
Non-commutative methods for the K-theory of
C∗-algebras of aperiodic patterns from

cut-and-project systems

Ian F. Putnam∗,
Department of Mathematics and Statistics,

University of Victoria,
Victoria, B.C., Canada V8W 3R4

putnam@math.uvic.ca

Abstract
We investigate the C∗-algebras associated to aperiodic structures

called model sets obtained by the cut-and-project method. These
C∗-algebras are Morita equivalent to crossed product C∗-algebras ob-
tained from dynamics on a disconnected version of the internal space.
This construction may be made from more general data, which we call
a hyperplane system. From a hyperplane system, others may be con-
structed by a process of reduction and we show how the C∗-algebras
involved are related to each other. In particular, there are natural ele-
ments in the Kasparov KK-groups for the C∗-algebra of a hyperplane
system and that of its reduction. The induced map on K-theory fits in
a six-term exact sequence. This provides a new method of the compu-
tation of the K-theory of such C∗-algebras which is done completely
in the setting of non-commutative geometry.

1 Introduction

This paper is concerned with the study of aperiodic structures obtained by
the so-called cut-and-project method, their associated C∗-algebras and the

∗Supported in part by a grant from NSERC, Canada
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K-theory of these C∗-algebras. Such structures are used as models for phys-
ical materials called quasi-crystals (see [HG] or [J]). Around the time of the
discovery of the first quasi-crystal [SBGC], original versions of the construc-
tion appeared in [DK1, DK2, E1, KKL1, KKL1, KrN, LS]. This was later
made more axiomatic by using the concept of models sets introduced by Y.
Meyer in 1972 [M1]. The situation is as follows: the physical space in which
the atoms are actually lying is seen as a subspace of a larger Euclidean space,
in which it is called the parallel direction or simply the physical space. Its or-
thogonal complement is usually called the internal space. In the large space,
there is a lattice (called the reference lattice) which is irrationally related to
the parallel direction, meaning that their intersection is just the origin. In
the internal space, a window is chosen, a compact set which is the closure of
its interior. Most models describing real quasi-crystalline materials use the
window obtained by the projection of the unit cube in the reference lattice
to the internal space.

In the 1980’s, it was realized that the only way to get atoms moving in a
perfect quasi-crystal at very low temperatures was through the so-called flip-
flops (see, in particular, Chapter 3 of Gratias and Katz in [HG]) or phasons
(see [J]). The cut-and-project construction gives a very convenient repre-
sentation of the phenomenon: by moving the window in the perpendicular
space, every time a new point of the reference lattice enters the part of the
large space which projects into the window, another point is expelled. By
projecting into the physical space, such a move can be seen as a local jump of
an atom from its prior position to a position nearby. The family of positions
involved in the jumps is usually located on an affine hyperplane (at least
whenever the window obtained by the projection of the unit cube). It was
realized quite early (see [Be1, BIT, BCL], for instance) that the window was
homeomorphic to the canonical transversal (also called the atomic surface
in quasi-crystalography [HG, J]) when endowed with a topology obtained by
creating a gap on each affine hyperplane obtained by translating the hyper-
planes which form the maximal faces of the window by the vectors in the
lattice after projection to in the internal space. The resulting space is totally
disconnected in cases of interest.

We present a specific example: the octagonal or Ammann-Beenker tiling.
We follow the notation of [Be2]. Let e1, e2, e3, e4 be the usual basis for R4
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and our lattice is L = Z4. Consider the orthonormal basis

v1 = (− 1√
2
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)
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)

The physical space or parallel direction, G, is the span of {v1, v2} and the
internal space, H, is the span of {v3, v4}. The subgroup L ⊂ H is the
projection of L onto the space H and is generated by

π⊥(e1) =
1√
2
v3, π

⊥(e2) =
1√
2
v4, π

⊥(e3) = −1

2
v3 − 1

2
v4, π

⊥(e4) =
1

2
v3 − 1

2
v4.

The following shows the space H, the generators of L and also the win-
dow, W , which is the projection of the unit cube of the lattice L onto H:

-
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Figure 1: Internal space for the octagonal tilings
Observe that the edges of the window lie in the collection of hyperplanes,
denoted P , consisting of Pk = spanRπ

⊥(ek), for k = 1, 2, 3, 4 and their trans-
lates under L.

Beginning with a physical space G, an internal space H, a lattice L in
G×H and a window W in H, we construct discrete point sets in G as follows.
For any x in G×H, we consider the coset x+L, intersect it with G×W and
project the result to G. It is convenient to require that the coset x +L does
not intersect the boundary of G×W . Such a set is called a model set. This
collection may then be completed in a natural way to obtain a compact set
of uniformly discrete subsets of G with a natural action of G by translation.
This is called the hull and is denoted Ω(W ). An element of the space Ω(W )
(or rather a finite part of it) for the octagonal tiling is shown below:
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Figure 2: An octagonal tiling

The points of the model set are just the vertices. The edges are drawn as an
aid to see the pattern; they are simply the edges given by the generators of
L joining adjacent points in the coset x + L.

We review the basic facts of this construction in section 2. In particular,
the space Ω(W ) can be realized as a quotient of G × H̃(W ) by a natural
action of L, where H̃(W ) is a totally disconnected version of the space H.
We find it most convenient to follow the idea of [BIT] expressing H̃(W ) as
the spectrum of a commutative C∗-algebra generated by the characteristic
function of the window and its translates by L. The C∗-algebra of interest is
the crossed product C(Ω(W ))×G. Results of Rieffel immediately imply that
this is Morita equivalent to C0(H̃(W ))×L and we concentrate our attention
on this C∗-algebra.

These C∗-algebras and variants of them contain operators which are ap-
proximants of position and momentum operators for electrons moving in a
quasi-crystal represented by these models sets. Moreover, if a self-adjoint
operator in this C∗-algebra representing some observable of the system has
totally disconnected spectrum, then the gaps in this spectrum may be la-
belled by the K0 group of the C∗-algebra. For further discussion of these
ideas, we refer the reader to [Be1, Be2, BHZ, KeP]. Thus, a main focus
of research has been in computing the K-theory of these C∗-algebras. We
mention the references [Be1, BCL, BS], but the most general scheme for com-
puting K-theory, specifically designed for cut-and-project systems, is given
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in [FHK].
Returning to the construction of the space H̃(W ), in the case where the

window is the projection to H of the unit cube in the lattice L, there is an
equivalent description in terms of the hyperplanes which form the bound-
ary of W . In section 3, we introduce the notion of a hyperplane system:
a Euclidean space, H, a finitely generated subgroup, L and a collection of
co-dimension one oriented, affine hyperplanes, P . With this data only, we
construct the space H̃(L,P) with a natural action of L and consider the
crossed product. This provides a much more general construction for several
reasons: we do not need all the data G and L, we do not need extra hypothe-
ses such as L is dense and finally the topology is given without reference to
model sets. As one consequence, it is not necessary that the space H̃(L,P)
be totally disconnected. For this reason, we define it as the spectrum of
a commutative C∗-algebra only. In fact, we allow the possibility that our
collection of hyperplanes P is empty, in which case H̃(L,P) = H and the
C∗-algebra is simply C0(H) × L. This is a reasonably familiar object; up
to Morita equivalence, it is a non-commutative torus. Our generalization
to hyperplane systems is actually a fairly obvious one; the justification for
introducing it will come in the following sections.

There is a reasonably simple, but somewhat imprecise, description of the
space H̃(L,P) as follows. It is obtained from H by removing each affine
hyperplane in P and replacing it by two copies which are separated by a
gap. Each copy is attached to one of the two half-spaces. Of course, there
are some subtleties when two or more hyperplanes meet and since the col-
lection of hyperplanes is dense. The example we provided of an octagonal
tiling in Figure 2 above actually corresponds to a new ‘doubled’ point from
one of these affine hyperplanes. If one compares this model set to the one
arising from its twin doubled point in H̃(L,P), the two are identical except
along a horizontal line passing through the middle of the picture. Observe
that across the middle of the pattern there is a sequence of projected three
dimensional cubes, each pair separated by either one or two squares. Moving
the parameter point to its twin on the other doubled hyperplane, the change
in the pattern is that all these cubes flip their orientation as shown below.
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Figure 3: Flip-flop
This is usually refered to as a ‘flip-flop’. The points of the model set affected
by this move arise from a lower dimensional cut-and-project tiling system
which may be regarded as a reduction of the original one to the hyperplane
where the pair of doubled points arise. We make this notion of the reduc-
tion of a hyperplane system concrete in section 4. Given (H, L,P) and a
hyperplane P in P , the reduction of (H, L,P) by P , which we denote by
(HP , LP ,PP ), is given as follows. As P is a hyperplane, it is the translate of
codimension one subspace of H, which we denote HP . The group LP is just
L∩HP and the collection of hyperplanes PP is simply the intersections of P
with the other elements of P (translated so that they lie in HP rather than
P ). In general, even if we begin with a cut-and-project system, its reductions
may not arise from a cut-and-project system. We give a simple geometric
condition in Theorem 4.5 for when this holds. It is satisfied, in particular, by
the octagonal example we have given. Under these hypotheses, the flip-flops
are be described explicitly in terms of the lower dimensional cut-and-project
system in Theorem 4.6.

The main goal of the paper is to show how this reduction to a hyperplane
has a natural interpretation for the K-theory of the associated C∗-algebras.
This is done in section 5. Given (H,L,P) and its reduction to a hyperplane
P in P , we let L′P be a complimentary subgroup of LP in L; i.e. L =
LP × L′P . The set all translates of P under L can be indentified with P ×
L′P . This is typically a dense subset of H. In passing to H̃(L,P), each
of these points is replaced by two copies. (As well, the space P is itself
disconnected by the other hyperplanes, and we will write P̃ instead. For
simplicity, we could imagine the case that there are no other hyperplanes so
P̃ = P .) These two copies mean that we have two embeddings of P̃×L′P into
H̃(L,P), which we denote by i0 and i1. If we endow L′P with the discrete
topology, these maps are continuous, but very far from proper. Let f be
a continuous function of compact support on H̃(L,P). The compositions
f ◦ i0 and f ◦ i1 are continuous and bounded, but they are not compactly
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supported on P̃ × L′P . This means that they lie in the multiplier algebra
of C0(P̃ × L′P ). More subtlely and importantly, their difference does have
compact support on P̃ × L′P . Finally, this is all equivariant for the action of
L on both spaces. This means that we have an element of the the Kasparov
group KK0(C0(H̃(L,P))× L), C0(P̃ × L′P )× L), as interpreted by J. Cuntz
[Cu]. Moreover, the C∗-algebra C0(P̃ ×L′P )×L is Morita equivalent to that
associated with the reduction, C0(H̃P (LP ,PP ))×LP . However, more is true.
The results of [Pu] and show there is a six-term exact sequence relating the
K-groups of these two C∗-algberas. The third C∗-algebra appearing in this
sequence is that obtained from H, L and P ′, which is simply P after removing
P and its L-orbit.

In practical terms, this means that the K-theory of our C∗-algebra arising
from (H, L,P) may be computed from that of (HP , LP ,PP ) and (H, L,P ′).
The former is simpler because it arises from a lower dimensional hyperplane
system and the latter is simpler because it involves fewer hyperplanes. It
is important to note in this computation that neither of the two new sim-
pler hyperplane systems need arise from a cut-and-project system. Indeed,
continuing this way, we end with the empty collection of hyperplanes which
is certainly not arising from a cut-and-project system. We carry out this
computation completely for the example of the octagonal tilings in section 6.

The author would like to thank the referee for a thorough reading of the
manuscript and many helpful suggestions.

2 Cut-and-project systems

In this section, we present the basic definitions and well-known results con-
cerning projection method tilings. These (or variations of them) can be found
in many places, e.g. [Be2, GS, Mo, Se]. They can also be found in [FHK],
but the notation there seems less standard.

For d ≥ 1, Rd denotes the usual Euclidean space of dimension d. The
Euclidean norm of an element x in any Euclidean space is denoted |x|. We
also use B(x,R) to denote the ball centred at x ∈ Rd of radius R > 0. A
subset W is regular if it is non-empty and is the closure of its interior. The
boundary of a set W is denoted ∂W .

Let G = Rd and H = RN be two Euclidean spaces. We let π and π⊥

denote the two canonical projections of G ×H onto G and H, respectively.
There is an obvious action of G on G×H by translation in the first coordinate.
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With a slight abuse of notation, we denote this by u + x (or x + u), for x in
G × H and u in G. In other words, we will regard G and H as subsets of
G×H.

Definition 2.1. A cut-and-project system is a triple (G,H,L) where G ∼=
Rd, H ∼= RN and L ⊂ G×H is a lattice (i.e.. a co-compact discrete subgroup)
satisfying the following:

1. the restriction of π : G×H → G to L is injective and

2. the map π⊥ : G ×H → H has π⊥(L) dense in H. We usually denote
π⊥(L) by L.

If, in addition, we have

3. the restriction of π⊥ to L is injective,

then we say the system is aperiodic.

Forrest, Hunton and Kellendonk [FHK] work in somewhat greater gener-
ality. Also, they take the view that the lattice L = Zd+N . Of course, this is
always the case up to isomorphism of groups, but their point of view is that
the space G (which is E in their notation) is skewed, rather than the other
way around.

Definition 2.2. Let (G,H,L) be a cut-and-project system and let W be a
compact, regular subset of H. The set of non-singular points, denoted N , is

N = {x ∈ G×H | π⊥(x + L) ∩ ∂W = ∅}.
Furthermore, for x in N , we define Λx(W ) ⊂ G by

Λx(W ) = π{y ∈ x + L | π⊥(y) ∈ W}.
The elements of N are also sometimes called generic points and the set

Λx(W ) is a model set. We note that usually model sets may be constructed
for any x in G×H, without our hypothesis that x is in N . The following is
an easy consequence of the definitions and we omit the proof.

Lemma 2.3. Let (G,H,L) be a cut-and-project system and W ⊂ H be
compact and regular.

1. If x is in N and s is in L, then x + s is in N and Λx+s(W ) = Λx(W ).
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2. If x is in N and u is in G, then x+u is in N and Λx+u(W ) = Λx(W )+u.

The next step is to define a topology on the collection of model sets.
We follow [BHZ]. We define M(G) as being in the dual space of Cc(G),
the continuous compactly supported functions on G and give it the weak-*
topology. The elements of M(G) are measures on G. To each set Λx(W ), x ∈
N , we regard it as an element of M(G) which is the sum of point measures
over its elements. The fact that our sets are uniformly discrete plays an
important part; we refer the reader to [BHZ] for details. The weak-* closure
of Λx(W ), x ∈ N in M(G) will be compact. It is also important to note that
a measure in the closure can is again the sum of point masses over discrete
point sets in G. We may suppress the distinction between point sets and
measures.

In fact, the space constructed above is metrizable. There are a number
of possibilities for the metric and some may be more suitable than others.
For our purposes here, it will be sufficient to use the following (see [FHK]),
although this is not the most general. Let Λ, Λ′ be countable subsets of G.
We consider the set of all ε > 0 satisfying the following:

there exist v, v′ ∈ B(0, ε), (Λ− v) ∩B(0, ε−1) = (Λ′ − v′) ∩B(0, ε−1).

We define d(Λ, Λ′) to be the infimum of all such ε. The closure of Λx(W ), x ∈
N in the topology concides with its completion in this metric.

We also introduce a new topology on the set N as follows. We embed N
into G×H ×M(G) by sending x in N to (x, Λx(W )). Again the closure of
the image is compact. This space is also metrizable and we define for x, y in
N , we define

d(x, y) = |x− y|+ d(Λx(W ), Λy(W )).

The closure of N in the larger space and the completion in this metric coin-
cide.

The following results summarize the facts we need regarding convergence
of models sets in our metric. Proofs can be found in [FH].

Lemma 2.4. Suppose that xn, n ≥ 1, is a sequence in N ∩H.

1. The sequence Λxn(W ), n ≥ 1, is convergent if and only if, for every
R > 0, there is an N ≥ 1 such that

Λxm(W ) ∩B(0, R) = Λxn(W ) ∩B(0, R),

for all m,n ≥ N .
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2. If the sequence Λxn(W ), n ≥ 1, converges to Λ, then a point u in G is
in Λ if and only if there exists N ≥ 1 such that u is in Λxn(W ), for
every n ≥ N .

3. The sequence Λxn(W ), n ≥ 1, is convergent if and only if, for every s in
L, there exists N ≥ 1 such that either π⊥(xn + s) ∈ W , for all n ≥ N
or else π⊥(xn + s) /∈ W , for all n ≥ N .

Definition 2.5. For a cut-and-project system, (G,H,L) and compact, reg-
ular set W in H, we let Ω(W ) or simply Ω denote the closure of {Λx(W ) |
x ∈ N} in M(G), or equivalently, its completion in the metric d. We also
let Ω̃(W ) or simply Ω̃ denote the closure of N in G×H ×M(G).

We summarize the important features of our spaces Ω(W ) and Ω̃(W ) in
the following theorem. We refer the reader to Chapter I of [FHK] for a proof.

Theorem 2.6. Let (G,H,L) be a cut-and-project system and W be a regular
subset of H.

1. There is a unique projection β̃ : Ω̃(W ) → G × H which extends the
identity map on N .

2. The actions of L and G on N extend to continuous actions on Ω̃(W )
and β̃ is equivariant with respect to these and the obvious translation
actions on the image.

3. The actions of L and G are free, wandering and commute with each
other.

4. There is a unique continuous surjection β : Ω(W ) → G × H/L which
maps Λx(W ) to x + L, for any x in N .

5. The action of G on {Λx(W ) | x ∈ N} by translation extends to a
continuous action on Ω(W ) and β is equivariant with respect to it and
the obvious translation action on the image.

6. Ω̃(W )/L ∼= Ω(W ).

We present an alternate approach to the definitions of the continuous
hulls, Ω(W ) and Ω̃(W ) in terms of the spectrum of a commutative C∗-
algebra. This approach was first taken in [BIT] for the Kohmoto model
in the one-dimensional case.
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We begin with a cut-and-project system, (G,H,L), and a window, W .
Since N , the set of non-singular points, is invariant under the action of G,
we have N = G × (N ∩H). First, consider the Hilbert space l2(N ∩H) of
square summable functions on N ∩ H. Each bounded function on N ∩ H
defines an operator on this space by pointwise multiplication. Let A(W ) or
A denote the ∗-algebra of operators generated by C0(H) and all functions
of the form χW−π⊥(s), where s is in L. (In the aperiodic case, it is not
necessary to include C0(H), but we do so for convenience. Having these
algebras represented as operators is also for convenence in later arguments.)
We let A(W ) or A denote the closure of A in the operator norm. Both A
and A are commutative.

Definition 2.7. The space H̃(W ) or simply H̃ is the spectrum of the com-
mutative C∗-algebra A(W ).

Put another way, this means that, by the Gelfand-Naimark Theorem,
there exists a locally compact Hausdorff space H̃ such that A ∼= C0(H̃).
In fact, the space H̃ is the collection of non-zero homomorphisms from A
to the complex numbers. The topology is obtained by realizing each such
homomorphism as an element of the dual space of A and using the relative
weak topology. In our case (where A is separable), this means that a sequence
φn, n ≥ 1, converges to φ if φn(a) converges to φ(a), for every a in A. For
the C∗-algebra C0(H), this space is homeomorphic to H itself and the map
associates to a point of H the homomorphism obtained by evaluation at that
point. Since C0(H) ⊂ A, there is a continuous proper map q : H̃(W ) → H
such that φ(f) = f(q(φ)), for all f in C0(H) and φ in H̃(W ).

We note that there is an injection of N ∩ H in H̃ which sends a point
x to the functional φx(f) = f(x), for any f in A. The fact that any such
functional extends continuously from A to A is immediate since it is given as
a vector state from the Hilbert space l2(N ∩H). (As a remark, it is probably
more natural to use the Hilbert space L2(H), using Lebesgue measure. We
avoid this route for two reasons, first we would need to add the hypothesis
that the Lebesgue measure of the boundary of W is zero. Secondly, we would
need to prove at this point that the homomorphisms φx, x ∈ N ∩H extend.
This is not difficult, but we easily avoid the issue with our approach.)

There is an action of L on A, denoted α, by

αs(f)(x) = f(x + π⊥(s)),
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for all x in N ∩H. This extends to A and hence induces an action of L on
H̃. The map q is equivariant for this action.

More general versions of the following appear in sections 3-7 of Chapter
I of [FHK], but this will suffice for our purposes here.

Theorem 2.8. The map sending x in N to (π(x), φπ⊥(x)) in G× H̃ extends

to a homeomorphism from Ω̃ to G × H̃ which commutes with both G and L
actions.

The basic C∗-algebra of interest is the crossed product, C(Ω(W )) × G.
However, from Theorem 2.6, Ω(W ) is the quotient of Ω̃(W ) by the action of L,
the groups L and G are both acting on Ω̃(W ) and the actions are commuting
and wandering. The results of Rieffel (situation 10 of [Ri]) apply directly and
we conclude that C(Ω(W )) × G is Morita equivalent to C0(Ω̃(W )/G) × L.
Moreover, it is clear from the description above that Ω̃(W )/G is just H̃(W )
and the action of L is just α as above. We summarize with the following
statement, but the reader should also consult II.2.9 of [FHK].

Theorem 2.9. The C∗-algebras C(Ω(W ))×G and
C0(H̃(W ))×α L are Morita equivalent.

This implies, in particular, that C(Ω(W ))×Rd and C0(H̃(W ))×αL have
isomorphic K-theory groups. Henceforth, we will concentrate on the latter.

We want to give some notation for crossed products. If A is a C∗-algebra
with an action α of the discrete group L, we write elements of the crossed
product as

∑
s∈L asus, where each as is an element is an element of A and

only finitely many are non-zero. The collection of such elements is a dense
∗-subalgebra of the crossed product. The elements us, s ∈ L, are unitary
operators. In the case that A is non-unital, these lie in the multiplier algebra
of A× L rather than algebra itself. These satisfy the relation

usa = αs(a)us,

for all a in A and s in L.

3 Hyperplane systems

In the last section, we saw how C∗-algebras could be produced from a cut-
and-project system and a window. Now, we give a different construction
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of C∗-algebras. The data in this case is called a hyperplane system. We
will then establish some concrete relations between the two constructions;
broadly speaking, the new construction will be more general.

In the following defintion, we will consider an oriented, affine hyperplane
of codimension one in a Euclidean space H. By this, we mean a set P which
is the translate of a subspace HP by some vector xP . Of course, HP is just
the set of all differences u − v, where u, v are in P . The point xP may be
chosen arbitrarily from P , but we fix a choice. As P has codimension one, it
divides the space H into two closed half-spaces whose intersection is P . By
an orientation of P , we mean that we have a fixed choice of labelling these
as P 0 and P 1.

Definition 3.1. A hyperplane system is a triple (H, L,P), where H ∼= RN ,
L ⊂ H is a finitely generated subgroup and P is a countable collection of
co-dimension 1 oriented affine hyperplanes in H which is invariant under
the action of L. That is, for each P in P and s in L, P + s is also in P.

A hyperplane cut-and-project system is a quadruple, (G, H,L,P), where
(G, H,L) is a cut-and-project system and (H, π⊥(L),P) is a hyperplane sys-
tem.

Of course, a hyperplane system does not need G as part of its data.
Moreover, the subgroup L does not need to be dense in H. Also, notice
that we allow the possibility that P is empty. We note that for any two
co-dimension one hyperplanes P,Q, their intersection is either P = Q, the
empty set or a co-dimension 2 hyperplane.

Frequently, the elements of P will be the L-orbits of subspaces of H, but
this is not necessary. For any x in H, we let P(x) denote all elements of P
which contain x. Let us also make clear that when we say that L acts on P ,
we mean that it preserves the orientation; that is, we have (P + s)i = P i + s,
for all s in L and P in P .

We will proceed to define C∗-algebras from a hyperplane system. In the
case of a hyperplane cut-and-project system, we establish a link between
these and the C∗-algebras of the last section, at least for the special class of
windows which are polytopes whose boundaries are contained in the hyper-
planes.

Although at this point, we do not yet have any model sets, we may
proceed to define a disconnected version of H, H̃. This can be done in
purely topological terms (see [Le, FHK]), but we find it most convenience to
follow the ideas of section 2 exploiting the Gelfand-Naimark theorem.
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Let NH denote the complement of the union of P in H. (This is a
replacement for N ∩ H of the last section.) We consider the Hilbert space
l2(NH) and regard bounded functions on NH as operators. We let A(L,P) or
simply A be the ∗-algebra generated by C0(H) and all functions of the form
fχP i , where f is in C0(H), P is in P and i = 0, 1, considered as operators
on l2(NH). Since NH is a dense Gδ in H, this representation of C0(H) is
faithful. Note that we have fχP 0 + fχP 1 = f , since the functions agree on
NH . (We remark that we do not want our algebra to contain the function
χP i since it is not compactly supported.) We let A(L,P) or simply A be
the closure of A(L,P) in the operator norm. Notice that if (H,L,P) and
(H,L,P ′) are hyperplane systems with P ′ ⊂ P , then A(L,P ′) ⊂ A(L,P)
and A(L,P ′) ⊂ A(L,P).

Definition 3.2. Let (H, L,P) be a hyperplane system. We define H̃(L,P)
or simply H̃ to be the spectrum of the commutative C∗-algebra A(L,P).

As A contains C0(H), there is a natural continuous surjection q : H̃ → H.
Notice that H̃ need not be totally disconnected. In fact, when P is empty,
it is just H.

Our first result is to note that changing the data by translating P does
not seriously affect the construction.

Proposition 3.3. Let (H, L,P) be a hyperplane system and let x be in H.
There exists a homeomorphism

τx : H̃(L,P) → H̃(L,P − x)

such that q ◦ τx(z) = q(z) + x, for all z in H̃(L,P).

Proof. The map sending f to τx(f)(y) = f(y + x) defines an isomorphism
from A(L,P) to in A(L,P−x). This extends to the A algebras and therefore
is induced by a homeomorphism of their spectra. That it satisfies the last
statement is trivial.

Our next objective is to give a better description of the elements of H̃.

Lemma 3.4. Let φ be a non-zero functional on A and let x = q(φ).

1. For any f in C0(H), P in P \ P (x) and i = 0, 1, we have

φ(fχP i) = f(x)χP i(x).
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2. For any P in P (x) and i = 0, 1, we have either φ(fχP i) = f(x), for all
f in C0(H) or φ(fχP i) = 0, for all f in C0(H).

Proof. For the first statement, if P is not in P (x), then x is not in P and so
either x is in the interior of P i or P 1−i. Let us suppose the former. We may
find a function, g in C0(H), whose support is compact and contained in P i

and satisfying g(x) = 1. Then we have

φ(fχP i) = φ(fχP i)g(x) = φ(fχP ig) = φ(fg) = f(x)g(x) = f(x),

and we are done. The case x is in P 1−i is similar and we omit the details.
For the second statement, we fix a function g in C0(H) such that g(x) = 1.

First, we have

φ(gχP i) + φ(gχP 1−i) = φ(gχP i + gχP 1−i) = φ(g) = g(x) = 1.

In addition, we also have

φ(gχP i)φ(gχP 1−i) = φ(gχP i · gχP 1−i) = φ(0) = 0.

We conclude that there are two possibilities, either
φ(gχP 0) = 1 and φ(gχP 1) = 0, or vice verse. Now for any other f in C0(H),
we have

φ(fχP i) = g(x)φ(fχP i) = φ(gfχP i) = φ(f)φ(gχP i) = f(x)φ(gχP i).

This completes the proof.

We may give a presentation of the points of H̃ as follows. Let φ be a non-
zero functional on A. Let x = q(φ); this means that, for each f in C0(H),
we have φ(f) = f(x). Using the second part of the last result, we define
δ : P(x) → {0, 1} by

φ(fχP 1) = δ(P )f(x),

for any f in C0(H). In view of the last result, φ is uniquely determined by
the pair (x, δ). Henceforth, we write φ = (x, δ). Notice that for a given x,
not every function δ arises from some φ. In the case N = 2, if P(x) contains
k lines, then q−1{x} has 2k points, not 2k.

The following provides a description of the points of H̃ and also the
topology.
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Proposition 3.5. 1. Let x be in H and let δ : P(x) → {0, 1}. The
point (x, δ) is in H̃ if and only if, for every ε > 0, there exists y in
B(x, ε) ∩NH such that y is in P δ(P ) for every P in P(x).

2. A sequence xn, n ≥ 1, in NH converges to (x, δ) in H̃ if and only if xn

converges to x in H and, for all n sufficiently large, xn is in P δ(P ), for
every P in P(x).

Proof. First, we suppose that (x, δ) is in H̃. Let ε > 0. Define

W i = {P ∈ P(x) | δ(P ) = i},
for i = 0, 1. Choose a function f in C0(H) whose support is contained in
B(x, ε) and so that f(x) = 1. Define the function g in A by

g =
∏

P∈W1

fχP 1

∏

P∈W0

fχP 0 =
∏

P∈W1

fχP 1

∏

P∈W0

(f − fχP 1).

We compute the value of the functional (x, δ) on g:

(x, δ)(
∏

P∈W1

fχP 1

∏

P∈W0

(f − fχP 1)) =
∏

P∈W1

(x, δ)(fχP 1)

·
∏

P∈W0

(x, δ)(f − fχP 1)

=
∏

P∈W1

δ(P )
∏

P∈W0

(1− δ(P ))

= 1.

From this, we conclude that the function g is non-zero. Hence, there is a
point y in NH with g(y) 6= 0. It is follows from Lemma 3.4 that y satisfies
the desired conclusion.

For the converse, it follows from the hypothesis that we may construct a
sequence, yn, n ≥ 1, in NH which converges to x and such that yn is in P δ(P ),
for every P in P(x). Regarding these points as vector states on A and hence
in H̃, we may find a subsequence which is convergent in the weak topology.
It follows at once that (x, δ) arises from this limit.

The second statement follows from Lemma 3.4.

The next objective is give a concrete link between the C∗-algebra of the
hyperplane system arising from a cut-and-project system and that of the last
section. For this, we need to consider a window W , but we must restrict to
a specific class of polytopes, as follows.

16



Definition 3.6. A subset W of H is a P-polytope if it is non-empty, com-
pact, regular and can be written as

W = ∩Q∈W0Q0 ∩ ∩Q∈W1Q1,

where W0 and W1 are finite subsets of P. Moreover, we say that the collec-
tions W0 and W1 are minimal if no proper subcollection of their union will
have the same intersection.

For Q in ∪iW i, we define

∂QW = Q ∩W.

The boundary of W can be written as the union of the sets ∂QW over all
such Q.

In some sense, this definition is going the wrong way. It is most usual to
begin with a window W which is a polytope in the standard sense and then
define P to be all hyperplanes which are translates of the set of hyperplanes
which form the faces of W .

The next result gives a specific link between our space H̃ and the topology
on model sets from section 2.

Proposition 3.7. Let (G,H,L,P) be a hyperplane cut-and-project system.
Suppose the sequence xn, n ≥ 1, in NH converges to (x, δ) in H̃. Then for
any P-polytope W , Λxn(W ) is Cauchy. We define Λ(x,δ)(W ) to be its limit
in the sense described in section 2.

Proof. First, observe thatNH is contained inN∩H. Since the space Ω(W ) is
compact, it suffices for us to show that any two limit points of subsequences of
Λxn(W ) are equal. Suppose that Λ and Λ′ are limit points of the subsequences
Λxmk

(W ), k ≥ 1 and Λxnk
(W ), k ≥ 1, respectively.

Let u be in Λ. By Lemma 2.4, for all k sufficiently large, we have u is
in Λmk

(W ) and u = π(s) for some s in L and xmk
+ π⊥(s) is in W . Write

W as an intersection as in 3.6 for collections W0,W1. If xmk
+ π⊥(s) is in

W , then it is in P 0, for each P in W0 and in P 1, for each P in W1. Fix
P in W i for the moment. Since xn converges to (x, δ) in H̃, we know from
Proposition 3.5 that for all n sufficiently large, xn is in (P−π⊥(s))δ(P−π⊥(s)) =
P δ(P−π⊥(s))− π⊥(s). This means that δ(P − π⊥(s)) = i and the subsequence
xnk

is also in P 0 − π⊥(s), hence xnk
+ π⊥(s) is in P 0, for k large. As this

holds for each P , we have xnk
+ π⊥(s) is in W , for k large. This implies that

u is also in Λ′. We have shown Λ ⊂ Λ′ but the same argument shows the
reverse inclusion and the conclusion follows.
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The precise relation between the construction of this section and the last
is summarized in the following two results.

Theorem 3.8. Suppose (G, H,L,P) is an aperiodic hyperplane
cut-and-project system and that W is a P-polytope. Then we have

C0(H̃(W )) ⊂ C0(H̃(L,P))

and the map sending f us to f uπ⊥(s) extends to an inclusion of C∗-algebras

C0(H̃(W ))×α L ⊂ C0(H̃(L,P))×α L.

Proof. Let W0,W1 be the minimal collection of elements of P as in the
definition of W . Let s be in L. Choose f , a function in C0(H) such that
f is identically one on W − π⊥(s). For i = 0, 1 and P in W i, the function
fχP i−π⊥(s) is in A(L,P). Then so is their product (over all i and P ), which
is just χW−π⊥(s) and it follows that A(W ) ⊂ A(L,P), which is the first
statement.

The second statement is a trivial consequence of the first and the fact
aperiodicity means that the map π⊥ : L → L is an isomorphism.

In general, the inclusion may be proper (for example, if W is P ′-polytope
where P ′ is some proper L-invariant subset of P), but equality is obtained
in the particular case when the window is the so-called canonical acceptance
domain as follows.

Let S be a set of generators for L. We define

CS = {
∑
s∈S

tss | 0 ≤ ts ≤ 1, s ∈ S},

where C is chosen to suggest ‘cube’. We will consider the window π⊥(CS).
The set of hyperplanes, P , which form the boundaries of W (and all their
translates under π⊥(L)) are described explicitly in section IV.2 of [FHK].
There is also a proof of the following.

Corollary 3.9. Suppose (G,H,L) is an aperiodic cut-and-project system, S
is a set of generators of L, W = π⊥(CS) is as above and P is the associated
set of hyperplanes. Then we have

C0(H̃(W )) = C0(H̃(L,P))
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and the map sending f us to f uπ⊥(s) extends to an isomorphism of C∗-
algebras

C0(H̃(W ))×α L ∼= C0(H̃(L,P))×α L.

Remark 3.10. Suppose that L is dense in H or at least that its span is all of
H. We may then choose subgroups L0, L1 of L so that L = L0⊕L1 and L0 is
a lattice in H. In this case, the action of L0 on H̃(L,P) is free and wandering
and C0(H̃(L,P))× L is strongly Morita equivalent to C0(H̃(L,P)/L0)× L1

(this is just an L1-equivariant version of situation 2 of [Ri]). Moreover, the
space H̃(L,P)/L0 has a natural finite-to-one mapping onto H/L0, which is
a torus.

Remark 3.11. In the special case that P is empty, we have H̃(L,P) = H.
If we also assume L is as in the last remark, H̃(L,P)/L0 is just a torus and
the action of L1 is by rotation. The C∗-algebra C0(H̃(L,P)/L0) × L1 is a
non-commutative torus whose dimension is the rank of L.

Remark 3.12. In the special case that H is one-dimensional and the group
L has rank two, then we may choose L0

∼= Z ∼= L1. The action of L1 on
H̃(L,P)/L0 is by the restriction of a Denjoy homeomorphisms to its unique
minimal set, which is totally disconnected (see [PSS]). Provided that P is
non-empty, the results of [PSS] show that

K0(C0(H̃(L,P)× L) ∼= Zp+1, K1(C0(H̃(L,P)× L) ∼= Z,

where p is the number of L-orbits in P.

4 Reduction of hyperplane systems

In this section, we introduce the notion of the reduction of a hyperplane
system to one of the hyperplanes. The result is another hyperplane system
with lower dimensional data. It is important to note that if the original
system is part of a hyperplane cut-and-project system, this extra feature
need not pass to the reduction.

Begin with a hyperplane system, (H,L,P). Choose P in P . Recall that
HP = P − P is a N − 1-dimensional subspace HP = P − xP of H. Further,
we define

LP = L ∩HP .
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The final ingredient in our reduced system is the collection of hyperplanes.
We define PP to be the collection of all Q ∩ P − xP , where Q is in P , with
Q ∩ P 6= ∅, P . (Neither HP nor LP depends on xP , and while PP does, it
is only up to translation. We can then refer to Proposition 3.3 to make the
relation precise.) A word of warning is appropriate: the choice of Q in P in
obtaining Q ∩ P − xP is not unique. For example, in the octagonal tiling of
section 6, if we use P = P1, we have P2 ∩ P1 = P3 ∩ P1.

Definition 4.1. Let (H,L,P) be a hyperplane system. For P in P, the
reduction of (H,L,P) to P is

(HP , LP ,PP ).

We note the following easy results without proof.

Proposition 4.2. Let (H,L,P) be a hyperplane system and let s be in L.
We have

HP+s = HP , LP+s = LP ,PP+s = PP + xP − xP+s.

Lemma 4.3. If P is in P, then

NHP
= HP \

⋃

Q∈P,Q6=P

(Q− xP ).

For any x in NHP
and s in L, we have P(x + xP + s) = {P + s}.

Lemma 4.4. Let W be a P-polytope, expressed minimally as

W = (∩Q∈W1Q1) ∩ (∩Q∈W0Q0).

Suppose that P is in W1 or W0. Then ∂P W − xP is a PP -polytope.

We now consider a cut-and-project hyperplane system, (G,H,L,P), and
its associated hyperplane system (H,L,P). Our aim is to show that under
some (fairly strong) hypotheses, for a given P in P , the reduction of (H,L,P)
to P will again arise from a cut-and-project hyperplane system. In this case,
there is a precise relation between the associated model sets.

Define
LP = {s ∈ L | π⊥(s) ∈ HP}

and subsequently

GP = {π(x) ∈ spanRLP | π⊥(x) = 0} ⊂ G.
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Theorem 4.5. Let (G,H,L,P) be a hyperplane cut-and-project system and
let P be in P. If

1. HP ⊂ spanRLP and

2. LP is dense in HP ,

then (GP , HP ,LP ) is a cut-and-project system. If (G,H,L) is aperiodic, then
so is (GP , HP ,LP ).

Proof. The first thing to prove is that if HP ⊂ spanRLP , then LP is a subset
of GP ×HP . Let s be in LP , so that π⊥(s) is in HP ⊂ spanRLP . It follows
that π(s) = s− π⊥(s) is in GP . As L is discrete, so is LP . Since LP is dense
in HP , we have π⊥(spanRLP ) = HP and then spanRLP = GP ×HP .

As LP is a subset of L, it follows that the restrictions of π and π⊥ to the
former are injective if their restrictions to the latter are.

The last result of this section is that, under the hypothesis of the last
theorem, there is a precise relation between certain model sets for the original
system and those of the reduction. More precisely, suppose that (x, δ0) and
(x, δ1) are two points in H̃, where x is in P and δ0 and δ1 differ only by their
values on P . Then the set theoretic difference Λ(x,δ1)(W ) \Λ(x,δ0)(W ) can be
expressed in terms of a model set for the reduced system (GP , HP ,LP ,PP ).
This result is certainly known in the quasicrycstal community, but we state
it here because it has an interesting contrast with a result in the next section,
and also give a proof for completeness.

As L is finitely generated, the subgroup LP is a direct summand and we
choose another subgroup L′P such that L = LP × L′P . Of course, there may
be many choices; this will not effect the result.

We define maps

ijP : H̃P (LP ,PP )× L′P → H̃(L,P),

for j = 0, 1. For (x, δ) in H̃P (LP ,PP ) and s′ in L′P , we define ijP ((x, δ), s′) =
(x + xp + s′, δ̄j), where

δ̄j(Q) =

{
δ(Q− xP − s′), for Q 6= P + s′,

j, for Q = P + s′

It follows from Proposition 3.5 that both ijP , j = 0, 1 are well-defined and
continuous; we omit the details. In particular, if we consider x which is in
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NHP , we have P(x + xP + s′) = {P + s′} by Proposition 4.3 and we define
ijP (x) = (x+xP +s′, j), where the second entry is interpreted as the constant
function j on the singleton {P + s′}.
Theorem 4.6. Let (G,H,L,P) be a hyperplane cut-and-project system. Let
P be an element of P such that

1. HP ⊂ spanRLP and

2. LP is dense in HP .

Let W be a P-polytope associated to the minimal collections W0 and W1.
Suppose that (x, δ) is in H̃P (LP ,PP ) and s′ is in L with π⊥(s′) in L′P . If
there exists s in L such that P + π⊥(s) is in W1, then

Λi1P ((x,δ),π⊥(s′))(W ) \ Λi0P ((x,δ),π⊥(s′))(W )

= Λ(x,δ)(∂P+π⊥(s)W − xP − π⊥(s)) + π(s− s′).

If there is no such s, then

Λi1P ((x,δ),s′)(W ) ⊂ Λi0P ((x,δ),s′)(W ).

Proof. Case 1. We begin with the added assumptions that s′ = 0 and that
x is in NHP

. In the right hand side of our formula, the point (x, δ) can be
replaced by simply x. Of course, this simplifies things because the set on
the right hand side is a genuine model set and not a limit of them. It also
implies that P(x+xP ) = {P} and we have ijP (x, 0) = (x+xP , j), for j = 0, 1.
Choose a sequence xn, n ≥ 1, in P 1 − xP a sequence yn, n ≥ 1, in P 0 − xP

both converging to x.
Suppose that u = π(t) is in Λ(x+xP ,1) and not in Λ(x+xP ,0). From the

definitions and Lemmas 2.4, this implies that xn + xP + π⊥(t) is in W and
yn+xP +π⊥(t) is not in W , for n large. It follows that x+xP +π⊥(t) is in ∂W
and hence in ∂QW , for some Q in W i, where i is either 0 or 1. This implies
that x + xP is in Q − π⊥(t) and since we know P(x + xP ) = {P}, we must
have Q− π⊥(t) = P . Next, since xn + xP + π⊥(t) is in W which is contained
in Qi = P i +π⊥(t). It follows from our choice of xn that i = 1. We have now
shown that if the set difference we are considering is non-empty, then there
exists an element t satisfying the condition P +π⊥(t) is in W1. Equivalently,
if there is no such t, we have the containment Λ(x,δ1)(W ) ⊂ Λ(x,δ0)(W ).
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Now, we continue to prove that u = π(t) is in the right hand side of the
first expression. We have P + π⊥(s) and P + π⊥(t) are both in W1. If they
are distinct, then by simple geometric considerations, either P + π⊥(s) ⊂
P + π⊥(t) or the reverse. But proper containment would contradict the
minimality of W1. We conclude that these are equal and so π⊥(t)− π⊥(s) is
in HP and hence t− s is in LP . Moreover, we have

π⊥(x + t− s) = x + π⊥(t)− π⊥(s) ∈ ∂P+π⊥(s)W − xP − π⊥(s).

and it follows that π(x+ t− s) is in Λx(∂P+π⊥(s)W −xP −π⊥(s)). Moreover,
we have

u = π(t) = π(x + t− s) + π(s) ∈ Λx(∂P+π⊥(s)W − xP − π⊥(s)) + π(s).

We have proved ⊂ in the first expression.
Now suppose that u is in Λx(∂P+π⊥(s)W − xP − π⊥(s)). This means that

u = π(x+t) for some t in LP where π⊥(x+t) is in the interior of ∂P+π⊥(s)W−
xP − π⊥(s)), with respect to HP . This means that x + xP + π⊥(s + t) is in
the interior of ∂P+π⊥(s)W relative to P + π⊥(s). This, in turn, means that
x + xP + π⊥(s + t) is in the interior of Qi, for each Q 6= P + π⊥(s) in W i

and i = 0, 1. This also implies that xn + xP + π⊥(s + t) is in the interior of
Qi, for each Q in W i (including P + π⊥(s)) and i = 0, 1, and n large. On
the other hand, yn + xP + π⊥(s + t) is not in P 1 + π⊥(s).. It follows that
xn +xP +π⊥(s+t) is in W , while, yn +xP +π⊥(s+t) is not in W , for n large.
Then we have π(xn +xP + s+ t) = π(s)+π(t) = u+π(s) is in Λi1P ((x,δ),0)(W )
and not in Λi0P ((x,δ),0)(W ). This completes the proof in case 1.

Case 2. We remove the condition that s′ = 0, but still require x is in
NHP

. This implies that P(x + xP + π⊥(s′)) = {P + π⊥(s′)}. The entire
argument above may be applied to the point x and the element P + π⊥(s′)
in P . In this case, we have P + π⊥(s′) + π⊥(s − s′) is in W1. We choose
xP+π⊥(s′) = xP + π⊥(s′). Moreover, we have ij

P+π⊥(s′)(x, 0) = ijP (x, π⊥(s′)).
The result follows at once.

Case 3. We finally consider the general case. Any point (x, δ) is the limit
of a sequence xn in NHP

. We know the conclusion holds for each xn and the
result for (x, δ) holds by virtue of Lemma 2.4.

5 K-theory

There are already techniques available for the computation of the K-theory of
the C∗-algebras associated with a cut-and-project system [FHK, BS]. Here,
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we present a variation on these results. In principle, this is more general in
that they apply to hyperplane systems, but it is likely that the results of
[FHK] could be generalized in this fashion.

We begin with a hyperplane system, (H, L,P), and an element P in P .
Let (HP , LP ,PP ) denote the reduction on P . In addition, we let

P ′ = P \ {P + s | s ∈ L}.
As earlier, H̃(L,P), H̃(L,P ′) and H̃(LP ,PP ) are the spaces associated with
each. For brevity, it will sometimes be useful to use the notation

B(H, L,P) = C0(H̃(L,P))× L,

B(H, L,P ′) = C0(H̃(L,P ′))× L,

B(HP , LP ,PP ) = C0(H̃P (LP ,PP ))× LP .

The aim of this section is to give a six-term exact sequence relating the
K-groups of these three C∗-algebras. One map, in particular, is given in a
very natural way by a class in the Kasparov group
KK(B(H, L,P), B(HP , LP ,PP )). The result is an immediate application of
the techniques in [Pu] for the transformation groupoids
H̃(L,P)× L, H̃(L,P ′)× L and H̃P (LP ,PP )× LP .

Recall from the last section that L′P ⊂ L is chosen such that L = LP×L′P .
We consider the space H̃P (LP ,PP ) × L′P with action of L given by (x, t′) +
(s + s′) = (x + s, t′ + s′), for all x in H̃P (LP ,PP ), t′, s′ in L′P and s in LP .
We note that L′P is given the discrete topology and that this action is free.
For any s′ in L′P , we let δs′ denote the function on L′P which is 1 at s′ and
0 elsewhere. If f is in H̃P (LP ,PP ) and s′ is in L′P , we denote by f ⊗ δs′ the
obvious function on H̃P (LP ,PP )× L′P . The linear span of such functions is
dense in C0(H̃P (LP ,PP )× L′P ).

We regard H̃P (LP ,PP ) as a subset of H̃P (LP ,PP )× L′P by identifying it
with H̃P (L,PP ) × {0}. It is an abstract transversal in the sense of Muhly,
Renault and Williams [MRW] and the groupoids (H̃P (LP ,PP ) × L′P ) × L
and H̃P (LP ,PP )×LP are equivalent. This implies that their C∗-algebras are
Morita equivalent. In fact, one can show quite explicitly that the map which
sends (f ⊗ δt′)us+s′ to fus ⊗ et′,t′+s′ extends to an isomorphism

C0(H̃P (LP ,PP )× L′P )× L ∼= (C0(H̃P (LP ,PP ))× LP )⊗K(l2(L′P )),

where we use the notation es′1,s′2 to denote the rank one operator which maps
a vector ξ in l2(L′P ) to < ξ, δs′2 > δs1 .
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We have already defined the two maps

ijP : H̃P (LP ,PP )× L′P → H̃(L,P),

for j = 0, 1. We extend i0P , i1P to maps on the groupoids

ijP : (H̃P (LP ,PP )× L′P )× L → H̃(L,P)× L,

for j = 0, 1, which are the identity on L. There should be no confusion if
we use the same notation.

The pair (i0P , i1P ) defines, in a very natural way, an element of the Kas-
parov group KK0(B(H,L,P), B(HP , LP ,PP )) which we describe now. First,
we use the definition of KK provided by Cuntz [Cu]. Let H be a separable,
infinite dimensional Hilbert space. We consider
M(B(HP , LP ,PP )⊗K(H)), the multiplier algebra of B(HP , LP ,PP )⊗K(H).
It contains B(HP , LP ,PP ) ⊗ K(H) as an ideal. A quasi-homomorphism
from B(H,L,P) to B(HP , LP ,PP ) is a pair, (ρ0, ρ1) of ∗-homomorphisms
from B(H, L,P) to M(B(HP , LP ,PP ) ⊗ K(H)), such that, for every a in
B(H, L,P), ρ0(a)− ρ1(a) is in B(HP , LP ,PP )⊗K(H).

In our case, we use the Hilbert space l2(L′P ) and we have already noted
that

(C0(H̃P (LP ,PP ))× LP )⊗K(l2(L′P )) ∼= C0(H̃P (LP ,PP )× L′P )× L.

Notice that if f is in C0(H̃(L,P)), then, for j = 0, 1, the function ijP (f) = f ◦
ijP is a continuous bounded function on H̃P (LP ,PP )×L′P . Of course, it fails to
vanish at infinity, but it does lie in the multiplier algebra of C0(H̃P (LP ,PP ×
L′P )). The action of L extends to the multiplier algebra and the map ijP is
equivariant. That is, we define

ijP : B(H,L,P) → M(C0(H̃P (LP ,PP × L′P ))× L),

by

ijP (
∑
s∈L

fsus) =
∑
s∈L

(fs ◦ ijP )us

for j = 0, 1 and
∑

s∈L fsus in B(H, L,P) as before.

Lemma 5.1. Let f be in C0(H) ⊂ C0(H̃(L,P)), Q be in P and i = 0, 1. If
there exists s′ in L′P such that Q = P + s′, then we have

i0P (fχQi)− i1P (fχQi) = (−1)if ′ ⊗ δs′ ,
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where f ′ in C0(HP ) ⊂ C0(H̃P (LP ,PP )) is defined by

f ′(x) = f(x + xP + s′), x ∈ HP .

If there is no such s′, then

i0P (fχQi)− i1P (fχQi) = 0.

In particular, i0P (fχQi)− i1P (fχQi) is in C0(H̃P (LP ,PP )× L′P ).

Proof. For j = 0, 1, we have

ijP (fχQi)((x, δ), s′) = (fχQi)(x + xP + s′, δ̄j).

This first case is when x + xP + s′ is not in Q. In this case, the result is
f(x + xP + s′)χQi(x + xP + s′) and is independent of j. The second case
is when x + xP + s′ is in Q and Q 6= P + s′. In this case, the result is
f(x + xP + s′)δ(Q) and again is independent of j. Finally, if x + xP + s′ is
in Q and Q = P + s′, the result is f(x + xP + s′) if j = i and zero otherwise.
The conclusion follows.

Since functions of the form fχQi as in the Lemma generate the C∗-algebra

C0(H̃(L,P)), which is an ideal in its multiplier algebra, it follows that i0P (a)−
i1P (a) is in C0(H̃P (LP ,PP ) × L′P ), for every a in C0(H̃(L,P)). It follows
immediately that i0P (a)−i1P (a) is in B(HP , LP ,PP ), for every a in B(H,L,P).

Following [Pu], we now want to take the quotient of H̃(L,P))×L by the
equivalence relation i0P ((x, δ), s′) ∼ i1P ((x, δ), s′), for all ((x, δ), s′). In fact, it
is easy to see that for any ((y0, δ0), s0) and ((y1, δ1), s1) in H̃(L,P))×L, they
are related by∼ if and only if y0 = y1, s0 = s1 and δ0|P ′(y0) = δ1|P ′(y1). This
is the essential idea of the proof of the following; the remainder is a matter
of checking topological details which are fairly simple by using Proposition
3.5 and we omit them.

Theorem 5.2. The map α sending (y, δ) in H̃(L,P) to (y, δ|P ′(y)) in
H̃(L,P ′) is continuous, proper and L-invariant. If we also denote by α the
map between the groupoids H̃(L,P)× L and H̃(L,P ′)× L which is α in the
first coordinate and the identity in the second, then it induces an isomorphism
of topological groupoids between the quotient of H̃(L,P)×L by i0P ((x, δ), s′) ∼
i1P ((x, δ), s′), for all ((x, δ), s′), and (H̃(L,P ′))× L.
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Notice that our map α induces a *-homomorphism, also denoted α,

α : C0(H̃(L,P ′))× L → C0(H̃(L,P))× L

by α(
∑

s fsus) =
∑

s(fs ◦ α) us.
The hypotheses of Theorem 2.1 of [Pu] are satisfied and we conclude the

following holds.

Theorem 5.3. Let (H,L,P) be a hyperplane system, P be an element of P
and P ′ = P \ {P + s | s ∈ L}. There is a six-term exact sequence

K0(B(H, L,P ′)) α∗ // K0(B(H, L,P))
[i0P ,i1P ]∗// K0(B(HP , LP ,PP ))

²²
K1(B(HP , LP ,PP ))

OO

K1(B(H, L,P))
[i0P ,i1P ]∗

oo K1(B(H, L,P ′))α∗
oo

where [i0P , i1P ] is the element of KK0(B(H,L,P), B(HP , LP ,PP )) described
above.

Finally, we note that this computation of the map can be carried out
quite explicitly, at least for projections which are functions on H̃(L,P), as
follows.

Theorem 5.4. Suppose that W = (∩Q∈W0Q0)∩ (∩Q∈W1Q1) is a P-polytope,
expressed minimally. For j = 0, 1, if there exists (a necessarily unique)
s′j ∈ L′P such that P + s′j ∈ Wj, then set Wj = ∂P+s′jW − xP − s′j and set
Wj to be the empty set otherwise. Then we have

[i0P , i1P ]∗([χW ]) = [χW0]− [χW1 ].

Proof. Let pj = ijP (χW ), for j = 0, 1. These are projections in the multiplier
algebra of C0(H̃P (LP ,PP )× L′P )× L and their difference is in
C0(H̃P (LP ,PP )× L′P )× L. Cuntz describes K0(C0(H̃P (LP ,PP )× L′P )× L)
in terms of such pairs. If a pair [p, p′] have both p, p′ in the algebra itself,
then this pair is the same as [p] − [p′] in the usual description of K-zero.
In our case, we exploit the extra feature that p0 and p1 commute (since
they are both in the commutative algebra C0(H̃P (LP ,PP )×L′P )). In Cuntz’
approach, the pair (p0p1, p0p1) is the trivial element. Let p′j = χWj

⊗ δs′j

if s′j exists and is zero otherwise. Each of these is in C0(H̃P (LP ,PP ) ×
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L′P ). Under the explicit isomorphism between C0(H̃P (LP ,PP )×L′P )×L and
B(HP , LP ,PP )⊗K(l2(L′P )), the projection p′j is mapped to χWj

⊗ δs′j and its

class in K0(B(HP , LP ,PP )) is [χWj
].

Since s′0 and s′1 are clearly distinct if they both exist, we have p′0p
′
1 = 0.

We will show that p0 − p1 = p′0 − p′1. Assuming this for the moment, if we
subtract p0 from both sides and multiply by p′0, we get −p′0p1 = p′0(1 − p0).
The left hand side is clearly negative, while the right is positive. We conclude
that they are both 0. Analogous results hold replacing p′0 with p′1. From this
it follows that p′0 and p′1 are both orthogonal to p0p1 and we have

p0p1 + p′j = p0p1 + pjp
′
j = pj(p1−j + p′j) = pj(p

′
1−j + pj) = 0 + pj = pj.

This means that the pair (p0p1, p0p1) may be added to the orthogonal pair
(p′0, p

′
1) and the result is (p0, p1). We conclude that in K-zero, we have

[i0P , i1P ]∗([χW ]) = [(p0, p1)] = [(p′0, p
′
1)] = [p′0]− [p′1] = [χW0]− [χW1 ].

It remains to prove that p0 − p1 = p′0 − p′1. Find a function f in C0(H)
which is identically equal to one on the compact set W . We can express

χW = (ΠQ∈W0fχQ0)(ΠQ∈W1fχQ1)

Let us assume for the moment that both s′0 and s′1 exist. It follows from
Lemma 5.1 that

i0P (fχQi) = i1P (fχQi),

for all Q 6= P + s′0, P + s′1. Also, let f ′i(x) = f(x + xP + s′i), i = 0, 1 be as in
Lemma 5.1, so that

i0P (fχP i+s′i)− i1P (fχP i+s′i) = (−1)if ′i ⊗ δs′i

for i = 0, 1.
Next, for Q 6= P + s′0, P + s′1 and j, k = 0,, we claim that

ijP (fχQk)f ′i ⊗ δs′i = (f ′i)
2χQk∩P−xP−s′i ⊗ δs′i .

We evaluate both sides at (x, s′) ∈ H(LP ,PP ) × L′P . It is clear that both
sides are zero unless s′ = s′i. Moreover, since Q is not in the L-orbit of P ,
we have

ijP (fχQk)(x, s′i) = f(x + xP + s′i)χQk(x + xP + s′i) = f ′i(x)χQk∩P−xP−s′i(x).
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This establishes the claim. Let a denote the product of all factors fχQk over
k = 0, 1 and Q in Wk with Q 6= P + s′i. It follows from the claim above that

ijP (a)f ′i ⊗ δs′i = (f ′i)
nχ∂P+s′

i
W−xP−s′i ⊗ δs′i ,

where n is the number of factors involved. Since f is identically 1 on W , f ′i
is identically 1 on ∂P+s′iW − xP − s′i and so

χ∂P+s′
i
W−xP−s′if

′
i = χ∂P+s′

i
W−xP−s′i .

Next, we consider the product

fχP 0+s′0fχP 1+s′1 = f 2χ(P 0+s′0)∩(P 1+s′1).

As this is a factor in χW , it must be non-zero. The hyperplanes P + s′0 and
P + s′1 are parallel and for the two opposite half-spaces to have non-trivial
intersection, P +s′1 must be contained in P 0+s′0 and P +s′0 must be contained
in P 1 + s′1. It follows that

ijP (fχP 0+s′0))f
′
1 ⊗ δs′1 = ijP (f)f ′1 ⊗ δs′1

ijP (fχP 0+s′0))f
′
0 ⊗ δs′0 = ijP (f)f ′0 ⊗ δs′1 .

We compute

p0 − p1 = i0P (fχW )− i1P (fχW )

= i0P (fχP 0+s′0fχP 1+s′1a)− i1P (fχP 0+s′0fχP 1+s′1a)

= (i0P (fχP 0+s′0)i
0
P (fχP 1+s′1a)− i1P (fχP 0+s′0)i

0
P (fχP 1+s′1a))

+(i1P (fχP 0+s′0a)i0P (fχP 1+s′1)− i1P (fχP 0+s′0a)i1P (fχP 1+s′1))

= ((i0P (fχP 0+s′0)− i1P (fχP 0+s′0)))i
0
P (fχP 1+s′1a)

+i1P (f)i1P (fχP 0+s′0a)(i0P (fχP 1+s′1)− i1P (fχP 1+s′1))

= (f ′0 ⊗ δs′0)i
0
P (fχP 1+s′1a)− i1P (fχP 0+s′0a)(f ′1 ⊗ δs′1)

= (f ′0)
n+2χ∂P0+s′0

W−xP−s′0 ⊗ δs′0 − (f ′1)
n+2χ∂P1+s′1

W−xP−s′1 ⊗ δs′1

= χW0 ⊗ δs′0 − χW1 ⊗ δs′1

= p′0 − p′1.

This completes the proof in the case that both s′0 and s′1 exist. The proofs
in the three remaining cases are similar or even somewhat easier since the
argument two paragraphs above is no longer needed. We omit the details.
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Remark 5.5. It is interesting to compare this result with Theorem 4.6. This
is a dynamical/operator theory analogue of that result for model sets.

Remark 5.6. The complexity of a hyperplane system
(H,L,P) can be roughly measured by three numbers: the dimension of H, the
rank of L, and the number of distinct L-orbits in P. (The last may be infi-
nite.) We compare the three systems (H, L,P), (H, L,P ′) and (HP , LP ,PP ).
The second is simpler than the first; the first two numbers remain the same
while the third is reduced by one. The third is also simpler than the first; the
first number is reduced by one, the second by at least one (except in rather
trivial cases) and the third is reduced by at least one.

We may regard Theorem 5.3 as computing the K-theory of the C∗-algebra
associated with (H, L,P) in terms of the other two (simpler) systems. In
principle, the same techniques could be applied to these simpler systems. In
the end, there would presumably be a spectral sequence. We do not pursue this
here. It is important to note that even in the case that (H, L,P) arises from
a cut-and-project system as earlier, the intermediate systems may not, but
are merely hyperplane systems. For example, it is quite possible that LP = 0.

6 Example: the octagonal tiling

We now use the methods of the last section to compute the K-theory of the
C∗-algebra of the octagonal tiling, as described in the introduction. Along
they way, we establish a number of results in the general setting. We do not
give complete proofs, which are somewhat lengthy. One aspect which is nice
for the octagonal case is that as we proceed along, all the groups are free
abelian, so it most convenient for us to simply list their generators. (The
reader should note this is not always the case.)

Let us just start with some notation which is particular to the octagonal
case. Here H is dimension two, while L is generated by
π⊥(e1), π

⊥(e2), π
⊥(e1), π

⊥(e4), which we now denote by l1, l2, l3, l4, for conve-
nience. The four hyperplanes Pk, k = 1, 2, 3, 4 are in fact subspaces so that
HPk

= Pk. For simplicity, we denote this by Hk. We also denote its stabilzer
under L as LPk

= Lk. It is fairly easy to see that L1 is generated by l1 and
l3 − l4. There are similar description of the others. If one considers all non-
trivial pairwise intersections of hyperplanes in the collection P , this set of
points is, of course, invariant under L. It consists of exactly three L-orbits,
that of H1 ∩H2 (which is the origin), (H1 + l4)∩H2 and (H3 + l1)∩H4. We
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denote these three points by V0, V1 and V3 respectively. We let Li denote the
stabilzer of Hi, for each 1 ≤ i ≤ 4.

First of all, we note that in the case that the collection of hyperplanes P
is empty, then H̃(L, ∅) = H. It follows that

C0(H̃(L, ∅))× L ∼= C0(H)× L ∼= C∗(L)× Ĥ ∼= C(L̂)× Ĥ,

where the second isomorphism is via Fourier transform. As L is isomorphic
to Z4, we have L̂ ∼= T4, the 4-torus, while Ĥ ∼= H, since it is a Euclidean
space. Applying Connes’ analogue of the Thom isomorphism, the K-theory
of this C∗-algebra is the same as that of the torus (since dim H is even). We
conclude from this that

K0(B(H,L, ∅))) ∼= ∧evenL,K1(B(H, L, ∅))) ∼= ∧oddL.

Since our group L and various subgroups of it will be acting, not just on H,
but also on various subspaces determined by the hyperplanes, we will denote
elements of the K-theory above by lH , for l in L and exterior powers of such
symbols. We may list the generators of K0(B(H, L, ∅))) as

1H , lH1 ∧ lH2 , lH1 ∧ lH3 , lH1 ∧ lH4 ,
lH2 ∧ lH3 , lH2 ∧ lH4 , lH3 ∧ lH4 , lH1 ∧ lH2 ∧ lH3 ∧ lH4 .

and similarly for K1.
The next step to consider is the exact sequence of Theorem 5.3 in the

special case that P is the L-orbit of a single hyperplane P , and hence P ′ is
empty. It can be computed explicitly from the exact sequence and in notation
above, it simply sends lHP in Ki(B(HP , LP , ∅)) to lH in Ki+1(B(H,L, ∅))
and similarly for exterior powers. (Notice that the dimension shift from the
exact sequence is taken care of by the isomorphism above and the fact that
dim H = dim HP + 1.

For the octagonal tiling, we apply this for P = H1. Notice that L1 = H1∩
L is generated by l1 and l3−l4. Let P1 be the L-orbit of H1. The generators of
K0(B(H1, L1, ∅)) are lH1

1 , (l3 − l4)
H1 . The generators of K1(B(H1, L1, ∅)) are

1H1 , lH1
1 ∧ (l3 − l4)

H1 . These groups are mapped injectively into the groups
Ki(B(H, L, ∅)) and the quotients are Ki(B(H, L,P1)). The generators for
K0(B(H, L,P1)) are

lH1 ∧ lH2 , lH1 ∧ lH3 = lH1 ∧ lH4 , lH2 ∧ lH3 ,
lH2 ∧ lH4 , lH3 ∧ lH4 , lH1 ∧ lH2 ∧ lH3 ∧ lH4 .
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The generators for K1(B(H, L,P1)) are

lH2 , lH3 = lH4 , lH1 ∧ lH2 ∧ lH3 ,
lH1 ∧ lH2 ∧ lH4 , lH1 ∧ lH3 ∧ lH4 , lH2 ∧ lH3 ∧ lH4 .

We next turn to disconnecting along the hyperplane H3 and its L-orbit.
Notice that L3 is generated by l3 and l1 + l2. Let P2 denote the L-orbits of
H1 and H3. We will apply Theorem 5.3 to P2, with P = H3 and so P ′ = P1.
The first task is to compute
K∗(B(H3, L3, (P2)H3)). In this case, we have (P2)H3 is just the L3-orbit of
V0. As a result, the generators of K0(B(H3, L3, (P2)H3)) are lH3

3 , (l1 + l2)
H3

and the generator of K1(B(H3, L3, (P2)H3)) is (l1 + l2)
H3 ∧ lH3

3 . Again, the
maps from these groups into the K-theory of B(H, L,P1) are injective and
the K-theory of B(H,L,P2) is just the quotient. We are able to list the
generators of K0(B(H,L,P2)) as

lH1 ∧ lH2 , lH1 ∧ lH3 = lH1 ∧ lH4 = −lH2 ∧ lH3 ,
lH2 ∧ lH4 , lH3 ∧ lH4 , lH1 ∧ lH2 ∧ lH3 ∧ lH4 .

The generators for K1(B(H, L,P2)) are

lH1 ∧ lH2 ∧ lH3 , lH1 ∧ lH2 ∧ lH4 ,
lH1 ∧ lH3 ∧ lH4 , lH2 ∧ lH3 ∧ lH4 .

We next turn to disconnecting along the hyperplane H2 and its L-orbit.
Let P3 denote the L-orbits of H1, H3 and H2. We will apply Theorem
5.3 to P3, with P = H2 and so P ′ = P2. The first task is to compute
K∗(B(H2, L2, (P3)H2)). It is easy to see that (P3)H2 is simply the L2-orbits
of the points V0, V1. We would like to apply the same Theorem to compute
this, for the hyperplane system (H2, L2, {V0, V1}+L2). Ordinarily, this would
require two application of the Theorem, since there are two distinct hyper-
plane orbits which must be removed. However, since these hyperplanes are
parallel, we may make a single application, letting P ′ = ∅ being the result
of removing them both and the third term is simply the direct sum of the
K-theory groups of B({V0}, 0, ∅) and B({V1}, 0, ∅). The K0 group is just
the free abelian group on 1V

0 , 1V1 and K1 is trivial. From this, we obtain
generators for K0(B(H2, L2, (P2)H2)):

1V0 − 1V1 , lH2
2 , (l3 + l4)

H2

32



where the first is a slightly rough notation for an element whose image
under the KK-map is 1V0 − 1V1 , which is in the kernel of the map into
K1(B(H2, L2, ∅)). We also obtain a single generator for
K1(B(H2, L2, (P3)H2)), which is lH2

2 ∧ (l3 + l4)
H2 . In this case, the map

from K0(B(H2, L2, (P3)H2)) to K1(B(H, L,P2)) is zero while the map from
K1(B(H2, L2, (P3)H2)) to K0(B(H,L,P2)) is injective. We conclude that a
set of generators for K0(B(H, L,P3)) is

1V0 − 1V1 , lH2
2 (l3 + l4)

H2

lH1 ∧ lH3 = lH1 ∧ lH4 = lH2 ∧ lH3 = −lH2 ∧ lH4 ,
lH1 ∧ lH2 , lH3 ∧ lH4 , lH1 ∧ lH2 ∧ lH3 ∧ lH4 .

while a set of generators for K1(B(H, L,P3)) is the same as for
K1(B(H, L,P2)) above.

Finally, we consider P which is the translation of all four hyperplanes
and reduce of P = H4, so that P ′ = P3. The computation of
K∗(B(H4, L4, (P)H4)) is analogous to that above for K∗(B(H2, L2, (P3)H2))
and the generators of its K0-group are

1V0 − 1V2 , lH4
4 , (l1 − l2)

H4

while the generator of its K1-group is (l1 − l2)
H4 ∧ lH4

4 . Here, the map from
both of these groups is zero and so we may write generators for
K0(B(H, L,P)) as

1V0 − 1V1 , lH2
2 (l3 + l4)

H2

1V0 − 1V2 , lH4
4 (l1 − l2)

H4

lH1 ∧ lH3 = lH1 ∧ lH4 = lH2 ∧ lH3 = −lH2 ∧ lH4 ,
lH1 ∧ lH2 , lH3 ∧ lH4 , lH1 ∧ lH2 ∧ lH3 ∧ lH4 .

and the generators for K1(B(H,L,P2)) as

lH1 ∧ lH2 ∧ lH3 , lH1 ∧ lH2 ∧ lH4 ,

lH1 ∧ lH3 ∧ lH4 , lH2 ∧ lH3 ∧ lH4 , (l1 − l2)
H4 ∧ lH4

4 .

Remark 6.1. As will be clear to the experts at this point, the proper way to
organize calculations like the one above is by means of a spectral sequence.
We do not pursue this for two reasons. First, it would take considerable effort
and, secondly, it seems that the result would be very similar to the spectral
sequence obtained by Forrest, Hunton and Kellendonk in [FHK]. There are
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some differences; the computation of [FHK] is actually computing the coho-
mology of the hull, which is a slightly different thing. Our version for the
K-theory would have the effect of ‘bundling together’ all the even and all the
odd cohomology groups into the two K-theory groups.
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