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Abstract

The paper considers minimal, free actions of the group Z2 on a
compact, totally disconnected space having no isolated points. Un-
der a hypothesis involving the existence of sufficiently many ‘small,
positive’ cocycles, a procedure is given for finding a nested sequence
of compact, open sub-equivalence relations of the orbit relation. It
is shown that the union of this sequence, which is an AF-relation, is
orbit equivalent to the orbit relation for the ZZ2-action. As a conse-
quence of this and earlier results on orbit equivalence for Z-actions
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and AF-relations, a complete invariant is obtained for orbit equiva-
lence for: minimal AF-relations, minimal Z-actions and minimal, free
Z2-actions satisfying the hypothesis. Two classes of examples are pre-
sented and shown to satisfy the hypothesis.

1 Introduction

We continue our investigations of the orbit structure of minimal dynamical
systems on Cantor sets. Our main interest is in the case of a free minimal
action, ¢, of Z2, the free abelian group on two generators, on a Cantor set, X.
However, we will often work more generally and consider G to be a countable
discrete abelian group acting on a topological space X. Specifically, this
means that for every a in G, we have a homeomorphism ¢® : X — X. These
satisfy the conditions ¢°(z) = x, for all z in X and ¢® o @° = 2t for all
a,bin G. The action is free if, for any = in X and a in G, we have ¢%(z) = x
only if @ is the identity element of G. The orbit of a point x in X is the set
{¢%(z) | a € G}, which we denote O,(z). The action is minimal if the only
closed p-invariant subsets Z in X (i.e. ¢*(Z) = Z, for all ¢ in G) are X and
the empty set. Equivalently, the action is minimal if the orbit of every point
x is dense in X.

Given two free group actions (X, G, ) and (Y, H,v), an isomorphism
between them is a homeomorphism h : X — Y and a group isomorphism
«a : G — H such that, for all ¢ in G, X, we have

h,O(pa — Qﬁoz(a.) o h.

Recall from [GPS2] that, given two free group actions (X,G,¢) and
(Y, H, ), an orbit equivalence between them is a map h : X — Y which
is a homeomorphism such that, for every x in X, we have

h(Oy(x)) = Op(h(z)).

It is clear from the definitions that every isomorphism is also an orbit equiv-
alence.

The basic problem under consideration is to determine when two free
group actions are orbit equivalent. This is the natural development for topo-
logical dynamics analogous to the program in measurable dynamics initiated



by Henry Dye [D] and pursued by Orstein-Weiss [OW1, OW2] and Connes-
Feldman-Weiss [CFW]| and developed in the Borel case by Kechris et. al.
[JKLJ.

It turns out that for connected spaces, any orbit equivalence is also an
isomorphism [PPZ|. For this reason, we will restrict our attention to spaces
which are totally disconnected. That is, the sets which are both closed and
open (henceforth called clopen) generate the topology of X. Most of our re-
sults also assume minimality of the action. The case of the group of integers,
Z, was treated in [GPS1]. Here, we focus on the case of Z2.

Leaving out many details and definitions for the moment, let us give some
indication of our attack on the problem. Given a free action of a group as
above, the real object of interest is the equivalence relation whose equivalence
classes are the orbits of the action. In this way, free actions of groups are
special cases of an equivalence relation R on a set X, also called principal
groupoids. In the topological situation, both the space X and the relation
R are given topologies satisfying various conditions; here we are concerned
with étale equivalence relations.

An equivalence relation is minimal if every equivalence class is dense. This
extends the usual definition for group actions. It is also possible to define
an invariant measure for equivalence, which also extends the usual one for
actions. It is then possible to define an invariant D,, for an étale equivalence
relation on a Cantor set. It has the structure of an ordered abelian group
with distinguished positive element and is an invariant of orbit equivalence.

Aside from group actions, there is a class of such étale equivalence re-
lations called AF-relations. The terminology is borrowed from C*-algebra
theory and stands for ’approximately finite’. This is a beautiful class of
such relations; it is rich enough to include many interesting examples but
also has enough structure to prove many results. The first important re-
sult is a classification theorem for AF-relations, due to Elliott and Krieger.
Building on this, for minimal AF-relations, D,, is a complete invariant for
orbit equivalence in the minimal case [GPS1]. Finally, there is a result in
[GPS2] which we refer to as the absorption theorem which states, roughly,
that ’small’ extensions of a minimal AF-relation are orbit equivalent to the
original relation.

Having at our disposal a complete invariant for orbit equivalence for min-
imal AF-relations, the problem is then to show that the equivalence relation
for a free action of a group may be written as ’small’ extension of an AF-
relation. By the absorption theorem, this orbit relation is then orbit equiva-



lent to the AF-relation and hence comes under the classification theorem for
AF-relations. The solution of this extension problem depends on the group
and consists of finding some sort of Rohlin approximation for the group. In
the analogous theory for measurable dynamics, the notion of ’small’ is just
differing on a set of measure zero. In the topological case, it is much more
subtle.

The program outlined above differs somewhat from what has evolved in
earlier work. The focus of [GPS1] was on Z-actions and the classification
for AF-relations was obtained a a consequence. With some hindsight, the
development outlined above seems more natural. A complete treatment of
this point of view is now in preparation [PPZ].

There has been other work along these lines for Z2-actions on the Cantor
set. A. Forrest [F] (see also [Ph]| for another treatment) produced large
AF-subrelations of the orbit relation of a Cantor minimal Z?-system. Such
subrelations also appear implicitly in the work of Bellissard, Benedetti and
Gambaudo [BBG] and also in Benedetti and Gambaudo [BG]. Unfortunately,
these methods do not keep track of the difference between the two and, it
seems at present, that the absorption theorem cannot be applied. Here, we
use a different approach. We use cocycles for the action to create the AF-
relation and its extension. The drawback of the new method is that it needs
to assume the existence of sufficiently many cocycles with certain properties.
Results about the existence are notably missing, although we show that they
do exist for several examples of interest.

The paper is organized as follows. The second section deals with basic
notions regarding étale equivalence relations and the invariants and recalls
earlier results. The third section discusses basic ideas regarding cocycles for
Z2-actions and introduces the notions of positive cocycles, proper cocycles
and ’small’ cocycles. In section three, we state our main results, a classifica-
tion of minimal Cantor Z?-actions satisfying certain hypotheses up to orbit
equivalence. The proofs are deferred to sections 4 through 7. In the fourth
section, we establish various preliminary results which relate cocycles and
subequivalence relations. In section five, we describe an inductive procedure
for finding cocycles and their associated equivalence relations. The result is
to produce an AF-subequivalence relation R of the orbit relation. In section
6, we describe the ’boundary’ of the subrelation R; this is the extension of
the relation R which realizes the orbit relation. In fact, the relation R with
its boundary do not quite meet the hypotheses of our absorption theorem
and we must pass to a subequivalence relation of R, R'. This is described in
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section 7 and we complete the proofs of the main results. In section 8, we
consider a number of examples, showing that they satisfy the hypotheses of
the main result.

2 Local actions

Let X denote a compact, metric space and let R be an equivalence relation
on X. We denote the two canonical projections from R to X by r and s:
r(z,y) = y,s(x,y) = xz, for all (z,y) in R. We let A = {(z,z) | z € X}
denote the diagonal in R. We state the following definition and refer the
reader to Remark 3.6 of [GPS2].

Definition 2.1. Let X be a compact metric space and R be an equivalence
relation on X. A topology T on R is said to be étale if the following hold:

1. R is o-compact,
2. A 1is both open and closed in R,

3. the maps r,s : R — X are local homeomorphisms; that is, there is a
neighbourhood base N for the topology T consisting of sets U such that
r(U) and s(U) are open and

r:U—=rU),s:U—s(U)
are homeomorphisms,
4. for any open sets U and V' in R, the set
UV ={(z,2) | there exists y € X, such that (z,y) € U, (y,2) € V}
1S open,
5. for any open set U in R, the set
U™ ={(z,) | (y,2) € U}
18 open.

If T is such a topology, we say that (X, R,T) is a local action.



The reason for the terminology is as follows. Let U be any set satisfying
the third condition of the definition. It follows that the map

ro(sly)™:s(U) = r(U)

is a homeomorphism between two open subsets of X. Its graph is simply the
set U and its relative topology from 7T is the same as that from X x X. We
can imagine these maps as a group acting on X. Condition 1 is the analogue
of the group being countable, condition 2 is the analogue of freeness and
conditions 4 and 5 are closure of this set under composition and inverses.

Consider a free action ¢ of the countable group G on the compact metric
space X. For such an action, we define the equivalence relation

R, ={(z,¢%)) |z € X,a € G}.

The map sending (z,a) to (z,¢%(z)) is a bijection from X x G to R,. We
endow R, with a topology by transferring the product topology on X X
G by this map. In this way, it is an étale equivalence relation. Here the
neighbourhood base N is the set of all restrictions ¢ |7, where @ is in G and
U is an open subset of X.

A word of warning about our notation is in order. We noted above that
there is a natural bijection between X x G and R,. We will move freely
between these notations. Frequently, it will be simpler to write (z, a) rather
than (z, ¢%(z)).

The second class of examples is the AF-relations.

Definition 2.2. A local action, (X, R,T), is an AF-relation if

1. X is totally disconnected, and
2. there is a sequence
ROZACR1CR2C"'

where, for eachn =0,1,..., each R, is a compact open subequivalence
relation of R and
UZO:()RH = R.

As mentioned earlier there is a complete structure theorem for such rela-
tions; see Theorem 3.9 of [GPS2].

Several simple notions from dynamics may be extended to equivalence
relations as follows



Definition 2.3. Let X be a compact metric space and let R be an equivalence
relation on X. A subset Z of X is R-invariant if, for any (x,y) in R with
x i Z, it follows that y is in Z. The relation R is minimal if the only
closed R-invariant subsets of X are X and the empty set. Equivalently, R is
manimal if every equivalence class in R is dense in X.

Definition 2.4. (/GPS2]) Let (X,R,T) be a local action. A measure
on X is R-invariant if, for every set U in the neighbourhood base N, we
have p(s(U)) = pu(r(U)). We let M1(X, R) denote the set of all R-invariant
probability measures on X.

We can now extend our notion of orbit equivalence to equivalence rela-
tions.

Definition 2.5. For ¢« = 1,2, let X; be a compact metric space and R;
be an equivalence relation on X;. An orbit equivalence between them is a

homeomorphism
h: Xl — X2

such that h x h(Ry) = Ry. If such a map exists, we say that (X1, Ry) and
(X2, Ry) are orbit equivalent and write

(X1, R1) ~ (X3, Ry), or simply Ry ~ R;.

If h is an orbit equivalence as above, then h* induces a bijection between
M (X5, Ry) and M;(X1, Ry) (see the proof of Theorem 2.2 of [GPS1] or
[PPZ]).

Definition 2.6. For i = 1,2, let (X;, R;, T;) be local actions. An isomor-
phism between them is given by an orbit equivalence, h : X; — Xs, such
that

hxh:R — Ry

15 a homeomorphism. If such a map exists, we say that the local actions are
isomorphic and we write

(X1, R1) 2 (X3, Ry), or simply Ry = R,.

We now recall our main invariant (although using new notation) for a local
action, (X, R, T). Welet C(X,Z) denote the set of continuous functions from



X to the integers Z. It is a group with operation point-wise addition. It also
has a positive cone consisting of the non-negative functions. We let

Bn(X,R) = {f € C(X,Z)| /deu:O, for all 4 € M, (X, R)}.

which is clearly a subgroup of C'(X,Z) and
D, (X,R)=C(X,Z)/Bn(X,R),

be the quotient group. For any f in C(X,Z), we let [f] denote its class in
the quotient group. We also define a cone

Dp(X, R)" ={[f]] f >0},

and a distinguished positive element u,, = [1]. The triple
(Dp(X, R), D,, (X, R)*,[1]) is an invariant of orbit equivalence [PPZ]. In the
case of AF-relations and Z-actions, it is a simple dimension group with no
infinitesimal elements. Moreover, any such ordered group which is acyclic
arises in this way from a minimal AF-relation and also from a minimal Z-
action. In [GPS1], it is shown that it is a complete invariant for the class
of local actions which include minimal AF-relations and minimal Z-actions
on Cantor sets. Our aim here is to include in this class all minimal, free Z2-
actions on Cantor sets. We achieve this only for actions having sufficiently
many cocycles, as described in the next section.

To establish that two local actions are orbit equivalent, we have a funda-
mental result from [GPS2]. We state it here for completeness.

Theorem 2.7. Let (X, R, T) be a minimal AF-relation. Suppose that Y1,Ys
are closed subsets of X and o : Yy — Yy be a homeomorphism such that the
following conditions hold.

1. ixY)NR=10,
2. u(Y1) = u(Yz) =0, for all R-invariant probability measures p on X,

3. the relation (Y; X Y;) N R, with the relative topology from R, is an étale
equivalence relation on Y;, fori1=1,2,

4. the map « induces an isomorphism between (Y7 x Y1) N R and (Y3 X
Ys) N R.

The equivalence relation generated by R and graph(«) is orbit equiva-
lent to R and, in particular, is affable.
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If A and B are two sets and f : A — B is a function, we are using the
notation graph(f) = {(a, f(a)) | a € A} C A x B. Some would probably like
to point out that a function f is defined to be a subset of A X B and our use
of the word ‘graph’ is redundant. We use it to emphasize that it is a subset
of the Cartesian product.

3 Cocycles and Positive Cocycles

We will use the L*®-norm on Z?; that is, we set |(4, )| = max{|i|, |j|}. For
any n in Z? and positive integer m, we let B(n,m) = {n' € Z* | |n'—n| < m}.

We begin with some basic definitions for cohomology. The basic references
are [FM, R].

Definition 3.1. Let ¢ be a free action of Z2 on the compact space X. A
one-cocycle taking values in Z or just cocycle for ¢ is a continuous function

0: X xXZ?> -7
such that, for all x in X and m,n in Z?, we have
O(z,m+n) =0(x,m)+ 0(e™(z),n).

We let Z' (X, ¢) denote the set of all cocycles, which is a group under ad-
dition. If f is in C(X,Z), then the function bf(xz,n) = f(p™(z)) — f(x) is
called a coboundary. We let B'(X, ) denote the set of coboundaries. It is
easily seen to be a subgroup of Z'(X, ). We let

HY(X,¢) = Z(X,9)/B"(X, )
denote the quotient group.

As we noted in the introduction, there is a natural bijection between
X x Z* and R, sending (z,n) to (x, ¢™(x)). There will be times when it will
be easier to consider our cocycles as defined on R,. It this case, the cocycle
condition of the definition becomes

0(z,2) = 0(z,y) + 0(y, ),
for all (z,vy), (y,2) in R,. Moreover, if f is in C(X,Z), then
bf(z,y) = f(y) — f(=)
for all (z,y) in R,.



Definition 3.2 (defn:basic-cocycles). We let & and ny denote the maps

60(37, (Za])) = Z'a 770(xa (Z’j)) = j’
for all z in X and (4,7) in Z2.

It is easy to see that & and 7y are both cocycles.
We want to introduce the notion of positivity for cocycles.

Definition 3.3. Let ¢ be a free action of Z? on X. Let C be a subset of Z2.

1. A cocycle 0 s positive with respect to C' if

(X xC) > 0.

2. A cocycle 0 is proper with respect to C if the map
0: X xC—>7Z
is proper (i.e.,the pre-image of any finite set is compact).

3. A cocycle is strictly positive with respect to C' if it is proper and positive
with respect to C.

Lemma 3.4. Let 0 be a cocycle for (X, ), let C be a subset of Z? and let h
be in C(X,Z).

1. If 0 is positive with respect to C, then 0 + bh : X x C — Z is bounded
below.

2. 1If 0 s proper with respect to C, then so is 6 + bh.

Proof. Tt is easy to see that, since h is bounded, the cocycle bh is a bounded
function on X x Z2. The result follows immediately. U

If 0 is a cocycle, then we have 0(z, —n) = —0(p~"(x),n), for all x in X
and n in Z2. From this fact, the following result follows easily. We omit the
proof.

Lemma 3.5. 1. If the cocycle 8 is positive with respect to C C Z2, then
—0 1s positive with respect to —C.
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2. If 0 is proper with respect to C' then it is also proper with respect to
—C.

In fact, the sets C' we will often use are of a very special form. We define
the following.

Definition 3.6. Let r, 7' be positive real numbers. We define
C(r,r') ={(i,j) € 2* | j <ri,j <r'i}.

The definition of both of these can be extended to include the cases r = +o0
(using the convention +o00-0=0) and r = 0.
Let a,b be elements of Z? which generate Z? as a group. We define

< a,b>={ia+jb|i,j >0}

In addition to the notion of positive cocycle, we will also use the notion
of a small cocycle as follows.

Definition 3.7. Let 0 be a cocycle for (X, ) and let M be a positive integer.
We say that 0 < M~ if |§(z,n)| < 1 for all x in X and n in B(0, M). We
say that 0 is small if § < 271

If £ and n are two cocycles on X x Z?2, then we define £ xn : X x Z2 — Z?
by
¢ x n(z,n) = ({(z,n), n(z,n))
for all z in X and n in Z2.

Definition 3.8. Let & and n be two cocycles for (X, ). We say that & x n
is surjective if, for every x in X, the map

Exn:{x} xZ* = 77

s surjective. We also say that & x n is proper if it is proper as a map from
X %X Z2 to Z2.

Finding small, positive cocycles reduces to finding clopen sets with certain
properties which we outline below. For practical purposes, this is the result
which we will use in examples to find cocycles.

Theorem 3.9. Let (X, ) be a minimal, free Cantor Z2-system. Let a,b be
generators for Z2. Suppose that for any N > 1, we may find clopen sets A
and B such that
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1. A and ¢=%(B) and disjoint, ¢~°(A) and B are disjoint,
2. AU ™(B) = ¢ *(A)UB,
3. the sets ") (AU ¢~ %(B)), are disjoint for 0 <i < N.

Then for any M > 1, we may find a cocycle 8 which is strictly positive on
C=<ab>={ia+jb|i,7>0} and 0 < M '.

Proof. Given M > 1, choose N > 1 such that {ia + jb | —N < i,j < N}
contains B(0, M) in Z2. Define 6(z,0) = 0, for all z in X. Then define
0(z,ia + jb) inductively on |i| + [j|. If i > 0, define

0(z,ia + jb) = 0(z, (i — 1)a+ jb) + Xy -va-ss(a)(),
for x in X. If 7 < 0, define
0(z,ia + jb) = 0(x, (i + 1)a + jb) — Xpia-iv(a) (%),
for x in X. If 7 > 0, define
0(z,ia + jb) = 0(z,ia + (j — 1)b) + Xyia-G-11(p) (T),
for x in X. If j < 0, define
0(x,ia + jb) = 0(z,ia + (j + 1)b) — Xy-ia-jo(p) (T),

for z in X. One must check, inductively on |i| + [j|, that 8 is well-defined.
This follows from the hypothesis. It is easy to check that 6 is a cocycle. Note
that 6(z,a) = xa(x),0(z,b) = xs(z). It also follows inductively that 6 is
positive on < a,b >. It is also an easy induction argument to show that, for
any ¢ > 0,
0(33, 1a + Zb) = Z Xp—ka—kb(AUp—a(B)) (.’13),
0<k<i

and, for any 7 <0,

O, iat+ i) = 3 —Xptomtogasipmean (©),
1<k<0

for any x in X. In particular for the case, i = N or ¢ = —N, we may use
the last hypothesis to conclude that the values of the first expression above
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is either 0 or 1 and the second is either 0 or —1. To check the smallness of 6,
we consider ¢ in Z?, with |c¢| < M. By the choice of N, we may ¢ = ia + jb,
for some |il, [j| < N. It follows from the positivity of 6 that

—1 <6(z,—Na — Nb) < l(z,ia+ jb) < f(z,Na+ Nb) <1

for any z in X.

The positivity of # on C follows from the definitions. To see that 6
is strictly positive on C, we claim that it suffices to show that there is a
positive integer K such that

Uszo‘Pka(A) = Ulf:oéokb(B) =X.

To see this, suppose that 7,j are positive integers with at least one them
greater than (K. Suppose that 1 > [K. It follows that, for any z in X,

0(z,ia + jb) > 6(z,ia)

i—1

= ) 0(¢"(2),a
1'=0
-1 K-1

ZZX l’K+k )

=0 k=0

v

Y

It follows that 6 is proper on C.

To see that such K exists, we proceed as follows. First, we claim that
A N B is non-empty. Assume the contrary. It follows from the cocycle
condition that B is contained in ¢°(B). Let u be any invariant probability
measure. [ts support is invariant and hence all of X. Therefore it is positive
on any non-empty open set. As it is invariant, the measure of ¢=°(B) — B is
zero. It follows that B is invariant under o~°. Similarly, ¢=%(A) = A. Let
be any point of A. We may find 4, j such that ¢**7°(z) is in B. But then,
©"(z) is in ¢"(A) = A and in ¢ 7°(B) = B. This is a contradiction.

Before continuing, let us make two important observations which both
follow from the hypothesis. If x is A — B, then it is in ¢=°(A4) and hence
¢®(x) is in A. Secondly, if x is in B then ¢~%(x) is in ¢~%(B), and hence

13



¢~ %) is in B or ¢7?(A), hence p=9%(z) is in A. Also, these possibilities
are mutually exclusive.

Next, we claim that, for any z in A, there is a j > 1 such that ¢?°(z) is in
B. Suppose the contrary. It follows then ¢?°(x) is in A, for all j > 1. Find
(i1,71) in Z? with ¢"9+9%(z) in A, 41,5; > 1 and so that i; chosen as small
as possible. We claim that for 0 < i < 4;,7; < 7, the point ¢**7°(z) is not
in B. This is true for ¢ = 0 by our assumption above. Suppose that there
is some 4, j in the given range with ©*™®(z) in B. Consider first the case
i >2. As 0 < i < iy, and from our choice of iy, =12+ +Db(z) is not in
A and so we must have ©(~14+7%(z) is in B. Continuing in this way, we are
left to consider the case i = 1. But then ¢/®(z) is in A and in p~%(B), which
contradicts these sets being disjoint. Therefore the claim is established. We
continue inductively to define i, > 4,_1, 7, > jn_1 such that ©**7(z) is not
in B for 0 < i < 4, and j, < j. But the union of these sets over all j
contains arbitrarily large rectangles. This contradicts the minimality of the
action (see the proof of 5.7 for details).

In an analogous fashion, for any z in B, there is 7 > 1 such that ¢"(x)
is in A. To show the existence of K as above, we let x be in X. We claim
that for some 7 > 0, ¢*(z) is in A. As AN B is non-empty, we may select
i,j > 0 such that ©"@*7°(z) is in A N B. Select such 4, with j as small
as possible. If j = 0, then we are done. If j > 0, consider ¢"**0—1°(z),
which is in ¢°(A). If this is not in A, then it is in ¢~%(B), in which case
@ta+G=18(g) is in B. It then follows from the claim above that, for some
i' >0, ' et0-Db(g) is in AN B. But this contradicts the minimality of the
choice of j. Therefore, we have *¢tU~18(z) is in A. Repeating this j times,
we see that () is in A. The function which assigns to any z in X the
least positive integer i such that ¢*(z) is in A is well-defined and clearly
continuous. In a completely analogous way, the function which assigns to
any z in X the least positive integer j such that ©?°(z) is in B is also well-
defined and continuous. Any K which is an upper bound for these functions
satisfies the desired properties. O

We conclude this section with a small tool for studying the cohomology of

an action. Suppose that y is an invariant probability measure for our system
(X, ). We will define a map

7. H'(X, ¢) = Hom(Z* R).

Of course, the group Hom(Z? R) is isomorphic to R?. We are implicitly
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using the L*®-norm on Z? (in for example Definition 3.7) and so Hom(Z? R)
is endowed with the dual norm which is the L'-norm. Specifically, we set

()] 2
|| = sup{ ] |0#n e Z7,

for all @ in Hom(Z? R). Under the identification with R?, the topology
which results is the usual one. Let 6 be a cocycle. We define, for any n in
72,

) = [ 0w mdu(o)

It is easy to see that 7,(6) = 0, if § is a coboundary and so 7, descends to
a map on H'(X, ), which we also denote by 7,. It is easy to see that if
6 < M, then |7,(0)] < M~'. It is also easy to check that 7,(£)(,7) =i
and 7,(n)(i,7) = j, for all (4,7) in Z% From this we conclude that the
subgroup of H'(X, ) generated by & and 7y is isomorphic to Z? and its
range under 7, is a discrete cocompact subgroup of Hom(Z? R).

4 The main results

Having established some notation and basic facts and the appropriate notions
of positivity and smallness for cocycles, we are ready to state our main result.

Simply put, it say that if a free, minimal Z? Cantor system possesses
arbitrarily small cocycles for sufficiently many cones, then its orbit relation
is affable.

Theorem 4.1. Let (X, @) be a free, minimal action of Z* on a Cantor set.
Suppose that there are positive numbers T, Soo With s3t —ryt > 1 satisfying
the following. For every e > 0, there are positive 1o +€ > 1 > 1’ > 1 S0
that for every M > 1, there is a cocycle 6 on (X, ¢) such that

1. 0 is strictly positive on C(r,r'), and
2.0 < M1,

Similarly, for every e > 0, there are positive soo — € < 1 < 1" < 8o Such that
for every M > 1, there is a cocycle 0 such that the same conditions hold.
Then the equivalence relation R, is affable.
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In our examples, there are actually quite a good supply of small posi-
tive cocycles for many cones. Our examples satisfy the following stronger
hypotheses.

Corollary 4.2. Let (X, @) be a free, minimal action of Z* on a Cantor set.
Suppose that for every a,b in Z? which generate Z? as a group and M > 1,
there is a cocycle 0 such that

1. 0 is strictly positive on < a,b >= {ia + jb|i,7 > 0}, and
2.0 < M.
Then the equivalence relation R, is affable.

The proof is quite long and will take several sections to complete. Let us
assume the result for the moment and derive some consequences.

Corollary 4.3. Fori=1,2, let (X;, R, T;) be local actions, where, for each
i, each X; is totally disconnected and (R;,T;) is minimal and one of the
following:

1. an AF-relation,
2. arises from a free action of Z, or
3. arises from a free action of Z? satisfying the hypotheses of 4.1.

Then the two local actions are orbit equivalent if and only if there is a group
1somorphism

(o7 Dm(Xl, Rl) — Dm(XQ, RQ)
such that

a(Dp (X1, R)T) = Dp(Xo, Ry)T,
a([XXI]) = [XXz]'

Of course, it is natural to ask how generally the hypothesis of Theorem
4.1 holds. We know little about this except that we show that it holds in
two examples of interest in the last section. We remark that a necessary
condition is that the image of H'(X, ) under the map 7, of section 3 is
a dense subgroup of Hom(Z? R). In particular, if there exists (X, ¢) with
H'(X, ) = Z?, then the hypothesis does not hold. At this point, we know
of no such (free, minimal) action.
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5 Preliminaries

The aim of this section is to provide some general constructions which will
be used in the proof.

5.1 Cones

For any subset A in R?, we let c/(A) denote the closure of A and int(A)
denote the interior of A.
We will also make use of another type of cone.

Definition 5.1. For oo > r > r' > 0, we define
D(r,r") = D(r',r) = {(i,§) € Z* | ri > j > r'i},
using the convention that 0 - co = 0.

Lemma 5.2. Let A, B be subsets of R? such that Ay = cl{rx |z € A,r > 0}
and By = cl{rz | x € B,r > 0} intersect only at 0. Given K > 0, there is
L > 0 such that if a is in A and b is in B with either |a| > L or |b| > L,
then |a — b] > K.

Proof. Let S denote the unit circle in R?. Then S'N A, and B; are disjoint.
As the former is compact and the latter is closed, there is a positive constant
d such that |z —y| > d, for all x in S' N A; and y in B;. Using the same
argument and choosing the minimum of the two values of d, we may also
assume the same conclusion of x in A; and y in S' N B;. Given K, let
L = K/d. Now suppose that a isin A and b is in B and |a| > L. Then a/|a|
is in S N A; and b/|al is in B;. Hence we have,

b
ja—b = Jaf| = = | > |ald > Ld = K.
la|  al
as desired. The other case is analogous. O

Definition 5.3. Let A, B be subsets of R? and let K > 0. We say that a
positive real number L is K-separating for A, B if L satisfies the conclusion
of 5.2 for A, B and K.

We note that if L is K-separating for A, B, then so is any L' > L.
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5.2 Cocycles

The first result is to obtain a very crude bound on the values of small cocycles.

Lemma 5.4. Let 0 be a small cocycle on R,. For any x in X and m in Z2,
we have

0(z,m)| < PLEL

Proof. Let k = @ if |m| is even and k = # if |m| is odd. There is a path
in Z?, 0 = mg,mq,...,mp = m, with |m; —m; 1| < 2, forall 1 < i < k.

Since # is small, we have
0(z,m)| = > 6(g™ " (z),mi —mi 1) <D 1=k

The result follows. 0

The following is our basic structure result for strictly positive, small co-
cycles.

Lemma 5.5. Let 0 be a cocycle for (X, @) which is strictly positive on a set
CoQs={(i,j) |i>0,j <0}

and such that @ < (2M +1)™" for some M > 1. For any x in X and integer
N, there is a sequence {a, € Z* | n € Z} such that for any integer n, we

have
0(z, B(a,, M)) = N,

and ani1 — Gy 08 either (1,0) or (0,1). Moreover, for any such sequence, only
finitely many a,, are in C U (=C).

Proof. First, we construct ag. Consider the sequence 6(z, (4,0)), for ¢ in Z.
As 0 is positive on the fourth quadrant, this sequence is non-decreasing in .
Since @ is proper on the fourth quadrant, it is unbounded as ¢ tends to positive
or negative infinity. Finally, because 6 is small, two successive terms can differ
by at most one. So we may find ¢ such that 6(z, (i + M,0)) = N. Reasoning
in a similar way with the sequence 0(z, (i + M, j)), we may find an integer j
such that 0(x, (i + M,j — M)) = N and 0(z,(i + M,j — M —1)) = N + 1.
Now we claim that 6(z, B((¢,j), M) = N. It follows from the positivity of
6 that 6(z, B((4,7),M)) < 6(z,(i + M,j — M)) = N. On the other hand,
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B((i,7), M) C B((i+M, j—M—1),2M+1) which implies (x, B((i,7), M)) >
0(z, (i+M,j—m—1))—1 = N. This establishes the claim. We set ay = (4, 7).

We next define a,, inductively, for all n > 1 as follows. We suppose that
a, has been defined with the desired properties. By hypothesis, 6(z, a,, +
(M,—M)) =N and (1,0) is in C. It follows from the positivity of # and the
fact that € is small that 6(z, a, + (M +1,—M)) equals N or N + 1. Similarly,
0(z,a,+(—M, M+1)) equals N or N—1. The two points a, + (M +1,—M)
and a, + (=M, M + 1) are distance 2M + 1 and so from the condition that
6 < (2M + 1)1, it is not possible that the former equals N — 1 and the
latter equals NV + 1. Suppose that the latter equals N. In this case, we set
ant1 = G + (1,0). It is clear the second condition is satisfied. It remains to
check the first. It is necessary only to check the values of 0(z, a, 1 + (4,7))
fori =M, —M < j < M, since for other (i,7) in B(0, M) , ant1 + (4,7) is
in B(a,, M). For any —M < j < M, we have

0

O(z,an1 + (M — 1, M))
S 0($,an+1 + (Maj))
S o(mvan-l—l—i_(Mv _M)) :Oﬂ

since the vectors (1,7 — M) and (0,—M — j) are in C. In the case that
O(z,a, + (=M +1,M)) = N +1, then let a1 = a, + (0,1). The proof that
it satisfies the desired properties is the same as the case above.

The values of a,, for n < —1 are defined in an analogous fashion. We omit
the details. The final statement follows immediately from the fact that 0 is
proper on C' and also on —C'. O

5.3 Compact subrelations

In our analysis, compact subequivalence relations of R, will play a crucial
role. We begin by giving some basic terminology and stating some simple
properties.

Definition 5.6. Let R be a compact, open subrelation of R,,.
1. We define the diameter of R by

diam(R) = sup{|n| | n € Z*, (z, ¢"(z)) € R, for some x € X}.
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2. For K > 0, we say that R has capacity K if, for every x in X, there is
k in Z? such that

{(z,¢™(x)) | m € B(k,K)} C R.

We will ultimately construct an increasing sequence of compact open
subrelations of R,. We will need to know that their union is minimal.

Proposition 5.7. Let (X, ) be a free, minimal Cantor Z2-system and let
R, CRyC...

be a sequence of compact open subequivalence relations of R,. Suppose there
15 a sequence K, n > 1 which tends to infinity such that R, has capacity K,,
for alln > 1. Then R = U,>1 R, is minimal.

Proof. Let x be an arbitrary point of X. We wish to show that its class in R
is dense in X. For each n > 1, select k, in Z? such that ¢™(z) is contained
in the R, equivalence class of z, for all m in B(k,, K,). By passing to a
subsequence, we may assume that the points ©*»(z) converge to a limit z’
in X. So ' is in the closure of the R equivalence class of X. Let [ be any
element of Z?. For n sufficiently large, K, > ||, k, + [ is in B(k,, K,) and
so the point ¢*»*!(z) is in the R, equivalence class of z and hence in the R
equivalence class of z. This sequence converges to ¢'(z'). We conclude that
¢!(2') is in the closure of the R equivalence class of z. As [ was arbitrary, we
see that the entire g-orbit of 2’ is contained in the closure of the R equivalence
class of x. But as this orbit is dense, the closure of the R equivalence class
of z is all of X. O

Next, we need the notion of the quotient by a compact open subequiv-
alence relation. The proof of the following result is straightforward and a
version is given in [GPS2], so we omit the details.

Proposition 5.8. Let R be a compact open subequivalence relation of R,.
Then the quotient space X/R is a Cantor set. Let m : X — X/R denote the
quotient map. Then 7 is proper. Also, m x m(R,,), endowed with the quotient
topology is an étale relation on X /R and the map m X m is proper.

If R is a compact open subequivalence relation, and 6 is a cocycle which
is identically zero on R, then it descends in a natural way to a cocycle on the
quotient relation. We state the result precisely below; its proof is easy and
we omit it.
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Proposition 5.9. Let R be a compact open subequivalence relation of R,
and m: X — X/R denote the quotient map. Suppose that 0 is a cocycle on
(X, @) such that O(R) = 0. We define g on ™ x m(R,) by

Or(m(z),m(y)) = 0(z,y),
for all (z,y) in R,. Then Og is a well-defined cocycle on ™ x m(R,,).

The next notion related to quotients by compact subrelations is that of
a lifting.

Definition 5.10. Let R be a compact open subequivalence relation of R,. A
map o : X/R — X is a lifting for R if it is continuous and woo(y) =y, for
all y in X/R, where w: X — X/R is the quotient map.

Using properties of the Cantor set, one can prove that liftings for compact
open subequivalence relations R always exist. We will not need this fact; we
will later construct them explicitly in special cases. We note the following
result.

Lemma 5.11. Let R be a compact open subequivalence relation of R, and
let m denote the quotient map as before. If o is a lifting for R, then, for every
rin X, cow(x) = (), for somel in Z? with || < diam(R).

Proof. We note that (o o w(z)) = 7o o(mw(z)) = 7(x), which means that
oom(x) and x are in the same R-equivalence class. The result then follows
from the definition of diam(R). O

5.4 From cocycles to compact subrelations

There are a couple of ways in which compact open subequivalence relations
and cocycles relate to each other. We have already seen the notion of a
cocycle descending to a quotient. Probably the most fundamental here is
that cocycles, or more precisely a pair of cocycles with certain properties,
naturally give rise to compact open subequivalence relations.

Proposition 5.12. Let £,n be cocycles for (X, ) and let C,C" C Z%. If £
is proper on C' and n is proper on C' and

Cu(-C)ucC'u(-C" =127
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then & X n is proper and

ker(§) Nker(n) = ker(¢ x n) = {(z,y) € R, | {(z,y) = n(z,y) = 0}
s a compact open subequivalence relation of R,.

Proof. 1t is obvious from the cocycle condition that the kernel of a cocycle
is a subequivalence relation. Moreover, since cocycles are continuous and Z
is discrete, these kernels are open and closed. It also follows from Lemma
3.5 that if a cocycle is proper on C (or C"), then it is also proper on —C' (or
—(C', respectively). If K is a compact subset of Z?, then it is contained in
Ky x K, for some K, Ky compact subsets of Z. We may write

Exn) (K) c &'(K)ny '(Ky)
= [Cn& N EK) Ny (KU [-CNnE T (EK) Ny H(Ky)]
ulC' N & K N HER) U [-C'nEHEKL) N H(Ky)]

The first set C NE1(K) is compact because K is compact and £ is proper
on C. In a similar way, each of the other three sets above is compact. This
shows that & x n is proper.

The last statement follows form this and the fact that ker(£ x ) = (£ x

7)~{(0,0)}. O

This last result is fairly general. In fact, we will need to say more about
specific properties of the relation. We now give a more detailed version of
Proposition 5.12, adding some hypothesis of positivity for the cocycles.

Proposition 5.13. Letr > r' > s' > s > 0 and M, My be positive. Suppose
that £ is a cocycle which is strictly positive on C(r,r") and & < (2M; + 1)1
and that 1 is a cocycle which is strictly positive on —C'(s,s') and £ < (2My+
1)L, For any x in X and n = (Ny, No) in Z?, there is i in Z? such that

g(IE,B(l, Ml)) :Nla U(I:B(la MQ)) = Na.
In particular, £ X n is surjective.

Proof. We make two applications of Lemma 5.5 to obtain sequences a,, and
b, in Z?, such that

g(.’l),B(an,Ml)) = Nla n(x’B(bn;MQ)) = N27
U1 — an = (1,0) or (0,1),  byy1 — b, = (1,0) or (0,1)
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for n in Z. Moreover, only finitely many a, are in C(r,r") U —C(r,r') and
only finitely many b, are in C(s,s") U —C(s,s’). This means that for all but
finitely many n, a, are in either D(r,r') or —D(r,r') and similarly, all but
finitely many b,, are in either D(s, s") or —D(s, s'). From the second property
of the sequences as above, it follows that there is N > 1 such that a, is in
D(r,r") and b, is in D(s,s'), for n > N, while a, is in —D(r,r’) and b,
is in —D(s,s"), for n < —N. The two sequences a, and b, move from left
to right in Z?2, each step being length one. For large negative n, the a,’s
are ‘below’ the b,’s and for large positive n, they are ‘above’. By a kind of
discrete analogue of the intermediate value theorem, there exists n,n’ such
that a,, = b,,. Letting ¢ = a,, completes the proof. ]

5.5 Adjusting cocycles by compact open subequiva-
lence relations

In the last section, it was shown that certain pairs of cocycles give rise to
compact open subequivalence relations of R,. Here, we show how cocycles
may be perturbed or adjusted by a compact open subequivalence relation,
R. Basically, the idea is to adjust a cocycle @ so that it takes value 0 on R.
It is worth noting that, although we will denote the adjusted cocycle by 6%,
it depends on the choice of a lifting for R.

Lemma 5.14. Let R be a compact open subequivalence relation of R, and
m: X — X/R denote the quotient map. Suppose that o : X/R — X is a
lifting for R. Let 6 be a cocycle on R,. Define 6% on R, by

0% (z,y) = (0 om(z),0 0 m(y)),
for all (z,y) in R,. Then 6% is also a cocycle on R, and the difference
0% — 6 is a coboundary. We have 0%(R) = 0. If §(R) = 0, then 0% = 0 and
in particular, does not depend on the choice of o. Moreover, if § < M~ for
some M > 2diam(R), then 0% < (M — 2diam(R))™".

Proof. We define f(x) = 6(x,0 o w(z)), which is a continuous function on
X. It is straightforward to check that bf + 6 = %. We omit the details. It
follows that 6% is a cocycle. It is immediate that 6%(R) = 0. If §(R) = 0,
then the function f above is zero and hence 8% = 6.

Finally, suppose that n is in B(0, M — 2diam(R)) in Z? and z is in X.
We have

0%z, o"(x)) = 0(¢' (2), " (x)) = 0(¢' (), "7 (' (2)))
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for some 4,j with |i|,|j| < diam(R), by Lemma 5.11. As |n 4+ j —i| <
In| + || + 7] < M, the value of the above expression is at most 1 in absolute
value. The conclusion follows. O

Lemma 5.15. Let R C S be compact open subequivalence relations of R,.
Let g : X — X/R be the quotient map and og be a lifting for R. Let
Sr = mr X wr(S), which is a compact equivalence relation on X/R. Let
m: X/R — X/S be the quotient map and let 0 : X/S — X/R is any lifting
for Sg. Then og o o is a lifting for S. Moreover, if 0 is any cocycle on R,
with O(R) = 0, then we have 0°(R) = 0 and

(6°)r = (0r)°"
In particular, when R =S, we have Sk = Ax, and (0%)r = 0.

Proof. By Lemma 5.14, we have #°(S) = 0 and since R C S, it follows that
05(R) = 0. Let =,y be in X. By definition, we have

(0r)°% (7r(2),7r(y)) = Or(oom(mr(x)),00m(Tr(Y)))
= 0Or(mroogoocomn(mr(x)),Troorocon(mr(y)))
= fO(opooom(mg(x)),0p 00 0m(mr(y)))
0°(z,y)
(QS)R(WR(ﬂﬁ)aWR(y))-

The last part is an easy consequence. O

Our final result in this section is a version of Proposition 5.13 which allows
for adjustment of the cocycles.

Proposition 5.16. Suppose that r > r' > s' > s are positive numbers. Let
R and S are compact open subequivalence relations of R,. Let mr and mg
denote the respective quotient maps. Suppose that we have liftings og and
os for R and S, respectively. Suppose that & and n are cocycles for (X, )
which are strictly positive on C(r,r') and C(s,s'), respectively. Also suppose
that ¢ < (2(K + diam(R)) + 1)7" and n < (2(K + diam(S)) + 1)7', for
some K > 1. Then &8 x n% is surjective and ker(ER x n°) is a compact open
subequivalence relation of R, with capacity K.
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Proof. Let n = (ny,ns) be in Z? and let z be in X. Let Ny = n; — &(og o
wr(z),z), Ny = ng — n(os ows(x),x), My = K + diam(R) and My = K +
diam(S). We apply 5.13 to obtain 7 in Z? satisfying the conclusion for £ and
n. Then for any £ with |k| < K, we compute

£z, " (2)) = E(oromr(x),0r o TR(9™*(2)))
= &(oromr(z),z) + &(z, 08 0 TR("*(2)))
E(oromr(2),2) + &(z, o T (2))

for some [ with |I| < diam(R), by 5.11. Then, |l + k| < K + diam(R) = M,
and so by the choice of i, we have

ER¥(z, " (z)) = E(oR 0 TR(), ) + N1 = ny.

A similar computation shows that

n°(z, ¢ (2)) = na.

The first part of the conclusion follows at once. The second part follows by
setting n; = 0 = ny. O

We will need one further piece of notation. In Proposition 5.9, for a
cocycle # and compact open subrelation R such that #(R) = 0, we defined
Or. We now drop the hypothesis that #(R) = 0, but suppose that we have a
specific choice for a lift X/R — X. Then we define 0 = (6%)g, using our
earlier definition and the fact that #%(R) = 0. Notice that when #(R) = 0,
this definition agrees with our previous one and is independent of the choice
of lift.

5.6 Induced systems

We begin this section by introducing some new notation. If £ and 7 are
cocycles for X, ¢ such that ker(§ x n) is a compact open subequivalence
relation of R,, then we let X, denote the quotient space X/ker({ x n)
and 7y, denote the quotient map. Also, if 0 is a cocycle for X, ¢ such that
O(ker(¢ x )) = 0, then we denote Oyer(exn) of Proposition 5.9 by 6, for
simplicity.
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Proposition 5.17. Let & and n be cocycles for X, ¢ such that & X n is proper
and surjective. Then there is a free minimal action, denoted pexn, of Z* on
Xexy defined by setting, for any x in X and n in Z?,

Pexn(Texn (7)) = Texn(9™ (),

where m is chosen such that & X n(x,m) = n. Moreover, m may be chosen
continuously as a function of the pair x,n. Finally, the map Tex, X Texy -
R, — Ry, is continuous, onto and proper.

The proof is straightforward and we omit it. The following result is worth
noting; it is a trivial consequence of the definitions and we also leave its proof
to the reader.

Lemma 5.18. Let £ and n be cocycles for X, ¢ be such that € Xn s surjective
and proper. Then &exn = o and Nexy = Mo for the system Xexy, Pexn-

The following result follows easily from the properness of £ x 1. We omit
the details.

Lemma 5.19. Let & and n be cocycles for X, ¢ such that & X n is surjective
and proper. Let o : X¢yn — X be a lift for the quotient map. For any L > 1,
there is an M > 1 such that, if  is any cocycle on R, such that § < M™!,
then O < L71.

5.7 Standard pairs of cocycles

Lemma 5.20. Let X, ¢ be a free, minimal Cantor Z? system. If € is a cocycle
which is small and strictly positive on the fourth quadrant, Q4 = {(i,7) €
Z2|i> 0,7 <0}, then ker(€ X ng) is a compact, open subequivalence relation
of R,. For any z in X, its equivalence class in ker(& x ng) is {9 (z) | i~ <
i < it}, for some integers i~ < 0 < iT. The values i~ ,i" are characterized
by

, &z, (0 —1,0)=-1
, &z, (1T +1,0)) =1.

Moreover, £ X 1y is surjective.
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Proof. Since £ is small and strictly positive on the fourth quadrant, the
sequence &(z, (4,0)) is non-decreasing, unbounded, takes value 0 for i = 0
and since

5('7;7 (7' +1, O)) - f(.T, (iv 0)) = §(§0(i’0)(x)7 (17 0))

successive terms differ by at most one. The statements follow easily from
this observation. We omit the details. O

The first nice property of cocycles as above is that the quotient map,
Texny, has two canonical liftings.

Definition 5.21. Let £ be a cocycle for the system X, which is small and
strictly positive on the fourth quadrant. We define
Texnos Texno * Xexng — X by

- i+
‘7€><no(7T§><no($)) = ‘P(Z ’0)(35)’7'£><no(7r§><no($)) = SO(Z ’O)(x)a
where i~ and 1T are as in 5.20.

It is easy to check that o and 7 are continuous liftings for the quotient
map e xp,-

Lemma 5.22. Let £ be a cocycle for the system X, which is small and
strictly positive on the fourth quadrant. Any x in X is the range of o¢xn,
if and only if £(z,(—1,0)) = —1 and is in the range of Texy, if and only if
§(x, (1,0)) = 1.

Proof. First, suppose that £(z, (—1,0)) = —1. It follows from the definition
(as in 5.20) that s~ = 0. Then from 5.21, we have ¢y, (Texn, (z)) = z. For
the converse, let 2’ is in X and 7wy, (z") = y'. We apply the results of 5.20
to find 7~ so that

EOexn (¥), (—1,0) = & (), (-1,0))
= —§(ac', (iiao)) + 6(‘7’.[’ (Z'i - 150))
0+ (—1) = —1.

The only if part of the first statement follows. The second statement is
proved in an analogous fashion. O

In the case of standard cocycles, there is a fairly simple relation with the
original system and the canonical lifting, o.
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Lemma 5.23. Let £ be a small cocycle which is strictly positive on the fourth
quadrant. For all x in X¢yxy,, there are integers 1 > 1 and j > 0 such that

Texny (P () = ¢ (T ()
O (@) = 09D (0gep ()

O¢xno (ngxno
Proof. We will drop the subscripts from the map o¢y,,. We consider the first
statement, choosing (4, k) in Z? such that

(0 (2)) = ) (o ().

From the definition of the induced action, we have

0= 770(0-(33)’ (i’ k)) = k.

8

Then we have also
1=¢(o(x), (1,0)).
The fact that ¢ > 1 follows from the positivity of &.
For the second statement, we again choose (J, k) such that

(93 (2)) = R (0(x)).

Again from the definition of the induced action, we have

1= 770(0-(33)’ (i’ k)) = k.

Then we have also
0=¢(o(z), (4, 1))

We use the characterization of o(z) in Lemma 5.22 to see

0 = &(o(x), (4, 1))
E(o(z), (—1,0)) + (¢ (o(2)), (j + 1,1))
1+ £ (o (@), (5 + 1,1)).

If j <0, then (5+1,1) is in —Q4 and this would contradict the positivity of
& on (4. Hence, we have 7 > 0 as desired. O

Definition 5.24. Let (X, @) be a free, Cantor minimal Z2-system. Let & and
n be a pair of cocycles for (X, ). We say that £, 7 is a standard pair if

28



1. € is strictly positive on the fourth quadrant and € < 471,
2. ’r](kerg X 770) = 07

3. the cocycle Nexn, for the system (Xexny, Pexno) 1S strictly positive on the
second quadrant, Qs = {(i,j) € Z* | i < 0,5 > 0} and nexy, <471,

4' (17 1): (_1 - 1) ¢ 5 X n(XaB(Oa 1))7 and
5. for any x in X, at least one of & x n(z, (0,1)),& x n(z, (0,—1)) is 0.

If £, n satisfy the first four conditions above, we refer to them as a weak
standard pair.

The following result is an immediate consequence of Lemma 5.20; we omit
the proof.

Proposition 5.25. Let £, be a weak standard pair for the system X, .
Then ker(§ x n) is a compact open subequivalence relation of R, and £ x n
18 surjective.

If £,n is a weak standard pair for the system X, ¢, then we have the
quotient map mexp, : X — Xgxn,, the induced system gy, and a canonical
lifting o¢xp,. The cocycle neyy, then defines a cocycle on this quotient. We
can then repeat the same process, considering ker(&, x 7). We observe that,
on the quotient system, X¢yp,, Qexcne, We have &gy = &, by Lemma 5.18.
This means that we have natural identification of (Xexp)eoxn With Xexn,
Teoxnexng © Texno With Texn and (@exao)goxn and @exy. Continuing with this,
we define oy, = Ogyxn, © o xexng and 7¢y, in a similar way. These are both
lifts for me .

Our final result of this section is a method which allows us to pass from
a weak standard pair to a standard pair.

Lemma 5.26. Let &£, n be a weak standard pair for the system X, . Define
A={z e X |&xnz,(0,1) = (0,1)} and A' = {z € X | € x n(az, (0,~1)) =
(0,—-1)}. Then,

R = {(z,2) |z € X}
U{(z, 9@V (@)), (¢ D (2)),2) |z € A}
U{(z, %V (2)), (¢ (2)),2) | & € A"}
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is a compact open subequivalence relation in R,. Also, £, 7 is a standard pair
if and only if E(R) = 0. In any case, there is a unique lift for the quotient
map whose image contains A and A' and using this to define €%, the pair
E%,n is a standard pair. Moreover, the maps

TeRxn © Ogxy - Xesen — X,SRXW

and
Texn © Oghn * Xeruny = Xexy

are inverse and are conjugacies between the systems Xeyp, Pexn and
X¢Ryp, Peryp. The same is true replacing the maps O¢yy, O¢ry, with

Tf)(n, TgRXn.

Proof. To see that R is a subequivalence relation, it suffices to show that
the sets A, A’, p(®Y(A) and ¢~ (A’) are disjoint. This follows quite easily
from the condition that n < 47!, We leave the details to the reader. 0

5.8 Boundaries for standard pairs of cocycles

One of the main points regarding standard pairs of cocycles is that the equiv-
alence classes in the relation ker(¢ x 7) have boundaries which are easily
defined and described.

For convenience, we will use the following notation:

g1 = (1,0), E9 = (1, —1), 3 = (0, —1),
E4 = (—1,0), €y = (—1, 1), g = (0, 1)

We let E = {e1,69,e3} and E* = {e4,¢5,66}. We note that the subscript i
on the ¢; should always be regarded mod 6.

We note the following. The proof is an easy direct computation, which
we omit.

Lemma 5.27. For all 1 < i < 6, we have —e; = €;43, €i41 + €i—1 = &; and
€; — €i-1 = €i+1, where the indices are understood mod 6.

We are going to derive a number of properties on the equivalence relation
ker(&xn), for a standard pair £, 7. The following picture should prove helpful.
We select any z in X. The picture is of the orbit of x under ¢, which is most
conveniently drawn as Z? (or perhaps R?). The lines shown partition this
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orbit according to the values of £ x 7(z, ) or, equivalently, the Rey, classes.
Most of the properties may be seen there; basically, our proofs are attempting
to justify features in this diagram.

6 X 77(% ) =&
6 X 77(3:; ) =E&5
) £ xn(z,) =&
A
3 E9
[ ]
Ex e, ) =& ’
f X 77(3:’ ) =0
§ X 77(% ) =&
g X 77(33’ ) =£3

Lemma 5.28. Let £, be a standard pair for the free minimal Cantor Z2-
system (X, ). Then, for all x in X, we have

exnz,E) ¢ EU{0}
¢ xn(z,E*) c E*U{0}

Proof. We begin by noting that since £ is positive on @), and 7, is negative
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on ()4, we have
5 X nO(Xa Q4) C Q4-
As 7 is positive on Q3 and Q3 = —Q4, we have

5 X 77(X7 Q4) C Q4-

A similar argument shows that

§Exn(X,Q2) C Q2.

The statements follows at once from this, the fact that £ C @, and E* C ),
and the hypotheses that £ and 7 are small. O

Later, we will need the following simple technical fact.
Lemma 5.29. Let &, 1 be a standard pair of cocycles. Then, for any x in X,
Exn(z,e1) # &
6 X 77(37,54) # €6

Proof. We prove only the first statement. Suppose that £ x n(z,£,) =¢e3. In
particular, we have £(z,e1) = 0. Also, since 1 = (1,0), we have ny(z,&1) = 0.
It follows that n(x,e1) = 0 and this is a contradiction. O

Recall the canonical lifts o¢y, and 7¢y, for a standard pair &, 7. In our
diagram, these map the equivalence class of x to the lower left and upper
right corners, respectively.

Lemma 5.30. Let &1 be a standard pair of cocycles for (X, ), and let
O¢xn, Texn be the standard lifts as above. For any x in X¢yy,, we have

£ X 77(7_§><77(x)ﬂ 51) €1, (1)
£ % n(Tgxn(:L‘), 86) = ¢, (2)
E X N(0exn(),€4) = &4, (3)
§ X n(oexn(@),€3) = é€3. (4)

Proof. Noting that Tewn(2) = Texng (Teoxn(x)), the first equation follows at
once from Lemma 5.22. The third follows in an analogous way.
For the second, we claim that, for any ' in o¢xpy (Xexno),

(0’7

Texno (¢ 1)(55/)) = Pexno (Texny (')
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From the definition of ¢¢yy,, it suffices to check that

5 X 770(3317 (01 _1)) = (07 _1)

It is clear that ny(z', (0, —1)) = —1. The value of £(2/, (0, —1)) is non-negative
since (0, —1) is in @4, where £ is positive. On the other hand, by 5.22 and the
fact that o' is in o¢ym, (Xexy,), We have £(2', (—1,0)) = —1. Then the value
of £(2', (0, —1)) being positive would contradict the fact that £ is small. We
conclude that £(2', (0,—1)) = 0, as desired. The proof of the last statement
is analogous and we omit the details. O

Lemma 5.31. Let &,n be a standard pair of cocycles for (X, ¢) and x be in
X. If for some 1 < 4,5 < 6 with i # j, €;,¢; are in & x n(z, EU E*), then
j =i+ 1. Moreover, we have £ X n(z,&;) = &; and £ X n(z,¢;) = €;j.

Proof. We assume that ¢; € E; the other case is similar. We may find
e € E such that & x n(z,e,) = ;. We may also find 1 <[ < 6, such that
&€ xn(z,e) =¢j. Asi # j, clearly k # [. Using the cocycle condition, we
have

5i+5j+3 = & —&j
= &xn(z,er) — & xn(z,e)
= Exn(e™(z),ex — 1)

As |er, —¢;] < 2 and € and 7 are small, we have |¢;+¢;13] < 1. Ifgj43isin E,
then ¢; and ;.3 must be €; and €3. Hence, ¢; and ¢; are either £; and ¢ or
else €3 and €4. Next, we consider when ¢;,3 is in E*. Then ¢; and hence ¢
are in E. Then ¢y —¢;is in B(0,1) and as (1,1), (-1, —1) ¢ £ xn(z, B(0, 1)),
we have ¢; —¢; # (1,1), (=1, —1). This eliminates the case that ¢; and ¢; are
€1 and 3. The first statement follows. O

Lemma 5.32. Let &, be a standard pair of cocycles for (X, ). Let x be in
X.

1. Fori = 1a47 ng X n(‘ragi) = 5 X n(maei-i-?) 7é 07 then 5 X n(xa‘si) =
& xn(z,€ip1).

2. Ifej,ej_1 are in & x n(z,{e;,€i_1}) for some 1 < i,j <6, then i = j,
Exn(z,e) =¢e; and E X n(z,6; 1) = ¢€i 1.
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Proof. For the first part, we consider the case i = 1 for simplicity. We claim
that £(z,e1) # 0. If &(z,e1) = 0, then also ny(z,e1) = 0 and it follows
that n(z,e1) = 0, which contradicts our hypothesis. As €, is in the fourth
quadrant, we must have £(z,e1) =1 = £(z,e3). Again by positivity, we have
&(x,e1 +€3) > 1. Strict inequality is not possible, as £ is small. Hence, we
have &(x,e2) = 1. Now we have &(¢®*(z),e1) = &(x,e2) — &(z,e3) = 0 and
also no(p®*(x),e1) = 0. It follows then that n(¢®3(z),e1) = 0. Then we have
n(z,e2) = n(x,e3) + n(p®(x),e1) = n(z,e3). This completes the proof.

For the second part, we first consider the case that & x n(z,&,-1) = €.
Then it follows that £ x n(z,¢;) = €;_1. Then we have

Exn(p 1 (w), —€i—1) = —€j = €j43.

On the other hand, we also have

Ex (et (x),€i2) = Ex (e (z), 61 — &)
= Exn(z,eim1) — & x 0w, &)
= & &
€j+1
This contradicts Lemma 5.31.
This leaves us to consider the case that £ x7(z,¢;) = ¢; and Exn(z,e,-1) =

gj—1. The same calculation as above shows that £ x n(¢®-1(z),ei_2) = €;_2.
Now from Lemma 5.28, we know that ¢; is in F if and only if ¢, is also. The

same applies to €;_1 and €;_; and also to €;_5 and €;_5. From this it follows
that 7 = j. O

Definition 5.33. Let &, be a standard pair of cocycles for (X, ). For each
zin X, let E(z) =& xn(z, EUE*) —{0}.

Theorem 5.34. Let £, 7 be a standard pair of cocycles for the system (X, ).
1. For any z in X, #E(z) < 2.

2. For any x in X, if #E(x) = 2, then E(x) = {&;,ei—1}, for some
1<1<6. Also, we have & X n(z,&;) = ¢; and € X n(z,e; 1) =€;1.
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3. For any x in X with #E(x) = 2, we have

(z) ={e1,e6} if and only if x € Texn(Xexy)

(x) ={es,e2} if and only if x € ™ (Texy(Xexy))

(x) ={es,e4a} if and only if x € 7 (Texy(Xexy))
E(z) = {es,e3} if and only if 2 € 0exn(Xexn)

(x) ={e6,e5} if and only if x € = (0exyn(Xexn))

(z) ={e2,e1} if and only if x € ™ (0exy(Xexn))

4. For each 1 <1 <6 and each x in X, there is a unique point x; in the
same ker(& x n) equivalence class as v with E(z;) = {e;,&; 1}

Proof. The first part is an immediate consequence of Lemma, 5.31.

The second statement is a consequence of Lemma 5.31 and the second
part of Lemma 5.32.

We now consider the fourth equivalence of part 3. The ‘if’ direction
follows from Lemma 5.30. For the converse, let us suppose that £ xn(z,¢) = &,
for € = e3,e4. The fact that £(x,e4) = —1 implies that x is in the range of
Oexne- Then we have —1 = n(x,€3) = Nexyo (Texno (%), €3). This then implies
that mexp, () is in the range of o, x,. This implies that = is in the range of
O¢xn- This completes the proof of the fourth equivalence. The first is done
in a similar fashion and we omit the details.

Now consider the last equivalence. We use the cocycle condition to com-
pute, for x in X,

Exn(e™(z),e1) = &xnlp™(z), —€4)
= _§ X 77(33754)
and also
Exn(p™(x),e2) = Exn(x,e0+62) =& X n(T,64)
= § X 77(»”5;53) - 5 X 77(33;54)-

Now, if x is in 0gxy(Xexy), then it follows from the fourth equivalence,
part 2 and the equations above, that E(p®(x)) = {e3,£1}. Conversely, if
E(¢(x)) = {e2,e1}, then the equations above, part two and the fourth
equivalence imply that = is in ogy,(Xgixy)-
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For part 4, the cases 1 = 1,4 follow from part 1 and the fact that o¢y,
and 7¢y, are lifts for the quotient map by ker & x 7.
Let us consider ¢ = 2, the other cases being similar. Let

Ty = " (Ogun (P (Texn(2))))-

By the last statement of part 1, we have E(z9) = {e2,1}. We also have

Exn(z,m9) = €X n(xaavfxn(@gn(ﬂfxn(m)
+& X N(Texn(Pexn(Texn (), T2)
= & X Uo(ngn(m),@Z;n(fon(@
& X 1(0exn (Pl (Texn (), 07 (exn Pk (Texn (2)))
€1+ €4
0.

by 5.18 and 5.30. Now if 2’ is any other point satisfying the desired prop-
erties, it is easily checked that ¢!(x9) and ¢°!(z') are in the same ker & x n
equivalence class and both have value {e3,£4} under E(-). It follows from
part 1 and the fact that ogy, is a lift that 2’ = 5.

For completeness, we note that

z3 = 9% (0exn(Pekn(Texn(T)))
z5 = 97 (0exn(Pey(Texn(T)))
Te = g0€3(0§><n(g02§<"(71'§x,7($))).

O

Proposition 5.35. Let x be in X¢y,. For each i =1,...,6, there is z; in
X such that meyy(z;) = x, € X (x4, 6;) = €; and E(x;) = {&;}.

Proof. We begin with the case i = 1. Let z; = o750 (7¢5,(7)). As & x
1(Texn(), €6) = €6 from Lemma 5.30, it follows from the final condition of a
standard pair that & x n(7¢x, (), —€6) = (0,0). This means that (7¢x,(2), 1)
is in ker(¢ x n) and hence mex,(21) = . We also have

&1 = 5 X U(Tgxn(ﬂf)aﬁl)
"5 X 77(371’ (1’ 1))
= 6 X n(xlagl) +€ X 77(9061 (xl): (0’ 1))
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Since £ is positive on )y, 7 is positive on (), and & is small, it follows that
&(z1,€1) = €1. Next, we claim that E(z1) = {e1}. In view of 5.34, it suffices
to see that & x n(z1,e6) # €6 and € X 1(z1,2) # 2. For the former, we have
already observed that £ X n(z1,e6) = =& X N(Texy(x), —€6) = (0,0). For the
latter, if n(z1,e2) = —1, then we would have

n(p=(z1),62 + 6 +6) = —n(x1,€2) + 11, 86) + N(Texn(T), €6)
> 140+1=2,

which would contradict the fact that ne,, < 41

Fori = 2, we let 2’ = 0¢xy (g, (7)) First consider the case £ xn(z', g3+
g4) = €4. Then we set x5 = =74 (z'). Then we have & X n(x2,e1 +€6) = &1
and so by definition, @exp(Texp(Z2)) = Texy (@) and it follows that mey,(z2) =
z. Also we have

Exn(re,e2) = & Xn(we,e1+ €6 + 3e3)
= Exn(ze,e1+e6) + & xn(ae3)
+& x 1(p™(2"), e3)
€1 +es3+0

= &2,

using 5.34 and the final property of standard pairs.
Now we claim that E(z5) = {e2}. It suffices to check that £xn(z2,€;) # €;
for 5 =1,3. For j = 1, we have

Exn(xa,e1) = &xnlze,e1+e6) +&xn(a es)

= &1 +E¢&;3

* €
For j = 3, we have n(x2,e3) < 0 because 7 is positive on Q. Strict inequality
would violate the smallness of 7 since n(x',e3 + €4) = —1. Next, for i = 2,

we consider the case & x (', 3 + €4) # £4. Then we set x5 = =29 (z').
Finally, for i = 3, we set 23 = (10 (0¢x,(7)). Checking that z3 has the
desired properties is similar to the other cases and we omit the details. [

Ultimately, we will need to know that the boundaries of equivalence
classes in ker(§ x n) have small measure. The following results will be used
toward that end in the next section.
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Lemma 5.36. Let &, 1 be a standard pair of cocycles for (X, ). Let C =
{r € X | E(z) = {e1,e6}} and C' = {z € X | E(x) = {€4,e3}}. Then for
any € with |e| =1,

P (C)NC=0=¢(C")NC".

Proof. We prove the first statement only. By applying —e to both sides, we
may assume that the sum of the entries of ¢ is non-negative. Let x be in ()
then we have

f(z,e1+e) = &(z,61) +E&(p7 (x),6 — 1) + E(¢°(2),€1)
= 2+4+&(p"(7),e —&1)

If € — £ is in the fourth quadrant, then the remaining term is non-negative
and this would contradict £ < 47!, A similar calculation, using ¢ and 7
instead, would contradict n < 47! if ¢ — g4 is in the second quadrant. The
only remaining case is ¢ = (1,1) = &1 + g¢. Following the same reasoning
as in the first case above, we have a contradiction unless £(x,e1 + £6) = 0.
Then we have

E(p*(z),e1) = &(z, 61+ €6) — E(x,86) =0— 0= 0.

As no(¢®¢(x),e1) = 0, by condition 2 of a standard pair, it follows that ¢°¢(z)
and ¢°17%6(x) are in the same class modulo ker(& x ng). It also follows from
the defintions of the quotient system ¢y, that

Pesemo (Texmo () = Texny (97 (7))
Peieno Texno (97 (2)) = Tesy (07770 (2))

From this, we arrive at a contradiction to condition ngy,, < 47! from property
3 of a standard pair. This completes the proof.
O

Proposition 5.37. Let £,n be a standard pair of cocycles on (X, ). Let Z
be a clopen subset of X which is ker(& x n)-invariant in the sense that if ©
is in Z, then its ker(§ X n) equivalence class is in Z. Let

B={ze€Z|0£E@NE,B ={zeZ|0+#E(@)nEY}.

Then, for any ker(§ X n)-invariant probability measure, u, on X, we have
u(B) < pu(2)/2 and p(B*) < u(Z)/2.
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Proof. We define a map v : B — X such that v is injective, v(B) N B = ()
and Graph(vy) C ker(§ xn). As Z is ker(§ x n)-invariant, we have v(B) C Z.
From this it follows that

w(Z) > u(B) + pu(y(B)) = 2u(B),

and we are done. We construct v as follows. If E(z) C E, then we set
v(z) = ¢ (). As & x n(x, E*) is contained in E* U {0}, we must have
&€ x n(x,e5) = 0 if E(z) C E. This means that (z,7y(z)) is in ker(§ x n) for
such z.

If E(z) is not contained in E, then by Theorem 5.34 we have E(z) is
either {1, ¢} or {e4,3}. Moreover, there is exactly one point in each Ry,
equivalence class taking each of these values. If E(z) = {e1,54}, we define
v(z) to be the unique point such that & x n(z,v(z)) = 0 and E(y(z)) =
{€6,¢5}. If E(z) = {e4,e3}, we define y(x) to be the unique point such that
& xn(z,y(z)) =0 and E(y(z)) = {e5,€4}-

We must check that v is injective. Clearly the restriction of v to the two
cases, E(x) C F and its complement, are injective. Let us consider the case
E(z) C E and E(2') = {e1,e6} and suppose that y(z) = y(z'). This means
that y(z') = ¢*5(z). For some ¢ in E, we have £ xn(z,¢) = ¢; with 1 < < 3.
Consider

Exn(¢f(z),—e+es+es) = Exnle(z),—¢)
+& x n(x,e5) + & x N(p™(2), €5)
—&i + 0+ & xn(y(z'), e5)
€i+3 T €5

using Theorem 5.34. But this contradicts either the smallness of £ or n (or
both). The other case is done in a similar way. We omit the details. O

6 Construction of the AF-relation R

In this section, we will construct an AF-subrelation R C R,. This will be
done by constructing an increasing sequence of compact open subequivalence
relations. These, in turn, arise from pairs of cocycles for (X, ¢).
With ro, and s as in the hypotheses of 4.1, we find sequences of positive
numbers:
TL>TI > Ty >, > Ty > > s > T,
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and
§1 < 8 < 89 < Sy < 83 < 8y < e < Soo,

such that for any M > 2 and any n > 1, there is a cocycle £ which is strictly
positive on C(r,,r") and £ < M~ ! and a cocycle n which is strictly positive
on C(sy,,s!) and n < M. We also set 7y = r{, = +00 and sy = s, = 0.

Let us outline our plan for construction of an AF-relation R C R,. For
each n > 0, we will select a pair of cocycles " and n™. These will satisfy a
long list of properties (numbered 1 to 11). We will have

1. For all n > 0,
R, = ker(&" x n")

is a compact open subequivalence relation.

2. Foralln >0, &" x n™ is surjective.
We let X, = X/R,, and 7™ be the quotient map from X to X,. By
5.17, there is a natural induced system on X,,, which we denote by ¢,,.
3. Foralln >1, &"(R,-1) = n"(R,—1) = 0 and hence, R, D R,, ;.
This implies that there is a natural quotient map, which we denote 7,
from X,,_; = X/R,_; to X,, = X/R,, which satisfies 7, o 7"~ ! = 7"
4. For all n > 0, R, has capacity n (Definition 5.6).
5. Foralln > 1, (£™)g,_,, (n")r,_, are a standard pair of cocycles for the
SYStem Xn—la Pn—1-

By the results earlier on standard pairs of cocycles, there are canonical
lifts 0y,, 70 : X, = X1, for alln > 1. We then inductively define maps
o": X, —wXand71™:X, - Xbyol=0, 7t =7,0"=0"1oo,
and 7" = 7"l o1, for n > 2. It is easy to check that 7" o o™ and
7™ o 7" are the identity map on X,,.

6. For all n > 1, 0™(X,) N¢™(m™(X,)) is empty if |m| < n.

We will need ’liftings’ of the quotient system to X. This is achieved by
defining maps u,, and v, as follows. We define u,,, v, : X,, — Z? by

oo (z) = " oo"(a),

" ogM(@) = ¢ oo (z)
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for all z in X,,. It follows from Proposition 5.17 that u,,, v, are contin-
uous functions. We define

U, = sup{|u,(z)| | x € X} +sup{|v.(z)| | z € X }.

We will have the following conditions.
7. For all n > 0, u,(z) € D(sp,s),), for all x in X,.
8. For all n > 0, v,(x) € D(ry,r}), for all x in X,.
9. For all n > 1, we have v, (x) £ u,(2') is in D(r,,r}), for all z, 2" in X,,.
10. For all n > 1, we have
|un ()], [on (2)], [un(2) £ vn(2")] = Un,
for all z,z" in X,,.
11. For all n > 0, we have

[un(x) + D(sp,, 50)] N [(Z2 — C(Tny1, T;H—l)) + Un(xl)]

C —C(8p4155n11)
for all z,z" in X,.

We begin with £° = & and n° = 7, as before. Then R° is just equality,
X = X and 7%, 0%, 70, for convenience, are all the identity. Finally, we have
uo(z) = (1,0) and vo(z) = (0,1), for all z in X and (,75) in Z2. It is then
easy to see that conditions 1, 2, 4, 6, 7, 8 hold for n = 0. We claim that 11
also holds. As vy(z) = (1,0), ug(z’) = (1,0) and sy = sy = 0, any vector
of the form vy(z) + D(sp, o) is (4,1) for some 7 > 0. For this to also be in
[Z? — C(ry,r})] + (1,0), we must have (i — 1) < 1 or (i — 1) < 1 which
implies 1 < ri'+1 <rgl+1<storelses <ri'+1<rgl+1<szh.
This then implies that s;72 < 1 and s}¢ < 1. This implies that (—i, —1) is in
C(s1,s}) and the conclusion follows.

Next, we assume that £"~! and 1"~! have been chosen, for some n > 1
and the conditions above are satisfied. We describe the process of selecting
&" and n".

The following result follows at once from the definition of u, 1,v, 1 and
U, 1. We omit the proof.
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Lemma 6.1. For all x in X, and k in Z? with |k| <1, o™ ' (¢F_,(z)) =
(o™ (), for some | in Z? with |I| < U,_;.

First, we select M such that the following holds
M > 2(n+ 2diam(R,—1) + Up—1) + 1.

We apply 5.19 to €771, n""!, to find M sufficiently large so that, if § is any
cocycle,

0 <M ' implies 0 _, <4 (5)

Observe that the sets D(s, 1, s,,_;) and Z?—C(s,, s) satisfy the hypotheses
of 5.2. We require that M —2U,, ; is a (n+diam(R,,_1))-separating constant
for these. The sets C(sy, si,) and Z2—C((2s,+5%)/3, (sn+2s,)/3) satisfy the
hypothesis of 5.2 and we require that M —U,,_ is a U,,_;-separating constant
for these. The sets —C(s,, ) and Z?*—[—C((2s,+5,)/3, (sn+2s,)/3)] satisfy
the hypothesis of 5.2 and we require that M — U,_, is a U,_;-separating
constant for these.

Then we choose £ to be any cocycle which is strictly positive on C((2r, +
r!)/3, (rn + 2r!)/3) and so that £ < M~!'. Note that C(r,,r!) is contained

in C((2rn, +1%)/3, (rn+ 2r})/3) and so £ is also strictly positive there.

Lemma 6.2. The cocycle g, _, for the system (Xp_1, pn_1) is strictly posi-
tive on Q4 and £g, | < 4%

Proof. Tt suffices to check positivity on the generators (1,0), (0, —1) of Q.
Using the definition of (g, ,, we have, for any = in X,,_4,

Eroy (0,000 (2) = E(0" (@), 0™ (Y (@)))
= £(0" M(x), "1 @ (0" L (2)))

By induction hypothesis 9, u,_1(z) is in D(s,_1,s,,_;) which is contained in

C (rn, 1) and hence the value of ¢ above is non-negative. For z in X,,_;, we
let 2/ = 90( 1 )( ) so that

Epps (@, 007 (@) = —Er,, (0070 (@), 2)
= —5n1<x,so°’”( ))
= —£(0" (@), 0" (e ("))
—£(0™ (@), @ @) (0™ (')
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By induction hypothesis 9, we have v,_;(z) is in D(r,_y,r},_;) which is
contained in —C(ry, 7)) and hence the value of £ is non-positive. To see that
&R, _, 1s proper on ()4, we have, for any = in X,,_; and 7,7 > 0,

Epn (2,00 D (@) = E(0™ H(2), 0" (0" (1))

where u is a sum of i vectors of the form u,_1(-) and j vectors of the form
vp—1(+). It follows that as i + j tends to infinity, so does the vector u. More-
over, as u,_1(-) and v,_1(-) are in C(ry,77,), so is u. Properness follows.

The fact that £p, , < 47! follows from the choice of M and ¢ < M~1. O

Having established this result, we now have the quotient (Xn-1)e, _ xno»
the quotient map mg,  «y, from X, ; to this space. Moreover, we find
standard liftings Ot xmo and Tep, | xno S IN Definition 5.21. For notational
purposes, it will be useful to let

Y = (anl)ﬁRn,l X101

(Qpn—l)&zn_l X110 3
TR, 1 XT0>
= O¢tgr, ;%m0

9 9 3 €

Ry, _1 XM0

We let S denote ker(¢éF-1 x p™~1). First, notice that S D R, ; since
R, 1 = ker(¢"! x 1) and £fn-1(R,_;) = 0. Next, we have S = (7"~ x
7 ) (ker(ég,_, x 0} '))). By Lemma 5.18, we have nf;' = no and
ker(ég, , X mo) is a compact open subequivalence relation of R, , and
&r,_, X Mo is surjective by Lemma 5.20 . It follows that S is a compact
open equivalence relation and £f»-1 x n"~! is surjective. We note that we
have a canonical lift 0"~ o O¢n, , xno fOT the quotient map from X to X/S.

Now we observe that as £ is proper on C(ry,,r}), it is also proper on
D(sy, s),). Therefore, we may find a constant K such that, if [(x, k)| < 1,
then |k| < K.

We select IV such that the following hold. First of all, we have

N > 2(n+diam(S) +U,_1) +1 (6)
N > diam(S)+U,-1 + K (7)

and, by application of 5.19 to £B»-1 n"~1 if § is any cocycle
f <N ' implies g <4 (8)
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The sets Q1 N [Z? — C(rn41,7h41)] and Z2 — [—C(spi1, Sh4q)] satisfy the
hypothesis of Lemma 5.2 and we choose N such that N — U,,_; — diam(S)
is K-separating for these sets. The sets Z2 — [C((2r, +7)/3, (rn + 27)/3)]
and C(rp,r.) also satisfy the hypothesis and we require that N — U,_; be
a K-separating constant of these sets. The same also hold for the sets Z2 —
[=C((2rn +713)/3, (rn + 2r7,)/3)] and —C'(rn, 17,)

We choose 7 to be any cocycle which is strictly positive on —C((2s,, +
s')/3, (sn + 2s)/3) and such that n < N~'. Note that as —C(s,,s),) is

contained in —C((2s,, + s%,)/3, (sn + 2s.,)/3), n is also strictly positive there.
We now define new cocycles ¢ and ' for X, ¢ by

g =gt g =p°.
Specifically, we have

(z,y) = &o" o (z),0" 0" (y)),

W (z,y) = n(e"ooomon"(z),0" ogomon"(y)),

for all (z,y) in R,. Note that in the case z,y are in the range of o™ !, we
have &(z,y) = &'(z,y). Also, if x,y are in the range of 0™ ! o o, we have
n'(z,y) =n(z,y). We also note that ({)r,_, =&r,, and (1)s = ns.

Lemma 6.3. The pair (§')r,_,, (N')r, , is a weak standard pair for the sys-
tem (Xn—la Qpn—l)-

Proof. We have already established that (¢')gr,_, = &g, _, is strictly positive
on Q4. We apply Lemma 5.15 to note that (7%)g,_, = (7&,_,) "»-1. We also
note that S = ker(§%»—1 xn" 1) so Sp,_, = ker((f—1)g _ x (" Y)g,_,). By
Lemma 5.15, we have (£fn-1)p = ¢g | and by Lemma 5.18, (" Vg, _, =

Mo-

We now consider the desired positivity of (7°)g, ,. It follows from the
definitions that ((775)RTH),an_l><,,0 =ng. Let x bein Y and 2/ = ¢(“19(x)
so that

ns(z, 910 () = —ns(a’, 0 (2)).

It follows from Lemma 5.23 that for some 7 > 0, we have

oWO@) = o
W@ = ¢ oo()
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where v is the sum of i vectors of the form wu,_;(-). By hypothesis 7, u is
in D(sp_1,s!,_;) and hence also in C(sy,s,). The desired positivity of ng
follows since 7 is positive on —C'(sy, s},).

Now, we consider the other generator, (0,1). Again using Lemma 5.23,

we have that, for any = in Y, there is j > 0 such that

oV (z)) = oY (o(2))

and hence
o ®D(z))) = (6" 0 o(x))

where v is the sum of a vector of the form v,_1(-) and j vectors of the form
Up—1(+). From Lemma 5.22, we also know that

-1 = &, (0(@), 0 11 V(o))

(0" (o(@)), o™ (Y (0(x)))
(0" Y(o(2)), ¢ (6" (o(2)))

where v is of the form v — u, 1(-), with v as above. It follows from the
positivity of & that v' is not in C(ry,7}). The vector v is in both [Z% —
C(rn, )]+ tn-1(-) and in v,_1(-) + D(sp_1, s,_;). It follows from hypothesis
11 that v is in —=C/(s],, s,). The desired positivity follows from that of 1 on
—C(s), sp)-

Finally, we must check that £g,_, x (9°)g,_, does not take the values
+(1,1) on X,,—; x B(0,1). Let z be in X,,_;. It suffices to consider the
vectors (1,0),(1,-1),(0,—-1),(1,1) in B(0,1). First, we consider ¢ to be
one of (1,0),(1,—1) or (0,—1). Each of these is in the fourth quadrant
and so the value of &g, ,(z,¢) is non-negative. We conclude that £, , X
(n*)r,_,(z,€) # (=1,—1). Next, we observe that 7y(x,) is non-positive.
Thus, &g, , X no(z,€) is again in the fourth quadrant. Since the cocycle
(n°)r,_, is constant on ker(¢g,_, x mo) and is non-positive on the fourth
quadrant for the system Y, ), we see that (n°)g,_, (z,¢) is non-positive. We
conclude that &g, _, X ng,_,(z,e) # (1,1). It remains to check the case
e = (1,1). We use that fact that g _, X ng,_,(z,(1,1)) is of the form
&€ xn(0™" Y z),un_1(-) + vn_1(-)) and by hypothesis 9, u, 1(-) + v, 1(-) is in
D(rp_1,7)_,) which is contained in —C(r,,r}) and in —C(sn, sh). It follows
that the value of £, ,(z, (1,1)) is non-positive and that of (%), , (z, (1,1))
is non-negative. This completes the proof. O
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We are now ready to define our cocycles £" and n™. Let R’ denote the
equivalence relation on X,_; determined by the pair &g,_,, (n°)g,_, as in
Lemma 5.26. We use the standard lifting for the quotient of 5.26 to define

n ﬂ.n—l ﬂ_n—l -1 ! n
¢ =TT g =y,

Proposition 6.4. The pair (£",n") satisfy properties 1, 2, 8, 4 and 5.

Proof. Property 5 follows at once from our construction of £”,n"™ and Lemma
5.26. Properties 1 and 2 follow from this and Proposition 5.25. Property 3
follows at once from the definitions. It remains to show 4.

We first claim that diam((7"' x 7~ 1)"Y(R")) < 2diam (R, 1) + Uy, 1.

Let z be in X and k be in Z?. Suppose that (7"~ '(x), 7" (¢*(x))) is
in R'. It follows from the definition of R' given in Lemma 5.26 that either
we have 7 1(z) = 7" 1(¢F(x)), in which case |k| < diam(R,_1), or else
7" N x) = 51 (7" (pF(2))), for e = £(0,1). In the latter case, we apply
o™~ ! to both sides and obtain ¢'(z) = (™ (p*(z))), where v is of the form
vp—1(-) and |l|, |m| < diam(R,—;). Then we have | = v + m + k and hence
k| < |v|+ || + |m| < U,—1 + 2diam(R,,—1), which completes the proof of the
claim.

Property 4 then follows from an application of Proposition 5.16 (using
K =n). O

We define X' = X/ker(¢' x 1) = Xpo1/ ker((€r,_)® x nfp ). We let
7'+ X, 1 — X' be the quotient map and ¢’ and 7’ be the canonical liftings.
Let ¢' be the induced system on X’. Recall from the definitions given in
subsection 5.7, that the quotient map 7' is the composition of two maps,
from X, 1 to X,,—1/ker&g, _, X no and the second to X’'. The first of these
we are now denoting by 7. Similarly the lifting o’ is the composition of two
liftings for these same maps. The first lifting is now denoted o. This means
that

comoo =d.

From Lemma 5.26, the maps m, o ¢’ and 7 o g, are conjugacies between
(Xn, on) and (X', ¢'). We may define maps u/,v' : X’ — Z? by

'@ oo (@)  =a'on" N (@ V(2)),
om0 (@) =alor™ (e (@),

for all z in X.
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Lemma 6.5. We have

o™(Xy) o oo (X",
P = Pler(Y),
un(Xy) = u'(X'),
Un(Xn) v'(X7),

Proof. We prove the first statement only; the others are similar. We have

o"(X,) = 0" oo, (X,)
= 0" oo,(mod (X))

= ocoo'(X).

Lemma 6.6. We have
¢ < (M —2diam(Rn_1))"", 7' < (N = 2diam(S)) ™",

and
g < (n+2Un )0 < (n+2U,1) 7"

Proof. The first two results follow from Lemma 5.14 and the definitions. The
last two follow from the choice of M > 2(n + diam(R,_1) + U,_1) + 1 and
N > 2(n + diam(S) + U,_1) + 1. O

Lemma 6.7. The pair (§",n") satisfies property 6.

Proof. Property 6 involves only the ranges of the functions o™ and 7. In
view of 6.5, it suffices to show that &', n’ satisfy 6. Consider x in 0" oo’ (X")
and suppose that ©™(z) is in 7" ! o 7/(X"), for some m in Z?. We consider
the value of '(z, ™ (z)). If it is greater than 1 in absolute value, then since
& < (n+2U,1))"", |m| > n as desired. Next, suppose the value is either
0or 1. Let 2/ = 0" ({9 (7" 1(2))). Tt follows from the choice of U,_,
that z' = ©*(z) for some k with |k| < U,,_;. Consider

€ (w,2') = Epp_y (1" (@), 7" (@) = €y (7 (@), 03 (7" L (2))).

Note that 7"~ !(z) is in o'(X"). We apply part 3 of Lemma 5.30 to conclude

that &(z,2') = —1. Next, let 2" = 0" (o) (x"~(¢™(x)))). Arguing in
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a similar way, we have 1" = ¢!(¢™(x)) for some [ with || < U,_;. We
note that 7"~ (¢™(x)) is in 7/(X’) and again we apply 5.30 to show that
£"(¢™(x),z") = 1. Putting this together, we have z" = ¢~ ¥+4™(z') and

§(a2") = ¢ 2) + &z, 0"(2) + ' (¥"(2),2")

= &z, ¢"(x)) +2
2.

v

As & < (n+ 2U,_1)7t, we conclude that | — k + 1+ m| > n + 2U,_;. Since
|k|,|l| < U,_1, this then implies that |m| > n as desired. The only remaining
case is &' (z, ¢™(z)) = —1. We consider the value of '(z, ¢™(z)). Arguing in
a completely analogous way, we see that |m| > n, except for the case that
n(z, o™ (z)) = —1.

We are left to consider the case that &'(z, ¢™(z)) = n'(z, ¢™(z)) = —1.
We let z; = 7" 1(¢™(x)), 2o = o(n(x;)) which are in X,, ;. We note that
7" (o™ (z1)) = 2y = 7 (¢™(z)) and so 0" !(z;) and ¢™(zx) are in the
same R, 1 equivalence class and so

o™ Hz1) = ¢ (¢™(z))

for some k with |k| < diam(R,,_1). As ¢™(z) is in the range of 77! o 7/,
we have z; is in the range of 7/ and hence in the range of 7 and z; = Tom(x).
We also have o = o o m(z1). In particular, z; and z, are in the same
ker(€g, , X mo) class. Moreover, by Lemma 5.20 and the definitions of 7 and
o, we have xo = gogl__iio) (z1), for some 7 > 1. Applying 0" ! to both sides of
this equation, we have

0" Hzp) = (0" (21)), (9)

where u is the sum of i vectors in D(s,_1,s],_;), and hence is also in
/
D(sp—1,80,_1)-
We next consider

~1,0 1,0 ~1,0
Ery (050 (22), 90 (21)) = —€ryy (@2, 057 (2))
(1,0

+§Rn—1 ($2, xl) + é-Rn—l (.’131, Prn-1 (.’131))

The middle term is 0, because x; and x5 are in the same R&Rn,lmo class.
The first and third terms are both 1, by Lemma 5.22. On the other hand we
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may use the definition of &, to compute

Erns (P 1" (@), 00 (1) = €00 (ol 1 (22)),0™ (0l (21))
= £(p" (0" (a2)), 9" (0" (21))
= £ (0" (@), M (0" (w),

for some jy, jo with |71|,|jo| < Up_1. Now, & < M~" implies that |j; —jo+u| >
M, which in turn implies that |u| > M — 2U,,_;.

Now, we use that fact that n'(z, o™ (z)) = —1. We note that z is in the
range of 0”71 o ¢’ so that, from the definition of 7/, we have

1 = 77'(90"’(33), z)

= (¢ (0" (z1)),2)
u—l—lc—l—m( )’x)

(

= (0" (22), x)
(
(

= Mme

From the positivity of 7, we see that u — kK — m is not in —C'(s,, s,,) and
hence —u + K + m is in Z? — C(s,, s,). Now v is in D(s,_1,s,_;) and
|u| > M —2diam(R,,_1), which is a (n+diam(R,_;))-separating constant for
D(sy 1,8, 1) and Z2—C(s,, s,,). We conclude that |k+m| > n+diam(R,, ;).
Recall that |k| < diam(R,_1) which then implies that |m| > n as desired.

This completes the proof. 0

Lemma 6.8. Let x be in 0™(X,). There exists k,l in Z* with k|, |l| < U, 1
such that

E(z, ¢ (2)) = —1,n(z, ¢'(z) < —1.
Proof. By Lemma 6.5, we have z = 0" 'oo’(z'), for some z’ in X’. Applying
part (3) of Lemma 5.30 to the system X, i,¢,_1 and the standard pair
€r, 1, ()R, ,- we have
-1 = anfl(OJ(x,):&l)
= £(0™ (o' (2")), 0" i1 (0" ("))
= &(z, " (z)),

where k is in Z? with |k| < U, i, by Lemma 6.1.
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For the second part, we begin again with Lemma 5.30 to assert that

—1 = ()R, (0'(z),&5)
= (0" oo om(o'(z')), 0" oo om(pr (0’ (x"))))
n(o" " od'(a'),0"" 10007?(% 1(0'(=)))

= 7n(z,0" 100<>7r(90n_1(0'(96'))))-

By Lemma 6.1, we have
0" et (0'(a") = ¢ (0" 0 o' (a')) = (),

for some [ with |/| < U,_;. Next, we note that

gom(p,(0'(x)) = 5 (pi (o' (a")),

by 5.21, where i > 0. Applying 0" ! to both sides and using 7 again, we
obtain

0" hogom(gt (0 (a") = 97" 00" (e (0 (a')),
where u is the sum of ¢ vectors in D(s, 1, s!,_;) and hence is in D(s, 1, s/,_;)-
Putting this together, we have

n(z,¢'(x)) = nlz,0" " ooon(gi(o'(x)))
+n(o" oo om(prty(0'(a"))), ¢'(x))
n(e™ tooom(z'), 0™ ogom(p (o'(2')))
+n(a" oo om(prty(o'(a'))), 0" (<Pn 1(0'(2))))
—1=7(" (g (0'(2")), ¢ 0 0" k1 (0'(2"))))
< -1

!

Y

since —u is in —D(sp_1, Sp—1) which is contained in —C(s,, s},), where 7 is
positive. ]

Lemma 6.9. For any v in Xy, |up(z)| > M — Up_y and |va(z)] > N —
diam(S) — U,_1. Moreover, u,(x) is not in —C(ry,r),) and v,(x) is not in

C(sn, sh)-

n

Proof. As noted before, it suffices to show the result for v'(z') and v'(z'),
with 2’ in X' instead of u,(z),v,(x). First, we use from the definition of v/,
we have

" lo o'((p'(l’o) (ml)) — (pu’(w’)(o.nfl o a'(x')).
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Let z = 0" ! 0 0/(2'). From the definitions of £ and the action ¢’, we have
€(z, 9" (2)) =€ (0" o0 (a)),0" oo (Y (2))) = 1.

Next, we note that = and ¢* (*)(z) are in the range of ¢"~'. This implies
that

1=¢(z,9" ") (@) = £(z, "™ (2))
It follows at once from the positivity of £ that u,(z) is not in —C(ry, r},).
By Lemma 6.8, there is k with |k| < U,_; such that &(z, o*(z)) = —1.
Then by the cocycle condition

E(¢*(z), ¢ (2)) = 2.

Since &€ < M~ it follows that | — k +u/(z')| > M and the conclusion follows
from this. O

Lemma 6.10. For all x in X, u,(x) is in D(s,,s),) and |u,(z)] < K.

n

Proof. Again, it suffices show that for 2’ in X', u/(2') is in D(sy, s),). Let
z = 0" ' oo'(z'). Then by the definition of u'(z'), we have ¢*®)(z) =
0" 1o o' ("M (z"). In particular, *(*)(z) is in the range of 0"~ 0 ¢o’. By
the definition of the action ¢’, we have 7'(z, ¥ (*)(x)) = 0 and

€' (x, % @) (2')) = 1. Since both arguments are in the image of 0" ' o ¢,
we also have n(z, o*'@)(z)) = 0 and &(z, ¥ @) (z)) = 1. It follows from the
definition of K that |u/(z")| < K. Using Lemma 6.8, we may find [ with
| < U, 1 and n(x, ¢'(x)) < 0. Then by the cocycle condition, we have

(' (@), 0@ (z)) > 0.

From the positivity of n, it then follows that u,, — [ is in

72 — C((25, + 5.)/3, (sn + 25")/3). As [u/(2')] > M — U,_; by Lemma 6.9
and since M — U, _; was chosen to be U,_;-separating for

Z? — C((2sn + s4)/3, (sn + 25%)/3) and C(s,, s,,), it follows that u/(z) is not
in C(s,,s.) . By reversing the roles of z and ¢*®)(z) and arguing in a
completely analogous fashion, using a value of I’ with |I'| < U, _; we have
n(z, ¥ @) (2)) < 0. It follows that u'(z') + ' is in Z? — [—C((2s, +
$1)/3, (sn + 2s0)/3). As M — U,_; was chosen to be U,_;-separating for
Z? — [-C((2sn + 54)/3, (sn + 25)/3)] and —C(sp, s,) it follows that u'(z')
is not in —C(sy,, s),) . Since v'(z') is in neither £C(s,, s},), nor —C(ry,})
from the last statement of Lemma 6.9, we have v'(2') is in D(s,, s,). O

n—1

n
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Lemma 6.11. Let x be in X,, and let u be any element of Z? with |u| < K.
Then vp(x) + w is in D(rp, ). In particular, conditions 8 and 9 hold.

Proof. Again, we show the conclusion for the function v'(-) rather than v, (-).
Let 2/ be in X’ and let x = 0™ ! o ¢’. By definition, we have

5(30,90”(5”')(:6)) — é-(anfl Oal(x/)’(pv(w’) oanfl OG'(:E'))
— f(O'n_l o O_I(x/) o S0/(0,1)(33/))'

By Lemma 6.8, we my find k and [ with |k|,|l| < U,_; and
£, ¢ (2) = € (0" (x), 0" M (2)) = -1.
It follows that

f(gp”’(“’)(:ﬁ),(pk(ﬂc)) = —1,&(z, (pv’(w’)+l(x)) = —1.

It follows from the positivity of £ that k — ¢'(z') and v'(z') — [ are in Z? —
C((2rn +71))/3, (rn +2r1)/3). As N — U, is a K-separating constant for
the pair Z2—[C((2r, +71)/3, (rn+2r1)/3)] and C(ry,r!), we have that none
of v'(z') + u, —v'(z') — w nor v'(z') is in C(ry,r,). From Lemma 6.9, v'(z')
is not in C(sp,sh). It follows that v'(z') is in D(ry,,r),). By Lemma 6.9,
[v'(z")| > N — diam(S) — U,_1 > K and it follows that v'(z') 4+ u is also in
D(rp, 7). O

Lemma 6.12. Condition 11 holds for n.
Proof. Let v be in
[v' () + D(sn, 5,)] N [u'(2") + [22 = C(rny1,770)]]

for some z’, 2" in X'. Since v'(z') is in D(ry,r},), v is in the first quadrant and
lv| > |v'(2")| > N — diam(s) — U,_1. By Lemma 6.10, we have |v'(2")| < K.
The constant N — diam(S) — U,_1 is a K separating constant for Q; N
22 — C(rns1,mp 1)) and 22 — [=C(sni1, 55440)]; v = v'(a') — /(2") being
in Z? — [=C(sp41,8,,1)] would then be a contradiction. The conclusion
follows. O

From 6.4 and Proposition 5.7, we have the following result.

Theorem 6.13. Let X, be a minimal free Cantor Z? system. Given a
sequence of pairs of cocycles (£, ™) satisfying the conditions above, the re-
lation R = U2 Ry, is a minimal AF-relation.
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7 The boundary of the relation R

In this section, we define what we will refer to as the boundary of the relation
R.

Let X, ¢ be a free Cantor minimal Z?-system. Let (£",7") be a sequence
of pairs of cocycles satisfying the conditions of Section 6. For each n, we let

gn = (gn)Rn_lﬂln = (Un)Rn_l

which are a standard pair for the system (X, _1, ¢,_1). We let E, denote the
function E(-) of Definition 5.33 on X,,_; for the cocycles &,, n,. We will also
define the following. We define, for each x in X and n > 1,

E"(z) =¢&" xn"(z, EUE*) —{0}.
For convenience, we set E°(z) = EU E*, for all z in X.

Lemma 7.1. For each x in X and n > 1, we have

E"(z) = & X ma(7" H(z), E™ () — {0}
and
E"(z) C E (7" ().
If #E™(z) = 2, then E™(z) = E,(7" Y(z)) = {&i,&i_1}, for some 1 <1 < 6.
Proof. For 1 < i < 6 and n > 1, define ¢! = £" x n™(x,¢;). It follows from
the definition of the quotient system X, ¢, that ¢y (7"(z)) = 7"(¢% (x)).
By definition, we have E"(z) = {¢? | 1 < i < 6} — {0}. From the definition

of &, and 7, we also have " = &, X n,(7" ! (z), 7" (¢ (z))). Combining
these gives

E"z) = {e}|1<i<6}—{0}
= {& X np(7" (fEaW"_l(SDE'( )) 11 <i<6}—{0}

( )
= L& xm(m (@), (7" H(2))) | 1< i <6} - {0}
= {& x (" 1(96),81 Dl1<i<6}—{o}
= {& x (7" (2),¢) | e € B" }(z) — {0}} — {0}

and the conclusion for the first statement follows.
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The second part follows at once from the first and the fact that E"~'(z) C
EUE".

For the final part, if #E"(x) = 2, then also #FE, (7" !(z)) > 2, and by
part 2 of 5.34 it follows that E, (7" '(z)) = {&;,ei_1} = E"(z), for some
1 <4 < 6. Similarly, we have E, 1(7"(z)) = E"™(z) = {¢;,&;-1}, for some
j. Then we have

{561 = E"M(x)
= &n41 X 77n+1(7rn(x)’En($))
= &nt X (7"(2), {€3,€i11).

It follows from part 2 of Lemma 5.31 that i = j. Continuing inductively
establishes the last part. O

Lemma 7.2. Let x be in X. The sequence #E™(x),n > 2, is a non-
increasing sequence of integers, each at most 2. If it is constantly 2, then
for some i, E™(x) = {e;,€41}, for all m > 1. If there is N > 1 such that
#E"(x) = 1 for all n > N, then either E"(x) C E, for alln > N, or
E™(z) C E* for alln > N.

Proof. The first part follows from the last two results and 5.32. This second
part follows from 7.1 and 5.28. O

The difference between the relations R, and R is controlled by a ‘bound-
ary’. These sets fall into two groups, the boundary B;,1 < ¢ < 6 and the
corners C;,1 <1 < 6.

Definition 7.3. For each 1 <1 < 6, we define
Bi={z e X | & xn'(z,5) = e, #E"(z) = 1, for alln > 1}

and
C;={z€ X | E"(z) ={ei,ei 1}, for alln > 1}.

Also, we let B=U}_B;, B* = U%_, B;.
The following alternate characterization of the C; sets will be useful.

Lemma 7.4. For each 1 <1 < 6, we have

Ci={z € X |E,(n""(x)) = {ei,ei_1}, for alln > 1}.
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Proof. Suppose that z is in C;. Then, E™(x) = {g;,&;_1}, for alln > 1

and it follows from Lemma 7.1 that E, (7" '(z)) = {&;,&;_1}, for all n > 1.
Suppose that, for n > 1, we have

E,.(m Y (x)) = E, (7" '(z)) = {&i,&;—1}. We prove inductively that E"(z) =

{€i,€i_1}, for all n > 1. Tt is true for n = 1 since E'(z) = Ey(7°%(x)). Assume

it is true for n — 1, with n > 2. We know that

{ei,€i-1} = En(n" 1)) = & X nu(7" H(z), EU E¥).
It follows from the last part of Lemma 5.32 that
{eiein} = & xm(n" ' (2), {ei,€i1}) — {0}

= & xm(r" 7 (2), E" (2)) — {0}
= E"(x)

using the induction hypothesis and the first part of Lemma 7.1. 0

Lemma 7.5. For all 1 < 1 < 6, B; and C; are closed, pairwise disjoint
subsets of X. Moreover, we have

E" (% (Bi)) = —E"(B),
for all n > 1, and in particular,
¢ (Bi) = Biys.

Proof. The fact that the sets are closed follows from the continuity of the
cocycles,and hence the continuity of the functions E™. It is obvious from the
definitions that the sets are pairwise disjoint.

It follows from the cocycle condition that, for any n, £&" x n*(z,&;) =
—&" x n"(¢% (), —e;). The last statement follows at once from this and
—&; = &j+3- O

Lemma 7.6. Let x be in X. Suppose that, for somen >1 and 1 <1 <6,
En(x" () = {ei, eim1},

then

En(SDZiA(Wn_l(»T))) = {€it4,€ir3}s
' {5i+2: 5z‘+1}-

=
—
AS)
3o
LL
—
N
3
L
—
8
~
~
~
Il



In particular, we have

¢ (C;) = Ciga
90&_1(01') = Ciya.

Proof. The first statement follows from Theorem 5.34. The last part follows
at once from the first and Lemma 7.4. O

Definition 7.7. We define § : B — B* by 5|B; = ¢, for 1 <i < 3. We
also define, fori = 1,4, viyo : C; = Ciya, Viga : Ci = Cigs by vigo = ¢"1|C;
and Yiyq = ¢°|C;.

Lemma 7.8. 1. Forn>1, z in X,_1 and m in Z?, we have

Im|+1

0 % oz, m)] < T

2. Forn>1, z in X and m in Z2, we have
€% x " (z,m)| < [€"1 x "7 (z,m)],
with strict inequality if the right hand side is greater than 1.

3. Forx in X and m in Z?, the sequence £ x ™ (x, m) is either eventually
0, eventually in E or eventually in E*.

Proof. For the first part, let k£ = @ if |m| is even and k = W'T“ if |m| is
odd. There is a path 0 = mg, my, ..., mg = m, with |m; — m;_1| < 2, for all

1 <3 < k. Since &,,n, are small, we have
0 5 )| = | 30 6 X (@5 (@), e — i) < 301 =K.
i i

The result follows.

For the second part, let m,, = £" x n™(x, m). By the definition of ¢, this
means that @™ (7™(x)) = 7"(¢™(z)), for all n. Then, using the definition of
&ns ny, We have

m, = & xn"(xr,m)
= & X (7" (), 7" (™ (@)
En X (7" (), ™1 (7" ()
= & X (7" (2), mp 1)



Now we may use part 1 to conclude that |m,| < w The conclusion
follows from this.

From the second part, we see that for some n sufficiently large, |£™ X
n"(z,m)| < 1. If it is zero, then (x, ¢™(z)) is in ker(£" x n") = R,,. Then it
is also in R,y for all n’ > n and hence & x 5" (x,m) = 0. The other cases
follow immediately from Lemma 7.2. O

Proposition 7.9. Let x be in X.

1. If there exists ' in B such that (z,x') is in R, then there is N > 1
such that, for all, n > N, E,(7" Y(z)) N E # 0.

2. For any 1 < i < 6, there erists z' in C; such that (z,2') is in R if
and only if there is N > 1 such that, for all, n > N, E,(7" !(z)) =

{€i, 51’—1}-

Proof. First suppose that there is 2’ in B such that (z,z') is in R. Then
(z,2') is in Ry_y for some N. Then, for any n > N, 7" !(z) = 7" (')
and it follows that E, (7" !(z)) = E,(7""!(z')). From Lemma 7.1, we have
E, (7" (z")) D E™(z"), which is non-empty by the definition of B. Also from
the definition of B, E'(z') is in E. It then follows inductively from Lemma
7.2 that E™(2') is in E for all m > 1. This implies that E, (7" '(z)) N E is
non-empty for all n > N.

Suppose that (z,2') isin R with 2’ in C;. Then (z,2') isin Ry_1, for some
N. Then we have 7" 1(z) = 7" 1(2) and E,(7" (z)) = E,(7" (")), for
alln > N. By Lemma 7.4, we have E, (7" (') = {&;,&;_1}, for all n > 1.

As for the converse, we first consider the case ¢ = 4. suppose that
E.(m"Y(z)) = {es,e3}, for all n > N. Let ' = o" (7" (x)). Clearly,
7N (2") = 7V (z) and so (z,z') is in Ry and hence in R. It follows inductively
from Theorem 5.34 that E, (7" (') = {e4,e3}, for all N > n > 1, and
hence z' is in Cy by Lemma 7.4.

Hence, 2" is in Cy. The case i = 1 is done in a similar way, replacing
o by V. O

Proposition 7.10. The equivalence relation R, is generated by R and
graph(B).

Proof. Let z be in X and k be in Z2 We will consider the pair (z, ¢*(z)) in
R,. Consider the sequence £V x n™¥(z,k), for N > 1. If, for some N > 1,
the value is 0, then (z, ¢*) is in Ry = ker(¢"Y x n) and hence in R.
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We now consider the case that &V x p™(z, k) # 0, for all N > 1. By
Lemma 5.28, there is some N such that £V xn™(z, k) = ¢;, for some 1 < i < 6.
We now assume that 1 < ¢ < 3. In the other case, interchanging = and
©*(z) will replace &; with —e; = ¢;,3. By applying Proposition 5.35 to the
point 7¥71(z), we may find zx_5 in Xy_p such that 7y_;(zy_2) = 7V ()
and &y 1 X ny_1(z,&;) = &; and Exy (7Y "2(znx_2)) = {&;}. By repeating
N — 1 applications of 5.35, we find a sequence of points z,, in X,, such that
Tmt1(Tm) = Tmat, Ema1 X Nmat1 (Tm, &) = & and Ep i1 (zn) = {&}, for all
0 < m < N —1. Finally, zy is in X. We have 7% 1(z5) = 7V 1(z) and
so (z,zo) is Ry_1 and hence in R. Moreover, " x n"(xg,&;) = {&;} and
E™(zy) = {&;}, for 1 < n < N, by application of Lemma 7.1. Next, we
observe that

TV @ (@0)) = P (7 (o)) = oy (VT (@) = 7V (0" ()

In particular, (¢ (), ¢*(x)) is in Ry ; and hence in R. It follows then
that for any n > N, £" x n"(z, 9% (z)) = € x n™(z,¢*(z)). This means
that E"(z,) is non-empty for all n. As E'(z,) contained a single element, &;
and #E™(z,) is non-increasing, it follows that #E"(zy) = 1, for all n. Hence
xo is in B; C B. Note that from Lemma 7.5, ¢®i(zo) = S(z¢) is in B* and
(%o, ¢ (x0)) is in graph(B). This completes the proof. O

We must show that the sets C; and B; have measure zero, for all R-
invariant probability measures on X. We begin with the C}.

Lemma 7.11. Let 1 < i < 6. The sets ?(C;), for j in Z* are pairwise
disjoint.

Proof. We consider Cy. It suffices to show that if & is in Z2 and z, 2’ = ¢*(x)
are both in C4, then £ = 0. By Lemma 7.8, there is n > 1 such that
£ x n"(x, k) is either 0 or is E or E*. If it equals 0, then (z,¢*(z)) is in R,
and 7"(z) = 7" (2"). As z,2' are in Cy, we have for every m > 1,
E™(z) = En(m™ *(2)) = En(7™ '(a")) = E™(2) = {e4, &3}
By applying Theorem 5.34 inductively for m =n,n —1,...,0, we have
7™(z) =opo-rop0om(x) =00 o0 (2)) =7 (2).

Finally, for m = 0, we have x = z/. This implies that £ = 0.
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Next, we consider the case " x n"(z,k) = & € E. Then we have
G (@) = 7 (@) and

E"(z) = B, ("} (2)) = E"(2") = B (7" (2)) = {e4, &3}

This contradicts Lemma 5.36.
The case of C is done in a similar way and the other four cases follows
from Lemma 7.6. 0

Lemma 7.12. C; x C; N R is non-empty if and only if i — j is even.

Proof. The ‘if’ direction follows immediately from the last statement of
Lemma 7.6. For the ‘only if’ part, assume that 7 is even while j is odd.
It follows from the definition of Cj, part 2 of Theorem 5.34 and a simple
induction that, for any n > 1, C; is in the ¢-orbit of ¢"(X,,) while C; is
in the g-orbit of 7(X,,). But it follows from property 6 of our sequence of
cocycles ", n™ that there is no orbit which meets both ¢™(X,) and 7 (X,,)
for all n > 1. O

Lemma 7.13. Let u be a R-invariant probability measure on X. For any
1 <11 <6, we have u(C;) = u(B) = pu(B*) = 0.

Proof. For any n > 1, let u, be the measure on X, induced by u. Fix
N > 1 and define By = Xy. We then define B, in X, inductively for
k=N —1,...,0, finishing with By in X. Let

B, 1={zx e, (B,) | E,(x) N E # 0}.

It is clear from 7.4 and the definitions that C, Cy, C3 and B are all contained
in By. Moreover, for each n, we may apply Proposition 5.37 to conclude that

pn1(Bn-1) < prn-1(m, " (Bn))/2-

From this it follows that u(By) < 2 ¥uy(By) = 27V and hence each set
C1,Cy,Cs and B has p-measure less than or equal to 27~. As N was arbi-
trary, the conclusion follows. O

8 Construction of the AF-relation R’

Unfortunately, the relation R is slightly too large for us to apply the absorp-
tion theorem of [GPS2]. We define an open subequivalence relation R’ as
follows.
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We define a set of labels A = {1,1',2,3,4,4',5,6}. This is endowed with
acyclicorder: 1 <1 <2<3<4<4 <5<6<1. We write [i,j] to
denote all k such that i < k£ < j. We also let p(i) denote the predecessor of
7in A.

For each n > 1, we will inductively define a continuous function

A X — A

We begin with n = 1 and first set \! to satisfy: \'(z) =i if E'(z) = {&;,6i_1}
or if E'(z) = {&;}, for some 1 < i < 6. Values of A\' on other points in X
may be made arbitrarily, so long as A! is continuous.

For n > 2 and z in X, having defined A\"~!(x), we define A\"(z) as follows.
First consider z such that E,(7" (z)) = {&;,ei_1}, for some 1 < i < 3.

Then we set fi < Anl(z)
w0 i< ATTHz) <4
N'(z) = { p(i) if 4" < AH(z) < p(i)

Similarly, if E, (7" !(x)) = {ei,&i-1}, for some 4 < i < 6. Then we set

{ i if i < A" l(z) <1

N'(z) = p(i) if 1 < A" 1(z) < p(i)

Next, we set \"(z) = 1 if E, (7" !(z)) = {&;}. Finally, we set \"(z) =1 for
all other values of x.
We first establish some simple facts about the functions A".

Lemma 8.1. Let (z,y) be in R, 1, for somen > 2.
1. If (z,y) s in R, 1 and X" '(x) = X" !(y), then A\"(z) = \"(y).

2. X'(x) and \"(y) are either equal or adjacent symbols, and neither of
the pairs 1,1" nor 4,4'.

3. I A"(z) = i and \(y) = p(i), then Ey (7" (z)) = {15 1}
4 A (2) = i and X+ (y) = p(i), then A(2) = i and A (y) = p(i).
5. If, for some i, we have
Ep(1"7H(2)) = Epp1 (7"(2)) = {ei, 801},
then
A (z) = AT(z).
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Proof. As (z,y) is in R,_;, we have, for all m > n, 7' (z) = 7™ *(y) and
hence, E,, (7™ '(z)) = E,(m™ '(y)). Part 1 follows from the observation
that A\" depends only on E, (7" '(z)) and A\"~!(x). The second and third
parts follow easily from the definition of A”. For the fourth part, it follows
from part 1 that A\"(z) # A"(y). Hence they are of the form j, p(5), for some
j. But from the definition, A\"*! will only distinguish two adjacent symbols
if 1 = j and in this case, we also have the desired conclusion. For the final
part, E,(m" 1(x)) = {e;,&;_1} implies that \"(z) is either i or p(i). The
conclusion follows from the definition of A"+, 0O

We are now ready to define our new relation R'.
Definition 8.2. For each n > 1, we define
R, ={(z,y) € B, | \"(z) = A"()},

and
R' =UX | R].

Observe that, by part 1 of Lemma 8.1, we have R, _, C R/, for all n > 2.

A crucial step in our application of the absorption theorem is establishing
certain properties of our AF-relation on the sets B and B*. Toward that end,
we show how the functions A" behave on these sets.

Lemma 8.3. 1. Ifx isin B, then 1 < \*(x) < 3, for alln > 1.

2. If x is in B and \"(x) =1, for some n > 1, then
B (m"(2)) # {es, €3}

3. If z is in B*, then 4 < A\"(z) <6, for alln > 1.

4. If x is in B* and \"(z) = 4, for some n > 1, then

Epi (7" (7)) # {e1, €6}

Proof. First, for any z in B (or B*, respectively), E™(x) is a single element
of E (E*, respectively). We claim that if \"(z) = 1, for some n > 1,
then FE,.1(7"(x)) # {es,e3}. As 1 is not the predecessor of any j, the
only possibilities for E, (7" (z)) are {¢,} and {€1,&¢}. In either case, since
we know that E™(x) is a singleton subset of this and contained in E, we
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must have E™(z) = {e;}. It follows from Lemma 7.1 and Lemma 5.29 that
E"™t!(x) # {e3} and the conclusion follows. We now prove the first statement
by induction. The case n = 1 follows from the definition of B and \!. Assume
it is true for n—1, for some n > 2. We know that E,, (7"~ !(z)) contains E"(z),
by Lemma 7.1. Hence, it is either {¢;}, for some 1 < ¢ < 3, in which case
we are done, or else {g;,¢; 1}, for some 1 < i < 4. First consider the case
2 < i < 3. The value of \"(z) is either ¢ or p(i) and we are done. Next
consider the case, i = 1. By the induction hypothesis, 1 < \"7!(z) < 4,
and hence \"(x) = 1. Finally, consider the case i = 4. We know from the
claim above that \»~!(z) # 1. It follows from the definition that \"(z) = 3.
The proofs of the last two statements are analogous to the first and we omit
them. O

Lemma 8.4. Let x be in BUB*, and letn > 1. If, for somei, E (7" '(z)) =
{€i,€i_1}, then we have

Ne) = { p(i) if B"(z) = {ern)

Proof. We consider only the case x is in B, the other is similar. We know
that E"(z) C E,(7"'(z)) and also, from the definition of B, that E"(z)
is a singleton. We consider the statement, for each positive n, that if
E, (7 !(x)) = {&;}, then \"*(x) =i and if E,, (7"~ '(z)) = {&;,€;_1}, then the
value of A" (z) is given as above. We prove this statement by induction on 7.

In the case n = 1, we have E"(z) = E, (7" '(z)), which is a singleton
and the result follows from the definition of A\!. Suppose the statement is
true for n. The case of E, 1(7n™(z)) being a singleton, the conclusion follows
from the definition. Next, suppose that E, 1 (7"(x)) = {&,€;—1}, for some
i. Since this contains E"*!(z) which is in F by Lemmas 5.28 and 7.1, we
have 1 < 7 < 4. In the case ¢ = 4, it follows from part 2 of Lemma 8.3
that A\"(z) # 1. In the definition of \"™' 4 < A\"(z) < 1 is impossible
and so \"*!(z) = p(4) = 3. On the other hand, as E""!(z) is a subset
of E,,1(7"(x)) and in E, it follows that E"*!(x) = {e3} and we are done.
Next, consider the case i = 1. Again as E""!(z) is a singleton subset of
Eni1(7™(x)) and is contained in E, we have E""!(z) = {e;}. On the other
hand A\"*1(z) is either 1 or p(1) = 6, but the latter is not possible by part
1 of Lemma 8.3. Hence we have A\"™!(z) = 1. Finally, we consider the case
2 < i < 3. Suppose that E, (7" '(z)) = E,1(n™(x)). Then by part 5 of
Lemma 8.1, we have \"™!(z) = A\"(z). On the other hand, applying Lemma
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5.28 and Lemma 7.1, we have

E™ @) = &ni1 X Mo (7"(2), B (2)) — {0}
E™(z) - {0}

The conclusion follows from the induction hypothesis. Next suppose that
En(m" }(z)) # Epy1(n™(z)). Then either E, (7" (z)) = {&,} for some 1 <
j<3or E,(m" *(z)) ={ej,gj_1} for some 1 < j < 3 and j # i. Let us first
suppose the former occurs for some ¢ < 57 < 3, or the latter for 7 < 7 < 3.
In the former case, the value of \"(x) is j and in the latter, it is either j or
p(7) > 4. In any case, we have 7 < \"(z) < 3 and it follows that \"*!(z) = 1.
On the other hand, we consider the value of E"(x). It is {&x}, where k = j
or k = j — 1. In any case, we have 1 < k < 3. Since, E""!(z) is a subset
of E,1(n"(x)), it is either {g;} or {e;_1}. If it were the latter, then we use
Lemma 7.1 to see
nt1 X M1 (T7(2), €) = €41

Since E,1(n™(z)) = {&i,€i_1}, part 2 of Theorem 5.34 asserts that

Eny1 X 77n+1(7fn($), €z') = &4, &pp1 X 77n+1(7Tn($); 5i71) =&i—1.

The fact that + — 1 < ¢ < k means that we have contradiction to part 1 of
Lemma 5.31. We conclude that E"*!(z) = {g;} as desired. The proof in
the remaining case when E, (7" }(z)) = {¢;} or E,(7""*(z)) = {¢j,&j_1} for
some 1 < j < 7 is similar and we omit the details. O

Lemma 8.5. 1. Suppose that x,y are in B with (x,y) in R,_1, for some
n > 1. Then \"(x) = A\"(y) if and only if (B(x), B(y)) is in R,.

2. Suppose that z,y are in B* with (z,y) in R, 1, for somen > 1. Then
A"(x) = A*(y) if and only if (B~ (x), B~ (y)) is in Ry.

3. Suppose that x is in B and there is N such that, for all n > N,
E.(m Y(x)) = {ez,e1} and \*(z) = 2, then \"(B(z)) = 5, for all
n > N.

4. Suppose that x is in B* and there is N such that, for all n > N,
E.(m" ! (z)) = {es,e4} and \"(z) = 5, then \" (87 (z)) = 2, for all
n > N.

63



Proof. We prove the first statement. Suppose that = is in B; and y is in B;.
For convenience, we define

e'(x) =& xn"(w,&),"(y) =" xn"(y,&).
It follows from the definition of the action ¢, that
T (% (2)) = ¢} D (7" (@), 7" (¢ () = &5, V(7" (y)).

It also follows from the definition on B, Lemma 7.1 and simple induction

argument that
E"(z) = {"(2)}, E"(y) = {"(v)}-

Since (z,y) is in R, 1, we have 7" 1(z) = 7""1(y). In the case that

E, (7" Y(z)) = E, (7" (y)) is a singleton, then it follows that E™(x) = E"(y)
and also A\*(x) = A"(y). It remains to consider the case that #E, (7" (z)) =
2. In this case, it follows immediately from Lemma 8.4 that \"(z) = A\"(y) if
and only if E™(xz) = E™(y), which in turn is true if and only if £"(z) = €"(y).
Recall from the definition of 8 that 3(z) = ¢ (z) and B(y) = ¢% (y). Hence
we have

m(B(z) = (¢ (z))

;@ (" (x))
= @ OO (O (7 (2)))
= ¢ OO ("W (7 (y)))
= @@ (7 (g5 (y))
= @ DO (" (B(y)))

Then (B(x), B(y)) is in R, if and only if 7"(5(z)) = 7#"(B(y)) if and only if
e™(x) = €™(y). The proof of the second part is analogous.

Consider x as in part 3, and suppose that z is in B;, for some 1 < i < 3.
It follows that B(x) = ¢®(x) is in B;;3 and

e"(B(x)) = &" x 0" (7 (2), €i43) = —€" x 0" (2,8:) = —€"(2),

for all n. Then for n > N, it follows that €"(8(z)) = e5. As E, (7" !(x)) =
{e9,€1}, it follows from Theorem 5.34 that 7"~ 1(z) is in ¢* ;(0,(X,)) and
so 7 H(B(z)) = ¢2(a" () is in p32 1 (0,(Xn)), as €4 + €2 = 3. Hence
E.(7m"1(8(x))) = {es,e5}. The conclusion then follows from Lemma 8.4
(with 4 = 6) that A(B(z)) = p(6) = 5. This completes the proof of part 3.
Part 4 is done in an analogous way. O
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The next step is to establish to difference between the relations R and
R.

Lemma 8.6. Suppose that (z,y) is in R and not in R'. Then there is an
N >1and1 <1<6 such that

En(n" () = En(n" (y) = {ei, i1},

foralln > N, and
A(z) =4, A" (y) = p(2),
for alln > N, or
A'(y) =4 X'(e) = p(i),
for alln > N. In particular, for any x in X whose -orbit is disjoint from

US_,C;, the R-equivalence class of X is equal to the R'-equivalence class of
x.

Proof. If (z,y) is in R, then it is in Ry for some N > 1. Note that if \"(z) =
A"(y), for some n > N then (z,y) is in R}, hence we have A\"(x) # A"(y), for
all n > N. We may now appeal inductively to the last part of Lemma 8.1 to
see that the conclusion holds. The last statement follows from the first and
part 2 of Proposition 7.9. O

Theorem 8.7. 1. The equivalence relation R' is an open subequivalence
relation of R and hence is an AF-relation.

2. The equivalence relation R' is minimal.
3. Every R' invariant probability measure on X is also R-invariant.

Proof. 1t is easy to see each R/ is open in R,, and the first statement follows
(see Proposition 3.12 of [GPS2]). Next, we show that R], has capacity n — 2,
for all n > 2. Suppose that z is in X. If #E,(7"'(z)) < 2, then the
value of A™(-) is constant on the R,-equivalence class of z and hence the
R/ -equivalence class of = coincides with its R,-equivalence class and hence,
for some k € Z2, contains ¢'(x), for i € B(k,n). We are left to consider the
case that E,(n" '(x)) = {&;, &1}, for some 7, and hence \"(z) is either i
or ¢ — 1. Without loss of generality, we assume 1 < ¢ < 3. First, consider
the case that A\"(z) = i. By part 3 of Theorem 5.34, we may find z’ in the
R,_i-equivalence class of x such that E,_ (7" ?(z')) = {e4,e3}. Then we
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have A"~!(z') is either 4 or 3. But in either case, \"(z') = i, by definition
of A", and so 2’ is in the same R class as x. However, the same argument
shows that for any other point z” with 7"2(z") = 7" 2(2'), 2" is in the
same R! class as z. That is, the R] class of z contains the R,,_, class of 2.
The conclusion follows. Now consider the case that A"(z) = p(i). Then we
select 7' in the same R, ; class with x with E, (7" 72(z')) = {e¢,e5}. It
follows that \»~!(z') is either 6 or 5. In either case, A\"(z') = p(i). The same
argument applies to any other point in the same R, 5 class as z’. Part 2 of
the Theorem follows from the fact R] has capacity n» — 2 and Proposition
0.7.

For the third part, let 4 be any R'-invariant probability measure on X.
Let 1 < i < 6; we will show that u(C;) = 0. By Lemma 7.11, the sets
©/(C;),j € Z? are pairwise disjoint. It follows that for all n > 2, C; meets
each R! equivalence class at most once. If z is in C;, we may find k(z) in Z?
such that (z, o*@** (z)) is in R!, for all k" in B(0,n — 2). Moreover, k may
be chosen to be a continuous function of z. For each k' in B(0,n — 2), the
sets {(z, 0" @+ ()) | 2 € C;} are in R, and have pairwise disjoint ranges.
As p is R) -invariant and there are (2n — 3)? points £’ in B(0,n—2), we must
have

wC) < (2n = 3)7%

Since this is true for all n > 2, the claim follows. So the p measure of the
R'-equivalence classes of all the C; is zero. But on the rest of X, R’ and R
are equal. Part 3 follows from this. O

Theorem 8.8. The sets B and B* are étale subsets for the relation R'.
Moreover, the map  induces an isomorphism between R' N (B x B) and
R' N (B* x B¥).

Proof. We first show that B is étale for R'. To do this, we take (z,y) in
R'N B x B. We must find a neighbourhood V' of (z,y) in R' such that, for
any (¢/,y') in V, 2’ is in B if and only if ¢ is in B. Since (z,y) is in R,,, we
have y = ¥ (x) for some k in Z2. As it is in R, it is in Ry, for some N > 1.
By continuity of the various functions involved, we may choose an open set
U in X such that E™, E"oF, A" and A"o¢*, for 1 < n < N, are all constant
on U. We also choose U sufficiently small so that V = {(z', ¢*(z2')) | 2’ € U}
is in Ry. We claim that this V' satisfies the desired property.

Suppose that 2’ is in B and in U. We need to show that ¢*(z') is also
in B. It follows from the choice of U that E"(y") = E™(y), for 1 <n < N.
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We also have AY(y') = AV (y) = AV (z) = A¥(2'). From Lemma 8.4 we have
EN(z") = EN(z) = EN(y) = EN(y'). We claim that for all n > N, we have
E™(z") = E™(y'). The statement is true for N. We know that 7" (z') = 7"(y')
for all n > N. The claim then follows easily by induction from Lemma 7.1.

To prove the last statement, we know already that S maps B homeomor-
phically to B*. We will show that

Bx B(R,NBxB)C Ry,

for all n > 1. From this it follows that 8 x ( is continuous. An analogous
argument applies to (8 x 8)~! and this implies the conclusion.

Suppose that (z,y) is in R), N B x B. Say that x is in B; and y is in B;
so that f(z) = ¢ (z) and B(y) = ¢ (y). It follows from Lemma 8.5 that
(B(z),B(y)) is in Rypq1. As A (z) = A"(y), \»TL(x) = A" (y) by part 1 of
Lemma 8.1, Lemma 8.4 implies that E"*!(z) = E""!(y). Lemma 7.5 implies
that

E"(B(2)) = —E" () = —E"(y) = E"(B(y)),
for all n > 1. We may then apply Lemma 8.4 again to conclude that
A" (B(2)) = A"T1(B(y)), and hence (8(z), B(y)) s in Ry, 0

We now define R to be the equivalence relation generated by R’ and
graph(p).

Theorem 8.9. The relation R is orbit equivalent to R' and hence is affable.

Proof. This is an application of the absorption Theorem 2.7 with the equiva-
lence relation R', closed sets B and B* and map 3. To see the first hypothesis
is satisfied, we note from parts 1 and 3 of Lemma 8.3 that the values of A
on B and B* are always distinct, so no pair in B x B* can be in R'. For
the second hypothesis, any R'-invariant probability measure on X is also
R-invariant by part 3 of Theorem 8.7 and therefore has value 0 on B and
B* by Lemma 7.13. Hypotheses 3 and 4 are established in the last Theorem
8.8. O

Lemma 8.10. 1. Forall1<i#3j<6,C;xC;N R is empty.
2. For all R-invariant measures j1 and all 1 < i < 6, u(C) = 0.

3. The equivalence relation generated by R and graph(~;), i = 2,3,5,6, is
R,.
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Proof. We note first that, for any = in C; and n > 1, A"(z) = 4, follows from
the definitions of C; and A". It follows that (C; x C;) N R’ is empty for all
i # j. Next, we note that from Lemma 7.12, (C; x C;) N R, is empty unless
i and j are both even or both odd. The same is therefore true for R. Let
us consider the case 7,j even. The other is similar. As A"(C;) = 2, for all
n > 1, it is impossible for any point of Cy to be in the same R' class as a
point of B*. Similarly, no point of either C; or Cs can be in the same R’
class as a point of B. We are left to consider the case that there exists x5
in Cy, z; in C; with j = 4 or 6, z in B with (z2,z) and (f(z),z;) both
in R'. Suppose that (z2,z) is in Ry, for some N, and hence in Ry also.
By the defintion of R], we have A\"(z) = A\"(zy) = 2, for all n > N and
Ep1(m™(x)) = Epp1(n™(22)) = {€2,€1}, for all n > N. It then follows from
part 3 of Lemma 8.5 that A\"(5(z)) = 5, for all n > N, and hence it is not
possible for 3(z) to be in the same R] class as any point in either Cy or Cs.

For the final part, R, is the smallest equivalence relation containing R
and graph(8), by Proposition 7.10, while R is the smallest equivalence re-
lation containing R’ and graph(v;), i = 2,3,5,6. Hence R, is the smallest
equivalence relation containing R', graph(8) and graph(~;), i = 2,3,5,6.
Hence it is also the smallest equivalence relation containing R and graph(~;),
i=2.35,6. [

We can now give the final step in the proof of the main theorem, that
the relation R, is affable. It is four applications of the absorption theorem
2.7, beginning with fi, closed sets Cs and C4 and map 4. It is important to
note that the topology on R which we use is that which arises from Theorem
8.9 making it an AF-relation and not the topology from R,. Hypothesis 1 is
satisfied by part 1 of Lemma 8.10. The second hypothesis is satisfied by part
2 of 8.10. By part 3 of Lemma 8.10, the relation R restricted to Cy and Cy is
equality and so the last two hypotheses are satisfied trivially. (This is rather
fortunate since we don’t actually know much about the new topology we are
using on R which makes it an AF-relation.) Let the relation generated by R
and graph(B) be denoted R;. It is affable. We again apply the absorption
theorem to R, closed sets Cy and Cg and map . Again, by lemma 8.10 the
relation R restricted to Cy and Cy is equality, so the last two hypotheses are
trivially satisfied. Two more applications (the first using C,C3 and 73 and
the last using C1,Cs and 75) then yield that R, is affable. This completes
the proof.
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9 Examples

In this section we present two classes of minimal free Z2-actions which satisfy
our hypotheses and are therefore affable. We also remark that any extension
of a system satisfying our hypotheses, will also satisfy them. Hence, our main
result also applies to any extension of the examples below.

Example 9.1. Rotations of the group of p-adic integers.

Here, we consider a prime number p and the group X of p-adic integers.
We choose a dense copy of Z? in X and our action is by rotation by this
subgroup. We remark that we believe that the same result is true for the
n-adic integers, where n is any natural number and more generally for all
odometers. But the choice of a prime p will simplify some of our arguments.
Let us make this more precise.

We let Z, denote the quotient of Z by pZ. Then, we have X = 1132 (Z,.
It is an abelian group ; the operation is addition modulo p, with carry over to
the right. An element x = (xx)%2, may be regarded as a formal power series
> zkp® with the obvious form for addition. For z in X and non-negative
integers ¢ < j, we let zy; ;1 denote the finite sequence z;, z;;1,...2;. We call
such a sequence a word in x of length j — 1+ 1.

We choose two elements « and [ from X such that either «g or Sy is
non-zero and so that the only integers m,n which satisfy ma +ng = 0 are
m = n = 0. These conditions imply (in fact, they are equivalent to) the
subgroup generated by « and S is dense in X. Then our action ¢ is defined
by

¢(z) = x —ia — j,

for all z in X and (4,7) in Z% In our notation, we will identify Z? and
the subgroup of X. We claim that this action satisfies the hyptotheses of
Theorem 3.9 and hence Corollary 4.2. Let a and b be generators of Z2. The
elements ¢ and b may also be regarded as elements of X, and this is how we
will treat them in our notation. As a and b must generate a dense subgroup
of X, at least one of ag and by is non-zero. Let us suppose the former. Then
the subgroup generated by a alone is dense. This means that there is an
automorphism of X carrying a to (1,0,0,...). Henceforth, we assume that
a = (1,0,0,...). Observe that, for any z in X and positive integer k, the
values of (z + 4a)p are all distinct for 0 < ¢ < p**'. We also choose a
positive integer K. We will show that we may find non-empty clopen sets A
and B satisfying Theorem 3.9 with N = p¥.
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Lemma 9.2. Let b be in X and let K be a positive integer and let a =
(1,0,0,...). Suppose that there are no non-trivial integer solutions, i, j, of
the equation ia + jb = 0. Then there exists positive integers K < M, N such
that 2M < N and

(=b)m-k < (=b)N-K

regarding these as integers between 0 and p — 1 and
(=b)p—k = (=b) vk
forallk=0,1,2,..., K —1.

Proof. We consider the collection of all words w in b of length K and we
divide these into three classes. The first is all words that only occur finitely
many times in b; that is w = by 1 x—1 for only finitely many & > 0. The
second class is all words w such that there are distinct symbols 0 < 1,57 < p
such that the words 7w (concatenation) and jw both appear infinitely many
times in b. The third class consists of words w such that there is a symbol
iy such that i,w occurs infinitely many times, but iw occurs only finitely
many times for ¢ # 7,,. If there exists such a word in the second class, then
we are clearly done. We are left to consider the case that the second class
is empty. Then we can select L > 1 such that each word in the first class
does not appear in by ) and that for each word 7w with w in the third class
and 7 # i,, does not appear in bjz, ). We claim that b is eventually periodic,
that is, there is some J > 1 such that b, = b, ;, for all n > L. To see this,
consider the second appearance of a word w from the third class in bz, o).
From the choice of L, this word must be preceded by i,,. Let w’ be the word
obtained by dropping the last symbol from %,w. This word is also of length
K, and provided we are still at entries greater than L, it is again in the third
class and it must be preceded by 7,,. Continuing in this way, we see that the
predecessors of w are unique. Eventually the word w occurs in this string,
since we began at the second occurrence of w. But this argument applies to
every occurrence of w. The conclusion follows. Since a = (1,0,0,...), we
may find such integer ¢ such that ia + b is periodic, say of period J > 1.
Multiplying a sequence in X by 27 has the effect of shifting the entries over
by J and leaving 0 in the first J positions. As it is periodic, this leaves all of
ia + b unchanged except for the first J positions. Then we may find 7/ > 0
such that i'a = (bg, b1,...,b71,0,0...). Then we have

i'a + 27 (ia + b) = (ia + b).
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But this contradicts our hypothesis on ¢ and b. This completes the proof. [

Having chosen a positive integer K, we select M, N as in the Lemma and
define

A:{LE e X ‘ x[O,M] :.I[N_M,N]}—{Z'GX ‘ €T; :p—l, for aHOSZSN}
We define two functions, A\, u: A — Z by

AMz) = inf{i >1]|z+ia€ A}
pw(z) = inf{i>1|z—b+ia€ A}

for all z in A. Since rotation by a is minimal, both of these quantities are well
defined. Also, because A is clearly clopen, both functions are continuous.
The key lemma is the following.

Lemma 9.3. With A, X\ and p as above, we have
1. Xz) > pM*L) for allx € A,
2. p(x) < pM-E+1 42 for allx € A.

Proof. We begin with the first statement.

Case 1: 7, < p— 1, forsome M < k < N — M. For1 < i < pM+l the
values of (¢ + ia)p,a are all distinct from zjo p. However, for these
values of 4, when computing x + 7a, there is no carry over past the kth

coordinate and this means that x(x as,n) = Z[o,m]- Hence, x +ia is not
in A.

Case 2: zpy =p—1,forall M <k <N — M. As z is in A, we must have
rr < p—1, for some 0 < k < N. By hypothesis, we have either £ < M
or N— M < k < N. But, in the former case, as = is in A, we have
Tr = Tn_pmk- In either case, we conclude that z, < p — 1, for some
0 < k< Mandsome N— M < k < N. Let I be the first positive
integer for which the computation of z + Ia involves carry over past
coordinate M. Note that I < p™*!. Since z;, < p—1 for some k < M,
we have I > 1. For 1 < ¢ < I, we have (z + ia)p,m] # *[o,m While
(¢ +1a)n—m,N] = Z[v—m,n]- From this we conclude that z + ia is not
in A. Next consider I < i < pM*'. Here, we have (z + ia)y_,n] is
obtained from xy_ps,n] = Tp,a by adding (1,0,0,...,0). That is, we
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have (z +ia)y_m,n = (£ +a)p,m- Butas 1 < I <i<p"*! we know
that (z + a)p,a # (# + ia)p,n and again we conclude that x + ia is
not in A. This completes the proof of the first statement.

We now consider the second statement. Since we have
(—=b)m-x < (=b)y_k, we may find a positive integer I < pM~5+1 5o that
(=b+ Ia)pm—-k) = (—=b)n—m,n—K]- We now claim that, for any = in A, at
least one of x —b+Ia, z —b+ (I +1)aor z —b+ (I +2)a is in A. This will
complete the proof.
We see at once from our choice of I that

(—b + Ia)[O,M_K] = (_b)[N—M,N—K} = (—b + Ia)[N—M,N—K] since the addition
has no carry over past coordinate M — K. Using again that there is no
carry over past coordinate N — M and our original choice of M, N, we have
(_b+Ia)[M7K+1,M] = (_b)[MfK—H,M] = (_b)[NfK—H,N] = (_b'f‘Iaf)[MfK—H,M]-
Together, we see that (—b+1a)jo,m = (—b+1a)y—m,n)- We add —b+1a to an
element x in A. If there is no carry over from coordinate N—M —1 to N — M,
then # — b+ Ia has the same property, (z —b+Ia)pm = (£ —b+Ia)n_m,n]-
Either z — b+ Iaisin Aorelse (t —b+Ia)y=p—1forall0 <k < N. In
the latter case, it is immediate that © — b+ Ia + a is in A. Finally, if there
is carry over from N — M — 1 to N — M when adding = to —b + Ia, then
adding a once more will affect the value on the first interval, but not on the
last, and will result in (z + b+ Ia + a)jom = (£ — b+ Ia+ a)n—m,n)- We
are again reduced to one of the two cases above: either x — b+ Ia + a or
r—b+ ITa+ 2aisin A. O

The first consequence we note is that, for s = 0,1,...,pM*! — 1, the sets
A+ia = ¢ '@(A) are pairwise disjoint. Next, we claim that the map from A to
itself which sends = to x —b+ u(x)a is injective. If not, we have x —b+u(x)a =
' —b+u(z')a, forsome z, 2" in A. If p(x) > p(z’), then 2+ (u(x)—p(z'))a = 2’
which is in A. But this means that A(z) < p(x)—u(z"), which contradicts the
estimates of the last lemma. In an analogous way, p(z') > p(x) is impossible
and we conclude that p(x) = p(z'). From this it follows that z = z’ as
desired. As A is clopen and there exists a @-invariant probability measure
on X, the map above is also onto. To say this another way, we have x is in
A if and only if x — b+ p(x)a is in A.

We define

B={z+ia|xz€ A0<i<pu(x)}
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It follows at once from the last paragraph that

AU ™*(B) = AU{z'+a|2' € B}

= AU{z+ida|z€ A0<i<p(z)}
{z+ia|x € A0<i<pu(z)}
{z+p(zx)a|z € A} UB

= {z+ux)a|z—-b+ p(x)ae A} UB

= {z+puz)a|z+p(r)ac A+b}UB

= (A+bUB
¢ ’(A)UB.

Notice that the facts that A and ¢~%(B) are disjoint, as are ¢ °(A) and
B, are clear from the above computation. It is easy to check that A and B
satisfy the final condition of Theorem 3.9 with n = p¥ since

sup{u(r) |z € A} < pXinf{\(z) |z € A}.

We omit the details.
We remark that in this example, there is a short exact sequence

1
0—=7— HY(X,p) > Z[-] —0.
p
The map q is defined as follows. For any 6 in Z*(X, ), we have

4(16)) = /X 0(z, (1,0))dp(z),

where y is Haar measure on X.
Example 9.4. Rotations of a disconnected circle.

Let «, 8 be two numbers such that {1, a, 8} is linearly independent over
the rational numbers. For simplicity, we will assume that «,3 are both
between 0 and 1.

We consider the natural action of Z? on the circle, R/Z, by rotating by «
and by 3. We select a single orbit, say that of 0, and cut the circle at these
points, replacing each by two points separated by a gap. The old point will
be come the right endpoint of the gap and a new point will be the left end
of the gap. Let us make this more precise as follows.
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We consider the subgroup of R, Cut = {i + ja + kB | i,j,k € Z}. We
let X = RU{d' | a € Cut}. We give X a linear order by setting o’ < b,
a < b and o' < ' as appropriate, whenever a < b. Finally, we set a’ < a, for
all ¢ in R. The space X is given the order topology. Notice that for z < y
in Cut, [z,y) = [z,4'] is a clopen set in X. The natural action of the group
Z + oZ + BZ extends in a natural way to X. We let X = )Z'/Z, which has
an action of aZ + SZ. This is our Cantor minimal Z? system, ¢,

) (2) = & —ia - j,
where x is a real number, interpreted modulo Z, and
() = (¢ —ia = jBY,
for z in Cut.

We claim that ¢ satisfies the hypotheses of Theorem 3.9 and hence Corol-
lary 4.2. Choose a pair of generators, a,b, of Z?. Now ¢® and ¢° are again
rotations of our cut-up circle X and, for simplicity, we let ¢ and b denote
real numbers such that ¢%(z) = z — a and ¢°(z) = 2 — b, both interpreted
modulo the integers. Since a and b are generators of Z2, the subgroup of R
generated by a,b,1 is the same as that generated by «, 3, 1.

Consider for the moment, the homeomorphism, n of R?/Z? defined by
n(z,y) = (x + a,y + b). From Theorem 1, page 97 of [CFS], this action
is minimal if and only if there is no non-trivial character of R?/Z? which
annihilates (a,b). The non-existence of such a character is an immediate
consequence of the fact that {1, a, 8} are linearly independent over the ra-
tionals. We conclude that 7 is minimal.

Let N be a positive integer. From the minimality of 7, we may find a
positive integer ¢ such that 77(0,0) € (0, 5%) X (0, 7). This means that

: 1 b i 1
0<qa—z<ﬁ,0<q —j<ﬁ
for some integers 4, j, or equivalently,

i 1 i1
0 —— < —,0<b—-=< —.
S4T S aNg q 2Ng
From this it follows that, for any 0 < m,n < N and k € Z, we have
k . : k N N
2 < k _ i hb—)Y< 24 4
e ctmla—2)+nb-1)< q+2Nq+2Nq
k o k+1
q 1 q
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Consider the finite set of distinct points in R/Z,
k
{=+ma+nb|0<m,n< N,keZ}
q

and choose § to be less than half the distance between any two of these (in
R/Z). For each 0 < k < ¢, choose a point x; with

k
0<$k—5<5,$k60ut.

We interpret z for any k£ in Z by considering £ modulo ¢g. This means that
we have
Ty < Tg_im—jn + M0 + nb < Tht1,

forany £k =0,1,...,g—1and 0 <m,n < N.

We define
qg—1 g—1
A= U[:vk,ka_i +a),B = U[wk,xk—j +b),
k=0 k=0

where k—1 and k—j are interpreted mod ¢g. From the estimates above, we see
that the intervals appearing in the union in the definition of A are pairwise
disjoint. The analogous statement is true of B. We calculate

AU ™(B) = {Ulzk, zk—i +a)} U{Uplzp +a,z1—j +a+b)}
Uk {[.Tk, Tp—i + CL) U [.Tk_z' +a,Tk—i—j +a+ b)}
= Ug[zg, Th—izj + a + b).

Again using arguments similar to those above, the intervals involved in the
above union are pairwise disjoint. A similar computation shows that

P (A)UB =AU %B).
Moreover, for any 0 < n < N, we have
@ M (AU YB)) = Uglzr + (n — 1)(a +b), T—i—j +n(a +0b)).

Again from the estimates above, these sets are pairwise disjoint.
We remark that in this example, we have H'(X, ¢) = Z3. See [FH] for a
proof.
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