
Ergod. Th. & Dynam. Sys. (2003), ??, 1–37
Printed in the United Kingdom c© 2003 Cambridge University Press

Affable equivalence relations and orbit

structure of Cantor dynamical systems

Thierry Giordano†, Ian Putnam‡, Christian Skau§
† Department of Mathematics and Statistics,

University of Ottawa,
585 King Edward, Ottawa, K1N 6N5, Canada

(e-mail: giordano@uottawa.ca)
‡ Department of Mathematics and Statistics,

University of Victoria,
Victoria, B.C. V8W 3P4, Canada
(e-mail: putnam@math.uvic.ca)

§ Department of Mathematical Sciences,
Norwegian University of Science and Technology (NTNU),

NO–7491 Trondheim, Norway
(e-mail: csk@math.ntnu.no)

(Received ?? )

Abstract. We prove several new results about AF -equivalence relations, and relate
these to Cantor minimal systems (i.e. to minimal Z-actions). The results we obtain
turn out to be crucial for the study of the topological orbit structure of more general
countable group actions (as homeomorphisms) on Cantor sets, which will be the
topic of a forthcoming paper. In all this, Bratteli diagrams and their dynamical
interpretation, are indispensable tools.

1. Introduction
In the present paper we will prove some new results about AF -equivalence relations
(cf. Definition 3.7) that, besides being of interest in their own right, turn out to
be powerful new tools for the study of the topological orbit structure of countable
group actions as homeomorphisms on Cantor sets. In a forthcoming paper we will
apply these new techniques to prove that certain minimal and free Z2-actions on
Cantor sets are (topologically) orbit equivalent to Cantor minimal systems (X, T ),
or, equivalently, to minimal Z actions. The strategy is to prove that the equivalence
relation RZ2 associated to the given Z2-action is affable (“AF -able”), i.e. may be
given an AF -equivalence structure. To prove affability of RZ2 we need a delicate
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2 Giordano, Putnam, Skau

“glueing” procedure, the technical part of which is stated in this paper as Lemma
4.15, the “key lemma”. We demonstrate the power of Lemma 4.15 by establishing
results that are highly non-trivial, concerning the intimate link that exists between
minimal AF -equivalence relations and Cantor minimal systems (Thm. 4.16, Thm.
4.18; compare also Thm. 4.8).

Our ultimate goal is to attack the following question (which is an analogue in
the topological dynamical setting to the celebrated Connes-Feldman-Weiss result
in the measure-theoretic setting [2]):

Let G be a countable, amenable group acting minimally (i.e. every G-orbit is
dense) and freely (i.e. gx = x for some x ∈ X, implies g =the identity element of
G) as homeomorphisms on the Cantor set X. Then (X, G) is topologically orbit
equivalent to a Cantor minimal system (Y, T ), i.e. there exists a homeomorphism
F : X → Y mapping G-orbits onto T -orbits.

[By Theorem 4.8 and Theorem 4.16 this is equivalent to show that the equivalence
relation RG associated to G (cf. Example 2.7(i)) is affable. Previously, this is
known to be true for locally finite groups G (in fact, in this case we do not need
to require free action, only that fix (g) = {x ∈ X|gx = x} is a clopen set for each
g ∈ G), and for Zn-actions that split as Cartesian products, and also for the case
that G = Z×H, where H is a finite cyclic group. These facts can be deduced from
results contained in [10], [6], [8]. It is also noteworthy that in the (standard) Borel
setting the analogous question has an affirmative answer for Zn-actions [15].]

We shall need the key concept of a Bratteli diagram, both ordered and unordered,
and we refer to [7] and [6] for details and proofs of basic results. (Cf. also Example
2.7(ii).) We will state two results that we shall need in the sequel, concerning the
interplay between Bratteli diagrams and Cantor minimal systems.

Proposition 1.1 ([7, Section 3]) Let (V,E) be a simple (standard) Bratteli
diagram, and let X = X(V,E) be the Cantor set consisting of the (infinite) paths
associated to (V,E) . Let x, y ∈ X be two paths that are not cofinal. There exists a
Cantor minimal system (X, T ) such that T preserves cofinality, except that Tx = y.

Proof. Without loss of generality we may assume (by appropriately telescoping the
original diagram), that for every n = 0, 1, 2, ..., there is at least one edge between
every vertex v at level n and every vertex w at level n + 1 of (V,E). Furthermore,
we may assume that the n’th edge of x is distinct from the n’th edge of y. It is
an easy observation that (V,E) may be given a proper ordering (also called simple
ordering) such that x becomes the unique max path, and y becomes the unique min
path. The associated Bratteli-Vershik system (X, T ) has the desired properties. 2

Theorem 1.2 ([6, Lemma 5.1]) Let (X, T ) be Cantor minimal system, and let
Y be a closed (non-empty) subset of X that meets each T -orbit at most once.
There exists an ordered Bratteli diagram BY = (V,E,≥), where (V,E) is a
simple (standard) Bratteli diagram, such that the associated Bratteli-Vershik system(
X(V,E), TBY

)
is conjugate to (X, T ). The conjugating map F : X → X(V,E)

maps Y onto the set of maximal paths, and T (Y ) onto the set of minimal paths.
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Affable equivalence relations 3

Furthermore, if y ∈ Y , the backward orbit of y, {Tny|n ≤ 0}, is mapped onto the
set of paths cofinal with F (y), while the forward orbit {Tny|n ≥ 1} is mapped onto
the set of paths cofinal with F (Ty). Any T -orbit, {Tnx|n ∈ Z}, that does not meet
Y is mapped onto the set of paths cofinal with F (x) .

Corollary 1.3 ([7, Theorem 4.7]) If Y = {y}, then B{y} = (X, V,≥) is a
properly ordered (also called simply ordered) Bratteli diagram, with F (y) equal
to the unique max path and F (Ty) equal to the unique min path.

2. Étale equivalence relations
Let X be a Hausdorff locally compact, second countable (hence metrizable) space.
For the most part we shall be considering the case when X is zero-dimensional, i.e.,
X has a countable basis of closed and open (clopen) sets. (This is equivalent to X

being totally disconnected.) Of particular importance will be the case when X is a
Cantor set, i.e., X is a totally disconnected compact metric space with no isolated
points — it is a well known fact (going back to Cantor and Hausdorff) that all such
spaces are homeomorphic.

We shall be considering countable equivalence relations R on X, i.e. R ⊂ X×X is
an equivalence relation so that each equivalence class [x]R = {y ∈ X | (x, y) ∈ R}
is countable (or finite) for each x in X. R has a natural (principal) groupoid
structure, with unit space equal to the diagonal set ∆ = {(x, x) | x ∈ X}, which
we may identify with X. Specifically, if (x, y), (y, z) ∈ R, then the product of this
composable pair is defined as

(x, y) · (y, z) = (x, z),

and the inverse of (x, y) ∈ R is (x, y)−1 = (y, x). The unit space of R is by
definition the set consisting of products of elements of R with their inverses, and so
equals ∆. Assume R is given a Hausdorff locally compact, second countable (hence
metrizable) topology T , so that the product of composable pairs (with the topology
inherited from the product topology on R×R) is continuous. Also, the inverse map
on R shall be a homeomorphism. With this structure (R, T ) is a locally compact
(principal) groupoid, cf. [13].

The range map r : R → X and the source map: s : R → X are defined by
r((x, y)) = x and s((x, y)) = y, respectively, where (x, y) ∈ R — both maps being
surjective.

Definition 2.1 (Étale equivalence relation) The locally compact groupoid
(R, T ), where R is a countable equivalence relation on the locally compact metric
space X, is étale if r : R → X is a local homeomorphism, i.e. for every (x, y) ∈ R

there exists an open neighborhood U (x,y) ∈ T of (x, y) so that r(U (x,y)) is open in
X and r : U (x,y) → r(U (x,y)) is a homeomorphism. In particular, r is an open map.
If X is zero-dimensional, we may clearly choose U (x,y) to be a clopen set.

We will call (R, T ) an étale equivalence relation on X, and we will occasionally
refer to the local homeomorphism condition as the étaleness condition.
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4 Giordano, Putnam, Skau

Remark 2.2. The definition we have given of étaleness — which is the most
convenient to use for our objects of study — is equivalent to the various definitions
of an étale (or r-discrete) locally compact groupoid (applied to our setting) that
can be found in the literature. Confer for instance [13, Def. 2.6 and Prop. 2.8] and
[11, Def. 2.2.1 and Def. 2.2.3] — the existence of an (essential) unique Haar system
consisting of counting measures follows from our definition, cf. [11, Prop. 2.2.5].
Furthermore, one can prove that the diagonal ∆ = ∆X = {(x, x) | x ∈ X} is a
clopen subset of R [13, Prop. 2.8]. Also, ∆ is homeomorphic to X, and so we are
justified in identifying ∆ with X.

We observe that s is a local homeomorphism, since s((x, y)) = r((x, y)−1). It
is easily deduced that r−1(x) = {(x, y) ∈ R}, as well as s−1(x) = {(y, x) ∈ R},
are (countable) discrete topological spaces in the relative topology for each x ∈ X.
Clearly R can be written as a union of graphs of local homeomorphisms of the form
s ◦ r−1.

Note that the topology T on R ( ⊂ X ×X) is rarely the topology Trel inherited
from the product topology on X × X. Necessarily T is finer than Trel. For
details on topological groupoids, in particular locally compact and étale (r-discrete)
groupoids, and the associated C∗-algebras, we refer to [13], [11], [12].

The following proposition is the analogue in our setting of Theorem 1 of [4],
where countable (standard) Borel equivalence relations were studied. Our proof
mimics the proof in [4].

Proposition 2.3. Let (R, T ) be an étale equivalence relation on the zero-
dimensional space X. There exists a countable group G of homeomorphisms of
X so that R = RG, where RG = {(x, gx) | x ∈ X, g ∈ G}.

Proof. Let {Ck}∞k=1 be a clopen partition of R \ ∆ , where ∆ is the diagonal
{(x, x) | x ∈ X} , so that for each k, the maps r and s are homeomorphisms from
Ck onto the clopen sets r(Ck) ⊂ X and s(Ck) ⊂ X, respectively. We refine the
partition {Ck} so that r(Ck)∩s(Ck) = ∅ for each k. In fact, this may be achieved as
follows. Let {Ii×Ji}∞i=1 be a clopen covering of (X ×X)\∆ so that Ii∩Ji = ∅ for
every i, and each Ii and Ji are clopen. Define Di

k = Ck ∩ (Ii×Ji). Then {Di
k}∞i,k=1

is a clopen partition of R \∆, so that r and s are homeomorphisms of Di
k onto the

clopen sets r(Di
k) ⊂ X and s(Di

k) ⊂ X, respectively, and r(Di
k)∩ s(Di

k) = ∅ for all
i, k. We relabel the non-empty sets in {Di

k}, and so get a sequence {Ei}∞i=1, which
is a clopen refinement of {Ck}∞k=1, with the property that r(Ei) ∩ s(Ei) = ∅ for
every i. For each i we define the continuous function

g(x) =

 y(= sir
−1
i (x)) if (x, y) ∈ Ei,

y(= ris
−1
i (x)) if (y, x) ∈ Ei,

x otherwise,

where ri and si denote the restriction to Ei of r and s, respectively. Observe that
g2

i = id, and so gi is a homeomorphism. The graph Γ(gi) of gi is easily seen to
be Ei ∪ θ(Ei) ∪ (∆ ∩ (Fi × Fi)), where θ : X ×X → X ×X denotes the flip map
(x, y) → (y, x), and Fi = X \ (r(Ei) ∪ s(Ei)). Hence Γ(gi) ⊂ R. Let G be the
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Affable equivalence relations 5

(countable) group generated by the gi’s. Clearly RG ⊂ R. On the other hand,⋃∞
i=1 Γ(gi) ⊃ R \∆, since {Ei} is a covering of R \∆. Since clearly ∆ ⊂ RG, we

conclude that R = RG. 2

Open Problem. Assume that for every x ∈ X, the equivalence class [x]R is dense
in X, where (R, T ) is as in Proposition 2.3. Is it possible to choose G so that
R = RG and G acts freely on X (i.e., gy = y for some y ∈ X, g ∈ G, implies that
g = identity element)?

The analogous question has a negative answer in the setting of countable
(standard) Borel equivalence relations [1]. Furthermore, in the ergodic, measure-
preserving case there are examples of countable equivalence relations that cannot
be generated by an essentially free action of a countable group [5, Theorem D].

Let (R1, T1) and (R2, T2) be two étale equivalence relations on X1 and X2,
respectively. There is an obvious notion of isomorphism, namely a homeomorphism
of (R1, T1) onto (R2, T2) respecting the groupoid operations. Since the unit spaces
∆i = {(x, x) | x ∈ Xi}— which we identify with Xi — are equal to {aa−1 | a ∈ Ri},
i = 1, 2, the definition of isomorphism may be given as follows.

Definition 2.4 (Isomorphism and orbit equivalence) Let (R1, T1) and
(R2, T2) be two étale equivalence relations on X1 and X2 respectively. (R1, T1) is
isomorphic to (R2, T2) —we use the notation (R1, T1) ∼= (R2, T2) — if there exists
a homeomorphism F : X1 → X2 so that
(i) (x, y) ∈ R1 ⇐⇒ (F (x), F (y)) ∈ R2

(ii) F × F : (R1, T1) → (R2, T2) is a homeomorphism, where F × F ((x, y)) =
(F (x), F (y)), (x, y) ∈ R1. We say F implements an isomorphism between
(R1, T1) and (R2, T2) .

We say that (R1, T1), or R1, is orbit equivalent to (R2, T2), or to R2, if (i) is
satisfied, and we call F an orbit map in this case.

Remark 2.5. Observe that (R1, T1) is orbit equivalent to (R2, T2) via the orbit
map F : X1 → X2 if and only if F ([x]R1) = [F (x)]R2 for each x ∈ X1. So F maps
equivalence classes onto equivalence classes.

Note that if Ri = RGi
for some countable group Gi, i = 1, 2, then the equivalence

classes coincide with Gi-orbits, and so the term orbit equivalence is appropriate,
cf. Proposition 2.3.

There is a notion of invariant probability measure associated to an étale groupoid
(R, T ). Suffice to say here that the probability measure µ on X is (R, T )-invariant
iff µ is G-invariant, where G is as in Proposition 2.3. It is straightforward to show
that if (R1, T1) and (R2, T2) on X1 and X2, respectively, are orbit equivalent via
the orbit map F : X1 → X2, then F maps the set of (R1, T1)-invariant probability
measures injectively onto the set of (R2, T2)-invariant probability measures.

Remark 2.6. It is very important to be aware of the fact that a countable
equivalence relation R on X may be given distinct non-isomorphic topologies T1
and T2, so that (R, T1) and (R, T2) are étale equivalence relations. In fact, one may
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6 Giordano, Putnam, Skau

give examples of non-isomorphic (R, T1) and (R, T2) where every equivalence class
is dense. Specifically, (R, T1) may be chosen to be the étale equivalence relation
associated to a Cantor minimal system (X, T ), while (R, T2) is the cofinal relation
associated to a (simple) standard Bratteli diagram, appropriately topologized— see
the description given in the two examples below. (Compare with Section 4 and [6,
Thm. 2.3]).

The above fact contrasts with the situation in the countable (standard) Borel
equivalence relation setting, where the Borel structure is uniquely determined by
R(⊂ X ×X).

Examples 2.7 (Two étale equivalence relations)

(i) Let G be a countable discrete group acting freely as homeomorphisms on the
locally compact metric space X. Let

RG = {(x, gx) | x ∈ X, g ∈ G} ⊂ X ×X,

i.e., the RG-equivalence classes are simply the G-orbits. Topologize RG by
transferring the product topology on X×G to RG via the bijection (x, g)→ (x, gx).
(This is a bijection since G acts freely on X.) Then it is easily verified that RG

becomes an étale equivalence relation. (If G do not act freely, we get a bijection
between RG and a closed subset of X×G×X by the map (x, gx)→ (x, g, gx), and
we transfer the product topology on X ×G×X to RG.)

We shall be especially interested in the situation when G acts minimally (and
freely) on the Cantor set X, i.e., each orbit Gx = {gx | g ∈ G} is dense in X for
every x in X. In particular, when G = Z, we let (X, T ), where T is the (necessarily
minimal) homeomorphism corresponding to 1 ∈ Z, denote the associated Cantor
(dynamical) system. We will use the term “T -orbit” instead of “Z-orbit”in this
case.

Let (X, T ) and (Y, S) be two Cantor minimal systems, and denote the associated
étale equivalence relations by R (X, T ) and R (Y, S) , respectively. We claim that
R (X, T ) ∼= R (Y, S) if and only if (X, T ) is flip conjugate to (Y, S) (i.e. (X, T ) is
conjugate to either (Y, S) or

(
Y, S−1

)
). In fact, one direction is obvious. Conversely,

assume R (X, T ) is isomorphic to R (Y, S) via the implementing map F : X → Y.

Let (xi) be a sequence in X so that xi → x. Then (xi, Txi)→ (x, Tx) in R (X, T ) .

Now F × F ((x, Tx)) = (Fx, Sm (Fx)) , F × F ((xi, Txi)) = (Fxi, S
mi (Fxi)) , for

some m,mi ∈ Z. Since F ×F ((xi, Txi))→ F ×F ((x, Tx)) in R (Y, S) , this implies
that mi = m for all but finitely many i’s. By a theorem of M.Boyle (cf. Thm. 1.4.
of [6]), this implies that (X, T ) and (Y, S) are flip conjugate.

(ii) We begin with a special infinite directed graph (V,E), called a Bratteli
diagram, which consists of a vertex set V and an edge set E, where V and E can
be written as a countable disjoint union of non-empty finite sets:

V = V0 ∪ V1 ∪ V2 ∪ · · · and E = E0 ∪ E1 ∪ E2 ∪ · · ·
with the following property: An edge e in En goes from a vertex in Vn−1 to one in
Vn, which we denote by i(e) and f(e), respectively. We call i the source map and
f the range map. We require that there are no sinks, i.e. i−1(v) 6= ∅ for all v ∈ V .
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V0

E 1

V1

V2

V3

E 2

E 3

etc.

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

Figure 1.

It is convenient to give a diagrammatic presentation of a Bratteli diagram with
Vn the vertices at level n and En the edges (downward directed) between Vn−1 and
Vn, see Figure 1.

We let X = X(V,E) denote the space of infinite paths in the diagram beginning
at some source v ∈ V , i.e., f−1(v) = ∅. Say v ∈ Vn is a source, let

Xv = {(en+1, en+2, . . . ) | i(en+1) = v, i(ek+1) = f(ek), k > n}

which is given the relative topology of the product space
∏

k>n Ek, and is therefore
compact, metrizable and zero-dimensional. We let X be the disjoint union of the
Xv’s with the topological sum topology. Then X is locally compact, metrizable and
zero-dimensional, which has a basis consisting of clopen cylinder sets, i.e. sets of the
form U(en+1,...,em) = {(fn+1, fn+2, . . .) ∈ X | fn+1 = en+1, . . . , fm = em; i (en+1) ∈
Vn is a source}. The equivalence R on X shall be cofinal or tail equivalence: two
paths are equivalent if they agree from some level on. For N = 0, 1, 2, . . . , let

RN = {
(
(em+1, em+2, ...), (e′n+1, e

′
n+2, ...)

)
∈ X ×X |

m,n ≤ N and ek = e′k for all k > N}.

Give RN the relative topology TN of X × X. Then RN is compact and is an
open subset of RN+1 for all N . Let R =

⋃∞
N=0 RN , and give R the inductive limit

topology T , so that a set U is in T if and only if U ∩RN is in TN for each N . This
means that a sequence {(xn, yn)} in R converges to (x, y) in R if and only if {xn}
converges to x, {yn} converges to y (in X) and, for some N , (xn, yn) is in RN for
all but finitely many n.
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8 Giordano, Putnam, Skau

It is now a simple task to verify that (R, T ) is an étale equivalence relation. We
shall prove in Section 3 (Theorem 3.9) that this Bratteli diagram example is the
prototype of an AF-equivalence relation— the latter will be defined in Section 3
(Definition 3.7). Therefore we will denote (R, T ) by AF (V,E).

There is an obvious (countable) locally finite group G of homeomorphisms of
X so that R = RG = {(x, gx) | x ∈ X, g ∈ G}, where the fixed point set,
fix (g) = {x ∈ X | g (x) = x}, is a clopen subset of X for every g ∈ G (cf.

Proposition 2.3). In fact, G =
∞⋃

n=0
Gn, where {id} = G0 ⊂ G1 ⊂ G2 ⊂ · · · is

an increasing sequence of finite groups with Gn =
⊕

v∈Vn

Gv. Here Gv is the group

consisting of those homeomorphisms g of X = X(V,E), such that g (x) = x for
those paths x ∈ X that do not pass through v, and otherwise g (x) is obtained by
permuting the initial segments (above level n) of the various x’s passing through
v, leaving the tails unchanged. We omit the details. Conversely, let G be a locally
finite group acting as homeomorphisms on a zero-dimensional space X, such that
the fixed point set of each g ∈ G is clopen. Then one can construct a Bratteli
diagram (V,E) so that X may be identified with X(V,E), and RG will coincide with
the cofinal equivalence relation, cf. [10] and [8].

If the Bratteli diagram (V,E) has only one source v0 ∈ V — which necessarily
entails that V0 = {v0}— we will call (V,E) a standard Bratteli diagram. The path
space X(V,E) associated to a standard Bratteli diagram (V,E) is compact. We
observe that if (V ′, E′) is a telescope of (V,E) , i.e. (V ′, E′) is obtained from (V,E)
by telescoping (V,E) to certain levels 0 < n1 < n2 < n3 < · · · , then AF (V,E) ∼=
AF (V ′, E′) . In fact, there is a natural homeomorphism α : X(V,E) → X(V ′,E′), and
α clearly implements the isomorphism, according to the description we have given
of convergence in AF (V,E) , respectively AF (V ′, E′) .

The standard Bratteli diagram (V,E) is simple if for each n there is an m > n

so that by telescoping the diagram between levels n and m, every vertex v in Vn is
connected to every vertex w in Vm. It is a simple observation that (V,E) is simple
if and only if every AF (V,E)-equivalence class is dense in X(V,E).

To the Bratteli diagram (V,E) is associated a dimension group, denoted
K0 (V,E) , which is simple if and only if (V,E) is simple. (We refer the reader
to [3] and [6, Section 3] for more details on this.)

3. AF-equivalence relations
We recall some terminology that we shall use. Let R be an equivalence relation
on X and let A ⊂ X. We will denote by R|A the restriction of R to A, that is,
R|A = R ∩ (A×A). We say that A is R-invariant if (x, y) ∈ R and x ∈ A, implies
y ∈ A. In other words, every R-equivalence class that meets A lies entirely inside
A.

If R′ is another equivalence relation on X, we say that R′ is a subequivalence
relation of R if R′ ⊂ R.

Definition 3.1 (Compact étale equivalence relation (CEER))
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Affable equivalence relations 9

Let (R, T ) be an étale equivalence relation on the locally compact space X, and
let ∆ = ∆X ⊂ R be the diagonal in X × X (i.e., the unit space of R). We say
that (R, T ) is a compact étale equivalence relation (CEER for short) if R \ ∆ is
a compact subset of R. If X itself is compact this is equivalent to say that R is
compact, since ∆ then is compact.

Proposition 3.2. Let (R, T ) be a CEER on X. Then:
(i) T is the relative topology from X ×X.
(ii) R is a closed subset of X ×X (with the product topology), and the quotient

topology of the quotient space X/R is Hausdorff.
(iii) R is uniformly finite, that is, there is a natural number N such that the

number # ([x]R) of elements in each equivalence class [x]R is at most N .

Proof. (i) The (identity) map r × s : R \∆ → X ×X is continuous and injective,
and so is a homeomorphism onto its image, since R \ ∆ is compact. Now ∆ is a
clopen subset of R, and its relative topology with respect to T and the product
topology of X ×X coincide (Remark 2.2). Hence the assertion follows.
(ii) Clearly R is a closed subset of X×X by (i). Now the quotient map q : X → X/R

is open since r and s are open maps. In fact, if U is an open subset of X, the set
q(U) = s(r−1(U)) is open in X/R. By [9, Thm. 11], X/R is Hausdorff.
(iii) Since R \ ∆ is compact, it can be covered by finitely many (open) sets U

such that restriction of the map r to U is 1 − 1. This obviously implies that R is
uniformly finite. 2

Remark 3.3. It is not true that an étale equivalence relation satisfying (ii) and
(iii) of Proposition 3.2 is CEER, even when X is compact. In fact, let X be the
unit interval [0, 1], and let the graph of R in X ×X be the union of the diagonal ∆
and the graph of the function f(t) = 1− t. The equivalence classes have cardinality
two, except the equivalence class of 1

2 , which has cardinality one. Clearly R is a
closed (hence compact) subset of X ×X. It is easy to see that R may be given a
(non-compact) topology T so that (R, T ) becomes an étale equivalence relation on
X. However, T is not the relative topology of X ×X, and so is not CEER. [One
can construct a similar example with X equal to the Cantor set.]

One can show that an étale equivalence relation (R, T ) on X satisfying (i)
of Proposition 3.2 is characterized by the property that the map r is a local
homeomorphism of R, when the latter is given the relative topology of X ×X.

The disjoint union of a finite set of étale equivalence relations is defined in the
obvious way: Let (Ri, Ti) be an étale equivalence relation on Xi for i = 1, 2, . . . , k,
where the Xi’s are disjoint. Let X =

⊔k
i=1 Xi be the disjoint union and let

R =
⊔k

i=1 Ri be the equivalence relation on X defined in the obvious way. Let
T = tk

i=1Ti be the disjoint union topology (also called the sum topology). Then
(R, T ) — the disjoint union of {(Ri, Ti)}ki=1 — is an étale equivalence relation on X.

The product of two étale equivalence relations is also defined in the obvious way:
Let (Ri, Ti) be an étale equivalence relation on Xi, for i = 1, 2. The product (R, T )
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10 Giordano, Putnam, Skau

of (R1, T1) and (R2, T2) is an étale equivalence relation on X = X1 × X2 in an
obvious way, where R = R1 ×R2 is given the product topology.

The following lemma, besides giving the structure of CEERs on zero-dimensional
spaces, will be used below in connection with the construction of various Bratteli
diagrams that we shall associate to AF-equivalence relations. We also point out
the relevance of Remark 3.6 in this regard.

Lemma 3.4. Let (R, T ) be a CEER (Definition 3.1) on X, where X is a zero-
dimensional space. Then (R, T ) is isomorphic to a finite disjoint union of CEERs{
(Ri, Ti)

}k

i=1
of type m1, . . . ,mk, respectively, where X =

⊔k
i=1 Xi and Ri is

an equivalence relation on Xi of type mi for i = 1, . . . , k. Specifically, Xi is
(homeomorphic to) Yi×{1, 2, . . . ,mi} for some natural number mi, where Ri is the
product of the trivial equivalence relation on {1, 2, . . . ,mi} (all points are equivalent)
with the cotrivial equivalence relation (the identity relation) on Yi. Furthermore, if
X is non-compact, then Yk is the only non-compact set of the Yi’s, and mk = 1.

Conversely, an étale equivalence relation of the type described is CEER.
The family of sets

O =
{
Yi × {j} | 1 ≤ j ≤ mi for i = 1, 2, . . . , k

}
is a finite clopen partition of X. If P is an initially given finite clopen partition of
X, we may choose the Xi’s so that O is finer than P. Furthermore, O gives rise
to a clopen partition O′ of R in a natural way, namely O′ consists of the graphs of
the local homeomorphisms γ

(i)
lm : Yi × {l} → Yi × {m} where

γ
(i)
lm ((y, l)) = (y, m) ; 1 ≤ l, m ≤ mi and i = 1, ..., k.

(So the maps γ
(i)
lm are of the form s ◦ r−1, appropriately restricted.) If P ′ is an

initially given finite clopen partition of R, we may choose the Xi’s so that O′ is
finer than P ′.

Proof. Let X1 = r(R \ ∆). Then X1 is a compact, clopen subset of X that is
R-invariant. Now the restriction R|X\X1 of R to the invariant set X \X1 coincides
with ∆|X\X1 . Hence (R, T ) is the disjoint union of R|X1 and ∆|X\X1 (with the
relative topologies), and so we may assume at the outset that X is compact, and
hence a fortiori (R, T ) is compact. For x ∈ X, let r−1 (x) =

{
(x, y1), . . . , (x, ym)

}
—

in other words, [x]R = {y1, . . . , ym}. (We may assume that y1 = x.) We claim that
we can find a clopen neighbourhood U (yi,yj) of (yi, yj) ∈ R for every i, j, so that
the restrictions of r and s, respectively, to U (yi,yj) are homeomorphisms onto their
clopen images. Furthermore, r

(
U (yi,yj)

)
= Uyi is independent of j and is a clopen

neighbourhood of yi, and the sets Uy1 , . . . , Uym are disjoint. Likewise, s
(
U (yi,yj)

)
equals Uyj and so is independent of i. In fact, by the étaleness condition it follows
easily that there exist disjoint clopen neighborhoods U (y1,yj), for j = 1, . . . ,m, such
that both r and s, restricted to U (y1,yj), are homeomorphisms onto their respective
clopen images, with r

(
U (y1,yj)

)
= Uy1 for every j. Set Uyj = s

(
U (y1,yj)

)
. By

appropriately restricting the r and s maps we construct from this homeomorphisms
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Affable equivalence relations 11

γij : Uyi → Uyj for each i, j. The graph of γij is U (yi,yj). We omit the details.
Let Ũx =

⋃m
i=1 Uyi , and recall that Uy1 = Ux. It is tempting to restrict R to

Ũx, that is, R ∩ (Ũx × Ũx), which is easily seen to be isomorphic to the product
of the cotrivial and the trivial equivalence relations on Ux × {1, . . . ,m}. However,
Ũx need not be R-invariant, so we have to proceed more carefully. Therefore,
let W x =

⋃m
i,j=1 U (yi,yj). Then {W x | x ∈ X} is a clopen covering of R, and

so by compactness of R there exists a finite set {x1, . . . , xn} in X such that
R =

⋃n
i=1 W xi . Observe that r(W xi) = Ũxi for i = 1, . . . , n, where we retain

the notation introduced above. Assume we have ordered the xi’s so that

#
(
[x1]R

)
≥ #

(
[x2]R

)
≥ · · · ≥ #

(
[xn]R

)
.

Now

V x1 = Ũx1 , V x2 = Ũx2 \ Ũx1 , . . . , V xn = Ũxn \
n−1⋃
i=1

Ũxi

is a clopen partition of X, and one verifies that these sets are R-invariant. Hence
(R, T ) is isomorphic to the disjoint union of R restricted to those sets that are non-
empty (with the relative topologies). Each of these restrictions is of the desired
form. We omit the details. Clearly an étale equivalence relation of the described
type is CEER. To ensure that the associated partition O of X is finer than the
given P, simply choose for each x ∈ X the Ux so small that each Uyi that occurs
in Ũx =

⋃m
i=1 Uyi is contained in some element of P, where we again use the

notation above. Similarly we may choose Ux so small that the graph U (yi,yj) of the
local homeomorphism γij : Uyi → U j is contained in some element of P ′ for each
1 ≤ i, j ≤ m. This will ensure that O′ is finer than P ′. 2

Comment. Let R be an equivalence on a zero-dimensional space X. Then R (given
the relative topology from X ×X) is CEER iff
(i) The quotient space X/R is Hausdorff.
(ii) The quotient map π : X → X/R is a local homeomorphism, which is one-to-

one outside a compact R-invariant set.
This makes it clear that the definition of CEER does not involve the topology

of R, and it shows that π is a covering map.
(We are indebted to the referee for this comment.)

Corollary 3.5. Let (R, T ) be a CEER on the zero-dimensional space X. If P
and P ′ are finite clopen partitions of X and R, respectively, there exist clopen
partitions O and O′ of X and R, respectively, as described in Lemma 3.4, so that
O is finer than P and O′ is finer than P ′. In fact, O = ∆ ∩ O′, where ∆ = ∆X is
the diagonal in X ×X. (We make the obvious identification between X and ∆.)

Remark 3.6. It is instructive to draw a picture to illustrate the content of the
above lemma: X can be composed into n (disjoint) compact, clopen towers — the
k-th tower being V xk of height #([xk]R) —with clopen floors, and possibly one
non-compact tower of height 1. See Figure 2 (we assume that the various towers
are non-empty). The equivalence classes of R are formed by the sets of points
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12 Giordano, Putnam, Skau

#([x1]R)

#([x2]R)

#([xn]R)

Vx1 Vx2 Vxn

...

=Vxi

Vxi

Vxi

X

     X

x1

Figure 2.

lying vertically above or below one another in each tower. The clopen partition
O of X is the set consisting of the floors of the various towers. The partition O′
of R can also be easily described in terms of the towers in Figure 2. In fact, for
each tower there is between every pair of floors a local homeomorphism of the form
s ◦ r−1(appropriately restricted). The graphs of these maps make up O′. With
this picture it is obvious how we may identify O with O′ ∩∆X , where ∆X is the
diagonal in X×X. In Figure 2 we have also shown the “contribution” of one of the
towers, say V xi of height three (i.e. # ([xi]R) = 3), to the partition O′ of R — we
have drawn the graphs of the local homeomorphism associated to V xi in boldface.

Notice thatO′ is a very special partition of R. In fact, O′ has a natural (abstract)
principal groupoid structure, with unit space identifiable with O, that we shall now
describe. If we define U · V for two subsets U, V of R to be

U · V = {(x, z) | (x, y) ∈ U, (y, z) ∈ V for some y ∈ X}

then we can list the properties of O′ as follows:
(i) O′ is a finite clopen partition of R finer than {∆, R \∆}.
(ii) For all U ∈ O′, the maps r, s : U → X are local homeomorphisms, and if

U ∈ O′ ∩ (R \∆), then r (U) ∩ s (U) = ∅.
(iii) For all U, V ∈ O′, we have U · V = ∅ or U · V ∈ O′. Also,

U−1 (= {(y, x) | (x, y) ∈ U}) is in O′ for every U in O′.
(iv) With O′(2) = {(U, V ) |U, V ∈ O′, U · V 6= ∅}, define (U, V ) ∈ O′(2) −→

U · V ∈ O′. Then O′ becomes a principal groupoid with unit space equal to
{U ∈ O′|U ⊂ ∆}, which clearly may be identified with O.

We will call O′ a groupoid partition of (R, T ) , (or of R). Notice that if we define
the equivalence relation ∼O′ on O by A ∼O′ B if there exists U ∈ O′ so that
U−1 · U = A, U · U−1 = B, then the equivalence classes, denoted [ ]O′ , are exactly
the towers in Figure 2.

The compact étale equivalence relations (CEER) are the building blocks with
which we will define an AF-equivalence relations. (AF stands for “approximately
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finite-dimensional”, and we refer to [13] and [6] for further explanation of the
terminology.)

Definition 3.7 (AF-equivalence relation) Let {(Rn, Tn)}∞n=1 be a sequence
of CEERs on a zero-dimensional (second countable, locally compact Hausdorff)
space X, so that Rn is an open subequivalence relation of Rn+1, i.e. Rn ⊂ Rn+1

and Rn ∈ Tn+1 for every n. (Note that this implies that Rn is a clopen subset of
Rn+1, since Rn \ ∆ is compact.) Let (R, T ) be the inductive limit of {(Rn, Tn)}
with the inductive limit topology T , i.e., R =

⋃∞
n=1 Rn and U ∈ T if and only if

U ∩ Rn ∈ Tn for every n. We say that (R, T ) is an AF-equivalence relation on X,
and we use the notation (R, T ) = lim

−→
(Rn, Tn).

Comment. In Definition 3.7, the condition that Rn is open in Rn+1 is superfluous,
because it is automatically satisfied. In fact, consider the quotient maps πn :
X → X/Rn, πn+1 : X → X/Rn+1 and πn+1,n : X/Rn → X/Rn+1. Let S be the
equivalence relation on X/Rn defined by πn+1,n. We observe that the diagonal is
open in S. By considering their inverse images by πn × πn, we get the assertion.
Definition 3.7 of an AF -equivalence relation coincides with the definition of an AF -
equivalence relation given in [Re 2; Definition 3.1].
(We are indebted to the referee for this comment.)

We say that (R, T ) is minimal if each equivalence class [x]R, x ∈ X, is dense in X.

Theorem 3.8. Let G be a countable group acting minimally and freely on the
Cantor set X, and let (RG, T ) be the associated étale equivalence relation (cf.
Example 2.7(i)). Then (RG, T ) is AF if and only if G is locally finite.

Proof. Assume G is locally finite, and let G1 ⊂ G2 ⊂ · · · ⊂ G =
⋃
n

Gn, where Gn

is a finite group for every n. It is easy to see that (RG, T ) = lim
−→

(RGn
, Tn), where

(RGn
, Tn) is obviously CEER. In fact, RGn

may be identified with X×Gn, and Tn is
the product topology. Hence (RG, T ) is an AF -equivalence relation. Conversely, if
(RG, T ) = lim

−→
(Rn, Tn) is an AF -equivalence relation, then — identifying RG with

X × G — let F be a finite subset of G. To show that G is locally finite it suffices
to show that the subgroup generated by F is finite. Since X × F is compact, it is
contained in some Rn. Define H = {g ∈ G | X × {g} ⊂ Rn}. Clearly F ⊂ H, and
since Rn is an equivalence relation it follows that H is a subgroup of G. As Rn is
compact, H is finite, and so the subgroup generated by F is finite. 2

It is straightforward to verify that an AF-equivalence relation is an étale
equivalence relation. Furthermore, one verifies that the étale equivalence relation
of Example 2.7(ii) is an AF -equivalence relation. The following theorem is the
converse result, as alluded to in Example 2.7(ii).

Theorem 3.9. Let (R, T ) = lim
−→

(Rn, Tn) be an AF-equivalence relation on X.

There exists a Bratteli diagram (V,E) such that (R, T ) is isomorphic to the AF-
equivalence relation AF (V,E) associated to (V,E).
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14 Giordano, Putnam, Skau

If X is compact, the Bratteli diagram (V,E) may be chosen to be standard.
Furthermore, (V,E) is simple if and only if (R, T ) is minimal.

Proof. Choose an increasing sequence {Km}∞m=1 of compact, clopen subsets of X,
such that X =

⋃∞
m=1 Km (if X is itself compact, we let K1 = K2 = · · · = X), and

such that r(Rm \ ∆) ⊂ Km for each m. We will choose and increasing sequence
P1 ≺ P2 ≺ · · · of finite clopen partitions of X whose union generates the topology of
X, and which is related to the sequence {Km} in a way we shall describe. In fact, if
Pm = {A1, . . . , Anm

}, we require that Km =
⋃nm−1

i=1 Ai, and hence Anm
= X \Km.

(In particular, if X is compact, Anm = ∅. Henceforth we will assume that X is
not compact— and so Anm

6= ∅ for every m — the compact case being of course
a simplified version. We will also assume that Km ⊂ Km+1 for every m, so that
Anm \ Anm+1 6= ∅ for every m.) It is easily seen that Km and X \ Km are Rm-
invariant sets, so (Rm, Tm) is the disjoint union of the restrictions of Rm to Km

and X \ Km, respectively. (It is to be understood that when we restrict we take
the relative topology.) Now Rm|X\Km

is equal to ∆|X\Km
. By Lemma 3.4 we

can decompose Km into a finite number of disjoint towers, with Rm|Km being as
described in Lemma 3.4 and in Remark 3.6. We will use the terminology suggested
by Remark 3.6, including the terms “tower”, “floor”, “height” and “groupoid
partition”. Keeping the notation above, as well as then one used in Lemma 3.4
and Remark 3.6, we now describe how to construct the Bratteli diagram (V,E).
First, let V0 = {v0} be a one-point set. We will do the next two steps in the
construction, which should make it clear how one proceeds.
Step 1. Applying Lemma 3.4 to (R1, T1), we get a groupoid partition O′1 of R1, so
that R1|K1 is represented (as explained in Remark 3.6) by l1 (compact) towers of
heights h1, ..., hl1 and R1|X\K1 = ∆|X\K1 is a single non-compact tower of height
one, so that the associated clopen partition O1 of X is finer than P1 and contains
An1 = X \ K1. We let V1 = {v1, ..., vl1 , vl1+1}, where vi corresponds to the i’th
tower of height hi when 1 ≤ i ≤ l1, and vl1+1 corresponds to the non-compact
tower An1 of height one. The number of edges between v0 and vi is the height hi

of the tower vi for 1 ≤ i ≤ l1. There are no edges between v0 and vl1+1 (so vl1+1

will be a source in V ). This defines E1.
Step 2. Let P̃2 = P2 ∨ O1 be the join of P2 and O1, and so P̃2 is a finite clopen
partition of X. Applying Corollary 3.5 to (R2, T2) we get a groupoid partition O′2 of
R2 that is finer than {O′1, R2\R1}, and so that the associated clopen partition O2 of
X is finer than P̃2 and contains An2 = X \K2. Hence R|K2 will be represented by l2
(compact) towers of heights h̃1, ..., h̃l2 , and R|X\K2 = ∆|X\K2 a single non-compact
tower of height one. We let V2 = {ṽ1, ..., ṽl2 , ṽl2+1}, where ṽj corresponds to the j’th
tower of height h̃j when 1 ≤ j ≤ l2, and ṽl2+1 corresponds to the non-compact tower
An2 of height one. Let O′′2 = {U ∈ O′2|U ⊂ R1}. It is a simple observation that
O′′2 is a groupoid partition of R1 that is finer than O′1, and with unit space equal
to O2. The set E2 of edges between V1 and V2 is labelled by O2 \ {An2} modulo
O′′2 , i.e. E2 consists of ∼O′′2 equivalence classes (denoted by [ ]O′′2 ) of O2 \ {An2}.
Specifically, if A,B ∈ O2 \ {An2}, we have A ∼O′′2 B if there exists U ∈ O′′2 so that

Prepared using etds.cls



Affable equivalence relations 15

U−1 · U = A, U · U−1 = B. As we explained in Remark 3.6, the vertex set Vj (
j = 1, 2) may be identified with the ∼O′j equivalence classes [ ]O′j of Oj . Doing
this we may write down the source and range maps i : E2 → V1, f : E2 → V2,

associated to the Bratteli diagram. In fact, if [A]O′′2 ∈ E2, where A ∈ O2 \ {An2},
then f

(
[A]O′′2

)
= [A]O′2 , i

(
[A]O′′2

)
= [B]O′1 , where B is the unique element of O1

such that A ⊂ B. The vertex vl2+1 ∈ V2 (corresponding to the tower An2) will be
a source in V . [Using the pictorial presentation of Figure 2, we can give a more
intuitive explanation of our construction of the edge set E2 between V1 and V2. In
fact, for 1 ≤ j ≤ l2, let x be any point in the tower ṽj ∈ V2. The R2-equivalence
class [x]R2 of x consists of the h̃j vertically lying points of ṽj including x. Now [x]R2

is a disjoint union of distinct R1-equivalence classes. If [x]R2 contains hij distinct
R1-equivalence classes “belonging” to the tower vi ∈ V1, we connect vi to ṽj by hij

edges. There are no edges between ṽl2+1 and any vertex in V1.] Continuing in the
same manner we construct the Bratteli diagram (V,E). There is an obvious map F

from X to the path space associated to (V,E). In fact, if x ∈ X let vi ∈ Vn−1 be
the tower at level n− 1 that contains x. Likewise let ṽj ∈ Vn be the tower at level
n that contains x, and assume that x lies in floor A(∈ On) of ṽj . The n’th edge
en ∈ En of F (x) = (e1, e2, ...) is then [A]O′′n . (We use similar notation at level n as
we used above at level two.) One verifies that F is an homeomorphism between X

and the path space associated to (V,E). Furthermore, it is straightforward to show
that the map F establishes an isomorphism between (R, T ) and the AF-equivalence
relation associated to (V,E). In fact, (x, y) ∈ R and (x, y) /∈ Rn−1, (x, y) ∈ Rn if
and only if F (x) and F (y) become cofinal from level n on. We omit the details.
The two last assertions of the theorem are immediate consequences of our
construction and the comments we made in Example 2.7 (ii). 2

Remark 3.10. Even though the Bratteli diagram model for (R, T ) is not unique,
it is true that two such models give rise to isomorphic dimension groups, and so
the diagrams themselves are related by a telescoping procedure, cf. Example 2.7(ii)
and Lemma 4.13.
(A relevant reference for Theorem 3.9 is [14, Theorem 3.1].)

We now consider the situation that (V,E) is a standard Bratteli diagram and
(W,F ) is a (standard) subdiagram, i.e. W ⊂ V, F ⊂ E and W0 = V0 = {v0}. It is
easy to see that X(W,F ) is a closed subset of X(V,E). It is also clear that AF (W,F )
is the intersection of
AF (V,E) with X(W,F ) × X(W,F ). Moreover, it is easy to check that the relative
topology on AF (W,F ) coming from AF (V,E) agrees with the usual topology on
AF (W,F ). We have the following realization theorem for this situation.

Theorem 3.11. Let (R, T ) be an AF -equivalence relation on the compact (zero-
dimensional) space X. Suppose that Z is a closed subset of X such that R|Z(=
R∩ (Z×Z)), with the relative topology from (R, T ) , is an étale equivalence relation
on Z. (We say that Z is R-étale.) Then there exists a Bratteli diagram (V,E), a
subdiagram (W,F ) and a homeomorphism h : X(V,E) → X such that
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(i) h implements an isomorphism between AF (V,E) and (R, T ).
(ii) h(X(W,F )) = Z and the restriction of h to X(W,F ) implements on isomorphism

between AF (W,F ) and R|Z . In particular, R|Z is an AF-equivalence relation
on Z.

Proof. Let us take (R′, T ′), a compact open subequivalence relation of (R, T ) ,

where T ′ is the relative topology. As noted in Proposition 3.2, the topology T ′ on
R′ coincides with the relative topology from X×X. We note that R′∩ (Z × Z) is a
clopen, compact subequivalence relation of R∩(Z × Z) and therefore, in particular,
is étale. For each pair (x, y) in R′, we choose a clopen neighbourhood U in T ′ (hence
in T ) as follows. First, if (x, y) is not in Z × Z, we use the fact that Z, and hence
Z ×Z, is closed to find a clopen neighbourhood U which is disjoint from Z ×Z. If
(x, y) is in Z × Z, then we use the fact that R′ ∩ (Z × Z) is étale to find a clopen
subset U ⊂ R′ such that r : U∩(Z × Z)→ r(U)∩Z and s : U∩(Z × Z)→ s(U)∩Z

are both homeomorphisms. [To achieve this, let V ∈ T ′ be a clopen neighbourhood
of (x, y) such that r : V ∩ (Z × Z) → A ∩ Z and s : V ∩ (Z × Z) → B ∩ Z

are homeomorphisms, where A and B are clopen subsets of X. Choose U to be
V ∩ r−1 (A) ∩ s−1 (B) .] Moreover, we can choose U sufficiently small so that r, s

are also local homeomorphisms from U to r(U) and s(U), respectively. In this way,
we cover R′ with clopen sets. We then extract a finite subcover and then choose a
groupoid partition of R′ which is finer than this subcover, such that each member
of the partition satisfies the properties just listed. (Compare the proof of Lemma
3.4 and Remark 3.6.) In the end, we obtain a groupoid partition O′ of R′ such that

O′ | Z = {U ∩ (Z × Z) | U ∈ O′, U ∩ (Z × Z) 6= ∅}

is a groupoid partition of R′ ∩ (Z ×Z). Moreover, it is clear from the construction
that these may both be made finer than any pair of pre-assigned clopen partitions of
R′ and R′∩(Z×Z). We also note that it is easy to verify from the construction, any
element U of O′ meets Z×Z if and only if r(U) and s(U) both meet Z. (Referring
to Figure 2 as representing O′, this means that if Z intersects any two floors in
the same tower, these intersections project onto each other.) Now we consider a
sequence

R1 ⊂ R2 ⊂ R3 ⊂ · · ·

of CEERs in R, with union R, each open in the next, so that (R, T ) is the inductive
limit. For each n, we construct a groupoid partition O′n of Rn with the properties
as above. We do this so that the restriction of O′n+1 to Rn is finer than O′n,

and so that the restriction of O′n+1 | Z to Rn ∩ (Z × Z) is finer than O′n | Z.

This sequence is also chosen so as to generate the respective topologies of R and
R ∩ (Z × Z) . In the proof of Theorem 3.9, it was shown how O′n defines a Bratteli
diagram, (V,E) . We now describe the subdiagram (W,F ) . Let ∆X and ∆Z denote
the diagonals in X ×X and Z × Z, respectively (which we identify with X and Z,

respectively). The vertices of Vn correspond to towers in O′n; that is, equivalence
classes of sets in ∆X ∩O′n, modulo O′n. The vertices of Wn are those classes having
a representative which meets ∆Z . (Again referring to Figure 2, the vertices of Vn
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correspond to the towers, while the vertices of Wn correspond to those towers that
meet Z.) The edges of En are the equivalence classes of sets in ∆X ∩ O′n, modulo
O′′n = {U ∈ O′n|U ⊂ Rn−1}. (For an interpretation of this in terms of Figure 2,
we refer to the remarks made in the proof of Theorem 3.9.) We let Fn be those
equivalence classes having a representative which meets ∆Z . It follows from the
properties of the partitions O′n described above that (V,E) and (W,F ) satisfy the
desired conclusion. We leave the details to the reader. 2

The inductive limit (R, T ) of a sequence of étale equivalence relations
{(Rn, Tn)}∞n=1 on X (notation: (R, T ) = lim

−→
(Rn, Tn)) is defined as in Definition

3.7, with the obvious modifications. It is an easy exercise to show that (R, T ) is an
étale equivalence relation. The following proposition is a stabilization result with
respect to AF-equivalence relations.

Proposition 3.12. (i) Let (R, T ) = lim
−→

(Rn, Tn) be an inductive limit of a

sequence {(Rn, Tn)} of AF-equivalence relations on X. Then (R, T ) is an AF-
equivalence relation on X.

(ii) Let (R, T ) be an AF-equivalence relation on X, and let R′ ⊂ R be a
subequivalence relation which is open, i.e., R′ ∈ T . Then (R′, T ′) is an AF-
equivalence relation, where T ′ is the relative topology of R.

Proof. (i). For each n, let (Rn, Tn) = lim
−→

(Rn,k, Tn,k), where (Rn,k, Tn,k) is a CEER

(Definition 3.1) on X for every k. So we have

R1 ⊂ R2 ⊂ R3 ⊂ ... ⊂ R =
∞⋃

n=1

Rn,

Rn,1 ⊂ Rn,2 ⊂ Rn,3 ⊂ ... ⊂ Rn =
∞⋃

k=1

Rn,k ;n = 1, 2, ...,

where each set is open in the next one containing it with respect to the relevant
topology. Define R′

1 = R1,1. Now R1,2 ⊂ R1 ⊂ R2 =
⋃∞

k=1 R2,k, and so we may
choose k2 ≥ 2 so large that R1,2 ⊂ R2,k2 . Define R′

2 = R2,k2 . Continuing in this
manner we get an ascending sequence {R′

n}∞n=1 of equivalence relations on X so
that R′

n contains all Rl,m’s, provided l and m are at most n. Clearly R =
⋃∞

n=1 R′
n,

and we claim that (R, T ) = lim
−→

(R′
n, T ′n), where (R′

n, T ′n) = (Rn,kn
, Tn,kn

) is a CEER

for each n. This will finish the proof of (i). (Note that R′
n is open in R′

n+1, i.e.
R′

n ∈ T ′n+1 for every n.) Now, if U ∈ T then U ∩ Rn ∈ Tn for every n. Hence
U ∩ R′

n = U ∩ Rn,kn = (U ∩ Rn) ∩ Rn,kn ∈ Tn,kn = T ′n for every n, and so U ∈ T̃ ,
where by definition (R, T̃ ) equals lim

−→
R′

n, T ′n). Hence T ⊂ T̃ . Conversely, assume

U ∈ T̃ . Then

U ∩R′
n = U ∩Rn,kn

∈ T ′n = Tn,kn
= Tn ∩Rn,kn

⊂ Tn

for every n. To show that U ∈ T we must show that U ∩ Rm ∈ Tm for any given
m. This is again equivalent to show that

U ∩Rm,l = (U ∩Rm) ∩Rm,l ∈ Tm,l
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18 Giordano, Putnam, Skau

for any l. Now choose n ≥ max{m, l}. Then Rm,l ⊂ R′
n and, since clearly

Rm,l ⊂ Rm, we get U ∩ Rm,l = ((U ∩ R′
n) ∩ Rm) ∩ Rm,l ∈ Tm,l from the fact

that U ∩ R′
n ∈ Tn and Rm,l is open in Rm, which again is open in Rn. This

proves that U ∈ T , and so T̃ ⊂ T , which finishes the proof of (i). (ii). R′ being
an open subequivalence relation of R implies that (R′, T ′) is an étale equivalence
relation, where T ′ is the relative topology of R — a fact that is easily shown. Let
(R, T ) = lim

−→
(Rn, Tn), where (Rn, Tn) is a CEER on X for every n. It is easily

verified that (R′, T ′) = lim
−→

(R′
n, T ′n), where R′

n = R′∩Rn is an open subequivalence

relation of Rn, and T ′n is the relative topology of Rn. By (i) it is sufficient to show
that (R′

n, T ′n) is an AF-equivalence relation for every n. So the proof boils down
to showing that an open subequivalence relation of a CEER is an AF-equivalence
relation. This again may be reduced further by Lemma 3.4 to showing that an open
subequivalence relation of a CEER of type m, with m ≥ 2, on a compact space is an
AF-equivalence relation. (Indeed, it is straightforward to show that a finite disjoint
union of AF-equivalence relations is again an AF-equivalence relation). So we may
assume that (R, T ) is equal to the product of the cotrivial and trivial equivalence
relations on X = Y × {1, . . . ,m}, where Y is compact, and R′ ⊂ R is an open
subequivalence relation. The proof will be completed by showing that (R′, T ′) is
an AF-equivalence relation, where T ′ is the relative topology of R. By Proposition
3.2(i) we know that both T and T ′ are the relative topology from X × X. For
y ∈ Y , let

R′(y) =
{
(i, j) | ((y, i), (y, j)) ∈ R′}

and observe that R′(y) is an equivalence relation on {1, . . . ,m}. For (i, j) ∈ R′(y),
there exists a clopen neighbourhood Ui,j of y such that{

((y′, i), (y′, j)) | y′ ∈ Ui,j

}
⊂ R′,

since R′ is open in R. Let Uy =
⋃

(i,j)∈R′(y) Ui,j . Then Uy is a clopen neighbourhood
of y such that R′(y) ⊂ R′(y′) for all y′ ∈ Uy. Fix ε > 0. For each y ∈ Y select Uy

as above so that Uy ⊂ B(y, ε), where B(y, ε) is the open ball around y of radius ε.
Select a finite subcover Uy1 , . . . , Uyk

of the clopen cover {Uy | y ∈ Y } of Y . For
y ∈ Y , let R′′(y) =

⋂
{i|y∈Ui}

R′(yi). Let P be the clopen partition of Y generated

by {Uy1 , . . . , Uykn
}. Then R′′|E is constant for every E ∈ P. In an obvious way R′′

defines an equivalence relation on X = Y ×{1, . . . ,m}. Furthermore, we have shown
that R′′ is a subequivalence relation of R′ which is a CEER in the relative topology.
Clearly R′′ is an open subset of R′. Now we let R′

1 be some R′′ corresponding to
ε = 1. Assume R′

n has been defined to be some R′′ corresponding to ε = 1/n,
and let {Uy1 , . . . , Uykn

} be the associated clopen cover of Y as explained above.
For ε = 1/(n + 1), choose a finite clopen cover {Uz1 , . . . , Uzkn+1

} of Y as before
so that every Uzi

is contained in some Uyj
, and define R′

n+1 to be the associated
R′′. One observes that R′

n ⊂ R′
n+1, and that R′

n is open in R′
n+1, where each

equivalence relation is given the relative topology of X ×X. Now
⋃∞

n=1 R′
n ⊂ R′,

since each R′
n is contained in R′. On the other hand, let y ∈ Y and let Uy be, as

before, a clopen neighbourhood of y such that y′ ∈ Uy ⇒ R(y) ⊂ R(y′). Choose
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n so large that B(y, 1/n) ⊂ Uy. With ε = 1/n let {Uy1 , . . . , Uykn
} be the clopen

cover of Y associated to R′
n. In particular, Uyi

⊂ B(yi, 1/n) for each i. If y ∈ Uyi
,

then y ∈ B(yi, 1/n) and so yi ∈ B(y, 1/n) ⊂ Uy. Hence R′(y) ⊂ R′(yi), and so
we get R′(y) ⊂ R′

n(y). Consequently, R′ =
⋃∞

n=1 R′
n and one verifies easily that

(R′, T ′) = lim
−→

(R′
n, T ′n), where T ′n is the relative topology of X ×X. This finishes

the proof of (ii). 2

4. Affable equivalence relations
Definition 4.1 (Affable equivalence relation) Let R be a countable
equivalence relation on the zero-dimensional (Hausdorff locally compact, second
countable) space X. We say that R is affable if R may be given a topology T so
that (R, T ) is an AF-equivalence relation.

Remark 4.2. To say that the countable equivalence relation R on X is affable
is the same as to say that R is orbit equivalent (cf. Definition 2.4) to some
(R′, T ′), where (R′, T ′) is an AF-equivalence relation on X ′, i.e. there exists a
homeomorphism F : X → X ′ such that (x, y) ∈ R ⇐⇒

(
F (x), F (y)

)
∈ R′. In

fact, using F to pull back the topology T ′ on R′ to get the topology T on R, we
get that (R, T ) is an AF-equivalence relation on X.

In Theorem 2.3 of [6] it is proved that for simple Bratteli diagrams (V,E) and
(V ′, E′) , AF (V,E) is orbit equivalent to AF (V ′, E′) if and only if

K0 (V,E) / Inf K0 (V,E) ∼= K0 (V ′, E′) / Inf K0 (V ′, E′)

by a map preserving the canonical order units. On the other hand, Lemma 4.13
below says that AF (V,E) ∼= AF (V ′, E′) if and only if K0 (V,E) ∼= K0 (V ′, E′) by a
map preserving the canonical order units. This implies that an affable equivalence
relation usually carries many distinct structures of AF -equivalence relations.

The next result is an immediate consequence of Corollary 1.3. Because of its
importance we state it is as a theorem.

Theorem 4.3. Let (X, T ) be a Cantor minimal system, and let (R, T ) be the
associated étale equivalence relation on X (cf. Example 2.7(i)). Let x be an
arbitrary point of X. The subequivalence relation R{x} of R whose equivalence
classes are the full T -orbits, except that the T -orbit of x is split into two at x—
the forward orbit {Tnx | n ≥ 1} and the backward orbit {Tnx | n ≤ 0}—is open
in R. Furthermore, (R{x}, T{x}) is an AF-equivalence relation on X, where T{x} is
the relative topology. In particular, R{x} is affable.

Proof. By Corollary 1.3 we may assume that (X, T ) is the Bratteli-Vershik system
associated to the properly ordered Bratteli diagram (V,E,≥), and where x,
respectively Tx, is the unique max path, respectively the unique min path. The set
of paths that are cofinal with the unique max path equals the backward orbit of x,
and the set of paths that are cofinal with the unique min path equals the forward
orbit of x. As for the other T -orbits, they agree with the cofinal equivalence relation
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of (V,E). Thus R{x} coincides with the cofinal equivalence relation associated to
(V,E). Let (y, T ky) ∈ R{x}, where y = (e1, e2, . . . ) ∈ X and k is an integer. So y

and T ky are paths that agree from a certain level on, say N . Let U be the open
(and closed) neighbourhood of y defined by

U = U(e1,e2,...,eN ) =
{
(f1, f2, . . . ) ∈ XB | (f1, . . . , fN ) = (e1, . . . , eN )

}
.

Then W =
{
(z, T kz) | z ∈ U

}
is an open neighbourhood of (y, T ky) in (R, T ).

Furthermore, W ⊂ R{x} since z and T kz agree from level N on for every z ∈ U .
Hence R{x} is open in R. The argument we have just given also shows that T{x}
coincides with the topology associated to (V,E) as described in Example 2.7(ii),
and so

(
R{x}, T{x}

)
= AF (V,E). Hence (R{x}, T{x}) is an AF-equivalence relation

on X. 2

Definition 4.4. Let (X, T ) be a Cantor minimal system, and let Y be a non-
empty closed subset of X. We say that Y is regular (with respect to (X, T )) if
the positive and negative return time maps λ+ and λ− for T on Y are continuous,
where λ+, λ− : Y → N ∪ {+∞} are given by

λ+ (y) = inf{k ≥ 1,+∞|T ky ∈ Y },
λ− (y) = inf{k ≥ 1,+∞|T−ky ∈ Y },

and N ∪ {+∞} is given the “one-point compactification topology”.

Remark 4.5. Let (X, T ) be a Cantor minimal system. If Y is a closed subset of
X that meets each T -orbit at most once, then Y is regular. In fact, in this case
λ+(y) = λ−(y) = +∞ for each y ∈ Y .

The following theorem, besides being a considerable generalization of Theorem
4.3, turns out to be a useful tool in the study of affability of equivalence relations
associated to certain group actions on the Cantor set. (See also the remarks prior
to Theorem 4.8.)

Theorem 4.6. Let (X, T ) be a Cantor minimal system, and let (R, T ) be the
associated étale equivalence relation on X. Let Y ⊂ X be a regular set that contains
a point y ∈ Y so that λ+(y) = λ−(y) = +∞, i.e. Y meets the T -orbit of y at y

only. Let RY be the subequivalence relation of R defined by

RY = {(x, T kx), (T kx, x) |
x ∈ X, k ≥ 0, #({0 ≤ i < k | T ix ∈ Y }) is an even number}.

In particular, if Y meets each T -orbit at most once, RY is obtained from R by
splitting the T -orbits meeting Y in the forward and backward orbits at Y .

Then (RY , TY ) is an AF-equivalence relation on X, where TY is the relative
topology from R. In particular, RY is affable.

Proof. Clearly RY is a subequivalence relation of R{y}. By Theorem 4.3 we have
that R{y} is an open subrelation of R and

(
R{y}, T{y}

)
is an AF-equivalence relation,
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∈A single T-orbit ; Y

Figure 3.

T{y} being the relative topology from R. So by Proposition 3.12 (ii) the proof will
be completed if we can show that RY is an open subset of R, i.e. RY ∈ T .
Let x ∈ X and k ≥ 1. It is obviously sufficient to show that (x, T kx) ∈ RY

has an open neighbourhood U ∈ T so that U ⊂ RY . Let T i1x, . . . , T ilx, where
0 ≤ i1 < · · · < il ≤ k − 1, be the points on the T -orbit of x lying between x and
T k−1x that meet Y . By assumption l is an even number. Obviously

λ+
(
T i1x

)
= i2 − i1,

λ+
(
T ij x

)
= ij+1 − ij,

λ+
(
T ilx

)
> k − 1− il,

λ−
(
T i1x

)
> i1,

λ−
(
T ij x

)
= ij − ij−1 if 1 < j < l;

λ−
(
T ilx

)
= il − il−1.

By continuity of λ+ and λ− on Y , we may find an open neighbourhood V of x so
that if x′ ∈ V , the number l′ of points in Y lying on the T -orbit of x′ between x′ and
T k−1x′ is even. In fact, we choose V so small that for 1 ≤ i ≤ k− 1, T iV does not
meet Y if i /∈ {i1, . . . , il}, and if T ij x′ ∈ Y, 1 ≤ j ≤ l, then λ+(T ij x′) = λ+(T ij x)
and λ−(T ij x′) = λ−(T ij x) if these values are finite (with obvious modification if
some of these values are +∞). By a simple argument it follows that if T ij x′ ∈ Y

for some ij ∈ {i1, ..., il}, then l′ = l. Thus either l′ = l or l′ = 0. In either case l′ is
even. This shows that U = {(x′, T kx′) | x′ ∈ V } is contained in RY . By definition
of the topology T we have U ∈ T . 2

Remark 4.7. We illustrate by a figure the equivalence classes of RY . Let us draw
a T -orbit (ordered from left to right) as dots, and circle those dots that are in Y , see
Figure 3. The T -orbit splits into two RY -equivalence classes (assuming the orbit in
question meets Y ). One class is everything inside the boxes, while the other class
is everything else. Note that if Y meets the T -orbit at exactly one point, say y, we
get the splitting at y into the forward and backward T -orbits.

Henceforth all Bratteli diagrams (V,E) that we shall consider will be standard. This
entails in particular that the associated path space X(V,E) is compact.

One of our aims is to prove that the étale equivalence relation (R, T ) associated
to a Cantor minimal system (X, T ) is affable. But more than that, we want to prove
that (X, T ) —or (R, T ) — is orbit equivalent (cf. Remark 4.2) to the subequivalence
relation RY of R, obtained by splitting the T -orbit in the forward and backward
orbits at Y , where Y is any (non-empty) closed subset Y of X that meets each
T -orbit at most once. By Theorem 4.6 we know that RY with the relative topology
from (R, T ) is an AF -equivalence relation. We shall obtain our result without
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involving the full power of the main theorem, Theorem 2.2 in [6], and hence we will
avoid using homological algebra as well as C∗-algebra ingredients in our proof. More
importantly, the key lemma, Lemma 4.15, that will give us our desired result as a
corollary, is of independent interest. It turns out to be a powerful tool in handling
more general group actions, something that will be treated in a forthcoming paper.

First, however, we want to prove a converse of the above — a result which is
more easily accessible. This converse result is actually an immediate corollary of
Lemma 6.1 in [6], but we give here a simplified and more direct proof avoiding any
mentioning of K-Theory and C∗-algebras.

Theorem 4.8. Let (R, T ) be a minimal AF -equivalence relation on the Cantor set
X. Then (R, T ) is orbit equivalent to a Cantor minimal system (Y, S) , i.e. there
exists a homeomorphism F : X → Y so that F ([x]R) = orbitS (F (x)) for every
x ∈ X.

Proof. By Theorem 3.9 we may assume at the outset that (R, T ) is the AF -
equivalence relation AF (V,E) associated to a simple Bratteli diagram (V,E), where
X is the path space X(V,E) associated to (V,E). Choose a proper ordering on (V,E),
and denote the associated Bratteli-Vershik system by (X, T ). Let xmax, respectively
xmin, be the unique maximal, respectively minimal, path in X. Choose a point
x0 ∈ X which is not cofinal with xmax or xmin —in other words, x0 /∈ orbitT (xmax).
Let Z = {xmax, x0}. By Theorem 1.2 there exists an ordered Bratteli diagram
BZ = (Ṽ , Ẽ,≥), where (Ṽ , Ẽ) is simple, such that (X, T ) is conjugate to the
Bratteli-Vershik system, denoted (X̃, T̃ ), associated to BZ . Here X̃ is the path
space X(Ṽ ,Ẽ) associated to (Ṽ , Ẽ). Let F : X → X̃ be the conjugating map, and

let (R̃, T̃ ) = AF (Ṽ , Ẽ) be the AF -equivalence relation associated to (Ṽ , Ẽ). By
Theorem 1.2 we get that F implements an orbit equivalence between AF (V,E)
and the equivalence relation R̃ ⊂ X̃ × X̃ generated by AF (Ṽ , Ẽ)(⊂ X̃ × X̃) and
(F (x0) , F (Tx0)) ∈ X̃ × X̃. Since F (x0), respectively F (Tx0), is a max path,
respectively a min path, in X̃ with respect to the ordering ≥ on (Ṽ , Ẽ), we may
give (Ṽ , Ẽ) a new ordering ≥′, which is proper, such that F (x0), respectively
F (Tx0), is the unique max path, respectively unique min path. Let (Y, S) denote
the associated Bratteli-Vershik system, where Y = X̃. Then the map F : X → Y

above implements an orbit equivalence between (R, T ) = AF (V,E) and (Y, S). 2

Before we prove Lemma 4.15, alluded to above, we need some definitions and
preliminary results.

Definition 4.9. Let (R, T ) be an étale relation on the space X. Let µ be a
probability measure on X. Define the two σ-finite (regular) measures νr and νs on
(R, T ) by

νr (C) =
∫
X

#
(
r−1 (x) ∩ C

)
dµ (x) , νs (C) =

∫
X

#
(
s−1 (x) ∩ C

)
dµ (x)

where C is a Borel subset of R, and # (S) denotes the cardinality of a set S. We
say that µ is R-invariant if νr = νs.
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By [4, Section 2] this is equivalent to say that µ is G-invariant, where G is any
countable group such that R = RG.

Remark 4.10. Let (R, T ) be a minimal AF -equivalence relation on the Cantor
set X. By Theorem 3.9 we may assume that (R, T ) = AF (V,E) , where (V,E) is
a simple Bratteli diagram with X = X(V,E). Then µ is a R-invariant probability
measure iff µ is T -invariant, where (X, T ) is the Bratteli-Vershik system associated
to any properly ordered diagram (V,E,≥) , cf. [7, Theorem 5.5].

Definition 4.11. Let (R, T ) be an étale equivalence relation on the space X. We
say that a (non-empty) closed subset Z of X is thin (with respect to (R, T )) if
µ (Z) = 0, for all R-invariant probability measures µ on X.

Let (V,E) be a Bratteli diagram and (W,F ) be a subdiagram. If X(W,F ) is a
thin subset of X(V,E) (with respect to AF (V,E)), then we say that (W,F ) is a thin
subdiagram of (W,F ) .

Lemma 4.12. Let (W,F ) be a thin subdiagram of (V,E), where (V,E) is a simple
Bratteli diagram, and let V0 = W0 = {v0}. Given m ≥ 1,K ≥ 1, there exists n ≥ m

so that for w ∈Wm, w′ ∈Wn,

# ({paths in (W,F ) from w to w′})
≤ K ·# ({paths from v0 to w′ in (W,F )})
≤ # ({paths in (V,E) from w to w′})

Proof. For n ≥ m, let Un =
⋃
{U(f1,,...,fn) | (f1, . . . , fn) ∈ Pn (W,F )}, where

Pn (W,F ) denotes the paths in (W,F ) from the top vertex v0 to a vertex w ∈Wn.
Here U(f1,...,fn) is the clopen cylinder set in X(V,E) defined by U(f1,...,fn) =
{(e1, e2, . . .) ∈ X(V,E) | (e1, e2, . . . , en) = (f1, f2, . . . , fn)}. Clearly, U1 ⊇ U2 ⊇ · · ·

and
∞⋂

n=1
Un = X(W,F ). Let

0 < δ <
1
K
· inf{µ

(
U(f1,...,,fm)

)
| (f1, . . . , fm) ∈ Pm (W,F ) ;µ ∈M (V,E)} (∗)

where M (V,E) denotes the (V,E)-invariant probability measures. (Note that
µ (A) > 0 for any non-empty clopen set A ⊂ X and any µ ∈ M (V,E), since
(V,E) is simple. In fact, M (V,E) may be identified with the set of states on
the simple dimension group K0 (V,E) , and A (being a finite union of cylinder
sets) may naturally be identified with a non-zero element [A] in K0 (V,E)+.)
Let Mn = {µ ∈ M (V,E) | µ (Un) ≥ δ}. Then Mn is w∗-compact, since the
characteristic function χUn

is continuous. Since obviously Mm ⊇ Mm+1 ⊇ · · · , we

get by thinness of X(W,F ) that
∞⋂

n=m
Mn = ∅. By compactness there exists an n1 ≥ m

so that Mn1 = ∅, and so µ (Un1) < δ for all µ ∈ M (V,E). By (∗), we then get
µ

(
U(f1,...,fm)

)
> Kµ (Un1) for all µ ∈ M (V,E) and all (f1, . . . , fm) ∈ Pm (W,F ).

Hence [U(f1,...,fm)] > K[Un1 ] in K0 (V,E) for all (f1, . . . , fm) ∈ Pm (W,F ), cf. [3,
Ch.4]. This means that there exists n ≥ n1 so that χU(f1,...,fm) (v) > KχUn1

(v)
for all v ∈ Vn and all (f1, . . . , fm) ∈ Pm (W,F ), where we have made the obvious
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identification of the characteristic function of a clopen set (being a finite union of
cylinder sets) with a group element in K0 (V,E). Now let w ∈ Wm, w′ ∈ Wn, and
choose (f1, . . . , fm) ∈ Pm (W,F ) so that f (fm) = w. Then

#({paths from w to w′ in (V,E)}) = χU(f1,...,fm)(w
′) > K · χUn1

(w′)

= K ·#({paths (e1, . . . , en) from v0 to w′ in (V,E)

such that (e1, . . . , en1) ∈ Pn1(W,F )} )

≥ K ·#({paths from v0 to w′ in (W,F )})
≥ K ·#({paths from w to w′ in (W,F )})

This completes the proof. 2

Lemma 4.13. Let (V,E) and (V ′, E′) be two Bratteli diagrams. The following are
equivalent:
(i) AF (V,E) ∼= AF (V ′, E′)
(ii) K0 (V,E) ∼= K0 (V ′, E′), i.e. K0 (V,E) is order-isomorphic to K0 (V ′, E′) by

a map preserving the canonical order units.
(iii) There exists a so-called “aggregate” Bratteli diagram (Ṽ , Ẽ), so that

telescoping (Ṽ , Ẽ) to odd levels 0 < 1 < 3 < 5 < · · · yields a telescope of
(V,E) , while telescoping (Ṽ , Ẽ) to even levels 0 < 2 < 4 < 6 < · · · yields a
telescope of (V ′, E′) .

(iv) (V,E) ∼ (V ′, E′) , where ∼ denotes the equivalence relation on Bratteli
diagrams generated by telescoping.

Proof. The equivalence of (ii), (iii) and (iv) is well known, cf. [6, Section 3]. The
implication (iii)⇒(i) is immediate from the observation we made in Example 2.7
(ii) concerning telescoping of Bratteli diagrams. In fact, AF (Ṽ , Ẽ) is isomorphic
to both AF (Ṽo, Ẽo) and AF (Ṽe, Ẽe), where (Ṽo, Ẽo), respectively (Ṽe, Ẽe), is the
telescope of (Ṽ , Ẽ) to odd levels, respectively even levels.
We prove (i)⇒(iii). Let AF (V,E) = lim

−→
(RN , TN ) , AF (V ′, E′) = lim

−→
(R′

N , T ′N ) ,

where RN , TN , respectively R′
N , T ′N , have the same meaning as in Example 2.7(ii).

There is an obvious groupoid partition associated to RN , respectively R′
N , which

corresponds to the vertex set VN ∈ V, respectively V ′
N ∈ V ′. Let α : X(V,E) →

X(V ′,E′) implement the isomorphism between AF (V,E) and AF (V ′, E′) . Because
of compactness of R1, α × α (R1) is contained in Rn1 for some n1 ≥ 1. We may
choose n1 so large that the groupoid partition associated to R′

n1
is finer than the

one associated to α × α (R1) . By the same procedure as in the proof of Theorem
3.9 we associate edges between the vertices in V1 and V ′

n1
, keeping in mind that the

groupoid partitions associated to R1 and α × α (R1) , respectively, are isomorphic
in an obvious way. Next we consider α−1 × α−1

(
R′

n1

)
, which by compactness

of R′
n1

is contained in some Rn2 . We choose n2 > 1 so large that the groupoid
partition associated to Rn2 is finer than the one associated to α−1 × α−1

(
R′

n1

)
.

Similarly as above we associate edges between V ′
n1

and Vn2 . Continuing in this way
we construct a Bratteli diagram (Ṽ , Ẽ). It is now a simple matter to show that
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(Ṽ , Ẽ) is an aggregate diagram with respect to (V,E) and (V ′, E′) . We omit the
details. 2

Remark 4.14. The equivalence (i)⇔(ii) in Lemma 3.13 is Corollary 3.6 of [10].
Let (X, T ) and (Y, S) be two Cantor minimal systems with associated étale
equivalence relations R and R′, respectively, cf. Example 2.7(i). Let x ∈ X,

y ∈ Y, and let R{x}, respectively R′
{y}, denote the AF -subequivalence relation of

R, respectively R′ (cf. Theorem 4.3). Then R{x} ∼= R′
{y} iff (X, T ) and (Y, S)

are strong orbit equivalent. This is an immediate consequence of the lemma and
Corollary 1.3, in combination with Theorem 2.1 of [6].

Lemma 4.15 (Key lemma) Let (R, T ) be isomorphic to (R′, T ′) , where (R, T )
and (R′, T ′) are minimal AF -equivalence relations on the Cantor sets X and X ′,

respectively. Let Z and Z ′ be closed, thin subsets of X and X ′ (with respect to
(R, T ) and (R′, T ′)), respectively. Assume that
(i) the (not necessarily minimal) restrictions R|Z = R ∩ (Z × Z) (respectively

R′|Z′ = R′ ∩ (Z ′ × Z ′)) with the relative topologies are étale equivalence
relations on Z (respectively Z ′), i.e., Z and Z ′ are R-étale.

(ii) there exists a homeomorphism α : Z → Z ′ which implements an isomorphism
between R|Z and R′|Z′ .

There exists an extension α̃ : X → X ′ of α such that α̃ implements an
isomorphism between (R, T ) and (R′, T ′) .

Proof. By Theorem 3.11 we may assume that (R, T ) = AF (V,E) , (R′, T ′) =
AF (V ′, E′) , and R|Z = AF (W,F ) , R′|Z′ = AF (W ′, F ′) , where (W,F ) and
(W ′, F ′) are thin subdiagrams of the (simple) Bratteli diagrams (V,E) and (V ′, E′) ,

respectively. So X = X(V,E), X ′ = X(V ′,E′), Z = X(W,F ), Z ′ = X(W ′,F ′).

The idea of the proof is to construct a Bratteli diagram (Ṽ , Ẽ), together with a
subdiagram (W̃ , F̃ ), so that (Ṽ , Ẽ) is an aggregate diagram with respect to (V,E)
and (V ′, E′) , while (W̃ , F̃ ) is an aggregate diagram with respect to (W,F ) and
(W ′, F ′) . Furthermore, we will do this in such way that we can “read off” the map
α : X(W,F ) → X(W ′,F ′) from (W̃ , F̃ ) as an “intertwining map” (to be explained
below).
We will then use (Ṽ , Ẽ) to extend α to α̃ : X(V,E) → X(V ′,E′), α being again an
intertwining map. We begin the proof by first noticing that by telescoping (V,E) ,

say, we automatically get a corresponding telescoping of (W,F ) , which again will
be a thin subdiagram. Now there is a natural homeomorphism between the path
spaces associated to a Bratteli diagram and a telescope of it (cf. Example 2.7(ii)).
Thus we may by Lemma 4.13(i) assume at the start that there is a Bratteli diagram
(V ,E), so that telescoping (V ,E) to odd levels 0 < 1 < 3 < · · · , we get (V,E) ,

while telescoping (V ,E) to even levels 0 < 2 < 4 < · · · , we get (V ′, E′) . Using the
notation introduced in Example 2.7(ii), let V = V0∪V1∪V3∪· · · , E = E1∪E2∪· · · ,
W = W0∪W1∪W2∪· · · , F = F1∪F2∪· · · , and similarly for V ′, E′, W ′, F ′. Also,
let AF (W,F ) = lim

−→
(RN , TN ) , AF (W ′, F ′) = lim

−→
(R′

N , T ′N ). Since R1 is compact,

we get by assumption (ii) that there exists n′1 ≥ 1 so that α × α (R1) ⊂ R′
n′1

.
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Furthermore, we may assume n′1 is chosen so large that the groupoid partition
associated to R′

n′1
is finer than the one associated to α × α (R1) . As in the proof

of (i)⇒(iii) in Lemma 4.13 we associate edges between vertices in W1 and W ′
n′1

.

Denote these edges by L. Now V1 and V ′
n′1

correspond to level n1 = 1 and level
2n′1, respectively, of (V , E), and so by telescoping between these levels we get edges
connecting vertices in V1 = Vn1 with vertices in V ′

n′1
. Denote these edges by M.

Since (W ′, F ′) is thin in (V ′, E′) by condition (ii), we may apply Lemma 4.12 and
choose n′1 so large that for any v ∈ W1 ⊂ V1 and v′ ∈ W ′

n′1
⊂ V ′

n′1
, the number of

edges in M between v and v′ is larger than the number of edges in L between v

and v′.

Next we consider α−1 × α−1
(
R′

n′1

)
. Arguing the same way as above we may

find n2 > n′1 with edge set L, respectively M, between vertices in W ′
n′1

and Wn2 ,

respectively V ′
n′1

and Vn2 , with the same properties as above. Continuing in this

way we construct a Bratteli diagram (Ṽ , Ẽ), which we will show has the desired
properties. In fact, by its very construction there is a Bratteli subdiagram (W̃ , F̃ ) of
(Ṽ , Ẽ), so that (W̃ , F̃ ) is an aggregate diagram with respect to (W,F ) and (W ′, F ′) ,

while (Ṽ , Ẽ) itself is an aggregate diagram with respect to (V,E) and (V ′, E′) .

In fact, by our previous deliberations we may assume that telescoping (Ṽ , Ẽ),
respectively (W̃ , F̃ ), to odd levels 0 < 1 < 3 < · · · , we get (V,E) , respectively
(W,F ) — not just a telescope of these. Likewise, telescoping (Ṽ , Ẽ), respectively
(W̃ , F̃ ), to even levels 0 < 2 < 4 < · · · , we get (V ′, E′) , respectively (W ′, F ′) . Let
Ẽ = Ẽ1 ∪ Ẽ2 ∪ · · · and F̃ = F̃1 ∪ F̃2 ∪ · · · . We define the composition of edges
between levels k − 1 and k + 1, where k ≥ 1, by

Ẽk ◦ Ẽk+1 = {(ẽk, ẽk+1) |ẽk ∈ Ẽk, ẽk+1 ∈ Ẽk+1, f (ẽk) = i (ẽk+1)}

F̃k ◦ F̃k+1 = {(f̃k, f̃k+1)|f̃k ∈ F̃k, f̃k+1 ∈ F̃k+1, f(f̃k) = i(f̃k+1)}.

We will establish bijections

(a)

{
Ẽk−1 ◦ Ẽk ←→ E′

k
2

Ẽk ◦ Ẽk+1 ←→ E k
2 +1

(b)

{
F̃k−1 ◦ F̃k ←→ F ′

k
2

F̃k ◦ F̃k+1 ←→ F k
2 +1

for every even number k = 2, 4, . . . , which will respect the range and source maps —
recalling that Ṽm = Vm+1

2 , W̃m = Wm+1
2

for m odd, and Ṽm = V ′
m
2
, W̃m = W ′

m
2

for

m even. (In addition we have Ẽ1 = E1, F̃1 = F, and Ṽ0 = V0 = V ′
0 = W̃0 = W0 =

W ′
0, all being equal to the top vertex of (Ṽ , Ẽ).) The bijections will be chosen

successively, and in such a way that we will be able to read off the given map
α : X(W,F ) → X(W ′,F ′) by this intertwining process. Furthermore, the bijections in
(a) shall extend the ones in (b), keeping in mind that the various edge sets occurring
in (b) are contained in the corresponding ones occurring in (a).
We first consider the bijections (b) , starting with F̃1 = F1. By the embedding
scheme that we outlined above, the inclusion α×α (R1) ⊂ R′

1 determines uniquely
the edges F̃2 between W̃1 = W1 and W̃2 = W ′

1. This in turn sets up a bijection
F̃1 ◦ F̃2 ←→ F ′

1 in an obvious way, respecting the range and source maps. Similarly,
the inclusion α−1 × α−1 (R′

1) ⊂ R2 determines uniquely the edges F̃3 between
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W̃2 = W ′
1 and W̃3 = W2, and this in turn sets up a bijection F̃2 ◦ F̃3 ←→ F2 in

an obvious way, respecting the range and source maps. Continuing in this way we
get all the bijections in (b) . Now these bijections induce a map between X(W,F )

and X(W ′,F ′), which will be equal to α. In fact, if x = (f1, f2, . . .) ∈ X(W,F ),

where fi ∈ Fi, then the successive bijections F̃k ◦ F̃k+1 ←→ F k
2 +1 of (b) ,

starting with F̃1 = F1, will determine a unique path in X(W̃ ,F̃ ). Then, using the
bijections F̃k−1 ◦ F̃k ←→ F ′

k
2

of (b) , we conclude that x determines a unique path

y = (f̃1, f̃2, . . .) ∈ X(W ′,F ′), where f ′i ∈ F ′
i . One shows easily that y = α (x) — we

omit the details. We say that α : X(W,F ) → X(W ′,F ′) is defined as an intertwining
map (via the aggregate diagram (W̃ , F̃ )). (Compare with [6, Theorem 2.1, proof
of (ii)⇒(i)].)
To conclude the proof of the lemma we extend the bijection in (b) to (a). We
do this successively, starting with Ẽ1 = E1. We may choose the various bijections
in (a) , which extend the ones in (b) , in an arbitrary way, the only proviso being
that the source and range maps are respected. The associated intertwining map
α̃ : X(V,E) → X(V ′,E′) will clearly be a homeomorphism that extends α. By its
very construction, α̃ clearly preserves cofinality. Furthermore, the n first edges
{f ′1, f ′2, . . . , f ′n} of y = α̃ (x) = (f ′1, f

′
2, . . .) ∈ X(V ′,E′), f ′i ∈ E′

i, is determined by
the n first edges of x = (e1, e2, . . .) ∈ X(V,E), ei ∈ Ei. (A similar statement is true
for α̃−1.) This implies that α̃ implements an isomorphism between AF (V,E) and
AF (V ′, E′) (cf. the description we gave of convergence in Example 2.7(ii)). 2

We are now in a position to prove the following non-trivial result, which is a
converse to Theorem 4.8.

Theorem 4.16. Let (X, T ) be a Cantor minimal system, and let R denote the
equivalence relation associated to (X, T ) , i.e. the R-equivalence classes are the
T -orbits. Then R is affable.

In fact, more is true: R is orbit equivalent to RY , where Y is any non-empty
closed subset of X that meets each T -orbit at most once. (Cf. Theorem 4.6 for the
definition of RY , and the proof that RY is affable.)

Proof. The main ingredient of the proof will be Lemma 4.15, in combination with
Theorem 1.2. However, we need a preliminary result in order to set the stage, so
to say, before we can apply Lemma 4.15. So let Y be any non-empty closed subset
of X that meets each T -orbit at most once. (Such a set is thin since {T k(Y )}∞k=−∞
are disjoint, closed sets having the same measure with respect to a T -invariant
probability measure.) We shall need the following technical result, which we state
as a sublemma, and whose proof we postpone to the end in order not to interrupt
the flow of the main argument.

Sublemma. There exists a point y ∈ X \ Y and a sequence of pairwise disjoint,
non-empty clopen sets {Un}∞n=1, each of which are disjoint from Y, together with a
sequence of non-empty closed sets {Yn}∞n=1, where Yn ⊂ Un for each n, so that
(i) Un → y (i.e. for each neighbourhood U of y, there exists N so that n ≥ N

implies Un ⊂ U).
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(ii) The set Z = Y ∪ {y} ∪
∞⋃

n=1
Yn is a closed set such that Z meets each T -orbit

at most once.
(iii) There exists a sequence {hn}∞n=0 of homeomorphisms h0 : Y → Y1, h1 : Y1 →

Y2, h2 : Y2 → Y3, . . .

Applying the sublemma we may define a homeomorphism h : Z → Z ′, where

Z ′ = {y}∪
∞⋃

n=1
Yn. In fact, define h by h|Yn

= hn, n = 0, 1, 2, . . . , and set h (y) = y.

Using Theorem 1.2 we construct a Bratteli-Vershik model for (X, T ) — which we
still will denote by (X, T ) — based on the closed set Z, and we let B = (V,E,≥)
denote the associated ordered Bratteli diagram. Hence X = X(V,E), and T is
the Vershik map. Furthermore, since Z are the maximal paths and T (Z) are
the minimal paths in X, Z ∪ T (Z) will be the path space associated to a thin
subdiagram (W,F ) of (V,E) , i.e. Z ∪T (Z) = X(W,F ). In fact, (W,F ) is a tree and
it is obviously thin because of condition (ii) of the sublemma. By Theorem 1.2, RZ

is equal to the cofinal relation associated to (V,E) . Furthermore, it is clear that

R = RZ ∨ {(z, Tz) |z ∈ Z} , RY = RZ ∨ {(z, Tz) |z ∈ Z ′}, (∗)

where we here let A∨B denote the equivalence relation on X generated by the two
subsets A,B of X ×X.

Set (V ′, E′) = (V,E) , and let (W ′, E′) be the thin subdiagram of (V ′, E′) associated
to Z ′ ∪ T (Z ′) , i.e. Z ′ ∪ T (Z ′) = X(W ′,F ′). (Note that (W ′, F ′) is a subdiagram
of (W,F ) .) There is a homeomorphism α : X(W,F ) → X(W ′,F ′), namely α|Z = h

and α (Tz) = T (h (z)) , z ∈ Z. Because of condition (ii) of the sublemma, α is
well-defined and is a homeomorphism. Also, α clearly implements an isomorphism
between AF (W,F ) and AF (W ′, F ′) , which is an immediate consequence of the
fact that both the Bratteli diagrams (W,F ) and (W ′, F ′) are trees. Hence all
the conditions of Lemma 4.15 are satisfied. Let α̃ : X(V,E) → X(V ′,E′) be the
extension of α, with the properties stated in Lemma 4.15. Clearly α̃×α̃ (RZ) = RZ ,

since α̃ preserves the cofinal relation associated to (V,E) = (V ′, E′) . Also,
α̃ × α̃ ({(z, Tz) |z ∈ Z}) = α × α ({(z, Tz) |z ∈ Z}) = {(z, Tz) |z ∈ Z ′}. Hence,
by (∗) , α̃× α̃ (R) = RY .

Proof of sublemma. We first show that if V is a non-empty clopen subset of X

that is disjoint from Y, then we may find a closed subset Y ′ of V, such that Y ∪ Y ′

meets each T -orbit at most once, and, furthermore, there exists a homeomorphism
h : Y → Y ′. To obtain this we pick a finite partition {A1, . . . , An1} of Y consisting
of non-empty clopen sets (Y is given the relative topology from X) such that the
diameters of each Ai is less than 1

2 . Also, pick B1, . . . Bn1 to be non-empty clopen
and pairwise disjoint subsets of V , each of diameter less than 1

2 , such that

(i) T i (Bk) ∩ T j (Bl) = ∅ for − 2 ≤ i, j ≤ 2, 1 ≤ k, l ≤ n1.

(ii) Bk ∩ T i (Y ) = ∅ for − 2 ≤ i ≤ 2, 1 ≤ k ≤ n1.
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This can clearly be achieved — as for (ii) we note that
2⋃

i=−2

T i (Y ) is a closed

subset of X with empty interior. Next we partition each of the Ai’s into non-
empty clopen sets of diameter less than 1

3 , with corresponding picking of clopen
subsets of the Bi’s. For example, say the partition of A1 is {A1

1, . . . , A
m1
1 }. We pick

m1 non-empty and pairwise disjoint clopen subsets B1
1 , . . . , Bm1

1 of B1, each with
diameter less than 1

3 , such that they satisfy properties (i) and (ii), where i and j

now range between −3 and 3, and k and l range from 1 to m1. Continuing like
this we get nested sequences of A’s converging to every point in Y , together with
nested sequences of B’s converging to points in V , and we denote this set of points
by Y ′. There is a map h : Y → Y ′ induced by the obvious 1 − 1 correspondence
between nested A- and B-sequences, and it is a routine matter to verify that Y ′

and h satisfy the desired properties. To finish the proof of the sublemma, choose
y ∈ X \ Y so that Y ′

0 = Y ∪ {y} meets each T -orbit at most once, and let {Un}∞n=1

be a sequence of pairwise disjoint, non-empty clopen sets (each disjoint from Y )
converging to y. Applying what we just have proved, choose successively non-
empty closed sets Y ′

1 , Y ′
2 , Y ′

3 , . . . such that Y ′
1 ⊂ U1, Y

′
2 ⊂ U2, Y

′
3 ⊂ U3, . . . and

homeomorphisms h′0 : Y ′
0 → Y ′

1 , h′1 : Y ′
0 ∪ Y ′

1 → Y ′
2 , h′2 : Y ′

0 ∪ Y ′
1 ∪ Y ′

2 → Y ′
3 , . . . so

that for each k, Y ′
0 ∪ Y ′

1 ∪ Y ′
2 ∪ . . . ∪ Y ′

k meets each T -orbit at most once. Define
successively Y0 = Y, Y1 = h′1 (Y0) , Y2 = h′1 (Y1) , Y3 = h′2 (Y2) , . . . and hk = h′k|Yk

for k ≥ 0. Then Z = Y ∪ {y} ∪
∞⋃

n=1
Yn is a closed set that meets each T -orbit at

most once. This finishes the proof of the sublemma, and consequently the proof of
the theorem. 2

The following corollary of Theorem 4.16, can succinctly be stated to say that a
finite extension of a minimal AF -equivalence relation is affable.

Corollary 4.17. Let (R, T ) be a minimal AF -equivalence relation on the Cantor
set X. Let (x1, y1) , . . . , (xn, yn) be n pairs of points in X × X. Let R′ be the
equivalence relation on X generated by R and (x1, y1) , . . . , (xn, yn). The R′ is
affable.

Proof. Clearly it is enough to prove the statement for the special case n = 1,
since the general case follows by induction. By Theorem 3.9 we may assume that
(R, T ) = AF (V,E), where (V,E) is a simple, standard Bratteli diagram, and
X = X(V,E). If x1 and y1 are cofinal paths, then R′ = R, and there is nothing to
prove. So assume x1 and y1 are not cofinal. According to Proposition 1.1, there
exists a Cantor minimal system (X, T ) such that T preserves cofinality, except that
Tx1 = y1. By Theorem 4.16 the equivalence relation R′ associated to (X, T ) is
affable. Now R′ is the equivalence relation generated by R and (x1, y1). 2

The following theorem is a vast generalization of Corollary 4.17, and will
be a powerful tool in relating the orbit structure of minimal group actions (as
homeomorphisms on the Cantor set) to AF-equivalence relations. Recall some
terminology: If (R, T ) is an étale equivalence relation on X, and Y is a closed
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subset of X, we say that Y is R-étale if R|Y (= R ∩ (Y × Y )), with the relative
topology, is an étale equivalence relation on Y.

Theorem 4.18. Let (R, T ) be a minimal AF-equivalence relation on the Cantor
set X, and let Y0, Y1 be two closed R-étale and thin subsets of X. Assume
R ∩ (Y0 × Y1) = ∅ (and so, in particular, Y0 ∩ Y1 = ∅), and let h : Y0 → Y1

be a homeomorphism such that h × h : R|Y0 → R|Y1 is an isomorphism. Then
the equivalence relation R̂ = R ∨ {(y, h (y)) |y ∈ Y0} on X, generated by R and
{(y, h (y)) |y ∈ Y0}, is affable. In fact, R̂ is orbit equivalent to R.

Proof. By our assumption, R|Y0∪Y1 is isomorphic to the disjoint union R|Y0 tR|Y1

of R|Y0 and R|Y1 (with the relative topologies), and so R|Y0∪Y1 is an AF-equivalence
relation. (Recall that R|Y0 and R|Y1 are AF-equivalence relations by Theorem 3.11
(ii)). Since R|Y0

∼= R|Y1 , we have by Theorem 3.9 that R|Y0
∼= AF (W,F ) ∼= R|Y1

for some Bratteli diagram (W,F ) . Hence we get that R|Y0∪Y1
∼= AF

(
W, F

)
, where(

W, F
)

consists of two disjoint copies of (W,F ) , obtained by adding a new level
at the top consisting of two edges, as shown in Figure 4(a). By Theorem 3.11
we may assume that (R, T ) = AF (V,E) , R|Y0∪Y1 = AF (W̃ , F̃ ), X = X(V,E) and
Y0 ∪ Y1 = X

(fW, eF )
, where (V,E) is a simple Bratteli diagram, and (W̃ , F̃ ) is a thin

subdiagram. Since AF (W̃ , F̃ ) ∼= AF (W, F ), we may assume as a consequence of
Lemma 4.13 ((i)⇔(iv)) — applying a combination of telescoping and its converse,
microscoping, of (V,E) (and hence of (W̃ , F̃ )) (cf. [6, Section 3]) — that (W̃ , F̃ )
consists of two disjoint replicas — in particular, the vertex sets are disjoint — of the
same Bratteli diagram, the latter being equivalent to (W,F ) . We will denote the
two thin subdiagrams by (W (0)

0 , F
(0)
0 ) and (W (0)

1 ,W
(0)
1 ), respectively. We identify

Y0 and Y1 with the path spaces X
(W

(0)
0 ,F

(0)
0 )

and X
(W

(0)
1 ,F

(0)
1 )

, respectively. The
map h : Y0 → Y1 becomes the obvious map between X

(W
(0)
0 ,F

(0)
0 )

and X
(W

(0)
1 ,F

(0)
1 )

.

We will now transform the Bratteli diagram (V,E) (and hence the subdiagram
(W̃ , F̃ )) by a succession of telescopings and microscopings, obtaining an equivalent
Bratteli diagram that lends itself to a construction involving the use of Theorem
4.6, whereby we set the stage for the application of the key lemma (Lemma 4.15).
In Figure 4(b) we give a presentation of the transformed diagram, which we again
denote by (V,E) , and which can be described as follows:
There are four disjoint thin subdiagrams of (V,E) , each of these are replicas of
the same diagram, the latter being equivalent to (W,F ) , and for convenience we
will retain the notation (W,F ) for this diagram. Two of the thin subdiagrams are
the transformed subdiagrams of (W (0)

i , F
(0)
i ), i = 0, 1, above, and we will retain the

notation for these. The two other replicas of (W,F ) are denoted by (W (∞)
0 , F

(∞)
0 )

and (W (∞)
1 , F

(∞)
1 ), respectively.

At every level n there “emanates” from each of the subdiagrams (W (∞)
i , F

(∞)
i ), i =

0, 1, a copy of the n’th tail of (W,F ) . These coalesce at level n + 1, and continue
together from then on. The various tail copies of (W,F ) have disjoint sets of vertices
at each level, and also disjoint from the four (disjoint) sets of vertices belonging
to the four subdiagrams (W (0)

i , F
(0)
i ), (W (∞)

i , F
(∞)
i ), i = 1, 2. We have indicated
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in Figure 4(b) by A’s, B’s, C’s, D’s, etc. the various edge sets that are equal,
respectively, at level 1, level 2, level 3, level 4, etc. We will refer to the collection
of “emanating” tail copies of (W,F ) as the “tail parts of (W,F )”. We will denote
by (W (k)

0 , F
(k)
0 ), k = 1, 2, 3, · · · , the subdiagram that consists of the initial part

of (W (∞)
0 , F

(∞)
0 ) to the k’th level, and then the tail part of (W,F ) emanating

at this level from (W (∞)
0 , F

(∞)
0 ). Similarly we define (W (k)

1 , F
(k)
1 ), k = 1, 2, 3, · · ·

with respect to (W (∞)
1 , F

(∞)
1 ). All the subdiagrams in question will be thin in

(V,E) . Furthermore, the transformed diagram contains two infinite paths, denoted
in Figure 4(b) by xmax and xmin, that at each level go through distinct vertices,
which are disjoint from the vertices associated to the subdiagrams described above.
Also, between any pair of vertices at consecutive levels of (V,E) there are at least
two edges in E.

A transformed diagram with these properties can be obtained by utilizing Lemma
4.12, and the fact that (W̃ , F̃ ) is a thin subdiagram of (V,E) . We omit the details,
which are rather lengthy, but we say briefly that the procedure starts by telescoping
the original diagram (V,E) , using Lemma 4.12, in such a way that between the
telescoped levels there are sufficiently many edges, making “room” for microscoping
(followed by appropriate telescoping), in order to fit in (W (∞)

i , F
(∞)
i ), i = 1, 2, and

the various tail copies of (W,F ) as thin subdiagrams.

We will now introduce an auxiliary closed subset Z of X = X(V,E), and give (V,E)
a proper ordering so that Z becomes a regular set (cf. Definition 4.4) with respect
to the lexicographic (“Vershik”) map. We will then apply Theorem 4.6 to “split”
the various coalescing tails of (W,F ) , to obtain for each k = 1, 2, · · · , two copies,
(W (k)

0 , F
(k)
0 ) and (W (k)

1 , F
(k)
1 ), of (W,F ) . Then we will be in a position to apply

the key lemma, Lemma 4.15, to finish the proof.
First we give (V,E) a proper ordering so that the unique min path, respectively

the unique max path, is the path that we described above and denoted by xmin,

respectively xmax, in Figure 4(b). We will denote the associated Vershik map
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by T. Furthermore, the ordering is chosen so that for the edges ranging at any
given vertex v ∈ V, those edges sourcing at the vertex that the unique min path
goes through are ordered consecutively, starting with the minimal edge. Similarly,
those edges sourcing at the vertex that the unique max path goes through are
ordered consecutively, ending with the maximal edge. Let v ∈ Vn be a vertex at
level n, n = 2, 3, · · · , where edges from the two coalescing tail copies of (W,F )
— emanating at level n− 1 from (W (∞)

0 , F
(∞)
0 ) and (W (∞)

1 , F
(∞)
1 ), respectively —

meet. There is a natural bijection between the two edge sets in f−1 (v) belonging to
the two tail copies of (W,F ) . We order these edges so that if e0 and e1 correspond
by this bijection, e0 sourcing in (W (∞)

0 )n−1 and e1 sourcing in (W (∞)
1 )n−1, then

e1 follows immediately after e0 in the ordering. (In Figure 4 we illustrate this at
level n = 3.) As for all the other edges in E, these may be ordered arbitrarily if
consistent with the requirements we have imposed.

Let (L,G) be the subdiagram of (V,E) consisting of

(i) the “tail parts of (W,F )” (see above)

(ii) the edges that make up the unique max path

(iii) the max and next-to-max (“max−1”) edges that range at vertices belonging
to the coalescing tails of the various emanating (W,F )’s.

(iv) the max edges ranging at W
(∞)
0 ∪W

(∞)
1 , i.e. ranging at the set of vertices at

the very top of the emanating tail copies of the (W,F )’s.

In Figure 5(a) we exhibit the subdiagram (L,G) . (Note: From each vertex v

belonging to the “tail parts of (W,F )” there is a max (or max−1) edge ranging at
v. In Figure 5(a) we have not drawn all these edges in order to make the figure
clearer.)
We claim that Z = X(L,G) is a regular subset of X = X(V,E) with respect to the
Vershik map T . This is an immediate consequence of the fact that Z is the path
space associated to a subdiagram of (V,E) . In fact, the return map on Z is the same
as the Vershik map on Z = X(L,G), determined by the ordering on (L,G) (induced
in an obvious way from the ordering on (V,E)). From this it follows easily that the
return time maps λ+, λ− : Z → N ∪ {+∞} are continuous. We omit the details.
Also, λ+(xmax) = λ− (xmax) = +∞. Hence Z satisfies the necessary conditions so
that we can apply Theorem 4.6 to Z and (X, T ) .

By Theorem 4.6 the subequivalence relation RZ of R is AF, and so RZ
∼= AF (Ṽ , Ẽ)

for some Bratteli diagram (Ṽ , Ẽ). We will now argue that (Ṽ , Ẽ) is a simple diagram
(which is equivalent to show that RZ is a minimal equivalence relation, cf. Theorem
3.9). Furthermore, we will argue that (Ṽ , Ẽ) may be given a (“suggestive”)
presentation as shown in Figure 6, where the subdiagrams (W (k)

i , F
(k)
i ) are thin

in (Ṽ , Ẽ), and AF (W (k)
i , F

(k)
i ) ∼= AF (W,F ) for all k = 0, 1, 2, · · · ,∞, and i = 0, 1.

This will set the stage for applying Lemma 4.15.
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Recall that an R-equivalence class [x]R is either equal to the RZ-equivalence class
[x]RZ

, or [x]R is partitioned into two RZ-equivalence classes. In fact, it is easily
seen that the only R-equivalence classes that may split into two RZ-equivalence
classes are [x]R, where x ∈ X(L,G), x 6= xmax. In Claim 2 below we will show that
this splitting do occur.
(In the sequel we refer to Example 2.7(ii) for notation and terminology.)

Claim 1. RZ is minimal, i.e. each RZ-equivalence class is dense in X = X(V,E).

Proof of claim: By the remark above we must show that if x ∈ X(L,G) and U is a
cylinder set, say U = U(f1,··· ,fk) = {(e1, e2, · · · ) |ei = fi, i = 1, · · · , k}, then [x]RZ

meets U. Let x = (g1, g2, · · · ) . Let e be an edge in E connecting f (fk) at level k to
the vertex at level k + 1 that xmax goes through. Let emax−1 and emax denote the
max−1 and max edges, respectively, that source at f (e) (at level k + 1) and range
at i (gk+3) (at level k + 2). Let x1 = (f1, · · · , fk, e, emax−1, gk+3, gk+4, · · · ) , x2 =
(f1, · · · , fk, e, emax, gk+3, gk+4, · · · ) . Clearly, x1 and x2 lie in U. Also, x1 and x2

are cofinal with x, hence in the same R-equivalence class. It is easy to see that
(x1, x2) /∈ RZ . In fact, if T lx1 = x2, l ≥ 1, there is exactly one point among
x1, Tx1, T

2x1, · · · , T l−1x1 lying in Z, namely the path following the unique max
path xmax from level 0 to level k+1, and from there on being cofinal with x1. Since
either (x, x1) ∈ RZ or (x, x2) ∈ RZ , we conclude that [x]RZ

meets U.

Let k ∈ {1, 2, 3, · · · }. Recall that (W (k)
0 , F

(k)
0 ) and (W (k)

1 , F
(k)
1 ) denote the two

subdiagrams of (V,E) associated to the two tail copies of (W,F ) emanating at
level k from (W (∞)

0 , F
(∞)
0 ) and (W (∞)

1 , F
(∞)
1 ), respectively. (By construction,

(W (k)
0 , F

(k)
0 ) and (W (k)

1 , F
(k)
1 ) are replicas of (W,F ) , coalescing at level k + 1, see

Figure 5(b). )

Claim 2. Let x0 and x1 be two cofinal paths in X
(W

(k)
i ,F

(k)
i )

, i = 0 or i = 1. Then
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(x0, x1) ∈ RZ . Let y0 ∈ X
(W

(k)
0 ,F

(k)
0 )

and y1 ∈ X
(W

(k)
1 ,F

(k)
1 )

be cofinal paths. Then
(y0, y1) /∈ RZ .

Proof of claim: If x0 and x1 are cofinal from level k on, it is easy to see that
(x0, x1) ∈ RZ . In fact, if x0 < x1 in the lexicographic ordering, then T lx0 = x1

for some l ≥ 1. There will be no points in Z among x0, Tx0, · · · , T l−1x0, and so
(x0, x1) ∈ RZ . Let x0 and x1 be cofinal from level k + 1 on, and, say, x0 < x1 in
the lexicographic ordering. Then x1 = T lx0 for some l ≥ 1. We must show that the
number of points that lie in Z among x0, Tx0, · · · , T l−1x0, is even. This, however,
is a consequence of the way we have introduced our ordering on (V,E) , and the
fact that the “max” and the “max −1” edges are part of the edge set that make up
the closed set Z. (See Figure 5(b).) This is easy to show, but we omit the details.
Similarly one shows that (x0, x1) ∈ RZ if x0 and x1 are cofinal from any level
n ≥ k + 1. For y0 and y1 we argue as follows: Let y′0 be the obvious “mirror” path
of y0 in (W (k)

1 , F
(k)
1 ) (using the fact that (W (k)

0 , F
(k)
0 ) and (W (k)

1 , F
(k)
1 ) are replicas

of each other). So y0 and y′0 are cofinal from level k + 1 on. It is a consequence
of the ordering we have introduced that y0 < y′0, and that if T ly0 = y′0 (for some
l ≥ 1), then the number of points in y0, T y0, · · · , T l−1y0 meeting Z is odd, a fact
that is easily shown. Hence (y0, y

′
0) /∈ RZ . Now (y′0, y1) ∈ RZ by the first part, and

so (y0, y1) /∈ RZ .

By Claim 1, the Bratteli diagram for RZ must be simple. The path spaces
X

(W
(k)
i ,F

(k)
i )

associated to the subdiagrams (W (k)
i , F

(k)
i ), k = 0, 1, 2, · · · ,∞; i = 0, 1,

of (V,E) , are pairwise disjoint. Let Y be the union of these. Then Y is a closed
subset of X, and by Claim 2 it is clear that RZ |Y is an AF -equivalence relation with
the relative topology. By Theorem 3.11 there exists a (simple) Bratteli diagram
(Ṽ , Ẽ), a subdiagram (M,H) and a homeomorphism h : X(eV , eE) → X = X(V,E),

such that h implements an isomorphism between AF (Ṽ , Ẽ) and RZ (given the
relative topology from (R, T )). Furthermore, h

(
X(M,H)

)
= Y, and the restriction

of h to X(M,H) implements an isomorphism between AF (M,H) and RZ |Y . Now
we claim that RZ |Y may be represented by the particular subdiagram of (Ṽ , Ẽ)
occurring in Figure 6. In fact, by invoking Lemma 4.13, we may assume that (M,H)
is of this form, where AF (W (k)

i , F
(k)
i ) ∼= AF (W,F ) for all k = 0, 1, 2, · · · ,∞; i =

0, 1. (We retain the notation (W (k)
i , F

(k)
i ) for the various subdiagrams occurring in

Figure 6 — these may be telescopes of the ones occurring in Figure 4(b), however.)
The subdiagrams (W (k)

i , F
(k)
i ) are all replicas of each other. For each k = 0, 1, 2, · · · ,

let hk : X
(W

(k)
0 ,F

(k)
0 )
→ X

(W
(k)
1 ,F

(k)
1 )

be the obvious homeomorphism, using the fact

that (W (k)
0 , F

(k)
0 ) and (W (k)

1 , F
(k)
1 ) are replicas of each other. (We let hk = h, where

we have identified Yi with X
(W

(0)
i ,F

(0)
i )

, i = 0, 1.) Then we have

(∗)

{
R = RZ ∨ {(x, hk (x)) |x ∈ X

(W
(k)
0 ,F

(k)
0 )

, k = 1, 2, · · · }
R̂ = RZ ∨ {(x, hk (x)) |x ∈ X

(W
(k)
0 ,F

(k)
0 )

, k = 0, 1, 2, · · · }

Let (M ′,H ′) denote the subdiagram of (Ṽ , Ẽ) consisting of {(W (k)
i , F

(k)
i ) : k =

1, 2, · · · ,∞; i = 0, 1}. Assume for the time being that we can prove that (M,H) , and
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hence a fortiori (M ′,H ′) , is a thin subdiagram of (Ṽ , Ẽ). Let α
(k)
0 : X

(W
(k)
0 ,F

(k)
0 )
→

X
(W

(k+1)
0 ,F

(k+1)
0 )

, respectively α
(k)
1 : X

(W
(k)
1 ,F

(k)
1 )
→ X

(W
(k+1)
1 ,F

(k+1)
1 )

, k = 0, 1, 2, · · · ,
be the obvious homeomorphisms (using that all the diagrams in question are
replicas of each other), which implements isomorphisms between AF (W (k)

0 , F
(k)
0 )

and AF (W (k+1)
0 , F

(k+1)
0 ), respectively AF (W (k)

1 , F
(k)
1 ) and AF (W (k+1)

1 , F
(k+1)
1 ).

Let α
(∞)
0 : X

(W
(∞)
0 ,F

(∞)
0 )

→ X
(W

(∞)
0 ,F

(∞)
0 )

and α
(∞)
1 : X

(W
(∞)
1 ,F

(∞)
1 )

→ X
(W

(∞)
1 ,F

(∞)
1 )

be the identity maps. We let α : X(M,H) → X(M ′,H′) be defined by α|
(W

(k)
0 ,F

(k)
0 )

=

α
(k)
0 , α|

(W
(k)
1 ,F

(k)
1 )

= α
(k)
1 , for k = 0, 1, 2, · · · ,∞. Then α is a homeomorphism

implementing an isomorphism between AF (M,H) and AF (M ′,H ′) . By the key
lemma, Lemma 4.15, α can be extended to α̃ : X(eV , eE) → X(eV , eE) such that α̃

implements an automorphism of AF (Ṽ , Ẽ). Since α̃ preserves cofinality, we get that
α̃ × α̃ (RZ) = RZ . By its very construction, it is clear that α̃ × α̃({(x, hk (x)) |x ∈
X

(W
(k)
0 ,F

(k)
0 )
}) = {(y, hk+1 (y)) |y ∈ X

(W
(k+1)
0 ,F

(k+1)
0 )

} for every k = 0, 1, 2, · · · . By

(∗) this implies that α̃× α̃(R̂) = R, which finishes the proof.

It remains to prove the following claim.

Claim 3. The subdiagram (M,H) is thin in (Ṽ , Ẽ).

Proof of claim: Let µ be a RZ-invariant probability measure. It is enough to prove
that µ(X

(W
(k)
i ,F

(k)
i )

) = 0 for k = 0, 1, 2, · · · ,∞; i = 0, 1. We will here prove this
for k ∈ {1, 2, · · · }, i = 0 or i = 1. (For k = 0 or k = ∞ the proof is similar, but
less complicated.) So fix k and i. (We will in what follows use the same notation
(W (k)

i , F
(k)
i ) for the subdiagrams occurring in either (V,E) or (Ṽ , Ẽ). This causes
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no problem, since the associated path spaces X
(W

(k)
i ,F

(k)
i )

may be identified in a

natural way.) Let ε > 0. Choose K > 0 such that 1
K < ε. Since (W (k)

i , F
(k)
i ) is thin

in (V,E) , we can use Lemma 4.12 to find n ≥ k + 1 such that the inequalities in
Lemma 4.12 are satisfied. We connect any path in (V,E) between w ∈ (W (k)

i )k+1

and w′ ∈ (W (k+1)
i )n to the top vertex by following xmax from level 0 to level k,

and then the max edge, respectively the max−1 edge, to w (see Figure 5(b)). The
number of paths of each of these two types is larger than K times the number of
paths from the top vertex to w′ lying in (W (k)

i , F
(k)
i ). Let us denote two paths p

and q from the top vertex to w′ for dual, if p and q are of the types just described,
p and q differing only at the max and max−1 edges between levels k and k + 1
(see Figure 5(b)). Now let x and y be two paths in X(V,E), which are cofinal from
level n on, such that the initial n’th parts are dual. Then it is easy to show that
(x, y) /∈ RZ . Hence it follows that if z is a path in X

(W
(k)
i ,F

(k)
i )

, cofinal with x and
y from level n on, then either (x, z) ∈ RZ or (y, z) ∈ RZ . We draw the following
conclusion: Let r be a path in (W (k)

i , F
(k)
i ) from the top vertex to w′, and let p and

q be dual paths. Then either µ (Up) = µ (Ur) , or µ (Uq) = µ (Ur) , where Up, Uq

and Ur denote the cylinder sets in X(V,E) associated to p, q and r. Summing up
all this we get that the µ-measure of An =

⋃
{Ur|r path in (W (k)

i , F
(k)
i ) from the

top vertex to w′, w′ ∈ (W (k)
i )n} is ≤ 1

K < ε. Since X
(W

(k)
i ,F

(k)
i )

is the intersection⋂∞
n=k+1 An, we get finally that µ(X

(W
(k)
i ,F

(k)
i )

) = 0.

This finishes the proof of the theorem. 2

References

[1] S. Adams. An equivalence relation that is not freely generated. Proc. Amer. Math. Soc.
102 (1988), 565-566.

[2] A. Connes, J.Feldman, and B. Weiss. An amenable equivalence relation is generated by a

simple transformation, J. Erg. Th. and Dyn. Sys. 1 (1981), 431-450
[3] E.G. Effros. Dimensions and C∗-algebras, Conf. Board Math. Sci. 46, Amer. Math Soc.,

Providence, R.I., 1981.

[4] J. Feldman and C.C. Moore. Ergodic equivalence relations, cohomology and von Neumann
algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324.

[5] A. Furman. Orbit equivalence rigidtity. Ann. of Math. 150 (1999), 1083-1108.

[6] T. Giordano, I. Putnam and C. F. Skau. Topological orbit equivalence and C∗-crossed
products. J. reine angew. Math. 469 (1995), 51-111.

[7] R. H. Herman, I. F. Putnam and C. F. Skau. Ordered Bratteli diagrams, dimension groups

and topological dynamics. Int. J. Math. 3 (1992), 827-864.
[8] Ø. Johansen. Ordered K-theory and Bratteli diagrams: Implications for Cantor minimal

systems. Ph. D. Thesis, Norwegian Univ. of Science and Technology, Trondheim, 1998.
[9] J. L. Kelley. General Topology. van Nostrand, New York, 1955.
[10] W. Krieger. On a dimension for a class of homeomorphism groups. Math. Ann. 252 (1980),

87-95.
[11] A. L. T. Paterson. Groupoids, Inverse Semigroups and their Operator Algebras. (Progress

in Mathematics, vol. 170). Birkhäuser, Boston-Basel-Berlin, 1999.
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