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Abstract. Let G be a locally compact group, let X be a universal proper G-space, and let X̄
be a G-equivariant compactification of X that is H -equivariantly contractible for each com-
pact subgroup H ⊆ G. Let ∂X = X̄ \ X. Assuming the Baum-Connes conjecture for G with
coefficients C and C(∂X), we construct an exact sequence that computes the map on K-theory
induced by the embedding C∗r G → C(∂X)�r G. This exact sequence involves the equivari-
ant Euler characteristic of X, which we study using an abstract notion of Poincaré duality in
bivariant K-theory. As a consequence, ifG is torsion-free and the Euler characteristic χ(G\X)
is non-zero, then the unit element of C(∂X) �r G is a torsion element of order |χ(G\X)|.
Furthermore, we get a new proof of a theorem of Lück and Rosenberg concerning the class of
the de Rham operator in equivariant K-homology.

Mathematics Subject Classification (1991): 19K35, 46L80

1. Introduction

Let G be a locally compact group, let X be a proper G-space, and let X̄ be a
compact G-space containing X as a G-invariant open subset. Suppose that both
X and X̄ are H -equivariantly contractible for all compact subgroups H of G;
we briefly say that they are strongly contractible and call the action of G on
∂X := X̄ \X a boundary action.

For example, the group G = PSL(2,Z) admits the following two distinct
boundary actions. On the one hand, sinceG is a free product of finite cyclic groups,
it acts properly on a treeX ([54]). Let ∂X be its set of ends, which is a Cantor set,
and let X̄ be its ends compactification. Then X and X̄ are strongly contractible,
and the action ofG on ∂X is a boundary action. On the other hand, PSL(2,Z) ⊆
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PSL(2,R) acts by Möbius transformations on the hyperbolic plane H
2. We com-

pactify H
2, as usual, by a circle at infinity. Again, H2 and H̄

2 are strongly contract-
ible and the action on the circle ∂H2 is a boundary action. Other examples are: a
word-hyperbolic group acting on its Gromov boundary; a group of isometries of
a CAT(0) space X acting on the visibility boundary of X; a mapping class group
of a Riemann surface acting on the Thurston boundary of Teichmüller space; a
discrete subgroup of Isom(Hn) acting on its limit set. We discuss these examples
in Section 2.

The purpose of this article is to describe the map on K-theory induced by the
obvious inclusion u : C∗r G→ C(∂X)�r G, whereG× ∂X→ ∂X is a boundary
action and C(∂X) �r G is its reduced crossed product C∗-algebra. Our result is
analogous to the classical Gysin sequence, which we recall first.

LetX be a locally compact space and letπ : V → X be a vector bundle overX,
say of rankn. LetBV andSV be the (closed) disk and sphere bundles ofV , respec-
tively (with respect to some choice of metric on the bundle). LetH ∗c denote coho-
mology with compact supports. Since the bundle projection BV → X is a proper
homotopy equivalence, we have H ∗c (BV ) ∼= H ∗c (X) and K∗(BV ) ∼= K∗(X). We
assume now that the bundle V is oriented or K-oriented, respectively. Then we
get Thom isomorphismsH ∗−nc (X) ∼= H ∗c (V ) or K∗−n(X) ∼= K∗(V ), and excision
for the pair (BV, SV ) provides us with long exact sequences of the form

· · · → H∗−nc (X)
ε∗−→ H∗c(X)

π∗−→ H∗c(SX)
δ−→H∗−n+1

c (X)→ · · · ,
· · · → K∗−n(X)

ε∗−→ K∗(X)
π∗−→ K∗(SX)

δ−→K∗−n+1(X)→ · · ·

These are the classical Gysin sequences. In cohomology, the map ε∗ is the cup
product with the Euler class eV ∈ Hn(X) of the oriented bundle V . In K-theory,
it is the cup product with the spinor class (see [23, IV.1.13]).

We are only interested in the case whereX is a smooth n-dimensional manifold
andV = TX is its tangent bundle. Then the map ε∗ : H∗−nc (X)→ H∗c(X) vanishes
unless ∗ = n, for dimension reasons; if X is not compact, then H0

c(X) = 0 and
hence ε∗ = 0. IfX is compact, then eTX ∈ Hn(X) has the property that 〈eTX, [X]〉
is the Euler characteristicχ(X) ofX (see [6]). Theorem 41 gives a similar descrip-
tion of the map ε∗ : K∗−n(X) → K∗(X): it vanishes on K1(X) and is given by
x �→ χ(X) dim(x) · pnt! on K0(X); here the functional dim : K0(X)→ Z sends
a vector bundle to its dimension and pnt! ∈ KK−n

(
C, C0(X)

) ∼= Kn(X) is the
wrong way element corresponding to the inclusion of a point in X, which is a
K-oriented map. Notice that dim = 0 unless X is compact. Since the map ε∗

factors through Z, we can cut the above long exact sequence into a pair of shorter
exact sequences.

Now we return to the situation of a boundary action. For expository purposes,
we assume that G is a torsion-free discrete group, although we treat arbitrary
locally compact groups later on. If G is torsion-free, then X is a universal free
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properG-space, so thatG\X is a model for the classifying spaceBG. We warn the
reader that K∗(G\X) depends on the particular choice of BG because K-theory
is only functorial for proper maps; we discuss this for PSL(2,Z) at the end of
Section 2 (see also Example 35).

The exact sequences in the following theorem are quite similar to the classical
Gysin sequence for the tangent bundle.

Theorem 1. Let G be a torsion-free discrete group and let G × ∂X → ∂X be
a boundary action, where X is a finite-dimensional simplicial complex with a
simplicial action ofG. Assume thatG satisfies the Baum-Connes conjecture with
coefficients C andC(∂X). Let u : C∗r G→ C(∂X)�rG be the embedding induced
by the unit map C→ C(∂X).

If G\X is compact and χ(G\X) 	= 0, then there are exact sequences

0→ 〈χ(G\X)[1C∗r G]〉 ⊆−→K0(C
∗
r G)

u∗−→ K0(C(∂X)�r G)→ K1(G\X)→ 0,

0→ K1(C
∗
r G)

u∗−→ K1(C(∂X)�r G)→ K0(G\X) dim−→ Z→ 0.

Here 〈χ(G\X)[1C∗r G]〉 denotes the free cyclic subgroup of K0(C
∗
r G) that is gen-

erated by χ(G\X)[1C∗r G], and dim maps a vector bundle to its dimension.
If G\X is not compact or if χ(G\X) = 0, then there are exact sequences

0→ K0(C
∗
r G)

u∗−→ K0(C(∂X)�r G)→ K1(G\X)→ 0,

0→ K1(C
∗
r G)

u∗−→ K1(C(∂X)�r G)→ K0(G\X)→ 0.

Corollary 2. The class of the unit element in K0(C(∂X) �r G) is a torsion ele-
ment of order |χ(G\X)| if G\X is compact and χ(G\X) 	= 0, and not a torsion
element otherwise.

Several authors have already noticed various instances of this corollary ([1,
11,12,16,40,45,46,55]): for lattices in PSL(2,R) and PSL(2,C), acting on the
boundary of hyperbolic 2- or 3-space, respectively; for closed subgroups of PSL(2,
F) for a non-Archimedean local field F acting on the projective space P

1(F),
where X is the Bruhat-Tits tree of PSL(2,F); for free groups acting on their
Gromov boundary. Moreover, Mathias Fuchs has simultaneously obtained the
assertions of Theorem 1 and Corollary 2 for some subgroups of almost connected
Lie groups, by a completely different method.

Comparing the classical and non-commutative Gysin sequences, we see that
the inclusion u : C∗r G→ C(∂X)�r G plays the role of the embedding C(M)→
C(SM) induced by the bundle projection SM → M . Therefore, if we view C∗r G
as the algebra of functions on a non-commutative space Ĝ, thenC(∂X)�rG plays
the role of the algebra of functions on the sphere bundle of Ĝ. Such an analogy
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has already been advanced by Alain Connes and Marc Rieffel in [13,44] for rather
different reasons (and for a different class of boundary actions).

For groups with torsion and, more generally, for locally compact groups, we
must use an equivariant Euler characteristic in KKG

0 (C0(X),C) instead of the
Euler characteristic of G\X. To define it, we use a general notion of Poincaré
duality in bivariant Kasparov theory. An abstract dual for a space X consists of
a G-C∗-algebra P and a class � ∈ RKKG

n (X;C,P) for some n ∈ Z such that
the map

PD: RKKG
∗−n(Y ;A ⊗̂P, B)→ RKKG

∗ (X × Y ;A,B), f �→ � ⊗̂P f,

is an isomorphism for all pairs of G-C∗-algebras A, B and all G-spaces Y (com-
pare [25, Theorem 4.9]).

LetX be anyG-space that has such an abstract dual. The diagonal embedding
X→ X ×X yields classes

�X ∈ RKKG
0 (X;C0(X),C), PD−1(�X) ∈ KKG

−n(C0(X) ⊗̂P,C).

Let �̄ ∈ KKG
n (C0(X), C0(X) ⊗̂P) be obtained from� by forgetting the X-lin-

earity. We define the abstract equivariant Euler characteristic by

EulX := �̄ ⊗̂C0(X)⊗̂P PD−1(�X) ∈ KKG
0 (C0(X),C).

Examples show that this class deserves to be called an Euler characteristic. We
were led to this definition by the consideration of the Gysin sequence.

In order to compute EulX, we need an explicit formula for PD−1. Therefore,
it is useful to consider a richer structure than an abstract dual, which we call a
Kasparov dual. Gennadi Kasparov constructs the required structure for a smooth
Riemannian manifold in [25, Section 4], using for P the algebra of C0-sections
of the Clifford algebra bundle on X. A fairly simple computation shows that
the associated equivariant Euler characteristic is the class in KKG

0 (C0(X),C) of
the de Rham operator on X, which we denote by EuldR

X and call the equivariant
de-Rham-Euler characteristic of X.

If X is a simplicial complex and G acts simplicially, then a Kasparov dual
for X is constructed in [26]. Since the description of � in [26] is too indirect
for our purposes, we give a slightly different construction where we can write
down� very concretely. We describe the equivariant Euler characteristic that we
get from this combinatorial dual; the result may be computed in terms of counting
G-orbits on the set of simplices and is called the equivariant combinatorial Euler
characteristic Eulcmb

X ∈ KKG
0 (C0(X),C).

We show that the (abstract) Euler characteristic of X does not depend on the
choice of the abstract dual. Therefore, if X admits a smooth structure and a tri-
angulation at the same time, then EuldR

X = EulX = Eulcmb
X . This result is due to

Wolfgang Lück and Jonathan Rosenberg ([34,50]). In the non-equivariant case,
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the assertion is that for a connected smooth manifoldM , we have EuldR
M = χ(M) ·

dim, where dim ∈ K0(M) is the class of the point evaluation homomorphism.
Now we outline the proof of Theorem 1 and its analogues for general locally

compact groups. The starting point is the extension of G-C∗-algebras

0→ C0(X)→ C(X̄)→ C(∂X)→ 0,

which yields a six term exact sequence for the functor Ktop
∗ (G, ). The strong

contractibility of X̄ implies that Ktop
∗

(
G,C(X̄)

) ∼= Ktop
∗ (G). The resulting map

Ktop
∗ (G) ∼= Ktop

∗
(
G,C(X̄)

)→ Ktop
∗

(
G,C(∂X)

)
in the exact sequence is induced

by the unital inclusion C → C(∂X). A purely formal argument shows that the
map Ktop

∗
(
G,C0(X)

) → Ktop
∗

(
G,C(X̄)

) ∼= Ktop
∗ (G) in the exact sequence is

given by the Kasparov product with the equivariant abstract Euler characteristic
EulX ∈ KKG

0 (C0(X),C). The heart of the computation is the explicit description
of EulX as EuldR

X or Eulcmb
X .

Our interest in the problem of calculating the K-theory of boundary crossed
products was sparked by discussions with Guyan Robertson at a meeting in Ober-
wolfach in 2004. We would like to thank him for drawing our attention to this
question. We also thank Wolfgang Lück for helpful suggestions regarding Euler
characteristics.

1.1. General setup

We always require topological spaces and groups to be locally compact, Hausdorff,
and second countable. Let G be such a group. A G-space is a locally compact
space equipped with a continuous action ofG. AG-C∗-algebra is a separableC∗-
algebra equipped with a strongly continuous action of G by automorphisms. We
denote reduced crossed products by A�r G. We always equip C with the trivial
action of G. Thus C �r G is the reduced group C∗-algebra C∗r G of G.

AG-space is proper if the set of g ∈ G with gK ∩K 	= ∅ is compact for any
compact subsetK ⊆ X.A universal properG-space is a properG-space EGwith
the property that for any proper G-space X there is a continuous G-equivariant
map X→ EG, which is unique up to G-equivariant homotopy. Such a G-space
exists for any G by [27], and any two of them are G-equivariantly homotopy
equivalent.

Definition 3. We call aG-space strongly contractible if it isH -equivariantly con-
tractible for each compact subgroup H ⊆ G.

A properG-space is strongly contractible if and only if it is universal. It is easy
to see that universality implies strong contractibility: look at mapsG/H×EG→
EG. The converse implication is proved in [33] for the easier case of G-CW-
complexes, where it already suffices to assume all fixed-point subsets for compact
subgroups to be contractible.
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Definition 4. Let X be a proper G-space and let X̄ be a compact G-space that
contains X as an open G-invariant subspace. Then ∂X := X̄ \ X is another
compact G-space. We call the induced action of G on ∂X a boundary action if
both X and X̄ are strongly contractible. The G-spaces X and X̄ are part of the
data of a boundary action.

In all our examples, X̄ is a compactification of X, that is, X is dense in X̄.
A boundary action yields an extension of G-C∗-algebras

0→ C0(X)
ι→ C(X̄)

π→ C(∂X)→ 0. (1)

Let ῡ : C→ C(X̄) and ∂υ : C→ C(∂X) be the unit maps. The map ∂υ induces
the obvious embedding C∗r G → C(∂X) �r G, which we also denote by u. We
are going to study the induced map

u∗ = ∂υ∗ : K∗(C∗r G)→ K∗(C(∂X)�r G). (2)

2. Examples of boundary actions

Many examples of boundary actions are special cases of two general constructions:
the visibility compactification of a CAT(0) space and the Gromov compactifica-
tion of a hyperbolic space (see [7] for both).

Let X be a second countable, locally compact CAT(0) space and let G act
properly and isometrically on X. We consider geodesic rays R+ → X parametr-
ised by arc length. Two such rays are equivalent if they are at bounded distance
from each other. The visibility boundary ofX is the set ∂X∞ of equivalence clas-
ses of geodesic rays inX and the visibility compactification X̄∞ isX∪∂X∞. This
is a compactification of X for a canonical compact metrisable topology on X̄∞;
it has the property that r(t) converges towards [r] for t → ∞ for any geodesic
ray r : R+ → X. The obvious action of G on X̄∞ is continuous.

LetH ⊆ G be a compact subgroup. ThenH has a fixed-point ξH inX. For any
x ∈ X there is a unique geodesic segment connecting x and ξH . We may contract
the space X along these geodesics, so that X is strongly contractible. Similarly,
X̄∞ is strongly contractible because any point in ∂X∞ is represented by a unique
geodesic ray emanating from ξH .

For instance, ifX is a simply connected Riemannian manifold of non-positive
sectional curvature, then X is CAT(0). If dimX = n, then there is a homeomor-
phism from X̄∞ onto a closed n-cell that identifies X with the open n-disk and
∂X∞ with Sn−1.

LetG be an almost connected Lie group whose connected component is linear
and reductive, and let K ⊆ G be a maximal compact subgroup. Then the homo-
geneous space G/K with any G-invariant Riemannian metric is a CAT(0) space
and has non-positive sectional curvature ([7]). IfG is semi-simple and has rank 1,
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then the visibility boundary is equivalent to the Fürstenberg boundaryG/P ofG,
where P is a minimal parabolic subgroup. IfG has higher rank, then the Fürsten-
berg boundary of G is not a boundary action in our sense. However, there are
points in ∂X∞ that are fixed by P . Hence the unit map C → C(G/P ) factors
through ∂υ : C→ C(∂X∞).

Euclidean buildings and trees are CAT(0) spaces as well. For instance, letG be
a reductive p-adic group. Then its affine Bruhat-Tits building is a CAT(0) space,
on whichG acts properly and isometrically ([57]). The visibility compactification
of the Bruhat-Tits building is equivalent to the Borel-Serre compactification in
this case (see [5] and [51, Lemma IV.2.1]). The relationship between the visibility
boundary of the building and the Fürstenberg boundary of G is exactly as in the
Lie group case.

Let X be a CAT(0) space on which G acts properly and isometrically and let
X̄∞ be its visibility compactification. The limit set �X∞ ⊆ ∂X∞ is the set of all
accumulation points in the boundary of G · x for some x ∈ X. Its definition is
most familiar for classical hyperbolic space H

n (see [42, Section 12]). The limit
set is independent of the choice of x and therefore G-invariant. Its complement
X′ := X̄∞\�X∞ is called the ordinary set ofG. It is strongly contractible for the
same reason as X̄∞. If the action of G on X′ is proper, then �X∞ is a boundary
action. This is always the case for classical hyperbolic space ([42]).

LetX be a (quasi-geodesic) hyperbolic metric space. Two quasi-geodesic rays
inX are considered equivalent if they have bounded distance. The Gromov bound-
ary ∂X of X is defined as the set of equivalence classes of quasi-geodesic rays
in X. There is a canonical compact metrisable topology on X̄ := X ∪ ∂X so that
this becomes a compactification of X. The construction is natural with respect
to quasi-isometric equivalence. That is, if X and Y are hyperbolic metric spaces
and f : X→ Y is a quasi-isometric equivalence, then f extends in a unique way
to a map f̄ : X̄ → Ȳ , whose restriction to the boundary ∂f : ∂X → ∂Y is a
homeomorphism.

If G is a word-hyperbolic group, then one may apply this construction to the
metric space underlying G (with a word metric). Since the action of G by left
translation on itself is isometric, this action extends to an action of G by homeo-
morphisms of its boundary. Now let X = Pd(G) be the Rips complex of G with
parameter d. This space is strongly contractible for sufficiently large d ([35]). We
may equip X with a G-invariant metric for which any orbit map G → X is a
quasi-isometric equivalence. Since hyperbolicity and the Gromov boundary are
invariant under quasi-isometric equivalence, X is itself hyperbolic and there is a
canonical G-equivariant homeomorphism ∂G ∼= ∂X. It is shown in [50] that X̄
is strongly contractible. Hence G× ∂G→ ∂G is a boundary action.

Now we come to a completely different example of a boundary action. Let
g
be a closed Riemann surface of genus g ≥ 2 and letG be a torsion-free subgroup



860 H. Emerson, R. Meyer

of the mapping class group,

Mod(
g) := Diff(
g)/Diff0(
g).

Let T be the Teichmüller space for 
g, and let ∂T and T̄ := T ∪ ∂T be
its Thurston boundary and Thurston compactification, respectively ([17]). It is
well-known that T and T̄ are contractible. This means that G× ∂T → ∂T is
a boundary action because we require G to be torsion-free.

It seems plausible that T and T̄ are strongly contractible with respect to
the group Mod(
g) itself, so that ∂T would be a boundary action of Mod(
g).
That T is strongly contractible (hence a universal proper Mod(
g)-space) fol-
lows from the proof of the Nielsen realisation problem by Steven Kerckhoff in
[28]. The main result is that every finite subgroup H of Mod(
g) fixes a point
of T . Moreover, any two points of T are connected by a unique earthquake path
(see [56,28]). If x ∈ T is fixed by H , then the contraction of Teichmüller space
along earthquake paths emanating from x provides an H -equivariant contracting
homotopy for T . It seems likely that this contracting homotopy extends to one
for the compactification T̄ , but a proof does not seem to exist in the literature so
far.

A group may admit more than one boundary action. For example, consider
the group G = PSL(2,Z). It has two natural models for EG, namely, the hyper-
bolic plane H

2, on which it acts by Möbius transformations, and the treeX which
corresponds to the free-product decomposition G ∼= Z/2 ∗ Z/3 (see [54, §I.4]).
WhereasG\X is compact,G\H2 is not. BothX and H

2 are simultaneously hyper-
bolic and CAT(0), and their Gromov and visibility compactifications coincide;
they compactify H

2 by the circle at infinity P
1(R) andX by its set of ends, which

is a Cantor set. These two boundary actions of PSL(2,Z) are related by a well-
known G-equivariant isometric embedding of the tree X in H

2 (see [54, §I.4]).
This embedding extends to a continuous map between the compactifications and
hence yields a map ∂X→ ∂H2. It is not clear how different boundary actions are
related in general.

3. Applying the Baum-Connes conjecture

We recall the definition of the Baum-Connes assembly map (see [4]). Let EG
be a second countable, locally compact model for the universal proper G-space.
Write EG = ⋃

n∈N EGn for some increasing sequence of G-compact subsets
EGn ⊆ EG. The maps EGn → EGn+1 are proper, so that we get an associated
projective system of G-C∗-algebras

(
C0(EGn)

)
n∈N. Let

Ktop
∗ (G,A) := lim−→KKG

∗ (C0(EGn),A).

The Baum-Connes assembly map is the composite map

µG,A : Ktop
∗ (G,A)→ lim−→KK∗(C0(EGn)�r G,A�r G)→ K∗(A�r G),
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where the first map is descent and the second map is the Kasparov product with
a certain natural class in lim←−K0(C0(EGn)�r G).

Let X, X̄ and ∂X be as in Definition 4. The Baum-Connes conjecture always
holds for proper coefficient algebras and, especially, for C0(X). We assume from
now on that G satisfies the Baum-Connes conjecture with coefficients C and
C(∂X). That is, the vertical maps in the diagram

Ktop
∗ (G,C)

∂υ∗ ��

µG,C

��

Ktop
∗

(
G,C(∂X)

)

µG,C(∂X)

��
K∗(C∗r G)

∂υ∗ �� K∗(C(∂X)�r G)

are isomorphisms. Thus the map (2) that we are interested in is equivalent to the
map

∂υ∗ : Ktop
∗ (G,C)→ Ktop

∗
(
G,C(∂X)

)
. (3)

Our assumption on the Baum-Connes conjecture is known to be valid in many
examples. Closed subgroups of Isom(Hn) satisfy it because they even satisfy the
Baum-Connes conjecture with arbitrary coefficients ([24]). The same holds for
closed subgroups of other semi-simple Lie groups of rank 1 by [21,22]. Word-
hyperbolic groups satisfy the assumption as well: the Baum-Connes conjecture
with trivial coefficients is proved in [39], and the Baum-Connes conjecture for the
coefficientsC(∂G) follows from [58] because the action ofG on ∂G is amenable.

We will exclusively deal with the map in (3) in the following. We only need
the Baum-Connes conjecture to relate it to (2).

It is shown in [27] that Ktop
∗ satisfies excision for arbitrary extensions ofG-C∗-

algebras. Hence (1) gives rise to a six term exact sequence

Ktop
0

(
G,C0(X)

) ι∗ �� Ktop
0

(
G,C(X̄)

) π∗ �� Ktop
0

(
G,C(∂X)

)

δ

��
Ktop

1

(
G,C(∂X)

)
δ

��

Ktop
1

(
G,C(X̄)

)π∗�� Ktop
1

(
G,C0(X)

)
.

ι∗��

(4)

We are going to modify it in several steps.

Lemma 5. The map ῡ∗ : Ktop
∗ (G,C) → Ktop

∗
(
G,C(X̄)

)
is an isomorphism if X̄

is strongly contractible.

Proof. Since X̄ is strongly contractible, [ῡ] is invertible in KKH
0

(
C, C(X̄)

)
for

all compact subgroupsH ⊆ G. That is, ῡ is a weak equivalence in the notation of
[38]. It is shown in [10,38] that such maps induce isomorphisms on Ktop

∗ (G, ). ��
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Plugging the isomorphism of Lemma 5 into (4), we get an exact sequence

Ktop
0

(
G,C0(X)

) ῡ−1∗ ι∗ �� Ktop
0 (G,C)

∂υ∗ �� Ktop
0

(
G,C(∂X)

)

δ

��
Ktop

1

(
G,C(∂X)

)
δ

��

Ktop
1 (G,C)

∂υ∗�� Ktop
1

(
G,C0(X)

)ῡ−1∗ ι∗��

(5)

It contains the map (3) that we are interested in because π ◦ ῡ = ∂υ.

Example 6. Suppose that the action ofG on ∂X admits a fixed-point ξ . Then eval-
uation at ξ provides a section for ῡ. Since this evaluation homomorphism annihi-
lates C0(X) ⊆ C(X̄), we get ῡ−1

∗ ι∗ = 0. Therefore, the long exact sequence (5)
splits into two short exact sequences.

Proposition 7. Let G be a locally compact group with non-compact centre. Sup-
pose that X is G-compact and that X̄ is admissible in the sense of [18], that is,
compatible with the coarse geometric structure of X.

Then ∂X contains a fixed-point for G. Hence ῡ−1
∗ ι∗ = 0 in (5).

Proof. Let x ∈ X and let (gi)i∈N be a sequence in the centre ofG that leaves any
compact subset of G. Since X̄ is compact, we may assume that the sequence gix
converges towards some ξ ∈ X̄. Since the sequences (gix) and (g ·gix) = (gigx)
are uniformly close for any g ∈ G, the compatibility of the coarse structure with
the compactification implies that they have the same limit point in X̄. Thus gξ = ξ
for all g ∈ G. ��

Of course, the map ῡ−1
∗ ι∗ in (5) is non-zero is general. The following notation

is needed in order to describe it.
Let Y be a locally compact G-space and let A and B be G-C∗-algebras. The

graded Abelian group RKKG
∗ (Y ;A,B) is defined as in [25]; its cycles are cycles

(E, F ) for KKG
∗ (C0(Y ) ⊗̂ A,C0(Y ) ⊗̂ B) that satisfy the additional condition

that the left and right C0(Y )-actions on E agree. We may think of these cycles
as G-equivariant continuous families of KKG

∗ (A,B)-cycles parametrised by Y .
There is a natural map

RKKG
∗ (Y ;A,B)→ KKG

∗ (C0(Y ) ⊗̂ A,C0(Y ) ⊗̂ B) (6)

which forgets the Y -structure and a natural map

p∗Y : KKG
∗ (A,B)→ RKKG

∗ (Y ;A,B), (7)

which sends a Kasparov cycle (E, F ) for KKG
∗ (A,B) to the constant family of

Kasparov cycles (C0(Y ) ⊗̂ E, 1 ⊗̂ F).
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Definition 8. We let �Y ∈ RKKG
0 (Y ;C0(Y ),C) be the class of the Y �G-equi-

variant ∗-homomorphism C0(Y × Y ) → C0(Y ) that is induced by the diagonal
embedding Y → Y × Y .

Recall that the space X is a universal proper G-space. It is shown in [38,
Section 7] that the map in (7) for Y = X is an isomorphism whenever A is
a proper G-C∗-algebra. Hence �X ∈ RKKG

0 (X;C0(X),C) has a pre-image in
KKG

0 (C0(X),C). Anticipating a little, we denote this pre-image by EulX. This
agrees with our official definition of the abstract Euler characteristic in Definition
12 by Proposition 14 and Lemma 16.

Proposition 9. Let G be a locally compact group and let ∂X = X̄ \ X be a
boundary action of G. Then there is an exact sequence

Ktop
0

(
G,C0(X)

) EulX �� Ktop
0 (G,C)

∂υ∗ �� Ktop
0

(
G,C(∂X)

)

δ

��
Ktop

1

(
G,C(∂X)

)
δ

��

Ktop
1 (G,C)

∂υ∗�� Ktop
1

(
G,C0(X)

)
,

EulX��

where EulX denotes the Kasparov product with EulX ∈ KKG
0 (C0(X),C).

Proof. It only remains to identify the maps ῡ−1
∗ ι∗ in (5) with EulX. Recall that

the map p∗X in (7) is an isomorphism if A is proper. Therefore, p∗X induces an
isomorphism

Ktop
∗ (G,A)

∼=→ lim−→RKKG
∗ (X;C0(EGn),A).

Thus the Kasparov product in RKKG
∗ (X) gives rise to natural bilinear maps

Ktop
∗ (G,A)× RKKG

0 (X;A,B)→ Ktop
∗ (G,B), (x, y) �→ x • y. (8)

It is shown in [38, Section 7] that p∗X(f ) for f ∈ KKG
∗ (A,B) is invert-

ible if and only if f is a weak equivalence. Therefore, p∗X[ῡ] is invertible in
RKKG

0

(
X;C, C(X̄)). The homomorphism C0(X) → C0(X × X̄) induced by

the coordinate projection X × X̄ → X is a representative for p∗X[ῡ]. Since the
diagonal embeddingX→ X×X ⊆ X× X̄ is a section for the coordinate projec-
tion, the element in RKKG

0 (X;C(X̄),C) associated to the diagonal embedding is
inverse to p∗X[ῡ]. Hence p∗X[ι] ⊗̂X,C(X̄) p∗X[ῡ]−1 = �X. It follows easily from the
definition of the product in (8) that

ι∗(x) = x ⊗̂C0(X) [ι] = x • p∗X[ι], ῡ∗(y) = y ⊗̂ [ῡ] = y • p∗X[ῡ],

for all x ∈ Ktop
∗

(
G,C0(X)

)
, y ∈ Ktop

∗ (G,C). This implies

ῡ−1
∗ ι∗(x) = x • (p∗X[ι] ⊗̂X,C(X̄) p∗X[ῡ]−1) = x •�X = x ⊗̂C0(X) p

−1
X (�X)

because pX is invertible and the map in (8) is natural. ��
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4. Abstract Euler characteristics via Kasparov duality

The element EulX ∈ KKG
0 (C0(X),C) that appears in the Gysin sequence in Prop-

osition 9 is so far only defined if X is a universal properG-space; furthermore, it
is not clear how it should be computed. In this section, we extend its definition to
a more general class of G-spaces, using a formulation of Poincaré duality due to
Gennadi Kasparov ([25, Section 4]). In the following sections, we will compute
EulX using this alternative definition.

Definition 10. Let X be a locally compact G-space (we require neither proper-
ness nor strong contractibility). Let n ∈ Z. Let P be a (possibly Z/2-graded)
G-C∗-algebra, and let � ∈ RKKG

n (X;C,P).
We call (P,�) an (n-dimensional) abstract dual for X if the map

PD: RKKG
∗−n(Y ;A1 ⊗̂P, A2)→RKKG

∗ (X × Y ;A1, A2), f �→ � ⊗̂P f,

(9)

is an isomorphism for all G-spaces Y and all G-C∗-algebras A1, A2.

Here we use the Kasparov product

⊗̂P : RKKG
i (X;A,B ⊗̂P)× RKKG

j (Y ;A′ ⊗̂P, B ′)

→ RKKG
i+j (X × Y ;A ⊗̂ A′, B ⊗̂ B ′)

(see [25]). Observe that (9) is the most general form for a natural transforma-
tion RKKG

∗−n(Y ;A ⊗̂P, B) → RKKG
∗ (X × Y ;A,B) that is compatible with

Kasparov products in the sense that

PD(f1 ⊗̂B f2)=PD(f1) ⊗̂B f2 in RKKG
i+j (Y ;A1 ⊗̂ A3, A2 ⊗̂ A4) (10)

for all f1 ∈ RKKG
i−n(Y ;A1 ⊗̂P, A2 ⊗̂ B), f2 ∈ RKKG

j (Y ;A3 ⊗̂ B,A4). Since
exterior products are graded commutative, we also get

PD(f1⊗̂Bf2)=(−1)inf1 ⊗̂B PD(f2) in RKKG
i+j (Y ;A1⊗̂ A3, A2 ⊗̂ A4)

(11)

for all f1 ∈ RKKG
i (Y ;A1, A2 ⊗̂ B), f2 ∈ RKKG

j−n(Y ;A3 ⊗̂ B ⊗̂P, A4); both
sides are equal to (� ⊗̂ f1) ⊗̂P⊗̂B f2.

The space Y does not play any serious role. We have put it into our definitions
because Kasparov works in this generality in [25, Theorem 4.9]. The dimension n
is not particularly important either because we can always reduce to the case n = 0
by a suspension.

We are mainly interested in the case of complex C∗-algebras and therefore
only formulate Gysin sequences in this case. However, the purely formal argu-
ments in this section are independent of Bott periodicity and therefore also work
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in the real and “real” cases. This is why we are careful to distinguish between
KKn and KK−n in our notation. Of course, in the real case one has to replace C

by R everywhere and use real-valued function spaces.
Later, we shall introduce further structure in order to write down the inverse

map PD−1 more concretely, which is important for applications. However, this
additional structure involves some choices. Since the abstract Euler characteristic
is supposed to be independent of the dual, we discuss the formal aspects of the
duality in the situation of Definition 10.

Remark 11. There exist spaces that do not possess an abstract dual, even for triv-
ialG. If X is compact then RKK∗(X;A,B) ∼= KK∗(A,C(X) ⊗̂B) for all A,B.
Hence an abstract dual for X is nothing but a KK-dual for C(X). Duality in this
context is investigated by Claude Schochet in [52,53]. The Universal Coefficient
Theorem holds forC(X) and shows that it has a KK-dual if and only if K∗

(
C(X)

)

is finitely generated (recall that all spaces are assumed second countable). This
fails, for example, if X is a Cantor set.

Definition 12. Let X be a G-space with an abstract dual (P,�). Let

�̄ ∈ KKG
n (C0(X), C0(X) ⊗̂P) and �X ∈ RKKG

0 (X;C0(X),C),

respectively, be the image of�under the forgetful map (6) and the element induced
by the diagonal embedding as in Definition 8. Thus PD−1(�X) ∈ KKG

−n(C0(X)⊗̂
P,C). We call

EulX := �̄ ⊗̂C0(X)⊗̂P PD−1(�X) ∈ KKG
0 (C0(X),C)

the G-equivariant abstract Euler characteristic of X.

This name will be justified by the examples in the following sections.
Our first task is to analyse the uniqueness of abstract duals and to show that

EulX does not depend on their choice. We consider the slightly more complicated
issue of functoriality right away.

Let X and X′ be two G-spaces with abstract duals (P,�) and (P ′,�′) of
dimension n and n′, respectively, and let PD and PD′ be the associated duality
isomorphisms. Let f : X → X′ be a continuous G-map; we do not require f to
be proper. Then f induces natural maps

f ∗ : RKKG
∗ (X

′ × Y ;A,B)→ RKKG
∗ (X × Y ;A,B) (12)

for all Y,A,B. Hence we get f ∗�′ ∈ RKKG
n′(X;C,P ′) and

αf := PD−1(f ∗�′) ∈ KKG
n′−n(P,P ′).

Equivalently, � ⊗̂P αf = f ∗�′; this property characterises αf uniquely and
implies

PD(αf ⊗̂P ′ h) = f ∗�′ ⊗̂P ′ h = f ∗
(
PD′(h)

)
in RKKG

∗ (X;A,B)
(13)
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for all h ∈ KKG
∗−n′(A ⊗̂P ′, B). The map f �→ αf is a covariant functor in

the following sense. If f = idX and (P,�) = (P ′,�′), then αid = 1P . Given
composable maps f : X→ X′, f ′ : X′ → X′′ and abstract duals for theG-spaces
X,X′, X′′, we get αf ′◦f = αf ⊗̂P ′ αf ′ .

If two maps f1, f2 : X→ X′ areG-equivariantly homotopic, then they induce
the same maps f ∗1 = f ∗2 in (12). Hence αf1 = αf2 . Moreover, if f is aG-homot-
opy equivalence then (12) is bijective for all Y,A,B. By functoriality of αf , we
conclude that αf is invertible if f is a G-homotopy equivalence. In the special
case f = id, we get a canonical KKG-equivalence between two duals (P,�),
(P ′,�′) for the same space X.

Proposition 13. Let f : X → X′ be a G-homotopy equivalence and proper; we
do not assume its homotopy inverse to be proper.We denote the class of the induced
map f ∗ : C0(X

′)→ C0(X) in KKG
0 (C0(X

′), C0(X)) by [f ∗]. Then

[f ∗] ⊗̂C0(X) EulX = EulX′ .

The abstract Euler characteristic is independent of the choice of the abstract dual.

Proof. We let�X′ : C0(X
′×X′)→ C0(X

′) be the diagonal restriction homomor-
phism. Then f ∗(�X′) ∈ RKKG

0 (X;C0(X
′),C) is the class of the G-equivariant

∗-homomorphism induced by the map (id, f ) : X → X × X′. Thus f ∗(�X′) =
[f ∗] ⊗̂C0(X) �X. Since the map in (12) is bijective and natural with respect to the
Kasparov product, this is equivalent to

�X′ = (f ∗)−1([f ∗] ⊗̂C0(X) �X) = [f ∗] ⊗̂C0(X) (f
∗)−1(�X).

Define αf ∈ KKG
n′−n(P,P ′) as above. Equation (13) is equivalent to

α−1
f ⊗̂P PD−1(h) = (PD′)−1(f ∗)−1(h) for all h ∈ RKKG

∗ (X;A,B).
We shall use the forgetful functors defined in (6) for the spaces X and X′ and

denote them by h �→ h. They satisfy the compatibility relation

[f ∗] ⊗̂C0(X) f
∗h = h ⊗̂C0(X′) [f ∗]

in KKG
∗ (C0(X

′) ⊗̂A,C0(X) ⊗̂ B) for all h ∈ RKKG
∗ (X

′;A,B); these Kasparov
products are comparatively easy to compute because [f ∗] is represented by a
∗-homomorphism. Now we compute

[f ∗] ⊗̂C0(X) EulX = [f ∗] ⊗̂C0(X) � ⊗̂C0(X)⊗̂P PD−1(�X)

= [f ∗] ⊗̂C0(X) f
∗�′ ⊗̂P ′ α

−1
f ⊗̂C0(X)⊗̂P PD−1(�X)

= �′ ⊗̂C0(X′) [f ∗] ⊗̂C0(X)⊗̂P ′ (PD′)−1 ◦ (f ∗)−1(�X)

= �′ ⊗̂C0(X′)⊗̂P ′ (PD′)−1([f ∗] ⊗̂C0(X) (f
∗)−1(�X)

)

= �′ ⊗̂C0(X′)⊗̂P ′ (PD′)−1(�X′) = EulX′ .
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We use (11) in the step from the third to the fourth line.
Especially, if f = id then the computation above shows that EulX does not

depend on the choice of the abstract dual. ��
Proposition 14. IfX is a universal properG-space, thenX has an abstract dual.

Proof. Let D ∈ KKG
0 (P,C) be a Dirac morphism in the notation of [38]. Since D

is a weak equivalence,p∗X(D) is invertible; let� ∈ RKKG
0 (X;C,P) be its inverse.

In [38, Theorem 7.1], we may take π ∈ KKG
0 (Ã, A) to be 1A ⊗ D ∈ KKG

0 (A⊗
P, A). Then [38, Theorem 7.1] implies that the map PD that we get from � is an
isomorphism. ��

Assume now that X and X′ are G-compact universal proper G-spaces. Then
they are G-homotopy equivalent in a canonical way, so that their abstract duals
are canonically KKG-equivalent. Any continuous G-map between X and X′ is
proper because both spaces are G-compact. Hence C0(X) and C0(X

′) are KKG-
equivalent. Moreover, we have natural isomorphisms

Ktop
∗ (G) := Ktop

∗ (G,C) ∼= KKG
∗ (C0(X),C).

It follows from Proposition 13 that the abstract Euler characteristics of X and X′

agree as elements of Ktop
0 (G). Hence we may give the following definition:

Definition 15. Let G be a locally compact group that has a G-compact universal
proper G-space X. Identify KKG

∗ (C0(X),C) ∼= Ktop
∗ (G) and view the abstract

Euler characteristic EulX as an element of Ktop
0 (G). We denote the result by EulEG

and call it the abstract Euler characteristic of G.

If X′ is any universal proper G-space and X is a G-compact universal proper
G-space, then anyG-map f : X→ X′ is proper and aG-homotopy equivalence.
Hence Proposition 13 yields EulX′ = f ∗(EulEG).

Let X again be an arbitrary G-space with an abstract dual (P,�). Then we
define D ∈ KKG

−n(P,C) by

PD(D) := � ⊗̂P D = 1C in RKKG
0 (X;C,C). (14)

Lemma 16. Let X be a G-space with an abstract dual (P,�). Then � is in-
vertible if and only if p∗X(D) ∈ RKKG

−n(X;P,C) is invertible, if and only if the
map

p∗X : RKKG
∗ (Y ;P ⊗̂ A,B)→ RKKG

∗ (X × Y ;P ⊗̂ A,B) (15)

is invertible for all Y,A,B. In this case, the map

p∗X : RKKG
∗ (Y ;C0(X) ⊗̂ A,B)→ RKKG

∗ (X × Y ;C0(X) ⊗̂ A,B) (16)

is invertible as well, and EulX = (p∗X)−1(�X) in KKG
0 (C0(X),C).
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Proof. Since � ⊗̂P D = 1C, � is a left inverse for p∗X(D) with respect to
the Kasparov composition product in RKKG

∗ (X). Hence one is invertible if and
only if the other is, and they are inverse to each other in that case. By hypothesis,
PD(f ) := �⊗̂Pp

∗
X(f ) defines an invertible map on RKKG

∗ (Y ;A⊗̂P, B) for all
Y,A,B. If� is invertible, then so is the Kasparov product with� that appears in
PD; hence the map in (15) is invertible. Conversely, if the map in (15) is invertible,
then the Kasparov product with � is invertible as a map RKKG

∗−n(X;P, B)→
RKKG

∗ (X;C, B) for all B. This implies invertibility of �.
If � is invertible, so is �̄ ∈ KKG

n (C0(X), C0(X) ⊗̂P). Therefore, the map
in (16) is equivalent to one of the form (15); thus it is invertible as well. Its inverse
is computed as follows. We have

p∗X(f ) = (� ⊗̂P D) ⊗̂ f = PD(D ⊗̂ f ) = PD(�̄−1 ⊗̂C0(X) f ).

for all f ∈ KKG
∗ (C0(X) ⊗̂ A,B) because 1C0(X) ⊗̂D and �̄ are inverse to each

other and � ⊗̂P D = 1C. Hence

(p∗X)
−1(f ′) = �̄ ⊗̂C0(X)⊗̂P PD−1(f ′) (17)

for all f ′ ∈ RKKG
∗ (X;C0(X) ⊗̂ A,B). In particular, (p∗X)

−1(�X) = EulX as
desired. ��

Proposition 14 and Lemma 16 show that our preliminary definition of EulX in
Section 3 is a special case of Definition 12.

The following discussion has the purpose of motivating the definition of a
Kasparov dual by explaining how it is related to an abstract dual.

Define ∇ ∈ KKG
n (P,P ⊗̂P) by

PD(∇) = � ⊗̂P ∇ = � ⊗̂X � ∈ RKKG
2n(X;C,P ⊗̂P). (18)

Let �P for a G-C∗-algebra P be the flip automorphism

�P : P ⊗̂ P → P ⊗̂ P, x1 ⊗̂ x2 �→ (−1)|x1|·|x2|x2 ⊗̂ x1,

where |x| ∈ Z/2 denotes the degree of x. Of course, this sign only occurs if P is
Z/2-graded. Recall also the class D ∈ KKG

n (P,C) defined in (14).

Lemma 17. The maps D and ∇ satisfy

∇ ⊗̂P⊗̂P �P = (−1)n∇, (19)

(−1)n∇ ⊗̂P⊗̂P (∇ ⊗̂ 1P) = ∇ ⊗̂P⊗̂P (1P ⊗̂ ∇), (20)

(−1)n∇ ⊗̂P⊗̂P (D ⊗̂ 1P) = 1P = ∇ ⊗̂P⊗̂P (1P ⊗̂D). (21)

Equation (19) holds in KKG
n (P,P⊗̂P), equation (20) holds in KKG

2n(P,P⊗̂3),
and (21) holds in KKG

0 (P,P).
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For n = 0, this means that P with comultiplication ∇ and counit D is a
cocommutative, counital coalgebra object in KKG.

Proof. It is well-known that the exterior product in RKKG
∗ (X) is graded commuta-

tive. Especially, (�⊗̂X�)⊗̂P⊗̂P�P = (−1)n�⊗̂X�. This is equivalent to (19)
because PD is compatible with Kasparov products and bijective. One checks eas-
ily that PD maps both (−1)n∇ ⊗̂P⊗̂P (∇ ⊗̂ 1P) and ∇ ⊗̂P⊗̂P (1P ⊗̂ ∇) to
� ⊗̂X � ⊗̂X � in RKKG

3n(X;P,P⊗̂3). This yields (20). Similarly,

PD(1P) = (−1)nPD
(∇ ⊗̂P⊗̂P (D ⊗̂ 1P)

) = PD
(∇ ⊗̂P⊗̂P (1P ⊗̂D)

) = �
implies (21). ��

Now we define a natural transformation

σ ′X,P : RKKG
∗ (X × Y ;A,B)→ RKKG

∗ (Y ;A ⊗̂P, B ⊗̂P) (22)

by σ ′X,P(f ) := ∇ ⊗̂P PD−1(f ), where ⊗̂P operates on the second copy of P

in the target P ⊗̂P of ∇. We have

PD
(
σ ′X,P(f )

)
:= � ⊗̂P σ ′X,P(f ) = � ⊗̂P ∇ ⊗̂P PD−1(f )

= � ⊗̂X � ⊗̂P PD−1(f ) = � ⊗̂X f
(23)

in RKKG
∗ (X × Y ;A,A′ ⊗̂P) for all f ∈ RKKG

∗−n(X × Y ;A,A′). It follows
from the graded commutativity of exterior products and Lemma 17 that

(−1)niσ ′X,P(f ) ⊗̂P D = (−1)n∇ ⊗̂P⊗̂P D ⊗̂ PD−1(f ) = PD−1(f ) (24)

forf ∈ RKKG
i (X×Y ;A,B). This may seem useless for computing PD−1 because

the definition of σ ′X,P itself involves PD−1. The point of the notion of a Kasparov
dual is that we require σ ′X,P to agree with another map that is easy to compute.

Recall that anX�G-C∗-algebra is aG-C∗-algebraP equipped with aG-equi-
variant essential ∗-homomorphism from C0(X) into the centre of the multiplier
algebra of P . This is equivalent to a G-equivariant essential ∗-homomorphism
m : C0(X) ⊗̂ P → P , which we call the X-structure map for P . Given any
X �G-C∗-algebra P , we get natural maps

σX,P : RKKG
∗ (X;A,B)→ KKG

∗ (P ⊗̂ A,P ⊗̂ B), (25)

which send the class of a cycle (E, F ) to [(P ⊗̂C0(X) E, 1 ⊗̂C0(X) F )] (see [25]).
It is clear from the definition that

σX,P
(
p∗X(f )

) = 1P ⊗̂ f (26)

for all f ∈ KKG
∗ (A,B) and all P .
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Definition 18. LetX be a locally compactG-space.An (n-dimensional) Kasparov
dual forX is a triple (P,D,�)where P is a (possibly Z/2-graded)X�G-C∗-
algebra, D ∈ KKG

−n(P,C), and � ∈ RKKG
n (X;C,P), such that

18.1. � ⊗̂P D = 1C in RKKG
0 (X;C,C);

18.2. � ⊗̂X f = � ⊗̂P σX,P(f ) in RKKG
∗ (X × Y ;A,B ⊗̂P) for all f ∈

RKKG
∗−n(X × Y ;A,B);

18.3. σX,P(�) ⊗̂P⊗̂P �P = (−1)nσX,P(�) in KKG
n (P,P ⊗̂P).

This definition is abstracted from the arguments in [25, Section 4].

Proposition 19. A triple (P,D,�) as above is a Kasparov dual for X if and
only if (P,�) is an abstract dual for X (Definition 10),� ⊗̂P D = 1C, and the
maps σ ′X,P and σX,P defined in (22) and (25) agree.

If (P,D,�) is a Kasparov dual, then∇ = σX,P(�), and the duality isomor-
phisms

PD : KKG
∗−n(P ⊗̂ A,B)→ RKKG

∗ (X;A,B),
PD−1 : RKKG

i (X;A,B)→ KKG
i−n(P ⊗̂ A,B),

are given by

PD(f ) = � ⊗̂P f for f ∈ KKG
∗−n(P ⊗̂ A,B),

PD−1(f ′) = (−1)niσX,P(f
′) ⊗̂P D for f ′ ∈ RKKG

i (X;A,B).
Proof. First we show that an abstract dual with the additional properties required
in the proposition is a Kasparov dual. Condition 18.1 is clear and 18.2 follows
from (23) and σ ′X,P = σX,P . The formula for PD is part of the definition of an
abstract dual, the one for PD−1 follows from (24). Since PD−1(�) = 1P , we
have σX,P(�) = σ ′X,P(�) = ∇. Therefore, 18.3 follows from Lemma 17.

Suppose conversely that we have a Kasparov dual. Define PD and PD−1 as
in the statement of the proposition. We must check that they are inverse to each
other. The composite PD ◦ PD−1 sends f ∈ RKKG

i (X;A,B) to

(−1)ni� ⊗̂P σX,P(f ) ⊗̂P D = (−1)ni� ⊗̂X f ⊗̂P D = f ⊗̂X � ⊗̂P D = f
as desired. Let ∇ := σX,P(�) ∈ RKKG

n (P,P ⊗̂P). It follows from 18.1 that

∇ ⊗̂P⊗̂P (idP ⊗̂D) = σX,P(�⊗P D) = σX,P(1X) = 1P .

Using 18.3, we also get ∇ ⊗̂P⊗̂P (D ⊗̂ idP) = (−1)n1P . Therefore, the com-
posite PD−1 ◦ PD sends f ∈ KKG

i−n(P ⊗̂ A,B) to

(−1)niσX,P(� ⊗̂P f ) ⊗̂P D = (−1)niσX,P(�) ⊗̂P⊗̂P (f ⊗̂D)
= (−1)n∇ ⊗̂P⊗̂P (D ⊗̂ f ) = (−1)n∇ ⊗̂P⊗̂P (D ⊗̂ idP) ⊗̂P f = f.
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In the second step we use graded commutativity of exterior products. Thus (P,�)

is an abstract dual for X. Condition 18.2 requires PD
(
σX,P(f )

) = � ⊗̂X f for
all f ∈ RKKG

∗ (X;A,B). The same equation holds for σ ′X,P by (23). We get
σ ′X,P = σX,P because PD is bijective. ��

If we have a Kasparov dual for X, then we can improve the definition of the
abstract Euler characteristic:

Lemma 20. Let X be a locally compact G-space that admits a Kasparov dual
(P,D,�) and let �̄ ∈ KKG

n (C0(X), C0(X) ⊗̂P) be the image of � under the
functor that forgets theX-structure. Letm : C0(X)⊗̂P →P be theX-structure
map for P . Then

EulX = �̄ ⊗̂C0(X)⊗̂P [m] ⊗̂P D.

Proof. We have

EulX := �̄ ⊗̂C0(X)⊗̂P PD−1(�X) = �̄ ⊗̂C0(X)⊗̂P σX,P(�X) ⊗̂P D.

It remains to check that σX,P(�X) = [m]. We have �X(f1 ⊗̂ f2) = f1 · f2 for
all f1, f2 ∈ C0(X). Hence the homomorphism σX,P(�X) : C0(X) ⊗̂P → P
maps f1 ⊗̂ f2 �→ f1 · f2 for all f1 ∈ C0(X), f2 ∈P . This is the definition of the
homomorphism m. ��

It is useful for proofs to know that Definition 18.2 can be weakened as follows:

Lemma 21. Let P be an X � G-C∗-algebra and let � ∈ RKKG
n (X;C,P).

Suppose that the formula � ⊗̂X f = � ⊗̂P σX,P(f ) required in Definition 18.2
holds whenever f is the class of an (X × Y )�G-equivariant ∗-homomorphism
C0(X × Y,A)→ C0(X × Y,B). Then 18.2 holds in complete generality.

Proof. If f = p∗X(f ′), then (26) implies � ⊗̂X f = � ⊗̂ f ′ = � ⊗̂P σX,P(f ).
Similarly, 18.2 holds for p∗X(f0) ⊗̂X,A f ⊗̂X,B p∗X(f1) with f0 ∈ KKG

∗ (A1, A),
f1 ∈ KKG

∗ (B, B1) once it holds for f . Therefore, we are done if we show that
every class in RKKG

∗ (X × Y ;A,B) can be written as a product of this kind,
where f is the class of an (X×Y )�G-equivariant ∗-homomorphism. We deduce
this from considerations related to the universal property of KKG.

Using [36, Proposition 5.4], we identify KKG
0 (A,B)with the set of homotopy

classes of G-equivariant ∗-homomorphisms

χ
(
A ⊗̂K(L2G)

)→ B ⊗̂K(L2(G× N)⊕ L2(G×N)op);
here χ(A) is a certain universal algebra due to Ulrich Haag. The identification
sends a homomorphism f to the Kasparov product f0 ⊗̂χ(... ) f ⊗̂B⊗̂K(... ) f1 for
certain natural elements f0 ∈ KKG

0

(
A,χ(. . . )

)
, f1 ∈ KKG

0 (B ⊗̂K(. . . ), B).
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The same reasoning shows that the map

f �→ p∗X(f0) ⊗̂χ(... ) f ⊗̂B⊗̂K(... ) p
∗
X(f1)

identifies RKKG
0 (X×Y ;A,B)with the set of homotopy classes of (X×Y )�G-

equivariant ∗-homomorphisms

C0(X × Y ) ⊗̂ χ
(
A ⊗̂K(L2G)

)

→ C0(X × Y ) ⊗̂ B ⊗̂K(L2(G× N)⊕ L2(G×N)op).

Hence every element of RKKG
0 (X×Y ;A,B) can be decomposed in the required

form. Putting in some more Clifford algebras, we get the same assertion for ele-
ments of RKKG

∗ (X × Y ;A,B). ��

5. The combinatorial Euler characteristic

Let X be a countable, locally finite, simplicial complex, equipped with a simpli-
cial, continuous action of a locally compact group G. We are going to define the
combinatorial Euler characteristic for suchX. Although we only write down defi-
nitions for complex C∗-algebras, it is evident that everything we do here works
in the real case as well.

We define simplicial complexes as in, say, [8, I.Appendix]. However, we do
not consider the empty set as a simplex. The geometric realisation ofX is a second
countable, locally compact space becauseX is locally finite and countable. Since
we want to denote the geometric realisation byX as well, it is convenient to write
SX for the set of (non-empty) simplices of X. For each simplex σ ∈ SX, we
write |σ | for the corresponding subset ofX, and we let ξσ ∈ |σ | be its barycentre.
The resulting map

ξ : SX→ X, σ �→ ξσ (27)

identifies SX with a discrete G-invariant subset of X. We give SX the discrete
topology and the induced action ofG, which is of course continuous. Equivalently,
the stabiliser Gσ of ξσ is open for all σ ∈ SX.

We requireGσ to act trivially on |σ |. This is crucial to get a correct formula for
the Euler characteristic. However, this assumption involves no loss of generality
because we may, if necessary, replace X by its barycentric subdivision, which
clearly satisfies this condition.

We decompose SX into the subsets S±X of simplices of even and odd dimen-
sion. Let �2(S±X) be the Z/2-graded Hilbert space with orthonormal basisSX and
even and odd subspaces �2(S+X) and �2(S−X), respectively. In Section 6, we will
mostly be using the Hilbert space �2(SX) with trivial grading. We write �2

(
S±X

)

here to emphasise the non-trivial grading. Representing C0(SX) by diagonal
operators on �2

(
S±X

)
, we get a natural injective ∗-homomorphism C0(SX) →
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K
(
�2

(
S±X

))
, which is G-equivariant and by operators of even parity. Moreover,

the map (27) induces a G-equivariant ∗-homomorphism ξ∗ : C0(X)→ C0(SX).

Definition 22. Let Eulcmb
X ∈ KKG

0 (C0(X),C) be the class of the G-equivariant
∗-homomorphism

C0(X)→ C0(SX)→ K
(
�2(S±X

))

described above. We call this the combinatorial G-equivariant Euler character-
istic of X.

We now describe Eulcmb
X more explicitly. For a subgroupH ⊆ G, we letXH ⊆

X be the fixed-point subset. For each connected componentA ofXH , pick a point
x ∈ A and let dimH,A ∈ KKG

0 (C0(X),C) be the class of the homomorphism
C0(X) → C0(G/H) ⊆ K

(
�2(G/H)

)
that sends f ∈ C0(X) to the operator of

multiplication by the function gH �→ f (gx). This does not depend on the choice
of x by homotopy invariance. Moreover, we have dimgHg−1,gA = dimH,A for all
g ∈ G because the resulting Kasparov cycles are unitarily equivalent. In partic-
ular, dimH,gA = dimH,A if g belongs to the normaliser N(H) of H . Thus we
may replace the connected components of XH by the connected components of
N(H)\XH .

Given an open subgroupH ⊆ G and a connected componentA ofN(H)\XH ,
we let S(H,A) ⊆ SX be the set of all simplices of A whose stabiliser is exactly
equal to H . Let Eulcmb

X,H,A be the class in KKG
0 (C0(X),C) of the map

C0(X)
ξ∗→ C0(SX)→ K

(
�2(G · S±(H,A)

))
,

where the second map is the representation by diagonal operators as above. Then

Eulcmb
X =

∑

(H),A

Eulcmb
X,H,A,

where (H) runs through the set of conjugacy classes of those open subgroups ofG
that occur as stabilisers of simplices in X, and, for each of these, A runs through
the set of connected components of N(H)\XH .

Suppose first that N(H)\S(H,A) is finite. Let χ(X,H,A) ∈ Z be the alter-
nating sum of the numbers of n-simplices in N(H)\S(H,A). Then

Eulcmb
X,H,A = χ(X,H,A) · dimH,A .

If S(H,A) is infinite, we let χ(X,H,A) := 0 and claim that Eulcmb
X,H,A = 0 and

dimH,A = 0. This is because there is a continuous path (xt )t∈R+ in A such that
limt→∞‖f |Gxt‖∞ = 0 for all f ∈ C0(X). Thus

Eulcmb
X =

∑

(H),A

χ(X,H,A) · dimH,A, (28)
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where the summation runs over the same data (H),A as above. If this sum is
infinite, we have to add the cycles, not just their classes. The summation in (28)
is finite if and only if all fixed-point subspaces XH have finitely many connected
components and there are, up to conjugacy, only finitely many different subgroups
of G that occur as the stabiliser of a simplex in X.

We are mainly interested in the case whereX is strongly contractible. Then all
fixed-point subsets XH are contractible and a fortiori connected. Hence we may
write dimH and χ(X,H) instead of dimH,A and χ(X,H,A).

Example 23. Consider G := PSL(2,Z). The free product decomposition G ∼=
Z/2 ∗ Z/3 gives rise to a tree X on which G acts in such a way that the funda-
mental domain is an edge with stabilisers Z/2 and Z/3 at the end points and {1}
in the interior (see [54, §I.4, Theorem 7]). The action of G on SX has only three
orbits in this case, two orbits on vertices and one on edges. We find

Eulcmb
X = dimZ/2+ dimZ/3− dim{1} ∈ KKG

0 (C0(X),C).

Example 24. The case where G is discrete and acts freely on X is particularly
simple. Then we have natural isomorphisms

KKG
0 (C0(X),C) ∼= KK0(C0(X)�r G,C) ∼= KK0(C0(G\X),C). (29)

They map Eulcmb
X ∈ KKG

0 (C0(X),C) to Eulcmb
G\X ∈ KK0(C0(G\X),C). We have

Eulcmb
G\X =

∑

A∈π0(G\X)
χ(A) · dimA,

where χ(A) is the usual Euler characteristic ofA ⊆ G\X and dimA is the class in
KK0(C0(G\X),C) of the homomorphism C0(G\X) → C, f �→ f (x), for any
x ∈ A. If G\X is connected, we get Eulcmb

G\X = χ(G\X) · dim.

In [34], the relationship between various topological constructions of Euler
characteristics is discussed. Here we consider another construction from repre-
sentation theory that is related to the Euler characteristic of a group.

We assume that G is a totally disconnected locally compact group for which
there is a G-compact universal proper G-space X. This holds, for instance, for
reductive p-adic groups or hyperbolic groups, where we may take the affine Bru-
hat-Tits building or the Rips complex, respectively. We may then choose X to be
aG-finite simplicial complex with simplicial action ofG. As in Definition 15, we
identify KKG

∗ (C0(X),C) ∼= Ktop
∗ (G), so that we can view the combinatorial Euler

characteristic of X as an element Eulcmb
X ∈ Ktop

0 (G). This class is independent of
the choice ofX; we omit the verification because our main theorem (Theorem 30)
yields in any case that Eulcmb

X = EulEG, where EulEG is as in Definition 15.
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We assume now thatG satisfies the Baum-Connes conjecture, so that we lose
nothing by mapping EulX ∈ Ktop

0 (G) to K0(C
∗
r G). This class can be described as

follows:

µG(Eulcmb
X ) =

∑

σ∈G\SX
(−1)|σ |[τ(Gσ )] ∈ K0(C

∗
r G),

where τ(Gσ ) ∈ C∗r (Gσ ) ⊆ C∗r (G) is the projection onto the trivial representation
of the compact-open subgroup Gσ . As a projection in the reduced C∗-algebra,
τ(G) is given by Vol(Gσ )

−1 ·1Gσ , where 1Gσ is the characteristic function ofGσ .
The classµG(Eulcmb

X ) ∈ K0(C
∗
r G) is related to the representation theory ofG.

For discrete groups, this idea goes back to Hyman Bass ([3]).
Recall that the Hecke algebra ofG is the space of locally constant, compactly

supported functions G → C with the convolution product. If G is discrete, this
is nothing but the group algebra ofG. The projections τ(Gσ ) all lie in H (G), so
that their alternating sum actually lies in Kalg

0

(
H (G)

)
.

Let R(G) be the category of smooth representations of G (always on com-
plex vector spaces). We say that a smooth representation of G has type (FP) if
it has a finite length resolution (Pn, δn) by finitely generated projective objects
of R(G). This resolution is unique up to chain homotopy equivalence. We have
Pn ∼=H (G)kn ·pn for certain projections pn ∈ Mkn

(
H (G)

)
, which yield classes

in Kalg
0

(
H (G)

)
. Let

χ(M) :=
∞∑

n=0

(−1)n[pn] ∈ Kalg
0

(
H (G)

)
.

This is well-defined, that is, independent of the choices of the resolution (Pn, δn)
and the projections pn.

We may consider the cellular chain complex of X with coefficients C as a
chain complex of smooth representations of G. Its homology vanishes for ∗ > 0
and is C with the trivial representation of G for ∗ = 0. Since X is G-compact,
C[SX] is a finite direct sum of H (G)-modules of the form C[G/H ] for cer-
tain compact-open subgroupsH ⊆ G. The latter are finitely generated projective
objects of R(G) because C[G/H ] ∼= H (G) · τ(H) for all compact-open sub-
groupsH ⊆ G. Thus the trivial representation ofG has type (FP) and the natural
map Kalg

0

(
H (G)

)→ K0(C
∗
r G) maps χ(C) to µG(EulEG).

Representation theorists usually replace χ(C) by its Chern character, which
belongs to HH0

(
H (G)

)
:= H (G)/[H (G),H (G)]; it is represented by the

function
∑

σ∈G\SX
(−1)|σ |τ(Gσ ) ∈H (G).

IfG is a semi-simplep-adic group, another representative for the same class is the
Euler-Poincaré function of Robert Kottwitz ([31, Section 2]); it is computed from
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the cellular chain complex of the affine Bruhat-Tits building with its natural poly-
simplicial structure. Recall that we refine this to a simplicial structure with the
additional property thatGσ fixes the simplex σ pointwise. Both chain complexes
produce the same class in HH0

(
H (G)

)
, even in Kalg

0

(
H (G)

)
, because they both

come from finite projective resolutions of the trivial representation of G.
Peter Schneider and Ulrich Stuhler construct analogous Euler-Poincaré func-

tions for general irreducible representations of semi-simple p-adic groups in [51];
this construction can be modified easily to produce elements of Kalg

0

(
H (G)

)
,

see [37].Although the Borel-Serre compactification plays an important role in [51],
it is not clear to us whether these more general Euler characteristics of irreducible
representations are related to Kasparov duals or boundary actions.

6. A Kasparov dual for simplicial complexes

In this section, we assume X to be a finite-dimensional, locally finite, countable
simplicial complex equipped with a simplicial, continuous action of a locally
compact group G. We do not require the action to be proper.

Our main goal is to exhibit the combinatorial Euler characteristic as an abstract
Euler characteristic. A Kasparov dual forX has already been constructed by Gen-
nadi Kasparov and Georges Skandalis in [26]. However, they only describe �
indirectly, which makes it hard to compute EulX. Therefore, we give an indepen-
dent and completely explicit construction for�. We also modify their definitions
of P and D slightly to get a simple formula for �.

We need some preparations before we can start the actual construction. As in
Section 5, SX denotes the set of simplices of X, and we usually write X both for
the simplicial complex and its geometric realisation. Let S0X ⊆ SX be the set of
vertices, that is, 0-simplices of X. Suppose that X is at most n-dimensional and
let

n := {0, 1, . . . , n}.
A colouring on X is a function γ : S0X→ n such that for any simplex σ ∈ SX,
the images under γ of the vertices of σ are pairwise distinct. A coloured simpli-
cial complex is a simplicial complex equipped with such a colouring. The action
of G is compatible with the colouring if the function γ is G-invariant. (Coloured
simplicial complexes are called typed in [26].) Most of our constructions only
involve a single simplex in X at a time. The colouring allows us to piece these
local constructions together.

Let X be any n-dimensional simplicial complex and let X(1) be its barycen-
tric subdivision. Recall that the vertex set of X(1) is equal to the set of simplices
of X; the simplices in X(1) are labelled bijectively by strictly increasing chains
in the partially ordered set of simplices of X; here the partial order is defined by
σ ≤ σ ′ if σ is a face of σ ′. The map S0X

(1) = SX → n that sends a simplex to
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its dimension is a canonical colouring on X(1). Thus it is no loss of generality to
assume X to carry a G-invariant colouring; we assume this in the following.

We shall use the affine Euclidean space

E :=
{
(t0, . . . , tn) ∈ R

n+1
∣∣∣
∑

ti = 1
}
. (30)

Sometimes, we specify a point in E by homogeneous coordinates:

[t0, . . . , tn] := (∑
ti
)−1
(t0, . . . , tn) (31)

provided
∑
ti 	= 0. We realise the standard n-simplex as the subset


 := {(t0, . . . , tn) ∈ E | ti ≥ 0 for all i ∈ n}. (32)

Let S (n) be the partially ordered set of non-empty subsets of n. We extend the
colouring γ to a map SX→ S (n) by sending a simplex to the set of colours of
its vertices. We also define γ (∅) := ∅. We identify n with the set of vertices of
.
Since a face of 
 is determined by the set of vertices it contains, this identifies
S (n)with the partially ordered set of faces of
. Under this identification, f ⊆ n
corresponds to the face

|f | := {(t0, . . . , tn) ∈ 
 | ti = 0 for i ∈ n \ f }
= {(t0, . . . , tn) ∈ E | ti ≥ 0 for i ∈ f and ti = 0 for i ∈ n \ f }. (33)

We may view the map γ : SX → S (n) as a G-invariant simplicial map;
passing to geometric realisations, we get a G-invariant continuous map

|γ | : X→ 
. (34)

Any point x ∈ X belongs to some simplex σ ∈ SX. The restriction of |γ | to |σ | is
the unique affine map that sends a vertex of colour i to the corresponding vertex
of
. If σ is of dimension k, then γ (σ ) ⊆ n has k+1 elements and hence defines
a k-dimensional face of
. Hence the restriction of |γ | to |σ | is a homeomorphism
from |σ | to the face |γ (σ )| of 
.

For any f ⊆ n, we define a closed convex subset Rf ⊆ E by

Rf := {(t0, . . . , tn) ∈ E | ti ≥ 0 for i ∈ f and ti ≤ 0 for i ∈ n \ f }. (35)

These regions are a crucial ingredient of our construction. Figure 1 illustrates
them for n = 2. We have Rn = 
 and R∅ = ∅ because no point of E satisfies
ti < 0 for all i ∈ n. The setsRf for f ∈ S (n) coverE and have mutually disjoint
interiors. We also define RS :=⋃

f∈S Rf if S ⊆ S (n) is a set of faces of 
. We
are mainly interested in

R≤f :=
⋃

{l∈S (n)|l≤f }
Rl = {(t0, . . . , tn) ∈ E | ti ≤ 0 for i ∈ n \ f } (36)
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Fig. 1. The regions Rf

for f ⊆ n. It follows immediately that

R≤f1 ∩ R≤f2 = R≤(f1∩f2) (37)

for all f1, f2 ∈ S (n).
We define a retraction q : E→ 
 by

q(t0, . . . , tn) := [max(t0, 0), . . . ,max(tn, 0)]. (38)

Inspection of (33) and (36) yields

q−1(|f |) = R≤f . (39)

Kasparov and Skandalis use the nearest point retraction to 
 instead of q
in [26]. We prefer q because of the more explicit formula.

We can now define the underlyingC∗-algebra P of our Kasparov dual. We use
the C∗-algebra of compact operators on �2(SX). The groupG acts on this Hilbert
space via its action on the basis SX. We equip �2(SX) with the trivial grading, as
opposed to the grading by parity that we used in Section 5. We describe an oper-
ator T on �2(SX) by a matrix (Tσσ ′)σ,σ ′∈SX. For a function ϕ : Y → B

(
�2(SX)

)
,

its matrix coefficients are functions ϕσσ ′ : Y → C, defined by ϕσσ ′(y) := ϕ(y)σσ ′
for y ∈ Y . For the remainder of this section, we abbreviate

K := K
(
�2(SX)

)
.

Let

P := {ϕ ∈ C0(E,K) | suppϕσσ ′ ⊆ R≤γ (σ∩σ ′) for all σ, σ ′ ∈ SX}. (40)

Hence ϕσσ ′ = 0 unless σ and σ ′ have a common face. We let G act on C0(E,K)

by gϕ(t) := πg ◦ϕ(t)◦π−1
g for all g ∈ G, t ∈ E where πg comes from the action

of G on �2(SX). Obviously, P is a closed, self-adjoint, G-invariant subspace of
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C0(E,K). We have to check that P is closed under multiplication. If ϕ,ψ ∈P ,
σ, σ ′ ∈ SX, then we have (ϕ · ψ)σσ ′ =

∑
τ∈SX ϕστψτσ ′ . Using (37) and that the

colouring is injective on the vertices of τ , we get

suppϕστψτσ ′ ⊆ R≤γ (σ∩τ) ∩ R≤γ (σ ′∩τ) = R≤γ (σ∩τ∩σ ′) ⊆ R≤γ (σ∩σ ′).
Hence each individual summand ϕστψτσ ′ satisfies the support condition (40).
Thus P is a G-invariant C∗-subalgebra of C0(E,K).

We may interpret the algebra P physically as follows. The simplices σ are
possible states of a system. For t ∈ E, the system may only be in the state σ if
ti < 0 for all i ∈ n \ γ (σ ); two such states σ, σ ′ may interact if ti < 0 for all
i ∈ n \ γ (σ ∩ σ ′).

Next we define the X-structure map m : C0(X) ⊗P → P . Recall that the
map |γ | defined in (34) restricts to a homeomorphism |γ |σ : |σ | → |γ (σ )| for
each σ ∈ SX and that q(R≤f ) ⊆ |f | by (39). Hence we may define a continuous
G-equivariant map

E × SX ⊇
⋃

σ∈SX
R≤γ (σ ) × {σ } q̄−→ X, q̄(t, σ ) := |γ |−1

σ

(
q(t)

)
. (41)

We extend q̄ to all ofE×SX by q̄(t, σ ) := |γ |−1
σ ◦aγ (σ) ◦q(t), where we choose

simplicial retractions af : 
→ |f | for f ∈ S (n). By construction, q̄(t, σ ) ∈ |σ |
for all t ∈ E, σ ∈ SX. With this extension of q̄ we get a G-equivariant essential
∗-homomorphism

m′ : C0(X)
q̄∗−→ Cb(E × SX)→M(

C0(E,K)
)
,

where the second map is the representation by diagonal operators on �2(SX).

Lemma 25. We havem′(ϕ1)◦ϕ2 = ϕ2◦m′(ϕ1) ∈P for all ϕ1 ∈ C0(X), ϕ2 ∈P .

Proof. It follows from the definitions that

(m′(ϕ1) ◦ ϕ2)σσ ′(t) = ϕ1
(
q̄(t, σ )

) · ϕ2(t)σσ ′,
(
ϕ2 ◦m′(ϕ1)

)
σσ ′(t) = ϕ1

(
q̄(t, σ ′)

) · ϕ2(t)σσ ′

for allσ, σ ′ ∈ SX, t ∈ E. The function (ϕ2)σσ ′ is supported in the regionR≤γ (σ∩σ ′)
because ϕ2 ∈P , see (40). Therefore, (m′(ϕ1)ϕ2)σσ ′ and

(
ϕ2m

′(ϕ1)
)
σσ ′ are sup-

ported in this region as well, so that m′(ϕ1)ϕ2 ∈ P and ϕ2m
′(ϕ1) ∈ P . It

remains to check that the two matrix coefficients above agree. This follows if
q̄(t, σ ) = q̄(t, σ ′) for all t ∈ R≤γ (σ∩σ ′) because both matrix coefficients are
supported in this region.

If t ∈ R≤γ (σ∩σ ′), then t ∈ R≤γ (σ ) and t ∈ R≤γ (σ ′) by (37). Thus q̄(t, σ ) and
q̄(t, σ ′) are both defined by (41). We have q(t) ∈ |γ (σ ∩ σ ′)| by (39). Both |γ |σ
and |γ |σ ′ extend |γ |σ∩σ ′ , which is a homeomorphism onto the face |γ (σ ∩ σ ′)|.
Therefore, q̄(t, σ ) = q̄(t, σ ∩ σ ′) = q̄(t, σ ′) as desired. ��
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Hence there is a unique ∗-homomorphismm : C0(X)⊗P →P withm(ϕ1⊗
ϕ2) := m′(ϕ1)◦ϕ2; sinceC0(X) is nuclear, it does not matter which tensor product
we choose here. The map m is G-equivariant and essential, so that P becomes
an X �G-C∗-algebra. If we view ϕ ∈ C0(X)⊗P as a function X × E → K,
we can describe m explicitly in terms of matrix coefficients:

m(ϕ)σσ ′(t) = ϕσσ ′(q̄(t, σ ∩ σ ′), t) = ϕσσ ′(|γ |−1
σ∩σ ′ ◦ q(t), t). (42)

The last expression has to be taken with a grain of salt because |γ |−1
σ∩σ ′ ◦ q(t)

is only defined for t ∈ R≤γ (σ∩σ ′); for other values of t , we have ϕσσ ′(x, t) = 0
regardless of the value of x because of the definition of P in (40).

Next, we define D ∈ KKG
n (P,C). Let [i] ∈ KKG

0

(
P, C0(E)

)
be the class

of the inclusion map i : P → C0(E,K). Since E ∼= R
n, we have canonical

invertible elements

βE ∈ KKn(C0(E),C), β̂E ∈ KK−n
(
C, C0(E)

)
,

such that

βE ⊗ β̂E = 1C0(E) in KKG
0 (C0(E), C0(E)),

β̂E ⊗C0(E) βE = 1C in KKG
0 (C,C).

We set

D := [i]⊗C0(E) βE ∈ KKG
n (P,C). (43)

We will construct � ∈ RKKG
−n(X;C,P) as

� := β̂E ⊗C0(E) [ϑ],

where [ϑ] ∈ RKKG
0 (X;C0(E),P) is the class of anX�G-equivariant ∗-homo-

morphism ϑ : C0(X)⊗C0(E)→ C0(X)⊗P . The latter is, of course, equivalent
to aG-equivariant continuous family of ∗-homomorphisms ϑx : C0(E)→P for
x ∈ X. Its construction is rather involved. This is the point where we deviate most
seriously from [26].

The first ingredient for ϑ is a certain G-equivariant function from X to the
unit sphere of �2(SX). For this we need the barycentric subdivision X(1) of X.
Recall that the vertices of this subdivision are in bijection with SX. Let x ∈ X
and let σ (1) be some simplex of the barycentric subdivision that contains x. The
vertices of σ (1) form a strictly increasing chain σ0 ⊂ · · · ⊂ σk in SX; we view
these as basis vectors of �2(SX). Any point of |σ (1)| can be written uniquely as a
convex combination of the vertices σj ; formally, x =∑k

j=0 tj σj , where tj ≥ 0 for
all j ∈ k and

∑
tj = 1. The barycentric subdivision of a 2-simplex is illustrated

in Figure 2; we have represented the vertices by their colours in {0, 1, 2}. The
shaded maximal simplex of the barycentric subdivision is labelled by the chain
0, 01, 012.
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Fig. 2. barycentric subdivision of the standard 2-simplex

Let

v′(x) = v′



k∑

j=0

tj σj



 :=
k∑

j=0

√
tj σj ∈ �2(SX). (44)

This defines a continuous map from |σ (1)| to the unit sphere of �2(SX). If some of
the coordinates tj of x vanish, then we may replace σ (1) by the face that is spanned
by the σj with tj 	= 0. Since this does not change v′(x), the maps v′ may be glued
together to a continuous map v′ : X → �2(SX), whose range is contained in the
unit sphere. Now let P ′ : X → K be the function whose value at x ∈ X is the
rank-1-projection onto C ·v′(x). The maps v′ and P ′ are evidentlyG-equivariant.

An important point about this definition is that the basis vectors involved
in v′(x) form a chain in SX; hence there is some region in E where P ′(x) is a
possible value for an element of P . Observe that P ′(x) is a diagonal operator in
the basis SX if and only if v′(x) is a basis vector, if and only if x is a vertex of
the barycentric subdivision; equivalently, x = ξσ for some σ ∈ SX. In order to
proceed with the construction, we need a projection-valued function that is diag-
onal not merely at these points but near them. Therefore, we replace v′ and P ′

by v := v′ ◦ C and P := P ′ ◦ C with a certain collapsing map C : X→ X.
ChooseL ∈ (

0, 1/(n+1)
)
. We first define a map C
 : 
→ 
 on the standard

simplex by

C

(
(t0, . . . , tn)

)
:= [min{t0, L}, . . . ,min{tn, L}], (45)

where [. . . ] denotes homogeneous coordinates as in (31). If tj = 0, then
min{tj , L} = 0 as well. This means that C
(|f |) ⊆ |f | for each face f of 

(these faces are defined in (33)). Therefore, if σ ∈ SX we may define

C : |σ | → |σ |, x �→ |γ |−1
σ ◦ C
 ◦ |γ |σ (x),
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Fig. 3. The regions CRf

using the homeomorphisms |γ |σ defined after (34). These maps on simplices
match on |σ∩σ ′|, so that we get a global map C : X→ X. Now we put v := v′◦C
and P := P ′ ◦ C ; thus P(x) is the rank-1-projection onto C · v(x) for all x ∈ X.

In order to formulate some properties of the collapsing map, we define

CRf := {(t0, . . . , tn) ∈ 
 | ti ≥ L for i ∈ f, ti ≤ L for i ∈ n \ f }.
(46)

for f ∈ S (n). These regions cover
 becauseL < 1/(n+1). Figure 3 illustrates
them for the 2-simplex. Combining (33) and (46), we get

|f | ∩ CRf = {(t0, . . . , tn) ∈ 
 | ti ≥ L for i ∈ f, ti = 0 for i ∈ n \ f }.
(47)

Hence C
(|f | ∩ CRf ) consists of a single point (t ′i ), with homogeneous coordi-
nates t ′i = L for i ∈ f and t ′i = 0 for i ∈ n \f . The rescaling replaces L by 1/#f
and thus produces the barycentre ξf of the face f ; that is,

C
(|f | ∩ CRf ) = {ξf }. (48)

Lemma 26. If x ∈ X satisfies |γ |(x) ∈ CRf , then we have P(x)σσ ′ = 0 or
f ⊆ γ (σ ∩ σ ′).
Proof. Let τ be some simplex ofX that contains x. Since v(x) only has non-zero
coefficients at the faces of τ and since the restriction of |γ | to |τ | is injective, we
may assume without loss of generality that X = 
 and |γ | = id
 . Moreover,
the assertion is invariant under simplicial automorphisms of 
, that is, permu-
tations of coordinates. (We transform both x and f , of course.) We can achieve
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that x0 ≥ x1 ≥ · · · ≥ xn by a coordinate permutation. Since x ∈ CRf , the only
possibilities for f are f = {0, . . . , k} for some k ∈ n and we have xk ≥ L ≥ xk+1.
Let x ′ := C
(x), then we get P(x) = P ′(x ′) and

x ′0 = x ′1 = · · · = x ′k ≥ x ′k+1 ≥ · · · ≥ x ′n.
Let αj ∈ 
 be the vertex of the barycentric subdivision of
 that is labelled by

the simplex {0, . . . , j}; equivalently, αj is the barycentre of that simplex; explic-
itly, the first j + 1 coordinates of αj are 1/(j + 1), the remaining ones vanish.
We have

x ′ = x ′n(n+ 1)αn +
n−1∑

j=k
(x ′j − x ′j+1)(j + 1)αj ,

so that x ′ is a convex combination of αj with j ≥ k. Such convex combinations
form a single simplex in the barycentric subdivision. Hence the vector v(x) =
v′′(x ′) ∈ �2(SX) only contains the basis vectors αj with j ≥ k. Therefore,
if P(x)σ,σ ′ 	= 0, then σ and σ ′ are among the αj with j ≥ k. This implies
f ⊆ γ (σ ∩ σ ′) as asserted. ��

For λ > 1, let rλ : E→ E be the radial expansion map around the barycentre
of 
. Explicitly,

rλ(t0, . . . , tn) =
(
λt0 − λ− 1

n+ 1
, . . . , λtn − λ− 1

n+ 1

)
. (49)

If (λ− 1)/(n+ 1) = λL, that is, λ = (1− (n+ 1)L)−1, then we get

CRf = r−1
λ (Rf ) (50)

and hence rλ(CRf ) ⊆ Rf ⊆ R≤f ; this follows immediately from the definitions
(35) and (46), see also Figures 1 and 3. We shall need a slightly different result,
as follows. For δ > 0, let

B(δ) :={
(t0, . . . , tn)∈R

n+1
∣
∣
∑

tj = 0 and |tj |<δ for all j = 0, . . . , n
}
.

Lemma 27. If λ > (1 − (n + 1)L)−1, then there exists δ > 0 such that rλ(s) +
B(δ) ⊆ R≤f for all f ∈ S (n), s ∈ CRf .

Proof. This follows immediately from the definition of rλ and the definitions (36)
and (46) of the regions R≤f and CRf . ��

Choose λ and δ > 0 as in Lemma 27 and choose an orientation-preserving

diffeomorphism h : E
∼=→ B(δ). Let E+ be the one-point compactification of E.

Extend h−1 to a map h−1 : E+ → E+ by h−1(t) := ∞ for t /∈ B(δ) and extend
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ϕ ∈ C0(E) to E+ by ϕ(∞) := 0. We get a continuous family of ∗-homomor-
phisms

hs! : C0(E)→ C0(E), hs!ϕ(t) := ϕ ◦ h−1(t − rλ(s)
)

(51)

for s ∈ 
, where rλ : E→ E is defined in (49). Our notation stems from the fact
that hs! is the wrong-way map associated to the open embedding

hs : E→ E, t �→ h(t)+ rλ(s).
By construction, hs!(ϕ) vanishes outside rλ(s)+ B(δ) for all ϕ ∈ C0(E). Using
the map |γ | : X→ 
 defined in (34), we get a G-invariant continuous family of
∗-homomorphisms h|γ |(x) : C0(E)→ C0(E) parametrised by x ∈ X.

Lemma 28. The formula

ϑx(ϕ) := h|γ |(x)!(ϕ)⊗ P(x)
for x ∈ X defines a G-equivariant continuous family of ∗-homomorphisms
C0(E)→P and hence a class [ϑ] ∈ RKKG

0 (X;C0(E),P). We define

� := β̂E ⊗C0(E) [ϑ] ∈ RKKG
−n(X;C,P).

Proof. It is clear that ϑx is a G-equivariant continuous family of ∗-homomor-
phisms into C0(E,K) ⊇P . We must check that its range is contained in P . Fix
σ, σ ′ ∈ SX and x ∈ X such that P(x)σσ ′ 	= 0. We have |γ |(x) ∈ CRf for some
f ∈ S (n) because these regions cover 
. Lemma 26 yields f ⊆ γ (σ ∩ σ ′). Let
V := rλ|γ |(x)+B(δ), then V ⊆ R≤f ⊆ R≤γ (σ∩σ ′) by Lemma 27. Since h|γ |(x)!ϕ
is supported in V for all ϕ ∈ C0(E), we get suppϑx(ϕ)σσ ′ ⊆ R≤γ (σ∩σ ′). This
means that ϑx(ϕ) ∈P (see (40)). ��
Theorem 29. The triple (P,D,�) defined above is a Kasparov dual for X of
dimension −n.

Proof. First we check condition 18.1, that is, �⊗P D = 1C. Let ϑ = (ϑx)x∈X
be as in Lemma 28. Let i be the embedding P → C0(E)⊗K; it defines a class
[i] ∈ KKG

0

(
P, C0(E)

)
. Then

�⊗P D = β̂E ⊗C0(E) [ϑ]⊗P [i]⊗C0(E) βE.

We are done if we show [i ◦ ϑ] = 1C0(E) in RKKG
0 (X;C0(E), C0(E)) because

β̂E ⊗C0(E) βE = 1C. Since we no longer impose any support restrictions on the
range of i ◦ ϑx , the family of maps

ϑsx(ϕ)(t) := ϕ ◦ h−1
(
t − rsλ

(|γ |(x))
)
P(x)
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for s ∈ [0, 1] provides a natural homotopy between i ◦ ϑx = ϑ1
x and the map

ϑ0
x ϕ(t) := ϕ ◦ h−1(t − ξ)P (x),

where ξ is the barycentre of 
. Since h is an orientation-preserving homeomor-
phism E → B(δ), the endomorphism ϕ �→ ϕ ◦ h−1(t − ξ) of C0(E) is homo-
topic to the identity map. Thus [ϑ] is the exterior product of 1C0(E) and the class
[P ] ∈ RKKG

0 (X;C,C) determined by the continuous family of projectionsP(x),
x ∈ X. The continuous family of unit vectors v(x)may be viewed as aG-equivari-
ant continuous family of isometries v̂(x) : C→ �2(SX)with v̂(x)v̂∗(x) = P(x).
This means that [P ] = [1C]. This finishes the proof that �⊗P D = 1C.

Next we verify 18.2, which asserts that � ⊗̂X f = � ⊗̂P σX,P(f ) in
RKKG

∗ (X × Y ;A,B ⊗̂P) for all f ∈ RKKG
∗+n(X × Y ;A,B) and all Y,A,B.

Since the classes βE and β̂E are inverse to each other, this is equivalent to
[ϑ] ⊗̂X f = [ϑ] ⊗̂P σX,P(f ) in RKKG

∗ (X × Y ;A ⊗̂ C0(E), B ⊗̂ P). By
Lemma 21, it suffices to prove this in the special case where f is an (X×Y )�G-
equivariant ∗-homomorphism. Thus both factors in our product are now classes
of equivariant ∗-homomorphisms.

We view f as a G-equivariant continuous family of C0(Y )-linear ∗-homo-
morphisms fx : C0(Y,A)→ C0(Y, B) for x ∈ X. Then ϑ ⊗̂X f corresponds to
the continuous family of maps ϑx ⊗̂ fx : C0(E) ⊗̂ C0(Y,A)→ P ⊗̂ C0(Y, B),
x ∈ X. Explicitly,

(ϑ ⊗̂X f )x(ϕ ⊗̂ a)σσ ′(t) := ϑx(ϕ)σσ ′(t)fx(a)
= (h|γ |(x)!ϕ)(t)P (x)σσ ′fx(a) in C0(Y, B)

(52)

for all ϕ ∈ C0(E), a ∈ C0(Y,A), t ∈ E, σ, σ ′ ∈ SX.
By definition, we have σX,P(f )(ϕ1 ·ϕ2 ⊗̂a) = ϕ1 ·f (ϕ2 ⊗̂a) for all ϕ1 ∈P ,

ϕ2 ∈ C0(X), a ∈ C0(Y,A). Using (42), we rewrite this as

σX,P(f )(ϕ ⊗̂ a)σσ ′(t) = ϕσσ ′(t)fq̄(σ,t)(a) in C0(Y, B) (53)

for all ϕ ∈ P , a ∈ C0(Y,A), σ, σ ′ ∈ SX, t ∈ E. Composition with ϑ yields
the continuous family of maps

(
ϑ ⊗̂P σX,P(f )

)
x
= σX,P(f ) ◦ (1A ⊗̂ ϑx) from

C0(E) ⊗̂ C0(Y,A) to P ⊗̂ C0(Y, B) for x ∈ X. Thus
(
ϑ ⊗̂P σX,P(f )

)
x
(ϕ ⊗̂ a)σσ ′(t) = (h|γ |(x)!ϕ)(t)P (x)σσ ′fq̄(σ,t)(a). (54)

The only difference between the two families in (52) and (54) is that we use fx
and fq̄(σ,t), respectively. Whenever P(x)σσ ′ 	= 0, x and q̄(σ, t) lie in the same
simplex σ ∩ σ ′ of X. Arguments as in the proofs of Lemmas 25 and 28 show
that we still get a homomorphism from C0(E) ⊗̂ C0(Y,A) to P ⊗̂ C0(Y, B) if
we replace fq̄(σ,t) in (54) with f(1−s)x+sq̄(σ,t) for s ∈ [0, 1]. Thus ϑ ⊗̂X f and
ϑ ⊗̂P σX,P(f ) are homotopic. This finishes the proof of 18.2.
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It remains to verify 18.3. Since βE is invertible, we may replace σX,P(�)with
σX,P([ϑ]) in this statement. This is the class of aG-equivariant ∗-homomorphism
σX,P(ϑ) : P ⊗ C0(E)→P ⊗P . We must check

[�P ◦ σX,P(ϑ)] = (−1)n[σX,P(ϑ)] in KKG
0 (P ⊗ C0(E),P ⊗P);

here �P denotes the flip automorphism on P ⊗P . We describe σX,P(ϑ) by
specifying its matrix coefficients with respect to the basis SX× SX of �2(SX) ⊗̂
�2(SX) ∼= �2(SX × SX). Equation (53) yields

σX,P(ϑ)(ϕ1 ⊗̂ ϕ2)(t1, t2)(σ1,σ2),(σ
′
1,σ
′
2)

= ϕ1(t1)σ1σ
′
1
· ϕ2 ◦ h−1(t2 − rλ ◦ |γ | ◦ q̄(t1, σ1)

) · P (
q̄(σ1, t1)

)
σ2σ
′
2

(55)

for all ϕ1 ∈ P , ϕ2 ∈ C0(E), t1, t2 ∈ E, σ1, σ
′
1, σ2, σ

′
2 ∈ SX. Fix t1, t2 ∈ E and

choosef ⊆ n minimal such that t1 belongs to the interior ofR≤f . Thus q(t1) ∈ |f |
by (39). If ϕ1(t1)σ1σ

′
1
	= 0, then f ⊆ γ (σ1 ∩ σ ′1) by the definition of P , see (40).

Hence (41) yields q̄(σ1, t) = |γ |−1
σ1
q(t1). Thus |γ |q̄(σ1, t1) = q(t1) and we can

rewrite the right hand side of (55) as

ϕ1(t1)σ1σ
′
1
· ϕ2 ◦ h−1(t2 − rλq(t1)

) · P (
q̄(σ1, t1)

)
σ2σ
′
2
.

For σ ∈ SX, f ⊆ n, we let

SX≥σ := {σ ′ ∈ SX | σ ′ ≥ σ },
SX≥f := {σ ′ ∈ SX | γ (σ ′) ⊇ f }, (56)

SX=f := {σ ′ ∈ SX | γ (σ ′) = f },

Since γ is a colouring, any simplex in SX≥f contains a unique face σ with
γ (σ ) = f . This means that SX≥f is the disjoint union of the subsets SX≥σ ,
where σ ∈ SX=f . We write σ1,f := τ if γ (τ) = f and σ1 ∈ SX≥τ . With f as
defined above, we have q̄(σ1, t1) ∈ |σ1,f |. Thus P

(
q̄(σ1, t1)

)
σ2σ
′
2
= 0 unless σ2

and σ ′2 are faces of σ1,f .
We also choose f2 such that q(t1) ∈ CRf2 . Then it follows from Lemma 26

that f2 ⊆ γ (σ2∩σ ′2) for all σ2, σ
′
2 ∈ SX with P

(
q̄(σ1, t1)

)
σ2σ
′
2
	= 0. Since both σ2

and σ ′2 are faces of σ1, this is equivalent to σ2, σ
′
2 ∈ SX≥σ1,f2

. Moreover, Lemma
27 yields that t2 belongs to the interior of R≤f2 .

It follows from the definition of P that the possible values ofϕ1(t1) forϕ1 ∈P
are exactly the elements of

⊕

σ∈SX=f
K

(
�2(SX≥σ )

) ⊆ K
(
�2(SX)

) = K.
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A similar description is available for the possible values at t2, of course; the rele-
vant face f ′ ⊆ n is the minimal subset for which t2 is an interior point of R≤f ′ .
We have f ′ ≤ f2 by Lemma 27. The map σX,P(ϑ) gives rise to an embedding

⊕

τ∈SX=f
K

(
�2(SX≥τ )

)→
⊕

τ∈SX=f
K

(
�2(SX≥τ × SX≥τf ′ )

)
,

which is induced by the family of isometries

J (τ, t1) : �
2(SX≥τ )→ �2(SX≥τ × SX≥τf ′ ), η �→ η ⊗ v(q̄(τ, t1)

)
,

for τ ∈ SX=f . Here we use the definition of P(x) as the rank-1-projection onto
the span of the unit vector v(x).

Since the coefficients of v(x) are non-negative for all x ∈ X, we have (1 −
s)v(x) + sσ 	= 0 for any s ∈ [0, 1], σ ∈ SX (we view σ as a basis vector of
�2(SX)). Therefore, we may deform the isometry J (τ, t1) by a continuous path
of isometries

J s(τ, t1)(σ ) : �
2(SX≥τ )→ �2(SX≥τ × SX≥τf ′ ),

J s(τ, t1)(σ ) := σ ⊗ (1− s)v(q̄(τ, t1)
)+ sσ

‖(1− s)v(q̄(τ, t1)
)+ sσ‖ for σ ∈ SX≥τ .

These isometries yield a homotopy of ∗-homomorphisms

Ad J s(t1) :
⊕

τ∈SX=f
K

(
�2(SX≥τ )

)→
⊕

τ∈SX=f
K

(
�2(SX≥τ × SX≥τf ′ )

)
.

Letting t1, t2 vary again, we get a homotopy ofG-equivariant ∗-homomorphisms
P ⊗ C0(E)→P ⊗P by sending ϕ1 ⊗ ϕ2 to the function

(t1, t2) �→ Ad J s(t1)ϕ1(t1) · ϕ2 ◦ h−1(t2 − rλq(t1)
)
.

Thus σX,P(ϑ) is homotopic to the G-equivariant ∗-homomorphism

α : P ⊗ C0(E)→P ⊗P defined by

α(ϕ1 ⊗ ϕ2)(t1, t2) := Ad J 1ϕ1(t1) · ϕ2 ◦ h−1
(
t2 − rλq(t1)

)
,

where J 1 : �2(SX) → �2(SX × SX) is the diagonal embedding that sends the
basis vector σ ∈ SX to σ ⊗ σ .

Fix t1 once again and let f ⊆ n be as above. Then Ad J 1ϕ(t1) is an allowed
value for functions in P ⊗P if t2 belongs to the interior of R≥f . Since this
holds for the points in rλ((1− s)q(t1)+ st1)+ B(δ) for s ∈ [0, 1], the map α is
homotopic to

α′(ϕ1 ⊗ ϕ2)(t1, t2) := Ad J 1ϕ1(t1) · ϕ2 ◦ h−1(t2 − rλt1).
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Observe that ϕ �→ ϕ ◦ rλ−s for s ≥ 0 defines an endomorphism of P . Hence the
homotopy α′s(ϕ)(t1, t2) := α′(ϕ)(rλ−s t1, t2) connects α′ with

α′′(ϕ)(t1, t2) := Ad J 1ϕ
(
rλ−1 t1, h

−1(t2 − t1)
)
.

Since [σX,P(ϑ)] = [α′′], condition 18.3 is equivalent to [�P ◦α′′] = (−1)n[α′′].
We have

�P ◦ α′′(ϕ)(t1, t2) = Ad J 1ϕ
(
rλ−1 t2, h

−1(t1 − t2)
)

because the range of J 1 is invariant under �K. We define yet another homotopy
of homomorphisms P ⊗ C0(E)→P ⊗P by

α′′s (ϕ)(t1, t2) := Ad J 1ϕ
(
rλ−1(st1 + (1− s)t2), h−1(t1 − t2)

)
.

It connects �P ◦ α′′ and α′′ ◦ (idP ⊗ f ), where f : C0(E)→ C0(E) is induced
by the map t �→ −t on E; here we assume that h is an even function, as we may.
Of course, [f ] = (−1)n in KK0(C0(E), C0(E)). This finishes the proof of 18.3.

��
Theorem 30. Let X be a simplicial complex equipped with a simplicial action
of G. Then EulX = Eulcmb

X in KKG
0 (C0(X),C).

Proof. Lemma 20 asserts that

EulX = �̄ ⊗̂C0(X)⊗̂P [m] ⊗̂P D ∈ KKG
0 (C0(X),C);

here �̄ ∈ KKG
−n(C0(X), C0(X) ⊗̂P) is obtained from the class � defined in

Lemma 28 by forgetting the X-structure; m : C0(X) ⊗̂P →P is the multipli-
cation homomorphism, which is described in (42); andD is defined in (43). Since
the Bott periodicity classes βE and β̂E , which appear in � and D, are inverse to
each other, our assertion is equivalent to

idC0(E) ⊗̂ Eulcmb
X = βE ⊗̂ EulX ⊗̂ β̂E = [ϑ] ⊗̂C0(X)⊗̂P [m] ⊗̂P [i],

where ϑ : C0(X) ⊗̂ C0(E) → C0(X) ⊗̂ P is the continuous family of
∗-homomorphisms defined in Lemma 28 and [i] ∈ KKG

0

(
P, C0(E)

)
is the class

of the inclusion map i : P → C0(E,K). The above Kasparov product is the class
of the composite homomorphism

i ◦m ◦ ϑ : C0(X × E)→ C0(E,K).

Plugging in the definition of ϑ and (42), we get

i ◦m ◦ ϑ(ϕ)σσ ′(t) = ϕ
(
q̄(t, σ ), h−1(t − rλq(t)

)) · P (
q̄(t, σ )

)
σσ ′ .

for all σ, σ ′ ∈ SX, t ∈ E, ϕ ∈ C0(X × E). We want to simplify this expression.
Assume that it is non-zero. Let t ′ := q(t) ∈ 
 and x ′ := q̄(t, σ ). Since the
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regions CRf cover 
, we have t ′ ∈ CRf for some f ∈ S (n). Lemma 27 yields
rλt
′ +B(δ) ⊆ R≤f ; hence we must have t ∈ R≤f in order for ϕ

(
x ′, h−1(t− rλt ′)

)

to be non-zero. Since t ∈ R≤f , we get t ′ ∈ |f | ∩ CRf by (39) and C
(t ′) = ξf
by (48). Therefore, P(x ′) = P ′ ◦ C (x ′) is the projection onto a basis vector of
�2(SX). Hence P(x ′)σσ ′ = 0 unless σ = σ ′ and γ (σ ) = f .

Summing up, i ◦ m ◦ ϑ(ϕ)(t) ∈ K is diagonal with respect to the basis SX;
the diagonal entry for the basis vector σ is supported in

Dγ(σ) := q−1(CRγ(σ) ∩ |γ (σ )|
)

and given there by the formula

�σ(ϕ)(t) := ϕ
(
q̄(t, σ ), h−1(t − rλq(t)

)) = ϕ
(
|γ |−1

σ q(t), h
−1(t − rλq(t)

))
.

The last term is defined for t ∈ Dγ(σ) because q(t) ∈ |γ (σ )| (see the definition
of q̄ in (41)). Let � := (�σ ) : C0(X × E)→ C0(SX × E).

In the definition of Eulcmb
X we use the map ξ∗ : C0(X)→ C0(SX) induced by

(27). Moving |γ |−1
σ q(t) ∈ |σ | linearly towards ξσ , we get a homotopy between�

and the ∗-homomorphism�′◦(ξ∗⊗idC0(E)), where we define�′ : C0(SX×E)→
C0(SX × E) by

�′ϕ(σ, t) :=
{
ϕ
(
σ, h−1

(
t − rλq(t)

))
for t ∈ Dγ(σ),

0 otherwise.
(57)

We may describe �′ by a family of maps �′σ : C0(E)→ C0(E) for σ ∈ SX.
Equation (57) shows that �′σ only depends on γ (σ ), so that we also denote it by
�′γ (σ ). Partitioning SX into the subsets SX=f defined in (56), we obtain

[i ◦m ◦ ϑ] =
∑

f∈S (n)

[ξ∗ ⊗̂�′f ] ⊗̂C0(SX)

[
C0(SX)→ K

(
�2(SX=f )

)]

in KKG
0 (C0(X) ⊗̂ C0(E), C0(E)). The combinatorial Euler characteristic is de-

fined by

Eulcmb
X :=

∑

f∈S (n)

(−1)dim f [ξ∗] ⊗̂C0(SX)

[
C0(SX)→ K

(
�2(SX=f )

)]
.

Therefore, we get the desired equation [i ◦m ◦ ϑ] = idC0(E) ⊗̂Eulcmb
X if we show

that [�′f ] = (−1)dim f in KK0(C0(E), C0(E)). It remains to verify the latter
assertion.

Since all our constructions are invariant under coordinate permutations, we
may assume f = {0, . . . , k} with k = dim f . If t ∈ Df , then ti > 0 for i ∈ f
and ti ≤ 0 for i ∈ n \ f . Hence q is given by

q(t)i =
{(

1−∑
j∈n\f tj

)−1
ti for i ∈ f ,

0 for i ∈ n \ f .
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The point rλξf belongs toDf and satisfies qrλ(ξf ) = ξf . Hence it is a fixed-point
of the map rλ ◦ q. We reparametrise our maps and consider ψf (t) := rλξf + t −
rλq(rλξf + t), where t ∈ Df − rλξf . Thus ψf (0) = 0. Since points in the range
of ψf satisfy

∑
ψf (t)i = 0, we may drop one coordinate; we choose the 0th

coordinate, which belongs to f .
It is easy to see that ψf (t)i = ti for i ∈ n \ f . Moreover, if we fix the

coordinates tj with j ∈ n \ f , then ψf (t)i = −a
(∑

j∈n\f tj
) · ti + b

(∑
j∈n\f tj

)

with certain rational functions a, b of one variable. Explicitly,

a(s) = (k + 1)(λ− 1)+ (n+ 1)s

(n− k)λ+ k + 1− (n+ 1)s
.

The important point here is that a(0) > 0.
Since h−1 ◦ ψf (t) = ∞ unless |ψf (t)i | < δ for all i ∈ n, we may restrict

attention to t with |tj | < δ for j ∈ n \f , so that |s| < (n− k)δ. We may choose δ
as small and λ as great as we like. Therefore, the difference between a and the
constant function a(0) is negligible. Hence the maps a(rs)·ti+b(rs) for r ∈ [0, 1]
give rise to an isotopy between ψf and the invertible linear map

ψ ′f (t)i =
{
ti for i ∈ n \ f ,

−a(0) · ti for i ∈ f , i 	= 0.

Recall that we have dropped one coordinate, so that we do not have to worry about
the condition

∑
ti = 0 any more. This also means that there only remain dim f

relevant coordinates in f , which are multiplied by a negative number. Hence
[ψ ′f ] = (−1)dim f in KK0(C0(R

n), C0(R
n)). Since h is orientation-preserving,

we have [h−1] = 1. Therefore, [�′f ] = [h−1 ◦ ψf ] = [h−1 ◦ ψ ′f ] = (−1)dim f . ��

7. Gysin sequence in the simplicial case

Theorem 31. LetG be a locally compact group and let ∂X = X̄ \X be a bound-
ary action as in Definition 4. Suppose thatX is a finite-dimensional, locally finite
simplicial complex with a simplicial action ofG. Suppose also thatG satisfies the
Baum-Connes conjecture with coefficients C and C(∂X). Then there is an exact
sequence

0 �� K1(C
∗
r G)

u∗ �� K1(C(∂X)�r G)
δ �� K0(C0(X)�r G)

Eulcmb
X

��
0 K1(C0(X)�r G)�� K0(C(∂X)�r G)

δ�� K0(C
∗
r G)

u∗��
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where Eulcmb
X denotes the Kasparov product with the combinatorial equivariant

Euler characteristic Eulcmb
X ∈ KKG

0 (C0(X),C). More explicitly,

Eulcmb
X (x) =

∑

(H)

χ(X,H) dimH(x),

where the summation runs over the conjugacy classes in G of stabilisers of sim-
plices in X, and dimH ∈ KKG

0 (C0(X),C) and χ(X,H) ∈ Z are defined as on
page 19.

Proof. We plug the formula EulX = Eulcmb
X of Theorem 30 into the abstract

Gysin sequence of Proposition 9. By definition, Eulcmb
X factors through the homo-

morphism ξ ∗ : C0(X) → C0(SX) induced by the barycentre embedding (27).
Writing SX as a disjoint union of G-orbits, we get

Ktop
∗

(
G,C0(SX)

) ∼= K∗(C0(SX)�r G)

∼=⊕
σ∈G\SX K∗(C0(G/Gσ )�r G) ∼=

⊕
σ∈G\SX K∗

(
C∗r (Gσ )

)
.

Here Gσ denotes the stabiliser of the simplex σ , which is a compact-open sub-
group of G. The map Eulcmb

X : K1(C0(X) �r G) → K1(C
∗
r G) vanishes because

it factors through K1(C0(SX) �r G) = 0. This yields the asserted long exact
sequence. Equation (28) yields the formula for Eulcmb

X (x). ��
We now describe the map dimH : K0(C0(X) �r G) → K0(C

∗
r G) for a com-

pact-open subgroup H ⊆ G, which occurs in Theorem 31. It factors through the
map K0(C0(X)�r G)→ K0(C0(G/H)�r G) ∼= Rep(H) that is induced by an
orbit restriction map X→ G/H . The composite map

Rep(H) ∼= K0(C
∗
r H)
∼= KKG

0 (C0(G/H),C)→ Ktop
0 (G)→ K0(C

∗
r G)

is equal to the induction map iGH : Rep(H)→ K0(C
∗
r G), which is induced by the

embedding C∗r H ⊆ C∗r G. Thus dimH(x) is the composite of an orbit restriction
map and the induction map. Since there are relations between the orbit restriction
and induction maps for different H , it is hard to describe the range and kernel of
Eulcmb

X in general.
The following corollary is equivalent to Theorem 1 and Corollary 2. Let 1C∗r G

be the unit projection in C∗r G.

Corollary 32. In the situation of Theorem 31, suppose in addition that G is dis-
crete and torsion-free. IfG\X is compact and χ(G\X) 	= 0, then there are exact
sequences

0→ 〈χ(G\X)[1C∗r G]〉 ⊆−→
K0(C

∗
r G)

u∗−→ K0(C(∂X)�r G)→ K1(G\X)→ 0,
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0→ K1(C
∗
r G)

u∗−→ K1(C(∂X)�r G)→ K0(G\X) dim−→ Z→ 0,

and the class of the unit element in K0(C(∂X)�rG)has torsion of order |χ(G\X)|.
Otherwise, there are exact sequences

0→ K0(C
∗
r G)

u∗−→ K0(C(∂X)�r G)→ K1(G\X)→ 0,

0→ K1(C
∗
r G)

u∗−→ K1(C(∂X)�r G)→ K0(G\X)→ 0,

and the class of the unit element in K0(C(∂X)�r G) has no torsion.

Proof. Since the action on X is free and proper, C0(X) �r G is strongly Morita
equivalent to C0(G\X). Hence K∗(C0(X)�r G) ∼= K∗(G\X). Furthermore, we
have an isomorphism KKG

0 (C0(X),C) ∼= KK0(C0(G\X),C). It maps

Eulcmb
X �→ Eulcmb

G\X = χ(G\X) · dim .

The Kasparov product with dim ∈ KKG
0 (C0(X),C) factors through KKG

0 (C0(G),

C) ∼= Z; one checks easily that it corresponds to the map

K0(G\X)→ Z→ K0(C
∗
r G), x �→ dim(x) · [1C∗r G];

equivalently, dim ∈ KKG
0 (C0(G),C) → Ktop

0 (G) is a pre-image for [1C∗r G] un-
der the Baum-Connes assembly map. Hence the range and kernel of the map
K0(G\X) → K0(C

∗
r G) are 〈χ(G\X)[1C∗r G]〉 and the kernel of χ(G\X) dim,

respectively. Now the exact sequences follow from Theorem 31. The assertions
about the unit element follow because u∗[1C∗r G] = [1C(∂X)�rG]. ��
Example 33. Let Fn be the non-Abelian free group on n generators for n ≥ 2.
Let X be the Cayley graph of Fn, which is a 2n-regular tree, and let X be its
ends compactification. Let ∂X := X \X be the set of ends of X, which is a Can-
tor set. This compactification is the Gromov compactification of the hyperbolic
group Fn and the visibility compactification of the CAT(0) space X. Of course,
the group Fn is torsion-free, so that we are in the situation of Corollary 32. The
group Fn satisfies the Baum-Connes conjecture with arbitrary coefficients by [19].

The orbit space Fn\X is a wedge of n circles, hence compact. Therefore,
K∗(C∗r G) ∼= Ktop

∗ (G) ∼= K∗(Fn\X) and EulX ∈ Ktop
0 (G) is the Euler characteris-

tic ofG. The K-homology and K-theory of Fn\X are isomorphic to Z in degree 0
and Z

n in degree 1, and χ(Fn\X) = 1− n. Corollary 32 yields

K0(C(∂X)�r Fn) ∼= Z/〈n− 1〉 ⊕ Z
n, K1(C(∂X)�r Fn) ∼= Z

n.

Therefore, the class of the unit element in K0(C(∂X)�r Fn) is a torsion element
of order n− 1. This example is also studied in [55].

If n = 1, we get F1 = Z, X = R, and ∂X = {±∞} with Z acting trivially. In
this case, the Euler characteristic vanishes; this already follows from Example 6.
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Example 34. Let 
g be a closed surface of genus g ≥ 2 and let �g be its funda-
mental group. Equip 
g with a hyperbolic metric and identify its universal cover
with H

2; this identifies �g with a discrete torsion-free subgroup of Isom(H2). It
follows that�g satisfies the Baum-Connes conjecture with coefficients ([24]). The
usual compactification of H

2 by a circle at infinity ∂H2 ∼= S1 is both the visibility
compactification and the Gromov compactification of H

2 and therefore produces
a boundary action of �g.

As in the previous example, �g is torsion-free and �g\H2 ∼= 
g is com-
pact, so that EulH2 ∈ Ktop

0 (G) is the Euler characteristic of G. The K-theory and
K-homology of 
g are isomorphic to Z

2 in degree 0 and Z
2g in degree 1, and

χ(
g) = 2− 2g. Therefore, Corollary 32 yields

K0(C(∂H
2)�r �g) ∼= Z/〈2g − 2〉 ⊕ Z

2g+1, K1(C(∂H
2)�r �g) ∼= Z

2g+1.

Explicit generators, as well as a dynamical proof of these assertions, can be found
in [16]. This example is also studied in [1,11,12,41].

Example 35. Consider G := PSL(2,Z), acting properly on the tree X discussed
in Example 23. Let X̄ be the ends compactification ofX and let ∂X := X̄\X; this
is the same as the Gromov or the visibility boundary of the tree X. The group G
satisfies the Baum-Connes conjecture with arbitrary coefficients because it is a
closed subgroup of Isom(H2) [24].

Since G\X is compact, we have KKG
0 (C0(X),C) ∼= Ktop

0 (G), and the Eul-
er characteristic EulX ∈ KKG

0 (C0(X),C) ∼= Ktop
0 (G) is the Euler characteristic

of G. We have already computed Eulcmb
X = EulX in Example 23. Hence

EulEG = dimZ/2+ dimZ/3− dim{1} ∈ Ktop
0 (G).

Functions vanishing on the vertices form a G-invariant ideal in C0(X) that is
isomorphic toC0(R×G)with the free action ofG; the quotientC∗-algebra is iso-
morphic to C0(G/Z/2)⊕ C0(G/Z/3). The corresponding long exact sequences
for K∗( �r G) and KKG

∗ ( ,C) are

0 �� K0(C0(X)�r G) �� Rep(Z/2)⊕ Rep(Z/3)

(dim,- dim)
��

0

��

K1(C0(X)�r G)�� Z,��

Rep(Z/2)⊕ Rep(Z/3) �� KKG
0 (C0(X),C) �� 0

��
Z

��

KKG
1 (C0(X),C)�� 0.��
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The vertical map in the second exact sequence sends 1 ∈ Z to (ρ,−ρ), where ρ
denotes the regular representation. Thus Ktop

1 (G) ∼= 0, K1(C0(X) �r G) ∼= 0,
Ktop

0 (G) ∼= Z
4, K0(C0(X) �r G) ∼= Z

4. One can check that multiplication
by EulEG is a bijective map K0(C0(X)�r G)→ Ktop

0 (G). Hence K∗(C(∂X)�r

G) ∼= 0.
If we consider the boundary action on ∂H2, then we replaceC0(X) byC0(H

2)

in the Gysin sequence. Equivariant Bott periodicity applies here and yields K∗(C0

(H2) �r G) ∼= Ktop
∗ (G). Hence this group is concentrated in degree 0. One can

check that the map K0(C0(H
2)�r G)→ K0(C0(X)�r G) that is induced by the

embedding X → H
2 has kernel and cokernel isomorphic to Z. Since the map

K0(C0(X)�r G)→ Ktop
0 (G) in the Gysin sequence for ∂X is invertible, the map

K0(C0(H
2) �r G) → Ktop

0 (G) in the Gysin sequence for ∂H2 has kernel and
cokernel Z as well. Thus K∗(C(∂H2)�r G) ∼= Z for ∗ = 0, 1.

Example 36. Let G be a reductive p-adic group and let � ⊆ G be a torsion-free
discrete subgroup. Let X be the affine Bruhat-Tits building of G and let ∂X∞ be
its visibility boundary. Recall that this is a boundary action ofG. The Fürstenberg
boundary is G/P , where P ⊆ G is a minimal parabolic subgroup. Since there
exist points in ∂X∞ that are fixed by P , we get an embedding G/P ⊆ ∂X∞,
which induces a map ϕ : C(∂X∞)→ C(G/P ).

We assume that � ⊆ G is cocompact or, equivalently, that �\X is compact,
and that χ(�\X) 	= 0. We want to show that the class of the unit element in
K0(C(G/P ) �r �) is a torsion element whose order divides χ(�\X). For cer-
tain buildings, this result and much sharper estimates for the order have been
obtained previously by Guyan Robertson in [29,45–48]. We remark that we get
no information about the torsion of the unit element if � fails to be cocompact or
if χ(�\X) = 0.

Observe first that dim ∈ Ktop
0 (�) is a canonical choice of a pre-image for the

class of the unit element in C∗r �. As in Corollary 32, we find that the image of
dim in Ktop

0

(
�,C(∂X∞)

)
is a torsion element of order exactly equal to |χ(�\X)|.

Mapping further via ϕ : C(∂X∞)→ C(G/P ), we find that the image dim′ of dim
in Ktop

0

(
�,C(G/P )

)
is a torsion element whose order divides χ(�\X). It is easy

to see that the Baum-Connes assembly map sends dim′ to the class [1] of the unit
element in C(G/P )�r �. Hence χ(�\X)[1] = 0 as asserted.

Similarly, let G be an almost connected Lie group whose connected compo-
nent is reductive and linear, and let � ⊆ G be a torsion-free, cocompact discrete
subgroup. Let X := G/K , where K is the maximal compact subgroup of G, and
let ∂X∞ be its visibility boundary. Again, this is a boundary action of G, and
there exists an embedding G/P ⊆ ∂X∞ of the Fürstenberg boundary because
there exist points in ∂X∞ that are fixed by P . Corollary 32 applies becauseX has
a �-invariant triangulation (see [20]). Arguing as above, we see that the class of
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the unit element in K0(C(G/P ) �r �) is a torsion element whose order divides
χ(�\X) if the latter is non-zero.

8. Equivariant Euler characteristics for smooth manifolds

If a locally compact groupG acts properly by diffeomorphisms on a smooth mani-
foldM , then there exists a completeG-invariant Riemannian metric onM . Hence
the action of G factors through Isom(M), which is a Lie group unless M has
infinitely many connected components. Throughout this section, we consider the
situation whereM is a complete Riemannian manifold andG is a locally compact
group that acts isometrically on M . It does not matter whether or not this action
is proper because Isom(M) acts properly on M in any case.

We recall the construction of a Kasparov dual for M in [25, Section 4].
Let Cliff be the bundle whose fibre at x ∈ M is the Clifford algebra for the

vector space T ∗x M with inner product given by the Riemannian metric. This is a
bundle of Z/2-graded finite-dimensionalC∗-algebras, on whichG acts in a canon-
ical way. Let P := C0(M,Cliff) be its Z/2-graded C∗-algebra of C0-sections,
equipped with the canonical action of G. (P is denoted Cτ (M) in [25, 4.1].) We
have a central embedding C0(M) → P as scalar-valued functions, so that P
becomes a Z/2-graded M �G-C∗-algebra.

Now we describe D ∈ KKG
0 (P,C) (see [25, 4.2]). Let �∗M = ⊕

n �
nM

be the bundle of differential forms onM , graded by parity. Let C∞c (�
∗M) be the

space of smooth, compactly supported sections of�∗M , and let L2(�∗M) be the
Hilbert space completion ofC∞c (�

∗M)with respect to the standard inner product
given by the Riemannian metric.We let P act onL2(�∗M)by Clifford multiplica-
tion. Let d : C∞c (�

∗M)→ C∞c (�
∗M) be the de Rham differential. The operator

d+d∗ is an essentially self-adjoint,G-invariant unbounded operator onL2(�∗M).
Together with the representation of P , it defines a classD ∈ KKG

0 (P,C). Here
we use the unbounded picture of Kasparov theory by Saad Baaj and Pierre Julg
([2]).

Next we define � ∈ RKKG
0 (M;C,P) as in [25, 4.3–4.4]. The basic ingre-

dients are the geodesic distance function ρ : M × M → M and a G-invariant
function r : M ×M → R>0 such that any x, y ∈ M with ρ(x, y) < r(x) are
joined by a unique geodesic. Let

U := {(x, y) ∈ M ×M | �(x, y) < r(x)}

and pull T ∗M back to a bundle π∗2T
∗M on U via the coordinate projection

π2 : (x, y) �→ y. Let JU ⊆ C0(M) ⊗̂ P be the ideal of sections that van-
ish outside U . We view JU as a G-equivariant Z/2-graded Hilbert module over
C0(M) ⊗̂P .
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Define a covector field F on U by

F(x, y) := ρ(x, y)

r(x)
· d2ρ(x, y) ∈ C0(U, π

∗
2T
∗M).

where d2 is the exterior derivative in the second variable y. The covector field F
defines aG-invariant self-adjoint, odd multiplier of JU ; it satisfies (f ⊗̂ 1) · (1−
F 2) ∈ JU for all f ∈ C0(M). Thus� = (JU , F ) is a cycle for RKKG

0 (M;C,P).
It is asserted in [25, 4.5, 4.6, 4.8] that (P,D,�) is a Kasparov dual forM in the
sense of Definition 18.

Definition 37. Let EuldR
M ∈ KKG

0 (C0(M),C) be the class determined by the rep-
resentation of C0(M) on L2(�∗M) and the operator d + d∗ described above. We
call EuldR

M the G-equivariant de-Rham-Euler characteristic of M .

Equivalently, we get EuldR
M from D ∈ KKG

0 (P,C) by restricting the repre-
sentation of P to C0(M) ⊆P .

Theorem 38. Let M be a complete Riemannian manifold and let G be a locally
compact group acting isometrically onM . Then the abstractG-equivariant Euler
characteristic EulM is equal to EuldR

M .

Proof. Lemma 20 asserts that

EulM = �̄ ⊗̂C0(M)⊗̂P [m] ⊗̂P D ∈ KKG
0 (C0(M),C),

where �̄ ∈ KKG
0 (C0(M), C0(M) ⊗̂P) is obtained from� by forgetting theM-

structure and where m : C0(M) ⊗̂P → P is the M-structure homomorphism
of P . We first compute

�̄ ⊗̂C0(M)⊗̂P [m] = m∗(�̄) ∈ KKG
0 (C0(M),P).

Its underlying Hilbert module is JU ⊗̂C0(M)⊗̂P P; this is isomorphic to P because
JU is an ideal in C0(M) ⊗̂P that contains all functions supported in some neigh-
bourhood of the diagonal, and the multiplication homomorphismm restricts to the
diagonal. The action of C0(M) is by multiplication on JU ; this corresponds to the
embedding m′ : C0(M) → P by scalar-valued functions. Since this homomor-
phism maps into P and not just into M(P), the Fredholm operator is irrelevant.
Thus m∗(�̄) = m′.

Taking the Kasparov product with D ∈ KKG
0 (P,C), we get

EulM = �̄ ⊗̂C0(M)⊗̂P [m] ⊗̂P D = [m′] ⊗̂P D = (m′)∗(D).

This is equal to EuldR
M ∈ KKG

0 (C0(M),C) by definition. ��
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Theorem 39 (Lück and Rosenberg [34]). LetM be a smooth manifold and letG
be a discrete group acting on M properly by diffeomorphisms. Then M has a
G-equivariant triangulation. The de-Rham-Euler characteristic and the combi-
natorial Euler characteristic agree:

EuldR
M = EulM = Eulcmb

M ∈ KKG
0 (C0(M),C).

Proof. We have seen in Section 4 that the (abstract) equivariant Euler characteris-
tic is independent of the Kasparov dual. Hence the assertion follows by combining
Theorems 30 and 38. Recall that a smooth manifold equipped with a proper action
of a discrete group G always admits a Riemannian metric for which the group
acts isometrically and a triangulation for which the group acts simplicially ([20]).

��
Remark 40. The analogues of Theorems 38 and 39 in real K-homology also hold,
by exactly the same arguments.

As before, letM be an n-dimensional Riemannian manifold equipped with an
isometric action ofG. Assume, in addition, thatM isG-equivariantly K-oriented.
This means that its tangent bundle has a G-equivariant complex spinor bundle
Spinor (see [15]). This bundle gives rise to a G-equivariant Morita equivalence
between P = C0(M,Cliff) and the trivial Clifford algebra bundle C0(M) ⊗̂
Cliff(Rn) (see [41]). Therefore, C0(M) and P are KKM�G-equivalent with a
dimension shift of n. We may transport the structure of a Kasparov dual from P
to C0(M). It is easy to see thatD ∈ KKG

0 (P,C) corresponds to the Dirac opera-
tor /DM ∈ KKG

n (C0(M),C), which acts on sections of Spinor. The map σM,C0(M)

is simply the forgetful map as in (6). Hence the inverse

PD−1 : RKKG
i (M;C,C)→ KKG

i+n(C0(M),C),

of the Poincaré duality map is given by

PD−1(f ) := (−1)inf̄ ⊗̂C0(M) /DM.

We also get a class [Spinor] ∈ RKKG
−n(M;C,C) by takingC0-sections of Spinor

with F = 0. Using Spinor ⊗̂ Spinor ∼= �∗M , one shows easily that

PD−1[Spinor] = (−1)n[Spinor] ⊗̂C0(M) /DM

= (−1)nEuldR
M = (−1)nEulM. (58)

Together with Theorem 39, this allows us to compute the classical, commutative
Gysin sequence in K-theory for the tangent bundle. We have seen in the introduc-
tion how to get a long exact Gysin sequence of the form

· · · → K∗−n(M)
ε∗−→ K∗(M)

π∗−→ K∗(SM)
δ−→K∗−n+1(M)→ · · · ,

where ε∗(x) = x ⊗̂ Spinor and π : SM → M is the bundle projection (see [23,
IV.1.13] for more details). Now (58) yields:
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Theorem 41. LetM be a K-oriented, connected n-dimensional manifold. Let SM
be its sphere bundle and let π : SM → M be the bundle projection. IfM is com-
pact and χ(M) 	= 0, then there are exact sequences

0→ 〈χ(M)pnt!〉 ⊆−→Kn(M)
π∗−→ Kn(SM)→ K1(M)→ 0,

0→ Kn+1(M)
π∗−→ Kn+1(SM)→ K0(M)

dim−→ Z→ 0,

where pnt! ∈ KK−n(C(∗), C(M)) ∼= Kn(M) is the wrong way element associated
to the inclusion of a point in M .

If M is not compact or if χ(M) = 0, then there are exact sequences

0→ Kn(M)
π∗−→ Kn(SM)→ K1(M)→ 0,

0→ Kn+1(M)
π∗−→ Kn+1(SM)→ K0(M)→ 0.

Proof. By Theorem 39 we have EuldR
M = Eulcmb

M . Since there is no group action,
we have Eulcmb

M = χ(M)·dim ∈ KK0(C(M),C) ifM is compact, and Eulcmb
M = 0

otherwise. Hence (58) yields [Spinor] = 0 if M is not compact or if χ(M) = 0
and finishes the proof in that case. Otherwise, [Spinor] = (−1)nχ(M) ·PD(dim).
It is easy to see that PD(dim) = pnt!; recall that pnt! is the class of the map
C0(R

n)→ C0(M) given by a diffeomorphism from R
n onto some (small) open

ball in M . Since any bundle restricts to a trivial bundle on this open ball, we get
x ⊗̂pnt! = 0 for x ∈ K1(M) and x ⊗̂pnt! = dim(x) ·pnt! for x ∈ K0(M). Hence
the range and kernel of the map K0(M) → Kn(M) in the Gysin sequence are
equal to 〈χ(M)pnt!〉 and the kernel of dim, respectively. This yields the desired
exact sequences. ��

Now we return to the situation of boundary actions.

Theorem 42. Let ∂X = X̄\X be a boundary action of a locally compact groupG
as in Definition 4. Suppose thatX is a complete Riemannian manifold on whichG
acts isometrically. Suppose also thatG satisfies the Baum-Connes conjecture with
coefficients in C and C(∂X). Then there is an exact sequence

K1(C
∗
r G)

u∗ �� K1(C(∂X)�r G)
δ �� K0(C0(X)�r G)

EuldR
X

��
K1(C0(X)�r G)

EuldR
X

��

K0(C(∂X)�r G)
δ�� K0(C

∗
r G),

u∗��

where EuldR
X denotes the Kasparov product with the equivariant de-Rham-Euler

characteristic EuldR
X ∈ KKG

0 (C0(X),C).
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Proof. We may replace K∗(C∗r G) and K∗(C(∂X) �r G) by Ktop
∗ (G) and Ktop

∗(
G,C(∂X)

)
because of our assumptions about the Baum-Connes conjecture.

Hence the result follows from Theorem 38 and Proposition 9. ��
The map EuldR

X : K1(C0(X)�r G)→ K1(C
∗
r G) in Theorem 42 vanishes if G

is discrete, compare Theorem 31. We do not know whether this still holds for
non-discrete groups. In the following, we will examine some cases where EuldR

X

vanishes, so that the long exact sequence in Theorem 42 splits into two short exact
sequences.

Proposition 43. LetM be an oriented Riemannian manifold of odd dimension and
suppose that G acts on M by orientation-preserving isometries. Then EuldR

M = 0
in KKG

0 (C0(M),C).

Proof. Let Vol be the canonical volume form. Let n := dimM and write n =
2k + 1 with k ∈ N. We shall use the Hodge � operation ([43, §24–25]). It is a
C0(M)-linear map � : L2(�pM) → L2(�n−pM) for all p ∈ n; it is defined by
β ∧ �α = (α, β) · Vol for all α, β ∈ L2(�pM), where (α, β) ∈ C0(M) denotes
the pointwise inner product induced by the Riemannian metric. The operator � is
unitary on L2(�∗M) and satisfies

� � α = (−1)pn+pα, d∗(α) = (−1)pn+n+1 � d � α

for all α ∈ L2(�pM) (see [43, §24–25]). Consider the operator

ε : L2(�∗M)→ L2(�∗M), α �→ ik+p(p−1) � α for α ∈ L2(�pM).

Straightforward computations show that ε2 = 1 and εdε = −d∗; this implies
that ε anti-commutes with d + d∗.

Since ε is still unitary and odd, it generates a grading-preserving representation
of the Clifford algebra Cliff(R) on L2(�∗M). It commutes with the representa-
tions of G and C0(M) because G acts by orientation-preserving maps and � is
C0(M)-linear. Thus (L2(�∗M), d + d∗) becomes a cycleD1 for KKG

0 (C0(M) ⊗̂
Cliff(R),C). We have EuldR

X = [uCliff(R)] ⊗̂Cliff(R) D1, where uCliff(R) : C →
Cliff(R) is the unit map. The Kasparov cycle [uCliff(R)] is evidently degenerate.
Hence EuldR

X = 0. ��
In the real case, the same argument still goes through if dimM ≡ 1 (mod 4)

because then ik+p(p−1) = ±1 for all p.
The assumption that the action of G be orientation-preserving is necessary in

Proposition 43. For a counterexample, takeM = S1 andG = Z/2 acting on S1 by
reflection in the x-axis (equivalently, by complex conjugation). A straightforward
computation shows that Eulcmb

S1 	= 0 in KKZ/2
0 (C(S1),C). Another counterexam-

ple is Example 44 below.
Now we consider the following situation. Let G be an almost connected Lie

group and let K ⊆ G be a maximal compact subgroup. Then the homogeneous
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space X := G/K is a smooth manifold on which G acts properly and smoothly.
Let g and k be the Lie algebras of G and K , respectively, with K acting by the
adjoint representation, and let p := g/k with the induced action of K . Thus p is
K-equivariantly isomorphic to the tangent space ofX atK ∈ X. We may equip p
with aK-invariant inner product. This inner product generates aG-invariant Rie-
mannian metric on X, and any such Riemannian metric is complete. Hence the
above construction of a Kasparov dual applies to X and we get EuldR

X = EulX in
KKG

0 (C0(X),C) by Theorem 38.
It is known that X is a universal proper G-space and that

Ktop
∗ (G) ∼= KKG

∗ (C0(X),C) ∼= KKK
∗ (C0(X),C); (59)

the first isomorphism follows because X is G-compact, the second is proved
in [25]. Thus the Euler characteristic EulEG ofG is equal to EuldR

X (see Definition
15).

Example 44. If dimX is odd and K acts on X by orientation-preserving maps,
then we get EulEG = 0 from Proposition 43.

This fails if the action ofK is not orientation-preserving; the semi-direct prod-
uct group Z/2 � R with Z/2 acting on R by reflection at 0 provides a counterex-
ample. By (59) we only have to compute the Z/2-equivariant Euler characteristic.
This agrees with the Z/2-equivariant combinatorial Euler characteristic of R. We
use the standard triangulation of R with vertex set Z. The combinatorial Euler
characteristic turns out to be the class in KKZ/2

0 (C0(R),C) of the homomorphism
C0(R)→ C, f �→ f (0). This class is non-zero, only its image in KK0(C0(R),C)

vanishes.

From now on, we assume that X is even-dimensional and that the action
of G preserves the orientation. Even more, we want X to be G-equivariantly K-
oriented. This is equivalent to the existence of a K-equivariant complex spinor
bundle Sp for p. This automatically exists if G is simply connected. In general,
we can get such a spinor bundle if we replace G by an appropriate two-fold cov-
ering G̃. The computation of Ktop

∗ (G) in [14, Section 4] identifies Ktop
∗ (G) with a

direct summand in Ktop
∗ (G̃). Therefore, we do not loose information if we work

G̃-equivariantly instead of G-equivariantly; hence it is no loss of generality to
assume that X is G-equivariantly K-oriented.

As we have observed above, the existence of a K-orientation implies that
C0(X) is a 0-dimensional Kasparov dual for X, so that we get a Poincaré duality
isomorphism

KKG
∗ (C0(X),C) ∼= RKKG

∗ (X;C,C),
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which maps EulEG to [Spinor] by (58). Moreover, since the groupoid G� X is
Morita equivalent to the group K , we get an isomorphism

RKKG
∗ (X;C,C) ∼= KKK

∗ (C,C) ∼=
{

Rep(K) for ∗ = 0,

0 for ∗ = 1,

see [25]. The resulting isomorphism Ktop
0 (G) ∼= Rep(K) maps EulEG to [Sp].

By construction, we have Sp ⊗̂ S∗p ∼= �∗p. Let χ : G→ C be the character of
the representation Sp. Then |χ |2 is the character of�∗p. We have [Sp] = 0 if and
only if [�∗p] = 0, if and only if |χ |2 = 0.

We denote the representation of K on p by αp. For g ∈ G, let λ1, . . . , λn
be the eigenvalues of αp(g), counted with multiplicity; then we can describe the
eigenvalues of g acting on �∗p as well and get

|χ(g)|2 =
n∏

j=1

(1− λj ) = det
(
1− αp(g)

)
.

Hence |χ |2 vanishes at g if and only if 1 is an eigenvalue of αp(g).
Assume now, in addition, that K is connected, and let T ⊆ K be a maximal

torus, with Lie algebra t; thus t is a maximal Abelian subspace of k. Then any
conjugacy class in K meets T . Therefore, [Sp] = 0 if and only if |χ |2 vanishes
on T . This holds if and only if αp|T contains the trivial representation, if and only
if t is not maximal Abelian in g. We have proved:

Proposition 45. Let G be a connected Lie group and K ⊆ G a maximal com-
pact subgroup. If dim g 	≡ dim k mod (2), then we always have EulEG = 0. If
dim g ≡ dim k mod (2), then EulEG 	= 0 if and only if maximal Abelian subspac-
es of k remain maximal Abelian in g.

The complex rank of a reductive Lie algebra is, by definition, the rank of a
maximal Abelian subspace. Therefore, if g is reductive (and dimX is even), then
EulEG 	= 0 if and only if g and k have the same complex rank. This never happens
if g is a complex Lie algebra. Semi-simple real Lie algebras that are not complex
are classified in [30] using their Vogan diagrams. One can check that g and k have
the same complex rank if and only if the order-2 automorphism that is part of the
Vogan diagram of g is trivial.

We return to the situation whereG is a connected Lie group andX := G/K is
G-equivariantly K-oriented and even-dimensional. Suppose, in addition, that X̄
is a strongly contractible G-equivariant compactification of X, so that we get a
boundary action of G on ∂X := X̄ \X. We have a Morita equivalence C0(X)�r

G ∼ C∗(K), so that K0(C0(X)�rG) ∼= Rep(K) and K1(C0(X)�rG) = 0. Thus
the Gysin sequence in Theorem 42 simplifies to an exact sequence

0→ K1(C(∂X)�r G)→ Rep(K)→ Rep(K)→ K0(C(∂X)�r G)→ 0,
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which contains the map Rep(K)→ Rep(K), π �→ π ⊗̂ [Sp]. If [Sp] = 0, then we
get K0(C(∂X)�r G) ∼= Rep(K) and K1(C(∂X)�r G) ∼= Rep(K). If [Sp] 	= 0,
then the map Rep(K)→ Rep(K) is injective; here we use that the ring Rep(K)
has no zero-divisors because K is connected. Hence

K0(C(∂X)�r G) ∼= Rep(K)/(Sp), K1(C(∂X)�r G) ∼= 0,

where (Sp) denotes the ideal generated by the virtual representation Sp.
Finally, let � ⊆ G be a cocompact lattice. Then X is a cocompact universal

proper �-space. The restriction map

Ktop
∗ (G) ∼= KKG

∗ (C0(X),C)→ KK�
∗ (C0(X),C) ∼= Ktop

∗ (�)

evidently maps EulEG �→ EulE�. Hence EulEG = 0 implies EulE� = 0. If � is
also torsion-free, then EulE� = 0 is equivalent to χ(B�) = 0.
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21. Julg, P.; La conjecture de Baum-Connes à coefficients pour le groupe Sp(n,1) (French). C.
R. Math. Acad. Sci. Paris 334(7), 533–538 (2002)

22. Julg, P.; Kasparov, G.: Operator K-theory for the group SU(n,1). J. Reine Angew. Math.
463, 99–152 (1995)

23. Karoubi, M.:K-theory,An introduction; Grundlehren der Mathematischen Wissenschaften,
Band 226. Springer, Berlin Heidelberg New York, pp xviii+308 (1978)

24. Kasparov, G.G.: Operator K-theory and its applications: elliptic operators, group repre-
sentations, higher signatures, C∗-extensions. Proceedings of the International Congress of
Mathematicians. Vol. 1, 2 (Warsaw, 1983). PWN, Warsaw, (1984), pp 987–1000

25. Kasparov, G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91(1),
147–201 (1988)

26. Kasparov, G.G., Skandalis, G.: Groups acting on buildings, operator K-theory, and Novi-
kov’s conjecture. K-Theory; 4(4), 303–337 (1991)

27. Kasparov, G.; Skandalis, G.: Groups acting properly on “bolic” spaces and the Novikov
conjecture. Ann. of Math. (2); 158(1), pp 165–206 (2003)

28. Kerckhoff, S.P.: The Nielsen realization problem.Ann. of Math. (2) 117(2), 235–265 (1983)
29. Kimberley, J.S., Robertson, G.: Groups acting on products of trees, tiling systems and

analytic K-theory (electronic). New York J. Math. 8, 111–131 (2002)
30. Knapp, A.W.: Lie groups beyond an introduction. Progress in Mathematics 140, Birkhäuser
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