOF. The crossed product C(T) x Z is KK;-equivalent to the mapping cylinder

R x7 T, which, as we have noted, is naturally homeomorphic to the ordinary 2-torus T2

(note that the homeomorphism uses, precisely, the obvious isotopy between rotation by

h, and the identity.) Since Ko(T?) = Z? and K'(T?) = Z2, we get K;(Ap) = Z? and

Ko(Ap) = Z? follow, as abstract groups. Verifying the assertions about the generators is
left to the reader, using the various tools explained in this book.

d

COROLLARY 10.5.15. Suppose ¢: X — X is a minimal homeomorphism of the Cantor
set X. Then Ko(C(X) x Z) is naturally isomorphic to the cokernel of the abelian group
homomorphism

id—0": C(X.Z) = C(X.Z),
that is
Ko(C(X)xZ) 2 C(X,Z)/ran(id — ¢*),
with §*(f) := f o0, and C(X,Z) the group of integer-valued, continuous functions on X.

And K{(C(X) x Z) & Z, with generator the class [u] of the unitary u € C(X) X Z

generating the action.

This is an immediate corollary of the more general sequence, called the Pimsner-
Voiculescu sequence.

COROLLARY 10.5.16. For any Z-action on a C*-algebra A, there is a cyclic 6-term
exact sequence of the form

id—ot

(10.31) Ko(A) Ko(A) — "> Ko(A x Z)

| - ls

Ki(AxZ) <— K (4) <% K, ()

where 0.: A — A is the automorphism generating the action, i: A — A X Z is the inclusion.
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The sequence is natural with respect to Z-equivariant *-homomorphisms.

PROOF. (Of Corollary [T0.5.15). This is an application of Corollary [I0.5.16] in the
case A = C(X). In this case, K;(A) is the zero group, and hence the Pimsner-Voiculescu
sequence reduces to a sequence of the form

(10.32) 0— K1 (C(X) 1 Z) > KO(X) 14=%5 KO(X) & Ko(C(X) % Z) — 0.
Since K°(X) 2 C(X,Z) as abelian groups, it follows that
Ko(C(X)x2Z)=C(X,2)/(id — a.)C(X,Z),

that is Ko(C(X) % Z is isomorphic to the cokernel of id — o, acting on C(X,Z). Further-
more, if the Z-action is minimal, then no continuous, complex-valued function f: X — C
can satisfy

fooa=f,
unless it is constant. Hence ker(id — o) consists of the subgroup of constant functions in
C(X,Z) and thus is infinite cyclic. Hence K (C(X) x Z) is also infinite cyclic, and we leave
it as an exercise to verify that the class [u] described in the statement, is a generator. ]

As our final example, suppose that I' C PSLy(R) is a uniform lattice, acting on the
hyperbolic plane H? (by Mébius transformations) and on its boundary oH with T\ H? = M
a compact genus g surface, g > 2. See Section [7, We proved there that C(OH?) x T
is Morita equivalent to C(SM) x B, where B is the Borel upper triangular subgroup B =

{ {g alzl} | a,b € R, a # 0} of PSLy(R). The subgroup B is a semi-direct product B =2

R »x R, with the two copies of R acting by geodesic and horocycle flow on the sphere
bundle SM. It follows that the crossed product C(SM) x B can be written as an iterated
crossed product (C(SM) 3, R) x4 R. Two applications of the Connes-Thom Isomorphism
Corollary b) gives a KKo-equivalence between C(dH?) x " and C(SM), and the
following result:

COROLLARY 10.5.17. Let T C PSLy(R) be a uniform lattice, acting on the boundary
OH of the hyperbolic plane. Then C(dH?) x T is KKo-equivalent to C(SM), where M =
F\H2 and SM is the sphere bundle to this Riemann surface.

An interesting corollary of this is that the class [1¢ggz)sr] € Ko (C(9H?) x T) of the
unit of this C*-algebra is torsion of order equal to 2g — 2, the Euler characteristic of M.
This follows from computation of K*(SM) (and the isomorphism with K, (C(9H?) xI').)
The K-theory of sphere bundles SM is described by a ‘Gysin sequence’ (see [34] for coho-
mology) which in particular implies the torsion result above.

Actually, a rather close analogue of the Gysin sequence holds for general hyperbolic
groups G acting on their boundaries holds. This is shown in [75]. This piece of K-theory
and other considerations suggest an analogy between the cross products C(dG) x G and
the C*-algebras of sphere bundles SM (of compact Riemannian manfolds), in which the
C*-algebra inclusion C*(G) — C(dG) x G plays the role of the inclusion C(M) — C(SM)
by Gelfand dualizing the projection SM — M. Thus, one can think of C(dG) x G as a kind
of ‘noncommutative sphere bundle’ over the noncommutative space G.

EXERCISE 10.5.18. If A is a unital, commutative C*-algebra, then the class [14] €
Ko(A) of the unit is never torsion, and never zero.
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