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Abstract

We consider a minimal, free action, ϕ, of the group Zd on the
Cantor set X, for d ≥ 1. We introduce the notion of small positive co-
cycles for such an action. We show that the existence of such cocycles
allows the construction of finite Kakutani-Rohlin approximations to
the action. In the case, d = 1, small positive cocycles always exist and
the approximations provide the basis for the Bratteli-Vershik model
for a minimal homeomorphism of X. Finally, we consider two classes
of examples when d = 2 and show that such cocycles exist in both.
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1 Introduction

We continue our investigations of the structure of minimal dynamical systems
on Cantor sets. We consider a Cantor set X; that is, X is an infinite,
compact metrizable, totally disconnected space having no isolated points
with an action of the group Zd, d ≥ 1. This means that for every n in Zd, we
have a homeomorphism ϕn : X → X. These satisfy the conditions ϕ0(x) = x,
for all x in X and ϕm ◦ ϕn = ϕm+n, for all m,n in Zd. The action is free if,
for any x in X and n in Zd, we have ϕn(x) = x only if n = 0. The orbit of a
point x in X is the set {ϕn(x) | n ∈ Zd}. The action is minimal if the only
closed ϕ-invariant subsets Z in X (i.e. ϕn(Z) = Z, for all n in Zd) are X
and the empty set. Equivalently, the action is minimal if the orbit of every
point x is dense in X.

We are interested in the properties of the cohomology groups of the action,
particularly, the first cohomology group. Even more specifically, we are con-
cerned with the existence of ‘small, positive’ 1-cocycles. We will review the
definition of cohomology and introduce the property of ‘having small, posi-
tive cocycle’ in the next section. We will describe some consequences of this
property and give some non-trivial examples where the property holds. We
conjecture that the property holds for all free, minimal actions of Zd, d ≥ 1.

Our original interest in the problem arose from the study of the orbit
structure of minimal Z2 Cantor systems. We were able to show that, under
the hypothesis of having small positive cocycles, the system was orbit equiv-
alent to a minimal AF-system and hence also to a minimal Z action [GPS2].
In joint work with Hiroki Matui, we have since given a proof of the result
without this hypothesis [GMPS2]. However, we believe that a more com-
plete understanding of the first cohomology, particularly regarding the kind
of order structure which we consider here, is important to the development
of the theory.

We would like to thank the referee for a thorough reading of the paper
and many helpful comments.

2 Preliminaries

The aim of this section is to provide some general definitions (old and new)
and establish some basic properties.
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2.1 Cocycles and cohomology

We begin with some basic definitions for cohomology. The basic references
are [FM, R].

Our cohomology is done in the continuous category; the group Zd is given
the discrete topology, while X × Zd is given the product topology.

Definition 2.1. Let ϕ be a free action of Zd on the compact space X. A
one-cocycle taking values in Z or just cocycle for ϕ is a continuous function

θ : X × Zd → Z

such that, for all x in X and m,n in Zd, we have

θ(x,m+ n) = θ(x,m) + θ(ϕm(x), n).

We let Z1(X,ϕ) denote the set of all cocycles, which is a group under addi-
tion. If f is in C(X,Z), then the function

bf(x, n) = f(ϕn(x))− f(x)

is called a coboundary. We let B1(X,ϕ) denote the set of coboundaries. It
is easily seen to be a subgroup of Z1(X,ϕ). We let

H1(X,ϕ) = Z1(X,ϕ)/B1(X,ϕ)

denote the quotient group.

We let
Rϕ = {(x, ϕn(x)) | x ∈ X,n ∈ Zd}

denote the orbit relation of ϕ. That is, Rϕ is the equivalence relation whose
equivalence classes are the orbits of ϕ. Since the action is free, there is
a natural bijection between X × Zd and Rϕ sending (x, n) to (x, ϕn(x)),
x ∈ X,n ∈ Zd. Moreover, we use this bijection to carry the topology on
X × Zd to Rϕ. There will be times when it will be easier to consider our
cocycles as defined on Rϕ. It this case, the cocycle condition of the definition
becomes

θ(x, z) = θ(x, y) + θ(y, z),

for all (x, y), (y, z) in Rϕ. Moreover, if f is in C(X,Z), then

bf(x, y) = f(y)− f(x)

for all (x, y) in Rϕ.
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2.2 Positive cocycles and small cocycles

We want to introduce the notion of positivity and strict positivity for cocy-
cles.

Definition 2.2. Let ϕ be a free action of Zd on X. Let F be an indepen-
dent set of generators of Zd; that is, each element of n in Zd has a unique
presentation

n =
∑
m∈F

imm,

where im is in Z, for each m in F . Let

Z+F = {
∑
m∈F

imm | im ≥ 0,m ∈ F}

be the subsemigroup (or cone) of Zd generated by F .

1. A cocycle θ is positive with respect to F if

θ(X × Z+F ) ≥ 0.

2. A cocycle θ is proper with respect to F if the map

θ : X × Z+F → Z

is proper (i.e.,the pre-image of any finite set is compact).

3. A cocycle is strictly positive with respect to F if it is proper and positive
with respect to F .

We want to establish some elementary results related to these notions.
The first is simple enough that we leave the proof to the reader.

Lemma 2.3. Let ϕ be a free action of Zd on X. Let F be an independent
set of generators of Zd. A cocycle θ is positive with respect to F if and only
if θ(X × F ) ≥ 0.

Lemma 2.4. Let F be an independent set of generators of Zd and let θ be
a cocycle which is positive with respect to F . Then θ is strictly positive with
respect to F if and only if the set

S = {n ∈ Z+F | θ(x, n) = 0, for some x ∈ X}

is finite.
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Proof. If θ is proper with respect to F , then θ−1{0} ∩X × Z+F is compact
and it follows at once that S is finite. We consider the reverse implication.
For each n in S, write n =

∑
m∈F kn,mm, where kn,m ≥ 0. Let K be the

maximum of all kn,m, n ∈ S,m ∈ F . It follows that from the choice of K and
the positivity of θ that θ(x, (K+1)m) ≥ 1, for all m in F . Using the cocycle
condition and a simple induction argument, it follows that θ(x, l(K+1)m) ≥
l, for all m in F , l ≥ 1. It follows that for any x in X and km ≥ 0,m ∈ F ,
if θ(x,

∑
m kmm) = l, then km ≤ (l + 1)(K + 1), for every m in F . Thus,

θ−1{l} is compact and θ : X × Z+F → Z is proper.

Lemma 2.5. Let θ be a cocycle for (X,ϕ), let F be an independent set of
generators of Zd and let h be in C(X,Z).

1. If θ is positive with respect to F , then θ+bh : X×Z+F → Z is bounded
below.

2. If θ is proper with respect to F , then so is θ + bh.

Proof. It is easy to see that, since h is bounded, the cocycle bh is a bounded
function on X × Zd. The result follows immediately.

If θ is a cocycle, then it follows from the cocycle condition that θ(x,−n) =
−θ(ϕ−n(x), n), for all x in X and n in Zd. From this fact, the next result
follows easily. We omit the proof.

Lemma 2.6. 1. If the cocycle θ is positive with respect to the set of inde-
pendent generators F , then −θ is positive with respect to −F .

2. If θ is proper with respect to F then it is also proper with respect to
−F .

We will endow Zd with the l∞-norm, denoted |n|; that is, for n in Zd,
|n| = max{|ni| | 1 ≤ i ≤ d}.

Definition 2.7. Let θ be a cocycle for (X,ϕ) and let M ≥ 1. We say that
θ ≤M−1 if |θ(x,m)| ≤ 1 for all x in X and m in Zd with |m| ≤M .

We are now ready to state the property of having small positive cocycles.

Definition 2.8. Let ϕ be a free action of Zd on X. We say that ϕ has small
positive cocycles if, for every independent set of generators, F , and every
M ≥ 1, there is a cocycle θ such that
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1. θ is strictly positive with respect to F and

2. θ ≤M−1.

The following characterization of this condition is quite straightforward
and will be useful.

Proposition 2.9. Let ϕ be a free action of Zd on X. Then ϕ has small
positive cocycles if and only if, for every independent set of generators F
and every K ≥ 1, there exists a cocycle θ such that θ is strictly positive with
respect to F and θ(x,K

∑
m∈F m) ≤ 1, for all x in X.

Proof. First suppose that ϕ has small positive cocycles. Let F and K be
as above. Let M = |K

∑
m∈F m|. By hypothesis, there exists a cocycle θ

which is strictly positive with respect to F and such that θ ≤M−1. But this
implies that θ(K

∑
m∈F m) ≤ 1.

Next suppose that ϕ satisfies the condition of the proposition. Let F be
an independent set of generators and let M ≥ 1. Write each element n of
Zd with |n| ≤ M as n =

∑
m∈F (in,m − jn,m)m, where in,m, jn,m ≥ 0. Let

K be the maximum of all in,m, jn,m taken as m varies over F and |n| ≤ M .
Choose a cocycle θ which is strictly positive with respect to F and such that
θ(x,K

∑
m∈F m) ≤ 1, for all x in X.

Now for |n| ≤M , we may write

n =
∑
m∈F

in,mm−
∑
m∈F

jn,mm = n′ − n′′,

where n′, n′′, K
∑

m∈F m−n′, K
∑

m∈F m−n′′ all in Z+F . It follows that for
any x in X,

0 ≤ θ(x, n′)

≤ θ(x, n′) + θ(ϕn
′
(x), K

∑
m∈F

m− n′)

= θ(x,K
∑
m∈F

m)

≤ 1.

Similarly, for any x in X, we have 0 ≤ θ(x, n′′) ≤ 1. Finally, we have

θ(x, n) + θ(ϕn(x), n′′) = θ(x, n′).

From this, we conclude that |θ(x, n)| ≤ 1. This completes the proof.
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The value of any cocycle is determined on a generating set for Zd and on
our generating sets, we are usually looking for the cocycle to take values 0 and
1 only. Hence, the function θ(·,m) is a characteristic function of some set,
and since it must be continuous, that set must be clopen. We can rephrase
our cocycle condition in the following form.

Theorem 2.10. Let ϕ be a free minimal action of Zd on the Cantor set X.
Suppose that, for any independent set of generators F = {m1,m2, . . . ,md}
and any K ≥ 1, we may find non-empty clopen sets Ai, 1 ≤ i ≤ d satisfying
the following.

1. For any 1 ≤ i, j ≤ d, Ai and ϕ−mi(Aj) are disjoint and we have

Ai ∪ ϕ−mi(Aj) = Aj ∪ ϕ−mj(Ai).

2. The sets

A1, ϕ
−m1(A2), ϕ

−m1−m2(A3), . . . , ϕ
−m1−...−md−1(Ad)

are pairwise disjoint.

3. For 0 ≤ k ≤ K, the sets

ϕ−k
P

i mi(A1 ∪ ϕ−m1(A2) ∪ ϕ−m1−m2(A3) ∪ . . . ∪ ϕ−m1−...−md−1(Ad))

are pairwise disjoint.

4. For each 1 ≤ i ≤ d, we have

∪k≥0ϕ
−kmi(Ai) = X.

Then ϕ has small positive cocycles.

Proof. We will show that ϕ satisfies the condition of Proposition 2.9. So
we begin with an independent set of generators F = {m1,m2, . . . ,md} and
K ≥ 1. We must produce a cocycle θ as in 2.9. From the hypothesis we may
find sets Ai, 1 ≤ i ≤ d satisfying the conditions of the Theorem. We define
our cocycle as follows. For each x in X and 1 ≤ i ≤ d, we set

θ(x,mi) = χAi
(x),
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where χE denotes the characteristic function of any set E ⊂ X. Next, we
extend the definition to X×Z+F . This is done by defining θ(x,

∑
i nimi), for

n = (n1, . . . , nd) ∈ Zd, n1, . . . , nd ≥ 1, inductively on the value of |n|, using
the cocycle condition

θ(x,
∑
i

nimi +mj) = θ(x,mj) + θ(ϕmj(x),
∑
i

nimi),

for any 1 ≤ j ≤ d. (We have already done the case |n| = 1.) To see this is
well-defined, one must check that, for any n as above and 1 ≤ j, j′ ≤ d, we
have

θ(x,mj)+ θ(ϕmj(x),
∑
i

nimi +mj′) = θ(x,mj′)+ θ(ϕmj′ (x),
∑
i

nimi +mj).

But, by using the induction hypothesis, the term on the left is equal to

θ(x,mj) + θ(ϕmj(x),mj′) + θ(ϕmj+mj′ (x),
∑
i

nimi),

while the term on the right is equal to

θ(x,mj′) + θ(ϕmj′ (x),mj) + θ(ϕmj+mj′ (x),
∑
i

nimi).

Taking the difference, we get

θ(x,mj) +θ(ϕmj(x),mj′)

− θ(x,mj′)− θ(ϕmj′ (x),mj)

= χAj
(x) + χAj′

(ϕmj(x))

−χAj′
(x)− χAj

(ϕmj′ (x))

= χAj
(x) + χϕ−mj (Aj′ )

(x)

−χAj′
(x)− χ

ϕ
−mj′ (Aj)

(x)

which is zero because of the first condition on the set Ai. Finally, one extends
the definition to all of X × Z2 by setting

θ(x,
∑
i

nimi−
∑
i

n′imi) = θ(x,
∑
i

nimi)− θ(ϕ
P

i nimi+
P

i n
′
imi(x),

∑
i

nimi).

8



Of course, one must check that this is well-defined and that θ satisfies the
cocycle condition. The proofs are similar to the argument above and we omit
the details.

It is clear from our definition of θ on X × Z+F that it is positive with
respect to F . Using the definition, it is also easy to see that, for any x in X,

θ(x,
∑
i

mi) = χA1∪ϕ−m1 (A2)∪ϕ−m1−m2 (A3)∪...∪ϕ−m1−...−md−1 (Ad)(x),

and from this that

θ(x,K
∑
i

mi) = χ∪K
k=0ϕ

k
P

i mi [A1∪ϕ−m1 (A2)∪ϕ−m1−m2 (A3)∪...∪ϕ−m1−...−md−1 (Ad)](x),

which is clearly bounded above by 1.
It remains for us to prove that θ is strictly positive. From the last hy-

pothesis and the compactness of X, there is Ki ≥ 0 such that

∪Ki
k=0ϕ

−kmi(Ai) = X,

1 ≤ i ≤ d. Let K be the maximum of the Ki. It follows from the cocycle
condition and positivity that θ(x,Kmi) ≥ 1, for any x in X and 1 ≤ i ≤ d.
Then if θ(x,

∑
i kimi) = 0, with ki ≥ 0 for all i, then ki < K. By Lemma

2.4, θ is strictly positive.

We complete this section by noting the following positive result in the
case d = 1.

Theorem 2.11. Every minimal free Z action on a Cantor set has small
positive cocycles.

Proof. Let a = 1 or −1 (which are the only possibilities for an independent
set of generators) and let K ≥ 1. Choose any clopen set A such that ϕ−ak(A)
are pairwise disjoint for 0 ≤ k ≤ K. The single set A satisfies the conditions
of 2.10.

3 Finite subrelations and induced systems

In this section, we use the existence of small positive cocycles to construct
finite approximations to minimal free Zd systems. These will be described
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in detail in Theorem 3.9 below but let us begin informally by describing the
result in the special case d = 1. We review a construction for Kakutani-
Rohlin towers given in [HPS].

One begins with a non-empty clopen set Y and considers the first return
map, ψ, of ϕ on the set Y . Suppose the first return times for ϕ on Y are
J1, . . . , JK , for some K. Based on this, one constructs sets Y (k, j), 1 ≤ k ≤
K, 1 ≤ j ≤ Jk. These form a partition of X and, for fixed k, they are a tower
in the sense that ϕ(Y (k, j)) = Y (k, j+1), for all 1 ≤ j < Jk. The set Y is just
the union of the Y (k, Jk) while ϕ(Y ) is the union of the Y (k, 1). Moreover,
by a careful choice of Y the first return times may be made arbitrarily large.

Let R be the smallest equivalence relation containing (x, ϕ(x)), for all
x /∈ Y . It may be described concretely as follows. For each x in ϕ(Y ), x is in
some Y (k, 1). The set ϕj(x), 0 ≤ j < Jk is an equivalence class in R. Notice
that Y meets each such class in exactly one point. Moreover, the equivalence
relation generated by R and the first return map ψ is exactly Rϕ.

We would like to extend this construction to the case of actions of Zd.
A number of things go wrong if we try to repeat what is done above, the
first being the question of what is the first return map. Of course, there are
useful versions which employ the notion of Voronoi cells to construct finite
equivalence relations [F, GMPS2, Ph]. One drawback of this approach is
that it is unclear how to form induced systems analogous to the map ψ in
the one-dimensional case, as above. Here, we pursue a different route using
small positive cocycles. We make some special choices of generating sets
for Zd and, with the hypothesis that our system possesses small, positive
cocycles, we construct a set Y , a compact, open subequivalence relation
R ⊂ Rϕ and an action of Zd on Y which satisfy most of the conditions from
the d = 1 case above. Indeed, for the case d = 1, if one starts with Y as
above and regards it as giving a cocycle as in 2.11, then this construction is
the same.

It is natural to then continue this construction inductively to produce a
kind of Bratteli-Vershik model for Zd-dynamical systems. We do not pursue
this here for several reasons. The first is that, even if we assume that the
original system (X,ϕ) has small, positive cocycles, it is not clear that the
new system (Y, ψ) will also. This means that the obvious inductive process
will not work. Nevertheless, it would seem this result can be used inductively
to produce large AF -subrelations of Rϕ.

There are three other serious reasons why this model, even if it exists,
seems less appealing than the one in the one-dimensional case. The first is
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that the existence of small, positive cocycles is not known for the case d > 1,
in full generality. Secondly, in the case d = 1, it is possible to construct a
model so that the sets Y shrink to a single point and it is not clear that this
is possible for d > 1. Finally, using the model to construct examples of free,
minimal Z2-actions does not seem very tractable.

In view of what we have said above, it will be useful to have a notion of a
‘large’ subequivalence relation. To this end, we make the following definition.

Definition 3.1. Let R be a subequivalence relation of Rϕ and let C ≥ 0. We
say that R has capacity C if, for any x in X, there exists n in Zd such that

(x, ϕm(x)) ∈ R,

for all m in Zd such that |m− n| ≤ C.

Recall from [GPS1] that an equivalence relation R on a space X, in a
given topology, is étale if it is a locally compact groupoid (with the usual
operations) and the projection maps from the equivalence relation to the
underlying space are open and local homeomorphisms. We begin with the
following fairly general result.

Proposition 3.2. Suppose that F1, F2, . . . , FI are sets of independent gen-
erators of Zd and

∪Ii=1(Z+Fi ∪ (−Z+Fi)) = Zd.

Suppose that, for each 1 ≤ i ≤ I, θi is a cocycle which is strictly positive with
respect to Fi. For each 1 ≤ i ≤ I, we let

ker(θi) = {(x, ϕn(x)) ∈ Rϕ | x ∈ X,n ∈ Zd, θi(x, n) = 0}.

Then
R = ∩Ii=1 ker(θi)

is a compact, open étale subequivalence relation of Rϕ.

Proof. It follows from the cocycle condition that ker(θi) is a subequivalence
relation of Rϕ, for each i, and hence the same is true of their intersection.
From the continuity of θi, ker(θi) is also closed and open and hence the same
is also true of their intersection. Since R is an open subequivalence relation
of an étale equivalence relation, it is also étale [GPS1].
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It remains for us to show that R is compact. Recall that the topology on
Rϕ is defined by identifying it with X×Zd. Under this identification, ker(θi)
is just θ−1

i {0}, for any i. Fix 1 ≤ j ≤ I and consider[
∩Ii=1θ

−1
i {0}

]
∩X × Z+Fj = ∩Ii=1(θ

−1
i {0} ∩X × Z+Fj).

The terms in the intersection on the right hand side are all closed; moreover,
the term for i = j is compact by the properness of θj on Z+Fj. Hence the
intersection over i is compact. A similar argument applies, replacing Z+ with
−Z+. If we union these sets over all j = 1, . . . , I, the result is ∩Ii=1θ

−1
i {0}

from the hypothesis on the sets Fi. Thus we see that R is compact.

We want to apply this result in a very specific situation. Let F =
{ε1, ε2, . . . , εd} be the standard set of generators for Zd. For 1 ≤ k ≤ d,
consider the set of d elements:

Fk = {εi − 2d−k
∑
l>k

εl,

εk − 2d−k
∑
l>k

εl −
∑
i<k

εi,

εl | 1 ≤ i < k < l ≤ d}.

It is easy to see that Fk is a generating set of Zd and also that Z+F ⊂ Z+Fk.

Lemma 3.3. The generating sets F1, F2, . . . , Fd satisfy the hypothesis of
Proposition 3.2.

Proof. Let n be in Zd. Let k be any integer such that |nk| = sup{|ni| | 1 ≤
i ≤ d}. Assuming that nk ≥ 0, we will show that n is in Z+Fk. If nk ≤ 0 the
same argument shows that −n is in Z+Fk and so n is in −Z+Fk.

Using the fact that n =
∑d

k=1 nkεk, we consider the following expression

n =
∑
i<k

(ni + nk)

[
εi − 2d−k

∑
l>k

εl

]

+nk

[
εk − 2d−k

∑
l>k

εl −
∑
i<k

εi

]
∑
l>k

[
nl + nk2

d−k +
∑
i<k

(ni + nk)2
d−k

]
εl.
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It is then clear from the choice of k and the assumption that nk ≥ 0 that n
is a non-negative combination of the elements of Fk.

We now assume that our system (X,ϕ) has small positive cocycles. Let
M > 2d be given and find cocycles θ1, θ2, . . . , θd such that, for each 1 ≤ k ≤ d,
θk ≤M−1 and θk is strictly positive with respect to Fk.

It will be useful for us to use the following (slightly abusive) notation: for
0 ≤ k ≤ d, define

Zk = {n ∈ Zd | nk+1 = nk+2 = · · · = nd = 0}.

Notice that Z0 = {0}. We also define πk to be the usual orthogonal projection
of Zd onto Zk.

We want to define a set of continuous maps ηk, 0 ≤ k ≤ d,

ηk : X × Zk → Zd.

These will satisfy conditions set out in the Lemma below. We will proceed
as follows. We start with ηd(x, n) = n, for (x, n) in X × Zd, and see that
this satisfies the first condition of the Lemma. Then we show that, for any
1 ≤ k ≤ d, the first condition in the Lemma implies the second. We then
show how the Lemma being valid for a particular k allows us to define ηk−1

and it satisfies the first condition.

Lemma 3.4. 1. For 1 ≤ i ≤ k ≤ d and n in Zk, we have

ηk(x, n+ εi)− ηk(x, n) = εi +
∑
l>k

ai,lεl,

where each ai,l is an integer (depending on x and n) such that |ai,l| ≤
2d−k−1.

2. For 1 ≤ k ≤ d, x in X and n in Zk−1, the function f : Z → Z defined
by

f(j) = θk(x, ηk(x, n+ jεk))

is proper and, for all j, f(j) ≤ f(j + 1) ≤ f(j) + 1.

The first part of the Lemma is trivial for k = d since ηd is the identity on
Zd.
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Now, we prove that if the first part holds for some value 1 ≤ k ≤ d, the
second part follows. With f as defined and j in Z, we have

f(j + 1)− f(j) = θk(x, ηk(x, n+ (j + 1)εk))− θk(x, ηk(x, n+ jεk))

= θk(ϕ
ηk(x,n+jεk)(x), ηk(x, n+ (j + 1)εk)− ηk(x, n+ jεk))

= θk(ϕ
ηk(x,n+jεk)(x), εk +

∑
l>k

ak,lεl),

using part 1 of the Lemma. We may write

εk +
∑
l>k

ak,lεl = εk − 2d−k
∑
l>k

εl −
∑
i<k

εi

+
∑
i<k

(εi − 2d−k
∑
l>k

εl)

+
∑
l>k

(k2d−k + ak,l)εl,

which is in Z+Fk. Hence, we see that f(j + 1)− f(j) ≥ 0 since θk is positive
with respect to Fk. The fact the difference is at most one follows from the
fact that |εk +

∑
l>k ak,lεl| ≤ 2d−k < M and the condition θk ≤ M−1. It is

also clear from iteration of this formula that the kth entry of ηk(x, n + (j +
j′)εk)− ηk(x, n+ jεk) is j′. So as j tends to infinity, so does this vector and
the properness of f follows from this fact and θk being proper with respect
to Fk. This completes the proof that part 2 follows from part 1.

Now, we assume that ηk is defined, continuous and satisfies the Lemma
above, for some 1 ≤ k ≤ d. We define ηk−1 as follows. Fix x in X and let n
be in Zk−1. Let j be the largest integer such that

θk(x, ηk(x, n+ jεk)) = 0. (1)

Such an integer exists from the first part of Lemma 3.4. We define

ηk−1(x, n) = ηk(x, n+ jεk).

The continuity of ηk−1 follows from that of ηk and θk. We now give a
proof of Lemma 3.4, done by induction on k = d, d − 1, . . . , 1. Assume the
result is true for k.
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To establish the first part of the Lemma holds for ηk−1, we begin with
the following claim: for any x in X, n in Zk and i ≤ k, we have

ηk(x, n+ εi)− ηk(x, n) ∈ Z+Fk,

ηk(x, n+ εk − εi)− ηk(x, n) ∈ Z+Fk,

and the norm of both of these is at most 2d−k. For the first, using the
induction hypothesis, we have

ηk(x, n+ εi)− ηk(x, n) = εi +
∑
l>k

ai,lεl

= εi −
∑
l>k

2d−kεl +
∑
l>k

(2d−k + ai,l)εl,

which is in Z+Fk, by the definition of Fk. The conclusion regarding the norm
of this element is immediate from the right hand side of the first line and the
hypothesis on ai,l. For the second, we again use the induction hypothesis:

ηk(x, n+ εk − εi)− ηk(x, n) = ηk(x, n+ εk − εi)− ηk(x, n− εi)

−(ηk(x, (n− εi) + εi)− ηk(x, n− εi))

=

[
εk +

∑
l>k

ak,lεl

]
−

[
εi +

∑
l>k

ai,lεl

]

=

[
εk − εi −

∑
l>k

2d−kεl

]
+

∑
l>k

(2d−k + ai,l + ak,l)εl

which is in Z+Fk as desired, since |ai,l+ak,l| ≤ 2d−k−1+2d−k−1 = 2d−k. Again,
the result concerning the norm of this element follows from the second line
on the right hand side and the same estimate on |ai,l + ak,l|.

Suppose that ηk−1(x, n) = ηk(x, n + jεk), which we denote by B. Let
C = ηk(x, n+ (j + 1)εk), so that

θk(x,B) = 0, θk(x,C) = 1,
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from the choice of j in the definition of ηk1 in 1. For convenience, let

A = ηk(x, n+ (j − 1)εk),

D = ηk(x, n+ εi + (j − 1)εk),

E = ηk(x, n+ εi + jεk),

F = ηk(x, n+ εi + (j + 1)εk).

The following diagram, although it may not be very accurate, may be of help
in keeping track of these points.

y

y

y

y

y

y

A B C

D E F
- -

6 6 6
H

H
HHHH

HHj

H
H

HHHH
HHj

Each horizontal move to the right is the result of adding εk (and then
applying ηk), while each vertical move up is the result of adding εi (and then
applying ηk). We will use the claims established above to show that each
vector in our picture lies in Z+Fk.

If we use the first part of the claim above, using n + (j − 1)εk + εi and
n+jεk+εi in place of n, we obtain that E−D and F−E, respectively, are in
Z+Fk and each has norm at most 2d−k. Similarly, using n+(j−1)εk, n+ jεk
and n+(j+1)εk, we obtain the same conclusion for D−A,E−B and F −C.
Finally, using n+(j−1)εk+εi and n+ jεk+εi in the second part, we obtain
the same conclusion for B −D and C − E.

We claim that θk(x,D) = 0. We know that θk(ϕ
D(x), B −D) ≥ 0, since

B−D is in Z+Fk. On the other hand, since |C −D| ≤ |C −B|+ |B−D| ≤
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2d−k + 2d−k = 2d−k+1 < M , we have

1 ≥ θk(ϕ
D(x), C −D)

= θk(ϕ
D(x), B −D) + θk(ϕ

B(x), C −B)

= θk(ϕ
D(x), B −D) + θk(x,C)− θk(x,B)

= θk(ϕ
D(x), B −D) + 1− 0

≥ 1.

The conclusion follows as

θk(x,D) = θk(x,B)− θk(ϕ
D(x), B −D) = 0− 0.

This means that the j needed in the definition of ηk−1(x, n+ εi) (as given by
the appropriate version of 1) must be at least our j − 1.

Next, we claim that θk(x, F ) = 1. Similar to the last case, we have
|F −D| ≤ 2d−k+1 < M , and it follows that

1 ≥ θk(ϕ
D(x), F −D)

= θk(x, F )− θk(x,D)

= θk(x, F )

= θk(x,C) + θk(ϕ
C(x), F − C)

≥ 1 + 0,

giving the desired conclusion.
We now claim θk(x,E) is either 0 or 1. To see this, we use the facts F −E

and E −D are in Z+Fk and

1 = θk(x, F )

= θk(x,E) + θk(ϕ
E(x), F − E)

≥ θk(x,E)

= θk(x,D) + θk(ϕ
D(x), E −D)

≥ 0 + 0.

If θk(x,E) = 1, then it follows from the definition that ηk−1(x, n+εi) = D,
while if θk(x,E) = 0, ηk−1(x, n+ εi) = E.
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First, we consider the former case for proving the first part of the Lemma
and compute

ηk−1(x, n+ εi)− ηk−1(x, n) = D −B

= ηk(x, n+ εi + (j − 1)εk)

−ηk(x, n+ jεk)

= ηk(x, n+ εi + (j − 1)εk)

−ηk(x, n+ (j − 1)εk)

−(ηk(x, n+ jεk)

−ηk(x, n+ (j − 1)εk))

= εi +
∑
l>k

ai,lεl − εk −
∑
l>k

ak,lεl

= εi + (−1)εk +
∑
l>k

(ai,l − ak,l)εl.

Further, using ai,k = −1, we have |ai,k| = | − 1| ≤ 2d−k+1 and

|ai,l − ak,l| ≤ |ai,l|+ |ak,l| ≤ 2d−k + 2d−k = 2d−k+1.

So the first condition holds in this case.
For the case θk(x,E) = 0 and ηk−1(x, n+ εi) = E, we have

ηk−1(x, n+ εi)− ηk−1(x, n) = E −B

= ηk(x, n+ εi + jεk)− ηk(x, n+ jεk)

= εi +
∑
l>k

ai,lεl,

which is clearly of the desired form. This completes the proof that ηk−1

satisfies part 1 of the Lemma.

Lemma 3.5. 1. For each 0 ≤ k ≤ d, x in X and n in Zk, we have

πk ◦ ηk(x, n) = n.

2.
ηd(x,Zd) ⊃ ηd−1(x,Zd−1) ⊃ · · · ⊃ η1(x,Z1) ⊃ η0(x,Z0)

3. If n is in ηi(x,Zi) and i < k, then θk(x, n) = 0.
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4. If n is in ηi(x,Zi) and i < k, then there exists l in Zd such that |l| ≤ 2d

and θk(ϕ
n(x), l) > 0.

Proof. Not surprisingly, the proof of the first part is by induction, beginning
with k = d, in which case it is clear. Next, assume the result is true for some
1 ≤ k ≤ d. Let n be in Zk−1. We know that ηk−1(x, n) = ηk(x, n + jεk). It
follows from part 2 of Lemma 3.4 that

ηk−1(x, n) = ηk(x, n+ jεk) = ηk(x, n) + jεk +m,

where m is a combination of εl, l > k. Applying πk−1 = πk−1 ◦ πk to both
sides yields

πk−1(ηk−1(x, n)) = πk−1(ηk(x, n)) + πk−1(jεk) + πk−1(m)

= πk−1 ◦ πk(ηk(x, n)) + 0 + 0

= πk−1(n)

= n,

since n is in Zk−1.
The second statement follows from the fact that, for any k, x, n, we have

ηk−1(x, n) = ηk(x, n+ jεk), for some j.
For the third part, in view of the second, it suffices to consider the case

i = k − 1. We assume that n = ηk−1(x,m) = ηk(x,m + jεk), for some m in
Zi. Moreover, the j is chosen so that

θk(x, ηk(x, n+ jεk)) = 0.

It follows at once that

θk(x, n) = θk(x, ηk−1(x,m)) = θk(x, ηk(x, n+ jεk)) = 0,

as desired.
For the fourth part, in view of the second, we know that n is also in

ηk−1(x,Zk−1). Assume that n = ηk−1(x,m) = ηk(x,m + jεk), for some m in
Zk−1 and j. We have ηk−1(x, n) = ηk(x, n + jεk) for some j. In addition,
from the choice of j in the definition of ηk−1, we know

0 6= θk(x, ηk(x,m+ (j + 1)εk)).

It follows from the first part of Lemma 3.4 that

θk(x, ηk(x,m+ (j + 1)εk)) = 1.
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Hence we let l = ηk(x,m + (j + 1)εk) − ηk(x,m + jεk). It follows from the
cocycle condition that

θk(ϕ
n(x), l) = 1.

Moreover, the estimate |l| ≤ 2d follows from part 2 of Lemma 3.4.

Lemma 3.6. Suppose that x in X and m in Zd satisfy

θk(x,m) = 0,

for all 1 ≤ k ≤ d. Then we have

ηk(ϕ
m(x), n− πk(m)) = ηk(x, n)−m,

for all 0 ≤ k ≤ d and all n in Zk.

Proof. We proceed by induction, starting with k = d, for which the con-
clusion is obviously true, without using the hypothesis. Now assume the
conclusion holds for some 1 ≤ k ≤ d and we will show it is true for k− 1. To
compute ηk−1(ϕ

m(x), n− πk−1(m)), we use the induction hypothesis:

ηk(ϕ
m(x), n− πk−1(m) + jεk) = ηk(ϕ

m(x), n− πk(m) + (j +mk)εk)

= ηk(x, n+ (j +mk)εk)−m.

Therefore, we have

θk(ϕ
m(x), ηk(ϕ

m(x), n− πk−1(m) + jεk))

= θk(ϕ
m(x), ηk(x, n+ (j +mk)εk)−m)

= θk(x, ηk(x, n+ (j +mk)εk)− θk(x,m)

= θk(x, ηk(x, n+ (j +mk)εk).

Now the largest j for which the left hand side is zero is also the largest j for
which the right hand side is zero and for this j we have

ηk−1(ϕ
m(x), n− πk−1(m)) = ηk(ϕ

m(x), n− πk−1(m) + jεk)

= ηk(x, n+ (j +mk)εk)−m

= ηk−1(x, n)−m.

This completes the proof.
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Before beginning the next Lemma, we recall that Z0 = {0}. This re-
sult shows that, in certain sense, the value of η0(x, 0) determines the R-
equivalence class of x.

Lemma 3.7. Let x be in X and m be in Zd. The pair (x, ϕm(x)) is in R if
and only if

η0(x, 0)−m = η0(ϕ
m(x), 0).

Proof. If (x, ϕm(x)) is in R, then by definition, θk(x,m) = 0, for all 1 ≤ k ≤
d. By the last Lemma, just using the conclusion for k = 0 and n = 0 (which
is the only element of Z0), we have the desired conclusion.

For the converse, we use part 3 of Lemma 3.5 to see that

θk(x, η0(x, 0)) = 0 = θk(ϕ
m(x), η0(ϕ

m(x), 0)), 1 ≤ k ≤ d.

On the other hand, using the hypothesis and the cocycle condition, we have,
for all k,

0 = θk(ϕ
m(x), η0(ϕ

m(x), 0))

= θk(ϕ
m(x), η0(x, 0)−m)

= θk(x, η0(x, 0))− θk(x,m)

= −θk(x,m).

By definition, this implies that (x, ϕm(x)) is in R.

It will be convenient for us to assemble all the θk together and regard
them as a single cocycle with values in Zd. That is, we define

θ : X × Zd → Zd

by
θ(x, n)k = θk(x, n), x ∈ X,n ∈ Zd, 1 ≤ k ≤ d.

We may extend our definition of the kernel of a cocycle as the pre-image of
the identity element, then notice at once that

ker(θ) = ∩dk=1 ker(θk).

Lemma 3.8. For any x in X, we have

θ(x,Zd) = Zd.
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Proof. We must show that the map θ is surjective, for fixed x. Let m be in
Zd. We will inductively define ld, ld−1, . . . , l0 in Zd with the property that

θk(x, li) = mk,

provided i < k. Having done so, we will have θ(x, l0) = m as desired.
We begin with ld = 0, which vacuously satisfies the conclusion. Suppose

that li has been defined and satisfies the condition. Consider

f(j) = θi(ϕ
li(x), ηi(ϕ

li(x), jεi)), j ∈ Z.

From the first statement of Lemma 3.4, we know that there exists ji such
that

θi(ϕ
li(x), ηi(ϕ

li(x), jiεi)) = mi − θi(x, li).

We define li−1 = li + ηi(ϕ
li(x), jiεi). We verify the condition on li−1 for

k > i− 1:

θk(x, li−1) = θk(x, li) + θk(ϕ
li(x), li−1 − li)

= θk(x, li) + θk(ϕ
li(x), ηi(ϕ

li(x), jiεi)).

If i = k, then the last expression is mi, from our choice of ji. If k > i, then
the first term in the last expression is mk, since li satisfies the condition,
while the second is zero because of the third part of Lemma 3.5.

At this point, we have enough to prove our main approximation result.

Theorem 3.9. Let ϕ be a free, minimal action of Zd on the Cantor set X.
Suppose that ϕ has small positive cocycles. For any C ≥ 0, there exists a
non-empty, clopen subset Y ⊂ X, a compact, open subequivalence relation
R ⊂ Rϕ and a free minimal action of Zd, ψ, on Y such that

1. R has capacity C,

2. each R equivalence class meets Y in exactly one point,

3. the equivalence relation generated by Rψ and R is exactly Rϕ.

Proof. We use the generating sets Fk, 1 ≤ k ≤ d as above in Lemma 3.3.
We choose M ≥ 2d + 2C + 1 and let θk, 1 ≤ k ≤ d also be as above, that is
θk ≤M−1 and θk is strictly positive with respect to Fk, for all 1 ≤ k ≤ d.

22



We let
R = ∩dk=1 ker(θk) = ker(θ).

That R is a compact, open subequivalence relation follows from Lemma 3.3
and Proposition 3.2.

Define a map π : X → X by

π(x) = ϕη0(x,0)(x), x ∈ X,

where η0 is defined in Lemma 3.4. It is clear that π is continuous. Let
Y = π(X), which is clopen. We know from part 3 of Lemma 3.5 that
θk(x, η0(x, 0)) = 0, for all k, and so (x, ϕη0(x,0)(x)) = (x, π(x)) is in R, for
any x in X.

Next, we claim that η0(ϕ
η0(x,0)(x), 0) = 0, for all x in X. We have already

seen that, for m = η0(x, 0), we have (x, ϕm(x)) is in R. The claim follows
from the only if part of Lemma 3.7, for this value of m. As a consequence,
we see that η0(y, 0) = 0 and π(y) = y if y is in Y .

We now show that Y meets each R equivalence class exactly once. For
any x in X, (x, π(x)) is in R and π(x) is in Y , so Y meets each R equivalence
class. Now suppose that it meets some R equivalence class in two points.
Since R is a subequivalence relation of Rϕ, we may assume these points are
x and ϕm(x), for some x in X and m in Zd. As x and ϕm(x) are both in Y ,
we have

η0(x, 0) = 0 = η0(ϕ
m(x), 0).

As there are assumed to be in the same R equivalence class, we also have
(x, ϕm(x)) is in R, so by Lemma 3.7, we have

m = η0(x, 0)− η0(ϕ
m(x), 0) = 0.

We note for convenience that we have shown that for any x, x′ in X, (x, x′)
is in R if and only if π(x) = π(x′).

We now show that R has capacity C. Let x be in X. Consider

m = η0(x, 0)− (C + 1)
d∑

k=1

εk.

This means that if n is in Zd and |n −m| ≤ C, then η0(x, 0)− n is in Z+F
and

|η0(x, 0)− n| ≤ |η0(x, 0)−m|+ |m− n| ≤ C + 1 + C = 2C + 1.

23



We claim that θ(x, n) = 0, for all such n. This will imply that (x, ϕn(x))
is in R for all such n and hence, R has capacity C. We fix 1 ≤ k ≤ d and
compute θk(x, n).

First, note that

θk(x, n) = θk(x, η0(x, 0))− θk(ϕ
n(x), η0(x, 0)− n)

= 0− θk(ϕ
n(x), η0(x, 0)− n)

so it suffices for us to show that θk(ϕ
n(x), η0(x, 0)− n) = 0.

Since η0(x, 0)−n is in Z+F which is, in turn, contained in Z+Fk, we know
that

θk(ϕ
n(x), η0(x, 0)− n) ≥ 0.

Now suppose that the quantity above is strictly positive. We know from part
4 of Lemma 3.5 that there exists l in Zd with |l| ≤ 2d and

θk(ϕ
η0(x,0)(x), l) > 0.

This then implies

θk(ϕ
n(x), η0(x, 0)− n+ l) = θk(ϕ

n(x), η0(x, 0)− n)

+θk(ϕ
η0(x,0)(x), l)

≥ 1 + 1 = 2.

However, we also know that

|η0(x, 0)− n+ l| ≤ |η0(x, 0)− n|+ |l| ≤ 2C + 1 + 2d ≤M

and this contradicts our assumption that θk < M−1. This completes the
proof that R has capacity C.

We now turn to the issue of defining a Zd-action on Y . Let y be in Y and
let m be in Zd. We claim that there exists a unique n in Zd such that

θ(y, n) = m,

ϕn(y) ∈ Y.

Assuming this is true, we set ψm(y) = ϕn(y). To verify this assertion, we
first note that, by Lemma 3.8, there exists l in Zd such that θ(y, l) = m.
Now let n = l + η0(ϕ

l(y), 0) so that

ϕn(y) = ϕη0(ϕl(y),0)(ϕl(y)) = π(ϕl(y))
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is in Y . We also have

θ(y, n) = θ(y, l) + θ(ϕl(y), η0(ϕ
l(y), 0)) = m+ 0,

from the choice of n and part 3 of Lemma 3.5. As for the uniqueness of n,
suppose that n, n′ both satisfy the condition. Then, by the cocycle condition,
we have

0 = θ(y, n′)− θ(y, n) = θ(ϕn(y), n′ − n).

It follows that (ϕn(y), ϕn
′
(y)) is in R and both elements are in Y . Since Y

meets each equivalence class once, we see that ϕn(y) = ϕn
′
(y) and from the

freeness of the action, this means that n = n′.
Next, we check that, for any m,m′ in Zd, we have

ψm
′ ◦ ψm = ψm+m′

.

Let y be in Y . We choose n in Zd such that θ(y, n) = m and ϕn(y) is
in Y . This means that ψm(y) = ϕn(y). Next, choose n′ in Zd such that
θ(ψm(y), n′) = m′ and ϕn

′
(ψm(y)) is in Y . This means that

ψm
′
(ψm(y)) = ϕn

′
(ψm(y)) = ϕn

′
(ϕn(y)) = ϕn+n′(y).

On the other hand, it is clear that ϕn+n′(y) is in Y while

θ(y, n+ n′) = θ(y, n) + θ(ϕn(y), n′) = m+ θ(ψm(y), n′) = m+m′.

This means that
ψm+m′

(y) = ϕn+n′(y).

The conclusion follows.
We now check the third statement of Theorem 3.9. It clearly suffices to

show that, for any x in X and n in Zd, there exists y in Y and m in Zd with
(x, y), (ψm(y), ϕn(x)) are in R. Let y = π(x). It follows that (x, y) is in R.
Let m = θ(x, n). We know (ϕn(x), π(ϕn(x))) is in R. A simple argument like
the ones above shows that π(ϕn(x)) = ψm(π(x)). The conclusion follows at
once.

Our final step is showing that the action ψ is free and minimal. First
suppose that ψm(y) = y, for some y in Y and m in Zd. We know that y =
ψm(y) = ϕn(y), where n is the unique element of Zd such that θ(y, n) = m.
But since ϕ is free, the only n such that ϕn(y) = y is n = 0. It follows that
m = θ(x, 0) = 0. As for the minimality. It suffices to prove that, for any
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non-empty open set U in Y , and any y in Y , there is m in Zd such that
ψm(y) is in U . From the minimality of ϕ, we know there is n in Zd such that
ϕn(y) is in U . Let m = θ(y, n). Using the fact that U is contained in Y , it
follows at once that ψm(y) = ϕn(y) is in U .

It should be noted that it is not clear that the system (Y, ψ) given in the
last result also has small positive cocycles.

Remark 3.10. Since the equivalence relation R is compact, the quotient
X/R is also a Cantor set (see [GPS1]). In fact, Y is homeomorphic to this
quotient and ψ can be realized as an action on the quotient. Moreover, since
R = ker(θ), θ descends to a cocycle, denoted θ̄ on the quotient relation, which
is just Rψ. Under these identifications, we have

θ̄([x]R, n) = n,

for all [x]R in X/R and n in Zd.

Remark 3.11. The paper [GMPS2] extends the classification of orbit equiv-
alence to include minimal Z2-actions on the Cantor set. The main tool is to
construct finite approximations to the orbit relation in very much the same
spirit as 3.9. This is done by using Voronoi tessellations and variations of
them, avoiding the issue of whether or not the system has small positive co-
cycles. What is lost in this method (as opposed to 3.9) is the existence of a
Z2-action on the quotient X/R.

Remark 3.12. One of the conclusions of [GMPS2] is that every minimal Z2-
action on the Cantor set, say ϕ, is orbit equivalent to a minimal Z-action,
say ψ. Let h denote the map between the underlying spaces. Although we
have seen above that Z-actions possess an abundance of cocycles, this does
not seem to help in the question of the existence of small positive cocycles
for ϕ for the following reason. Let θ be a cocycle for the action ψ. The map
h × h : Rϕ → Rψ is not, in general, continuous and so θ ◦ (h × h) is not a
cocycle as it may not be continuous.

4 Examples

In this section we present two classes of minimal free Z2-actions which satisfy
our hypotheses.
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Example 4.1. Rotations of the group of p-adic integers.

Here, we consider a prime number p and the group X of p-adic integers.
We choose a dense copy of Z2 in X and our action is by rotation by this
subgroup. We remark that we believe that the same result is true for the
n-adic integers, where n is any natural number and more generally for all
odometers. But the choice of a prime p will simplify some of our arguments.
Let us make this more precise.

We let Zp denote the quotient of Z by pZ. Then, we have X = Π∞
k=0Zp.

It is an abelian group ; the operation is addition modulo p, with carry over to
the right. An element x = (xk)

∞
k=0 may be regarded as a formal power series∑

k xkp
k with the obvious form for addition. For x in X and non-negative

integers i ≤ j, we let x[i,j] denote the finite sequence xi, xi+1, . . . xj. We call
such a sequence a word in x of length j − i+ 1.

We choose two elements α and β from X such that either α0 or β0 is
non-zero and so that the only integers m,n which satisfy mα + nβ = 0 are
m = n = 0. These conditions imply the subgroup generated by α and β is
dense in X. Then our action ϕ is defined by

ϕ(i,j)(x) = x− iα− jβ,

for all x in X and (i, j) in Z2. In our notation, we will identify Z2 and the
subgroup of X.

We claim that this action satisfies the small positive cocycle property.
We will actually verify the property in Theorem 2.10.

Choose an independent set of generators of Z2. We will denote these by a
and b which are elements of X. As a and b must generate a dense subgroup
of X, at least one of a0 and b0 is non-zero. Let us suppose the former. Then
the subgroup generated by a alone is dense. This means that there is an
automorphism of X carrying a to (1, 0, 0, . . .). Henceforth, we assume that
a = (1, 0, 0, . . .). Observe that, for any x in X and positive integer k, the
values of (x+ ia)[0,k] are all distinct for 0 ≤ i < pk+1.

Lemma 4.2. Let b be in X and let K be a positive integer and let a =
(1, 0, 0, . . .). Suppose that there are no non-trivial integer solutions, i, j, of
the equation ia+ jb = 0. Then there exists positive integers K < M,N such
that 2M < N and

(−b)M−K < (−b)N−K
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regarding these as integers between 0 and p− 1 and

(−b)M−k = (−b)N−k

for all k = 0, 1, 2, . . . , K − 1.

Proof. We consider the collection of all words w in b of length K and we
divide these into three classes. The first is all words that only occur finitely
many times in b; that is w = bk,k+K−1 for only finitely many k ≥ 0. The
second class is all words w such that there are distinct symbols 0 ≤ i, j < p
such that the words iw (concatenation) and jw both appear infinitely many
times in b. The third class consists of words w such that there is a symbol
iw such that iww occurs infinitely many times, but iw occurs only finitely
many times for i 6= iw. If there exists such a word in the second class, then
we are clearly done. We are left to consider the case that the second class
is empty. Then we can select L ≥ 1 such that each word in the first class
does not appear in b[L,∞) and that for each word iw with w in the third class
and i 6= iw does not appear in b[L,∞). We claim that b is eventually periodic,
that is, there is some J ≥ 1 such that bn = bn+J , for all n ≥ L. To see this,
consider the second appearance of a word w from the third class in b[L,∞).
From the choice of L, this word must be preceded by iw. Let w′ be the word
obtained by dropping the last symbol from iww. This word is also of length
K and provided we are still at entries greater than L, it is again in the third
class and it must be preceded by iw′ . Continuing in this way, we see that the
predecessors of w are unique. Eventually the word w occurs in this string,
since we began at the second occurrence of w. But this argument applies to
every occurrence of w. The conclusion follows. Since a = (1, 0, 0, . . .), we
may find such integer i such that ia + b is periodic, say of period J ≥ 1.
Multiplying a sequence in X by pJ has the effect of shifting the entries over
by J and leaving 0 in the first J positions. As it is periodic, this leaves all of
ia + b unchanged except for the first J positions. Then we may find i′ ≥ 0
such that i′a = (b0, b1, . . . , bJ−1, 0, 0 . . .). Then we have

i′a+ pJ(ia+ b) = (ia+ b).

But this contradicts our hypothesis on a and b. This completes the proof.

Having chosen a positive integer K, we select M,N as in the Lemma and
define

A = {x ∈ X | x[0,M ] = x[N−M,N ]} − {x ∈ X | xi = p− 1, for all 0 ≤ i ≤ N}.

28



We define two functions, λ, µ : A→ Z by

λ(x) = inf{i ≥ 1 | x+ ia ∈ A}
µ(x) = inf{i ≥ 1 | x− b+ ia ∈ A}

for all x in A. Since rotation by a is minimal, both of these quantities are well
defined. Also, because A is clearly clopen, both functions are continuous.

The key Lemma is the following.

Lemma 4.3. With A, λ and µ as above, we have

1.
λ(x) ≥ pM+1, for all x ∈ A,

2.
µ(x) ≤ pM−K+1 + 2, for all x ∈ A.

Proof. We begin with the first statement.

Case 1: xk < p − 1, for some M < k < N −M . For 1 ≤ i < pM+1, the
values of (x + ia)[0,M ] are all distinct from x[0,M ]. However, for these
values of i, when computing x+ ia, there is no carry over past the kth
coordinate and this means that x[N−M,N ] = x[0,M ]. Hence, x+ ia is not
in A.

Case 2: xk = p − 1, for all M < k < N − M . As x is in A, we must
have xk < p − 1, for some 0 ≤ k ≤ N . By hypothesis, we have either
k ≤ M or N −M ≤ k ≤ N . But, in the former case, as x is in A,
we have xk = xN−M+k. In either case, we conclude that xk < p − 1,
for some 0 ≤ k ≤ M and some N −M ≤ k ≤ N . Let I be the first
positive integer for which the computation of x+Ia involves carry over
past coordinate M . Note that I ≤ pM+1. Since xk < p − 1 for some
k ≤ M , I > 1. For 1 ≤ i < I, we have (x + ia)[0,M ] 6= x[0,M ] while
(x + ia)[N−M,N ] = x[N−M,N ]. From this we conclude that x + ia is not
in A. Next consider I ≤ i ≤ pM+1. Here, we have (x + ia)[N−M,N ] is
obtained from x[N−M,N ] = x[0,M ] by adding (1, 0, 0, . . . , 0). That is, we
have (x+ ia)[N−M,N ] = (x+a)[0,M ]. But as 1 < I ≤ i ≤ pM+1, we know
that (x + a)[0,M ] 6= (x + ia)[0,M ] and again we conclude that x + ia is
not in A. This completes the proof of the first statement.
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We now consider the second statement. Since (−b)M−K < (−b)N−K , we
may find a positive integer I < pM−K+1 so that

(−b+ Ia)[0,M−K] = (−b)[N−M,N−K].

This means that there is no carry over past coordinate M −K in −b + Ia.
We now claim that, for any x in A, at least one of x− b+ Ia, x− b+(I+1)a
or x− b+ (I + 2)a is in A. This will complete the proof.

We see at once from our choice of I that

(−b+ Ia)[0,M−K] = (−b)[N−M,N−K] = (−b+ Ia)[N−M,N−K]

since the addition has no carry over past coordinate M − K. Using again
that there is no carry over past coordinate M − K and our original choice
of M,N , we have (−b + Ia)[M−K+1,M ] = (−b)[M−K+1,M ] = (−b)[N−K+1,N ] =
(−b+Ia)[N−K+1,N ]. Together, we see that (−b+Ia)[0,M ] = (−b+Ia)[N−M,N ].
We add −b+Ia to an element x in A. If there is no carry over from coordinate
N−M−1 to N−M , then x−b+Ia has the same property, (x−b+Ia)[0,M ] =
(x− b+ Ia)[N−M,N ]. Either x− b+ Ia is in A or else (x− b+ Ia)k = p− 1 for
all 0 ≤ k ≤ N . In the latter case, it is immediate that x− b+ Ia+ a is in A.
Finally, if there is carry over from N −M − 1 to N −M when adding x to
−b+Ia, then adding a once more will affect the value on the first interval, but
not on the last, and will result in (x−b+Ia+a)[0,M ] = (x−b+Ia+a)[N−M,N ].
We are again reduced to one of the two cases above: either x− b+ Ia+ a or
x− b+ Ia+ 2a is in A.

The first consequence we note is that, for i = 0, 1, . . . , pM+1 − 1, the sets
A+ia = ϕ−ia(A) are pairwise disjoint. Next, we claim that the map from A to
itself which sends x to x−b+µ(x)a is injective. If not, we have x−b+µ(x)a =
x′−b+µ(x′)a, for some x, x′ inA. If µ(x) > µ(x′), then x+(µ(x)−µ(x′))a = x′

which is in A. But this means that λ(x) ≤ µ(x)−µ(x′), which contradicts the
estimates of the last lemma. In an analogous way, µ(x′) > µ(x) is impossible
and we conclude that µ(x) = µ(x′). From this it follows that x = x′ as
desired. As A is clopen and there exists a ϕ-invariant probability measure
on X, the map above is also onto. To say this another way, we have x is in
A if and only if x − b + µ(x)a is in A. It will be convenient later to denote
ξ(x) = x− b+µ(x)a, for x in A; we have shown ξ is a homeomorphism of A.

We define
B = {x+ ia | x ∈ A, 0 ≤ i < µ(x)}.
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It follows at once from the last paragraph that

A ∪ ϕ−a(B) = A ∪ {x′ + a | x′ ∈ B}
= A ∪ {x+ ia | x ∈ A, 0 < i ≤ µ(x)}
= {x+ ia | x ∈ A, 0 ≤ i ≤ µ(x)}
= {x+ µ(x)a | x ∈ A} ∪B
= {x+ µ(x)a | x− b+ µ(x)a ∈ A} ∪B
= {x+ µ(x)a | x+ µ(x)a ∈ A+ b} ∪B
= (A+ b) ∪B
= ϕ−b(A) ∪B.

Notice that the facts that A and ϕ−a(B) are disjoint, as are ϕ−b(A)
and B, are clear from the above computation. We have verified the first two
conditions of Theorem 2.10. We now consider the third condition; specifically,
that the sets ϕ−k(a+b)(A ∪ ϕ−a(B)) are pairwise disjoint for 0 ≤ k < pK−3.
This will suffice in Theorem 2.10, since K is arbitrary.

Recall the homeomorphism of A, ξ(x) = x − b + µ(x)a. Replacing x by
ξ−1(x), we have x = ξ−1(x)− b+µ(ξ−1(x))a. Define integer valued functions
µk, k ≥ 0, on A by µ0 = 0 and

µk(x) = k + µ(x) + µ(ξ(x)) + . . .+ µ(ξk−1(x)),

for k ≥ 1 and x in A. We claim that

ϕ−k(a+b)(A ∪ ϕ−a(B)) = {x+ ia | x ∈ A, µk(x) ≤ i < µk+1(x)}.

We have shown this already for k = 0; let us now assume it is true for k and
prove it for k+1. We will only prove the containment ⊂, since this is the only
part of the claim we will use later, however the reverse containment is valid
and a very similar argument proves it also. From the induction hypothesis,
it suffices for us to consider x in A, µk(x) ≤ i < µk+1(x) and show that
ϕ−(a+b)(x+ ia) is the set on the right hand side, with k + 1 replacing k. We
have

ϕ−(a+b)(x+ ia) = x+ b+ a+ ia

= ξ−1(x)− b+ µ(ξ−1(x))a+ b+ a+ ia

= ξ−1(x) + (i+ 1 + µ(ξ−1(x)))a.
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Of course, ξ−1(x) is in A while, for any l ≥ 0, we have

µl+1(ξ
−1(x)) = l + 1 + µ(ξ−1(x)) + µ(x) + . . .+ µ(ξl−1(x))

= 1 + µ(ξ−1(x)) + µl(x).

It follows that µk+1(ξ
−1(x)) ≤ i + 1 + µ(ξ−1(x)) < µk+2(ξ

−1(x)) and so the
desired conclusion.

Next, we observe that since µ(x) ≤ pM−K+1 + 2, by Lemma 4.3, we have
0 ≤ µk ≤ k(pM−K+1 +3) < pK−3(pM−K+1 +3) ≤ pK−3(pM−K+1 +pM−K+1) ≤
pM . Suppose that the sets ϕ−k(a+b)(A ∪ ϕ−a(B)) and ϕ−l(a+b)(A ∪ ϕ−a(B)),
with 0 ≤ k, l ≤ pK−3, have a common element. From our claim above,
we have x, y in A, µk(x) ≤ i < µk+1(x) and µl(y) ≤ j < µl+1(y) with
x + ia = y + ja. From the estimate above of the values of µk and the fact
that the sets ϕ−ia(A) are pairwise disjoint for 0 ≤ i < pM+1, we see that
i = j and x = y. It follows that k = l as desired.

Finally, we verify the last condition of Theorem 2.10. The case for the
generator a is straightforward since the map ϕ−a is minimal and A is non-
empty and open. Now we consider the generator b. It follows from the
minimality of the action and the fact that B is non-empty and open that we
may find a finite set F ⊂ Z2 such that ∪(i,j)∈Fϕ

−ia−jb(B) = X. Let I be the
minimum of the first entries of F . We observe that A is a subset of B and
hence

ϕ−a(B) ⊂ A ∪ ϕ−a(B) = ϕ−b(A) ∪B ⊂ ϕ−b(B) ∪B.

Continuing in this fashion, we may replace the finite set F with a finite set F ′,
where each element has first entry I, and ∪(i,j)∈F ′ϕ−ia−jb(B) = X. Applying
ϕIa to both sides yields the desired result.

We remark that in this example, there is a short exact sequence

0 → Z → H1(X,ϕ)
q→ Z[

1

p
] → 0.

The map q is defined as follows. For any θ in Z1(X,ϕ), we have

q([θ]) =

∫
X

θ(x, (1, 0))dµ(x),

where µ is Haar measure on X.
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Example 4.4. Rotations of a disconnected circle.

Let α, β be two numbers such that {1, α, β} is linearly independent over
the rational numbers. For simplicity, we will assume that α, β are both
between 0 and 1

2
.

We consider the natural action of Z2 on the circle, R/Z, by rotating by α
and by β. We select a single orbit, say that of 0, and cut the circle at these
points, replacing each by two points separated by a gap. The old point will
be come the right endpoint of the gap and a new point will be the left end
of the gap. Let us make this more precise as follows.

We consider the subgroup of R, Cut = {i + jα + kβ | i, j, k ∈ Z}. We
let X̃ = R ∪ {a′ | a ∈ Cut}. We give X̃ a linear order by setting a′ < b,
a < b′ and a′ < b′ as appropriate, whenever a < b. Finally, we set a′ < a, for
all a in R. The space X̃ is given the order topology. Notice that for x < y
in Cut, [x, y) = [x, y′] is a clopen set in X̃. The natural action of the group
Z + αZ + βZ extends in a natural way to X̃. We let X = X̃/Z, which has
an action of αZ + βZ. This is our Cantor minimal Z2 system, ϕ,

ϕ(i,j)(x) = x− iα− jβ,

where x is a real number, interpreted modulo Z, and

ϕ(i,j)(x′) = (x− iα− jβ)′,

for x in Cut.
We claim that ϕ has small positive cocycles. To see this, we must consider

a pair of generators, a, b, of Z2. Now ϕa and ϕb are again rotations of our cut-
up circle X and we let a and b denote real numbers such that ϕa(x) = x− a
and ϕb(x) = x − b, both interpreted modulo the integers. Since a and b are
generators of Z2, the subgroup of R generated by a, b, 1 is the same as that
generated by α, β, 1.

Consider for the moment, the homeomorphism, η of R2/Z2 defined by
η(x, y) = (x + a, y + b). From Theorem 1, page 97 of [CFS], this action
is minimal if and only if there is no non-trivial character of R2/Z2 which
annihilates (a, b). The non-existence of such a character is an immediate
consequence of the fact that {1, α, β} are linearly independent over the ra-
tionals. We conclude that η is minimal.

Let N be a positive integer. From the minimality of η, we may find a
positive integer q such that ηq(0, 0) ∈ (0, 1

2N
)× (0, 1

2N
). This means that

0 < qa− i <
1

2N
, 0 < qb− j <

1

2N

33



for some integers i, j, or equivalently,

0 < a− i

q
<

1

2Nq
, 0 < b− j

q
<

1

2Nq
.

From this it follows that, for any 0 ≤ m,n < N and k ∈ Z, we have

k

q
≤ k

q
+m(a− i

q
) + n(b− j

q
) ≤ k

q
+

N

2Nq
+

N

2Nq
k

q
≤ k−im−jn

q
+ma+ nb ≤ k + 1

q

Consider the finite set of distinct points in R/Z,

{k
q

+ma+ nb | 0 ≤ m,n < N, k ∈ Z}

and choose δ to be less than half the distance between any two of these (in
R/Z). For each 0 ≤ k < q, choose a point xk with

0 < xk −
k

q
< δ, xk ∈ Cut.

We interpret xk for any k in Z by considering k modulo q. This means that
we have

xk < xk−im−jn +ma+ nb < xk+1,

for any k = 0, 1, . . . , q − 1 and 0 ≤ m,n < N .
We define

A =

q−1⋃
k=0

[xk, xk−i + a), B =

q−1⋃
k=0

[xk, xk−j + b),

where k − i and k − j are interpreted mod q. From the estimates above,
we see that the intervals appearing in the union in the definition of A are
pairwise disjoint. The analogous statement is true of B. We calculate

A ∪ ϕ−a(B) = {∪k[xk, xk−i + a)} ∪ {∪k′ [xk′ + a, xk′−j + a+ b)}
= ∪k {[xk, xk−i + a) ∪ [xk−i + a, xk−i−j + a+ b)}
= ∪k[xk, xk−i−j + a+ b).
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Again using arguments similar to those above, the intervals involved in the
above union are pairwise disjoint. A similar computation shows that

ϕ−b(A) ∪B = A ∪ ϕ−a(B).

Moreover, for any 0 ≤ n < N , we have

ϕ−n(a+b)(A ∪ ϕ−a(B)) = ∪k[xk + (n− 1)(a+ b), xk−i−j + n(a+ b)).

Again from the estimates above, these sets are pairwise disjoint.
This shows the first three conditions of Theorem 2.10 hold; the fourth is

clear since each rotation ϕ−a, ϕ−b is minimal and the sets A and B and open
and non-empty.

We remark that in this example, we have H1(X,ϕ) ∼= Z3. See [FH] for a
proof.
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