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Abstract. For a large class of word hyperbolic groups G the cross product C �-
algebras CðqGÞzG, where qG denotes the Gromov boundary of G satisfy Poincaré duality
in K-theory. This class strictly contains fundamental groups of compact, negatively curved
manifolds. We discuss the general notion of Poincaré duality for C �-algebras, construct
the fundamental classes for the aforementioned algebras, and prove that KK-products with
these classes induce inverse isomorphisms. The Baum-Connes Conjecture for amenable
groupoids is used in a crucial way.

1. Introduction

It is well known that if Mn is a compact n-dimensional spinc-manifold, the C �-
algebra CðMnÞ of continuous functions on Mn exhibits Poincaré duality in K-theory.
Specifically, if ½D� A KnðMÞ is the K-homology class of the Dirac operator on M, then
cap product with ½D� induces an isomorphism K �ðMnÞ !F K�þnðMnÞ. It is natural to ask
whether there are noncommutative C �-algebras exhibiting the same phenomenon. In [7]
A. Connes introduced the appropriate formalism for this question, defining the analog for
C �-algebras of Spanier-Whitehead duality for finite complexes. Two C �-algebras A and B

shall be said to be dual if there exists a class D in the K-homology of AnB, and a class D̂D
in the K-theory of AnB such that D̂DnB D ¼ 1A and D̂DnA D ¼ 1B. If A and B are dual,
cap product with D induces an isomorphism K�ðAÞ ! K �ðBÞ. A special case is where
B ¼ Aop, which we term Poincaré duality, while a C �-algebra satisfying Poincaré duality
we shall call in this paper a Poincaré duality algebra. Known commutative examples of
Poincaré duality algebras are given by continuous functions on spaces homotopy equiva-
lent to one of the aforementioned Mn above; it is unknown to the author whether there are
other commutative examples. The first nontrivial example of a noncommutative Poincaré
duality algebra was given by Connes (see [6]) in the form of the irrational rotation algebra
Ay. In this paper we shall prove that if G is a hyperbolic group satisfying a certain mild
symmetry property, and qG is its Gromov boundary, then the cross product CðqGÞzG is a
Poincaré duality algebra.

Examples of pairs of algebras A and B dual in the above sense were given by
Kaminker and Putnam (see [19]); the pairs were OM and OMt respectively, where for a



square 0–1 valued matrix M, OM refers to the corresponding Cuntz-Krieger algebra. Their
result is a special case of a more general one, in which the stable and unstable Ruelle
algebras Rs and Ru associated to a hyperbolic dynamical system are shown to be dual
(see [20]).

A particular example of a hyperbolic dynamical system is provided by an Anosov
di¤eomorphism of a compact manifold; thus the duality discovered by Kaminker and
Putnam holds for these. An obvious question is whether or not the same duality holds for
Anosov flows. The principal example of such a flow is given by geodesic flow on a compact,
negatively curved Riemannian manifold M. The algebras Rs and Ru can in this case be
regarded as foliation algebras as follows. Define two equivalence relations on SM by
respectively v@s w if lim sup

t!y
dSMðgtv; gtwÞ ¼ 0, and v@u w if lim sup

t!�y
dSMðgtv; gtwÞ ¼ 0.

Define weak versions of these equivalence relations by respectively v@ws w if gtðvÞ@s w

for some t, and similarly for v@wu w. The equivalence classes of these latter two relations
make up two codimension-1 foliations Fws and Fwu of SM. We can then form (see e.g.
[6]) the corresponding foliation algebras C �

r ðFwsÞ and C �
r ðFwuÞ. The work of Kaminker

and Putnam then suggested that C �
r ðFwsÞ should be dual in the aforementioned sense to

C �
r ðFwuÞ.

Now it is easy to see that the unit tangent sphere at a point of M acts as a transversal
to both foliations. We may therefore reduce the two holonomy groupoids to this transver-
sal and so obtain equivalent groupoids, which are now r-discrete. Finally, it is easy to see
that these groupoids are in fact equivalent, and can be each identified with the transfor-
mation groupoid q ~MMzG, where G ¼ p1ðMÞ and the boundary q ~MM is that associated to
the Gromov hyperbolic metric space ~MM, acted apon by G by an extension of the action of G
by deck transformations on ~MM to an action by homeomorphisms of q ~MM. Since M is com-
pact and negatively curved, the group G is of course hyperbolic in the sense of Gromov,
and q ~MM can be equivariantly identified with qG. Consequently, if C �

r ðFwsÞ is to be dual to
C �

r ðFwsÞ, we expect that the strongly Morita equivalent algebra CðqGÞzG will be then
dual to itself, or, equivalently, to its opposite algebra. In other words, we can reformulate
the question of duality for the foliation algebras purely geometric-group theoretically as
follows: is CðqGÞzG a Poincaré duality algebra when G ¼ p1ðMÞ, for a compact, nega-
tively curved manifold M?

It is not di‰cult to see that the answer to this question is yes. Consider first the case
where M has constant negative curvature. For then, if say n ¼ 2 for simplicity, we may
take G to be a uniform lattice in G ¼ PSL2ðRÞ, and then for P equal to the parabolic
subgroup of upper triangular matrices of determinant 1, we may identify SM with G=G
and qG with G=P. Since the groupoids G=PzG and G=GzP are equivalent, and since
by two applications of the Thom Isomorphism, CðG=GÞzP is KK-equivalent to
CðG=GÞGCðSMÞ, we see CðqGÞzG is KK-equivalent to CðSMÞ. Since SM is a spinc

manifold, CðSMÞ has Poincaré duality in K-theory, and therefore so does CðqGÞzG.

Similar arguments can be used for the higher dimensional cases of constant negative
curvature. On the other hand, if the curvature is variable, it seems to be necessary to use
the infinite dimensional techniques of Higson, Kasparov and Tu ([30]). One then argues
as follows. The Baum-Connes conjecture for the amenable groupoid qGzG tells us that
CðqGÞzG is KK-equivalent to C0ðqG� EGÞzGGC0ðS ~MMÞzG which in turn is strongly
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Morita equivalent to CðSMÞ. Again, as SM is a compact spinc manifold, CðSMÞ has Poin-
caré duality, and we are done.

These arguments do not however provide a concrete description of the fundamental
class D, which is desirable at least from the point of view of noncommutative geometry
(whose basic data are cycles, not merely classes). To find such a concrete description was in
fact the starting point of our investigation. We wished, moreover, to describe such a cycle,
purely in terms of the action of G on its Gromov boundary and without reference to spinc

manifolds, Dirac operators, and so on. That such a description exists was suggested by the
following example, of quite a di¤erent type from the above.

Let G ¼ F2. Then G is a hyperbolic group, with boundary a Cantor set. It is easy to
check (see e.g. [29]) that CðqGÞzG is in fact isomorphic to a Cuntz-Krieger algebra OM

with matrix M symmetric. By the results of Kaminker and Putnam, we conclude for rea-
sons having apparently nothing to do with topology (but instead with the combinatorics
of subshifts of finite type) that CðqGÞzG is a Poincaré duality algebra. For in this case
OM GOMt . Similar calculations verify that CðqGÞzG is a Poincaré duality algebra when
G is a free product of cyclic groups.

Motivated by the latter calculations, we will in this paper approach the problem from
a di¤erent point of view, which will turn out to be quite fruitful, yielding a Poincaré duality
result for a very wide class of hyperbolic groups, where neither the argument above in the
case of G ¼ p1ðMÞ nor that of Kaminker and Putnam appear (as far as we know) to apply.

Let then G be an arbitrary hyperbolic group and A ¼ CðqGÞzG the corresponding
cross product. Our method is as follows. We construct a canonical extension of AnAop by
the compact operators based on simple considerations of the action of the group G on its
compactification G. Specifically, associated to the compactification, there are two exten-
sions of the algebra CðqGÞzG by the compact operators, one corresponding, roughly, to
the action of G on l2G by left translation and the action of CðGÞ by multiplication oper-
ators, and the other to the action of G by right translation and the action of CðGÞ by
multiplication operators twisted by inversion on the group. Each extension yields a map
CðqGÞzG into the Calkin algebra, and these two maps into the Calkin algebra commute
as a consequence of the compactification being, in the language of [15], ‘good,’ which sim-
ply means that metric balls of uniform size become small in the topology of the compacti-
fication near the boundary. Using this asymptotic commutativity, we obtain a single map
from AnAop into the Calkin algebra; i.e. an extension of AnAop by the compact oper-
ators. We define D to be the corresponding KK-class.

We will then set about proving that the class D A KK 1ðAnAop;CÞ induces Poincaré
duality, provided G is torsion-free and a certain condition regarding geodesics is met. The
latter can be stated as: the boundary has a continuous self map with no fixed points; it is
needed for a selection argument in the latter stages of the proof. This technical condition is
of course satisfied by groups whose boundaries are spheres or Cantor sets; it is unknown to
the author whether there are any groups whose boundaries do not satisfy it. In our argu-
ment we will still make use of the Baum-Connes conjecture for the groupoid qGzG, but
this time not to produce a class which a priori we know induces Poincaré duality, as in the
discussion of G ¼ p1ðMÞ above, but to show that our class D does.
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The first step in proving that product with D does indeed induce a Poincaré duality
isomorphism, is to construct an inverse, or dual element D̂D A KK�1ðC;AnAopÞ. We do
this using a construction of Gromov, which produces a sort of geodesic flow for an arbi-
trary hyperbolic group. We then show that D̂DnAop D ¼ 1A. A calculation in [9] showed that

in the case of the free group F2, the cycle corresponding to the product D̂DnAop D was a
compact perturbation of the ‘‘g-element’’ cycle constructed by Julg and Vallette in [18],
parameterised by the points of qG. In other words in this case the statement D̂DnAop D ¼ 1
was equivalent to the statement gqF2zF2

¼ 1CðqF2ÞzF2 where gqF2zF2
is the g-element for this

transformation groupoid, and so roughly equivalent to the statement that the Baum-Connes
map for the groupoid is an isomorphism. The latter has been verified by Tu ([30]) for gen-
eral hyperbolic groups, and we are able to resolve the general case in a somewhat analo-
gous way.

The organization of the paper is as follows. In Section 2 we provide a summary of
the basic facts from KK-theory which we will need. In Section 3 we set up the formalism of
K-theoretic Poincaré duality. In Section 4 we construct the fundamental class D, which
as mentioned exists for every hyperbolic group, with or without torsion, and with or with-
out a fixed-point-free map on the boundary. We then construct the dual element D̂D using
an analog for hyperbolic groups of geodesic flow on a negatively curved manifold. In Sec-
tion 5 we begin the process of verifying the fundamental equation of Poincaré duality:
D̂DnAop D ¼ 1A, where A ¼ CðqGÞzG.

Given the class gA ¼ D̂DnAop D A KKðA;AÞ, we wish to show it is 1A. We first describe
a cycle for KKðA;AÞ representing the class gA. We then make use of this calculation to
show that gA lies in the range of the descent map

l : RKKGðqG;C;CÞ ! KKðA;AÞ:

We reduced to showing that its preimage, gqG, is 1qG A RKKðqG;C;CÞ, since the descent map
has the property that lð1qGÞ ¼ 1A. The Baum-Connes conjecture for the amenable groupoid
qGzG implies that there is an isomorphism RKKGðqG;C;CÞGRKKGðqG� EG;C;CÞ,
where EG is the classifying space for proper actions of G, and so it will su‰ce to show that
the image of gqG under this isomorphism is 1qG�EG. This calculation, which though not
di‰cult is slightly involved, is performed in Sections 6 and 7. It is at this point that we re-
quire the hypothesis that the boundary of G possesses a fixed-point-free map.

I would like to thank N. Higson, my advisor from the Pennsylvannia State Univer-
sity, as well as J. Kaminker and I. Putnam, for extremely valuable comments and sugges-
tions regarding the material in this paper. Finally, I would like to thank the referees, for
several useful remarks.

2. KK-theoretic preliminaries

Kasparov’s KK-theory, along with some of its elaborations, will be used extensively
in this paper. KK can be understood categorically ([14]). From this latter point of view,
there is a category KK whose objects are separable, nuclear C �-algebras and whose mor-
phisms A ! B are the elements of KKðA;BÞ. There is a functor from the category of C �-
algebras to the category KK. There is a composition, or intersection product operation
KKðA;DÞ � KKðD;BÞ ! KKðA;BÞ which we denote by ða; bÞ 7! anD b. If D is a C �-
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algebra, there is a natural map KKðA;BÞ ! KKðAnD;BnDÞ, a 7! an 1D, and similarly
a map KKðA;BÞ ! KKðDnA;DnBÞ. The above three operations imply the existence
of a mixed cup-cap product

KKðA1;B1 nDÞ � KKðDnB2;A2Þ ! KKðA1 nB2;B1 nA2Þ

which is denoted ða; bÞ 7! anD b, and defined by anD b ¼ ðan 1B2
ÞnB1nDnB2

ð1B1
n bÞ.

There are higher KK groups KK iðA;BÞ for all i A Z, defined by KK iðA;BÞ ¼ KKðA;BnCiÞ
where Ci is the ith complex Cli¤ord algebra, and one of the features of the theory is that the
intersection product is graded commutative. If A1; . . . ;An are C

�-algebras, let sij denote the
map

A1n � � �Ai n � � �Aj n � � �nAn ! A1 n � � �Aj n � � �Ai n � � �nAn

obtained by flipping the two factors. Then by graded commutativity we mean:

Lemma 1. If a A KK iðA1;B1Þ and b A KK jðA2;B2Þ, then

anC b ¼ ð�1Þ ijðs12Þ�s�
12ðbn aÞ A KKðA1 nA2;B1 nB2Þ:

Let L be a discrete group. Then as well as the category KK there is the category KKL,
whose objects are L� C �-algebras and whose morphisms are the elements of KKLðA;BÞ.
We can think of these as equivariant morphisms. There is a descent map

l : KKLðA;BÞ ! KKðAzL;BzLÞ

producing from an equivariant morphism a nonequivariant one. There is a map backwards
if A and B happen both to be trivialL� C �-algebras in the sense that every g A L acts as the
identity automorphism. The descent map is natural: that is, lðanD bÞ ¼ lðaÞnDzL lðbÞ.
The group KKLðA;AÞ is a ring with the intersection product, and there is an identity in this
ring, denoted 1A, and it satisfies lð1AÞ ¼ 1AzL.

Finally, let X be a locally compact L space. Then there is another category, denoted
RKKL, this time whose objects are L� CðXÞ-algebras (see [21]) and whose morphisms are
the elements ofRKKLðX ;A;BÞ. In the case of A ¼ C0ðXÞnA0 and B ¼ C0ðX ÞnB0, with
A0 and B0 L� C �-algebras, we denote, following Kasparov, the group RKKLðX ;A;BÞ by
RKKLðX ;A0;B0Þ. The intersection product

RKKLðX ;A;DÞ �RKKLðX ;D;BÞ ! RKKLðX ;A;BÞ

is denoted ða; bÞ 7! anX ;D b, and similarly for RKKL. Note also that RKKLðX ;A;AÞ has a
unit, which is denoted 1X ;A, and if A ¼ C we denote this unit simply by 1X . Finally, if Z is
any space, there is a natural map

p�
Z : RKKLðX ;A;BÞ ! RKKLðX � Z;A;BÞ:

This map is natural with respect to intersection products and thus is a ring homomorphism
when A ¼ B. Under certain special circumstances it is an isomorphism (see Theorem 54).
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Throughout this paper we will let BðEÞ denote bounded operators on a Hilbert module
E, KðEÞ compact operators, and QðEÞ the Calkin algebra BðEÞ=KðEÞ. The projection map
BðEÞ ! QðEÞ, which will be invoked frequently, will always be denoted by p.

Following Kasparov ([21]), if E is a Hilbert B-module and A acts on E by a homo-
morphism A ! BðEÞ, we will refer to E as a Hilbert ðA;BÞ-bimodule.

Because all the algebras in this paper are ungraded—or alternatively, have trivial
grading—we can make certain simplifications in the definitions of the KK groups (see [4]).
With such ungraded A and B, cycles for KKðA;BÞ are given simply by pairs ðE;FÞ where
E is an ðA;BÞ-bimodule, F commutes modulo compact operators with the action of A, and
aðF �F � 1Þ and aðFF � � 1Þ are compact for every a A A.

Cycles for KK 1ðA;BÞ are given by pairs ðE;PÞ for which P is as before an operator on
the ðA;BÞ-bimodule E as above, and where P satisfies the three conditions ½a;P�, aðP2 � PÞ,
and aðP� P�Þ are compact for all a A A. Such pairs are equivalently given by extensions,
i.e. homomorphisms A 7! QðEÞ. For by the Stinespring construction, under our nuclearity
assumptions, for each such homomorphism t there exists a Hilbert ðA;BÞ-module ~EE, an
isometry U : E ! ~EE, and an operator P on ~EE such that aðP2 � PÞ, ½a;P�, and aðP� P�Þ are
compact for all a A A, and pðU �PaPUÞ ¼ tðaÞ for all a A A.

Recall that KK�1
�
C;C �ðRÞ

�
GZ and is generated by the class ½d̂dR� of the Dirac oper-

ator on R, viewed as an unbounded self-adjoint multiplier of C �ðRÞ. The class ½d̂dR� allows us
to identify, for anyC �-algebras A and B, the groups KK 1

�
C �ðRÞnA;B

�
, andKKðA;BÞ, by

the map KK 1
�
C �ðRÞnA;B

�
! KKðA;BÞ, x 7! ½d̂dR�nC �ðRÞ x. We shall need to compute

this map at the level of cycles in several simple cases.

Let c be the function in C �ðRÞ whose Fourier transform is
�2i

zþ i
. It has the property

that cþ 1 is unitary in C �ðRÞþ.

Lemma 2. Let A be a C �-algebra, j a homomorphism C �ðRÞ ! A, and suppose

t : A ! QðHÞ is a homomorphism to the Calkin algebra. Let ½t� denote the class in KK 1ðA;CÞ
corresponding to t. Then the class ½d̂dR�nC �ðRÞ j

�ð½t�Þ A KKðC;CÞ is represented by the cycle

ðH;T þ 1Þ, where T is any operator on H such that pðTÞ ¼ t
�
jðcÞ

�
.

We will also need the following simple lemma.

Corollary 3. Define a class ½t� A KK 1
�
C �ðRÞ;C

�
by means of the homomorphism

t : C �ðRÞ ! Q
�
L2ðRÞ

�
,

f 7! p
�
w � lð f Þ

�
;

where l is the left regular representation of C �ðRÞ and w is the characteristic function of the

left half-line. Then ½d̂dR�nC �ðRÞ ½t� ¼ ½1C� A KKðC;CÞ.

Proof. This follows from Lemma 2 and a calculation; one checks simply that w � c
as an operator on L2ðRÞ has index 1. One can do this by solving a simple di¤erential equa-
tion. (See [10].) r
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Note 4. Remark that the function w above can be replaced by any function on R

which is 1 at �y and 0 at þy. For any such function gives the same extension.

Next, let A1 and A2 be L� C �-algebras, where L is a discrete group. An action of L
on an ðA1;A2Þ-bimodule E will always refer to an action of L as complex linear maps
compatible with the inner product in the sense that hgx; ghiA2

¼ gðhx; hiA2
Þ, and compati-

ble with the bimodule structure in the sense that gðaxbÞ ¼ gðaÞgðxÞgðbÞ. Such E will be
referred to as a L� ðA1;A2Þ-bimodule. If we wish to possibly waive the part of the last
requirement that states that gðaxÞ ¼ gðaÞgðxÞ, whilst maintaining the requirement that
gðxbÞ ¼ gðxÞgðbÞ, we will simply call E a L� A2-module. Thus, such a module satisfies
gðxbÞ ¼ gðxÞgðbÞ, but the homomorphism A1 ! BðEÞmay not necessarily beL-equivariant.

Cycles for KKLðA1;A2Þ are then given by pairs ðE;FÞ where E is a L� ðA1;A2Þ-
bimodule, and where F A BðEÞ with aðF �F � 1Þ and aðFF � � 1Þ compact for all a A A1,
and gðFÞ � F compact for all g A L. Cycles for KK 1

LðA1;A2Þ are given by pairs ðE;PÞ
where E is a L� ðA1;A2Þ-bimodule and P is an operator with aðP2 � PÞ, aðP� P�Þ; and
½a;P� compact for all a A A1, and gðPÞ � P compact for all g A L.

A minor technical issue which in general we do not know how to resolve concerns the
question of whether or not an equivariant map A1 ! QðEÞ, where E is a L� A2-module,
produces an element of KK 1

LðA1;A2Þ. If L is the trivial group this is of course the Stine-
spring construction, given our standing assumption that all C �-algebras (with the obvious
exceptions of Calkin algebras and so on) are nuclear. In the general case, an equivariant
homomorphism A1 ! QðEÞ yields a homomorphism A1 zL ! QðEzLÞ where EzL is
as in [21], being a certain ðA1 zL;A2 zLÞ-bimodule (this is part of the definition of the
descent map) and so an element of KK 1ðA1 zL;A2 zLÞ as long as not merely A1 and A2

are nuclear, but also A1 zL and A2 zL are nuclear. But such an element may not nec-
essarily come under descent from an element of KK 1

LðA1;A2Þ. To avoid this issue, we make
the following definition.

Definition 5. Let L be a discrete group, let A1 and A2 be L� C �-algebras and let
E be a L� A2-module. Let t : A1 ! QðEÞ be a L-equivariant homomorphism. We say t
is dilatable if there is a L� ðA1;A2Þ-bimodule ~EE, an operator P on ~EE such that ½a;P�,
aðP2 � PÞ, aðP� � PÞ and gðPÞ � P are compact for all a A A1, g A L, and if there exists an
isometry U : E ! ~EE, such that pðU �PaPUÞ ¼ tðaÞ A QðEÞ for all a A A1.

As mentioned above, if L is the trivial group then every homomorphism A1 ! QðEÞ
is dilatable. The same is clearly true of finite L. In general, with the hypothesis of dilati-
bility, we do clearly have the following:

Lemma 6. If A1, A2, E, L and t as above, and if t is dilatable, then t defines a class ½t�
in KK 1

LðA1;A2Þ by the pair ð ~EE;PÞ.

We next pass to a case where to calculate the Kasparov product of two elements one
of which is given by a dilatable homomorphism, we do not need to explicitly involve the
dilation. We will use this technical lemma several times, sometimes with L the trivial group.
In the latter case, the lemma gives a method of avoiding explicit construction of a com-
pletely positive section.
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Lemma 7. Let A1;A2 be L� C �-algebras and E be a L� A2-module. Let ½h� be
a class in KK 1

L

�
C �ðRÞnA1;A2

�
given by a L-equivariant dilatable homomorphism

h : C �ðRÞnA1 ! QðEÞ of the form xn a1 7! h 0ðxÞh 00ða1Þ, where h 0 and h 00 are L-

equivariant homomorphisms. Suppose that the homomorphism h 00 lifts to a L-equivariant

homomorphism ~hh 00 : A1 ! BðEÞ. Then the class ½d̂dR�nC �ðRÞ ½h� A KKLðA1;A2Þ is represented
by the following cycle. The module is E with its original L� A2-module structure and the

left A1-module structure given by the homomorphism ~hh 00. The operator is given by F þ 1
where F is any operator on E such that pðFÞ ¼ h 0ðcÞ.

Remark 8. Similar lemmas can be formulated and proved for the RKKL category,
but we leave it to the reader to formulate them.

3. Formalism of noncommutative Poincaré duality

Let us begin with a lemma. See [19] for a similar discussion.

Lemma 9. Let A and B be C �-algebras and let D and D̂D be two elements in

KK iðAnB;CÞ and KK�iðC;AnBÞ respectively. Define a map D̂Dj : K
jðBÞ 7! Kj�iðAÞ by

D̂DjðxÞ ¼ D̂DnB x. Define a map Dj : KjðAÞ 7! K jþiðBÞ by DjðyÞ ¼ ynA D. Define also two

classes in respectively KKðA;AÞ and KKðB;BÞ by gA ¼ ðD̂Dn 1AÞnAnBnA

�
1An s�

12ðDÞ
�
,

and gB ¼
�
ðs12Þ�ðD̂DÞn 1B

�
nBnAnB ð1B nDÞ. Then we have:

Dj�i

�
D̂DjðxÞ

�
¼ ð�1Þ ijgB nB x; x A K jðBÞ;

and

D̂Djþi

�
DjðyÞ

�
¼ ð�1Þ ijynA gA; y A KjðAÞ:

Proof. We verify the first equation; the second follows similarly. Let x A K jðBÞ:
Then it follows from the definition that

Dj�i

�
D̂DjðxÞ

�
¼ ðD̂Dn 1BÞnAnBnB ð1An xn 1BÞnAnB D:

By functoriality of the intersection product we may write this

�
ðs12Þ�ðD̂DÞn 1B

�
nBnAnB s

�
12ð1A n xn 1BÞnAnB D:

On the other hand, again by definition, we have

gB nB x ¼
�
ðs12Þ�ðD̂DÞn 1B

�
nBnAnB ð1B nDÞnB x:

So we are reduced to proving that ð1A n xn 1BÞnAnB D ¼ ð�1Þ ijð1B nDÞnB x. But this
follows immediately from Lemma 1. r

In view of this theorem, we will take as the definition of duality between two C �-
algebras the following (compare [7], p. 588):
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Definition 10. Two separable, unital, and nuclear C �-algebras A and B are dual with
a dimension shift of i if there exist D A KK iðAnB;CÞ, D̂D A KK�iðC;AnBÞ such that

D̂DnB D ¼ 1A

and

D̂DnA D ¼ ð�1Þ i1B:

We will call such a pair ðD̂D;DÞ a duality pair.

Theorem 11. If A and B are dual in the sense of Definition 10, then the maps D̂D�
and D� defined in Lemma 9 induce inverse isomorphisms up to the signs specified there

KjðAÞGK jþiðBÞ and K jðBÞGKj�iðAÞ.

For the next piece of terminology recall that for a C �-algebra A, Aop denotes the
opposite algebra of A.

Definition 12. A separable, nuclear C �-algebra A is a Poincaré duality algebra if A
and Aop are dual in the sense of Definition 10. We will refer to D as the fundamental class
of A, and ðD̂D;DÞ as a Poincaré duality pair.

4. The main theorem

Let G be a hyperbolic group. We shall assume here and throughout this paper that G
is torsion-free. To G we can add a boundary qG which compactifies the group G understood
as a metric space. Thus, G ¼ GW qG can be given the structure of a compact metrizable
space in which G is contained as a dense, open subset. For details see [11]. The group G acts
by homeomorphisms on qG and this action is topologically amenable in the sense of [2]
(see the appendix of [2] for a proof of this fact). Therefore, to each hyperbolic group we
can associate an amenable r-discrete amenable groupoid qGzG and then a groupoid C �-
algebraCðqGÞzGwhich for the rest of this paper we shall denote byA. TheC �-algebraA is
separable, simple, nuclear and purely infinite (see [29] or [1]).

Our goal is to show that for a large subclass of hyperbolic groups G, A is a Poincaré
duality algebra in the sense of Definition 12. Let us first state certain simple facts we shall
require.

Note 13. When we are thinking of elements of G as simply points in the metric space
G, we shall use the notation x; y, etc. In particular, x0 will always refer to the identity of the
group, viewed as a natural basepoint. Also, for any Rf 0 and any x A G, BRðxÞ denotes the
ball of radius R (with respect to the word metric) centered at x.

For convenience we will also fix a metric dG on G compatible with the topology. The
following lemma then follows from the definition of the topology on G (see [11]).

Lemma 14. If e > 0, there exists Rf 0 such that if a; b A G and dGða; bÞf e, then
every geodesic from a to b passes through BRðx0Þ. Conversely, if Rf 0, there exists e > 0
such that if every geodesic between a and b passes through BRðx0Þ, then d

G
ða; bÞf e.
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We will also require the following. Recall that ðxjyÞ denotes the Gromov product of
x; y A G (see [12] or [11]). For the proof of this lemma see for example [28].

Lemma 15. If f is a bounded function on G, then f extends to a continuous function on

G if and only if for all e > 0 there exists Rf 0 such that if ðxjyÞ > R, then j f ðxÞ � f ðyÞj < e.

We shall need an explicit description of the classifying space for proper actions of G.
This is given by the Rips construction.

Definition 16. The Rips complex for G of parameter N, PNðGÞ, is the simplicial com-
plex whose vertices are the points of G, and whose k-simplices are the sets of cardinality k

of diameter less than or equal to N.

Let PNðGÞ denote the realization of the Rips complex. It can be viewed as the col-
lection of finitely supported probability measures on G whose support has diametereN.
This point of view will be useful later on the proof when some linear interpolation will be
needed from G to PNðGÞ. Note that G is embedded naturally in PNðGÞ. Clearly PNðGÞ
carries a free, simplicial, isometric, proper, co-compact action of G.

A proof of the following may be found in [24].

Lemma 17. For large enough N, PNðGÞ is the classifying space EG for proper actions

of G.

Note 18. From this point onwards, we fix N su‰ciently large as in the above lemma,
and denote the realization of the Rips complex with parameter N simply by EG. We will
also fix a simplicial metric dEG on EG, so that G is quasi-isometrically embedded in EG as
the vertices of the complex. Then EG is of course a hyperbolic space in its own right, and is
quasi-isometric to G.

We now pass to the construction of the fundamental class D A KK 1ðAnAop;CÞ,
which will arise naturally as an extension, or equivalently as a homomorphism
AnAop ! QðHÞ for some Hilbert space H. This map AnAop ! QðHÞ will be given
by two commuting maps A ! QðHÞ and Aop ! QðHÞ, which we shall denote by l and lop

respectively.

Passing to the description of l, let us put H ¼ l2ðGÞ. This notation will be retained
throughout the rest of this paper. Let ex, x A G denote the standard basis element of H
corresponding to point mass at x. For g A G let ug denote the unitary in BðHÞ given by left
translation by g, i.e. ugðexÞ ¼ egx. Let lðgÞ denote the image of ug in the Calkin algebra. Let
f be a function in CðqGÞ, apply the Tietze extension theorem to extend f to a continuous
function ~ff on G, and let lð f Þ denote the image in QðHÞ of the operator on H given by

multiplication by ~ff , in other words the operator ex 7! ~ff ðxÞex. Remark that though the

map g ! ug, f ! ~ff is not well-defined into BðHÞ, it is well-defined into QðHÞ, since any
two extensions of a function f di¤er by a function vanishing at y and thus by a compact
operator on l2ðGÞ. The following lemma is a trivial calculation:

Lemma 19. The assignment g 7! lðgÞ, f 7! lð f Þ, defines a covariant pair for the C �-
dynamical system

�
CðqGÞ;G

�
, and so a homomorphism A ! QðHÞ.
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Next, define a map lop : Aop ! QðHÞ as follows. First, let vg, for g A G, denote the
unitary operator of right translation by g : vgðexÞ ¼ exg. Let l

opðgÞ denote the image of this
unitary operator in the Calkin algebra. If now f A CðqGÞ, let ~ff denote an extension of f to
a continuous function on G as before, and let lopð f Þ denote the image in the Calkin algebra
of the multiplication operator given by multiplication by the function x 7! ~ff ðx�1Þ. These
two maps are similarly well-defined into the Calkin algebra, and we have easily:

Lemma 20. The assignment g 7! lopðgÞ, f 7! lopð f Þ, defines a covariant pair with

respect to the opposite action of G on CðqGÞ and hence a homomorphism Aop ! QðHÞ.

We next show the two homomorphisms l and lop commute as maps into the Calkin
algebra. This follows from the following.

Lemma 21. Let ~ff be a function on G, viewed as a multiplication operator on H, and
let g A G.

(1) If x 7! ~ff ðxÞ is continuous on G, then ½vg; ~ff � is a compact operator.

(2) If x 7! ~ff ðx�1Þ is continuous on G, then ½ug; ~ff � is a compact operator.

Proof. Let ~ff be as in (1). Choose e > 0. Remark if x; g A G we have ðx; xgÞf jxj � jgj.
From this and Lemma 15 we see: there exists Rf 0 such that

jxj > R ) j ~ff ðxÞ � ~ff ðxgÞj < e.

In other words, the function ~ff ðxÞ � ~ff ðxgÞ vanishes at infinity. It follows immediately that
vg ~ff vg�1 � ~ff is compact; for this operator is precisely multiplication by this function. Hence

ðvg ~ff vg�1 � ~ff Þvg ¼ ½vg; ~ff � is also a compact operator. (2) follows from (1) by conjugating by
the unitary H ! H induced from inversion on the group. r

Remark 22. The above lemma can be restated in a slightly more general way. Hav-
ing fixed a left-invariant metric on G, as we have done, right translation by a fixed g A G
gives an operator of finite propagation; on the other hand any operator of finite propaga-
tion commutes modulo compacts with multiplication by a function in CðGÞ by the same
proof as that of Lemma 21.

Definition 23. Let G be any hyperbolic group and qG its Gromov boundary. Let
H denote l2ðGÞ. We define the fundamental class of the C �-algebra A ¼ CðqGÞzG to be
the class D in KK 1ðAnAop;CÞ corresponding to the homomorphism AnAop ! QðHÞ
induced by the two commuting homomorphisms l and lop:

Remark 24. Let G be a discrete, not necessarily hyperbolic group acting co-
compactly and properly on a nonpositively curved space X , and let qX denote the
visibility boundary of X : The visibility boundary compactifies the group G and all
of the above constructions extend to this situation. We thus obtain a map
CðqX ÞzGnmax

�
CðqX ÞzG

�op ! QðHÞ in the same way. However, as the G-action on
qX is no longer amenable, it is no longer necessarily the case that such a map defines a
KK 1 element.
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Remark 25. If J denotes the conjugate linear operator H ! H sending the elementP
g

ageg A CcðGÞ to the element
P
g

ageg�1 , then the equation Jlða�ÞJ�1 ¼ lopðaÞ holds for

any a A A. This is the content of Connes’ reality axiom (see [6]), except that the relation
holds in the Calkin algebra rather than in BðHÞ. In fact, it is easy to see that all our con-
structions are compatible with the various real structures on the algebras, Hilbert spaces,
and so on, concerned, and that the cycle D in actually gives a KR-homology class. Similarly
we shall see that D̂D gives a KR class, and that the duality we are going to prove holds in the
real as well as the complex setting.

We now proceed to the element D̂D, to construct which we shall use an idea of Gromov
and subsequent work by Champetier and Matheus. Theorem 27 was first stated by Gromov
(see [12], p. 222), with a sketch of a proof; details were added by the latter two authors in
respectively [5] and [23]. As the latter authors’ work does not seem to be very well known,
we provide here a brief discussion of it.

Let us denote by q2G the space fða; bÞ A qGz qG j a3 bg. Let fGGGG denote the collec-
tion of geodesics in EG. Note that fGGGG has a natural metric with respect to which it is quasi-
isometric to EG and hence to G. Furthermore fGGGG carries commuting free and proper
actions of R and G, and the action of G is co-compact. It is not in general true that
a pair ða; bÞ of distinct boundary points of G is connected by a unique element up to
re-parameterization of fGGGG. In other words, it is not quite true that fGGGG=RG q2G, which is
what we would like. This may be remedied as follows.

One defines an equivalence relation@ on fGGGG such that GG ¼ fGGGG=@ is Hausdor¤ and
in fact with the Hausdor¤ metric on equivalence classes is a metric space quasi-isometric tofGGGG with the quotient map q : fGGGG ! GG providing the quasi-isometry. The relation@ is G-
equivariant, and G thus acts on GG and q is a G-invariant map. The relation@ is not quite
compatible with the action of R on fGGGG, but it is possible to define a new R action on GG
commuting with the G-action and with the following property: if ða; bÞ A q2G, the R orbits
of all the geodesics in fGGGG from a to b are collapsed by the quotient map to a single orbit of
the new action of R on GG. This enables us to identify GG=R with q2G.

We remark that this identification may be seen in another way. If r is a point of GG,
the curve t 7! gtðrÞ, where gt denotes the R-action on GG, is a quasi-geodesic in GG. If
under the identification GG=RG q2G the R-orbit of r corresponds to ða; bÞ A q2G, then it
is also the case that lim

t!�y
gtðrÞ ¼ a and lim

t!þy
gtðrÞ ¼ b, where the limits are taken in the

Gromov hyperbolic metric space GG.

We will only need some of the details of this construction in the proof of Lemma 30.
Apart from this lemma, we will only need the properties of GG stated in Theorem 27 below.

Remark 26. We choose this moment to note that the only G-invariant homeo-
morphism qG ! qG is the identity homeomorphism. For, as is well known, the action of G
on qG is strongly proximal. If f is a G-invariant homeomorphism of qG, by amenability of
Z, f leaves invariant some probability measure m. But then for all g A G, f�g�ðmÞ ¼ g�m.
Choose a A qG. By strong proximality we can choose a sequence of g A G such that
g�ðmÞ ! da where da denotes point mass at a, and the convergence is wk*. It follows f
fixes a. Since a was arbitrary, f is the identity map.
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Theorem 27. There exists a proper metric space GG on which G acts, for which:

(1) GG has the structure of a locally trivial principal R-bundle over q2G.

(2) G acts on GG freely, properly and co-compactly, and its action commutes with the

R action.

(3) There is a continuous involution GG ! GG denoted r 7! r̂r, which commutes with

the G action, and satisfies gtðr̂rÞ ¼ dg�trg�tr for all t, where gt denotes the R action.

Note 28. Elements of the space GG should be thought of as geodesics in EG, and so
we shall call them pseudogeodesics. The R-orbit of a pseudogeodesic is determined by a pair
of distinct boundary points ða; bÞ. We will call such a pseudogeodesic a ‘‘pseudogeodesic
from a to b.’’ In such a case, we denote by rð�yÞ the point a, and by rðþyÞ the point b.
As per the discussion prior to Remark 26, actually the curve t 7! gtðrÞ is a quasi-geodesic
in GG viewed as a hyperbolic metric space quasi-isometric to G, and a ¼ lim

t!�y
gtðrÞ, and

b ¼ lim
t!y

gtðrÞ, so this notation is actually quite suitable.

Remark 29. If G acts properly, isometrically and co-compactly on a CATð�eÞ space
X for e > 0 we may take for our purposes the space GG to be the space of actual (para-
meterized) geodesics in X , rendering the lemma superfluous. For convexity in CATð�eÞ
spaces implies that any two distinct boundary points are joined by a unique geodesic.

We will also need the following lemma.

Lemma 30. Let GG be as in Theorem 27. Then there exists a proper G-equivariant
map GG ! EG, denoted r 7! rð0Þ and satisfying

lim
t!y

gtðrÞð0Þ ¼ rðþyÞ and lim
t!�y

gtðrÞð0Þ ¼ rð�yÞ,

where the limits are taken in the Gromov compactification EG of the hyperbolic metric

space EG.

Proof. Fixing a point of GG, the orbit map G ! GG is a quasi-isometry which
therefore induces a G-invariant homeomorphism qG ! qGG. We may thus identify these
two spaces, and the identification is independent of the point chosen, since any two such
identifications di¤er by a G-invariant homeomorphism qG ! qG, and the only such is the
identity by Remark 26.

On the other hand, by the universal property of EG (see [8]), there exists a proper,
continuous G-equivariant map a : GG ! EG. Such a map is necessarily a quasi-isometry,
since the actions of G on GG and EG are co-compact. Hence a extends to a G-invariant
homeomorphism a : qG ¼ qGG ! qG. Since it is G-invariant, it must be the identity map,
again by Remark 26.

Now if r is a pseudogeodesic from a to b where a and b are points of qG viewed by
our identification as points of qGG, then t 7! gtðrÞ is a quasi-geodesic in GG and we have
lim

t!�y
gtðrÞ ¼ a and lim

t!þy
gtðrÞ ¼ b. Since a is a quasi-isometry, t 7! a

�
gtðrÞ

�
is a quasi-

geodesic in EG, and we have lim
t!�y

aðgtrÞ ¼ a and lim
t!þy

aðgtrÞ ¼ b since a extends to the

identity map on the boundary, and we are done.
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Note from this point onward we shall drop the notation r 7! aðrÞ, replacing it with
r 7! rð0Þ as in the statement of the theorem. r

Remark 31. Let M be a compact spinc manifold, so that CðMÞ is a Poincaré duality
algebra in the sense of Definition 12. The fundamental class D is obtained by pushing for-
ward the class of the Dirac operator on M by the diagonal map M ! M �M to a class
in K�ðM �MÞGK ��CðMÞnCðMÞ

�
. Let U be a tubular neighborhood of the diagonal

in M �M. There is an inclusion of C �-algebras C0ðUÞ ! CðMÞnCðMÞ, and the dual
element D̂D is constructed by pushing forward by this inclusion the Thom class in
K �ðUÞGK�

�
C0ðUÞ

�
to an element of K �ðM �MÞGK�

�
CðMÞnCðMÞ

�
. In our situa-

tion, which is vaguely analogous, there is an inclusion of C �-algebras

C0ðq2GÞzG ! AnA;

and the algebra on the left hand side is strongly Morita equivalent to a cross product by
R, and thus has a Thom class, namely the generator of the flow, which may similarly be
pushed forward to a class in K1ðAnAÞ and then to a class in K1ðAnAopÞ using the iso-
morphism AGAop. This is how we shall construct D̂D.

Note 32. For the following we will denote by ða; bÞ 7! ra;b a continuous selection of
pseudogeodesic from a to b. Such a continuous (but not G-equivariant) selection exists by
Theorem 27.1 and by paracompactness of q2G (see [12]).

Define a right C0ðq2GÞzG-valued inner product on the linear space CcðGGÞ by the
formula:

hx; hiC0ðq2GÞzG

�
ða; bÞ; g

�
¼

Ð
R

x
�
gtðra;bÞ

�
h
�
gtg

�1ðra;bÞ
�
dt:

Define a right C0ðq2GÞzG-module structure on CcðGGÞ by

ðx � f ÞðrÞ ¼ xðrÞ f
�
rð�yÞ; rðþyÞ

�
, f A C0ðq2GÞ; and ðx � gÞðrÞ ¼ xðgrÞ, for g A G.

Note this right module structure is compatible with the inner product.

Definition 33. Let E denote the completion of CcðGGÞ to a right Hilbert
C0ðq2GÞzG-module with respect to the above inner product.

Definition 34. Define a left action of C �ðRÞ on E by the unitary representation
t 7! Ut, where ðUtxÞðrÞ ¼ x

�
g�tðrÞ

�
.

Remark 35. It follows from the definition that the finite rank operators on E as a
C0ðq2GÞzG-module are linear combinations of the operators

KxðrÞ ¼
P
g AG

zðg�1rÞ
Ð
R

hðgtrÞxðg�1gtrÞ dt;

where z and h are elements of E, which fact we will use in the proof (which we have
extracted from [27]) of the following lemma.
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Lemma 36. Every element of C �ðRÞ acts on E as a compact operator. Therefore E

defines a class ½E� A KK
�
C �ðRÞ;C0ðq2GÞzG

�
:

Proof (see [27]). As GX=G is compact, we may find a compact fundamental domain
F for the G action on GX . Choose e > 0. Then we may choose open sets Ui of GX such that
F H

S
Ui, and such that for all i, Ui X gtðUiÞ ¼ j for all jtjf e. Choose then (see [27])

functions zi; e A CcðGXÞ such that zi; e A CcðUiÞ; and such that

P
g AG

zi; eðg�1rÞ
Ð
R

zi; eðg�1gtrÞ dt ¼ 1(*)

for all r A GX . Define then operators Ke on E by

KexðrÞ ¼
P
i

P
g AG

zi; eðg�1rÞ
Ð
R

zi; eðgtrÞxðgtg�1rÞ dt:

From Remark 35, each Ke is a compact operator, and from condition (*) above and the
fact that each zi; eðrÞzi; eðgtrÞ ¼ 0 if jtjf e and r A GX , it can easily be seen that for
j A C �ðRÞ,

j � Ke ! j

in operator norm, as e ! 0. Since each j � Ke is compact, so is j. r

Definition 37. Let the class ½D� A KK�1
�
C;C0ðq2GÞzG

�
be defined by

½D� ¼ ½d̂dR�nC �ðRÞ ½E�,

where ½E� denotes the class in KK
�
C �ðRÞ;C0ðq2GÞzGÞ

�
of the cycle ðE; 0Þ.

Remark 38. It will be useful for later to note the following. By the Stabilization
Theorem ([21]) we may embed E as a direct summand of a trivial Hilbert C0ðq2GÞzG-

module C0ðq2GÞzGnV , where V is any separable Hilbert space. Then the left action
C �ðRÞ ! BðEÞ of C �ðRÞ on E may be composed with the embedding, yielding a homo-
morphism n : C �ðRÞ ! K

�
C0ðq2GÞzGnV

�
GC0ðq2GÞzGnKðVÞ. ½D� then becomes

n�ð½d̂dR�Þ. Note also that since any two choices of n are related by a unitary equivalence, this
construction is not dependent on the choice of embedding E ! C0ðq2GÞzGnV .

We next note the following trivial

Lemma 39. The C �-algebra A ¼ CðqGÞzG is isomorphic to its opposite algebra.

Proof. Define a map j : A ! Aop by the covariant pair jð f Þ ¼ f and jðgÞ ¼ g�1.
Then j induces the required isomorphism. r

For what follows, observe that there is a canonical inclusion C0ðq2GÞzG ! AnA

given by the composition C0ðq2GÞzG ! CðqG� qGÞzGGCðqGÞnCðqGÞzG !
CðqGÞzGnCðqGÞzG ¼ AnA. We shall denote this inclusion by i.
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Definition 40. We define the element D̂D A KK�1ðC;AnAopÞ to be

D̂D ¼ ð1A n jÞ�i�ð½D�Þ A KK�1ðC;AnAopÞ:

We are finally in a position to state our main theorem.

Theorem 41. Let G be a torsion-free hyperbolic group and qG its Gromov boundary.
Assume that qG has a self-map with no fixed points. Let A denote the cross product

CðqGÞzG. Let D and D̂D be the classes constructed in respectively Definitions 23 and 40.
Then A is a Poincaré duality algebra in the sense of Definition 12 and ðD̂D;DÞ is a Poincaré

duality pair.

The rest of this paper is devoted to the proof of Theorem 41.

5. Various reductions

Let G be a torsion-free hyperbolic group as in the previous section, A the cross
product CðqGÞzG, and D A KK 1ðAnAop;CÞ and D̂D A KK�1ðC;AnAopÞ the KK-classes
specified in respectively Definition 23 and Definition 40. To prove Theorem 41 we must
verify that

D̂DnAop D ¼ 1A

and

D̂DnA D ¼ �1Aop :

Set gA ¼ D̂DnAop D and gAop ¼ D̂DnA D. Using the map j of Lemma 39 we may identify
KKðAop;AopÞ with KKðA;AÞ. We will first prove that with this identification, gA and gAop

are the same up to sign, which implies we will only need to compute one of the above
products.

Let

D0 ¼ ð1A n jÞ�ðDÞ A KK 1ðAnA;CÞ and D̂D0 ¼ ð1An j�1Þ�ðD̂DÞ A KK�1ðC;AnAÞ:

Recall that s12 : AnA ! AnA denotes the flip. We first note:

Lemma 42. The classes D0 and D̂D0 satisfy s�
12ðD0Þ ¼ D0; and ðs12Þ�ðD̂D0Þ ¼ �D̂D0.

Proof. Beginning with D̂D0, note D̂D0 ¼ i�ð½D�Þ. Hence it su‰ces to show

ðs12 � iÞ�ð½D�Þ ¼ �i�ð½D�Þ:

Recall ½D� is given by ½d̂dR�nC �ðRÞ ½E�. Hence ðs12 � iÞ�ð½D�Þ ¼ ½d̂dR�nC �ðRÞ ðs12 � iÞ�½E�. Let
u : C �ðRÞ ! C �ðRÞ denote the homomorphism corresponding to t 7! �t. Based on a sim-
ple index calculation we see u�ð½d̂dR�Þ ¼ �½d̂dR�. Furthermore we have

ðs12 � iÞ�ð½E�Þ ¼ u�i�ð½E�Þ:
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Hence ðs12 � iÞ�ð½D�Þ ¼ u�ð½d̂dR�ÞnC �ðRÞ i�ð½E�Þ ¼ �½d̂dR�nC �ðRÞ i�ð½E�Þ ¼ �i�ð½D�Þ, and we
are done.

The class D0 is represented by the map AnA ! QðHÞ, an b 7! lðaÞrðbÞ, where
l is as before, and rðbÞ ¼ IlðaÞI , with I the unitary H ! H induced from inversion
on the group. Applying the flip s�

12 to D0 results in the map AnA ! QðHÞ given by
an b 7! rðbÞlðaÞ. Since this is conjugate, via I , to D, the class of these two extensions is
the same: s�

12ðD0Þ ¼ D0. r

Corollary 43. We have: ð j�1
� Þ j �ðgAopÞ ¼ �gA. Hence if gA ¼ 1 then gAop ¼ �1Aop .

Proof. One checks first that:

ð j�1Þ�ð1Aop nDÞ ¼ ð j�1 n 1An j�1Þ�ð1AnD0Þ;ð1Þ

j �ð j�1n 1A n j�1Þ�
�
ðs12Þ�ðD̂DÞn 1Aop

�
¼ ðs12Þ�ðD̂D0Þn 1A;ð2Þ

gAop ¼
�
ðs12Þ�ðD̂DÞn 1Aop

�
nAopnAnAop ð1Aop nDÞ:ð3Þ

Hence, using (3), then (1), and then functoriality of the intersection product, we have

ð j�1Þ� j �ðgAopÞ ¼ j �ð j�1 n 1A n j�1Þ�
�
ðs12Þ�ðD̂DÞn 1Aop

�
nAnAnA ð1A nD0Þ:ð4Þ

Using (2) we have

ð j�1Þ� j �ðgAopÞ ¼
�
ðs12Þ�ðD̂D0Þn 1A

�
n ð1AnD0Þ:ð5Þ

On the other hand,

gA ¼ ðD̂D0 n 1AÞnAnAnA ð1A n s�
12D0Þ;ð6Þ

and now, comparing (5) and (6) we are done by Lemma 42. r

We are therefore reduced in the proof of Theorem 41 to proving gA ¼ 1A; where, as
stated above, gA is the class D̂DnAop D.

Note 44. Recall that if E is a Hilbert A-module, we are denoting by BðEÞ the
bounded operators on E, KðEÞ the compact operators, and QðEÞ the quotient
BðEÞ=KðEÞ. With E ¼ AnH the standard Hilbert A-module, we have natural maps
AnBðHÞ ! BðAnHÞ, AnKðHÞ ! KðAnHÞ and AnQðHÞ ! QðAnHÞ. We will
sometimes suppress these maps, writing for instance an element of BðAnHÞ in the form
anT , for a A A and T A BðHÞ.

Remark 45. For what follows it will be useful to note that any function f on qG� G
continuous in the qG-variable may be regarded via the formula f ðaÞðexÞ ¼ f ða; xÞex as
an element of C

�
qG;BðHÞ

�
GCðqGÞnBðHÞ whence (see note above), as an element of

BðAnHÞ, and then, by application of the quotient map, an element of QðAnHÞ.

For further convenience, let us denote the C �-algebra C0ðq2GÞzG by B.
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Now, from Equation (6) in the proof of Corollary 43, from D̂D0 ¼ i�ð½D�Þ, and by
functoriality of the intersection product, we have

gA ¼ ð½D�n 1AÞnBnA ðin 1AÞ�ð1A n s�
12D0Þ:

We will begin by examining the term ðin 1AÞ�ð1A n s�
12D0Þ A KK 1ðBnA;AÞ.

Define a covariant pair for the dynamical system
�
C0ðq2GÞ;G

�
as follows. If F is

a function on q2G and ~FF denotes an extension of F to a continuous function on qG� G,
let tðFÞ be the element of QðAnHÞ corresponding (see Remark 45) to the function
tðFÞða; xÞ ¼ ~FF

�
x�1ðaÞ; x�1

�
on qG� G. This is independent of the extension ~FF of F . For

g A G, set tðgÞ ¼ 1n lopðg�1Þ A QðAnHÞ. It is easy to check that these two assignments
define a covariant pair.

Definition 46. Let t : B ! QðAnHÞ be the homomorphism corresponding to the
above covariant pair.

For g A G recall that ug denotes left translation by g. Define a covariant pair for the

dynamical system
�
CðqGÞ;G

�
by jð f Þ ¼ f n1 A BðAnHÞ, and jðgÞ ¼ gnug A BðAnHÞ.

Definition 47. Let j : A ! BðAnHÞ denote the homomorphism corresponding to
the above covariant pair.

The following proposition, though depending only on a simple property of hyperbolic
groups, is central to the proof that gA ¼ 1A. It represents a sort of untwisting of the product
D̂DnAop D.

Proposition 48. The class ðin 1AÞ�ð1An s�
12D0Þ A KK 1ðBnA;AÞ is represented by

the homomorphism i : BnA ! QðAnHÞ,

iðbn aÞ ¼ tðbÞp
�
jðaÞ

�
;

where j; t are as in Definitions 46 and 47.

We will require the following:

Lemma 49. Let F A Ccðq2G� qGÞ, and ~FF an extension of F to a continuous function

on qG� G� G. Then the two functions on qG� G

ða; xÞ 7! ~FF
�
x�1ðaÞ; x�1; x

�
and

ða; xÞ 7! ~FF
�
x�1ðaÞ; x�1; a

�

are the same modulo C0ðqG� GÞ.

Proof. Let F be as in the statement of the lemma. Then for some e > 0, F is sup-
ported on the set of ða; b; cÞ A qG� qG� G such that dGða; bÞf e. Therefore F can be
extended to a function ~FF supported on those ða; b; cÞ A qG� G� G for which dGða; bÞf e.
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Let R correspond to e as in Lemma 14. It su‰ces to show that for a A qG fixed and xn a
sequence in G converging to a boundary point b A qG, the sequence

~FF
�
x�1
n ðaÞ; x�1

n ; xn
�
� ~FF

�
x�1
n ðaÞ; x�1

n ; a
�

converges to 0 as n ! y. Since if dGðx�1
n a; x�1

n Þ < e, then both ~FF
�
x�1
n ðaÞ; x�1

n ; xn
�
¼ 0 and

~FF
�
x�1
n ðaÞ; x�1

n ; a
�
¼ 0, we may assume after extracting a subsequence if necessary, that

dG
�
x�1
n ðaÞ; x�1

n

�
f e for all n. Then by choice of R, d

�
x0; ½x�1

n ; x�1
n aÞ

�
¼ d

�
xn; ½e; aÞ

�
eR

for all n, where ½e; aÞ denotes any geodesic ray from e to a. Hence xn ! a, and the result
follows from continuity of ~FF in the third variable. r

Proof of Proposition 48. Consider the class ðin 1AÞ�ð1A n s�
12D0Þ. It is represented

by the homomorphism BnA ! QðAnHÞ

a1 n a2 n a3 7! a1 n rða2Þlða3Þ;

where we have suppressed the inclusion i : B ! AnA so that in the above formula
a1 n a2 is regarded as an element of B. Here rðaÞ ¼ lop

�
jðaÞ

�
as in the proof of Lemma

42. Define a unitary map of Hilbert modules U : AnH ! AnH by the formula
Uðan exÞ ¼ x � an ex. Let AdU denote the inner automorphism of QðAnHÞ given by
pðTÞ 7! pðUTU �Þ and let i 0 denote the homomorphism BnA ! QðAnHÞ

i 0ða1n a2 n a3Þ ¼ AdU
�
a1 n rða2Þlða3Þ

�
:

We claim that i 0 ¼ i. It is a simple matter to check that ijBnC �
r ðGÞ

¼ i 0jBnC �
r ðGÞ

, where BnC �
r ðGÞ

is viewed as a sub-algebra of BnA, and that for b A B and f A CðqGÞ, we have
iðbn f Þ ¼ tðbÞpð f n 1Þ whereas i 0ðbn f Þ ¼ tðbÞ

�
1n lð f Þ

�
. Thus it remains to prove that

tðbÞpð1n ~ff � f n 1Þ ¼ 0 in the Calkin algebra QðAnHÞ whenever b A B, f A CðqGÞ and
~ff is an extension of f to G. Since every b A B is a closed linear combination of elements of
the form g � F , with g A G and F A Ccðq2GÞ, without loss of generality b ¼ F A Ccðq2GÞ and
the result follows from Lemma 49. r

Corollary 50. The class gA lies in the range of the descent map

l : RKKGðqG;C;CÞ;

i.e. there exists gqG A RKKGðqG;C;CÞ such that lðgqGÞ ¼ gA.

Proof. Regard (see Remark 38) the class ½D� A KK�1ðC;BÞ as given by a homo-
morphism n : C �ðRÞ ! BnKðVÞ for some separable Hilbert space V . It follows that
½D�n 1A is represented by the homomorphism nn 1A : C �ðRÞnA ! BnAnKðVÞ.
Hence the class gA is represented by the homomorphism C �ðRÞnA ! QðAnHnVÞ
given by the composition

C �ðRÞnA ���!nn1A
BnAnKðVÞ ���!in1KðVÞ

QðAnHnVÞ:

Referring to Lemma 7 with L the trivial group, let h denote this composition, and put h 0

equal to the composition

C �ðRÞ ���!n BnKðVÞ ���!tn1KðVÞ
QðAnHnVÞ;
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and h 00 the composition

A ���!1A
BnAnKðVÞ ���!in1KðVÞ

QðAnHnVÞ:

By Proposition 48, h 00 lifts to a map A ! BðAnHnVÞ by setting ~hh 00ðaÞ ¼ jðaÞn 1V .
Therefore by Lemma 7, gA is represented by the cycle ðAnHnV ;F þ 1Þ, where
AnHnV has the ðA;AÞ-bimodule structure which is standard on the right and which
on the left is given by the homomorphism a 7! jðaÞn 1V , and where F is any operator on
AnHnV such that pðFÞ ¼ ðtn 1KðVÞÞ

�
nðcÞ

�
.

Now, by construction we may take F to be a limit of finite linear combinations of
operators on the Hilbert ðA;AÞ-bimodule AnHnV of the form

f n ex n v 7! ðh1 � x�1Þh3 f n ~hh2ðx�1Þex nTðvÞð7Þ

where T is compact, and h1 n h2 n h3 A C0ðq2G� qGÞ, and where ~hh2 denotes a lift of h2 to
a continuous function on G; and also of the right translation operators

f n exn v 7! f n exgnTðvÞ;ð8Þ

where g A G and T is compact. Consider the Hilbert
�
CðqGÞ;CðqGÞ

�
-bimodule

CðqGÞnHnV . Let G act on CðqGÞnHnV by gð f n exn vÞ ¼ gð f Þn egxn v. Then
it is easy to check that with this action, CðqGÞnHnV becomes a G�

�
CðqGÞ;CðqGÞ

�
-

bimodule. Note that the left and right actions of CðqGÞ are in fact the same. From equa-
tions (7) and (8) it is clear that F is constructed from operators on AnHnV which
restrict to operators on CðqGÞnHnV , hence the same is true of F . Clearly, as an operator
on CðqGÞnHnV , F commutes with the left action of CðqGÞ on the module, since this
action is the same as the right action. Finally, F commutes mod compacts with the action of
G, since the operators of which F is built all do. Hence the pair

�
CðqGÞnHnV ;F þ 1

�
actually defines a cycle for the group RKKGðqG;C;CÞ. Checking the definition of the
descent map (see [21]) it is easy to see that the image of this cycle under descent is precisely
the cycle corresponding to gA described in the first paragraph. r

We will use the above corollary to make use of the following consequence of a
theorem of Tu, which we state in a slightly more general context. Let L denote a discrete
group, which for simplicity we assume acts co-compactly on its classifying space for
proper actions, EL (as is the case for torsion-free hyperbolic G). Let X be a compact
metrizable space on which L acts by homeomorphisms. Recall from Section 1 the map
p�
EL : RKKLðX ;C;CÞ ! RKKLðX � EL;C;CÞ. Finally, recall that a C0ðEL� XÞ-algebra

D is a C �-algebra together with a non-degenerate, asymptotically unital homomorphism
C0ðEL� XÞ ! Z

�
MðDÞ

�
, where Z denotes center. D is called a G-C0ðEL� XÞ-algebra

if G acts by automorphisms on D and the homomorphism C0ðEL� X Þ ! Z
�
MðDÞ

�
is

G-equivariant. Note that such D can be in particular viewed as a CðX Þ algebra, by means
of the map CðX Þ ! CbðEG� XÞ ! Z

�
MðDÞ

�
. Let us make the following definition.

Definition 51. Let D be a L� C0ðEG� X Þ-algebra. Define a map

sEL;D : RKKLðEL� X ;C;CÞ ! RKKLðX ;D;DÞ

by replacing a cycle ðH;FÞ by the cycle ðHnC0ðEL�X Þ D;F n 1Þ.
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The Hilbert ðD;DÞ-bimodule structure on HnC0ðEL�X ÞD is well-defined as functions
in C0ðEL� XÞ act as central multipliers of D.

Next, we quote Tu’s theorem (see [30]):

Theorem 52. Let the action of L on X be topologically amenable in the sense of [2].
Then there exist a L-C0ðEL� X Þ-algebra D and elements a A RKKL

�
X ;CðXÞ;D

�
, and

b A RKKL

�
X ;D;CðX Þ

�
, satisfying

anX ;D b ¼ 1X A RKKL

�
X ;CðX Þ;CðXÞ

�
¼ RKKLðX ;C;CÞ; and

bnX ;CðXÞ a ¼ 1X ;D A RKKLðX ;D;DÞ.

Using Theorem 52 we can define a map q : RKKLðEL� X ;C;CÞ ! RKKLðX ;C;CÞ
inverse to p�

EL as follows.

Definition 53. For a A RKKLðEL� X ;C;CÞ, define

qðaÞ ¼ anX ;D sEL;DðaÞnX ;D b A RKKL

�
X ;CðXÞ;CðXÞ

�
¼ RKKLðX ;C;CÞ;

where a and b are as in Theorem 52 and sEL;D is as in Definition 51.

We show that q and p�
EL are inverse to each other. Let p1 and p2 denote

the projections EL� EL ! EL, and p�
1 ; p

�
2 the corresponding homomorphisms

C0ðELÞ ! CbðEL� ELÞ. It is a direct consequence of the axioms for EL (see [8]) that
p1 and p2 are L-invariantly homotopic.

Theorem 54. The map p�
EL defines a ring isomorphism

RKKLðX ;C;CÞ ! RKKLðX � EL;C;CÞ

with inverse q.

Proof. Because the proof is simply an X -parameterized version of the correspond-
ing statement for X ¼ pt we prove the latter for simplicity of exposition. From this
assumption we have a L� C0ðELÞ-algebra D, and a A KKLðC;DÞ, b A KKLðD;CÞ, sat-
isfying anD b ¼ 1C and bnC a ¼ 1D. Let a A KKLðC;CÞ. Then

q
�
p�
ELðaÞ

�
¼ anD sEL;D

�
p�
ELðaÞ

�
nD b ¼ anD sDðaÞnD b;

as is easy to check. On the other hand, by commutativity of the external tensor product and
the assumption on a and b, anD sDðaÞnD b ¼ anD bnC a ¼ a. Hence q

�
p�
ELðaÞ

�
¼ a.

The other composition is slightly more elaborate. Consider, for b A RKKLðEL;C;CÞ

p�
EL

�
qðbÞ

�
¼ p�

ELðaÞnEL;D p�
EL

�
sEL;DðbÞ

�
nEL;D p�

ELðbÞ;

and in particular the term p�
ELðaÞnEL;D p�

EL

�
sEL;DðbÞ

�
. We claim that this is equal to

bnEL p�
ELðaÞ, whereupon we shall be done. We may assume that b is given by a pair ðE; 0Þ,

where E is a G� C0ðELÞ-module, and that a is given by a pair ðD;MÞ where D is a

Emerson, Noncommutative Poincaré duality for boundary actions of hyperbolic groups 21



C0ðELÞ-algebra, and M is a self-adjoint multiplier of D. Then the module for the product
p�
ELðaÞnEL;D p�

EL

�
sEL;DðbÞ

�
can be written EnC0ðELÞ

�
C0ðELÞnD

�
, where the tensor

product is over the homomorphism C0ðELÞ ! CðEL� ELÞ ! M
�
C0ðELÞnD

�
,

f 7! p�
2 ð f Þ. The operator for the Kasparov product is given by multiplication by M in the

D-coordinate; note this is well defined, as M, being a multiplier of D, commutes with the
actions of functions on D.

On the other hand, consider the product bnEL p�
ELðaÞ. One calculates the product

of modules to be EnC0ðELÞ
�
C0ðELÞnD

�
, where this time the tensor product is over the

homomorphism f 7! p�
1 ð f Þ. The operator is again M acting in the D-coordinate. Now,

since p1 and p2 are L-equivariantly homotopic, the two modules are homotopic, through
a homotopy in which the action of M remains the same.

More precisely, the two cycles corresponding to the Kasparov products
p�
ELðaÞnEL;D p�

EL

�
sEL;DðbÞ

�
and bnEL p�

ELðaÞ are, as we have indicated, homotopic,

whence p�
ELðaÞnEL;D p�

EL

�
sEL;DðbÞ

�
¼ bnEL p�

ELðaÞ. This proves the claim. (See [21],
p. 179 for the same sort of argument.) r

Corollary 55. Let gqG be any element of RKKGðqG;C;CÞ such that lðgqGÞ ¼ gA.
Then to show gA ¼ 1A, and thus that ðD̂D;DÞ is a Poincaré duality pair, it su‰ces to show

p�
EGðgqGÞ ¼ 1qG�EG.

For p�
EG, being a ring isomorphism, takes a multiplicative unit to a multiplicative

unit.

Fix gqG to be the class of the cycle for RKKGðqG;C;CÞ described in the
proof of Corollary 50. Then by that corollary lðgqGÞ ¼ gA. Denote the class
p�
EGðgqGÞ A RKKGðEG� qG;C;CÞ by gEG�qG. By Corollary 55 it remains for us to show

that gEG�qG ¼ 1EG�qG.

6. Alternative description of gEGDqG

We need first consider more closely the element gqG, as its description in Corollary
50 is unsatisfactory for our purposes, relying as it does on an inexplicit homomorphism
n : C �ðRÞ ! BnKðVÞ. We would like to describe a cycle corresponding to gqG, whence
to gqG�EG, in such a way as to incorporate the bimodule E associated to the space GG of
pseudogeodesics in a more explicit way. Actually, it is quite di‰cult to do this for
gqG because of dilatability issues, but easy to do it for gqG�EG. So we focus on the latter
task. In this section we simply state what this new description of gqG�EG is, construct-
ing a certain geometric cycle for RKKGðqG� EG;C;CÞ whose class we will denote by
g 0qG�EG. We can readily show that g 0EG�qG ¼ 1EG�qG. In the last section we will verify that
in fact gEG�qG ¼ g 0EG�qG. Taking these two results together, we will thus have proven
gEG�qG ¼ 1EG�qG.

Recall that we are assuming qG has a fixed point-free map S. By compactness of qG
there exists d0 > 0 such that dG

�
a;SðaÞ

�
f d0 for all a A qG. By abuse of notation, we also

denote by S the equivariant map qG� G ! qG defined by Sða; zÞ ¼ z
�
Sðz�1aÞ

�
.
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Lemma 56. There exists an equivariant map qG� G ! GG, ða; zÞ 7! ra; z, satisfying
ra; zð�yÞ ¼ a and ra; zðþyÞ ¼ Sða; zÞ.

Proof. For each ða; bÞ A q2G, let ra;b be a pseudogeodesic from a to b, such that
the map ða; bÞ 7! ra;b is continuous (see Note 32). For a A qG, let ra ¼ ra;SðaÞ. We have
rað�yÞ ¼ a and raðþyÞ ¼ SðaÞ. To construct an equivariant map as required, we may set
ra; z ¼ zðrz�1aÞ. r

Recall that N is the parameter of the Rips complex, which we have fixed
throughout.

Lemma 57. There exists a continuous function Q on qG� G� G satisfying the fol-

lowing properties:

(1) 0eQða; z; xÞe 1 for all ða; z; xÞ A qG� G� G.

(2) Q is invariant under the triple diagonal action of G on qG� G� G.

(3) If xn is a sequence in G, z A G, and xn ! Sða; zÞ, then for every w A BNðzÞ, we have
Qða;w; xnÞ ! 0.

(4) If xn is a sequence in G, z A G, and xn ! a, then for every w A BNðzÞ, we have

Qða;w; xnÞ ! 1.

Proof. Let Qða; xÞ be a continuous function on qG� G such that 0eQe 1,
Qða; xÞ ¼ 1 for dGða; xÞ < d=2, and Qða; xÞ ¼ 0 for dGða; xÞf d, where d is to be deter-
mined later. Let then Qða; z; xÞ be the continuous function on qG� G� G defined by
Qða; z; xÞ ¼ Qðz�1a; z�1xÞ for z A G. Q is invariant under the triple diagonal G action on
qG� G� G. We prove the statement (3); the statement (4) is similar.

We claim that to prove Q has the required property, we may assume z ¼ x0,
where recall x0 is the identity of the group G, regarded as a basepoint in EG. For,
assuming the result for z ¼ x0, let z be arbitrary. Let w be such that dðz;wÞeN,
and let xn ! Sða; zÞ ¼ zS

�
z�1ðaÞ

�
. Then z�1xn ! S

�
z�1ðaÞ

�
. Now dðz�1w; x0ÞeN.

Hence Q
�
z�1ðaÞ; z�1w; z�1xn

�
! 0 by what we have assumed proved. But

Q
�
z�1ðaÞ; z�1w; z�1xn

�
¼ Qða;w; xnÞ, by equivariance of Q. This proves the claim.

Let d0 be as in the paragraph preceding Lemma 56, and let R0 correspond to d0 as in
Lemma 14. Thus, for every a A qG we have d

�
x0; ½a;SðaÞ�

�
eR0. Choose R > 2N þ 2R0,

choose d according to R as per Lemma 14, and then Q in the first paragraph as corre-
sponding to d. The result of these choices is that Qða; xÞ ¼ 0 unless dðx0; ½x; a�ÞfR. Let
then xn ! SðaÞ and let w A BNðx0Þ. Then if Qða;w; xnÞ ¼ Q

�
w�1ðaÞ;w�1xn

�
does not

converge to 0 we may assume after extracting a subsequence if necessary that for all
large n, dðx0; ½w�1a;w�1xn�ÞfR. Hence dðw; ½xn; a�ÞfR. Since xn ! SðaÞ it follows that
d
�
w; ½a;SðaÞ�

�
fR=2 and hence d

�
x0; ½a;SðaÞ�

�
fR=2�N > R0, contradicting choice

of R0. r

Consider the function Qða; z; xÞ constructed in Lemma 57. It will be convenient to
view Q as a function on qG� G� EG satisfying the same properties as the original Q;
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this is easy to arrange, by reproving Lemma 57 with G replaced by EG. Recall the map
GG ! EG, r 7! rð0Þ whose existence was proved in Lemma 30. Define a function ~QQ on
qG� G� GG by the formula ~QQða; z; rÞ ¼ Q

�
a; z; rð0Þ

�
. Note ~QQ is G-invariant.

Define a C0ðqG� EGÞ-valued inner product on the linear space

CcðqG� EG� G� GGÞ

by the formula

hx; hiða; mÞ ¼
Ð
G

Ð
R

xða; m; z; gtra; zÞ dt dmðzÞ:

Note the above integral in the z-variable is simply a finite sum, as the support of
m A EG has diameter at most N. Clearly CcðqG� EG� G� GGÞ carries left and right
actions of C0ðqG� EGÞ, and these two actions agree, and are compatible with the inner
product.

Definition 58. Let ~EE be the Hilbert
�
C0ðqG� EGÞ;C0ðqG� EGÞ

�
-bimodule obtained

by completing CcðqG� EG� G� GGÞ with respect to the above inner product.

Definition 59. Define an operator ~PP on the Hilbert C0ðqG� EGÞ-module ~EE by

ð ~PPxÞða; m; z; rÞ ¼
Ð
G

~QQða;w; rÞxða; m;w; rÞ dmðwÞ:

Remark 60. It is possible to view ~EE as the sections of a field of Hilbert spaces ~HHða;mÞ
over qG� EG, and the operator ~PP as corresponding to a field of operators ~PPða;mÞ, in the
following manner. For distinct boundary points a and b, let us denote by ½a; b� the fiber
over ða; bÞ in the map GG ! q2G provided by Theorem 27. Note that ½a; b� has a canonical
a‰ne structure, and hence there is in particular a canonical translation invariant measure
on it corresponding to Lebesgue measure on R. Now, if m is a point mass corresponding to

a point z A G, set ~HHða; zÞ ¼ L2
�
½a;Sða; zÞ�

�
. If m is an arbitrary point of EG, set ~HHða;mÞ to be

the completion of the linear space of functions G !
L

z A suppðmÞHG

~HHða; zÞ with respect to the

inner product hx; hiða;mÞ ¼
Ð
G

hxðzÞ; hðzÞi ~HHða; zÞ
dmðzÞ. The operator ~PP corresponds to the fol-

lowing field of operators f ~PPða;mÞg. If m is a point mass corresponding to a point z A G, ~PPða; zÞ
is given by pointwise multiplication by ~QQða; z; �Þ in the variable r A ½a;Sða; zÞ� on ~HHða; zÞ. If m
is an arbitrary point of EG, let ~PPða;mÞ be defined by ~PPða;mÞxðzÞðrÞ ¼

Ð
G

~QQða;w; rÞxðwÞðrÞ dmðwÞ.

Definition 61. Define a homomorphism C �ðRÞ ! Bð ~EEÞ by the unitary representa-
tion t 7! Ut, where ðUtxÞða; m; z; rÞ ¼ xða; m; z; g�trÞ.

As the left C �ðRÞ action so defined commutes with the C0ðqG� EGÞ action, we
may view ~EE as a

�
C �ðRÞnC0ðqG� EGÞ;C0ðqG� EGÞ

�
-bimodule. Next, note that

the triple diagonal action of G on qG� EG� G� GG induces an action of G on
C0ðqG� EG� G� GGÞ as linear maps. It is easy to check that this action is compatible
with the inner product and right action. It will follow from our remarks below that the
homomorphism C �ðRÞnC0ðqG� EGÞ ! Bð ~EEÞ is G-equivariant. Hence ~EE is in fact a
G�

�
C �ðRÞnC0ðqG� EGÞ;C0ðqG� EGÞ

�
-bimodule.
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Remark 62. Note that from the field perspective, the fact that ~EE is a
G�

�
C0ðqG� EGÞ;C0ðqG� EGÞ

�
-bimodule (which it is in particular, ignoring the left

C �ðRÞ-action) may be re-stated as: g A G maps ~HHða;mÞ isometrically onto ~HHðga; gmÞ. We note

also that we can identify ~HHða;mÞ in a G-equivariant fashion with L2ðRÞnL2
mðGÞ. Under this

identification the action of g A G, ~HHða; zÞ ! ~HHðga; gzÞ becomes trivial on the L2ðRÞ factor, and
the usual action on the L2

mðGÞ factor; and the C �ðRÞ action becomes trivial on the L2
mðGÞ

factor and the regular representation on the L2ðRÞ factor. All this follows from using the
G-equivariant section ða; zÞ 7! ra; z to identify G-equivariantly each ½a;Sða; zÞ� with R.

Lemma 63. The following hold:

(1) The map C �ðRÞnC0ðqG� EGÞ ! Bð ~EEÞ is G equivariant.

(2) For j A C �ðRÞ, f A C0ðqG� EGÞ, ½jf ; ~PP� ¼ f ½j; ~PP� is a compact operator.

(3) The operator ~PP is G-equivariant: ½g; ~PP� ¼ 0 for all g A G.

(4) jf ð ~PP2 � ~PPÞ and jf ð ~PP� � ~PPÞ are compact for all j A C �ðRÞ and f A C0ðqG� EGÞ.

Proof. The first statement is clear. Using the field description, it is easy to see that
to prove the second statement it su‰ces to prove that for each ða; mÞ A qG� EG the com-
mutators ½j; ~PPða;mÞ� are compact operators on ~HHða;mÞ, for j A C �ðRÞ. Under the identifica-

tion ~HHða; zÞ GL2ðRÞ pointed out in Remark 62, the operators ~PPða; zÞ become multiplication
by functions wða; zÞðtÞ which satisfy lim

t!�y
wða; zÞðtÞ ¼ 1 and lim

t!þy
wða; zÞðtÞ ¼ 0: From this it

follows immediately that for j A C �ðRÞ, the commutator ½j; ~PPða; zÞ� on ~HHða; zÞ is compact.
Indeed, if j is a compactly supported function on R, and w is a function with lim

t!�y
wðtÞ ¼ 1

and lim
t!þy

wðtÞ ¼ 0, it is easy to check that the commutator of convolution with j and

pointwise multiplication by w is a compact operator on L2ðRÞ. The result for the operators
~PPða;mÞ follows, since each ~PPða;mÞ is a convex combination of the Pða; zÞ. In an exactly analo-
gous way one proves that the operators jð ~PP2

ða;mÞ � ~PPða;mÞÞ, for j A C �ðRÞ, are compact oper-
ators on ~HHða;mÞ, which is part of the fourth assertion; self-adjointness follows similarly.
Equivariance of ~PP is a direct consequence of equivariance of the function ~QQ. r

We have shown the following:

Corollary 64. The pair ð ~EE; ~PPÞ defines a cycle for the group

RKK 1
G

�
qG� EG;C �ðRÞ;C

�
:

Definition 65. Let

g 0qG�EG ¼ p�
qG�EGð½d̂dR�ÞnqG�EG;C �ðRÞ ½ð ~EE; ~PPÞ� A RKKGðqG� EG;C;CÞ:

Proposition 66. We have:

g 0qG�EG ¼ 1qG�EG:
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Proof. We first deform the cycle corresponding to g 0qG�EG as follows. Identifying
the field of Hilbert spaces ða; mÞ 7! ~HHða;mÞ with the field ða; mÞ 7! L2

m

�
G;L2ðRÞ

�
as in

Remark 62, form a homotopy of operators ~PPt
ða;mÞ by the formula

½ ~PPt
ða;mÞx�ðzÞ ¼

Ð
G

½ð1� tÞwða;wÞ þ twð�y;0��xðwÞ dmðwÞ;

where the functions wa;w are as in the proof of Lemma 63. It is easy to check this formula
defines an operator homotopy in RKK 1

G

�
qG� EG;C �ðRÞ;C

�
, deforming the cycle corre-

sponding to g 0qG�EG to the cycle given by the same field of Hilbert spaces, but with the field
of operators given on ~HHða;mÞ by wð�y;0� nPm. Now, Pm is a rank one projection which is in
addition G-invariant. Let m 7! xm denote a continuous selection of a unit vector in L2

mðGÞ for
which Pmxm ¼ xm and for which gxm ¼ xgm, for any g A G. We have

~HHða;mÞ ¼ L2ðRÞn ½xm�lL2ðRÞnL2
mðGÞ

0;

where L2
mðGÞ

0 denotes the functions in L2
mðGÞ with m-integral 0, and ½xm� denotes the one

dimensional linear subspace generated by xm. With respect to this decomposition, the oper-
ator corresponding to our new deformed cycle is simply wð�y;0� n 1l 0, and the C �ðRÞ-
action is diagonal. It follows that the deformed cycle is the direct sum of a degenerate cycle
and the cycle given by the constant field of Hilbert spaces L2ðRÞ, and operators wð�y;0�,
with the usual C �ðRÞ-action. The class of the latter is 1qG�X by a qG� EG-parameterized
version of Corollary 3, and the class of the former is 0 in RKK, and so we are done:
g 0qG�EG ¼ 1qG�EG. r

7. Proof that gEGDqG F gEGDqGO

We now pass to proving gEG�qG ¼ g 0EG�qG. Our strategy for doing this is to define
an element b A RKK�1

G ðqG� EG;C;BÞ such that gqG�EG ¼ p�
qG�EGð½D�ÞnqG�EG b. We will

then separately verify that the axioms for a Kasparov product of p�
qG�EGð½D�Þ and b are

satisfied by the cycle for g 0qG�EG of the previous section, from which we will conclude that
g 0qG�EG ¼ gqG�EG.

We first recall the homomorphism i : BnA ! QðAnHÞ, which in Lemma 48
we showed has the form iðbn aÞ ¼ tðbÞp

�
jðaÞ

�
, with jð f Þ ¼ f n 1 A BðAnHÞ and

jðgÞ ¼ gn ug A BðAnHÞ. Let G act on CðqGÞnH diagonally. Then it is clear that i

restricts to a G-equivariant homomorphism BnCðqGÞ ! Q
�
CðqGÞnH

�
having the

form b 7! tðbÞ, f 7! pð f n 1Þ. We denote this latter G-equivariant homomorphism
BnCðqGÞ ! Q

�
CðqGÞnH

�
by iqG.

Remark 67. A great deal of the complication in this part of the argument arises
from the di‰culty in representing the class gqG as a product of two equivariant classes, even
whilst knowing that gqG itself is an equivariant class. Specifically, we do not know whether
or not the homomorphism iqG is dilatable in the sense of Definition 5. The idea is that
this problem will vanish when inflating everything over EG. After doing this, the inflated
map, which we will call iqG�EG, will in fact become dilatable, and gqG�EG (though not
gqGÞ will become, as we would like, a product of two equivariant classes, specifically as
p�
qG�EGð½D�ÞnqG�EG ½iqG�EG�. The class b mentioned in the first paragraph of this section

will be simply the dilation of iqG�EG; i.e. b ¼ ½iqG�EG�.
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Recall the module E of Definition 33. Choose an embedding of E as a direct sum-
mand of a trivial B-module BnV for some Hilbert space V , and denote by n the homo-
morphism C �ðRÞ ! BnKðVÞ obtained by the composition

C �ðRÞ ! KðEÞ ! KðBnVÞGBnKðVÞ:

Let nqG denote the homomorphism C �ðRÞnCðqGÞ ! BnCðqGÞnKðVÞ obtained by
tensoring n with the identity on CðqGÞ and re-arranging factors. Finally, let iqG;V denote the
homomorphism BnCðqGÞnKðVÞ ! Q

�
CðqGÞnHnV

�
obtained by tensoring iqG by

the identity homomorphism on KðVÞ and re-arranging factors. We have essentially already
proved the following lemma (see the proof of Corollary 50), but we restate it for the sake of
emphasis. Recall the function c A C �ðRÞ of Section 1.

Lemma 68. gqG is represented by any cycle of the form
�
CðqGÞnHnV ;F þ 1

�
where F A B

�
CðqGÞnHnV

�
is any operator for which pðFÞ ¼ iqG;V

�
nqGðcn 1Þ

�
.

Now we tensor all the above data with EG as follows. Let firstly iqG�EG denote
the homomorphism BnC0ðqG� EGÞ ! Q

�
C0ðqG� EGÞnH

�
obtained by tensoring iqG

with the identity on C0ðEGÞ and re-arranging factors. Let iqG�EG;V denote the homo-
morphism BnC0ðqG� EGÞnKðVÞ ! Q

�
C0ðqG� EGÞnHnV

�
obtained by tensor-

ing iqG�EG with the identity on KðVÞ and re-arranging factors. Finally, let nqG�EG

denote the homomorphism C �ðRÞnC0ðqG� EGÞ ! BnC0ðqG� EGÞnKðVÞ similarly
obtained by tensoring with the identity on C0ðqG� EGÞ and re-arranging factors. Then just
as above we have:

Lemma 69. gqG�EG is represented by any cycle of the form

�
C0ðqG� EGÞnHnV ;G þ 1

�
;

where G is any operator on C0ðqG� EGÞnHnV satisfying

pðGÞ ¼ iqG�EG;V

�
nqG�EGðcn 1Þ

�
:

Now, suppose we knew that iqG�EG was dilatable. Then iqG�EG would define a
class b ¼ ½iqG�EG� in RKK 1

GðqG� EG;B;CÞ, and the class gqG�EG would then factor in the
equivariant category as gqG�EG ¼ p�

qG�EGð½D�ÞnqG�EG;B b. For emphasis, we state this all

explicitly as a proposition, leaving the proof, which is a standard exercise in Kasparov
theory, to the reader.

Proposition 70. Let ðE;PÞ be a cycle for RKK 1
GðqG� EG;B;CÞ for which there

exists an isometry U : C0ðqG� EGÞnH ! E of Hilbert C0ðqG� EGÞ-modules such that

for every f A C0ðqG� EGÞ and b A B:

p
�
U �Pfð f n bÞPU

�
¼ iqG�EGð f n bÞ;

where f : C0ðqG� EGÞnB ! BðEÞ is the left C0ðqG� EGÞnB-structure of E. Then

gqG�EG ¼ p�
qG�EGð½D�ÞnqG�EG;B b;

where b denotes the class of ðE;PÞ.
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Remark 71. After constructing such b, it will be possible to describe gqG�EG without
mention of the inexplicit homomorphism n. For p�

qG�EGð½D�Þ, in addition to being repre-

sented by the homomorphism nqG�EG, is alternatively represented simply by the pair�
C0ðqG� EGÞnE; 0

�
. Hence the product gqG�EG ¼ p�

qG�EGð½D�ÞnqG�EG;B b will be repre-
sented by the cycle ðEnB E;RÞ, where R is a P-connection. This is how we shall show that
gqG�EG ¼ g 0qG�EG. We will find a cycle ðE;PÞ as in the hypothesis of the Proposition 70, such

that the resulting cycle ðEnB E;RÞ is homotopic to the cycle ð ~EE; ~PPÞ described in the pre-
vious section. Since the latter cycle is homotopic to the cycle for 1qG�EG, we will conclude
gqG�EG ¼ p�

qG�EGð½D�ÞnqG�EG;B b ¼ g 0qG�EG ¼ 1qG�EG.

We now set about construction of the cycle ðE;PÞ and the embedding of
C0ðqG� EGÞnH into E as above.

Define a C0ðqG� EGÞ-valued inner product on the linear space CcðqG� EG� G;HÞ
by the formula

hx; hiða; mÞ ¼
Ð
G

hxða; m; zÞ; hða; m; zÞi dmðzÞ:

Note that the integral is a finite sum, as the support of m has diameter at most N, where N
is the parameter of the Rips complex.

Definition 72. Let E be the right Hilbert C0ðqG� EGÞ-module obtained by com-
pletion of CcðqG� EG� G;HÞ with respect to the above inner product.

Definition 73. Define an operator P on E as follows: let

Pxða; m; zÞðxÞ ¼
Ð
G

Qða;w; xÞxða; m;w; xÞ dmðwÞ:

Once again the integral is a finite sum.

Definition 74. Define a map f : C0ðqG� EGÞnB ! BðEÞ by the following covari-
ant pair. Let F A C0ðq2GÞ and f A C0ðqG� EGÞ. Define then

�
fð f nFÞx

�
ða; m; zÞðxÞ ¼ f ða; mÞF

�
x�1ðaÞ; x�1Sða; zÞ

�
xða; m; zÞðxÞ:

For g A G, define fðgÞxða; m; zÞðxÞ ¼ xða; m; zÞðxgÞ:

Remark 75. As we did in the previous section, we can give a somewhat more intuitive
description of the above data in terms of fields. From this point of view, E can be under-
stood as sections of the continuous, equivariant field of Hilbert spaces Hða;mÞ ¼ L2

mðG;HÞ.
Note that for m a point mass at a point z A GHEG,Hða;mÞ is simply H. The homomorphism
f can be understood as a field of homomorphisms fða;mÞ : B ! BðHða;mÞÞ as follows: first
define, for ða; zÞ A qG� G, a homomorphism fða; zÞ : B 7! BðHÞ by

fða; zÞðFÞðxÞ ¼ F
�
x�1ðaÞ; x�1Sða; zÞ

�
and fða; zÞðgÞ ¼ lopðg�1Þ.

Then define, for ða; mÞ A qG� EG, the homomorphism

fða;mÞ : B ! BðHða;mÞÞ
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by fða;mÞðbÞðxÞðzÞðxÞ ¼ fða; zÞðbÞ
�
xðzÞ

�
ðxÞ. There is a similar description of the operator P

as a field of operators Pða;mÞ : ðPða;mÞxÞðzÞðxÞ ¼
Ð
G

Qða;w; xÞxðzÞðxÞ dmðwÞ.

Next, note that G acts on CcðqG� EG� G;HÞ, and the action is compatible with the�
C0ðqG� EGÞnB;C0ðqG� EGÞ

�
-bimodule structure and the inner product. Hence E has

the structure of a G�
�
C0ðqG� EGÞnB;C0ðqG� EGÞ

�
-bimodule. We have furthermore:

Lemma 76. If f A C0ðqG� EGÞ and b A B, then ½P; fð f n bÞ� is compact.

Proof. Let F A Ccðq2GÞ and f A C0ðqG� EGÞ, and fix ða; mÞ A qG� EG and
z A suppðmÞ. Then we have:

�
Pfð f nFÞ

�
xða; m; zÞðxÞ ¼ f ða; mÞ

Ð
G

Qða;w; xÞF
�
x�1ðaÞ; x�1Sða;wÞ

�
xða; m;wÞðxÞ dmðwÞ

and�
fð f nFÞP

�
xða; m; zÞðxÞ ¼ f ða; mÞF

�
x�1ðaÞ; x�1Sða; zÞ

�Ð
G

Qða;w; xÞxða; m;wÞðxÞ dmðwÞ:

Let x ! y. Note that for any w A suppðmÞ we have dðz;wÞeN. Fix such w. Now if
the scalar F

�
x�1ðaÞ; x�1Sða;wÞ

�
� F

�
x�1ðaÞ; x�1Sða; zÞ

�
does not converge to 0, it fol-

lows from the fact that F A Ccðq2GÞ and the usual argument, that the distance from x

to the geodesic ½Sða; zÞ;Sða;wÞ� remains bounded, and hence that either x ! Sða; zÞ or
x ! Sða;wÞ. But in either case it follows from Lemma 57 and the fact that dðz;wÞeN

that both Qða; z; xÞ ! 0 and Qða;w; xÞ ! 0. We have shown that the di¤erence
Qða;w; xÞ

�
F
�
x�1a; x�1Sða;wÞ

�
� F

�
x�1a; x�1Sða; zÞ

��
converges to 0 as x ! y and with z

and w fixed. It follows this di¤erence converges to 0 uniformly in z and w, as the latter
range over a finite set. From this it follows immediately that the di¤erence of the above two
expressions represents a compact operator on E.

Finally, to show the commutator ½fð f n gÞ;P� is compact, observe that

�
fðgÞPfðg�1Þ � P

�
xða; m;w; xÞ ¼

Ð
G

�
Qða;w; xgÞ �Qða;w; xÞ

�
xða; m;w; xÞ dmðwÞ:

For every a and every w the function x 7! Qða;w; xgÞ �Qða;w; xÞ lies in c0ðGÞ, since Q is
continuous in the x-variable. The result follows immediately. r

The proof of the following lemma follows the same strategy as that of the previous
one, and we omit it.

Lemma 77. fð f n bÞðP2 � PÞ and fð f n bÞðP� � PÞ are both compact operators, for
all b A B and f A C0ðqG� EGÞ.

We have shown:

Corollary 78. The pair ðE;PÞ defines a cycle for RKK 1
GðqG� EG;B;CÞ.

Definition 79. Let b A RKK 1
GðqG� EG;B;CÞ denote the class of the cycle ðE;PÞ

above.
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We next embed C0ðqG� EGÞnH into E as follows.

Definition 80. Define a map U : C0ðqG� EG;HÞ ! E by the formula
ðUxÞða; m;wÞ ¼ xða; mÞ.

U is clearly an isometric map of C0ðqG� EGÞ-modules.

Remark 81. From the field perspective, U consists of the field of isometries
Uða;mÞ : H ! Hða;mÞ sending x to the constant function z 7! x. Since each m is a probability
measure, U is indeed isometric.

Proposition 82. The hypothesis of Proposition 70 holds for the pair ðE;PÞ, and the

isometry U above.

Proof. For simplicity of exposition we work with fields. From this point of view
it is easy to see that the homomorphism iqG�EG is given by the field of homomorphisms
fðiqG�EGÞða;mÞ : B ! QðHÞg over qG� EG, with ðiqG�EGÞða;mÞðFÞ the element of QðHÞ cor-
responding to multiplication by the function x 7! ~FFðx�1a; x�1Þ, where ~FF is an extension of
F to a continuous function on qG� G. Secondly, ðiqG�EGÞða;mÞðgÞ ¼ lopðg�1Þ. As mentioned

above, the isometric module map U becomes the family of isometries Uða;mÞ : H ! Hða;mÞ,
Uða;mÞxðwÞ ¼ x for all w A suppðmÞ. Recall the homomorphisms fða;mÞ defined in the con-
struction of the cycle corresponding to the class b, and the projections Pða;mÞ. We now wish
to show that, for any b A B, the elements

Tb ¼ p
�
U �

ða;mÞPða;mÞfða;mÞðbÞPða;mÞUða;mÞ
�
� ðiqG�EGÞða;mÞðbÞ

are zero in the Calkin algebra of H. If b ¼ g A G, it is easy to check that Tb is the zero oper-
ator, and so we can pass to the case b ¼ F A Ccðq2GÞ. In this case, a short calculation shows
that Tb corresponds to a diagonal operator, and, moreover, that to show it is 0 in the Calkin
algebra, it is enough to show that as x ! y,

Ð
G

Qða;w; xÞ ~FF
�
x�1ðaÞ; x�1Sða;wÞ

�
dmðwÞ � ~FF

�
x�1ðaÞ; x�1

�
! 0;

where ~FF is an extension of F to a continuous function on qG� G. Firstly, if x ! a; then for
large enough x, Qða;w; xÞ ¼ 1 for all w A suppðmÞ; and hence the di¤erence between the
above integral and the integral

Ð
~FF
�
x�1ðaÞ; x�1Sða;wÞ

�
� ~FF

�
x�1ðaÞ; x�1

�
dmðwÞ

converges to 0 as x ! a. Considering the latter integral, for every w in the integrand we
certainly have dG

�
x�1SwðaÞ; x�1

�
! 0 as x ! y, else we would have by the usual argu-

ment that for some w, the distance from x to the ray
�
e;SwðaÞ

�
remains bounded, which

would imply x ! SwðaÞ, thus contradicting x ! a and a3SwðaÞ. Hence for every w in
the integrand dG

�
x�1SwðaÞ; x�1

�
! 0 as claimed, and so the integral converges to 0 by

continuity of ~FF in the second variable. If x does not converge to a, it follows that
~FF
�
x�1ðaÞ; x�1

�
! 0, and we need only show the integral also converges to 0. If it does

not, for at least one w, say w1, dG
�
x�1ðaÞ; x�1Sw1

ðaÞ
�
does not converge to 0, whence x ! a

or Sw1
ðaÞ. By assumption x does not converge to a so it converges to Sw1

ðaÞ. But then by
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Lemma 57, for all w in the support of m, Qða;w; xÞ ! 0, since for any such w, dðw;w1ÞeN,
and we are done. r

By Proposition 70 we conclude that gqG�EG ¼ p�
qG�EGð½D�ÞnqG�EG;B b. To show that

gqG�EG ¼ g 0qG�EG it therefore su‰ces to show that also g 0qG�EG ¼ p�
qG�EGð½D�ÞnqG�EG;B b,

which we will do by verifying that g 0qG�EG satisfies the axioms for a Kasparov product of
p�
qG�EGð½D�Þ and b.

Recall from the discussion in Remark 71 that the product p�
qG�EGð½D�ÞnqG�EG;B b is

given by the cycle ðEnB E;RÞ where R is a P-connection. We first observe:

Lemma 83. EnB EG ~EE equivariantly, and under this isomorphism the C �ðRÞ action
on EnB E becomes the action of C �ðRÞ on ~EE defined in Definition 61.

Proof. To see this, we work from the field point of view, whereapon our statement
becomes: for every ða; mÞ A qG� EG, we have EnB Hða;mÞ G ~HHða;mÞ, and that furthermore,
under this isomorphism, the action of C �ðRÞ on EnB Hða;mÞ corresponds to the action of
C �ðRÞ on ~HHða;mÞ described in Remark 62.

The isomorphism is defined on the dense subset CcðGGÞnB L
2
mðG;CGÞ of

EnB L
2
mðG;HÞ by the composition of linear maps

CcðGGÞnB L
2
mðG;CGÞG

�
CcðGGÞnBCG

�
nL2

mðGÞ

GCcðGGÞnC0ðq2GÞ L
2
mðGÞ ! L2

m

�
G;

L
z A suppm

Cc

�
½a;SzðaÞ�

��
! ~HHða;mÞ:

The penultimate map is induced by the restriction map CcðGGÞ !
L

z A suppðmÞ
Cc

�
½a;Sða; zÞ�

�
.

This composition is isometric with respect to the various Hilbert module norms. The
statement regarding the C �ðRÞ actions is obvious. r

Proposition 84. We have: p�
qG�EGð½D�ÞnqG�EG;B b ¼ g 0qG�X .

Proof. We shall prove this by showing that the operator ~PP is a P-connection.
We work with fields. Taking the product pointwise of the modules results in the
field of modules ~HHða;mÞ by Lemma 83. We show that the operator ~PPða;mÞ described
in Remark 60 is a Pða;mÞ-connection. Let x A CcðGGÞHE and yx denote the operator
HnL2

mðGÞ ! EnB HnL2
mðGÞ, h 7! xnB h. By [20] we need show that the operator

HnL2
mðGÞ ! ~HHða;mÞ,

Aða;m;xÞðhÞ ¼ ~PPða;mÞðxnB hÞ � xnB Pða;mÞðhÞ

is a compact operator, and show as well that an adjointed version of this equation also
represents a compact operator. We shall show the first; the second is verified analogously.
To calculate explicitly the operator Aða;m;xÞ, assume h A HnL2

mðGÞ has the simple form
h ¼ exn a for a A L2

mðGÞ and x A G. We have

ðAða;m;xÞhÞðzÞðrÞ ¼
Ð
G

�
Q
�
a;w; rð0Þ

�
�Qða;w; xÞ

�
aðwÞx

�
x�1ðrÞ

�
dmðwÞ
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and from this it is evident that it su‰ces to show that for x ! y and w A suppðmÞ,
the L2-norm of the function h ¼ hðrÞ ¼

�
Q
�
a;w; rð0Þ

�
�Qða;w; xÞ

�
x
�
x�1ðrÞ

�
of

~HHða;wÞ ¼ L2
�
½a;SwðaÞ�

�
GL2ðRÞ converges to 0, since this will express Aða;m;xÞ as a norm

limit of finite rank operators.

Choose e > 0. Then there exists R > 0 such that if x is large enough and rð0Þ A BRðxÞ,
then

��Q�
a;w; rð0Þ

�
�Qða;w; xÞ

�� < e, by uniform continuity of Qða;w; �Þ and the fact that
the Gromov compatification of G, and also EG, is ‘good’ (metric balls in the word metric
become small in the topology of G near the boundary). Also, as x A CcðGGÞ; there exists
some R for which xðrÞ ¼ 0 unless rð0Þ A BRðx0Þ. It follows that for x large enough and
r A ½a;Sða;wÞ�, either hðrÞ ¼ 0 or jhðrÞj < e

��x�x�1ðrÞ
���. Consequently, for x su‰ciently

large, khk ~HHða;wÞ
< ekxkE , and we are done. r

Corollary 85. We have

g 0qG�EG ¼ gqG�EG A RKKGðqG� EG;C;CÞ

and hence gEG�qG ¼ 1qG�EG.

This concludes the proof of Theorem 41.
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