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Abstract

We consider Smale spaces; that is, homeomorphisms of a compact
metric spaces possessing canonical coordinates of contracting (stable) and
expanding (unstable) directions. Examples of such dynamical systems
include the basic sets for Smale’s Axiom A systems. We also assume
that each point of the space is non-wandering and that there is a dense
orbit. We show that any almost one-to-one factor map between two such
systems may be lifted in a certain sense to a factor map which is injective
on the local stable sets (i.e. s-resolving). We derive several corollaries.
One is a refinement of Bowen’s result that every irreducible Smale space
is a factor of an irreducible shift of finite type by an almost one-to-one
factor map. We are able to show that there exists such a factor which is
the composition of an s-resolving map and a u-resolving map.

1 Introduction

In this paper, we consider the dynamical systems called Smale spaces. Smale
introduced the notion of an Axiom A system. This is a smooth dynamical system
where the restriction of the action to the non-wandering set has a hyperbolic
structure. Of critical importance was Smale’s observation that even though the
system was smooth, the basic sets need not be manifolds. Motivated by this,
Ruelle introduced the notion of a Smale space as an attempt to axiomatize the
dynamics on a basic set of an Axiom A system.

Roughly speaking, a Smale space (X,d, f) is a compact metric space (X, d)
together with a homeomorphism, f, which has canonical coordinates of con-
tracting and expanding directions. Let us explain the central features. There is
an absolute positive constant ex and a map

[’] : {(:L“,y)|$,y GX,d(x,y) SGX}_)X
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satisfying various conditions (see [Rue]). There are sets

Ve(z,e€) {z' € X | [2',z] = z}
V¥(z,e) = {2’ € X|[x,2'] =2z}

for every z in X and 0 < € < €x, called the local stable and unstable sets of x.
For € < €x/2, the map

L[]:V¥z,e) x Vi(z,€) > X

is a homeomorphism to a neighbourhood of z. These are the ‘canonical coordi-
nates’ in X.
Moreover, there is a constant 0 < A < 1 such that

d(f(y), £(2)) < Ad(y, z), for all y,z € V*(z,¢),

and also
d(f " (y), f(2)) < Md(y, 2), for all y,z € V*(x,€),

which reflects the hyperbolicity of the map.

Every Smale space is expansive, meaning that there is a constant € such
that, for all pairs z,z', if d(f™(x), f*(z")) < € for all integers n implies that
z = z'. We assume that our constant ex is chosen sufficiently small to satisfy
the expansiveness condition.

An important class of examples is the shifts of finite type [Rue]. In fact,
these are exactly the zero-dimensional Smale spaces (see 18.7.8 of [KH]).

We say that a Smale space is irreducible if every point is non-wandering and
there is a dense orbit.

We are concerned with maps between such systems. Given two systems
(X, f) and (Y, g), a factor map between them is a continuous function

m: XY

such that
To f =gon.

We write this as
(X, f) = (Y, 9).

Such a map is finite-to-one if there is a constant M such that #7x~1{y} < M,
for every y in Y. Such a map is almost one-to-one if there is a point y in Y
such that #7~1{y} = 1. Here, #A denotes the cardinality of the set A.

When the systems are Smale spaces, there are two special classes of factor
maps. A map 7 is s-resolving if m | V*(x,€) is injective for every x in X and
some € > 0. Similarly, it is u-resolving if 7 | V¥%(z, €) is injective. It is shown in
[Put2] that such an s-resolving map is actually a homeomorphism on the local
stable sets.

Such maps are finite-to-one. If we compose an s-resolving map with a u-
resolving one, the result is finite-to-one, but not resolving in general. It is



an interesting and subtle question to ask whether any finite-to-one factor can
be decomposed as a composition of (two or more) resolving maps. In [KMT)]
(or see [LM]), Kitchens gives an example of a finite-to-one factor between two
shifts of finite type which has no such decomposition. (Another example of a
non-resolving map which has no non-trivial decompositions at all is given in
[Boy1].)

In another direction, Trow [T] and Boyle [Boy1] have considered the problem
of how many decompositions a given factor map may have.

We pursue a slightly different direction. We show that a finite-to-one map
between two irreducible Smale spaces may be lifted to an s-resolving map be-
tween two others which factor onto the originals by wu-resolving maps. The
precise statement is given below.

Before stating this, let us take a moment to describe two sources of moti-
vation. This first is purely dynamical. The well-known result of Bowen [Bow]
states that every Smale space is the image of a shift of finite type under an
almost one-to-one factor map. Can this be done by resolving maps? Of course,
any image of a shift of finite type under an s-resolving map will have local stable
sets which are totally disconnected. So the correct formulation is to ask for a
composition of (two or more) resolving maps. We show that this is indeed the
case as a corollary of our lifting result.

The second motivation comes the study of C*-algebras. It is possible to
construct C*-algebras from an irreducible Smale space (X, f) [Putl]. There
are two principal ones, denoted S(X, f) and U(X, f). Unfortunately, the issue
of functoriality of this construction is subtle. In [Put2], it is shown that for
s-resolving maps, the construction of S is contra-variant while that of U is co-
variant. For an irreducible matrix A which defines a shift of finite type (X a, f4)
(see [LM]) the algebras S and U are both AF-algebras. Their K, groups are
the dimension groups associated with the matrices A7 (denoting the transpose
of A) and A, respectively. This functoriality at the level of dimension groups
has been observed already [BMT].

Let us now state our main result.

Theorem 1.1. Let (X,dx, f) and (Y,dy,g) be irreducible Smale spaces and
suppose that
(X, f) = (Y. 9)

is an almost one-to-one factor map. Then there exist irreducible Smale spaces,
(X, f) and (Y, g) and factor maps «, 3,7 as shown.

Moreover, the diagram is commutative, o and f are u-resolving and 7 is
s-resolving.



The proof is very long and we relegate it to the next section. Let us make
some simple remarks. If the map 7 happens to be s-resolving, then we can take
T =mx, a =1id and § = id. On the other hand, if 7 is u-resolving, we take
B =m, a =1id and @ = id. We also note that to have a solution to this lifting
problem under the condition a = id, is just to factor = as an s-resolving map
followed by a u-resolving one.

However, if we accept the Theorem for the moment, we can then obtain our
desired corollaries. First, we note the following topological result. Its proof is
elementary and we leave it as an exercise for the interested reader.

Lemma 1.2. Let
T: XY

be a continuous, finite-to-one surjection between compact metric spaces. If Y
is totally disconnected, then so is X.

Corollary 1.3. Let (Y,g) be an irreducible Smale space such that V¥(y,¢)
is totally disconnected for every y in Y and 0 < € < ey. Then there is an
irreducible shift of finite type (X,0) and an u-resolving factor map

B:(%,0) = (Y, 9).

Proof. We apply Bowen’s result to find an irreducible shift of finite type, (X, f),
and an almost one-to-one factor map

™ (X, f) = (Y, 9).

We apply our main result to find (X, f),a, 8 and #. From Lemma 1.2, (X, f)
is totally disconnected and hence both local stable and unstable sets in (X, f)
are totally disconnected. As 7 is s-resolving, it is a homeomorphism on local
stable sets. Hence the local stable sets in (Y, §) are also totally disconnected.
As the map 3 is u-resolving, it is a local homeomorphism from the local stable
sets in (Y, §) to those of (Y,g), which are totally disconnected by hypothesis.
We conclude that (Y, §) is totally disconnected and hence is a shift of finite

type. Letting (X,0) = (Y, §) completes the proof. O

Corollary 1.4. Let (Y, g) be an irreducible Smale space. Then there is another
irreducible Smale space, (2,w), an irreducible shift of finite type, (2,0), and
two factor maps

- (Eaf) - (Qaf)
and
P (Qaf) - (Xaf)

such that 7 is s-resolving while 75 is u-resolving.

Proof. Again we begin with Bowen’s result and let (X, f) be a shift of finite
type and

T (X, f) = (Y,g)



be an almost one-to-one factor map. We apply our main theorem to obtain
(X, f), e, B and #. Again applying 1.2, we see that (X, f) is totally disconnected
and hence a shift of finite type. If we then let (3,0) = (X, f), (Q,w) = (Y, ),
m = 7 and 7wy = (3, this completes the proof. O

Since a preliminary version of this paper appeared, Mike Boyle [Boy2] has
extended these results in the zero-dimensional case, where Smale spaces are
shifts of finite type. He also relates this construction with earlier work of Nasu
[Na].

We mention two final remarks. First, it seems natural to ask whether, for a
given , there exists a minimal lifting, in an obvious sense. If so, is it unique?
Secondly, it would be desirable to extend the result to the case where Y, g is
merely expansive. In this case, Y, g is a finitely presented system [Fr]. Boyle has
now given affirmative answers to both of these questions in the zero-dimensional
case [Boy2].

Acknowledgements: It is a pleasure to thank Mike Boyle and Paul Trow
for several helpful discussions. It is also a pleasure to thank the referee for a
diligent reading of the paper and many helpful suggestions.

2 Proof of the main result

We begin this section with two basic results on factor maps between Smale
spaces. Both are probably known (see [Boyl] for the first), but we can find no
proof in the literature set in the generality of Smale spaces.

Lemma 2.1. Suppose that (X,dx,f) and (Y,dy,g) are irreducible Smale
spaces and suppose that
m: (X, f) = (Y, 9)

is a finite-to-one factor map. If 2,2’ are any points in X which are both stably
and unstably equivalent and so that 7(z) = w(z'), then z = z'.

Proof. We provide only a rough sketch of the proof. It relies on the notion of
shadowing. We refer the reader to [KH] for details.

We suppose that x and z' are as above, but unequal. We choose € so that
d(z,x') > € > 0 and sufficiently small so that d(z,2') < ¢, for any z,2' in X,
implies d(7(2),m(2")) < €y /2. Then we choose § > 0 such that every §-pseudo-
orbit is e-shadowed by an orbit. Next we use the fact that  and z’ are both
stably and unstably equivalent to find a positive integer n sufficiently large so
that

d(f"(x), ("), d(f~"(x), f " (")) < 6/2

Next, we use irreducibility to choose an point y and positive integer m such that

d(y, f"+(2)),d(f™ (y), (@) <.



Let p and p’' denote the respective finite sequences of points in X,
p = f_n(m)af_n+l(m)a vey f"(m),y,f(y), ey fm(y)
po= [N TN, 0 F (), ()
For each positive integer k, we may form a d-pseudo-orbit:
p>.(0) p™
(here the decimal indicates the space between coordinates —1 and 0). By the
shadowing property, this is e-shadowed by the orbit of a point x; in X. From

the choice of € it is easy to see that the x; are all distinct. It is also easy to see
that for any k, k' and integer n

d(g" (m(wr)), 9" (m(z))) < ev

and so w(zg) = w(xg ), for all k, k' and this contradicts the hypothesis that 7 is
finite-to-one. O

Lemma 2.2. Let

m: (X, f) = (Y,9)
be a factor map. There exists a positive € < ex such that, for all z,z' in X
with d(z,2') < ¢, we have d(w(z), 7(2')) < ey and

[ (@), m(2")] = 7([z, 2'])-

Proof. From the uniform continuity of 7 and the bracket in Y, we may find
€' < ex/2 such that

d(n(z),m(z")), d(n(z), [r(z), 7(2")]) < ev/2,
d(n(a'), [r(z), m(z")]) < ev/2,

whenever d(z,z') < €. Next, from the uniform continuity of the bracket in X,
we choose 0 < € < € such that

d(z,[z,2']),d(a’, [z,2']) <€,

whenever d(z,z') < e. We must verify the conclusion of the Lemma for such
z,z'. One checks by induction that for any n > 0, we have f"*([z,z']) is in
Ve(f™(z),e€) and therefore, in particular,

a(f"(x), f"([z,2]) <€,

and hence

d(g" (n(x)), g" (n ([, 2']))) = d(w(f"(2)), 7 (" ([,2]))) < ev/2,

for all n > 0. In a similar way, we check that

d(g™(n(2")), 9" (n([z, 2]))) = d(x (f" ("), 7(f"([z,2']))) < ex /2,



for all n <0.
On the other hand, the same inequalities hold replacing
w([z,z']) by [r(z),n(z")]. Therefore we see that

d(g" (n([z,2])), 9" ([x (), 7(z")])) < ev,

for all integers n. By expansiveness, this means that

m([z,2']) = [r(x), 7(")]

as desired.
O

Henceforth, we replace the constant ex with the smaller € given in the last
Lemma. We may assume that the conclusion of the Lemma holds for d(z,z') <
ex. Let us also assume that ex is chosen sufficiently small so that, for any =, z'
in X, dx(z,2') < ex/2 implies that dy (7 (z),n(z")) < ey /2. As each of X, f
and Y, g is a Smale space, there are constants 0 < Ax, Ay < 1, which control
the rate of contraction in each system. We let A denote the larger of the two.
This single value works for both systems.

We now turn to the proof of the main result in section 1. It will be done in
a long series of lemmas. We begin by sketching a broad outline of our method
of proof. We begin with irreducible Smale spaces (X,dx, f) and (Y,dy,g) and
a finite-to-one factor map

m: (X, f) = (Y,9).

We begin by finding a periodic point in Y with a unique pre-image in X. We
define W to be the weak unstable set of this point; that is, all points unstably
equivalent to a point in its orbit.

Based on a parameter, p, we will define new metrics, dx on W and dy on
w(W). These will involve the map 7. The basic idea of these new metrics is to
measure distances in the unstable direction exactly as the originals do. But for
two stably equivalent points to be close in §, they must be close in d and be
compatible with respect to 7 in a sense we describe below. Our new spaces will
be the completion of W and 7(WW) in these new metrics.

Proposition 2.3. Let 7 : (X, f) = (Y, g) be an almost one-to-one factor map
between irreducible Smale spaces. Then there is a periodic point yo in Y such
that #7 ' {yo} = 1.

Proof. Let y be in Y with #71{yo} = 1. Suppose that 7(z) = y. Let y, be
a sequence of periodic points in Y converging to y. Suppose that for each n,
there are z,, # z!, with n(z,) = m(z])) = yn. By passing to subsequences we
may assume that z, and z! are convergent. Their limit points must map to
y and hence both sequences converge to x. We choose € > 0 such that every
e-pseudo-orbit in X is ex/2-shadowed by an orbit. Next, select n sufficiently
large that d(z,,z]) < e. As y, is periodic and 7 is finite-to-one, the points



z, and 2! are also periodic. Choose N > 1 such that fN(z,) = z, and

fN(z!) = z!,. Let p and p' denote the finite sequences fi(z,),i =0,1,...,N—1
and fi(z!),i = 0,1,...,N — 1, respectively. By making any sequence using
p and p', we obtain an e-pseudo-orbit in X. FEach is shadowed by an orbit.
Moreover, since f is expansive and z,, # =), d(fi(z,), fi(z!)) > ex, for some
0 <9 < N. This means that the orbits we obtain in this way are distinct for
different sequences of p and p'. On the other hand, an easy argument using
m(zn) = w(x),) and the expansiveness of g shows that they all equal under 7.
This contradicts 7 being finite-to-one. Therefore, for some n, 7~ {y,} contains
one point. O

We select a periodic point yo in Y such that 7= {yo} = {zo}. As noted in
the last proof, zq is also periodic. We then define

W = UpezV*(f"(x0))

to be the union of the unstable sets of the points in the orbit of . We sum-
marize the properties of W in the following Lemma.

Lemma 2.4. 1. 7(W) = UpezV*(g™(30))-
2. 771 (n(W)) =W.
3. f(W)y=Ww.
4. g(m(W)) = =(W).
5. If x and z' in W are stably equivalent and 7 (z) = w(z'), then z = z'.

Proof. Let N be the period of zo; so g™ (yo) = yo also. For the first part, the
containment C is obvious. For the reverse, we suppose that z is in X with 7(x)
in V¥(g"(n(yo))), for some n in Z. Consider the sequence f~*(z),i =1,2,...in
X. Let 2’ in X be any limit point of this sequence. Select a subsequence indexed
by i which converges to 2'. Applying m, we obtain a sequence which converges
to g™ (yo). It follows that w(f~"(x')) = yo and this implies that f~"(z') = xo.
We may then choose an i sufficiently large so that dx (f"(zo), f~*V(z)) <
ex and w(f~*N(z))) € V*(g"(y0), €v)- Then both 7([f"(z0), f~*/(z)]) and
[9" (yo), w(f~ %N (z))] are defined and hence equal, by Lemma 2.4. But the later
is just g"(yo). This implies that [f™(zo), f~*~ (z)]) = f™(x0). This completes
the proof.

The second part follows immediately from the first. The third and fourth
parts are clear. As for the last, we suppose that z is in V¥(f¥(z¢) and 2’ is in
V¥(fi(xo), with 0 < i,j < N. Consider the sequences f~"V(z) and f~"N(z'),
n = 1,2,.... These converge to fi(z¢) and f7(xq) respectively. The map =
maps these to the same sequence and so their limit points are identified by .
This implies that they are equal. Hence, z and 2’ are in the same set V*( f(z).
In particular, they are unstably equivalent to each other. As they are stably
equivalent as well and the map 7 is finite-to-one, they are equal. O



Definition 2.5. Let y1,y2 be in #(W) with yo in V*(y1,ev/2). A compatibility
map from y; to ys is a map

ver Hy} = 77 {2}
such that v(z) € V¥(z,ex/2), for all z in 7 1{y; }. For such a map, we define
|v| = sup{dx (z,v(2)) | z € 77 {y1} < ex/2.

Lemma 2.6. Let y1,y2 be in W with y2 in V*(y1,€y/2). A compatibility map
from y; to ys is injective and unique.

Proof. Let v be a compatibility map from y; to y2. Suppose z,z' are in 71 {y; }
and hence in W. The w(z) = m(2’') = y1. On the other hand, z and v(z) are
stably equivalent as are 2’ and v(z'). If v(z) = v(z'), then by part 5 of Lemma
2.4, ¢ = z'. As for uniqueness, suppose that v and v/ are two compatibility
maps. Then v(z) and v/(z) are both in 771{y2}, hence in W and both are
stably equivalent to z. Again by part 5 of Lemma 2.4, they are equal. O

The following result is an easy consequence of the properties of a Smale
space and we omit the proof.

Lemma 2.7. Let y;,y2 be in m(W) with yo in V*¥(y1,ey/2) and let v be a
compatibility map from y; to y2. Then, for any k > 1, g¥(y2) in
Ve(g*(y1), \eey /2) C V3 (g*(y1), ey /2), fFovo f~F is a compatibility map from
9*(y1) to g*(y2) and

| ovo f7H] < X,

Definition 2.8. We say that two points, y1,y2 in w(W), are compatible if
1. y2 € V¥(y1,€y/2) and
2. there are compatibility maps from y; to y2 and from ys to y;.

An argument analogous to those in Lemma 2.6 shows that the two compat-
ibility maps in the definition above must actually be inverses to one another
and, in particular, they are bijections. It is worth noting that compatibility is
a reflexive and symmetric relation, but may not be transitive.

The notion of compatibility we will use in our definition of the metric is a
slightly stronger one. The compatibility should extend between points in the
local unstable sets. Based on a parameter p, we call this p-compatibility and it
is stated precisely as follows.

Definition 2.9. Let 0 < p < ey/2. We say that y; and y, in #(W) are
p-compatible if yo is in V*(y1,€ey/2) and

1. for all y in V¥(y1, p), there is a compatibility map from y to [y, y2], and

2. for all y in V*(ya, p), there is a compatibility map from y to [y,v1].



If it were the case that [V*(y1, p), y2] = V¥*(y2, p), then the conditions of the
definition are simply that y and [y, y2] are compatible for all y in V¥(y1, p). The
formalism above will be easier in practise. Again, p-compatibility is reflexive
and symmetric, but not necessarily transitive.

Lemma 2.10. If y; and y» in Y are p-compatible then, for all k& > 1, g*(y)
and g*(y2) are p-compatible.

Proof. Tt clearly suffices to do the case k = 1. As y; and y, are p-compatible, the
latter is in V*(y1,€y/2). It follows that g*(y») is in V*(g(y1),€ev/2). Suppose
that y is in V%(g(y1), p). It follows that g~ (y) is in V%(y1, p). As y1 and ys are
p-compatible, there is a compatibility map v from g~ (y) to g~*(y2). Then the
map fowvo f~!is a compatibility map from y to [y, g(y2)]- The other direction
is done in an analogous way. (]

The converse of this result is not true. Later, in the definition of the metric,
it will be built in. The following result is an easy exercise in topology which we
leave to the reader.

Lemma 2.11. Suppose that 7 : X — Y is a continuous, finite-to-one surjection
between compact metric spaces. For y in Y and € > 0, there is a § > 0 such
that, if ' is in X with dy (7w(2'),y) < 0, then there is x in X with 7(z) = y and
dx(z,z") <e.

We now want to fix a parameter p with certain properties. These are outlined
in the following.

Proposition 2.12. There exist 0 < p < ey /2, a finite set A and a map
v:mw(W) — A such that

1. if y1,y2 are in 7(W), yo is in V*(y1, ey /2) and v(y1) = v(y2), then y; and
Y2 are p-compatible,

2. if y, is a sequence in (W) N V*(yo, ey /2) converging to yo, then there is
N > 1 such that, for all n > N, y,, and yo are p-compatible.

Proof. First, we choose 0 < € < ex /2 such that for all z, z' in X with dx (z,2') <
2¢, dx (z,[z,2']),dx (z,[z',2]) < ex/2. By Lemma 2.11, for each y' in Y, we
may find 0 < §,r < ey /2 such that, if z is in X with dy (7(z),y") < ¢, there is
z' in 77H{y'} and with dx (z,2') < &,.

The collection B(y’,d,//2),y" € Y is an open cover of Y. We select a finite
subcover, B(y', 6, /2),y" € F, where F CY is finite. We define

A= ] 2o,
y' eF

where, for any set S, 2% denotes the collection of all subsets of S. The map = is
defined as follows. Let y be in w(W). Select any y' in F' with dy (y,y") < &, /2.
Then set

Y(y) = {z' € 77 {y'} | thereis z € X,dx (z',z) < e,m(x) € V¥(y,ey/2)}.

10



Note that w(y(y)) = {y'}. The function v is neither necessarily unique nor
continuous. We choose p such that 0 < p < min{d,,/2,6,/2 |y € F}.

To show the first conclusion holds, suppose that y(y1) = v(y2) and yo is
in V¥(y1,ev/2). Let y be in V¥%(y1,p). Select y' in F such that w(y(y1)) =
7(v(y2)) = {y'}. This implies that dy (y1,y'),dy (y2,y") < 0, /2. We define a
map v : 7 {y} = 7 {[y,y2]} as follows. Suppose that 7(z) = y. Then we
have

dy (m(x),y1) + dy (y1,9')

p+0y,/2
Oy -

dy (7(z),9')

(VAN VANRVAN

From the definition of §,, there is 2’ in X with 7(2') = 3’ and dx(z,2') < e.
This means that z' is in v(y1) = v(y2) and hence there is z in X such that 7(z)
isin V*(y2,ev/2) and d(=',z) < e. We estimate

dx(z,2) < dx(z,z') +dx(z',2) < 2 < ex.

We let v(z) = [z,2]. By the choice of €, we have v(z) is in V*(z,ex/2) and
finally, n(v(z)) = 7z, 2] = [7(x), 7(2)] = y2, since 7(2) is in V¥(y2, ey /2). The
case for y in V'¥(ya, p) is done analogously.

For the second part, we first note that p < d,,/2. By the choice of J,,, this
means that if 2/ is in X with dy (7(z'),y0) < p, there is z in X with 7(z) = yo
and dx (z,z') < e. we may choose N so that, for all n > N. But zg is the unique
pre-image of yo so we may restate the conclusion in this case as d(z’,z¢) < €.

Now suppose that dy (yn, ¥0) < 8y,/2. If y is in V¥(yo, p) and z isin 71 {y},
then dx(z,x0) < €. Let z,, be any pre-image of y,,. Then dx (z,, o) < €. Then
we have dx (z,z,) < 2¢ and we define v(z) = [z, z,]. It is easy to check that this
is a compatibility map from y to [y, y,]. On the other hand, if y is in V*(yp, p).
Then dy (y,y0) < dy,. If z is any point in 77 {y}, then dx (z,z0) < € and we
define v(z) = [z, zo]. Again it is easy to see this is a compatibility map from y,
to yo. This completes the proof. O

We make a choice of p, A and ~y as in the above Proposition and fix them for
the remainder of the paper. We are now ready to begin defining our new metric
on w(W).

Definition 2.13. For any points y; and ys in (W), a rectangular path (or
simply a path) from y; to ys is a finite sequence p = (po, - - -, p2r), of points in
w(W) such that

1. y1 = po and y2 = pay,
2. forall 0 <i <1, pajya € Vu(p2i+1,€y/2), and

3. forall 0 <i <, pait1 € V*(pai,ey/2) and pa; and pe;y1 are p-compatible.

11



For such a path p, we define its length I(p) to be

20-1

I(p) = Y dy (pi,pir1)-

=0

Clearly we can think of a path as being a sequence of ‘moves’, alternating
between moving in the s and u directions in Y, each of distance less than p. If
one wanted to make a path from x to y by first moving in the u-direction to
z and then in the u-direction again to get to y, then this could be realized by
the path (z,z, 2, z,y). That is, we can make a ‘trivial’ move in the s-direction.
This does not alter the length of the path. So our definition which insists on
alternating the directions really loses no generality in doing so.

Notice that by the triangle inequality, we have

I(p) > dy (y1,y2)

for any path from y; to ys.

Let us choose now a positive constant D which is greater than the diameter
of both Y and X. Its role is to simply put a bound on the length of paths
in Y. At the same time, its use in the following definition takes care of the
possibility that there may be no paths between a particular pair of points. Our
first definition of 89 which follows, is preliminary to our final definition of the
new metric on 7(W).

Definition 2.14. Let y; and y» be in 7(W). We define
8% (y1,y2) = inf{D,I(p) | p is a rectangular path from y; to ys}.
Let us observe some elementary properties of &°.
Lemma 2.15. 1. 0% (y1,92) > dy (y1,92)-
2. &% is a metric on Y.
3. If yo is in V¥(y1, €y /2), then 6% (y1,92) = d(y1,y2).
4. If y; isin V®(y2,€y/2) and y; and y, are p-compatible, then
8 (y1,y2) = dy (y1,92)-

Proof. 1. The first statement follows from the observation earlier that I(p) >
d(y1,y2), for any path p from y; to y2 and the fact that D was chosen to
be greater than the diameter of Y.

2. This is a routine type of argument. We omit the details.

3. This is clear from the definition, part 1 and the observation that (y1,y1,¥y2)
is a path from y; to y» with length equal to dy (y1,¥2)-

12



4. This is clear from the definition, part 1 and the observation that (y1,y2,¥y2)
is a path from y; to y» with length equal to dy (y1,¥2)-
O

The last statement provides a formula on 8% for points which are
p-compatible. We now want a kind of converse, namely that if points y; and ys in
the same local stable set are close in §9 then y; and y» are almost p-compatible,
in a sense made precise below.

Lemma 2.16. There exists 0 < €, < ey/2 and a positive integer K such that,
for any y1,y2 in m(W) with y2 in V®(y1,ey/2), if

6(1)’(y17y2) < €,
then g% (y1) and g% (y2) are p-compatible.

Proof. Choose K > 2 sufficiently large so that A* -2- #A4 < 1. Next, we claim
that there is a constant 0 < e, < (1 — A)p such that, for every yi1,ys with
dy (y1,9y2) < €., we have

[V*(y1,A*p), y2] C V*(ya, Ap)-

This basically follows from the continuity of the bracket and the fact that
A2p < Ap. We omit the details. We also require that €. < ex/2 is such that
dyv(y,y') < €. implies that dy (y,[y,4']),dv (y,[y’,y]) < (1 = A)p.

Now suppose y; and ys are as in the statement. We find with a rectangular
path p = (po,...,pan) in 7(W) from y; to y2 of length I(p) < e.. It follows
from the definitions and the triangle inequality that dy (p;,p;) < I(p) < €, for
all 0 <4, < 2N. We consider the sequence g, = [y1,P2x], for all 0 < n < N.
Note that g = pg = y; and gy = pany = y2- Easy computations and the choice
of €, show that g, isin V?®(y1, €y /2), and in V* (g, €y /2), for all 1 < m,n < N.
We also estimate dy (¢n, P2n) = dy ([y1,P2n], P2n) < (1 — A)p. Putting all these
things together, we see that, for all 0 <n < N,

We will construct a sequence 0 = ng < my < --- < ny = N such that
I < 24#A and, for all 0 < i < I and y in V¥(y;,A?p), a compatibility map,
denoted v;, from [y, gn,] to [y, gn,,,]- First note that from our choice of €., [y, gn]
is in V¥(gp, Ap), for all 0 < n < N. We set ng = 0. The value of n; is found as
follows. Consider v(gg) = 7y(y1). If there exists n > 0 with v(g,) = 7(go), then
select ny to be the largest such n. That is, v(g) does not occur as y(gn) for
n' > ny. In the case that there is no such n, we set n; = 0+1 = 1. We continue
in this fashion. So that for each i, either y(gn;) = Y(gn;4,) or else njy1 =n; +1.
Since the values of y(gp;) do not occur for any n' > n;yq in either case, each
element of A occurs as y(g,,) for at most two (necessarily consecutive) values
of i. From this we conclude that I < 2#A. Next, we consider y as above and
the maps v;. In the case that n;11 = n; + 1, we use the fact that [y, ¢,] is in
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V*(gn, Ap) and hence in V¥(pay,, p). As pa, and pay, 41 are compatible, there is a
compatibility map v from [y, g»] to [[y, ¢n], P2n+1] = [, P2n+1]- Finally, we note
that pont1,Pante and g,41 are all in the same local unstable set so [y, pant+1] =
[¥, @n+1]- In this case, we set v; = v. In the case that v(¢n;) = V(qnis.), We
know from Lemma 2.12 that g,;, and g¢,,,, are p-compatible. Hence there is a
compatibility map which we choose for v;.

Then, v = vy_j 0---0 14 is a map from
7 Hy} = 77 Y[y, qn,] } to 77 {[y, gn,]}- We also estimate, for any x in 7= {y},

I-1
KUE@ K@) < 3 dx (Ko on(@), Koo w(@)

< ZA dx (vi-10---ovg(z),v; 0 0vo())
< AK-I-eX/2

< A 2#Aex /2

< ex/2.

We are now ready to prove that g% (y;) and g% (y,) are p-compatible. Let
y' be any point in V¥(g¥(y1),p). Then y = g~ K(y') is in V¥(y1,A\Xp) C
V¥(y1,Ap). From the argument above the map fX ovy_jo0---oygo f~K isa
compatibility map from y' to [y', g% (y2)]. Reversing the roles of y; and y» then
shows the other direction. This completes the proof. O

Now we are ready to define our new metric on 7(W).

Definition 2.17. Fix 0 < r < 1 — A\. For each positive integer k£ and yi,y2 in
w(W), we define

8 (y1,y2) = 6997 (11), 97" (v2)).
We also define

v (y1,92) Z‘SY Y1,Y2)-

Lemma 2.18. Let y1,y2 be in 7(W).

[y

- Oy (y1,92) > dy (y1,92)-
2. For all k > 0, 6% is a metric on 7(W).

3. dy is a metric on 7w(W).

b

If yo is in V¥(y1, ey /2) then

8y (y1,92) < (1 —rA)"dy (y1,12).

14



Proof. All parts, except for 4, follow easily from the definitions and earlier
properties of 3. As for part 4, we note that if y» is in V*(y1,py), then, for
every k > 0,

dy (97" (1), 9 *(y2)) < Nedy (y1,92).-

Moreover, g~ *(ys) is in V¥(g~*(y1), py), for every k > 0. We can apply part
3 of Lemma 2.15 to each term in the series for dy (y1,y2) and the conclusion
follows at once. (|

Suppose that the sequence y,, converges to y. We can consider [y,,y] and
[y, Yn], which are defined for sufficiently large n. Similarly, if & is a fixed positive
integer, the expression [g7*(y,),97%(y)] is defined for sufficiently large n. We
will speak of the sequence [g7%(y,,), 9 %(y)], suppressing this subtlety.

Lemma 2.19. Suppose that y,, is a sequence in 7(W) converging to y in Y, dy .
Then the following conditions are equivalent.

1. y, is Cauchy in dy.
2. y, is Cauchy in 6%, for all £ > 0.
. 97 %(yy) is Cauchy in 6%, for all k£ > 0.

. [y, yn] is Cauchy in dy.

3

4

5. [y,yn] is Cauchy in 6%, for all k > 0.

6. [97%(y),9 *(yn)] is Cauchy in 8%, for all k > 0.
7

. For all k> 0, there is N > 1 such that [g7*(y),9 % (y»)] and
[97%(y), 97 *(ym)] are p-compatible for all m,n > N.

Moreover, if any of these conditions hold, then the sequence obtained by
intertwining y, and [y, y,] is also Cauchy in dy.

Proof. The equivalence of the first three conditions follows immediately from
the definitions. This is also true for the equivalence of the fourth, fifth and
sixth conditions.

We will prove that condition (7) implies (3), (6) implies (7) and that (3) and
(6) are equivalent. This will complete the proof.

Let us assume (7) and show that (3) holds. Fix £ > 0. Let N > 1 be as in
(7) and assume that n,m > N. From (7), it follows that

(0 Wn)s g (wn), 197 @), 97 * W), l97* @), 97 % (wm)], 97" (ym))

is a rectangular path from g~ *(y,) to g~ *(ym). The length of this path is

*(
dy (97" (yn), [97%®), 97 % (yn)))
+ dy([g W), g7 W), l97% (), 97 (ym)))
+ dy (97" ), 97" (ym)], 97" (ym))

k
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which clearly tends to zero for n, m large since y,, converges to y.

Now let us assume that (6) holds. Let & > 0 be fixed. Using K as given in
Lemma 2.16 and applying hypothesis (6) for the sequence
[g7%* K (y), 97 %% (y,)], we may choose N such that, for all m,n > N,

8 (g W), g K w97 F ), g7 K (yn)]) < e

It follows that

dy (97" %), 97" K (ym)], l97* % ), 97 (yn)]) < ev /2,

for all m,n > N. It follows from Lemma 2.16 that

9 (g™ K W), 97" X (ym))) = [97*(¥), 97" (ym)] and

95 (97" %), 97" (ym))) = [97%(), 9% (ym)] are p-compatible. The equiv-
alence of (3) and (6) follows from the triangle inequality and the fact that, for
n sufficiently large,

89~ W), g7 (wn)], 97 (n)) = dv (97" W), 97" (wn)), 97 * (¥n)),

by part 3 of Lemma 2.15, and hence tends to zero.
We now turn to the last statement. From part 4 of Lemma 2.18, we have

8y (Yns [, yn]) < (L =1X) "' dy (Yns [y, Yn])

which tends to zero as n tends to infinity. This completes the proof. O

Our new space Y will be defined as the completion of 7(W) in the metric
dy. This means that, formally, it consists of equivalence classes of Cauchy
sequences. As noted earlier, each sequence is also Cauchy and hence convergent
in Y,dy. A consequence of the last Lemma is that every equivalence class may
be represented by one lying in the local stable set of the limit point.

Lemma 2.20. Let y be in Y and let y,, be sequence in #(W) N V?(y,ey/2)
which converges to y in dy and is Cauchy in dy. Let ¥’ in V¥(y, ey /2). Then
the sequence [y',y,] is Cauchy in dy.

Proof. Let k > 0. We will show that for sufficiently large m,n, ¢ *([y, ym])
and g *([y',ys]) are p-compatible. The conclusion then follows from Lemma
2.19. Select a positive integer M such that 2AMey < p < ey /2. We may find
N such that, for all m,n > N, g~ *"M(y,.) and g=*~M(y,,) are p-compatible.
By the continuity of the bracket, we may also choose N such that [y, y,] is in
V¥%(yn,€y), for all n > N. Finally, we require N to be sufficiently large that,
for allm > N, dy (97%(v), 97 %(yn)) < ey /2. It follows from the last requirement
that, for such n,

dy (97 ("), 97" (yn)) dy (97", 97 ®)) + dv (97" (), 97" (yn))
dY(yla y) + 6Y/2

€y

ININIA
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From this it follows that =% ([y',ym]) = [7% ("), 97" (yn)]-
Let m,n > N and let z be in V¥(¢7*([y', ym]), p)- Then we have

dy (g7 (2), 97" *ym)) < dy(g7™(2),97 ™97 W), 97" (ym)]))
+dy (97" (97" W), 97 (m)]), 97 *(ym))
< AMp 4 AMey
< p/2+p/2
= p_

There is a compatibility map v from g~ (2) to [g7M(2),9 %™ (y,)]. Then,
by Lemma 2.7, fM ov o f~™ is a compatibility map from 2 to [z,9 % (y,)].
Reversing the roles of y,, and y,, completes the proof. O

At this point, we are ready to begin to define the new metric on W. The
starting point is extending the notion of rectangular path to the points W.

Definition 2.21. For any points z; and x5 in W, a rectangular path ( or simply
a path) from z; to x» is a finite sequence p = (po, .. .,p2), of points in W such
that

1. z1 = po and z2 = pay,
2. forall0<i< , D2iao € V"(pgi_,_l,eX/Z), and

3. for all 0 < i < I, paiy1 € V?(p2i,ex/2) and w(p2;) and m(pait1) are p-
compatible.

For such a path p, we define its length I(p) to be

21—-1

I(p) = > dx(pi,pis1)-

=0

The following result is an immediate consequence of the definitions. We omit
the proof.

Lemma 2.22. If p = (po,---,pa) is a rectangular path in W from z; to zs,
then
7(p) = (7(po), - - -, w(p2r))
is a rectangular path in (W) from 7(z1) to w(x2).
We also define 6% in analogous fashion as for 6%.
Definition 2.23. Let z; and x5 be in W. We define
8% (x1,22) = inf{D,I(p) | p is a rectangular path from z; to z»}.

We observe some elementary properties of §%. The proof of the first is is
exactly as before and is omitted.
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Lemma 2.24. Let x1,22 be in W.
1. 6% (z1,22) > dx (x1,22)-
2. 6% is a metric on X.
3. If 5 is in V¥(z1, px), then 6% (z1,72) = dx (1, x2).

4. If z; is in V*(z2, px) and 7(z1) and w(x2) are p-compatible, then
8% (@1, 22) = dx (21, 72).

Lemma 2.25. There exists 0 < €, < ex/2 and K’ > 1 such that if 1,z are
in W with z3 in V*¥(z1,€ex/2) and

8% (z1,2) < €.,
then 7(z1) and w(x2) are p-compatible.

Proof. We choose €, such that, for any z;,zs in X, dx(z1,22) < €, implies
dy(m(z1),m(x2)) < €.. Now suppose that z1,z» are as in the hypotheses. Let
p = (po, - .-, pan) be arectangular path from z; to z2 with {(p) < €.. Then for all
0<1i,j <2N, we have dx (p;,p;) < l(p) < €... Then w(p) = (7(po), - --,7(P2n))
is a rectangular path from 7(z;) to m(z2) and dy (7 (p;),(p;)) < €., for all
0 <4,j < 2N. The remainder of the argument given in the proof of Lemma 2.16
may be used to show that g% (m(z1)) = n(f¥(21)) and g¥ (7 (x2)) = 7(f& (22))
are p-compatible. O

Definition 2.26. For each positive integer k and z1,z2 in W, we define
51;( (1'1; 3&'2) = rkég( (fik(xl)a fﬁk(‘r?))'
We also define -
6)((.1'1,.’172) = 2(5?((.’171,1'2).
k=0
The following three results are analogous to earlier ones for the metric dy.

The proofs are either also analogous or follow easily from the earlier ones and
we omit them.

Lemma 2.27. Let 1,22 be in W.
1. §x(z1,32) > dx (1, 22)-
2. For all k > 0, 6% is a metric on X.
3. dx is a metric on X.
4. If 29 is in V¥(z1,€,/2) then

Sx(z1,72) < (1 —7A)"tdx (1, 22).
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Lemma 2.28. Suppose that x,, is a sequence in W converging to z in dx. Then
the following conditions are equivalent.

1. x, is Cauchy in dx.

2. x, is Cauchy in 6%, for all k£ > 0.

f~F(x,) is Cauchy in 6%, for all k& > 0.

[, 2,] is Cauchy in dx.

[z,2,] is Cauchy in 6%, for all k > 0.

[f~*(x), f~*(z,)] is Cauchy in 6%, for all k > 0.

For all k > 0, there is N > 1 such that «([f~*(x), f~*(z,)]) and
7([f *(z), f*(xm)]) are p-compatible for all m,n > N.

N o e

Moreover, if any of these conditions hold, then the sequence obtained by
intertwining x,, and [z, z,] is also Cauchy in dx.

Lemma 2.29. Let z be in X and let z,, be sequence in WNV*(x,ex/2) which
converges to z in dx and is Cauchy in §x. Let =’ in V*(x,ex/2). Then the
sequence [z', z,] is Cauchy in dx.

Having~c0nstructe(~i t}}e metrics dy and dx, we are ready to define our new
systems, (Y, g) and (X, f).

Definition 2.30. 1. We define X to be the completion of the metric space
(W,dx). We use dx to denote the natural extension of the metric to X.

2. We define Y to be the completion of the metric space (m(W),dy). We use
dy to denote the natural extension of the metric to Y.

Theorem 2.31. The spaces X and Y are both compact.

Proof. We consider the case of ¥; that of X is analogous. If ys, is any sequence
in Y, we may find y,, in 7(W) such that dy (y/,, yn) < L. It then suffices to show
that y, has a convergent subsequence. As Y, dy is compact, we may replace y,
by a subsequence which is convergent to some y in Y, dy. Next, by replacing y,
by [y, Yn], we may assume that y, is in V*(y, ey /2), for all n. In view of Lemma
2.16, this does not alter the property of having a convergent subsequence. We
consider the sequence y(y,). As the range of v is finite, we may find 32, a
subsequence of y,, such that () is constant. We continue inductively in the
same way, choosing y* to be a subsequence of y%~1 such that v(g~*(y%)) is
constant, for all k£ > 1. Now the sequence y is a subsequence of y,, and satisfies
Y(g7* (™)) = v(g7*(y?)), provided m,n > k, for all k > 0. For such values
of k,m,n, g~*(y™) and g~*(y") are p-compatible, by Lemma 2.12. By Lemma
2.19, this subsequence is Cauchy in dy and hence convergent. O
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Theorem 2.32. There are continuous surjections
a: X5 X

and ~

8:Y =Y
such that a(z) = z, for all z in W and B(y) =y, for all y in 7(W). Moreover,
if z,, is any Cauchy sequence in (W,dx) converging to Z in X, then it is also
Cauchy and hence convergent in dx and we have

a(Z) = nlgr;o T,

where the limit is taken in X. Also, if y, is any Cauchy sequence in (7(W), dy)
converging to § in Y, then it is also Cauchy and hence convergent in dy and we
have

B(G) = lim yn,

n—oo

where the limit is taken in Y.

Proof. Tt follows from Lemmas 2.27 and 2.18 that any sequence in W (respec-
tively, 7(W)) which is Cauchy in dx (dy, respectively) is also Cauchy in dx
(dy, respectively). The existence of the maps follows and their continuity is an
easy exercise. Surjectivity follows from continuity, the fact that W maps onto
m(W) and that these sets are dense. O

Theorem 2.33. The map f extends to a homeomorphism of X, which we
denote by f. The map g extends to a homeomorphism of ¥, which we denote
by g.

Proof. We will prove the second part only. The first is done in exactly the same
fashion.

Let y, be a sequence in 7(W). We will show that it is Cauchy in dy if and
only if g(y,) is. The result follows from this.

First suppose that it is Cauchy. Then by the discussion following Lemma
2.19, we may assume that y,, converges to y in Y and that y,, is in V*(y, ey /2),
for all n. By Lemma 2.19 for every k > 0, we have N such that g *(y,)
and ¢ *(y,,) are p-compatible. By Lemma 2.10,the same N which works in
condition 7 for k¥ = 0 will also work for & = 1. Another application of Lemma
2.19 shows that g(y,) is Cauchy in dy.

On the other hand, we can calculate directly from the definition of § that

Sy (9(yn), 9(ym)) = D r*6%(9" *(yn), 9" ¥ (ym))
k>0

8% (9(Wn), 9(ym)) + 10y (yn, ym)

from which it follows that

6Y(yn; ym) < r_ldY(g(yn)a g(ym))'
So if the sequence g(y,,) is Cauchy in dy, then so is y,. O
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Theorem 2.34. The systems (X,dx, f) and (Y, dy,§) are Smale spaces.

Proof. Let us first consider the system (Y, §). We choose €5 > 0 such that for
all y,y' inY, dy(y,y') < ey implies that

dy (y,y"),dy (y,[y",y]), dy (', [y', y]) < ey.

If § and §' are two points of ¥ with dy (§,§') < €y, we may find sequences y,,
and y/, in w(W) which are converging to § and §', respectively, in dy. These
sequences converge to points, say y and g’ respectively, in dy and we may assume
that yy,, is in V*¥(y, ey /2) and V*(y', ey /2), respectively. We have

dy (y,y") = lim dy (yn, y,) < limdy (yn,y,) = Oy (5,3') < €p-

It follows from Lemma 2.20 (applied to y,,y and [y',y]) that the sequence
[v',yn] = [[¥', ¥]yn] is Cauchy in dy and we define

[9', 9] = lim[y’", yn]

where the limit is taken in (V,dy). The proof that this is well-defined and
satisfies all the appropriate conditions for a Smale space is rather routine. We
leave the details to the reader.

The proof for the space X is done in a similar way. We omit the details.
O

Theorem 2.35. The Smale spaces X, f and Y, § are irreducible.

Proof. We make the following claim: for any point § in ¥ and € > 0, there are
e-pseudo-orbits from yo to § and from § to yo. The conclusion for ¥ follows from
this [KH]. Assume that € < ey /2. We choose y in w(W) such that dy (y,9) < €.
From the definition of W, there is n < 0 such that g"(y) is in V¥(yo, (1 —rA)e).
Then by Lemma 2.18,

6y (9" (), 90) < (1 —rN) " dy (9™(y),%0) <€,

and yo, 9" (v),...,9 (), 7 is an e-pseudo-orbit from yq to 7.

For the other direction, we first choose y' in 7(W) with 6y (§(9), 9(v"))ey /2.
Then, using the irreducibility of Y, g, we choose y"” in the stable set of yg suffi-
ciently close to y' that dy (v',[y",y']) < (1 —rA)e/2. We let y = [¢",y'], which
is in the stable set of yo, in the unstable set of ¢’ and hence in 7(W) and has

Ov (F,y) <0@,y") +ov(y,y) =dov(@,y") + 1 —rA)dy (v, y) < e

Now the sequence g"(y),n > 0, eventually satisfies the hypothesis of part 2 of
Lemma 2.12. Let p be the perioc of y. For every k > 0, the sequence g*?(y,,) also
converges to g*?(yo) = yo and the same argument shows that, for n sufficiently
large, g*?(yn) is p-compatible to g*?(yo. The same statement is true for any
g*(yn) and g*(yo) by Lemma 2.10. Hence y,, converges to yo in dy. We select

n > 1 such that dy (9" (y),y0) < €. Then the sequence 7,g(y), ..., 9" (), o is
an e-pseudo-orbit from § to yo.
The proof for X, f is done in an analogous way. We omit the details. O
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Theorem 2.36. The maps a and 8 are u-resolving.
Proof. We prove the statement for « only. Suppose that # and ' are in X and
Z'is in V¥(Z,e5). Also suppose that «(Z) = a(Z'). We will show that Z = Z'.
We find a sequence z,, converging to  in (X, dx). Now z,, must have a limit,
say « in X. By definition, a(&) = z. Using the fact that &' is in V*(%,e¢) and
the definition of the bracket on X, we have
i = [2'7]
= lim[a(3'), zy]
n
= lim[a(Z), z,)
n

= lim[z, z,].
n
But for sufficiently large n, we have

O0x(Z,[z,zn]) < Ox(Z,2n)
+ox(zn, [T, 20])
S (5)((52',.’1’:”)
(1 —rX) tdx (2, [z, 2,])

by part 4 of Lemma 2.27. Clearly the right hand side above tends to 0 as n
tends to infinity. We conclude that

' =lim[z,z,] =%
n

as desired. 0
Theorem 2.37. The map
m: W = n(W)
extends to a continuous map ~ ~
T X->Y.

Moreover, 7 is an s-resolving factor map and we have
BoT=moa.

Proof. We first note that it is an easy consequence of the equivalence of parts
1 and 7 in Lemmas 2.19 and 2.28 that = maps Cauchy sequences in (W, dx) to
Cauchy sequences in (7(W), dy). It therefore extends to a well-defined map

#: XY

We want to show that 7 is continuous. Suppose that %, is a sequence in
X, converging to #. We must show that 7#(%,) converges to 7(%). As Y is
compact it suffices to show that the only accumulation point of the sequence
7(Zn) is 7(Z). Suppose that y is some accumulation point. Let us pass to a
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convergent subsequence, without changing our notation. For each n, we may
find a sequence in W converging to Z,. The image of this sequence under 7
then converges to 7 (Z,). So we may find a single point z,, in W such that

O0x (Tn, &n), 0y (m(xs), T(Zn)) <

S|+

Now the sequence z,, is converging to Z in X. Hence 7(x,) is converging in ¥
to 7(£). On the other hand, it is converging to the same thing as 7(%,,) which
is y. Hence, we see that 7(Z) = y as desired. This completes the proof that 7
is continuous.

The map 7 is onto since it maps W onto a dense subset 7(W) of ¥ and since
#(X) is compact and hence closed. It satisfies the equation

gofr:goTr:ﬂ'of:ﬂ'of
on a dense set W in X and hence by continuity
o =1dof

We now want to see that it is s-resolving. Suppose that Z and %' are in
X with &' in V*(%,ez) and #() = 7(#'). We choose sequences z,, and z,
W converging in dx to & and &' respectively with z, in V*(z,e5) and z/, in
Vo(x' ez).

By Lemma 2.28, these sequences converge in X. Let

limz, = z,limz), = 2.
n n

Z') = z'. Also, both sequences 7(z,) and 7 (z),)

By definition a(Z) oz
= 7 in dy. Let y = ﬁ(y~) and so we have

nd
converge to 7(Z) =

=z an
(&)
y = lim7(z,) = lim7(x),)
n n
in dy. Then the sequence which intertwines 7(z,) and w(z]) is also Cauchy in

dy. Hence for any k > 0, 7(f *(zy)) and = (f*(z!)) are p-compatible.
We first claim that z = z’. As f is expansive, we may find k such that

dx (f~*(a"), f7*(x)) > ex.

As &' isin V*(Z,€5), we see that o' = a(&') is in V*(z, ex) and this means that
k cannot be negative. We choose k£ > 0 such that the estimate above holds.
Next, we choose n such that

dx (f %)), f " () > ex.

Since 7(f *(zx,)) and w(f *(x!)) are p-compatible, we may find a com-
(f-*

patibility map v from =7 (z,,)) to w(f~*(2!,)) with |v| < ex. The points

n
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v(f~*(z,)) and f~*(2!) are both stably equivalent to f~*(z,). They cannot

n
be equal because of the estimate above and the fact that

dx (f"(zn), v(f*(27))) < |v| < ex.

But this means we have two points in W, v(f *(z,)) and f *(z!,), which are

stably equivalent and have the same image under w. This is a contradiction.
We conclude that z = z'.

Now it is an easy consequence of Lemma 2.28 that the sequence obtained by
intertwining z,, and ], is Cauchy in dx. This implies that Z = &' and we are
done. O
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