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Abstract

We give a new proof of the classification, up to topological orbit
equivalence, of minimal AF-equivalence relations and minimal actions
of the group of integers on the Cantor set. This proof relies heavily on
the structure of AF-equivalence relations and the theory of dimension
groups; we give a short survey of these topics.

1 Introduction

The papers [8, 9, 10, 13, 20] present a study of orbit equivalence for certain
minimal dynamical systems on a Cantor set; i.e. a compact, totally discon-
nected, metrizable space with no isolated points. This is a parallel program
to that initiated by Dye in ergodic theory (for example, see [2]) and also
that in Borel equivalence relations (for example, see [16]). By a dynamical
system, we mean to include actions of countable groups but more generally
étale equivalence relations. We explain the terminology in the next section.
Group actions which are free are a special case, the underlying equivalence
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relation is the orbit relation: the equivalence classes are the orbits of the
action. An orbit equivalence between two such systems is a homeomorphism
between the underlying spaces which carries the equivalence classes of one
system to those of the other. The terminology is motivated by the case of a
group action. In this setting, an equivalence relation is said to be minimal if
every equivalence class is dense.

Aside from group actions, the most important class of étale equivalence
relations is the so-called AF-equivalence relations. The precise definition is
given in the next section but means, roughly, that these can be approxi-
mated by subequivalence relations where the equivalence classes are finite;
AF stands for ”approximately finite”. This turns out to be an extremely
interesting class since it is rich enough to exhibit very intricate structures
but the finite approximations make them quite tractable.

In [10], a complete classification was given for those minimal equivalence
relations on a Cantor set which arise from actions of the group of integers, Z,
or are AF. Subsequently, this was extended to include actions of Z2 [8, 12] and
Zd, d ≥ 3 [9]. The result is to give a complete invariant of orbit equivalence.

Here we present a new proof of the classification for AF-equivalence re-
lations and for Z-actions. There are several reasons for doing so. The first
is that in [10], the result is really shown, first, for Z-actions; the extension
to the AF case is derived from that. There is a certain sense in which this
is backward: the subsequent extensions always rely on proving that a given
group action is orbit equivalent to an AF-equivalence relation and using the
classification result there. That is, the most natural progression would be:
AF-equivalence relations, Z-actions, Z2-actions, etc. So we give a direct
proof of the result for AF-equivalence relations and also show how the result
to include Z-actions can be derived from it.

The second reason for a new proof is that the one given in [10] relies on
a non-trivial result in homological algebra. It has not been clear if this is
really needed. Our proof here avoids it, resolving that question. The third
reason is the rôle of a result we refer to as the absorption theorem in the
program. Very roughly, the absorption theorem asserts that a minimal AF-
equivalence relation is orbit equivalent to a ”small” extension of itself. (The
result is very technical; so much so, that there are three different versions
in the literature [11, 7, 19].) The results which extend the classification
from AF-equivalence relations to actions of Zd, d ≥ 1, are done by showing
that the orbit relation for actions of these groups can be realized as such a
small extension of some AF-subequivalence relation, so that the absorption
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theorem implies that the orbit classification of the group action is the same
as for the AF-subequivalence relation. In fact, the key step in our proof
here of the classification of AF-equivalence relations also relies on this same
absorption theorem. This seems to stress the utility and importance of this
rather technical result. That is, all our results on orbit equivalence for Cantor
minimal systems rely on the absorption theorem.

The paper is organized as follows. The second section is a presentation
of background material, definitions and results. The understanding of the
structure of AF-equivalence relations relies on invariants which are ordered
groups, called dimension groups. We present a short treatment which, hope-
fully, will be accessible to readers who are not familiar with the basics. Many
of these facts will also be needed in the proof to follow. We do not present
many proofs, but we try to give references and the key ideas behind the
results when they are simple to understand and illustrate the main points.
The third section is the statement of our main technical result, Theorem 3.1,
and its consequences the classification of minimal AF-equivalence relations
up to orbit equivalence, Corollary 3.2, and the extension to include minimal
Z-actions, Corollary 3.3. The proof of the technical result is given in the last
section separately because of its length.

The author would like to express his appreciation to the referee for a
thorough reading of the paper and many helpful suggestions.

2 Preliminary definitions and results

2.1 Étale equivalence relations

We begin with a discussion of topological equivalence relations, étale equiv-
alence relations and, particularly, AF-equivalence relations.

Let X be a locally compact metrizable space. For convenience, we also
assume that X is second countable and will often also assume X is compact.
Let R be an equivalence relation on X. We assume that R is endowed with
a topology, T , which is second countable. We say that R or (X,R) is étale,
or more accurately that (R, T ) is étale, if it satisfies the following conditions
[22, 11]. First, the set

R2 = {((x, y), (y, z)) ∈ R×R}
is closed in R × R and the maps sending ((x, y), (y, z)) in R2 to (x, z) in R
and (x, y) in R to (y, x) in R are continuous. Second, the diagonal, {(x, x) |
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x ∈ X} is open in R. Finally, the maps r, s : R→ X defined by r(x, y) = x,
s(x, y) = y are open and are local homeomorphisms. We say U ⊂ R is an
R-set if it is open and r|U , s|U are homeomorphisms. The collection of R-
sets forms a neighbourhood base for the topology of R. We remark that the
topology of R is rarely the same as the relative topology from R ⊂ X ×X,
except in trivial cases. The equivalence relation (X,R) is minimal if every
R-equivalence class is dense in X.

An action of a group G on a space X is a collection of homeomorphisms,
ϕs, s ∈ G, satisfying

ϕst = ϕs ◦ ϕt, s, t ∈ G,
ϕe(x) = x, x ∈ X.

The action is free if, for s is in G and x in X, ϕs(x) = x only if s = e. Given
such an action,

Rϕ = {(x, ϕs(x)) | s ∈ G, x ∈ X}

is an equivalence relation. Assume now that G is countable and we endow it
with the discrete topology. There is an étale topology on Rϕ which can be
described in either of two ways [22]. First, notice the map sending (x, s) in
X ×G to (x, ϕs(x)) in Rϕ is surjective by the definition of Rϕ and injective
since the action is free. We simply transfer the product topology from X×G
to Rϕ with this map. The second description is to consider

{ϕs|U | s ∈ G,U ⊂ X open }.

It is easy to see these sets form a neighbourhood base of Rϕ-sets for this
topology.

This is a convenient place to discuss the notion of an invariant measure
for an étale equivalence relation [22]. By measure, we shall always mean a
Borel probability measure. Let (X,R) be an étale equivalence relation. A
measure µ on X is said to be R-invariant if µ(r(E)) = µ(s(E)), for every R-
set U and Borel set E ⊂ U . We let M(X,R) denote the set of all R-invariant
measures.

2.2 Isomorphism and orbit equivalence

We introduce the notions of isomorphism and orbit equivalence [11].
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Definition 2.1. Let (X1, R1) and (X2, R2) be étale equivalence relations.
They are isomorphic and we write (X1, R1) ∼= (X2, R2) if there exists a
homeomorphism h : X1 → X2 such that h × h(R1) = R2, equivalently, h
maps each R1-equivalence class to an R2-equivalence class, and

h× h : R1 → R2

is a homeomorphism.

Definition 2.2. Let (X1, R1) and (X2, R2) be equivalence relations. They
are orbit equivalent and we write (X1, R1) ∼ (X2, R2) if there exists a home-
omorphism h : X1 → X2 such that h × h(R1) = R2, equivalently, h maps
each R1-equivalence class to an R2-equivalence class.

For further discussion and the notion of weak orbit equivalence, also see
[13].

2.3 AF-equivalence relations

A rich and tractable class of étale equivalence relations is given by the so-
called AF-equivalence relations [11, 22]. To construct such an example, we
begin with a Bratteli diagram, (V,E). This is an infinite directed graph.
The vertex set V is the union of a sequence of finite, non-empty, pairwise
disjoint sets, Vn, n ≥ 0. The set V0 is assumed for convenience to consist of a
single vertex, v0. Similarly, the edge set is the union of a sequence of finite,
non-empty, pairwise disjoint sets, En, n ≥ 1. An edge e in En has initial
vertex i(e) in Vn−1 and terminal vertex t(e) in Vn. We assume always that
our graph has no sources other than v0 and no sinks: that is, i−1{v} and
t−1{v} are non-empty for any v in V (other than t−1{v0}). An example of a
Bratteli diagram is drawn in section 3.

For v in Vn−1 and v′ in Vn, we let En(v, v′) denote the set of all edges e
with i(e) = v, t(e) = v′. A path in the diagram from Vm to Vn is a finite
list of edges p = (pm+1, pm+2, . . . , pn) such that pi ∈ Ei and t(pi) = i(pi+1),
m < i < n. The initial and terminal vertices of the path are i(p) = i(pm+1)
and t(p) = t(pn), respectively.

The (infinite) path space of the diagram is the set

X = X(V,E) = {(x1, x2, . . .) | xn ∈ En, t(xn) = i(xn+1), n ≥ 1}.

It is endowed with the relative topology of the infinite product space ΠnEn,
where each En is given the discrete topology. The space X is compact,
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metrizable and totally disconnected. For each path p = (p1, . . . , pn), we let
X(p) = {x ∈ X | xi = pi, 1 ≤ i ≤ n}. It is easy to see that such a set
is both closed and open and, allowing n and p to vary, these sets form a
neighbourhood base for the topology on X.

The equivalence relation R = R(V,E) is tail equivalence: two elements x
and y in X are tail equivalent if, for some N ≥ 0, xn = yn, for all n > N .
We let RN = RN(V,E) denote the set of those pairs (x, y) which satisfy this
condition for a fixed N . That is, R is the union of the RN and, clearly,
RN ⊂ RN+1, for all N ≥ 0. For fixed N , the equivalence relation RN is finite
in the sense that all equivalence classes are finite.

The topology on R can be described in two ways. The first is to endow
each RN with the relative topology of X×X in which it is an étale equivalence
relation. Then R is endowed with the inductive limit topology; that is, a
subset U is open if and only if U ∩ RN is open in RN , for all N ≥ 0. In the
second description, we consider a pair of paths p, q from V0 to VN such that
t(p) = t(q) and define

RN(p, q) = {(x, y) ∈ X ×X | xi = pi, yi = qi, 1 ≤ i ≤ N, xn = yn, n > N}.

Varying N, p, q, such sets form a neighbourhood base for a topology in which
R is étale. These two descriptions yield the same topology.

This gives us enough information to define an AF-equivalence relation.

Definition 2.3. Let R be an étale equivalence on the compact, metrizable
space X. We say that (X,R) (or just R) is an AF-equivalence relation if
X is totally disconnected and R is the union of an increasing sequence of
compact, open subequivalence relations.

We remark that there is a more general definition allowing X to be locally
compact [11, 22], but we will not need that here. Of course, our construction
above using Bratteli diagrams gives examples of such equivalence relations.
In fact, it provides all of them (up to isomorphism) - see [11].

Theorem 2.4. Let (X,R) be an AF-equivalence relation. There exists a
Bratteli diagram (V,E) such that (X,R) is isomorphic to (X(V,E), R(V,E)).

Suppose that (V,E) is a Bratteli diagram and we choose an increasing
sequence m0 = 0 < m1 < m2 < . . .. The telescope of (V,E) to this sequence
is the Bratteli diagram (V ′, E ′) with V ′k = Vmk

and E ′k is the collection of all
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paths from Vmk−1
to Vmk

. The initial and terminal maps have already been de-
fined. There is an obvious map from X(V,E) to X(V ′, E ′) which simply takes
an infinite path in (V,E) and groups the entries so that it becomes an infinite
path in (V ′, E ′). It is easy to verify this map is a homeomorphism and defines
an isomorphism between (X(V,E), R(V,E)) and (X(V ′, E ′), R(X,E ′)). We
define equivalence of Bratteli diagrams to be the smallest equivalence rela-
tion such that a diagram is equivalent to any telescope of itself. Equivalence
of diagrams implies isomorphism of the associated AF-equivalence relations.

We note the following description of minimality for AF-equivalence rela-
tions. We say that the diagram (V,E) is simple if it satisfies the following
condition: for every m ≥ 0, there exists an n > m such that for every pair
of vertices, v in Vm and v′ in Vn, there exists a path from v to v′. As an easy
consequence of the definitions, we have:

Theorem 2.5. A Bratteli diagram, (V,E), is simple if and only if its asso-
ciated AF-equivalence relation, (X(V,E), R(V,E)), is minimal.

It is fairly easy to see that any simple Bratteli diagram, provided X(V,E)
is infinite, may be telescoped to one where the numbers min{#En(v, v′) |
v ∈ Vn−1, v

′ ∈ Vn} grow at some prescribed rate. Such a condition can also
be achieved for the cardinality of the vertex sets as follows. Consider the
diagram obtained by inserting a vertex in the midpoint of each edge. More
precisely, the vertex set at level n ≥ 0 is Vn/2, for n even, and E(n+1)/2, for
n odd. The edge set at level n is En/2, for n even and E(n+1)/2, for n odd.
The initial and terminal maps are either the same as for the original graph,
or the identity. Telescoping this diagram to its even levels yields the original
diagram, while telescoping to its odd levels gives diagram whose vertex sets
are the En’s and hence grow in cardinality. Further telescoping will retain
such growth in the size of the vertex sets, while causing the size of the edge
sets to grow again also.

2.4 Invariants

We now discuss invariants for étale equivalence relations. These invariants
will be partially ordered abelian groups. For brevity, we will use the term
ordered abelian group instead. An ordered abelian group [14] consists of an
abelian group G together with a subset, G+, called the positive elements,
which satisfy:
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1. G+ is a subsemigroup; that is, G+ +G+ ⊂ G+,

2. G+ ∩ (−G+) = {0} and

3. G+ generates the group; that is, G+ −G+ = G.

We obtain an order on the group by defining a ≥ b if and only if a − b is
in G+. This relation is a partial order in the usual sense. We say that an
element is strictly positive if it is in G+ − {0}. Our groups will also have a
distinguished positive element u which is an order unit : if a is any element of
G, then there is a positive integer n such that nu ≥ a. The simplest example
of an ordered abelian group is the integers, Z, with Z+ = {0, 1, 2, . . .}.

Let (X,R) be an étale equivalence relation. We let C(X,Z) be the set of
continuous integer-valued functions on X, which is an abelian group under
pointwise addition. For any clopen set E ⊂ X, its characteristic function,
denoted χE, is in C(X,Z).

Definition 2.6. Let (X,R) be a minimal AF-equivalence relation or the
minimal étale equivalence relation generated by the action of the group of
integers, Z. For any compact, open R-set U , we define ∂χU = χr(U) − χs(U)

and let B(X,R) be the subgroup generated by all such functions. We define

K0(X,R) = C(X,Z)/B(X,R),

For f in C(X,Z), we let [f ] denote its coset in the quotient group. We also
define an order structure on this groups by setting the positive cone to be

K0(X,R)+ = {[f ] | f ≥ 0}

and we let 1 denote the constant function 1, so that [1] is on order unit.

Some comments are in order on two points. The first is the notation
and the second is that this definition can obviously be given verbatim for
étale equivalence relations (although it probably does not make too much
sense without the hypothesis that X is totally disconnected). As described
in [22], it is possible to construct a C∗-algebra from an étale equivalence
relation and one may then consider the (ordered) K-zero group of that C∗-
algebra. In the cases of minimal AF-equivalence relations and minimal Z-
actions this coincides with the definition given above. This explains our
choice of notation. Going further, if one were to consider a free, minimal
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action of Z2, that statement would be false. (Roughly speaking, the fact that
the C∗-algebra contains C∗(Z2) as a subalgebra contributes a Bott element
to its K-theory, which is not accounted for in the group in our definition. A
much more complete explanation of this case can be found in [6].)

We now make the following definition in the more general setting of étale
equivalence relations.

Definition 2.7. Let (X,R) be an étale equivalence relation. We define a
subgroup of C(X,Z) by

Bm(X,R) = {f ∈ C(X,Z) |
∫
X

fdµ = 0, for all µ ∈M(X,R)}.

and
Dm(X,R) = C(X,Z)/Bm(X,R)

with the positive cone

Dm(X,R)+ = {[f ] | f ≥ 0},

and order unit [1].

It is clear from the definitions that B(X,R) ⊂ Bm(X,R) ⊂ C(X,Z), for
minimal AF-equivalence relations and minimal Z-actions and it follows that
Dm(X,R) is a quotient of K0(X,R).

Theorem 2.8. Let (X1, R1) and (X2, R2) be étale equivalence relations. If
(X1, R1) and (X2, R2) are orbit equivalent then

Dm(X1, R1) ∼= Dm(X2, R2),

as ordered abelian groups with order units, meaning that there is a group
isomorphism α : Dm(X1, R1) → Dm(X2, R2) such that α(Dm(X1, R1)+) =
Dm(X2, R2)+ and α[1X1 ] = [1X2 ].

Proof. Suppose that h : X1 → X2 is an orbit equivalence. It is clear that
the map sending f in C(X1,Z) to f ◦ h−1 in C(X2,Z) is an isomorphism.
We will prove that, if µ is any R2-invariant measure, then its pullback h∗(µ)
is R1-invariant. Once this is done, it is an easy matter to see that the map
α[f ] = [f ◦ h−1] is the desired order isomorphism.

Fix i = 1, 2. Notice that the map r × s : Ri → Xi × Xi is really just
the usual inclusion, but written in this fashion, we regard the domain as
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having the topology in which it is étale while the range has the usual product
topology. Hence, this map is not usually a homeomorphism to its image.
However, it follows from the definition of étale that it is continuous. Using
the hypothesis that Ri is second countable, it can be shown that it is an
isomorphism between the associated Borel spaces. We will not quite get that
far, but we provide the main ideas. Notice that from the continuity of the
map r × s, every Borel subset of Ri with the relative topology is also Borel
in the étale topology. In addition, if K is a compact subset of Ri, then
the restriction of r × s to it is a homeomorphism to its image which is also
compact in Xi ×Xi. So a subset of K is Borel in the étale topology if and
only if it is Borel in the product topology.

We know that Ri is second countable. Take a countable neighbourhood
baseNi for its topology and consider those elements whose closure is compact
and contained in an Ri-set. (All Ri-sets are pre-compact, but we will not
prove this.) We claim this subcollection is also a neighbourhood base. Let
(x, y) be in Ri and let U be an open set containing (x, y). Since Ri-sets form
a neighbourhood base, find V which is an Ri-set with (x, y) ∈ V ⊂ U . Now
choose an open neighbourhood O of x such that its closure is contained in
the interior of r(V ). It is easy to check that the closure of V ′ = (r | V )−1(O)
is a compact subset of V and contains (x, y). Next, find a W in Ni such that
x ∈ W ⊂ V ′. It is clear that W is in our subcollection. This establishes the
claim. We list the elements of this subcollection, Un

i , n ∈ N.
Now let U be an R1-set and E ⊂ U be a Borel set. Define, inductively,

E1 = E ∩ U1
1 and Em = (E ∩ Um

1 )− Em−1, for m ≥ 2, so that we have

1. Em is a Borel subset of Um
1 ,

2. E is the disjoint union of all Em,m ≥ 1.

Notice that the range map on each Em is a bijection and the images are
pairwise disjoint. The same holds for the map s. As a consequence of the
first condition above, h×h(Em) is a Borel subset of R2. Holding m fixed for
the moment, we do the same thing in R2, letting F 1 = h× h(Em) ∩ U1

2 and
F n = h× h(Em) ∩ Un

2 − F n−1, for n ≥ 2, so that

1. F n is a Borel subset of Un
2 ,

2. h× h(Em) is the disjoint union of all F n, n ≥ 1.
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Then we may compute

h∗(µ)(r(Em)) = µ(h(r(Em)))

= µ(r(h× h(Em)))

=
∞∑
n=1

µ(r(F n))

=
∞∑
n=1

µ(s(F n))

= µ(s(h× h(Em)))

= µ(h(s(Em)))

= h∗(µ)(s(Em)).

Finally, we have

h∗(µ)(r(E)) =
∞∑
m=1

h∗(µ)(r(Em)) =
∞∑
m=1

h∗(µ)(s(Em)) = h∗(µ)(s(E))

and it follows that h∗(µ) is R1-invariant.

2.5 Invariants for AF-equivalence relations

If the AF-relation (X,R) is tail equivalence on the Bratteli diagram (V,E),
then the invariant K0(X,R) may be computed directly from the diagram.
The aim of this subsection is to describe this computation. For any finite
set A, we let ZA denote the free abelian group on A. That is, a typical
element is a formal integral combination of the elements of A. Of course, it
is isomorphic as a group to Zn, where n is the number of elements of A, but
our notation allows us to consider A as a subset of the group. We denote by
Z+A the subsemigroup with identity generated by the elements of A; that
is, it consists of non-negative integral combinations of A.

Suppose that V and V ′ are two finite sets of vertices and E is a set of edges
between them, meaning that there are initial and terminal maps i : E → V
and t : E → V ′. We may define a group homomorphism, ε : ZV → ZV ′, by
setting

ε(v) =
∑
i(e)=v

t(e), v ∈ V.

11



This defines ε on the generators of ZV and has a unique extension which is a
group homomorphism. Equivalently, if we let E(v, v′) denote the set of edges
e with i(e) = v, t(e) = v′, and ε(v, v′) = #E(v, v′), for any v ∈ V, v′ ∈ V ′,
then

ε(v) =
∑
v′∈V ′

ε(v, v′)v′, v ∈ V.

It is clear this homomorphism is positive in the sense that it maps the positive
cone in its domain into the positive cone in the range.

It is worth noting that the converse is also true: if h : ZV → ZV ′ is a
group homomorphism, we define, for v ∈ V, v′ ∈ V ′, h(v, v′) to be the unique
integer such that

h(v) =
∑
v′∈V ′

h(v, v′)v′,

If, in addition, h is a positive group homomorphism, then we have h(v, v′) ≥
0, for all v, v′, and we may choose an edge set E such that #E(v, v′) =
h(v, v′), for all v, v′.

We note that if V, V ′ and V ′′ are three vertex sets, E are edges from V
to V ′ and E ′ are edges from V ′ to V ′′, then for all v in V and v′′ in V ′′, we
have

ε′ ◦ ε(v, v′′) =
∑
v′∈V ′

ε(v, v′)ε′(v′, v′′).

From the Bratteli diagram, (V,E), we may construct a sequence of abelian
groups and homomorphisms:

ZV0
ε1→ ZV1

ε2→ ZV2 · · ·

where εn is the group homomorphism obtained as above from the edge set
En, for n ≥ 1. Notice each group is given the standard order and each
homomorphism is positive. For convenience, for any m < n, we let

εm,n = εn ◦ · · · ◦ εm+1 : ZVm → ZVn.

The inductive limit of such a system, which we denote by K0(V,E), is de-
fined as follows. Consider the disjoint union of the groups, which we denote⊔
n ZVn. We define an equivalence relation: if a is in ZVm and a′ is in ZVm′ ,

a ∼ a′ if there exists n > m,m′ such that εm,n(a) = εm′,n(a′). Alternately, ∼
is the equivalence relation generated by a ∼ εn+1(a), for n ≥ 0 and a in ZVn.
Let K0(V,E) denote the quotient of

⊔
n ZVn by this equivalence relation. If
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a is in ZVn, we let [a, n] denote its class in K0(V,E). Although
⊔
n ZVn is

not itself a group, it is easy to see that K0(V,E) has a group structure by
defining [a,m] + [a′,m′] = [εm,n(a) + εm′,n(a′), n], where n > m,m′. The
group has a positive cone, K0(V,E)+ = {[a, n] | n ≥ 1, a ∈ Z+Vn}. A word
of warning is in order. It is entirely possible that a is in ZVm and is not
positive there, yet εm,n(a) is in Z+Vn, for some n > m. In this case, [a,m]
is in K0(V,E)+. We also note that this group has a distinguished positive
element, [v0, 0]. We also observe that since the diagram has no sinks, if v is
in Vn, then [v, n] 6= 0; i.e. it is strictly positive.

The next result gives our combinatorial description of the invariant
K0(X,R), when (X,R) is an AF-equivalence relation. From the statement
given, the proof is just a matter of checking the claimed map is well defined
and does indeed define an isomorphism.

Theorem 2.9. Let (V,E) be a Bratteli diagram. Then
K0(X(V,E), R(V,E)) is isomorphic to K0(V,E) as ordered abelian groups
with distinguished order units. Moreover, for a path p from v0 to t(p) in
Vn, the isomorphism carries [χX(p)] in K0(X(V,E), R(V,E)) to [t(p), n] in
K0(V,E).

The following seminal result shows the power of the invariant and also
the naturality of the class of AF-relations.

Theorem 2.10 (Elliott-Krieger). Let (V,E) and (V ′, E ′) be two Bratteli
diagrams. The following are equivalent:

1. The diagrams (V,E) and (V ′, E ′) are equivalent.

2. The AF-equivalence relations (X(V,E), R(V,E)) and
(X(V ′, E ′), R(V ′, E ′)) are isomorphic.

3. K0(V,E) and K0(V ′, E ′) are isomorphic as ordered abelian groups with
distinguished order units.

Let us say a word or two about the history of this result. Originally,
Bratteli defined the diagrams which now carry his name as a combinatorial
description for inductive systems of finite dimensional semisimple algebras.
He also showed that the equivalence class of the diagram was a complete
invariant for the limit of the algebras (taken either in the category of algebras
or in the category of C∗-algebras). It follows from the basic properties of
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K-theory that the group we call K0(V,E) is the K-theory of the limit C∗-
algebra. The equivalence of conditions 1 and 3 is due to G. Elliott [5].
The dynamical interpretation and the equivalence of 2 with 1 and 3 was
subsequently given by Krieger [18]. As stated above and given Theorem 2.9,
the implications 1 ⇒ 2 ⇒ 3 are trivial. The implication 3 ⇒ 1 is due to
Elliott.

2.6 Dimension groups

In this section, we assemble a number of results concerning minimal AF-
equivalence relations and the structure of our invariant in this case. In addi-
tion to being important background information, a number of these will be
needed in the proof of our main result later.

We begin with a definition which, from what we saw in the last subsection,
should be natural.

Definition 2.11. A dimension group G is any ordered abelian group which
is the limit of a sequence of groups of the form (Zn, (Z+)n) and positive group
homomorphisms.

If G is a dimension group, then the inductive system of the definition
above can be used to produce a graph, (V,E), which gives a combinatorial
description of the group. This may, however, have sources and sinks. We
leave it as an exercise to show that by removing the vertices v in Vn with the
property that [v, n] = 0, one may construct another diagram having no sinks
with limit G. The source issue is slightly more subtle. The group G = ⊕∞n=1Z
and G+ = ⊕∞n=1Z+ cannot be written without having an infinite collection of
sources. Note, however, this group has no order unit. Given an order unit,
we can arrange for a single source, v0, which represents that order unit (see
Corollary 3.18 of [14]). We omit the details, but state the result for future
reference. The first part of the second statement follows at once from the
first. The last part is a consequence of the Elliott-Krieger Theorem.

Theorem 2.12. Let G be a dimension group with order unit.

1. There exists a Bratteli diagram (V,E) such that K0(V,E) ∼= G as or-
dered abelian groups with order unit.

2. There exists an AF-equivalence relation (X,R) with K0(X,R) ∼= G as
ordered abelian groups with order unit. Moreover, X is finite if and
only if G is cyclic.
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The definition of dimension group is not very practical in the sense that,
if one is given some ordered group, it may not be very obvious how to present
it as an inductive limit of the type above. This is remedied by the Theorem
of Effros, Handelman and Shen (see [4, 3, 14]).

Theorem 2.13 (Effros-Handelman-Shen). A countable, ordered abelian
group G is a dimension group if and only if

1. it is unperforated: if g is in G and k ≥ 1 satisfy kg is in G+, then g is
in G+, and

2. it satisfies Riesz interpolation: if a1, a2, b1, b2 are in G and ai ≤ bj
for i, j = 1, 2, then there exists c in G such that ai ≤ c ≤ bj, for all
i, j = 1, 2.

Notice in particular, that being unperforated implies the group is torsion
free. It is fairly easy to show the only if direction: the conditions are satis-
fied by the groups (Zn, (Z+)n) are preserved under inductive limits. The if
direction is highly non-trivial.

There is a little ambiguity in the literature concerning the term dimension
group. It was introduced by Elliott [5] as we have stated. Since then, others
(see [14]) have preferred the alternate characterization as provided by the
result of Effros, Handelman and Shen.

An order ideal (Chapter 14 of [14]) in an ordered group G is a subgroup I
such that I∩G+ generates I as a group and, for any a in G+ and b in I∩G+,
if a ≤ b then a is in I. An ordered abelian group G is simple if the only
order ideals are 0 and G. For example, if (V,E) is a Bratteli diagram, let v
be a vertex in Vn, for some n ≥ 0, and define Iv to be the set of all elements
a such that −k[v, n] ≤ a ≤ k[v, n], for some positive integer k. It is easy
to see that Iv is an order ideal. Next, suppose that I is any non-zero order
ideal in K0(V,E). It follows that I contains a non-zero positive element, say
a. This must be represented by a strictly positive element in some ZVn and
if we let v be any vertex in Vn whose coefficient in the expression for a is
positive, we have 0 ≤ [v, n] ≤ a, and hence [v, n] is also in I. It follows that
Iv ⊂ I. We have shown that if K0(V,E) contains a non-trivial order ideal,
then it contains a non-trivial order ideal of the form Iv. On the other hand,
it is fairly easy to see that if the diagram is simple, then Iv = K0(V,E), for
any v. It is now fairly easy to prove the following.
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Theorem 2.14. Let (V,E) be a Bratteli diagram. It is simple as a Bratteli
diagram if and only if the dimension group K0(V,E) is simple as an ordered
abelian group.

Let G be an ordered abelian group with order unit u. A state on G is a
group homomorphism φ : G → R such that φ(G+) ⊂ [0,∞) and φ(u) = 1.
The first part of the following is originally due to S. Kerov [17]. See also
Herman, Putnam and Skau [15]. The proof of the second part is an easy
exercise we leave to the reader.

Theorem 2.15. Let (V,E) be a Bratteli diagram.

1. There is a bijective correspondence between M(X(V,E), R(V,E)) and
the set of states on K0(X(V,E), R(V,E)) which associates to a measure
µ the state φµ defined by

φµ([f ]) =

∫
X

fdµ.

for any f in C(X(V,E),Z).

2. There is a bijective correspondence between the set of states on K0(V,E)
and the set

{ψ : V → [0, 1] | ψ(v0) = 1, ψ(v) =
∑
i(e)=v

ψ(t(e)), for all v ∈ V },

which associates to a state φ the function

ψ(v) = φ([v, n]),

for any v in Vn, n ≥ 0..

We next state two fundamental results regarding the order structure of
K0(V,E), for simple Bratteli diagrams, (V,E). See Chapter 4 of [3] or Chap-
ter 14 of [14]. The first asserts that the order structure is completely de-
scribed by the states.

Theorem 2.16. Let (V,E) be a simple Bratteli diagram. An element a of
K0(V,E) is strictly positive if and only if φ(a) > 0, for every state φ on
K0(V,E). Moreover, every strictly positive element is an order unit.
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The second result is an immediate consequence of the first, but its form
will be quite useful.

Theorem 2.17. Let (V,E) be a simple Bratteli diagram and let a be an
element of K0(V,E). The following two conditions are equivalent.

1. For any integer k and any order unit b in K0(V,E)+, b ≥ ka.

2. For any state φ on K0(V,E), we have φ(a) = 0.

An element of an ordered abelian group is called infinitesimal if it satisfies
the first condition of the last Theorem. We let Inf(K0(V,E)) denote the set
of all infinitesimal elements, which is a subgroup. Moreover, in the case that
K0(V,E) is simple, the quotient group K0(V,E)/H carries a natural order
provided that H is a subgroup of Inf(K0(V,E)), as follows. First, suppose
that a is a strictly positive element of K0(V,E). It follows from Theorem
2.16 and the second part of Theorem 2.17 that the set a + H is all strictly
positive in K0(V,E). We define (K0(V,E)/H)+ to be the identity coset
H and all cosets consisting of strictly positive elements of K0(V,E). As a
simple consequence of Theorems 2.15, 2.17, the second isomorphism theorem
for groups and the definitions of the order above, we have the following.

Theorem 2.18. Let (X,R) be a minimal AF-equivalence relation. The
group K0(X,R)/Inf(K0(X,R)), with its quotient order, is isomorphic to
Dm(X,R) as ordered abelian groups with order unit.

There is a substantial theory devoted to studying the set of states of a
dimension group and the representation of the group as affine functions on
this set. We refer the reader to [14]. We will not pursue this here, but we do
note the following rather concrete representation of our invariant in the case
of so-called uniquely ergodic AF-equivalence relations. We leave the proof as
an exercise.

Corollary 2.19. Let (X,R) be a minimal AF-equivalence relation and sup-
pose that M(X,R) consists of a single measure, µ. Let

G = {µ(E) | E ⊂ X, clopen }+ Z ⊂ R.

Then G is an ordered abelian group with the usual order and addition from
R and order unit 1. Moreover, Dm(X,R) is isomorphic to G, as ordered
abelian groups with order unit.
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2.7 Minimal Z-actions

We note the following result which shows that minimal AF-equivalence rela-
tions are very closely linked with minimal Z-actions.

Theorem 2.20. Let ϕ be a minimal action of Z on the Cantor set X and
let y be in X. There exists an open subequivalence relation R ⊂ Rϕ such that

1. R is a minimal AF-equivalence relation,

2. Rϕ is generated as an equivalence relation by R and (y, ϕ(y)),

3. K0(X,Rϕ) is isomorphic to K0(X,R), as ordered abelian groups with
order unit.

We give a short sketch of the main idea, since it is quite simple. Begin
with the easy observation that Rϕ is the equivalence relation generated by
{(x, ϕ(x)) | x ∈ X}. Choose a sequence of clopen sets Y1 ⊃ Y2 ⊃ · · ·
with intersection {y}. For each N ≥ 1, let RN be the equivalence relation
generated by {(x, ϕ(x)) | x ∈ X − YN}. From the minimality of ϕ and the
fact that YN is open, for each x in X, the integers k for which ϕk(x) is in
YN form a relatively dense set [1]. These points serve to divide the ϕ-orbit
into (uniformly bounded) finite intervals which are the equivalence classes of
RN . A little more careful analysis shows that RN is both compact and open.
Hence the union of the RN , denoted by R, is an AF-equivalence relation.
Moreover, it is the equivalence relation generated by {(x, ϕ(x)) | x 6= y}.
Its equivalence classes are exactly the same as those in Rϕ, except that the
ϕ-orbit of y is divided into two classes in R, namely the forward half-orbit
of ϕ(y) and the backward half-orbit of y. The first two parts are now fairly
clear. The proof of the last statement, (or rather, a more general version) was
first shown in [21]. The terminology there involves some C∗-algebra theory.
A purely dynamical (and even more thorough) version is given in [13].

2.8 The absorption theorem

We finish with the statement of the main technical result which will be needed
and we refer to as the absorption theorem. In fact, three different versions
exist in the literature [11, 7, 19]; this can be attributed to the rather technical
nature of the result. The result in [19] is the most general. We will use the
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version from [7] since it fits most naturally in our proof, but we must discuss
some more terminology before stating the result.

Let (X,R) be an étale equivalence relation. A closed set Y ⊂ X is said
to be R-étale if the equivalence relation R|Y = R∩ (Y ×Y ), with its relative
topology from R, is an étale equivalence relation. It is said to be R-thin if
µ(Y ) = 0, for every measure µ in M(X,R).

In the case of AF-equivalence relations, we may provide examples of R-
étale sets as follows. Let (V,E) be a Bratteli diagram. Suppose that F is a
subset of E with i(F ) = t(F )∪ {v0}. Let W = i(F ). We call (W,F ) (or just
F ) a subdiagram of (V,E). It is clear that the path space X(W,F ) is a subset
of X(V,E) and it is fairly easy to see that it is both closed and R-étale. (In
fact, there is a converse of this result: if (X,R) is an AF-equivalence relation
and Y is a closed, R-étale subset of X, then (X,R) and Y may be represented
by a Bratteli diagram (V,E) and a subdiagram (W,F ) as above. As we will
not need this result, see [10], Theorem 3.11 for a precise statement.

As far as the property of being R-thin is concerned, we have the following
result. It will provide an effective tool for verifying thinness. As it has not
before appeared explicitly in this form, we provide a short proof.

Theorem 2.21. Let (V,E) be a Bratteli diagram and (W,F ) be a subdia-
gram. Suppose that there exists a positive constant M and N ≥ 1 such that,
for all w ∈ WN−1, w′ ∈ WN , we have

M#FN(w,w′) ≤ #EN(w,w′),

then
µ(X(W,F )) ≤M−1,

for all µ in M(X(V,E), R(V,E)).

Proof. For the moment, fix w in WN−1 and w′ in WN . As a consequence
of the hypothesis, we may find functions am : FN(w,w′) → EN(w,w′), for
m = 1, 2, . . . ,M which are injective and have pairwise disjoint ranges. Simply
taking the union over all w,w′, we have am : FN → EN , for m = 1, 2, . . . ,M ,
with the same properties.

Now we define M functions αm : X(W,F )→ X(V,E) by

αm(x1, x2, . . .) = (x1, x2, . . . , am(xn), xn+1, . . .),

for (x1, x2, . . .) in X(W,F ), and m = 1, 2, . . . ,M .
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Note first that {(x, αm(x)) | x ∈ X(W,F )} is an R(V,E)-set for each m.
It follows that µ(X(W,F )) = µ(αm(X(W,F ))), for every R(V,E)-invariant
measure µ. Moreover, the sets αm(X(W,F )),m = 1, 2, . . . ,M are pairwise
disjoint. Thus we have

1 = µ(X(V,E))

≥ µ(∪mαm(X(W,F )))

=
∑
m

µ(αm(X(W,F )))

=
∑
m

µ(X(W,F ))

= Mµ(X(W,F )).

Let R and S be two equivalence relations on X. We define R ×X S =
{((x, y), (y, z)) | (x, y) ∈ R, (y, z) ∈ S}. We define r, s : R ×X S → X by
r((x, y), (y, z)) = x, s((x, y), (y, z)) = z. We also set r × s((x, y), (y, z)) =
(x, z). We say that R and S are transverse if

1. R ∩ S = {(x, x) | x ∈ X},

2. there exists a homeomorphism h : R×XS → S×XR such that r◦h = r
and s ◦ h = s. That is, for each (x, y) in R and (y, z) in S, there is a
unique y′ with (x, y′) in S and (y′, z) in R (with continuity conditions
on y′).

As an example (and an important one since it is the situation we will
encounter in our proof), suppose that (X,R) is an étale equivalence relation
and α : X → X is a homeomorphism such that α × α(R) = R and α × α :
R → R is a homeomorphism. Also suppose that α2(x) = x, (x, α(x)) /∈ R,
for all x in X. Let S = {(x, α(x)) | x ∈ X}, which is an equivalence relation.
We give it the relative topology from X × X. It is étale and transverse to
R; the map sending ((x, y), (y, α(y))) in R ×X S to ((x, α(x)), (α(x), α(y))
satisfies the desired conditions.

Theorem 2.22. Let (X,R) be a minimal AF-equivalence relation. Let Y be
a closed R-étale and R-thin subset of X and K be a compact étale equivalence
relation on Y which is transverse to R|Y . Then there is a homeomorphism
h : X → X such that
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1. h × h(R ∨K) = R, where R ∨K is the equivalence relation generated
by R and K,

2. h(Y ) is R-étale and R-thin,

3. h|Y × h|Y : R|Y ×K → R|h(Y ) is a homeomorphism.

In particular, R ∨K is orbit equivalent to R.

In fact, we will only make use of the final statement of the conclusion.
We note the following interesting consequence.

Corollary 2.23. Let ϕ be a minimal action of the group Z on a Cantor
set X. The orbit relation (X,Rϕ) is orbit equivalent to an AF-equivalence
relation (X,R).

Proof. Let R be the relation described after Theorem 2.20. As explained
there, Rϕ is generated by R and (y, ϕ(y)), for some point y in X. Let
Y = {y, ϕ(y)}, K = Y × Y . It is trivial to check that these satisfy the
hypothesis of Theorem 2.22 and the conclusion follows at once.

3 Statements of the results

Let us set the stage for the main result, which at first glance seems somewhat
technical. If we look at the situation that (X, R̃) is a minimal AF-equivalence
relation and R ⊂ R̃ is an open subequivalence relation, it follows that R is
also AF (see 3.12 of [11]). It is clear from the definition 2.6 that B(X,R) ⊂
B(X, R̃) and hence K0(X, R̃) is a quotient of K0(X,R). If we add the
hypothesis that R and R̃ have the same invariant measures, then the kernel
of the quotient map is contained in the infinitesimals of K0(X,R).

It is then natural to ask the question: If we are given two simple dimension
groups (with order units) related in this fashion, do they arise from such
a pair? More specifically, if G is a simple dimension group and H is a
subgroup of Inf(G), do there exist minimal AF-equivalence relations (X,R)
and (X, R̃) with R ⊂ R̃ such that K0(X,R) ∼= G, K0(X, R̃) ∼= G/H and the
following diagram commutes:

G
q−−−→ G/H

∼=
y ∼=

y
K0(X,R) −−−→ K0(X, R̃)
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By 2.12, there exists a AF-equivalence relation, (X,R), such that
K0(X,R) ∼= G. It is minimal by Theorems 2.14 and 2.5. It is clearly nec-
essary that the quotient G/H be torsion free. Our main theorem asserts
under these conditions, the AF-equivalence relation R̃ exists. In fact, much
more is true; it can be realized as a small extension of R in the sense of the
absorption theorem and, in particular, is orbit equivalent to R. We note that
the commutativity of the diagram above will be a result of our construction,
but as we do not use this, we do not make it part of the statement.

Theorem 3.1. Let (X,R) be a minimal AF-equivalence relation. Suppose
that H is a subgroup of Inf(K0(X,R)) such that the quotient group
K0(X,R)/H is torsion free. Then there exists a minimal AF-equivalence
relation, R̃, on X, containing R, a closed set Y ⊂ X and a compact étale
equivalence relation K on Y such that

1. (X,R), Y,K satisfy the hypotheses of the absorption theorem 2.22,

2. R̃ = R ∨K,

3. K0(X, R̃) ∼= K0(X,R)/H, as ordered abelian groups with distinguished
order units.

In particular, (X,R) and (X, R̃) are orbit equivalent.

The proof is quite long and it will be done in the next section. It will
probably be useful to have an example. Consider the following Bratteli dia-
gram
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The reader will note that we have added labels to the edges of the dia-
gram. This is a matter of convenience, for we can now see that the path space
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X(V,E) is homeomorphic to {1, 3} × {1, 2, 3}N and the map is just reading
the labels on the edges. Suppose that Vn = {vn, v′n}, for any n ≥ 1. There is
a unique R(V,E)-invariant measure which corresponds, in the sense of Theo-
rem 2.15, to the function f(vn) = f(v′n) = 2−1 ·31−n, for n ≥ 1. The subgroup
of infinitesimals in K0(V,E) is isomorphic to Z; its generator is [vn−v′n, n], for
any n ≥ 1. It is fairly easy to check that K0(V,E)/Inf(K0(V,E)) ∼= Z[1/3].
Suppose we would like to apply Theorem 3.1 with H = Inf(K0(V,E)). The
relation R̃ is just tail equivalence on the sequences of {1, 3}×{1, 2, 3}N. The
closed set Y consists of the two sequences (1, 2, 2, . . .) and (3, 2, 2, . . .) and
K = Y × Y . The conditions that Y is closed, R(V,E)-étale and R(V,E)-
thin are trivially satisfied and we leave the reader with the amusing tasks of
proving K is transverse to R(V,E) and R̃ = R(V,E) ∨K.

We proceed to discuss the consequences of Theorem 3.1, which include
the classification of minimal AF-relations, up to orbit equivalence, as in [10].

Corollary 3.2. Two minimal AF-equivalence relations (X1, R1) and
(X2, R2) are orbit equivalent if and only if K0(X1, R1)/Inf(K0(X1, R1)) and
K0(X2, R2)/Inf(K0(X2, R2)) are isomorphic as ordered abelian groups with
distinguished order units.

Proof. The ’only if’ statement follows from Theorem 2.8 and we are left
to prove the ’if’ direction. We note that H = Inf(K0(X,R)) satisfies
the hypothesis of Theorem 3.1 as follows. If a is in K0(X,R) and not in
Inf(K0(X,R)), then by Theorem 2.17 there is a state φ on K0(X,R) such
that φ(a) 6= 0. It follows that for any non-zero integer n, φ(na) 6= 0 and
hence, na is not in Inf(K0(X,R)). We apply Theorem 3.1 (twice) in the
special case of H = Inf(K0(X,R)) to find AF-relations R̃1 ⊃ R1 on X1 and
R̃2 ⊃ R2 on X2 such that

K0(Xi, R̃i) ∼= K0(Xi, Ri)/Inf(K0(Xi, Ri)),

as ordered abelian groups with distinguished order unit, for i = 1, 2. It
follows from Theorem 3.1 that R̃1 ∼ R1 and R̃2 ∼ R2. Moreover, from the
hypothesis and the Elliott-Krieger Theorem 2.10 we have R̃1

∼= R̃2. This
completes the proof.

From this point, it becomes an easy matter to extend the classification
up to orbit equivalence to include Z-actions. We recall the result from [10].
At this point, it is an immediate consequence of 3.2 and 2.23.
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Corollary 3.3. Let (X1, R1) and (X2, R2) be either minimal AF-equivalence
relations or arise from minimal actions of Z on a Cantor set. They are orbit
equivalent if and only if K0(X1, R1)/Inf(K0(X1, R1)) and
K0(X2, R2)/Inf(K0(X2, R2)) are isomorphic as ordered abelian groups with
distinguished order units.

4 Proof of the main result

In this section, we give the proof of 3.1. In view of Theorem 2.4, we may
find a Bratteli diagram (V,E) such that

(X(V,E), R(V,E)) ∼= (X,R).

We will suppress the isomorphism in our notation and we will also implicitly
identify K0(V,E) and K0(X,R), as in Theorem 2.9.

Proposition 4.1. Let G be a simple dimension group and H be a subgroup of
Inf(G) such that G/H is torsion free. Then G/H with the quotient ordering
as in section 2.6 is also a simple dimension group. Moreover, an element x
in G is strictly positive if and only if x+H is strictly positive in G/H.

Proof. We let q denote the quotient map from G to G/H. The hypotheses
that G/H is torsion free implies that the quotient group is unperforated as
follows. Suppose x is in G and for some n ≥ 2, nx + H is positive. If
nx + H = H, then nx is in H and since the quotient is torsion free, x is in
H and so x + H is positive. Otherwise, nx is in G+ − {0} and this implies
that x is in G+ − {0} and so x+H is positive. It is also easy to verify that
G/H satisfies Riesz interpolation and so it is a dimension group. If I 6= {0}
is an order ideal in this group then q−1(I) is a non-zero order ideal in G and
therefore equals G. It follows that I itself is trivial and so we see that G/H
is simple. Finally, we note that from Theorem 2.16 and the second part of
Theorem 2.17 that H does not contain a strictly positive element. It follows
that an element of G is strictly positive if and only if its image under q is
also.

We apply the result to the case G = K0(X,R) and we continue to let q
denote the quotient map from K0(X,R) to K0(X,R)/H.
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By the Effros-Handelman-Shen Theorem 2.13, we may find a Bratteli
diagram, (W,F ), such that

K0(W,F ) ∼= K0(X,R)/H

as ordered abelian groups with order unit. Moreover, as K0(X,R)/H is
simple, the diagram (W,F ) is also simple by Theorem 2.14.

As earlier in section 2.6, we use εm,m′ to denote the natural group homo-
morphism from ZVm to ZVm′ induced by E, for each 0 ≤ m < m′. We use
θn,n′ to denote the natural group homomorphism from ZWn to ZWn′ induced
by F , for each 0 ≤ n < n′. As described following Theorem 2.5, we may
assume the number of vertices in Wn is strictly increasing with n and hence
tends to infinity.

Let us provide some motivation for the proof. It comes from the rather
pleasant example given just after the statement of Theorem 3.1. Although
we did not state it there, it is fairly evident that the Bratteli diagram (W,F )
in that case consists of one vertex at every level and three edges (except for
E1 which has two edges). Its path space is just the sequence space {1, 3} ×
{1, 2, 3}N. In this example, what is very special is that the generators of the
group H are presented at each level in the form vn−v′n. This leads directly to
the fact that the quotient map from K0(V,E) to K0(W,F ) can be presented
in a very nice way by simply drawing one edge from each vertex of Vn to the
single vertex of Wn. This also allows us to identify the path spaces of the two
diagrams. Our first difficulty in proving the general result is that there is no
reason that the elements of H should have such a nice form. Our strategy
is to construct a replacement for the diagram (V,E), which we call (V̄ , Ē),
which resembles that in the example. The diagram (W,F ) will not need to
be changed.

Before we go further, let us recall some notation. If A,B are finite sets
and h : ZA→ ZB is a group homomorphism, then for every a in A and b in
h(a, b) is the unique integer such that

h(a) =
∑
b∈B

h(a, b)b,

for every a in A.
We inductively define non-negative integers 0 = n0 = m0 < n1 < m1 <

· · · , and positive group homomorphisms qk : ZVmk−1
→ ZWnk

and ρk :
ZWnk

→ ZVmk
, for k ≥ 1. The qk’s are local representatives for the quotient
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map q. The maps ρk will serve as local liftings for q, although there may be
no global lifting as a group homomorphism from K0(X,R)/H to K0(X,R).
More precisely, these will satisfy the following conditions:

1. [qk(a), nk] = q[a,mk−1], for all k ≥ 1, a ∈ ZVmk−1
,

2. qk(v, w) ≥ 2, for all v ∈ Vmk−1
, w ∈ Wnk

, for all k ≥ 1,

3. if q[a,mk−1] = 0, for some a ∈ ZVmk−1
, then qk(a) = 0, for all k ≥ 1,

4. qk ◦ εmk−2,mk−1
= θnk−1,nk

◦ qk−1, for all k ≥ 2,

5. qk ◦ ρk−1 = θnk−1,nk
, for all k ≥ 2,

6. #Wnk
> #Vmk−1

, for all k ≥ 1,

7. q[ρk(b),mk] = [b, nk], for all k ≥ 1, b ∈ ZWnk
,

8. ±2(k + 1)(ρk ◦ qk(v) − εmk−1,mk
(v)) ≤ ρk(w), for all k ≥ 1, v in Vmk−1

and all w in Wnk
.

9. 2(k + 1) ≤ ρk(w, v
′), for all k ≥ 1, w ∈ Wnk

and v′ ∈ Vmk
.

We begin with n0 = m0 = 0. Assume now that nk−1,mk−1 have been
defined for some k > 0, as well as qk−1 and ρk−1, if k > 1. We will first
define qk and nk and then move on to ρk and mk. A comment is in order
before we start. Consider any of the first five conditions. Suppose that we
have a map qk : ZVmk−1

→ ZWn satisfying the condition. If n′ > n, then
θn,n′ ◦ qk : ZVmk−1

→ ZWn′ also satisfies the same condition. In fact, a little
more is true. If the condition is satisfied for a particular element of ZVmk−1

,
then this second map will also satisfy it on that element. We will say that
the condition continues to hold ‘after increasing n’.

First, we consider the map sending a in ZVmk−1
to q[a,mk−1] in

K0(X,R)/H. For each v in Vmk−1
, we may find n > mk−1 and qk(v) ∈ Z+Wn

such that [qk(v), n] = q[v,mk−1]. As the set Vmk−1
is finite, we may choose

the same n (as the largest of the n’s for the individual v’s) for all v. This has
a unique extension to a positive group homomorphism, also denoted by qk,
into ZWn. We have [qk(a), n] = q[a,mk−1], for all a in ZVmk−1

, so qk satisfies
the first of our conditions.

Let v be in Vmk−1
. As [v,mk−1] is strictly positive, it is not in the kernel

of q and so [qk(v), n] is strictly positive. Using the fact that K0(X,R)/H
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is simple and the comments following Theorem 2.5, we may replace qk by
θn,n′ ◦ qk to have qk(v, w) ≥ 2, for all v ∈ Vmk−1

and w ∈ Wn. This does not
change the first condition and it now satisfies the second as well.

Next, we consider the kernel of the map sending a in ZVmk−1
to q[a,mk−1]

in K0(X,R)/H. Since it is a subgroup of a finitely generated group, it is
itself finitely generated. If a is a generator, we know that 0 = q[a,mk−1] =
[qk(a), n], and this implies that there exists n′ ≥ n such that θn′,n(qk(a)) = 0.
By increasing n, we may assume that for all a in ZVmk−1

with q[a,mk−1] =
0, we have qk(a) = 0. Again, this does not adversely affect the first two
conditions. Next, by increasing n, we may assume also that #Wn > #Vmk−1

.
If k = 1, that is all we need; we set n1 = n and q1 as above and proceed to
the construction of m1 and ρ1.

We now suppose that k ≥ 2. For each a in ZVmk−2
, we have

[qk ◦ εmk−2,mk−1
(a), n] = q[εmk−2,mk−1

(a),mk−1]

= q[a,mk−2]

= [qk−1(a), nk−1]

= [θnk−1,n ◦ qk−1(a), n]

Since the group ZVmk−2
is finitely generated, we may find n′ sufficiently large

so that
θn,n′ ◦ qk ◦ εmk−2,mk−1

(a) = θnk−1,n′ ◦ qk−1(a),

for each generator a and hence for all a in ZVmk−2
. This does not change the

earlier conditions and we now have the first four.
We also know that, for all b in ZWnk−1

,

[qk ◦ ρk−1(b), n] = q[ρk−1(b),mk−1] = [b, nk−1] = [θnk−1,n(b), n],

where we have used the seventh condition, which holds for ρk−1 by induction
hypothesis, for the second equality. Exactly the same argument as we used
a moment ago means that by increasing n we may assume that qk ◦ ρk−1 =
θnk−1,n. Again this does not affect the earlier conditions, but it establishes
the fifth of the desired properties for qk and n. This value of n we denote by
nk.

Next, we begin to define ρk and mk as follows. For each w in Wnk
, we may

find a strictly positive element of K0(X,R) whose image under q is [w, nk].
Each of these in turn, may be represented by a positive element in ZVl, for
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some l. As Wnk
is finite, we can assume these are all located in the same

ZVl and l > nk. This yields a function from Wnk
to Z+Vl which has a unique

extension to a positive group homomorphism, λk : ZWnk
→ ZVl, satisfying

q[λk(w), l] = [w, nk], for all w ∈ Wnk
.

For any v in Vmk−1
, we compute

q[λk ◦ qk(v), l] = [qk(v), nk] = q[v,mk−1].

It follows that [(εmk−1,l − λk ◦ qk)(v), l] is in the kernel of q which is H and
hence is infinitesimal. On the other hand, for each w in Wnk

, λk(w) is strictly
positive in ZVl. It follows that we may find m ≥ l such that

±2(k + 1)εl,m(εmk−1,l(v)− λk ◦ qk(v)) ≤ εl,m ◦ λk(w),

for all v in Vmk−1
and all w in Wnk

. In addition, since the diagram (V,E)
is simple and the elements λk(w), w ∈ Wnk

, are all strictly positive, we may
find m sufficiently large so that

2(k + 1) ≤ εl,m ◦ λk(w, v′),

for all w ∈ Wnk
and v′ ∈ Vm. We define mk to be this value of m and set

ρk = εl,m ◦ λk(w). Conditions 8 and 9 follow at once. As for condition 7, we
have

q[ρk(b),mk] = q[εl,m ◦ λk(b),mk] = q[λk(b), l] = [b, nk],

for all b in ZWnk
. This completes the inductive definition of mk, ρk.

For convenience, we define

δk = εmk−1,mk
− ρk ◦ qk : ZVmk−1

→ ZVmk
.

For v ∈ Vmk−1
, v′ ∈ Vmk

, let

δ0
k(v, v

′) = 1 + max{0, δk(v, v′)},
δ1
k(v, v

′) = 1 + max{0,−δk(v, v′)},

and δ0 and δ1 be the associated group homomorphisms. In terms of our new
notation, we have

δk = δ0
k − δ1

k,

1 ≤ δ0
k(v, v

′), δ1
k(v, v

′),

2(k + 1)(δ0
k(v, v

′)− 1) ≤ ρk(w, v
′),

2(k + 1)(δ1
k(v, v

′)− 1) ≤ ρk(w, v
′),
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for all v in Vmk−1
, v′ in Vmk

and w in Wnk
. Adding the equation in condition

9 to each of the last two and dividing by 2, we have the following.

Lemma 4.2. For all v in Vmk−1
, v′ in Vmk

and w in Wnk
, we have

(k + 1)δ1
k(v, v

′) ≤ ρk(w, v
′),

(k + 1)δ0
k(v, v

′) ≤ ρk(w, v
′).

Lemma 4.3. For all k ≥ 1, we have

qk+1 ◦ δk = qk+1 ◦ (εmk−1,mk
− ρk ◦ qk) = 0.

Proof. First, for any x in ZVmk−1
, we compute

q[δk(x),mk] = q[(εmk−1,mk
− ρk ◦ qk)(x),mk]

= q[εmk−1,mk
(x),mk]− q[ρk ◦ qk(x),mk]

= q[x,mk−1]− [qk(x), nk]

= 0.

The conclusion now follows from the third condition.

The next step is for notational convenience; we telescope our original
diagrams (V,E) and (W,F ) to the sequences mk, k ≥ 0, and nk, k ≥ 0,
respectively. The effect on our notation is simply to make mk = k = nk, for
all k ≥ 0.

With our new indexing, we have #Wk > #Vk−1, for all k ≥ 1 by condition
6. Choose any injective map jk : Vk−1 → Wk, for each k ≥ 1.

We now define a new Bratteli diagram, (V̄ , Ē), as follows. We set V̄0 = V0

and
V̄k = Wk ∪ Vk−1,

for all k ≥ 1, where the union is considered as disjoint. Next, we define group
homomorphisms ξk : ZVk−1 → ZV̄k and ηk : ZV̄k → ZVk by

ξk(v) = qk(v)− jk(v) + v, v ∈ Vk−1,
ηk(w) = ρk(w), w ∈ Wk,
ηk(v) = δk(v) + ρk(jk(v)), v ∈ Vk−1.

We recall that qk(v, w) ≥ 2, for all choices of v and w and this ensures
that ξk is positive. In addition, it follows from the conditions of Lemma 4.2
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that ηk is also positive. Consider the composition ξk ◦ ηk−1 : ZV̄k−1 → ZV̄k,
which is a positive homomorphism. We let Ēk be the edge set whose induced
homomorphism, denoted ε̄k−1,k, equals ξk◦ηk−1. This completes our definition
of the Bratteli diagram (V̄ , Ē).

Lemma 4.4. For all k ≥ 1, we have

ηk ◦ ξk = εk−1,k.

The proof is by direct computation using the definitions and we omit it.
At this point, we could define edge sets going from Vk−1 to V̄k and from V̄k

to Vk which induce the maps ξk and ηk. The result would be an intertwining
Bratteli diagram whose odd levels are V̄ and even levels are V . The point of
the last Lemma is that if we were to telescope this diagram to its even levels,
we would obtain (V,E). Contracting to the odd levels gives (V̄ , Ē), simply
from the definition of Ē. We conclude that

(X,R) ∼= (X(V,E), R(V,E)) ∼= (X(V̄ , Ē), R(V̄ , Ē)).

While it is not crucial that we have an explicit notation for this isomorphism,
it is important for us to note that the isomorphism which it induces between
the associated K0-groups is presented as follows. The proof is routine and
we omit the details.

Lemma 4.5. We have (X(V,E), R(V,E)) ∼= (X(V̄ , Ē), R(V̄ , Ē)). More-
over, the isomorphism and its inverse induces the maps ξ : K0(V,E) →
K0(V̄ , Ē) and η : K0(V̄ , Ē)→ K0(V,E), respectively, defined by

ξ[x, k − 1] = [ξk(x), k], x ∈ ZVk−1,

η[y, k] = [ηk(y), k], y ∈ ZV̄k

We now have a better diagram for the AF-relation (X,R) and the dimen-
sion group K0(X,R). We give a formula for the quotient map from K0(X,R)
to K0(X,R)/H, in terms of this new diagram.

Lemma 4.6. For each k ≥ 1, let q̄k : ZV̄k → ZWk be defined by

q̄k(w) = w,w ∈ Wk,

q̄k(v) = jk(v), v ∈ Vk−1

Then we have q̄k ◦ ξk = qk and hence q ◦ η[x, k] = [q̄k(x), k], for all [x, k] in
K0(X,R).
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The proof is an easy computation using the definitions and we omit it.

Lemma 4.7. For all k ≥ 0, we have

q̄k+1 ◦ ε̄k,k+1 = θk,k+1 ◦ q̄k.

Again, the proof is a simple computation, first applying both sides to w
in Wk and then to v in Vk−1. We omit the details.

The next computation will actually be the key technical step in our con-
struction, but for the moment, it is a little difficult to motivate.

Lemma 4.8. For all k ≥ 1 and v in Vk−1, we have

ε̄k,k+1(v − jk(v)) = δk(v)− jk+1(δk(v)).

Proof. We compute directly using the definitions and Lemma 4.3

ε̄k,k+1(v − jk(v)) = ξk+1 ◦ ηk(v − jk(v))

= ξk+1(ηk(v)− ηk(jk(v)))

= ξk+1(δk(v) + ρk(jk(v))− ρk(jk(v)))

= ξk+1(δk(v))

= qk+1(δk(v))− jk+1(δk(v)) + δk(v)

= 0− jk+1(δk(v)) + δk(v)

= δk(v)− jk+1(δk(v)).

The relationship between the new diagram (V̄ , Ē) and (W,F ) becomes
fairly simple. The details are contained in the next two results.

Lemma 4.9. Let k ≥ 0.

1. For w in Wk and w′ in Wk+1 − jk+1(Vk), we have

ε̄k,k+1(w,w′) = θk,k+1(w,w′).

2. For v in Vk−1 and w′ in Wk+1 − jk+1(Vk), we have

ε̄k,k+1(v, w′) = θk,k+1(jk(v), w′).
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3. For w in Wk and v′ in Vk, we have

ε̄k,k+1(w, v′) + ε̄k,k+1(w, jk+1(v′)) = θk,k+1(w, jk+1(v′)).

4. For v in Vk−1 and v′ in Vk, we have

ε̄k,k+1(v, v′) + ε̄k,k+1(v, jk+1(v′)) = θk,k+1(jk(v), jk+1(v′)).

Proof. We work from the equation θk,k+1 ◦ q̄k = q̄k+1 ◦ ε̄k,k+1 established in
Lemma 4.7 and the fact that, for w in Wk and v in V̄k, q̄k(v, w) = 1 if w = v
or if w = jk(v) and is zero otherwise.

If v is in V̄k and w′ is in Wk+1 − jk+1(Vk), then

(q̄k+1 ◦ ε̄k,k+1)(v, w′) =
∑

v′∈V̄k+1

q̄k+1(v′, w′)ε̄k,k+1(v, v′) = ε̄k,k+1(v, w′).

The first two parts follow at once as they are simply the cases of v in Wk

and v in Vk−1, respectively.
If v is in V̄k and v′ is in Vk, then

(q̄k+1 ◦ ε̄k,k+1)(v, jk(v
′)) =

∑
v′′∈V̄k+1

q̄k+1(v′, v′′)ε̄k,k+1(v, v′′)

= ε̄k,k+1(v, v′) + ε̄k,k+1(v, jk+1(v′)).

Moreover, we have

θk,k+1 ◦ q̄k(v, jk+1(v′)) = θk,k+1(q̄k(v), jk+1(v′)) = θk,k+1(jk(v), jk+1(v′)).

The last two parts follow at once.

Lemma 4.10. For v in Vk−1 and v′ in Vk−1, we have

ε̄k,k+1(v, v′)− δ0
k(v, v

′) = ε̄k,k+1(jk(v), v′)− δ1
k(v, v

′),

ε̄k,k+1(v, jk+1(v′))− δ1
k(v, v

′) = ε̄k,k+1(jk(v), jk+1(v′))− δ0
k(v, v

′)

Proof. We begin from the result of Lemma 4.8:

ε̄k,k+1(v − jk(v)) = δk(v)− jk+1(δk(v)).

We consider the coefficient of v′ on each side. On the left, we have

ε̄k,k+1(v, v′)− ε̄k,k+1(jk(v), v′).
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On the right, we observe that the term jk+1(δk(v)) is a combination of the
generators jk+1(Vk) and hence, all of its Vk terms have zero coefficient. That
means the coefficient of v′ on the right hand side is

δk(v, v
′) = δ0

k(v, v
′)− δ1

k(v, v
′).

Equating the two sides and re-arranging the terms yields the first result.
For the second statement, we compare the coefficients of jk+1(v′) on each

side. On the left we have

ε̄k,k+1(v, jk+1(v′))− ε̄k,k+1(jk(v), jk+1(v′)).

On the right, δk(v) is a combination of the generators Vk and so all of
its jk+1(Vk) coefficients are zero. Moreover, the coefficient of jk+1(v′) in
jk+1(δk(v)) is δk(v, v

′). Putting these together, the coefficient of jk+1(v′) on
the right hand side is

−δk(v, v′) = δ1
k(v, v

′)− δ0
k(v, v

′).

Equating the two sides and re-arranging the terms yields the second result.

We next need the following estimates.

Lemma 4.11. For k ≥ 1, v ∈ Vk−1 and v′ ∈ Vk, we have

kδ0
k(v, v

′) ≤ ε̄k,k+1(v, v′),

kδ0
k(v, v

′) ≤ ε̄k,k+1(jk(v), jk+1(v′)),

kδ1
k(v, v

′) ≤ ε̄k,k+1(jk(v), v′),

kδ1
k(v, v

′) ≤ ε̄k,k+1(v, jk+1(v′)).

Proof. First, recall that ε̄k,k+1 = ξk+1 ◦ ηk and notice from the definition of
ξk+1, that for any v′′, v′ ∈ Vk in we have ξk+1(v′′, v′) = 1 if v′′ = v′ and is zero
otherwise. In addition, we also have

ξk+1(v′, jk+1(v′)) = qk+1(v′, jk+1(v′))− 1 ≥ 2− 1 = 1.

We begin with the first statement. By Lemma 4.10, we have

ε̄k,k+1(v, v′) =
∑
v′′∈Vk

ηk(v, v
′′)ξk+1(v′′, v′)

= ηk(v, v
′)

= ρk(jk(v), v′) + δk(v, v
′).
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If δk(v, v
′) ≤ 0, then δ0

k(v, v
′) = 1 and δk(v, v

′) = 1− δ1
k(v, v

′) and we have

ε̄k,k+1(v, v′) = ρk(jk(v), v′) + (1− δ1
k(v, v

′))

≥ (k + 1)δ1
k(v, v

′) + (1− δ1
k(v, v

′))

≥ kδ1
k(v, v

′)

≥ k

= kδ0
k(v, v

′).

If δk(v, v
′) ≥ 0, then the conclusion follows since

ρk(jk(v), v′) ≥ (k + 1)δ0
k(v, v

′).
For the second inequality, we have

ε̄k,k+1(jk(v), jk+1(v′)) =
∑
v′′∈Vk

ηk(jk(v), v′′)ξk+1(v′′, jk+1(v′))

≥ ηk(jk(v), v′)ξk+1(v′, jk+1(v′))

≥ ηk(jk(v), v′)

= ρk(jk(v), v′)

≥ (k + 1)δ0
k(v, v

′)

≥ kδ0
k(v, v

′).

For the third inequality, we have

ε̄k,k+1(jk(v), v′) =
∑
v′′∈Vk

ηk(jk(v), v′′)ξk+1(v′′, v′)

= ηk(jk(v), v′)

= ρk(jk(v), v′)

≥ (k + 1)δ1
k(v, v

′)

≥ kδ1
k(v, v

′).

Finally, we have

ε̄k,k+1(v, jk+1(v′)) =
∑
v′′∈Vk

ηk(v, v
′′)ξk+1(v′′, jk+1(v′))

≥ ηk(v, v
′)ξk+1(v′, jk+1(v′))

≥ ηk(v, v
′)

= ρk(jk(v), v′) + δk(v, v
′).
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If δk(v, v
′) ≥ 0, then the conclusion follows since

ρk(jk(v), v′) ≥ (k + 1)δ1
k(v, v

′). If δk(v, v
′) ≤ 0, then δ0

k(v, v
′) = 1 and

δk(v, v
′) = 1− δ1

k(v, v
′) and we have

ρk(jk(v), v′) + δk(v, v
′) = ρk(jk(v), v′) + (1− δ1

k(v, v
′))

≥ (k + 1)δ1
k(v, v

′) + 1− δ1
k(v, v

′)

≥ kδ1
k(v, v

′).

We are now ready to move on to dynamical aspects. We know that the
diagram (V̄ , Ē) gives us a presentation of our AF-relation (X,R). The new
relation R̃ will be presented by (W,F ). Of course, the first difficulty is to
establish that the path spaces for (V̄ , Ē) and (W,F ) are the same. More
precisely, we define a homeomorphism h between them. This is done by first
defining a graph homomorphism from (V̄ , Ē) to (W,F ). It will cause no
confusion to denote this by h also.

For k ≥ 0, we define h : V̄k → Wk by h(w) = w,w ∈ Wk ⊂ V̄k and
h(v) = jk(v), v ∈ Vk−1. (The reader will note that this is the same as the
definition of q̄k, but we prefer to regard q̄k as a group homomorphism and
h as a function between vertex sets.) It is worth noting that, since jk is
injective, for any w in Wk, h

−1{w} is either simply {w} if w is not in the
image of jk or else {v, jk(v)}, if w = jk(v).

Let w be in Wk and w′ be in Wk+1 − jk+1(Vk). By virtue of part 1 of
Lemma 4.9, we may find a bijection

h : Ēk+1(w,w′)→ Fk+1(w,w′),

Similarly, for v in Vk−1 and w′ in Wk+1 − jk+1(Vk), we may find a bijection

h : Ēk+1(v, w′)→ Fk+1(jk(v), w′),

using part 2 of Lemma 4.9.
Next, we consider w in Wk and v′ in Vk . From part 3 of Lemma 4.9, we

may find a bijection

h : Ēk+1(w, v′) ∪ Ēk+1(w, jk+1(v′))→ Fk+1(w, jk+1(v′)).

Finally, we consider v in Vk−1 and v′ in Vk. From part 4 of Lemma 4.9, we
may find a bijection

h : Ēk+1(v, v′) ∪ Ēk+1(v, jk+1(v′))→ Fk+1(jk(v), jk+1(v′)).
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These last two maps will have to satisfy extra conditions when k ≥ 1, as
we describe below. We summarize the properties of the map h (so far) as
follows.

Lemma 4.12. 1. The map h is a graph homomorphism from (V̄ , Ē) to
(W,F ); that is, i(h(e)) = h(i(e)), t(h(e)) = h(t(e)), for all e in Ē.

2. For each v in V̄ , h is a bijection

h : {e ∈ Ē | i(e) = v} → {f ∈ F | i(f) = h(v)}.

Proof. The proof of the first part follows immediately from the definitions and
we omit the details. The second part is also immediate from the definitions
and the observation that the pre-image under h of a vertex w not in the
image of jk is just itself and the pre-image under h of jk(v) is {v, jk(v)}.
Again, we omit the details.

As we mentioned above, we will require extra properties of h as follows.
Let k ≥ 1, v be in Vk and v′ be in Vk+1. In view of Lemma 4.11, we may find
subsets

∆k(v, v
′) ⊂ Ēk(v, v

′)

∆k(jk(v), jk+1(v′)) ⊂ Ēk(jk(v), jk+1(v′))

∆k(v, jk+1(v′)) ⊂ Ēk(v, jk+1(v′))

∆k(jk(v), v′) ⊂ Ēk(jk(v), v′)

such that

#∆k(v, v
′) = #∆k(jk(v), jk+1(v′)) = δ0

k(v, v
′)

#∆k(jk(v), v′) = #∆k(v, jk+1(v′)) = δ1
k(v, v

′).

So we require that our map h satisfies

h(∆k(v, v
′)) = h(∆k(jk(v), jk+1(v′))) ⊂ Fk(jk(v), jk+1(v′))

h(∆k(jk(v), v′)) = h(∆k(v, jk+1(v′))) ⊂ Fk(jk(v), jk+1(v′))

Moreover, since h is assumed to be injective on the union of Ek(v, v
′) ∪

Ek(v, jk+1(v′)), these two images above are disjoint.
We need to introduce a little notation which will be useful later. Let α :

∆k(v, v
′) → ∆k(jk(v), jk+1(v′)) be the unique function such that h(α(e)) =
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h(e), for all e in ∆k(v, v
′). Also denote by α the inverse of this map so α

is a permutation of the union of these sets and α2 is the identity. Similarly,
we define α on ∆k(jk(v), v′)) ∪∆k(v, jk+1(v′)) such that h(α(e)) = h(e) and
α2(e) = e, for all e in the union.

Now consider the sets

Ēk(v, v
′)−∆k(v, v

′), Ēk(jk(v), v′)−∆k(jk(v), v′).

In view of Lemma 4.10, these have the same number of elements. So we may
assume that their images under h are equal in Fk(jk(v), jk+1(v′)). Once h is
determined to satisfy this, it then follows that the images under h of

Ēk(v, jk+1(v′))−∆k(v, jk+1(v′)), Ēk(jk(v), jk+1(v′))−∆k(jk(v), jk+1(v′))

are also equal. To summarize the situation, we have

h(∆k(v, v
′)) = h(∆k(jk(v), jk+1(v′)))

h(∆k(v, jk+1(v′))) = h(∆k(jk(v), v′))
h(Ēk(v, v

′) − ∆k(v, v
′))

= h(Ēk(jk(v), v′)−∆k(jk(v), v′))
h(Ēk(v, jk+1(v′)) − ∆k(v, jk+1(v′)))

= h(Ēk(jk(v), jk+1(v′))−∆k(jk(v), jk+1(v′)))

and Fk(jk(v), jk+1(v′)) is the disjoint union of these four sets.
Finally, we define ∆1(w0, v0) and ∆1(w0, j1(v0)) to have a single edge

from Ē1(w0, v0) and Ē1(w0, j1(v0)), respectively. Consider the subdiagram of
(V̄ , Ē) whose vertex set at level zero is W0 and for k ≥ 1 is jk(Vk−1) ∪ Vk−1.
Its edge set at level k ≥ 1 is the union of ∆k(v, v

′), ∆k(jk(v), jk+1(v′)),
∆k(jk(v), v′) and ∆k(v, jk+1(v′)), over all choices of v, v′.

Lemma 4.13. If e, e′ are distinct edges of Ēk such that h(e) = h(e′), then
for some v in Vk−1, i(e) = v and i(e′) = jk(v) (or vice verse). In addition,
t(e) 6= t(e′) if and only if e, e′ are in ∆k and in this case e′ = α(e).

Proof. If i(e) = i(e′) and h(e) = h(e′), then it follows from part 2 of Lemma
4.12 that e = e′. As e and e′ are assumed to be distinct and h(e) = h(e′),
we must have i(e) 6= i(e′). On the other hand, we have h(i(e)) = i(h(e)) =
i(h(e′)) = h(i(e′)), from part 1 of 4.12. It follows that, for some v in some
Vk−1, i(e) = v and i(e′) = jk(v) (or vice verse). Now consider t(h(e)) =
h(t(e)). If it is in Wk+1 − jk+1(Vk), then h(t(e)) = h(t(e′)) implies that
t(e) = t(e′), since such a vertex has only one pre-image under h.
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We are left to consider the case t(h(e)) = jk+1(v′), for some v′. In this
case, h(e) = h(e′) is in Fk(jk(v), jk+1(v′)) and so it is in exactly one of the
four sets

h(∆k(v, v
′)) = h(∆k(jk(v), jk+1(v′)))

h(∆k(v, jk+1(v′))) = h(∆k(jk(v), v′))
h(Ēk(v, v

′) − ∆k(v, v
′))

= h(Ēk(jk(v), v′)−∆k(jk(v), v′))
h(Ēk(v, jk+1(v′)) − ∆k(v, jk+1(v′)))

= h(Ēk(jk(v), jk+1(v′))−∆k(jk(v), jk+1(v′)))

As i(e) = v and i(e′) = jk(v), e must be in one of the sets on the left-hand side
before applying h, while e′ is in one of the sets on the right-hand side before
applying h. In either of the first two cases, we know then that h(e) = h(e′)
means e′ = α(e). In either of the last two cases, we have t(e) = t(e′). This
completes the proof.

Theorem 4.14. Define the map h : X(V̄ , Ē)→ X(W,F ) by

h(x1, x2, . . .) = (h(x1), h(x2), . . .),

for (x1, x2, . . .) in X(V̄ , Ē). Then h is a homeomorphism. Moreover,

h× h : R(V̄ , Ē))→ R(W,F )

is continuous and open and its image is an open subequivalence relation.

Proof. We know from Lemma 4.12 that h : (V̄ , Ē) → (W,F ) is a graph
homomorphism and so the map between the path spaces is well-defined and
continuous. In addition, we know from 4.12 that

h : {e ∈ Ē | i(e) = v} → {f ∈ F | i(f) = h(v)}

is a bijection, for each vertex v in V̄ . The fact that h is a bijection from
X(V̄ , Ē) to X(W,F ) follows from this; we give a proof of injectivity. Suppose
that x, x′ are two paths in X(V̄ , Ē) such that h(x) = h(x′). Clearly, we have
i(x1) = w0 = i(x′1). Now suppose that, for some k ≥ 1, i(xk) = i(x′k).
From this, the fact that h(xk) = h(x′k) and h being i-bijective, it follows
that xk = x′k. In consequence, we have i(xk+1) = t(xk) = t(x′k) = i(x′k+1).
Repeating this argument shows that xk = x′k for all k and hence x = x′. The
argument for surjectivity is similar and we omit the details.

The last statement is clear from the definitions.
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Let Y denote the path space of the diagram ∆. Observe that α induces
a homeomorphism of Y , also denoted by α, which satisfies α2(y) = y, for all
y in Y . Finally, we let K be the equivalence relation on Y generated by α:

K = {(y, y), (y, α(y)) | y ∈ Y }.

Theorem 4.15. The set Y is a closed, R(V̄ , Ē)-étale, R(V̄ , Ē)-thin subset of
X(V̄ , Ē) and the equivalence relation K is étale and transverse to R(V̄ , Ē)|Y .
Moreover, we have

h× h(R(V̄ , Ē) ∨K) = R(W,F ).

Proof. Since Y is specified by a subdiagram, it is clear that it is closed and
R(V̄ , Ē)-étale. The fact that it is R(V̄ , Ē)-thin follows from Theorem 2.21
and Lemma 4.11.

Since α fixes no edge of ∆, α is a free action of the group with two
elements and hence K is étale. To show K is transverse to R(V̄ , Ē)|Y , we
first show that, for any y in Y , (y, α(y)) is not in R(V̄ , Ē). It suffices to
notice that, if e is any edge in ∆, then t(α(e)) 6= t(e).

It is easy to see that α is an automorphism of the diagram ∆ and so it
induces an automorphism of R(V̄ , Ē)|Y . The fact that it is transverse follows
from the discussion preceding Theorem 2.22.

Next, we claim that h × h(R(V̄ , Ē) ∨K) = R(W,F ). We know already
h × h(R(V̄ , Ē)) ⊂ R(W,F ). If e is any edge of ∆k, it follows from the
definitions of h and α that h(α(e)) = h(e), provided k ≥ 2. It then follows
that h × h(K) ⊂ R(W,F ). We have therefore established the containment
h× h(R(V̄ , Ē) ∨K) ⊂ R(W,F ).

Let x, x′ be in X(V̄ , Ē) and suppose that (h(x), h(x′)) is in R(W,F ). We
may find k0 such that h(xk) = h(x′k), for all k ≥ k0 and hence h(i(xk)) =
h(i(x′k)). If i(xk) = i(x′k), for any value of k ≥ k0, then by part 2 of Lemma
4.12, we know that xk = x′k. Then i(xk+1) = t(xk) = t(x′k) = i(x′k+1) and
the same argument shows xk+1 = x′k+1. Continuing in this way we see that
xk′ = x′k′ , for all k′ ≥ k and so (x, x′) is in R(V̄ , Ē).

We are left to consider the case that i(xk) 6= i(x′k), for all values of k ≥ k0.
It follows from Lemma 4.12 that either xk, x

′
k are in ∆ and α(xk) = x′k or else

t(xk) = t(x′k). But the latter implies that i(xk+1) = i(x′k+1), a contradiction.
We conclude that xk, x

′
k are in ∆ and α(xk) = x′k, for k ≥ 1. As ∆k(v, v

′)
is non-empty for every v in Vk and v′ in Vk+1, we may find a path, p, in ∆
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from w0 to i(xk0). Let

y = (p1, . . . , pk0−1, xk0 , xk0+1, . . .), y
′ = (α(p1), . . . , α(pk0−1), x′k0 , x

′
k0+1, . . .).

Then (x, y) and (y′, x′) are in R(V̄ , Ē) while (y, y′) is in K. This completes
the proof.

To complete the proof of Theorem 3.1, we proceed as follows. We have a
Bratteli diagram, (V̄ , Ē) such that (X(V̄ , Ē), R(V̄ , Ē)) is isomorphic to the
given (X,R). Suppressing this isomorphism in our notation, we let Y and
K be exactly as above. The first of the three conclusions is satisfied. We let
R̃ = (h× h)−1(R(W,F )); its topology is just the usual topology on R(W,F )
moved by (h× h)−1 so it is indeed AF and the second condition is satisfied.
The third condition is simply a combination of Theorem 2.9, Lemma 4.5,
Lemma 4.6 and the fact that q̄k(v) = h(v), for any v in V̄k.
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