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Abstract

We construct a family of purely infinite C∗-algebras, Qλ for λ ∈ (0, 1) that are classified by their
K-groups. There is an action of the circle T with a unique KMS state ψ on each Qλ. For λ = 1/n,
Q1/n ∼= On, with its usual T action and KMS state. For λ = p/q, rational in lowest terms, Qλ ∼= On
(n = q − p + 1) with UHF fixed point algebra of type (pq)∞. For any n > 1, Qλ ∼= On for infinitely
many λ with distinct KMS states and UHF fixed-point algebras. For any λ ∈ (0, 1), Qλ 6= O∞. For
λ irrational the fixed point algebras, are NOT AF and the Qλ are usually NOT Cuntz algebras. For
λ transcendental, K1(Qλ) ∼= K0(Qλ) ∼= Z∞, so that Qλ is Cuntz’ QN, [Cu1]. If λ and λ−1 are both
algebraic integers, the only On which appear are those for which n ≡ 3(mod 4). For each λ, the
representation of Qλ defined by the KMS state ψ generates a type IIIλ factor. These algebras fit into
the framework of modular index theory / twisted cyclic theory of [CPR2, CRT] and [CNNR].
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1. Introduction

In this paper we introduce some new examples of KMS states on a large class of purely infinite C∗-
algebras that were motivated by the ‘modular index theory’ of [CPR2, CNNR]. We were aiming to find
algebras that were not Cuntz-Krieger algebras (or the CAR algebra) and which were not previously
known to be examples of this phenomenon, in order to explore the possibilities opened by [CNNR].
These algebras, denoted by Qλ for 0 < λ < 1, are not constructed as graph algebras, but as “corner
algebras” of certain crossed product C∗-algebras. The Qλ have similar structural properties to the
Cuntz algebras, however there are important new features, such as

1) when λ = p/q is rational in lowest terms, then Qλ ∼= Oq−p+1 as mentioned in the Abstract,

2) when λ is algebraic, the K-groups depend on the minimal polynomial (and its coefficients) of λ,

3) when λ is transcendental, Qλ ∼= QN, Cuntz’ algebra, [Cu1].

We prove in Section 3 that the Qλ are purely infinite, simple, separable, nuclear C∗-algebras, so there
is no nontrivial trace on them. Also in Section 3 we determine in many cases the K-groups of these
algebras and use classification theory to identify them when these algebras have the same K-groups
as others found previously (these facts are summarised in the Abstract). As each Qλ comes equipped
with a gauge action of the circle, our results thus give an uncountable family of distinct circle actions
on QN, each with its own unique KMS state. Indeed, for all 0 < λ < 1, we find a unique KMS state,
[BR2], for this gauge action, and we prove in Section 4 that the GNS representation of Qλ associated
to our KMS state generates a type IIIλ von Neumann algebra.

The result of [CPR2] that motivated this paper was the construction of a ‘modular spectral triple’
with which one may compute an index pairing using the KMS state. In [CNNR] it was shown how
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modular spectral triples arise naturally for KMS states of circle actions and lead to ‘twisted residue
cocycles’ using a variation on the semifinite residue cocycle of [CPRS2]. It is well known that such
twisted cocycles can not pair with ordinary K1. In [CPR2, CRT] a substitute was introduced which is
called ‘modular K1’. The correct definition of modular K1 was found in [CNNR], and there is a general
spectral flow formula which defines the pairing of modular K1 with our ‘twisted residue cocycle’.

There is a strong analogy with the local index formula of noncommutative geometry in the L1,∞-
summable case, however, there are important differences: the usual residue cocycle is replaced by
a twisted residue cocycle and the Dixmier trace arising in the standard situation is replaced by a
KMS-Dixmier functional. The common ground with [CPRS2] stems from the use of the spectral
flow formula of [CP2] to derive the twisted residue cocycle and this has the corollary that we have a
homotopy invariant. To illustrate the theory for these examples we compute, for particular modular
unitaries in matrix algebras over the algebras Qλ, the precise numerical values arising from the general
formalism.

Acknowledgements We would like to thank Nigel Higson, Ryszard Nest, Sergey Neshveyev, Marcelo
Laca, Iain Raeburn and Peter Dukes for advice and comments. The first and fourth named authors
were supported by the Australian Research Council. The second and third named authors acknowledge
the support of NSERC (Canada).

2. The algebras Qλ for 0 < λ < 1.

2.1. The C∗-algebras C∗(Γλ) = C(Γ̂λ) and their K-theory. We will construct our algebras Qλ
as “corner” algebras in certain crossed product C∗-algebras but first we need some preliminaries. For
0 < λ < 1, let Γλ be the countable additive abelian subgroup of R defined by:

Γλ =

{
k=N∑

k=−N
nkλ

k

∣∣∣∣∣ N ≥ 0 and nk ∈ Z
}
.

Loosely speaking, Γλ consists of Laurent polynomials in λ and λ−1 with integer coefficients. It is not
only a dense subgroup of R, but is clearly a unital subring of R.

Proposition 2.1. Let 0 < λ < 1.
(1) If λ = p/q where 0 < p < q are integers in lowest terms, then Γλ = Z[1/n], where n = pq.
(2) If λ and λ−1 are both algebraic integers, then Γλ = Z + Zλ + · · · + Zλd−1 is an internal direct
sum where d ≥ 2 is the degree of the minimal (monic) polynomial in Z[x] satisfied by λ.
(3) If λ is transcendental then, Γλ =

⊕
k∈Z Zλk is an internal direct sum.

(4) If λ = 1/
√
n with n ≥ 2 a square-free positive integer, then Γλ = Z[1/n] + Z[1/n] · √n is an

internal direct sum.
(5) In general, if λ is algebraic with minimal polynomial, nλd + · · ·+m = 0 over Z, then

Z⊕ Zλ⊕ · · · ⊕ Zλd−1 ⊆ Γλ ⊆ Z[
1
mn

]⊕ Z[
1
mn

]λ⊕ · · · ⊕ Z[
1
mn

]λd−1.

Hence, rank(Γλ) := dimQ(Γλ ⊗Z Q) = d.

Proof. In case (1), since gcd(p, q) = 1, there exist a, b ∈ Z so that 1 = ap+ bq. Therefore, 1
q = ap+bq

q =
aλ + b ∈ Γλ; and similarly, 1

p ∈ Γλ. Since, Γλ is a commutative ring, for any k,m ∈ Z with k ≥ 1 we
have: m

nk = m
(pq)k is in Γλ. That is, Z[1/n] ⊆ Γλ. On the other hand, for k ≥ 1 we have

λk =
pk

qk
= p2k 1

(pq)k
= p2k 1

nk
∈ Z[1/n] and λ−k =

qk

pk
= q2k

1
(pq)k

= q2k
1
nk
∈ Z[1/n].
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That is, Z[1/n] = Γλ.

In case (2), it is not hard to see the minimal polynomial of λ in Z[x] is not only monic, but also
has constant term = ±1; say, p(λ) = λd + aλd−1 + · · · ± 1 = 0. Clearly, λ ∈ Z + Zλ + · · · + Zλd−1.
Since λ−1p(λ) = 0, we also have λ−1 ∈ Z + Zλ + · · · + Zλd−1. By an easy induction, we have λk ∈
Z + Zλ + · · · + Zλd−1, for all k ∈ Z. Hence, Γλ = Z + Zλ + · · · + Zλd−1. The sum is direct by the
minimality of the degree of the minimal polynomial.

In case (3) the sum is direct because if λ satisfied a Laurent polynomial over Z, then by multipling by
a high power of λ it would also satisfy a genuine polynomial over Z.

Case (4) is an easy calculation which we leave to the reader. Case (5) is proved by similar methods
used in case (2). Again, the sum Z[ 1

mn ] +Z[ 1
mn ]λ+ · · ·+Z[ 1

mn ]λd−1 is direct by the minimality of the
degree of the minimal polynomial. ¤

Proposition 2.2. Let 0 < λ < 1.
(1) If λ = p/q is rational in lowest terms so that Γλ = Z[1/n], where n = pq, then

K0(C(Γ̂λ)) = Z[1Γ̂λ)] and K1(C(Γ̂λ)) = Z[1/n].

(2) If λ and λ−1 are both algebraic integers, so that Γλ = Z+ Zλ+ · · ·+ Zλd−1 is an internal direct
sum as above, then

K0(C(Γ̂λ)) =
even∧

(Γλ) =
d⊕

k=0,k even

k∧
(Γλ) and K1(C(Γ̂λ)) =

odd∧
(Γλ) =

d⊕

k=1,k odd

k∧
(Γλ).

(3) If λ is transcendental then,

K0(C(Γ̂λ)) =
even∧

(Γλ) =
∞⊕

k=0,k even

k∧
(Γλ) and K1(C(Γ̂λ)) =

odd∧
(Γλ) =

∞⊕

k=1,k odd

k∧
(Γλ).

(4) If λ = 1/
√
n with n ≥ 2 a square-free positive integer, then

K0(C(Γ̂λ)) ∼= Z⊕ Z[1/n] and K1(C(Γ̂λ)) ∼= Z[1/n]⊕ Z[1/n]

(5) In general, if λ is algebraic with nλd + · · ·+m = 0 over Z then the composition of the inclusions

Z⊕ Zλ⊕ · · · ⊕ Zλd−1 ⊆ Γλ ⊆ Z[
1
mn

]⊕ Z[
1
mn

]λ⊕ · · · ⊕ Z[
1
mn

]λd−1

induces an inclusion on K-theory, so that both of the following maps are one-to-one
even∧

(Zd) ∼= K0(C∗(Z⊕· · ·Zλd−1)) ↪→ K0(C(Γ̂λ)) and
odd∧

(Zd) ∼= K1(C∗(Z⊕· · ·Zλd−1)) ↪→ K1(C(Γ̂λ)).

Proof. In case (1), Γλ = lim−→Z where each map is multiplication by n, so that Γ̂λ = lim←−T. Since
K0(C(T)) = Z[1] is generated by multiples of the trivial rank one bundle, the maps in the direct limit
K0(C(Γ̂λ)) = lim−→K0(C(T)) are the identity map in each case, so that K0(C(Γ̂λ)) = Z[1]. On the other
hand, K1(C(T)) is generated by the maps on C(T), z 7→ zk, and each map in the direct limit is the
same map induced by z 7→ zn. Thus, K1(C(Γ̂λ)) = Z[1/n].

Cases (2) and (3) are well-known facts about the K-theory of tori.

Case (4): first one uses item (4) of the previous Proposition, then the proof of case (1) above in order
to apply Proposition 2.11 of [Sc]. The proof is finished off with the easily proved observation that
Z[1/n]⊗ Z[1/n] = Z[1/n].
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Case (5) the composed embedding is just containment:
Z ⊕ Zλ ⊕ · · · ⊕ Zλd−1 ⊆ Z[ 1

mn ] ⊕ Z[ 1
mn ]λ ⊕ · · · ⊕ Z[ 1

mn ]λd−1. Since we know that K∗(C∗(Z)) →
K∗(C∗(Z[1/mn])) is one-to-one (even an isomorphism after tensoring with Q), an application of C.
Schochet’s Künneth Theorem, [Sc], shows that the induced map on K-theory:

K∗(C∗(Z⊕ Zλ⊕ · · · ⊕ Zλd−1)) −→ K∗(C∗(Z[
1
mn

]⊕ Z[
1
mn

]λ⊕ · · · ⊕ Z[
1
mn

]λd−1))

is one-to-one (even an isomorphism after tensoring with Q). ¤

Corollary 2.3. If λ is algebraic with minimal polynomial of degree d so that rank(Γλ) = d then

rank(K0(C(Γ̂λ))) = rank(
even∧

(Zd)) = 2d−1 = rank(
odd∧

(Zd)) = rank(K1(C(Γ̂λ))).

Proof. For each N ≥ d − 1, let ΓN = Zλ−N + · · · + ZλN ⊆ Γλ. Then each ΓN is a finitely generated
torsion free (and hence free abelian) subgroup of Γλ. Moreover,

Z⊕ Zλ⊕ · · · ⊕ Zλd−1 ⊆ ΓN ⊆ Γλ ⊆ Z[
1
mn

]⊕ Z[
1
mn

]λ⊕ · · · ⊕ Z[
1
mn

]λd−1,

so that by tensoring with Q the induced inclusions are all equalities, and hence all are Q-vector spaces
of dimension d. Since ΓN is free abelian, ΓN ∼= Zd. Now,

K0(C∗(ΓN )) ∼= K0(C(Td)) ∼=
even∧

(Zd) ∼= Z2d−1
and K1(C∗(ΓN )) ∼= K1(C(Td)) ∼=

odd∧
(Zd) ∼= Z2d−1

.

So, each Ki(C∗(ΓN ))⊗Z Q is a Q-vector space of dimension 2d−1 and the map:

K∗(C∗(Z⊕ Zλ⊕ · · · ⊕ Zλd−1))⊗Z Q −→ K∗(C∗(ΓN ))⊗Z Q
is one-to-one and hence an isomorphism of Q-vector spaces. Since the corresponding isomorphism
onto K∗(C∗(ΓN+1))⊗Z Q factors through K∗(C∗(ΓN ))⊗Z Q the maps

K∗(C∗(ΓN ))⊗Z Q→ K∗(C∗(ΓN+1))⊗Z Q
are all isomorphisms. Now, C∗(Γλ) = limN C

∗(ΓN ) and so Ki(C∗(Γλ)) = limN Ki(C∗(ΓN )), and
therefore,

Ki(C∗(Γλ))⊗Z Q = lim
N
Ki(C∗(ΓN ))⊗Z Q ∼= Q2d−1

for each i = 1, 2. ¤

Now, let Gλ ⊃ G0
λ be the following countable discrete groups of matrices:

Gλ =
{(

λn a
0 1

) ∣∣∣∣ a ∈ Γλ, n ∈ Z
}
⊃ G0

λ =
{(

1 a
0 1

) ∣∣∣∣ a ∈ Γλ

}
.

Of course, G0
λ is isomorphic to the additive group Γλ, and Gλ is semidirect product of Z acting on

G0
λ
∼= Γλ. We let Gλ act on R as an “ax+b” group, noting that the action leaves Γλ invariant. That

is,

for t ∈ R and g =
(
λn a
0 1

)
∈ Gλ define g · t := λnt+ a.

Notation. For such an element g ∈ Gλ we will use the notation g := [λn : a] in place of the matrix
for g and |g| := det(g) = λn for the determinant of g. Note: G0

λ = {g ∈ Gλ | |g| = 1}CGλ.

We use this action on R to define the transpose action α of Gλ on L∞(R) :

αg(f)(t) = f(g−1t) for f ∈ L∞(R) and t ∈ R.
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Now let Cλ0 (R) be the separable C∗-subalgebra of L∞(R) generated by the countable family of pro-
jections X[a,b) where a, b ∈ Γλ. That is,

Cλ0 (R) = closure

({
n∑

k=1

ckX[ak,bk)

∣∣∣∣∣ ck ∈ C; ak, bk ∈ Γλ

})
.

We observe that Cλ0 (R) is a commutative AF-algebra. Clearly, C0(R) ⊂ Cλ0 (R) and since αg(X[a,b)) =
X[g(a),g(b)) both are invariant under the action α of Gλ. We define the separable C∗-algebras Aλ ⊃ Aλ0
as the crossed products:

Aλ = Gλ oα Cλ0 (R) = Z o (G0
λ oα Cλ0 (R)) ⊃ Aλ0 = G0

λ oα Cλ0 (R).

Since Gλ and G0
λ are amenable these equal the reduced crossed products by [Ped, Theorem 7.7.7 ].

Let Cλ00(R) denote the dense ∗-subalgebra of Cλ0 (R) consisting of finite linear combinations of the
generating projections, X[a,b), and let Aλc ⊂ l1α(Gλ, Cλ0 (R)) ⊂ Aλ denote the dense ∗-subalgebra of Aλ

consisting of finitely supported functions x : Gλ → Cλ00(R). Similarly we define Aλ0,c ⊂ Aλ0 .
Proposition 2.4. For any λ ∈ (0, 1), Aλ0 and Aλ are in the bootstrap class Nnuc.

Proof. Since Aλ = ZoAλ0 , it suffices to see that Aλ0 is in Nnuc. By the proof of the previous Corollary,
we can write Γλ as an increasing union of finitely generated torsion-free abelian groups ΓN which are
free abelian group of finite rank so that Aλ0 is the direct limit of crossed products of the separable
commutative C∗-algebra Cλ0 (R) by Zmi and hence is in Nnuc. ¤

Notation: We remind the reader of the crossed product operations in our setting (Definition 7.6.1 of
[Ped]) together with some particular notations we use. To this end, let x, y ∈ l1α(Gλ, Cλ0 (R)) then we
have the product and adjoint formulas:

(x · y)(g) =
∑

h∈Gλ

x(h)αh(y(h−1g)) for g ∈ Gλ;

x∗(g) = αg((x(g−1))∗) for g ∈ Gλ.

If x ∈ l1α(Gλ, Cλ0 (R)) is supported on the single element g ∈ Gλ and x(g) = f ∈ Cλ0 (R), then we write
x = f · δg. Since Aλc (respectively, Aλ0,c) is dense in Aλ (respectively, Aλ0) we often do our calculations
with these elements and we have the following easily verified calculus for them.

Lemma 2.5. Let f1 · δg1 , f2 · δg2 , f · δg ∈ Aλc , then:
(1) (f1 · δg1) · (f2 · δg2) = f1αg1(f2) · δg1g2
(2) (f · δg)∗ = αg−1(f̄) · δg−1 .
(3) f · δg is self-adjoint if and only if f is self-adjoint and g = 1.
(4) f · δg is a projection if and only if f is a projection and g = 1.
(5) f · δg is a partial isometry if and only if |f | is a projection.
(6) The product of partial isometries of the form X[a,b) · δg is a partial isometry of the same form.
(7) Consider the partial isometry, v = X[a,b) ·δg. Given that v has this form, any two of the following:
vv∗, v∗v, g completely determine the interval [a, b) and the element g.

Definition 2.6. Let e ∈ Aλ0,c be the projection e = X[0,1)·δ1. We define the separable unital C∗-algebras:

Qλ := eAλe ⊃ eAλ0e =: F λ.

We will also have occasion to use the dense subalgebras Qλc := eAλc e, and F λc := eAλ0,ce.
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Proposition 2.7. The orthogonal family of projections en = X[n,n+1) · δ1 ∈ Aλ0 for n ∈ Z are mutually
equivalent by partial isometries in Aλ0 of the form Vn,k := X[n,n+1) · δgn−k

where gn−k = [1 : (n− k)].
Moreover, the finite sums EN :=

∑N−1
n=−N en = X[−N,N) · δ1 form an approximate identity for Aλ so

that
Aλ ∼= Qλ ⊗K(l2(Z)) and Aλ0

∼= F λ ⊗K(l2(Z)).

Proof. By Lemma 2.5, one easily calculates that:

for each pair n, k ∈ Z, Vn,kV
∗
n,k = en and V ∗n,kVn,k = ek.

Now for each positive integer N if we have y ∈ Aλc that satisfies supp(yh) ⊆ [−N,N) for all h, then
using Lemma 2.5 again we see that EN · y = y. Since the collection of all such elements y ∈ Aλc is
dense in Aλ, we see that the increasing sequence of projections {EN} form an approximate identity
for Aλ. ¤
Corollary 2.8. It follows from Proposition 2.4.7 of [RS] and Proposition 2.4 that for any λ ∈ (0, 1),
Qλ and F λ are both in Nnuc.

Lemma 2.9. (cf. [PhR, Proposition 3.1, Lemma 3.6]) The algebra Cλ0 (R) is a commutative separable
AF algebra consisting of all functions f : R → C which vanish at ∞ and: are right continuous at
each x ∈ Γλ; have a finite left-hand limit at each x ∈ Γλ; and are continuous at each x ∈ (R \ Γλ).

Moreover, if φ ∈ Ĉλ0 (R), (the space of all nonzero ∗-homomorphisms: Cλ0 (R)→ C) then there exists a
unique x0 ∈ R such that:
(1) if x0 ∈ (R \ Γλ) then φ(f) = f(x0) for all f ∈ Cλ0 (R),

(2) if x0 ∈ Γλ then either
{
φ(f) = f(x0) for all f ∈ Cλ0 (R), or
φ(f) = f−(x0) = limx→x−0

f(x) for all f ∈ Cλ0 (R).

Proof. Since generating functions for Cλ0 (R) satisfy each of the properties above which are clearly
preserved by passing to uniform limits, we see that any function in Cλ0 (R) satisfies these properties.
Conversely, it is easy to show that any function satisfying these properties can be uniformly approxi-
mated by a finite linear combination of the generators. The remainder of the proof is given in [PhR,
Lemma 3.6]. ¤

Notation. We denote the dual space, Ĉλ0 (R) by Rλ and endow it with the relative weak-∗ topology,
that is the topology of pointwise convergence on Cλ0 (R). Of course, Rλ is a locally compact Hausdorff
space, and Cλ0 (R) ∼= C0(Rλ).

Proposition 2.10. The algebras Aλ and Aλ0 (and hence Qλ and F λ) are simple C∗-algebras. More-
over, Aλ is purely infinite and hence so is Qλ.

Proof. Now, both Gλ and G0
λ act on Cλ0 (R) as countable discrete groups of outer automorphisms.

Thus, we can apply Theorem 3.2 of [E] once we check that neither action has any nontrivial invariant
ideals in Cλ0 (R) and that the actions are properly outer in the sense of Definition 2.1 of [E].

To do this we look at the induced action of Gλ and G0
λ on Rλ. So, for g ∈ Gλ we have g acting on Rλ

via g(φ) = φ◦α−1
g so that for φ = φx given by evaluation at x ∈ R, we have as expected g(φx) = φg(x).

Now, if x ∈ Γλ we use the notation φx− to denote the ∗-homomorphism φx−(f) = f−(x) = f(x−) =
limy→x− f(y). One easily checks that since g(x) ∈ Γλ, we have g(φx−) = φg(x)− .
Next we claim that each of the sets {φm | m ∈ Γλ} and {φm− | m ∈ Γλ} is dense in Rλ in the relative
weak-∗ topology. For example, we show that the second set is dense. To approximate φx for some
x ∈ R we let {mn} be a sequence in Γλ converging to x from the right in R. Let f ∈ Cλ0 (R) so that f
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is right continuous at x. One easily shows that |φmn− (f)− φx(f)| → 0; that is, the sequence {φmn−}
converges to φx in the relative weak-∗ topology.

It is easy to see that the action of G0
λ on Rλ has dense orbits, and so, of course, the action of Gλ has

dense orbits also. This implies that the actions of G0
λ and Gλ on Cλ0 (R) have no nontrivial invariant

ideals since the induced action on Rλ has no nontrivial invariant closed sets. We complete the proof
by showing that the action is properly outer in the sense of Definition 2.1 of [E]. Since there are
no nontrivial α-invariant ideals and Cλ0 (R) is commutative this is the condition that for each g 6= 1
and each nonzero closed two sided ideal I invariant under αg we have ‖(αg − Id)|I‖ = 2. Since I is
nonzero there is a nonempty open subset, O of Rλ so that Î = O. But since g 6= 1 and O is not finite
there exists y ∈ O such that g(y) 6= y and g(y) ∈ O. Let x = g(y) ∈ O so that g−1(x) = y ∈ O and
x 6= g−1(x). So we can choose a continuous compactly supported real-valued function f on O with
f(x) = 1, f(g−1(x)) = −1 and ‖f‖ = 1. But then f ∈ I and

2 ≥ ‖(αg − Id)|I‖| ≥ ‖(αg − Id)(f)‖ = ‖αg(f)− f‖ ≥ |f(g−1(x))− f(x)| = 2.

Now that we know Aλ is simple, we can easily apply Theorem 9 of [LS] to conclude that Aλ satisfies
hypothesis (v) of Proposition 4.1.1 (page 66) of [RS]. For simple C∗-algebras, this is equivalent to being
purely infinite by Definition 4.1.2 of [RS]: the authors of [LS] had used one of the earlier definitions of
purely infinite in their paper (namely, hypothesis (v)). By Proposition 4.1.8 of [RS] Qλ is also purely
infinite. ¤
Corollary 2.11. It follows from Corollaries 8.2.2 and 8.4.1 (Kirchberg-Phillips) of [RS] and the fact
that Aλ is stable that for any λ ∈ (0, 1), Aλ is classified up to isomorphism (among Kirchberg algebras
in Nnuc) by its K-theory.

Since we need to calculate with elements of Qλ and F λ, we make the following observations.

Lemma 2.12. Now, Qλ (respectively, F λ) is the norm closure of finite linear combinations of the ele-
ments of the form e(X[a,b) · δg)e, where g ∈ Gλ (respectively, g ∈ G0

λ), henceforth called the generators.
Thus, we calculate
(1) If f · δg ∈ Aλ, (respectively, f · δg ∈ Aλ0) where f ∈ Cλ0 (R), then

e(f · δg)e = X[a,b)f · δg where [a, b) = [0, 1) ∩ [g(0), g(1)).

(2) Thus, for g ∈ Gλ, (respectively, g ∈ G0
λ) f · δg is in Qλ (respectively, F λ) iff supp(f) ⊆ [0, 1) ∩

[g(0), g(1)). In particular, for g ∈ Gλ, (respectively, g ∈ G0
λ) X[a,b) · δg is in Qλ (respectively, F λ) iff

[a, b) ⊆ [0, 1) ∩ [g(0), g(1)).

Proof. The first item is an easy calculation using part (1) of Lemma 2.5 and the fact that αg(X[a,b)) =
X[g(a),g(b)). The second item follows easily from the first. ¤

Proposition 2.13. If λ is rational, then Aλ0 and F λ are AF-algebras. In particular, if λ = p/q where
0 < p < q are in lowest terms, then F λ is the UHF algebra n∞ where n = pq. Moreover, the minimal
projections in the finite-dimensional subalgebras can all be chosen from the canonical commutative
subalgebra Cλ0 (R) · δI .

Proof. We have shown in Proposition 2.1 that if λ = p/q where 0 < p < q are in lowest terms, then
Γλ = Z[1/n], where n = pq. Now, any element in Z[1/n] has the form m/nk = m(1/nk) where k ≥ 1.
Therefore any of the generating partial isometries X[a,b) · δ[1:c] ∈ Aλ0 can (by bringing a, b and c to a
common denominator) be written (assuming c > 0) as a finite linear combination of partial isometries
of the form X[l/nk,(l+1)/nk) ·δ[1:1/nk]. For partial isometries in F λ we would have to restrict 0 ≤ l ≤ nk−1
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and such partial isometries generate an nk by nk matrix subalgebra of F λ. It should now be clear that
F λ is a UHF algebra of type n∞. ¤

At this point we define some special elements in Qλ which behave very much like the isometries
Sµ ∈ On, except for the fact that some of them are not isometries.

Definition 2.14. Fix 0 < λ < 1 and let k be a positive integer. Define mk to be the unique positive
integer satisfying: mkλ

k < 1 ≤ (mk + 1)λk. For 0 ≤ m ≤ mk define partial isometries Sk,m ∈ Qλ
via:

Sk,m = X[mλk,(m+1)λk) · δgk,m
where gk,m = [λk : mλk].

Note: for m < mk the Sk,m are actually isometries, and Sk,mk
is an isometry iff 1 = (mk + 1)λk.

Remarks. The defining inequalities mkλ
k < 1 ≤ (mk+1)λk for the positive integer mk are equivalent

to: 0 < λ−k −mk ≤ 1. In particular, these differences are positive and bounded above by 1. In the
case of Q1/n we have mk = nk − 1. Generally we have mk

1 ≤ mk < 1 ≤ (mk + 1) ≤ (m1 + 1)k.

Lemma 2.15. With the previously defined elements we have:

S∗k,m = X[0,1) · δg−1
k,m

and S∗k,mk
= X[0,λ−k−mk) · δg−1

k,mk

where for all m, g−1
k,m = [λ−k : −m].

Moreover, for 0 ≤ m < mk, S
∗
k,mSk,m = X[0,1) · δ1 = e while S∗k,mk

Sk,mk
= X[0,λ−k−mk) · δ1.

Finally, for 0 ≤ m < mk, Sk,mS
∗
k,m = X[mλk,(m+1)λk) · δ1 while Sk,mk

S∗k,mk
= X[mkλk,1) · δ1, so that

mk∑

m=0

Sk,mS
∗
k,m = X[0,1) · δ1 = e.

Proof. These are just straightforward calculations based on Lemma 2.5 which we leave to the reader.
¤

Theorem 2.16. For each λ with 0 < λ < 1, consider the partial isometries S1,m for m = 0, 1, ...,m1

where m1λ < 1 ≤ (m1 +1)λ. For m < m1, S1,m is an isometry and
∑m1

m=0 S1,mS
∗
1,m = 1. For λ = 1/n,

m1 = n− 1, S1,m1 is also an isometry, and Q1/n ∼= On, the usual Cuntz algebra.

Proof. The first statement is clear. With λ = 1/n we have inside Q1/n, n isometries one for each
m = 0, 1, ..., (n− 1) defined by:

Sm = X[m
n
,m+1

n
) · δgm where gm = [1/n : m/n] and so S∗m = X[0,1) · δg−1

m
where g−1

m = [n : −m].

Using Lemma 2.12, we easily see that for each m, Sm ∈ Q1/n.

Then, using item (1) of Lemma 2.5 we calculate:

S∗mSm = X[0,1) · δ1 = e and SmS
∗
m = X[m

n
,m+1

n
) · δ1 and so

n−1∑

m=0

SmS
∗
m = X[0,1) · δ1 = e.

Since e is the identity of Q1/n, we have constructed a unital copy of On inside Q1/n. Now one shows by
induction that for each k > 0 the product of exactly k of these n isometries has the form Sk,m where
Sk,m has the same defining equation as Sm above but with nk in place of n and m = 0, 1, ..., (nk − 1).
These new isometries have range projections Sk,mS∗k,m = X[ m

nk ,
m+1

nk ) · δ1 which therefore lie in this copy
of On. By adding up some of these projections, we can get any projection of the form X[a,b) · δ1 where
0 ≤ a < b ≤ 1 and both a, b have the form m/nk. But any element a ∈ Γ1/n can be written as a = m

nk

for a sufficiently large k ≥ 0 and some m ∈ Z depending on k, and any pair a, b can be brought to a
common denominator nk. Hence any projection of the form X[a,b) · δ1 in Q1/n is in this copy of On.
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Now, a straightforward calculation gives us:

nk−1∑

m=1

Sk,mS
∗
k,m−1 =

nk−1∑

m=1

X[m+1

nk ,m+2

nk ) · δ[1 : 1/nk] = X[1/nk,1) · δ[1 : 1/nk] ∈ On.(1)

Finally, let X[a,b) · δg ∈ Q1/n be an arbitrary generator. By taking adjoints if necessary we can assume
that g has the form g = [nk : ∗] where k ≥ 0. Since Sk,0 is an isometry in On it suffices to prove that
Sk,0(X[a,b) · δg) ∈ On. That is, we are reduced to the case g = [1 : c] and again by taking adjoints
if necessary we can assume that c ≥ 0. The case c = 0 is done and so we can assume that c > 0. So
(with possibly new a, b) we have X[a,b) · δ[1 : c] where 0 < c ≤ 1 and [a, b) ⊆ [0, 1) ∩ [c, c + 1) = [c, 1).
But, X[a,b) · δ[1 : c] = X[a,b)X[c,1) · δ[1 : c] = X[a,b) · δ1X[c,1) · δ[1 : c] and we already know that X[a,b) · δ1 ∈ On.
Therefore it suffices to see that X[c,1) · δ[1 : c] ∈ On. However, c = l/nk for some 0 < l < nk and so:

X[c,1) · δ[1 : c] = X[l/nk,1) · δ[1 : l/nk] =
(
X[1/nk,1) · δ[1 : 1/nk]

)l

which is in On by Equation 1. Since all generators for Q1/n are in On we’re done. ¤

2.2. K-theory of Qλ for λ rational. Since Aλ0 is stable and stably isomorphic to the UHF algebra
F λ, each of its projections is equivalent to one in some finite-dimensional subalgebra and hence to
some projection in Cλ0 (R), and in this case the trace induces an isomorphism from K0(Aλ0) onto
Γλ = Z[1/(pq)] ⊂ R. This isomorphism carries the projection e = X[0,1) · δ1 which is the identity of Qλ
and F λ onto 1 ∈ Z[1/(pq)]. Now, since Aλ0 is AF, K1(Aλ0) = {0}, and since Aλ = Z oλ Aλ0 we can use
the Pimsner-Voiculescu exact sequence to calculate K∗(Aλ) = K∗(Qλ). When we do this we get:

K1(Qλ) = {0}, and K0(Qλ) = Z[1/(pq)]/(1− λ)Z[1/(pq)].

Proposition 2.17. For λ rational with λ = p/q in lowest terms, we have

K1(Qλ) = {0}, and K0(Qλ) ∼= Z[1/(pq)]/(1− λ)Z[1/(pq)] ∼= Z(q−p).

Proof. By Proposition 2.1, Γλ = Z[1/(pq)], so we must show that

Z[1/(pq)]/(1− (1/(pq))Z[1/(pq)] ∼= Z(q−p).

Since (q− p) = (1− p/q)q and every element of Z[1/(pq)] is of the form m/(pq)N , it is easy to see that
(q − p)Z[1/(pq)] = (1− p/q)Z[1/(pq)]. Now, (q − p) and (pq)N are relatively prime for any N and so
there exist a, b ∈ Z so that 1 = a(q − p) + b(pq)N and hence m/(pq)N = (q − p)am/(pq)N +mb. That
is, m/(pq)N and mb represent the same element in the quotient. So, every element in the quotient has
an integer representative. Two integers c, d represent the same element in the quotient if and only if
c− d = (p− q)n/(pq)N , or (c− d)(pq)N = n(q − p). But then:

(c− d) = (c− d)[a(q − p) + b(pq)N ] = (c− d)a(q − p) + b(c− d)(pq)N = [(c− d)a+ bn](q − p).
That is, c, d represent the same element in Z/(q − p)Z = Z(q−p). On the other hand if (c − d) is in
(q − p)Z then clearly, [c] = [d] in Z[1/(pq)]/(1− (1/(pq))Z[1/(pq)] and we are done. ¤

Corollary 2.18. If λ = p/q in lowest terms, then

F λ = F p/q ∼= UHF ((pq)∞) and Qλ = Qp/q ∼= O(q−p+1).

In particular, if λ = k
k+1 then

F λ ∼= UHF ((k(k + 1))∞) and Qλ ∼= O2.
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Proof. Since each Qλ is separable, nuclear, simple, purely infinite and in the bootstrap category Nnuc
once we show that the class of the identity e ∈ Qλ is a generator for K0(Qλ) = Z/(q − p)Z, the
Kirchberg-Phillips Classification Theorem, Theorem 8.4.1 of [RS], shows that Qλ ∼= O(q−p+1). To this
end we observe that since e is mapped to 1 in Z[1/pq], we must show that [1] is a generator for
K0(Qλ) = Z[1/pq]/(1− (p/q))Z[1/pq]. Now, by the proof of the previous proposition, k[1] = [k · 1] =
0 ∈ Z[1/pq]/(1 − (p/q))Z[1/pq] if and only if [k · 1] = 0 ∈ Z/(q − p)Z if and only if k − 0 = m(q − p)
for some m ∈ Z if and only if k is a multiple of (q − p). That is, [1], [2 · 1], . . . , [(q − p− 1) · 1] are all
nonzero in K0(Qλ) = Z/(q − p)Z and hence [1] is a generator. ¤

2.3. The K-theory of the Algebras Aλ0 for λ irrational. The case λ rational is much simpler, and
while it does fit into the following scheme, it does not need this deeper machinery. Initially, we (and
others) believed that the algebras Aλ0 were AF algebras when λ is irrational. In fact we will show that
Aλ0 is never AF when λ is irrational. We will set up our examples to fit the situation on page 1487 of
[Put2] so that we can apply the six-term exact sequence of Theorem 2.1 on page 1489 of [Put2].

We let Γ = Γλ ∼= G0
λ. Thus, Γ ⊂ R is a countable dense subgroup of R which acts on R by translations.

Before looking at the crossed product of Γ acting on Cλ0 (R) = C0(Rλ) (which gives us Aλ0) we first
consider the crossed product of Γ acting on C0(R). Since Γ acts on R by translation we can Fourier
transform to get an isomorphism:

Γo C0(R) ∼= R̂ o C(Γ̂).

Then, by Connes’ Thom isomorphism we get for i = 0, 1:

Ki(Γo C0(R)) ∼= Ki(R̂ o C(Γ̂)) ∼= Ki+1(C(Γ̂)).

Proposition 2.19. The composition:

K1(C0(R)) i∗−→ K1(Γo C0(R)) b−→ K1(R̂ o C(Γ̂))
∼=−→ K0(C(Γ̂))

takes the generator [u] ∈ K1(C0(R)) = Z · [u]; where u is the Bott element in C0(R)1 defined by
u(t) = 1+it

1−it ; to [1Γ̂] where 1Γ̂ is the identity function in C(Γ̂).

Proof. We first work on the right hand side of this sequence of maps. Let u(t) = 1+ ε(t). Now, by the
proof of Connes’ Thom isomorphism, the mapping:

K0(C(Γ̂))⊗Z K1(C0(R)) −→ K1(Ro C(Γ̂))

takes the element, [1Γ̂] ⊗ [u], to the class [1 + (convolution by ε̂ · 1Γ̂)]. Now the left hand side of this
displayed mapping is naturally isomorphic to K0(C(Γ̂)), via:

K0(C(Γ̂))⊗Z K1(C0(R)) = K0(C(Γ̂))⊗Z Z · [u] = K0(C(Γ̂)) · [u] ∼= K0(C(Γ̂)).

Thus, [1Γ̂] in K0(C(Γ̂)) gets mapped to the class [1+(convolution by ε̂·1Γ̂)] by the Thom isomorphism.

On the other hand, the map K1((C0(R)1) −→ K1((Γ o C0(R))1) takes [u] 7−→ [δ0 · ε + 1] and by the
Fourier transform this goes to [(convolution by ε̂ · 1Γ̂) + 1] in K1(RoC(Γ̂)). Combining these we get:

1 ∈ Z 7−→ [u] ∈ Z · [u] = K1((C0(R))1) = K1(C0(R)) 7−→ [1Γ̂] ∈ K0((C(Γ̂)).

¤

Now, by Proposition 2.1 we know Γ in many cases so that these last groups are quite computable. In
the notation of [Put2] we define the transformation groupoids:

G := Rλ o Γ, G′ := Ro Γ, and H := Γo Γ.
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Then, Aλ0 = C∗r (G) is the reduced C∗-algebra of G; Γo C0(R) = C∗r (G′) is the reduced C∗-algebra of
G′; and K(l2(Γ)) is the reduced C∗-algebra of H. By the proof of Proposition 2.10 there is a continuous
proper surjective map: Rλ → R, where points in R which are not in Γ each have a single pre-image,
while points γ ∈ Γ have exactly two pre-images in Rλ, which we denote by γ− and γ+. Thus, there
are two disjoint embeddings of Γ in Rλ :

i0, i1 : Γ→ Rλ : i0(γ) = γ−, i1(γ) = γ+.

Now in order to mesh with the notation of [Put2], we let Y := Γ with the equivalence relation,
“=”; X := Rλ, with the equivalence relation (i0(γ) ∼ i1(γ)); and quotient π : X → X ′ := R where
X ′ = X/(i0(γ) ∼ i1(γ)) = R; while the image of the groupoid G = Rλ×Γ = X×Γ under the sujective
mapping Rλ → R, is G′ := R× Γ = X ′ × Γ. Heurisically, a “factor groupoid”.

We represent each of these three C∗-algebras on H := l2(Γ+) ⊕ l2(Γ−) where Γ± = {γ± | γ ∈ Γ} in
the following way. First we denote the natural orthonormal basis elements of H by δa+ and δa− for
each a ∈ Γ. Now the unitary representation U of Γ on H is Uγ(δa±) = δ(a−γ)± . The actions of C0(Rλ),
C0(R), and C0(Γ) on H are as follows for f1 ∈ C0(Rλ), f2 ∈ C0(R), f3 ∈ C0(Γ), and δa± ∈ H

π1(f1)(δa±) = f1(a±)δa± π2(f2)(δa±) = f2(a)δa± π3(f3)(δa±) = f3(a)δa± .

These three covariant pairs of representations, (π1, U), (π2, U), and (π3, U) define representations of
C∗r (G) = Aλ0 , C∗r (G′) = Γ o C0(R), and C∗r (H) = K(l2(Γ)) respectively on H. Since each of these
C∗-algebras is simple these representations are faithful.

Now, one checks that the hypotheses of Theorem 2.1 of [Put2] are satisfied. As in [Put1, Put2] one
shows that the two mapping cone algebras of the inclusions:

C∗r (G
′) = Γo C0(R) −→ Aλ0 = C∗r (G) and C∗r (H) −→ C∗r (H)⊕ C∗r (H) : ( x 7→ (x, x) )

have isomorphic K-theory. One then pastes these isomorphisms into the mapping cone long exact
sequence for C∗r (G′) = Γ o C0(R) −→ Aλ0 = C∗r (G). Next one observes that for any C∗-algebra, B
the diagonal embedding B −→ B ⊕ B induces the diagonal embedding K∗(B) −→ K∗(B) ⊕ K∗(B)
with quotient isomorphic to K∗(B) (this is true for any abelian group). This implies that K∗(B) ∼=
K∗+1(M(B,B ⊕B)) so that we get the six-term exact sequence from [Put2]:

K1(C∗r (H)) // K0(C∗r (G′)) // K0(C∗r (G))

²²
K1(C∗r (G))

OO

K1(C∗r (G′))oo K0(C∗r (H))oo

In our set-up this becomes:

{0} // K0(Γo C0(R)) // K0(Γo C0(Rλ))

²²
K1(Γo C0(Rλ))

OO

K1(Γo C0(R))oo Zoo

Which by Connes’ Thom isomorphism becomes:

{0} // K1(C(Γ̂)) // K0(Aλ0)

²²
K1(Aλ0)

OO

K0(C(Γ̂))oo Zoo

By Proposition 2.19, the nonzero element [1Γ̂] in K0(C0(Γ̂)) ∼= K1(Γ o C0(R)) is mapped to the
image of the class [u] in K1(ΓoC0(R)) by Connes’ Thom isomorphism, and then the image of [1Γ̂] in
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K1(ΓoC0(Rλ)) is the same as the image of [u] under the inclusion K1(ΓoC0(R)) −→ K1(ΓoC0(Rλ)).
However, this is clearly the same as the image of [u] under the inclusion K1(C0(R))→ K1(C0(Rλ))→
K1(Γ o C0(Rλ)). This composition is 0 since C0(Rλ) is an AF-algebra. That is, the element [1Γ̂] in
K0(C0(Γ̂)) is mapped to 0 in K1(Aλ0) and hence is in the image of the map Z −→ K0(C0(Γ̂)). Since
[1Γ̂] generates a copy of Z in K0(C0(Γ̂)), we have a nonzero homomorphism from Z to Z[1Γ̂] which is
onto and hence one-to-one. By the exactness, the map K0(Aλ0) −→ Z is the zero map.

CONCLUSION : K0(Aλ0) ∼= K1(C(Γ̂λ)) and K1(Aλ0) ∼= K0(C(Γ̂λ))/[1Γ̂λ
]Z.

Proposition 2.20. If λ is irrational, then K1(Aλ0) 6= {0} so that Aλ0 is not an AF-algebra.

Proof. By items (3) and (5) of Proposition 2.2 we see that when λ is irrational, K0(C(Γ̂λ)) is not
singly generated so that K1(Aλ0) ∼= K0(C(Γ̂λ))/[1Γ̂λ

]Z 6= {0}. ¤

2.4. K-theory computations of particular Qλ for λ irrational. Example(s) λ = 1/
√
n: for

n > 1 a square-free integer. Using Proposition 2.1, we get:

K0(F λ) = K0(Aλ0) = K1(C(Γ̂λ)) = Z[1/n]⊕ Z[1/n]

K1(F λ) = K1(Aλ0) = (K0(C(Γ̂λ)))
/
Z[1] = (Z[1]⊕ Z[1/n])

/
Z[1] = Z[1/n].

To compute the K-theory of Qλ in this case using the Pimsner-Voiculescu exact sequence, one must
first compute the induced automorphism λ∗ on K1(C(Γ̂λ)) and on K0(C(Γ̂λ)) by a more detailed
analysis of the proof of [Sc, Proposition 2.11]. In the case of K1(C(Γ̂λ)) we get a copy of the group
Γλ = Z[1/n] + Z[1/n]

√
n and the action on Γλ is just multiplication by λ = 1/

√
n. As an action

translated to the abstract group Z[1/n] ⊕ Z[1/n], the automorphism becomes λ∗(a, b) = (b, a/n).
Therefore, id∗ − λ∗ on K0(Aλ0) = Z[1/n] ⊕ Z[1/n] to itself is clearly 1 : 1. Now it is an instructive
exercise to show that the kernel of the homomorphism

(a, b) ∈ Z[1/n]⊕ Z[1/n] 7→ [a+ b] ∈ Z[1/n]
/
(1− 1/n)Z[1/n]

is exactly the range of the homomorphism

id∗ − λ∗ : Z[1/n]⊕ Z[1/n] −→ Z[1/n]⊕ Z[1/n].

Hence, we have the isomorphisms:

(Z[1/n]⊕ Z[1/n])
/
(id∗ − λ∗)(Z[1/n]⊕ Z[1/n]) ∼= Z[1/n]

/
(1− 1/n)Z[1/n] ∼= Z

/
(n− 1)Z.

where the last isomorphism follows from the proof of Proposition 2.17 with p = 1 and q = n.

Once we have computed the action of λ∗ on K1(Aλ0) = Z[1/n] we will be ready to compute K∗(Qλ).
Now, by Proposition 2.11 of [Sc] we have the isomorphism:

K0(C(Γ̂λ)) ∼= (Z[1]⊗Z Z[1])⊕ (Z[1/n]⊗Z Z[1/n]) = Z[1]⊕ (Z[1/n]⊗Z Z[1/n]).

The action of λ∗ on Z[1] is of course the identity. However, the action of λ∗ on (Z[1/n] ⊗Z Z[1/n])
is just x ⊗ y 7→ y ⊗ x/n. If one combines this with the multiplication isomorphism x ⊗ y 7→ xy :
Z[1/n]⊗ZZ[1/n] −→ Z[1/n] we see that λ∗ acts as multiplication by 1/n on Z[1/n] = Z[1/n]⊗ZZ[1/n].
Thus, λ∗ on the quotient K1(Aλ0) = Z[1/n] is just multiplication by 1/n. Therefore, id∗ − λ∗ becomes
multiplication by (1 − 1/n) on Z[1/n] which is clearly 1 : 1. Applying the Pimsner-Voiculescu exact
sequence and recalling that Ki(Qλ) = Ki(Aλ) we get the isomorphisms:

K0(Qλ) ∼= Z
/
(n− 1)Z, and K1(Qλ) ∼= Z

/
(n− 1)Z, for λ = 1/

√
n.

For n > 2 we get K1 6= 0 and so these are not Cuntz algebras, in fact not even Cuntz-Krieger algebras
since K1 has nonzero torsion. For λ = 1/

√
2 however we get K0 = 0 = K1 and by classification theory,

we must have Q1/
√

2 ∼= O2! However, even in this case the fixed point algebra, is NOT AF since it has
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K1 = Z[1/2], the tape-measure group. So for the simplest irrational number 1/
√

2 we get the Cuntz
algebra, O2 with a strange gauge action of T.

Remarks. In the examples below it is important to note that any polynomial of the form f(x) =
xn + axn−1 + · · · + bx ± 1 has at most n − 1 roots in the open interval (0, 1) because the product of
all the roots of f must equal ±1.

Example(s) quadratic integers and an algorithm: If both λ and λ−1 are quadratic integers
with λ ∈ (0, 1), then λ2 + aλ± 1 = 0 where the integer polynomial f(x) = x2 + ax± 1 is irreducible
over Q. With these restrictions there are two cases, either f(x) = x2 + ax − 1 where a > 0 and
λ = 1/2·(√a2 + 4−a) ∈ (0, 1); or f(x) = x2+ax+1 where a ≤ −3 and λ = 1/2·(−√a2 − 4−a) ∈ (0, 1).

In the first case, λ2 + aλ− 1 = 0, with a > 0, so that λ+ a− λ−1 = 0 and λ−1 = a+ λ. For this case
we outline an algorithm using the ideas of the Smith Normal Form and the Pimsner-Voiculescu exact
sequence to calculate the K-theory. By Proposition 2.2, and the CONCLUSION before Proposition
2.20, Γλ = Z + Zλ and K0(Aλ0) ∼= K1(C(Γ̂λ)) =

∧1(Γλ) = Γλ ∼= Z2. Giving Γλ its Z-basis {1, λ} we

see that the action of the automorphism λ∗ on K0(Aλ0) ∼= Γλ has matrix:
[

0 1
1 −a

]
. So, (id− λ∗) =

[
1 −1
−1 (a+ 1)

]
:= M. To compute the kernel and cokernel of this matrix mapping Z2 → Z2 we

row and column-reduce M over Z to obtain matrices P,Q ∈ GL(2,Z) so that PMQ = D where
D is diagonal over Z. Then ker(M) ∼= ker(D) and Z2/M(Z2) ∼= Z2/D(Z2). In this case, we get

D =
[

1 0
0 a

]
. Hence, on K0(Aλ0) we have

ker(id− λ∗) = ker(M) ∼= ker(D) = {0} and coker(id− λ∗) ∼= coker(D) = Z/aZ.

Now we compute (id− λ∗) on

K1(Aλ0) ∼= K0(C(Γ̂λ))/Z · 1o = (Z · 1o ⊕ Z(1 ∧ λ))/Z · 1o = Z(1 ∧ λ).

Now, λ∗(1∧λ) = λ∧λ2 = λ∧(1−aλ) = λ∧1 = (−1)1∧λ. That is, λ∗ = −id on K1(Aλ0) ∼= Z. Therefore,
(id−λ∗) = multiplication by 2 on Z(1∧λ) which has ker(id−λ∗) = {0} and cokernel(id−λ∗) ∼= Z/2Z.

Applying these results to the Pimsner-Voiculescu exact sequence we obtain:

K0(Qλ) = Z/aZ and K1(Qλ) = Z/2Z, for λ2 + aλ− 1 = 0, n ≥ 1.

None of these examples are Cuntz-Krieger algebras since K1 is not torsion-free. In particular, when
λ = (1/2)(

√
5− 1) is the inverse of the golden mean, we get K0 = {0} and K1 = Z/2Z.

In the second case, λ2 + aλ + 1 = 0, we have as above, K0(Aλ0) ∼= Γλ = Z + Zλ with Z-basis
{1, λ}; the diagonal version of (id − λ∗) is D = diag[1, (a + 2)] so that ker(id − λ∗) = {0} and
coker(id − λ∗) ∼= Z/(a + 2)Z. On the other hand, K1(Aλ0) ∼= Z(1 ∧ λ) only now, λ∗ = id here so that
(id− λ∗) = 0 and hence ker(id− λ∗) ∼= Z while coker(id− λ∗) ∼= Z. By Pimsner-Voiculescu we get

K0(Qλ) = Z⊕ (Z/(a+ 2)Z) and K1(Qλ) = Z, for λ2 + aλ+ 1 = 0, a ≤ −3.

We note that in this case, Qλ has the correct K-theory to be a Cuntz-Krieger algebra (and is therefore
stably isomorphic to one), and that in the case a = −3 (i.e., λ = (1/2)(3−√5)) we have K0 = Z = K1.

Example cubic integers: If λ and λ−1 are cubic integers with λ ∈ (0, 1), then λ3 +aλ2 + bλ±1 = 0
where the integer polynomial f(x) = x3 + ax2 + bx± 1 is irreducible over Q. Such an f is irreducible
if and only if f(1) 6= 0 6= f(−1). There are two cases depending on the constant, ±1.
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First, consider f(x) = x3 + ax2 + bx− 1 = 0 with f(1) = a+ b 6= 0 and f(−1) = a− b− 2 6= 0 so that
f is irreducible. Now assume a+ b is positive (but a 6= b+ 2). Then f(0) = −1 and f(1) = a+ b > 0
so that f has a unique root in (0, 1) since it is a cubic.

Next consider the same polynomial, f(x) = x3 +ax2 +bx−1 = 0, with a+b negative (but a 6= b+2).
Since both f(0) and f(1) are negative, in order to have a solution the function f must have a local
maximum on (0, 1). There are examples with no solutions in (0, 1); for example, f(x) = x3 − 3x− 1.
In order to have a unique solution, then considering f ′(x), one would need 4a2 − 12b = 0 : while
this has many solutions, they all satisfy |a| ≤ b and so we can not have a+ b < 0. So solutions are not
unique in this case. But, there are infinitely many cubics with two distinct solutions in (0, 1); eg.,
f(x) = x3 − (a+ k)x2 + ax− 1 for a ≥ k + 4 and k ≥ 1 has two solutions in (0, 1), since f(.5) > 0.

We now calculate the K-theory of Qλ assuming that λ satisfies f(x) = x3 + ax2 + bx− 1 = 0, where
a+b 6= 0, and a−b 6= 2. Now, λ3+aλ2+bλ−1 = 0, so that λ3 = 1−aλ2−bλ and λ−1 = λ2+aλ+b. Then,
Γλ = Z+Zλ+Zλ2 and K0(Aλ0) ∼= K1(C(Γ̂λ)) =

∧odd(Γλ) = Γλ⊕(Γλ∧Γλ∧Γλ) = Γλ⊕(Z(1∧λ∧λ2)) ∼=
Z4. Giving Γλ its natural Z-basis {1, λ, λ2} the induced homomorphism (id − λ∗) on K0(Aλ0) ∼= Z4

yields the diagonal matrix, D = diag[1, 1, (a+ b), 0] so that on K0(Aλ0) we have

ker(id− λ∗) ∼= ker(D) ∼= Z and coker(id− λ∗) ∼= coker(D) = (Z/(a+ b)Z)⊕ Z.
Now, K1(Aλ0) ∼= K0(C(Γ̂λ))/Z · 1o =

∧2(Γλ) = Z(1 ∧ λ) + Z(1 ∧ λ2) + Z(λ ∧ λ2) ∼= Z3. By similar
computations we get for K1(Aλ0) ∼= Z3; the matrix D = diag[1, 1, (a+ b)]. Hence, on K1(Aλ0) we have

ker(id− λ∗) ∼= ker(D) = {0} and coker(id− λ∗) ∼= coker(D) = Z/(a+ b)Z.

Applying these results to the Pimsner-Voiculescu exact sequence we obtain:

K0(Qλ) = Z⊕ (Z/(a+ b)Z) and K1(Qλ) = Z⊕ (Z/(a+ b)Z) for λ3 + aλ2 + bλ− 1 = 0.

Remarks. In case a + b = 1 (which has infinitely many solutions corresponding to infinitely many
distinct invertible cubic integers λ ∈ (0, 1)) we get K0(Qλ) = Z = K1(Qλ), which as noted above
is also true for the invertible quadratic integer, λ = (1/2)(3 − √5). In the general cubic case with
constant term −1 we always have non-torsion elements in both K0 and K1 : this is the opposite of
the case where the constant term is +1, where we see below that K0 and K1 are both torsion groups.
A similar phenomenon occurs in the quadratic case above, except that there we get torsion in the
−1 case and non-torsion in the +1 case! That this may be a periodic phenomenon is supported by
a calculation of two quartic examples: first, the unique solution λ ∈ (0, 1) to the irreducible quartic
f(x) = x4 − 3x3 + 1 gives us K0 = Z and K1 = Z ⊕ (Z/3Z) ⊕ (Z/3Z); while, second, the unique
solution λ ∈ (0, 1) to the irreducible quartic f(x) = x4 + 3x3 − 1 gives us K0 = (Z/3Z)⊕ (Z/3Z) and
K1 = (Z/9Z)⊕ (Z/2Z), similar to the quadratic case. Proposition 2.21 is further evidence.

When an irreducible polynomial f(x) = xn + axn−1 + · · · ± 1 has two roots, λ1, λ2 ∈ (0, 1), then
Γλ1
∼= Γλ2 as rings (but not as ordered rings, for that would imply equality). Still, Qλ1 ∼= Qλ2 (at

least stably) since the calculation of their K-groups are identical. Their KMS states are not equivalent
since the type III factors that they generate are not isomorphic, as we will see below.

Proposition 2.21. Suppose λ satisfies the irreducible (over Z) polynomial, f(x) = xn + · · · ± 1 = 0.
(1) For n odd, if f(x) = xn + · · ·+ 1 then K0(Qλ) has Z/2Z as a summand.
While, if f(x) = xn+· · ·−1 then K0(Qλ) has Z as a summand (so, by the next Proposition, rank(K0) =
rank(K1) ≥ 1 in this case).
(2) For n even, if f(x) = xn+ · · ·+1 then K1(Qλ) has Z as a summand (so, by the next Proposition,
rank(K0) = rank(K1) ≥ 1 in this case).
While, if f(x) = xn + · · · − 1 then K1(Qλ) has Z/2Z as a summand.
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Proof. In K∗(Aλ0) there is a λ∗-invariant summand, (1∧λ∧λ2∧ · · · ∧λn−1)Z. Depending on n(mod 2)
and the constant term ±1, the action of λ∗ on this summand is ±id. Hence, (id− λ∗) here is either 0
or 2(id). Applying Pimsner-Voiculescu gives a summand in K∗(Qλ) of either Z or Z/2Z. ¤
Proposition 2.22. Suppose λ is algebraic.
(1) Then, rank(K0(Qλ)) = rank(K1(Qλ)) so that Qλ is not stably isomorphic to O∞.
(2) If λ and λ−1 are both algebraic integers and Qλ is stably isomorphic to a Cuntz algebra On, then the
minimal polynomial of λ has odd degree and constant term +1. Moreover, n is congruent to 3(mod 4)
and all such Cuntz algebras appear this way.

Proof. To see part (1) we tensor the Pimsner-Voiculescu exact sequence by Q (which preserves exact-
ness) to obtain an exact hexagon of Q-vector spaces:

V1
θ1 // V1

τ1 // KQ
1

µ1

²²
KQ

0

µ0

OO

V0τ0
oo V0

θ0
oo

where Vi = Ki(Aλ0)⊗Q, and KQ
i = Ki(Aλ)⊗Q. Then

dim(KQ
0 ) = rank(µ0) + nullity(µ0) = rank(µ0) + rank(τ0) and dim(KQ

1 ) = rank(µ1) + rank(τ1)

and
rank(τ0) + rank(θ0) = dim(V0) = rank(θ0) + rank(µ1) so that rank(τ0) = rank(µ1).

Similarly, rank(τ1) = rank(µ0), so that:

dim(KQ
0 ) = rank(µ0) + rank(τ0) = rank(µ1) + rank(τ1) = dim(KQ

1 ).

That is, rank(K0(Qλ)) = dimK0(Qλ)⊗Z Q = dimK0(Aλ)⊗Z Q = · · · rank(K1(Qλ)). By Proposition
2.21, if the minimal polynomial of λ has even degree, then K1(Qλ) 6= {0}, and so Qλ cannot be stably
isomorphic to a Cuntz algebra. If Qλ is stably isomorphic to On then n is finite by part (1)and by
Proposition 2.21, the order of K0(Qλ) must be even and therefore n must be odd. Furthermore, the
minimal polynomial must have constant term +1. In order for K0(Qλ) to be a finite cyclic group of
even order, it must be of the form Z/mZ ⊕ Z/2Z where m is odd since Z/2Z is a summand. Let
m = 2k + 1 then

n = ][Z/mZ⊕ Z/2Z] + 1 = 2m+ 1 = 4k + 3
as claimed.

In the examples below where λ3+aλ2+bλ+1 = 0, and either a−b = 1 and b ≤ −2 OR a = b = −1
and b ≤ −1, we obtain (stably, at least) all the Cuntz algebras On where n ≡ 3(mod 4). ¤

Now consider the case of irreducible cubics of the form f(x) = x3+mx2+nx+1; so f(1) = m+n+2 6= 0
and f(−1) = m − n 6= 0. Since f(0) = 1, if we have f(1) = m + n + 2 < 0, then we have as above a
unique root in (0, 1).

If f(1) = m + n + 2 > 0, we can have distinct roots. For example, if n = −4 and m = 3, then,
f(x) = x3 + 3x2− 4x+ 1 has two roots in (0, 1). If n << 0, we get several solutions m for each n: eg.,
n = −7 implies that any m with 6 ≤ m ≤ 9 will yield a polynomial with two roots in (0, 1).

We now calculate the K-theory of Qλ assuming λ satisfies f(λ) = λ3 + mλ2 + nλ + 1 = 0. Again,
K0(Aλ0) ∼= Z4, but now the diagonal matrix D = diag[1, 1, (m+n+2), 2]. On K1(Aλ0) ∼= Z3, the matrix
D = diag[1, 1, (m− n)]. Both matrices are 1 : 1 since m+ n+ 2 6= 0 6= m− n. We get:

K0(Qλ) = Z/(n+m+ 2)Z⊕ Z/2Z and K1(Qλ) = Z/(m− n)Z for λ3 +mλ2 + nλ+ 1 = 0.
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To obtain Cuntz algebras, we need m − n = ±1. It turns out f(1) > 0 can not occur, so we must
have f(1) = m + n + 2 < 0 hence there is a unique root λ in (0, 1). Combining this inequality with
m − n = ±1 we get exactly two infinite families of solutions; m = n + 1 for n ≤ −2, OR m = n − 1
for n ≤ −1. In either case, the sequence of numbers {|m + n + 2|} is the same: {2k + 1|k ≥ 0}. For
this sequence we get the K0 groups: Z/(2k + 1)Z⊕ Z/2Z ∼= Z/(4k + 2)Z. Since the K1 groups are all
{0}, by construction, the algebras Qλ are (at least stably) the Cuntz algebras, O4k+3 for k ≥ 0. That
is, O3, O7, O11, etc.

Example, λ transcendental:

Lemma 2.23. Let ϕ :
⊕

n∈Z Z −→ Z be the surjective homomorphism, φ({an}) :=
∑

n∈Z an; and
let S ∈ Aut(

⊕
n∈Z Z) be the shift S({an}n∈Z) := {an−1}n∈Z. Then, (id − S) is 1 : 1 and ker(ϕ) =

Im(id− S), so that (
⊕

n∈Z Z)/Im(id− S) ∼= Z.

Proof. As a model for
⊕

n∈Z Z we use Z[x, x−1] =
⊕

n∈Z Zxn, the ring of Laurent polynomials over
Z (i.e., the group ring over Z of the group {xn|n ∈ Z}). Here, ϕ is the augmentation map, S is
multiplication by x, and (id− S) is multiplication by (1− x) which is 1 : 1. Now,

N∑

n=−N
anx

n ∈ ker(ϕ)⇔
N∑

n=−N
an = 0⇔

N∑

n=−N
anx

n+N ∈ ker(ϕ).

Let p(x) =
∑N

n=−N anx
n+N ∈ Z[x] so p(1) =

∑N
n=−N an = 0. Hence, p(x) factors: p(x) = (1− x)q(x)

where initially q(x) ∈ Q[x]. Since p(x) ∈ Z[x] it is easy to see that in fact, q(x) ∈ Z[x] also. Then,
N∑

n=−N
anx

n = x−Np(x) = (1− x)x−Nq(x) ∈ (1− x)Z[x, x−1] = Im(id− S).

That is, ker(ϕ) ⊆ Im(id− S), and the other containment is immediate. ¤
Proposition 2.24. If λ is transcendental then

K0(Qλ) ∼=
∞⊕

n=1

Z ∼= K1(Qλ).

Proof. In this case, by Proposition 2.2 and the CONCLUSION before Proposition 2.20 we have:

K0(Aλ0) =
∞⊕

k=1

2k−1∧
(Γλ) and K1(Aλ0) =

∞⊕

k=1

2k∧
(Γλ) where Γλ =

∞⊕
n=−∞

Zλn.

Now, each individual summand
∧m(Γλ) is invariant under λ∗ and yields (for m > 1) an infinite direct

sum of (λ∗-invariant) examples of the previous lemma where the action of λ∗ is just the shift. The
general case is notation-heavy, so we do the examples,

∧2 and
∧3 . Letting Z+ denote the positive

integers, we have:
2∧

(Γλ) =
⊕

k∈Z+

(⊕

n∈Z
(λn ∧ λn+k)Z

)
and

3∧
(Γλ) =

⊕

(k1,k2)∈Z2
+

(⊕

n∈Z
(λn ∧ λn+k1 ∧ λn+k1+k2)Z

)
.

The case m = 1 is just the group Γλ =
⊕

n∈Z Zλn which yields a single instance of the lemma.

Applying the lemma we see that (id − λ∗) is 1 : 1 on both K0(Aλ0) and K1(Aλ0) and that both
K0(Aλ0)/(id− λ∗)(K0(Aλ0)) and K1(Aλ0)/(id− λ∗)(K1(Aλ0)) are isomorphic to a countable direct sum
of copies of Z. An application of the Pimsner-Voiculescu exact sequence completes the proof. ¤



17

Remark. The classification theory of Kirchberg algebras implies that for λ transcendental we have a
new realisation of the algebras found in [Cu1] and denoted QN there.

2.5. The dual action of T1 on Aλ and its restriction to the gauge action on Qλ. Recall,
G0
λ = {g ∈ Gλ | |g| = 1} is a normal subgroup of Gλ. The subgroup of Gλ of elements of the form

[λn : 0] is isomorphic to Z and acts on G0
λ by conjugacy:

[λn : 0][1 : b][λ−n : 0] = [1 : λnb].

Thus Gλ = Z oG0
λ is a semidirect product and we can write Aλ as an iterated crossed product:

Aλ = Gλ oα Cλ0 (R) = Z o (G0
λ oα Cλ0 (R)) = Z oAλ0 .

The dual action γ of T1 on Aλ is relative to this latter crossed product so that for each z ∈ T1 and x
in the Banach ∗-algebra, l1α(Gλ, Cλ0 (R)) we have:

γz(x)(g) = znx(g) if x ∈ l1α(Gλ, Cλ0 (R)); g ∈ Gλ and |g| = λn.

Since Aλ is defined to be the completion of this Banach ∗-algebra in its universal representation, the
action γ extends uniquely to an action (also denoted by γ) of T1 as automorphisms of Aλ. The fixed
point subalgebra of the dual action is, of course, exactly Aλ0 = G0

λ oα Cλ0 (R).

Since the projection e is in Aλ0 , the action γ restricts to an action of T1 on Qλ = eAλe, which we will
also denote by γ. We call this the gauge action of T1 on Qλ. Now, γ is clearly a strongly continuous
action of T1 on Qλ. Averaging over γ with respect to normalised Haar measure gives a positive,
faithful expectation Φ of Qλ onto the fixed-point algebra which is clearly F λ:

Φ(a) :=
1
2π

∫

T1

γz(a) dθ for a ∈ Qλ, and z = eiθ.

Proposition 2.25. The fixed point algebra, F λ = eAλ0e is the norm closure of finite linear combina-
tions of elements of the form:

X[a,b) · δg where g = [1 : c] and [a, b) ⊆ [0, 1) ∩ [c, 1 + c),

for a, b, c ∈ Γλ. Recall, Aλ0 ∼= K(l2(Z))⊗ F λ.

Proof. Applying the integral formula for Φ to a finite linear combination of the generators for Qλ we
see that the only terms that survive are those where |g| = 1 : that is, g has the above form. Then we
apply item (2) of Lemma 2.12 to obtain the condition on the interval [a, b). ¤
Corollary 2.26. The stabilised algebra Qλ⊗K is a crossed product of the stabilised fixed-point algebra
F λ ⊗K by an action of Z. For λ = 1/n this is a theorem of J. Cuntz.

Proof. By Proposition 2.7, Aλ0 ∼= F λ ⊗ K, and Aλ ∼= Qλ ⊗ K. By the discussion at the beginning of
subsection 3.1, Aλ ∼= Z oAλ0 and the proof is complete. See [Cu, Section 2]. ¤

Remarks. If we combine the previous observation that F λ is the fixed point subalgebra of Qλ under
the gauge action with Corollary 2.18 we get, for example, O2

∼= Q2/3 with a gauge action whose fixed
point subalgebra F 2/3 is a UHF algebra of type 6∞. Interestingly, F 3/4 is UHF of type 12∞ = 6∞

which is therefore isomorphic to F 2/3. So we have two gauge actions on O2 with isomorphic UHF
fixed point subalgebras, with distinct, inequivalent KMS states: one where β = log(3/2) and the other
where β = log(4/3) by Proposition 2.30 below. Moreover, the two von Neumann algebras generated
by the GNS representations of O2 are not isomorphic as they are type IIIλ factors for λ equalling 2/3
and 3/4, respectively, by Theorem 2.35 below.
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2.6. The γ-invariant semifinite weight on Aλ and its restriction to Qλ. The aim of this
subsection is to exhibit the unique KMS states for the gauge action on Qλ. We first recall the
definition of KMS states.

Definition 2.27. Let A be a C∗-algebra with a continuous action γ : R → Aut(A). Let ψ be a state
on A and β ∈ R a real number. We define ψ to be a KMSβ state for the action γ if

ψ(x γiβ(y)) = ψ(yx)

for all x, y ∈ A a dense γ-invariant ∗-subalgebra of Aγ , the subalgebra of analytic elements for the
action γ. We refer to [BR1, Section 2.5] for basic information on the subalgebra of analytic elements,
Aγ and to [BR2, Section 5.3] for all the basic information on KMS states.

Since Gλ is discrete it is well-known that the map

x 7→ x(1) : l1α(Gλ, Cλ0 (R))→ Cλ0 (R)

extends uniquely to a faithful conditional expectation E : Aλ → Cλ0 (R). Composing E with the densely
defined (norm) lower semicontinuous weight on Cλ0 (R) given by integration, gives us a densely defined
(norm) lower semicontinuous weight on Aλ which we denote by ψ̄. In particular, for x ∈ l1α(Gλ, Cλ0 (R))
we have:

ψ̄(xx∗) =
∫

R
xx∗(1)(t)dt =

∫

R


 ∑

h∈Gλ

x(h)x(h)


 (t)dt =

∑

h∈Gλ

(∫

R
|x(h)(t)|2dt

)
.

So that ψ̄ is faithful. We observe that ψ̄ is not a trace, since ψ̄(x∗x) =
∑

h∈Gλ
|h−1| ∫R |x(h)(t)|2dt.

Proposition 2.28. The weight ψ̄ on Aλ restricts to a faithful semifinite trace τ̄ on Aλ0 and also
restricts to a state denoted by ψ on Qλ satisfying:
(1) The gauge action γ of T1 on Qλ leaves the state ψ invariant.
(2) The state ψ restricted to the fixed point algebra, F λ is a faithful (finite) trace denoted by τ ; which
is, of course, the restriction of τ̄ on Aλ0 to F λ.
(3) With Φ : Qλ → F λ the canonical expectation, we have ψ = τ ◦ Φ.

Proof. Since ψ̄(e) =
∫
RX[0,1)(t)dt = 1, we see that ψ̄ restricted to Qλ is a faithful state. To see item

(1), it suffices to see that the gauge action on l1α(Gλ, Cλ0 (R)) leaves ψ̄ invariant. To this end, let x ≥ 0
be in l1α(Gλ, Cλ0 (R)), and let z ∈ T1. Then

E(γz(x)) = γz(x)(1) = z0x(1) = x(1) = E(x)

and so

ψ̄(γz(x)) =
∫

R
γz(x)(1)(t)dt =

∫

R
E(x)(t)dt = ψ̄(x).

To see item (2) we use Proposition 2.25 and the above computation that shows that while ψ̄ is not
generally a trace, to see that it is a trace when the group elements all have determinant 1.

To see item (3), it suffices to see that for any x ∈ Qλ we have E(x) = E(Φ(x)), but this is the same
as x(1) = Φ(x)(1) which is clear since det(1) = 1. ¤

Now, since the state ψ is invariant under the action γ, this action is unitarily implemented on
L2(Qλ, ψ). For z ∈ T1 and x ∈ Qλc we define:

(uz(x))h = znxh for h ∈ Gλ with |h| = λn.
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We define the spectral subspaces of this unitary group on L2(Qλ, ψ) in the usual way. For each k ∈ Z
let Φk be the operator on L2(Qλ, ψ) :

Φk(x) =
1
2π

∫

T1

z−kuz(x)dθ, z = eiθ, x ∈ L2(Qλ, ψ).

We observe that if x = f · δg is a typical generator of Qλ considered as a vector in L2(Qλ, ψ) then we
have:

Φk(f · δg) =
{
f · δg if |g| = λk

0 otherwise

More generally, on H := L2(Qλ, ψ), we have Φk(H) = {x ∈ H | uz(x) = zkx for all z ∈ T1}.
Lemma 2.29. For each k ∈ Z the subspace span{f · δg ∈ Qλ | |g| = λk} is dense in the range of
Φk. The operators Φk are mutually orthogonal projections on H which sum to the identity operator
1 = π(e).

Proof. The proof of the first statement is similar to the proof of Proposition 2.25. The mutual orthog-
onality of the Φk follows from the fact that 〈f1 · δg1 |f2 · δg2〉ψ = 0 unless g1 = g2. ¤

Proposition 2.30. The dense ∗-subalgebra of Qλ consisting of finite linear combinations of the partial
isometries X[a,b) · δg is contained in the subset of entire elements, Qλγ , for the action γ considered as
an action of R : t 7→ γeit . Moreover, ψ is a KMSβ state for this action where β = log(λ−1). In fact, ψ
is the unique KMS state for this action (regardless of β).

Proof. Let y = X[a,b) · δg ∈ Qλ where det(g) = λk. Then, t 7→ γeit(y) = eikty; t ∈ R obviously extends
to the entire function w 7→ γeiw(y) = eikwy; w ∈ C. For w = log(λ−1)i, this equation becomes
γeiw(y) = γλ(y) = λky. Letting β = log(λ−1), we have γβi(y) = λky. Now, let x = X[c,d) ·h so we want
to see that: λkψ(xy) = ψ(xγβi(y)) = ψ(yx). That is, we want λkψ(xy) = ψ(yx). Now both sides of
this equation are zero unless h = g−1. But, when h = g−1, we have

xy = X[c,d) · X[g−1(a),g−1(b)) · δI while yx = X[a,b) · X[g(c),g(d)) · δI .
Moreover,

s ∈ [c, d) ∩ [g−1(a), g−1(b))⇐⇒ g(s) ∈ [g(c), g(d)) ∩ [a, b).

Since det(g) = λk the transformation g increases the measure by a factor of λk and the result follows.
That is, ψ is a KMSβ state for the action γ of R for β = log(λ−1).

Now let φ be a KMS state on Qλ for the action γ. Since Qλ is purely infinite it has no nontrivial traces
and so φ must be KMS for some nonzero β. Hence by [BR2, Proposition 5.3.3], φ is invariant under
the action of γ. Now, if X[a,b) · δg ∈ Qλ with det(g) = λk, then we have for all z ∈ T:

φ(X[a,b) · δg) = φ(γz(X[a,b) · δg)) = zkφ(X[a,b) · δg).
That is, if det(g) 6= 1 we must have φ(X[a,b) · δg) = 0, and so φ is supported on F λ. Since F λ is
γ-invariant and φ is KMS for some nonzero β, φ is a trace on F λ by [BR2, 5.3.28].

Now, if x = X[a,b) · δg ∈ F λ and g 6= I, then we claim that φ(x) = 0. For suppose g = [1 : c] with
c > 0. Then there is a positive integer n such that a+ nc < b ≤ a+ (n+ 1)c and so

x = X[a,b) · δg = X[a,c) · δg + X[a+c,a+2c) · δg + · · ·+ X[a+nc,b) · δg := v0 + v1 + · · ·+ vn.

Now each of these partial isometries vk satisfies v2
k = 0, and so φ(vk) = φ(vkv∗kvk) = φ(v2

kv
∗
k) = 0 since

φ is a trace on F λ. Thus, φ(x) = 0 as claimed.
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Hence φ is supported on the commutative subalgebra

C := span{f · δI | f ∈ Cλ0 (R) and supp(f) ⊆ [0, 1)}.
Morever, if f1, f2 are characteristic functions of subintervals of [0, 1) with endpoints in Γλ and having
the same length they give equivalent elements fi · δI in F λ and therefore have the same value under φ.

Now, since Aλ0 ∼= F λ ⊗ K we can define a lower semicontinuous, densely defined trace, T̃ r on Aλ0 via
T̃ r = φ⊗ Tr, where Tr is the trace on K. So, for X[a,b) · δI ∈ F λ we have T̃ r(X[a,b) · δI) = φ(X[a,b) · δI).
Then, for k1 < k2 ∈ Z the element X[k1,k2) · δI is the sum of (k2−k1) projections in Aλ0 each equivalent
to X[0,1) · δI which has trace equal to 1; that is, T̃ r(X[k1,k2) · δI) = (k2 − k1). Now, for any a < b in Γλ,
we have X[a,b) · δI ∼ X[0,b−a) · δI and so T̃ r(X[a,b) · δI) = T̃ r(X[0,b−a) · δI), and these values are finite
since both these projections are dominated by X[−N,N) · δI for a sufficiently large integer N. It now
suffices to prove the following. Claim: T̃ r(X[a,b) · δI) = b− a for a < b ∈ Γλ.

By the previous discussion we can assume that a = 0 so that b > 0. Given ε > 0 we choose positive
integers m,n such that

1
m
≤ ε and

n− 1
m
≤ b < n

m
,

so that (n− 1) ≤ bm < n and (n− 1), bm, n ∈ Γλ. Hence

(n− 1) = T̃ r(X[0,(n−1)) · δI) ≤ T̃ r(X[0,bm) · δI) ≤ T̃ r(X[0,n) · δI) = n.

But,
X[0,bm) · δI = X[0,b) · δI + X[b,2b) · δI + · · ·+ X[(m−1)b,bm) · δI

and these projections are mutually equivalent in Aλ0 . That is,

(n− 1) ≤ mT̃r(X[0,b) · δI) ≤ n so that
n− 1
m
≤ T̃ r(X[0,b) · δI) ≤

n

m
.

Hence, |T̃ r(X[0,b) · δI) − b| < 1
m ≤ ε. That is, b = T̃ r(X[0,b) · δI) = φ(X[0,b) · δI) and φ agrees with the

given trace τ on F λ and therefore φ agrees with ψ on Qλ. ¤

Remarks. The above proof shows that the algebra F λ has a unique (faithful) tracial state τ, and
that Aλ0 has a unique (faithful) lower semicontinuous, densely defined trace normalized so that it has
value 1 at e = X[0,1) · δI .

2.7. The von Neumann algebra π(Aλ)−wo acting on L2(Aλ, ψ̄) is a type IIIλ factor. To prove
this we will show that it is unitarily equivalent to a version of the Murray-von Neumann “group-
measure space” construction of type III factors on l2(Gλ)⊗L2(R) : see [D, Chapter 1, Section 9]. We
conclude that it is a IIIλ factor by an appeal to Connes’ thesis [C1]. In order to be consistent with
our use of right C∗-modules later, we will do our GNS constructions so that our inner products are
linear in the second variable.

Proposition 2.31. The ∗-algebra Aλc is a Tomita algebra with the inner product:

〈y|x〉ψ̄ = ψ̄(y∗x) =
∑

h∈Gλ

|h|−1〈xh|yh〉L2(R).

Here we denote xh in place of x(h) to simplify notation. In this setting we have for x ∈ Aλc :
(1) Sharp: S(x)h = αh(xh−1);
(2) Flat: F (x)h = |h|αh(xh−1);
(3) Delta: ∆(x)h = |h|xh.
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Proof. We refer to [Ta] for Takesaki’s version of the axioms for a Tomita algebra. Since Sharp is defined
to be the adjoint operation on the algebra, item (1) is immediate. A straightforward calculation shows
that for all x, y ∈ Aλc we have that the defining equation for Flat holds, namely:〈S(y)|x〉ψ̄ = 〈F (x)|y〉ψ̄
so that item (2) holds. By definition, ∆ = FS and so a simple calculation shows that ∆(x)h = |h|xh
and (3) holds. From this formula for ∆ we see that for each z ∈ C we have ∆z(x)h = |h|zxh and a
straightforward calculation shows that ∆z(x · y) = (∆z(x)) · (∆z(y)) so that each ∆z is an algebra
homomorphism of Aλc as required. That each left multiplication π(x) is bounded when x is supported
on a single group element is straightforward and the generalization to finitely supported elements is
then trivial. The fact that it is a ∗-representation holds as it does for the GNS representation for any
weight.

In order to see that products are dense we recall that we have local units. That is, for each positive
integer N we have defined EN = X[−N,N) · δ1, and have noted that for each y ∈ Aλc that satisfies
supp(yh) ⊆ [−N,N) for all h, we have EN · y = y. Axioms IV, V, VI in [Ta] are simple calculations
involving the definitions of S, F , and ∆ which we leave to the reader.

Since our inner products are linear in the second variable, we modify Tomita’s Axiom VIII to
read: z 7→ 〈x|∆x(y)〉ψ̄ is analytic on C for all x, y ∈ Aλc . We easily calculate that 〈x|∆z(y)〉ψ̄ =∑

h |h|z−1〈yh|xh〉L2(R). This function is analytic since the sum is finite. ¤

Lemma 2.32. The representation of Aλc on L2(Aλc , ψ̄) decomposes as the integrated form of a covariant
pair of representations:

(1) π̃ : Cλ00(R)→ B(L2(Aλc , ψ̄)), where : (π̃(f)(y))h = f · yh for f ∈ Cλ00(R) and y ∈ Aλc ;
(2) U : Gλ → U(L2(Aλc , ψ̄)) where : (Ug(y))h = αg(yg−1h) for g ∈ Gλ and y ∈ Aλc .

Proof. It is straightforward to verify that U is a unitary representation of Gλ and that π̃ is a ∗-
representation of Cλ00(R). To see the covariance condition:

(Ugπ̃(f)Ug−1(y))h = · · · = αg(f · αg−1(ygg−1)) = αg(f) · yh = (π̃(αg(f))y)h.

That is, Ugπ̃(f)Ug−1 = π̃(αg(f)).

Now, by Proposition 7.6.4 of [Ped] the integrated form of this covariant pair is the representation:

(π̃ × U)(y) =
∑

h

π̃(yh)Uh for y ∈ Aλc .

Now, we evaluate this operator on the vector x ∈ Aλc :

[((π̃ × U)(y))(x)]k =
∑

h

[π̃(yh)Uh(x)]k =
∑

h

yhαh(xh−1k) = (y · x)(k) = (π(y)(x))k.

That is, (π̃ × U)(y) = π(y) the operator left multiplication by y. ¤

2.7.1. A representation of Aλ on l2(Gλ) ⊗ L2(R). We define a covariant pair of representations of
Cλ0 (R) and Gλ on l2(Gλ)⊗ L2(R) as follows:

(1) for f ∈ Cλ0 (R) let π(f) = 1⊗Mf , and (2) for g ∈ Gλ let Ug = Λ(g)⊗ Vg
where Λ is the left regular representation of Gλ on l2(Gλ) :

(Λ(g)ξ)(h) = ξ(g−1h) for ξ ∈ l2(Gλ);
and V is the unitary action of Gλ on L2(R) induced by the action of Gλ on R :

(Vg(f))(t) = |g|−1/2f(g−1t); for f ∈ L2(R).
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Using these equations one easily checks the covariance condition for g ∈ Gλ and f ∈ Cλ0 (R) :

Ugπ(f)U∗g = π(αg(f)).

Clearly the representation π extends uniquely by weak-operator continuity to the usual representation
1⊗M of L∞(R) on l2(Gλ)⊗ L2(R) and is covariant with the unitary representation U of Gλ for the
action α of Gλ on L∞(R). Clearly, the von Neumann algebra on l2(Gλ) ⊗ L2(R) generated by the
unitaries Ug and the operators 1⊗Mf for g ∈ Gλ and f ∈ Cλ00(R), is the same as the von Neumann
algebra generated by the unitaries Ug and the operators 1 ⊗Mf for g ∈ Gλ and f ∈ L∞(R). The
second item of the following Proposition is clear.

Proposition 2.33. (1) The representation π = (π̃×U) of Aλ on L2(Aλc , ψ̄) is unitarily equivalent to
the representation (π × U) of Aλ on l2(Gλ)⊗ L2(R).
(2) (π × U)(Aλ)′′ is the von Neumann crossed product (in the sense of the group-measure space con-
struction of Chapter 1 Section 9 of [D]) Gλ oα L∞(R).
(3) This von Neumann algebra is a type III factor.

Proof. To see item (3) we use the proof of [D, Theorem 2, Section 9, Chapter 1] where instead of the
ax+ b group G with a, b ∈ Q and a > 0 and its subgroup G0 (with a = 1), we use Gλ and its subgroup
G0
λ (with |g| = 1), to conclude that our von Neumann algebra is a type III factor.

To see item (1), we first define a unitary W : L2(Aλc , ψ̄)→ l2(Gλ)⊗ L2(R) as follows:

W

(
m∑

i=1

fi · δhi

)
=

m∑

i=1

|hi|−1/2δhi ⊗ fi.

On the left side of this equation we are using the formalism f · δh for singly supported elements in Aλc
with f ∈ Cλ00(R) and h ∈ Gλ. On the right of this equation we are using δh to denote the canonical
orthonormal basis elements in l2(Gλ) and regarding f ∈ Cλ00(R) ⊂ L2(R). Clearly, W is well-defined
and linear with dense range. One easily checks that: for all x, y ∈ Aλc we have

〈y|x〉ψ̄ = 〈W (x)|W (y)〉l2⊗L2

recalling that the inner product on Aλc is linear in the second coordinate. Thus W is a unitary and its
inverse (adjoint) defined at first on the elements in l2(Gλ)⊗L2(R) of the form

∑m
i=1 δhi ⊗ fi with the

fi ∈ Cλ00(R), is given by:

W ∗
(

m∑

i=1

δhi ⊗ fi
)

=
m∑

i=1

|hi|1/2fi · δhi .

One then verifies the following two equations for f ∈ Cλ00(R) and g ∈ Gλ :

(1) Wπ̃(f)W ∗ = 1⊗Mf = π(f) and (2) WUgW
∗ = Λ(g)⊗ Vg = Ug.

The second equation is more subtle and requires the observation: Ug(f · δh) = |g|1/2Vg(f) · δgh.
This completes the proof of the proposition. ¤

2.7.2. The factor π(Aλ)′′ acting on L2(Aλc , ψ̄) is type IIIλ. We work in the unitarily equivalent setting
of (π×U)(Aλ)′′ acting on l2(Gλ)⊗L2(R) afforded by Proposition 2.33. Recall that the subgroup of Gλ
of matrices of the form [λn : 0] is isomorphic to Z and acts on the normal subgroup G0

λ by conjugacy,
and so Gλ = Z oG0

λ is a semidirect product and we can write a canonical right coset decomposition
of Gλ :

Gλ =
⋃

n∈Z
G0
λ · [λn : 0].
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This gives us an internal orthogonal decomposition of l2(Gλ) :

l2(Gλ) =
∑

n∈Z
⊕ l2 (

G0
λ · [λn : 0]

) ∼= l2(Z)⊗ l2(G0
λ).

Here the latter isomorphism is given explicitly on basis elements by the map which takes the δ-function
at g · [λn : 0] to δn ⊗ δg for n ∈ Z and g ∈ G0

λ.

One checks that the restriction of the representation (π×U) of Aλ = GλoCλ0 (R) to Aλ0 := G0
λoCλ0 (R)

on l2(Gλ)⊗L2(R) is unitarily equivalent to the representation on l2(Z)⊗l2(G0
λ)⊗L2(R) via the covariant

pair:
1Z ⊗ Λ(h)⊗ Vh = 1Z ⊗ Uh for h ∈ G0

λ and

1Z ⊗ 1⊗Mf = 1Z ⊗ π(f) for f ∈ Cλ0 (R).

Therefore, the von Neumann subalgebra of (π × U)(Aλ)′′ generated by (π × U)(Aλ0) is isomorphic to
the von Neumann algebra on l2(G0

λ) ⊗ L2(R) generated by the operators Λ(h) ⊗ Vh for h ∈ G0
λ and

1⊗Mf for f ∈ Cλ0 (R). This is clearly the same as the von Neumann algebra generated by the operators
Λ(h) ⊗ Vh for h ∈ G0

λ and 1 ⊗Mf for f ∈ L∞(R), and this von Neumann algebra is a factor of type
II∞ by the methods of [D, Chapter 1, Section 9]. Thus, (π × U)(Aλ0)′′ is a type II∞ subfactor of the
type III factor, (π×U)(Aλ)′′. Moreover, the faithful normal semifinite trace on (π×U)(Aλ0)′′ is given
by the restriction of ψ̄.

Finally, conjugation by the unitary, Ug for g = [λ : 0], which lies in our type III factor, defines an
automorphism β of the type II∞ subfactor which scales the trace by λ. If N0 is our type II∞ factor
acting on l2(G0

λ)⊗L2(R) then our type III factor, say Aλ acting on l2(Z)⊗ l2(G0
λ)⊗L2(R) is unitarily

equivalent to the von Neumann crossed product Aλ ∼= Zoβ N0 and hence is a type IIIλ factor by [C1,
Theorem 4.4.1]. We have proved the following Proposition.

Proposition 2.34. The von Neumann algebra π(Aλ)′′ acting on L2(Aλc , ψ̄) is a type IIIλ factor.
Moreover, it is unitarily equivalent to (π × U)(Aλ)′′ acting on l2(Gλ) ⊗ L2(R). The von Neumann
subalgebra of (π ×U)(Aλ)′′ generated by (π ×U)(Aλ0) is a type II∞ factor. The space l2(Gλ)⊗L2(R)
factors as l2(Z)⊗l2(G0

λ)⊗L2(R) and with this factorization, our II∞ factor has the form N0 = 1Z⊗Ñ0

where Ñ0 acts on l2(G0
λ)⊗L2(R). Thus, our type IIIλ factor is unitarily equivalent to the von Neumann

crossed product Zoβ N0 where the automorphism β of N0 is given by β = Ad(Ug) where g = [λ : 0].

2.8. The von Neumann algebra, π0(Qλ)−wo acting on L2(Qλ, ψ) is of type IIIλ.

Theorem 2.35. The von Neumann algebra, π0(Qλ)−wo acting on L2(Qλ, ψ) is of type IIIλ. Moreover,
the von Neumann subalgebra, π0(F λ)−wo is a type II1 factor with unique faithful normal state given
by the restriction of the vector state, ψ which is the same as τ on F λ. By the general theory of type
III factors, π0(Qλ)−wo is isomorphic to π(Aλ)−wo acting on L2(Aλc , ψ̄).

Proof. Recall that Qλ = eAλe where e = X[0,1) · δ1 ∈ Aλ. Then

π(e)(π(Aλ)−wo)π(e) = (π(e)π(Aλ)π(e))−wo = π(Qλ)−wo
and the cut-down of the type III factor π(Aλ)−wo (on its separable Hilbert space) by the nonzero
projection π(e) is isomorphic to π(Aλ)−wo since π(e) is Murray-von Neumann equivalent to the
identity operator. Of course the cut-down mapping by π(e) is not an isomorphism. Moreover,
by left Hilbert algebra theory, the operator right multiplication by e which is denoted by π′(e)
is in the commutant of π(Aλ)−wo acting on L2(Qλ, ψ̄) and since we are in a factor the mapping
π(Aλ)−wo → π′(e)π(Aλ)−wo is an isomorphism by [D, Chapter 1, Section 2, Prop. 2]. Restricting
this isomorphism to π(Qλ)−wo gives us an isomorphism π(Qλ)−wo → π′(e)π(Qλ)−wo which acts on the
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Hilbert space π′(e)π(e)(L2(Aλ, ψ̄)), which has as a dense subspace π′(e)π(e)(Aλc ) = eAλc e ⊂ eAλe = Qλ
with the inner product given by ψ̄ which is the same as the inner product on eAλc e given by the state
ψ. The completion of this space is, of course, L2(Qλ, ψ) with the action of Qλ being the GNS represen-
tation afforded by the state ψ. We denote this representation of Qλ on L2(Qλ, ψ) by π0 to distinguish
it from the representation π of Aλ on the larger space, L2(Aλc , ψ̄).

Similar considerations applied to the type II∞ subfactor, π(Aλ0)−wo ⊂ π(Aλ)−wo on L2(Aλc , ψ̄), show
that:

π(e)(π(Aλ0)−wo)π(e) = (π(e)π(Aλ0)π(e))−wo = π(F λ)−wo.
Now the projection π(e) is actually in the type II∞ subfactor π(Aλ0)−wo of π(Aλ)−wo and has finite (ψ)
trace = 1 there. Therefore, π(F λ)−wo is a type II1 factor on L2(Qλ, ψ) with trace given by the vector
state ψ. We remark that this is clearly a larger space than the subspace, L2(F λ, τ) ⊂ L2(Qλ, ψ). ¤
Proposition 2.36. The ∗-algebra Qλc is a Tomita algebra with the inner product: 〈y|x〉ψ = ψ(y∗x).
Again we denote xh in place of x(h) to simplify notation. In this setting we have for x ∈ Qλc :
(1) Sharp: S(x)h = αh(xh−1);
(2) Flat: F (x)h = |h|αh(xh−1);
(3) Delta: ∆(x)h = |h|xh.

Proof. This is really a corollary of Proposition 2.7, as Qλc is just a Tomita-subalgebra of Aλc . ¤

3. The modular spectral triple of the algebra Qλ

Having introduced the main features of the algebras Qλ, we now turn briefly to the modular index
theory of [CNNR, CPR2, CRT]. We begin with some semifinite preliminaries.

3.1. Semifinite noncommutative geometry. We need to explain some semifinite versions of stan-
dard definitions and results following [CPRS2]. Let φ be a fixed faithful, normal, semifinite trace on
a von Neumann algebra N . Let KN be the φ-compact operators in N (that is the norm closed ideal
generated by the projections E ∈ N with φ(E) <∞).

Definition 3.1. A semifinite spectral triple (A,H,D) is given by a Hilbert space H, a ∗-algebra
A ⊂ N where N is a semifinite von Neumann algebra acting on H, and a densely defined unbounded
self-adjoint operator D affiliated to N such that [D, a] is densely defined and extends to a bounded
operator in N for all a ∈ A and (λ−D)−1 ∈ KN for all λ 6∈ R. The triple is said to be even if there
is Γ ∈ N such that Γ∗ = Γ, Γ2 = 1, aΓ = Γa for all a ∈ A and DΓ + ΓD = 0. Otherwise it is odd.

Note that if T ∈ N and [D, T ] is bounded, then [D, T ] ∈ N .

We recall from [FK] that if S ∈ N , the t-th generalized singular value of S for each real t > 0 is
given by

µt(S) = inf{‖SE‖ : E is a projection in N with φ(1− E) ≤ t}.
The ideal L1(N , φ) consists of those operators T ∈ N such that ‖T‖1 := φ(|T |) < ∞ where |T | =√
T ∗T . In the Type I setting this is the usual trace class ideal. We will denote the norm on L1(N , φ)

by ‖ · ‖1. An alternative definition in terms of singular values is that T ∈ L1(N , φ) if ‖T‖1 :=∫∞
0 µt(T )dt <∞. When N 6= B(H), L1(N , φ) need not be complete in this norm but it is complete in

the norm ‖ · ‖1 + ‖ · ‖∞. (where ‖ · ‖∞ is the uniform norm). We use the notation

L(1,∞)(N , φ) =
{
T ∈ N : ‖T‖

L(1,∞)
:= sup

t>0

1
log(1 + t)

∫ t

0
µs(T )ds <∞

}
.
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The reader should note that L(1,∞)(N , φ) is often taken to mean an ideal in the algebra Ñ of φ-
measurable operators affiliated to N . Our notation is however consistent with that of [?] in the special
case N = B(H). With this convention the ideal of φ-compact operators, K(N ), consists of those
T ∈ N (as opposed to Ñ ) such that µ∞(T ) := limt→∞ µt(T ) = 0.

Definition 3.2. A semifinite spectral triple (A,H,D) relative to (N , φ) with A unital is (1,∞)-
summable if (D − λ)−1 ∈ L(1,∞)(N , φ) for all λ ∈ C \ R.

It follows that if (A,H,D) is (1,∞)-summable then it is n-summable (with respect to the trace φ) for
all n > 1. We next need to briefly discuss Dixmier traces. For more information on semifinite Dixmier
traces, see [CPS2, CRSS]. For T ∈ L(1,∞)(N , φ), T ≥ 0, the function

FT : t→ 1
log(1 + t)

∫ t

0
µs(T )ds

is bounded. There are certain ω ∈ L∞(R+∗ )∗, [CPS2, ?], which define (Dixmier) traces on L(1,∞)(N , φ)
by setting

φω(T ) = ω(FT ), T ≥ 0

and extending to all of L(1,∞)(N , φ) by linearity. For each such ω we write φω for the associated
Dixmier trace. Each Dixmier trace φω vanishes on the ideal of trace class operators. Whenever the
function FT has a limit at infinity, all Dixmier traces return that limit as their value. This leads to
the notion of a measurable operator [?, LSS], that is, one on which all Dixmier traces take the same
value.

3.2. The Kasparov module and modular spectral triple. We have seen that the algebras Qλ
do not possess a faithful gauge invariant trace but that there is a KMSβ where β = − log(λ) for the
gauge action, γ, namely ψ := τ ◦ Φ : Qλ → C, where Φ : Qλ → F λ is the expectation and τ : F λ → C
is a faithful normalised trace. In fact, ψ is the only KMS state for the gauge action (for any β),
by Proposition 2.30. We show below that the generator of the gauge action D acting on a suitable
C∗-F λ-module X gives us a Kasparov module (X,D) whose class lies in KK1,T(Qλ, F λ). In some
examples, including the case λ ∈ Q, we have K1(Qλ) = {0} and so pairing with ordinary K1 would be
fruitless. However, following [CPR2, CNNR] we may compute a numerical pairing using a ‘modular
spectral triple’ constructed from the Kasparov module.

We now review this construction adapted to the present situation. Let H = L2(Qλ) be the GNS
Hilbert space given by the faithful state ψ with the inner product on Qλ defined by 〈a, b〉 = ψ(a∗b) =
(τ ◦ Φ)(a∗b). Then D is a self-adjoint unbounded operator on H, [CPR2]. The representation of Qλ
on H by left multiplication (which we now denote by π in place of π0) is bounded and nondegenerate:
the left action of an element a ∈ Qλ by π(a) satisfies π(a)b = ab for all b ∈ Qλ. This distinction
between elements of Qλ as vectors in L2(Qλ) and operators on L2(Qλ) is sometimes crucial. The
dense subalgebra Qλc := eAλc e which is the finite span of elements in Qλ of the form X[a,b) · δg is in the
smooth domain of the derivation δ = ad(|D|). We remind the reader that the KMS condition on the
modular automorphism group of the state ψ, [Ta], (for t = i) is: ψ(xy) = ψ(σi(π(y))x) = ψ(σ(y)x)
for x, y ∈ π(Qλ), where σ(y) = ∆−1(y).

Lemma 3.3. The group of modular automorphisms of the von Neumann algebra π(Qλ)′′ is given on
the generators by

(2) σt(π(f · δg)) := ∆itπ(f · δg)∆−it = π(∆it(f · δg)) = |g|itπ(f · δg) = det(g)itπ(f · δg).

Proof. This is immediate from Lemma 2.8 if we note that |g| = det(g). ¤
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Corollary 3.4. With Qλ acting on H := L2(Qλ) and with D the generator of the natural unitary
implementation of the gauge action of T1 on Qλ, we have ∆ = λD or eitD = ∆it/ log λ.

To simplify notation, we let A = Qλ and F = F λ = Aγ , the fixed point algebra for the T1 gauge
action, γ. For convenience we will suppress the notations D ⊗ 1k and so on. The algebras Ac, Fc are
defined as the finite linear span of the generators. Right multiplication makes A into a right F -module,
and similarly Ac is a right module over Fc. We define an F -valued inner product (·|·)R on both these
modules by (a|b)R := Φ(a∗b).

Definition 3.5. Let X be the right F C∗-module obtained by completing A (or Ac) in the norm

‖x‖2X := ‖(x|x)R‖F = ‖Φ(x∗x)‖F .

The algebra A acting by left multiplication onX provides a representation of A as adjointable operators
on X. Let Xc be the copy of Ac ⊂ X. The T1 action on Xc is unitary and extends to X, [CNNR, PR].
For all k ∈ Z, the projection operator onto the k-th spectral subspace of the T1 action is also denoted
(somewhat carelessly) Φk on X:

Φk(x) =
1
2π

∫

T1

z−kuz(x)dθ, z = eiθ, x ∈ X.

Observe that Φ0 restricts to Φ on A and on generators of Qλ we have

(3) Φk(f · δg) =
{
f · δg if |g| = λk

0 otherwise

Of course L2(Qλ) and X have a common dense subspace Qλc on which these projections are identical.
Let Ak = Φk(A) and observe from (3) that A∗kAk = F = AkA

∗
k so that the gauge action γ on Qλ has

full spectral subspaces.

We quote the following result from [PR], the proof in our case is the same.

Lemma 3.6. The operators Φk are adjointable endomorphisms of the F -module X such that Φ∗k =
Φk = Φ2

k and ΦkΦl = δk,lΦk. If K ⊂ Z then the sum
∑

k∈K Φk converges strictly to a projection in the
endomorphism algebra. The sum

∑
k∈ZΦk converges to the identity operator on X. For all x ∈ X,

the sum x =
∑

k∈ZΦkx =
∑

k∈Z xk converges in X.

The unbounded operator of the next proposition is of course the generator of the T1 action on X. We
refer to Lance’s book, [L, Chapters 9,10], for information on unbounded operators on C∗-modules.

Proposition 3.7. [PR] Let X be the right C∗-F -module of Definition 3.5. Define D : XD ⊂ X to be
the linear space

XD = {x =
∑

k∈Z
xk ∈ X : ‖

∑

k∈Z
k2(xk|xk)R‖ <∞}.

For x ∈ XD define D(x) =
∑

k∈Z kxk. Then D : XD → X is a is self-adjoint, regular operator on X.

This should be compared to the following Hilbert space version.

Proposition 3.8. The generator D of the one-parameter unitary group {uz | z ∈ T1} on L2(Qλ, ψ)
has eigenspaces given by the ranges of the Φk and D(x) = kx iff Φk(x) = x. In particular

dom(D) = {x =
∑

k

xk | Φk(xk) = xk and
∑

k

k2‖xk‖2 <∞},

and D(
∑

k xk) =
∑

k kxk.



27

Remark. On generators in Qλ regarded as elements of either X or L2(Qλ, ψ) we have D(f · δg) =
(logλ(|g|))f · δg.
To continue, we recall the underlying right C∗-F λ-module, X, which is the completion of Qλ for the
norm ‖x‖2X = ‖Φ(x∗x)‖Fλ . Introduce the rank one operators on X : ΘR

x,y by ΘR
x,yz = x(y|z)R. Then

using the operators Sk,m defined above, we obtain formulas for the projections Φk similar to those of
[PR, Lemma 4.7] with some important differences. First recall [CPR2, Lemma 3.5].

Lemma 3.9. Any F λ-linear endomorphism T of the module X which preserves the copy of Qλ inside
X, extends uniquely to a bounded operator on the Hilbert space H = L2(Qλ).

In particular, the finite rank endomorphisms of the pre-C∗ module Qλc (acting on the left) satisfy this
condition, and we denote the algebra of all these endomorphisms by End00

F (Qλc ).
Lemma 3.10. Compare [PR, Lemma 4.7]. The following formulas hold in both L(X) and in B(H).
(1) For k ≥ 0, we have

Φ0 = ΘR
e,e while for k > 0, Φk =

mk∑

m=0

ΘR
Sk,m,Sk,m

.

(2) For −k < 0, we have

Φ−k = ΘR
S∗k,m,S

∗
k,m

for any m = 0, 1, ...,mk − 1 and also for mk if λ−k = mk + 1.

Proof. Since both Φk and the finite rank endomorphisms satisfy the hypotheses of the previous lemma,
the first statement of this lemma will follow from calculations done on generators. The following
calculations are based on the formulas in Lemma 2.15.
(1) Let k > 0 and let x =

∑
l xl be a finite sum of generators, xl satisfying Φl(xl) = xl. Then

mk∑

m=0

ΘR
Sk,m,Sk,m

(x) =
∑

l

mk∑

m=0

ΘR
Sk,m,Sk,m

(xl) =
∑

l

mk∑

m=0

Sk,mΦ(S∗k,mxl) =
mk∑

m=0

Sk,mΦ(S∗k,mxk)

=
mk∑

m=0

Sk,mS
∗
k,mxk = exk = xk = Φk(x).

For k = 0 this is a similar but far easier calculation.
(2) Let −k < 0 and let x =

∑
l xl be a finite sum of generators as above. Then, for 0 ≤ m < mk

ΘR
S∗k,m,S

∗
k,m

(x) =
∑

l

ΘR
S∗k,m,S

∗
k,m

(xl) =
∑

l

S∗k,mΦ(Sk,mxl) = S∗k,mΦ(Sk,mx−k)

= S∗k,mSk,mx−k = ex−k = x−k = Φ−k(x).

¤

We recall the following result discussed in Section 3 of [CNNR] (a ‘bare hands’ proof can be given by
the method in [CPR2]).

Proposition 3.11. Let N be the von Neumann algebra N = (End00
F (Qλc ))′′, where we take the commu-

tant inside B(H). Then N is semifinite, and there exists a faithful, semifinite, normal trace τ̃ : N → C
such that for all rank one endomorphisms ΘR

x,y of Qλc ,
τ̃(ΘR

x,y) = (τ ◦ Φ)(y∗x), x, y ∈ Qλc .
In addition, D is affiliated to N and π(Qλ) is a subalgebra of N .
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The fact that τ̃(Φk) = λ−k implies that with respect to the trace τ̃ we can not expect D to satisfy a
finite summability criterion. We solve this problem exactly as in [CPR2].

Definition 3.12. We define a new weight on N+: let T ∈ N+ then τ∆(T ) := supN τ̃(∆NT ) where
∆N = ∆(

∑
|k|≤N Φk).

Remarks. Since ∆N is τ̃ -trace-class, we see that T 7→ τ̃(∆NT ) is a normal positive linear functional
on N and hence τ∆ is a normal weight on N+ which is easily seen to be faithful and semifinite.

As in [CPR2], we now give another way to define τ∆ which is not only conceptually useful but also
makes a number of important properties straightforward to verify. Many proofs require only trivial
notation changes and the substitution of n± with λ∓.

Notation. LetM be the relative commutant in N of the operator ∆. Equivalently,M is the relative
commutant of the set of spectral projections {Φk|k ∈ Z} of D. Clearly,M =

∑
k∈Z ΦkNΦk.

Definition 3.13. As τ̃ restricted to each ΦkNΦk is a faithful finite trace with τ̃(Φk) = λ−k we define
τ̂k on ΦkNΦk to be λk times the restriction of τ̃ . Then, τ̂ :=

∑
k τ̂k onM =

∑
k∈ZΦkNΦk is a faithful

normal semifinite trace τ̂ with τ̂(Φk) = 1 for all k.

We use τ̂ to give an alternative expression for τ∆ below

Lemma 3.14. An element m ∈ N is in M if and only if it is in the fixed point algebra of the action,
στ∆t on N defined for T ∈ N by στ∆t (T ) = ∆itT∆−it. Both π(F λ) and the projections Φk belong to
M. The map Ψ : N → M defined by Ψ(T ) =

∑
k ΦkTΦk is a conditional expectation onto M and

τ∆(T ) = τ̂(Ψ(T )) for all T ∈ N+. That is, τ∆ = τ̂ ◦Ψ so that τ̂(T ) = τ∆(T ) for all T ∈M+. Finally,
if one of A,B ∈M is τ̂ -trace-class and T ∈ N then τ∆(ATB) = τ∆(AΨ(T )B) = τ̂(AΨ(T )B).

Proof. The proof is the same as the proof of [CPR2, Lemma 3.9] with λk in place of n−k. ¤
Lemma 3.15. The modular automorphism group στ∆t of τ∆ is inner and given by στ∆t (T ) = ∆itT∆−it.
The weight τ∆ is a KMS weight for the group στ∆t , and στ∆t |Qλ = στ◦Φt .

Proof. This follows from: [KR, Thm 9.2.38], which gives us the KMS properties of τ∆: the modular
group is inner since ∆ is affiliated to N . The final statement about the restriction of the modular
group to Qλ is clear. ¤

We now have the key lemma:

Lemma 3.16. Suppose g is a function on R such that g(D) is τ∆ trace-class inM, then for all f ∈ F λ
we have

τ∆(π(f)g(D)) = τ∆(g(D))τ(f) = τ(f)
∑

k∈Z
g(k).

Proof. First note that τ∆(g(D)) = τ̂(
∑

k∈Z g(k)Φk) =
∑

k∈Z g(k)τ̂(Φk) =
∑

k∈Z g(k). We first do the
computation for f ∈ F λc so that all the sums are finite. Now,

τ∆(π(f)g(D)) = τ̂(π(f)
∑

k∈Z
g(k)Φk) =

∑

k∈Z
g(k)τ̂(π(f)Φk)

=
∑

k∈Z
g(k)τ̂k(π(f)Φk) =

∑

k∈Z
g(k)λkτ̃(π(f)Φk).

So it suffices to see for each k ∈ Z, we have τ̃(π(f)Φk) = λ−kτ(f).
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Now, by Theorem 2.35 π(F λ)′′ is a type II1 factor on H whose unique trace say Tr (with norm
one) extends the trace τ on F λ in the sense that Tr(π(f)) = τ(f). Since the projection Φk is in the
commutant of the factor π(F λ)′′ the map

T ∈ π(F λ)′′ 7→ TΦk = ΦkTΦk

is a normal isomorphism by [D, Chapter 1, section 2, Prop. 2] and so it has a unique normalised trace
also given by Trace(TΦk) = Tr(T ). But τ̃(TΦk) is a trace on Φkπ(F λ)′′Φk = π(F λ)′′Φk and so must
be τ̃(Φk) = λ−k times the unique norm one trace. That is, we get the required formula:

τ̃(π(f)Φk) = λ−kTrace(π(f)Φk) = λ−kTr(π(f)) = λ−kτ(f).

So for f ∈ F λc , we have the formula:

τ∆(π(f)g(D)) = τ∆(g(D))τ(f) =
∑

k∈Z
g(k)τ(f).

Now, the right hand side is a norm-continuous function of f . To see that the left side is norm-continuous
we do it in more generality. Let T ∈ N , then since τ̂ is a trace onM we get:

|τ∆(Tg(D))| = |τ̂(Ψ(Tg(D))| = |τ̂(Ψ(T )g(D))| ≤ ‖Ψ(T )‖τ̂(|g(D)|) ≤ ‖T‖τ̂((|g(D)|) = ‖T‖τ∆(|g(D)|).
That is the left hand side is norm-continuous in T and so we have the formula:

τ∆(π(f)g(D)) = τ∆(g(D))τ(f) =
∑

k∈Z
g(k)τ(f)

for all f ∈ F λ. ¤
Proposition 3.17. (i) We have (1 + D2)−1/2 ∈ L(1,∞)(M, τ∆). That is, τ∆((1 + D2)−s/2) < ∞ for
all s > 1. Moreover, for all f ∈ F λ

lim
s→1+

(s− 1)τ∆(π(f)(1 +D2)−s/2) = 2τ(f)

so that π(f)(1 +D2)−1/2 is a measurable operator in the sense of [?].

(ii) For π(a) ∈ π(Qλ) ⊂ N the following (ordinary) limit exists and

τ̂ω(π(a)) =
1
2

lim
s→1+

(s− 1)τ∆(π(a)(1 +D2)−s/2) = τ ◦ Φ(a),

the original KMS state ψ = τ ◦ Φ on Qλ.

Proof. (i) This proof is identical to [CPR2, Proposition 3.12].
(ii) This proof is the same as [CPR2, Proposition 3.14] with Qλ, F λ replacing On, F. ¤
Definition 3.18. The triple (A,H,D) along with γ, ψ, N , τ∆ satisfying properties (0) to (3) below
is called the modular spectral triple of the dynamical system (Qλ, γ, ψ)
0) The ∗-subalgebra A = Qλc of the algebra Qλ is faithfully represented in N with the latter acting on
the Hilbert space H = L2(Qλ, ψ),
1) there is a faithful normal semifinite weight τ∆ on N such that the modular automorphism group of
τ∆ is an inner automorphism group σt (for t ∈ C) of (the Tomita algebra of) N with σi|A = σ in the
sense that σi(π(a)) = π(σ(a)), where σ is the automorphism σ(a) = ∆−1(a) on A,
2) τ∆ restricts to a faithful semifinite trace τ̂ onM = N σ, with a faithful normal projection Ψ : N →
M satisfying τ∆ = τ̂ ◦Ψ on N ,
3) with D the generator of the one parameter group implementing the gauge action of T on H we
have: [D, π(a)] extends to a bounded operator (in N ) for all a ∈ A and for λ in the resolvent set of
D, (λ−D)−1 ∈ K(M, τ∆), where K(M, τ∆) is the ideal of compact operators in M relative to τ∆. In
particular, D is affiliated to M.
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For matrix algebras A = Qλc ⊗Mk over Qλc , (Qλc ⊗Mk,H ⊗Mk,D ⊗ Idk) is also a modular spectral
triple in the obvious fashion.

We need some technical lemmas for the discussion in the next Section. A function f from a complex
domain Ω into a Banach space X is called holomorphic if it is complex differentiable in norm on Ω.
The following is proved in [CPR2, Lemma 3.15].

Lemma 3.19. (1) Let B be a C∗-algebra and let T ∈ B+. The mapping z 7→ T z is holomorphic (in
operator norm) in the half-plane Re(z) > 0.
(2) Let B be a von Neumann algebra with faithful normal semifinite trace φ and let T ∈ B+ be in
L(1,∞)(B, φ). Then, the mapping z 7→ T z is holomorphic (in trace norm) in the half-plane Re(z) > 1.
(3) Let B, and T be as in item (2) and let A ∈ B then the mapping z 7→ φ(AT z) is holomorphic for
Re(z) > 1.

Lemma 3.20. In these modular spectral triples (A,H,D) for matrices over the algebras Qλ we have
(1+D2)−s/2 ∈ L1(M, τ∆) for all s > 1 and for x ∈ N , τ∆(x(1+D2)−r/2) is holomorphic for Re(r) > 1
and we have for a ∈ Qλc , τ∆([D, π(a)](1 +D2)−r/2) = 0, for Re(r) > 1.

Proof. We include a brief proof since there are some small but important differences from [CPR2,
Lemma 3.16]. Since the eigenvalues for D are precisely the set of integers, and the projection Φk on
the eigenspace with eigenvalue k satisfies τ∆(Φk) = 1, it is clear that (1 +D2)−s/2 ∈ L1(M, τ∆). Now,
τ∆(x(1 + D2)−r/2) = τ̂(Ψ(x)(1 + D2)−r/2) is holomorphic for Re(r) > 1 by item (3) of the previous
lemma.

To see the last statement, we observe that τ∆([D, π(a)](1 +D2)−r/2) = τ∆(Ψ([D, π(a)])(1 +D2)−r/2),
so it suffices to see that Ψ([D, π(a)]) = 0 for a ∈ A = Qλc . To this end, let a = f · δg where det(g) = λn

is one of the linear generators of Qλc . Then by calculating the action of the operator Dπ(f · δg) on the
linear generators fi · δhi of the Hilbert space, H, we obtain:

Dπ(f · δg) = nπ(f · δg) + π(f · δg)D that is [D, π(f · δg)] = logλ(|g|)π(f · δg).
More generally,

[D, π(
m∑

i=1

cifi · δhi)] =
m∑

i=1

ci(logλ(|hi|))π(fi · δhi).

If we apply Ψ to this equation, we see that Ψ(π(fi · δhi)) = π(Φ(fi · δhi)) = 0 whenever logλ(|hi|) 6= 0,
and so the whole sum is 0. We also observe that [D, π(a)] ∈ π(Qλc ) for all a ∈ Qλc . This is not too
surprising since D is the generator of the action γ of T on Qλ. ¤

3.3. Modular K1. We now make appropriate modifications to [CPR2, Section 4]) using [CNNR]
introducing elements of these modular spectral triples (A,H,D) (where A is a matrix algebra over
Qλc ) that will have a well defined pairing with our Dixmier functional τ̂ω. Let A = Qλ. Following [HR]
we say that a unitary (invertible, projection,...) in the n× n matrices over Qλ for some n is a unitary
(invertible, projection,...) over Qλ. We write σt for the automorphism σt ⊗ Idn of A.

Definition 3.21. Let v be a partial isometry in the ∗-algebra A. We say that v satisfies the modular
condition with respect to σ if the operators vσt(v∗) and v∗σt(v) are in the fixed point algebra F ⊂ A
for all t ∈ R. Of course, any partial isometry in F is a modular partial isometry.

Lemma 3.22. ([CPR2, Lemma 4.8]) Let v ∈ A be a modular partial isometry. Then we have

uv =
(

1− v∗v v∗
v 1− vv∗

)

is a modular unitary over A. Moreover there is a modular homotopy uv ∼ uv∗.



31

Note that in [CPR2] we used a different approach which is implied by the one given here. In [CPR2]
we defined modular unitaries in terms of the regular automorphism:

π(σ(a)) = π(∆−1(a)) = ∆−1π(a)∆ = σi(π(a)).

That is we said that a unitary in A is modular if uσ(u∗) and u∗σ(u) are in the fixed point algebra.

Examples.
(1) For k, j > 0 recall Sk,m ∈ Qλc with m < mk (see Definition 2.14) we write Pk,m = Sk,mS

∗
k,m =

X[mλk,(m+1)λk) · δ1 which is in clearly F λ. Then for each {k,m}, {j, n} we have a unitary

u{k,m},{j,n} =
(

1− Pk,m Sk,mS
∗
j,n

Sj,nS
∗
k,m 1− Pj,n

)
.

It is simple to check that this a self-adjoint unitary satisfying the modular condition, and that
τ(Pk,m) = λk and τ(Pj,n) = λj . These examples behave very much like the SµS∗ν examples of [CPR2].

(2) For k, j > 0 consider the “leftover” partial isometries Sk,mk
and Sj,mj of Definition 3.13 which we

will denote by Sk and Sj to lighten the notation. We let vj,k = SjS
∗
k and calculate its range and initial

projections which are both in F λ:

Pj = SjS
∗
kSkS

∗
j = X[mjλj ,mjλj+λj(λ−k−mk)) · δ1, and

Pk = SkS
∗
jSjS

∗
k = X[mkλk,mkλk+λk(λ−j−mj)) · δ1.

We note for future reference that:

τ(Pj) = λj(λ−k −mk) and τ(Pk) = λk(λ−j −mj).

We also note that we have a modular unitary uj,k:

uj,k =
(

1− Pk SkS
∗
j

SjS
∗
k 1− Pj

)
.

Define the modular K1 group as follows.

Definition 3.23. Let K1(A, σ) be the abelian group with one generator [v] for each partial isometry
v over A satisfying the modular condition and with the following relations:

1) [v] = 0 if v is over F,
2) [v] + [w] = [v ⊕ w],
3) if vt, t ∈ [0, 1], is a continuous path of modular partial isometries in some matrix algebra over A

then [v0] = [v1].

One could use modular unitaries as in [CPR2] in place of these modular partial isometries.

The following can now be seen to hold.

Lemma 3.24. (Compare [CPR2, Lemma 4.9]) Let (A,H,D) be our modular spectral triple relative
to (N , τ∆) and set F = Aσ and σ : A → A. Let L∞(∆) = L∞(D) be the von Neumann algebra
generated by the spectral projections of ∆ then L∞(∆) ⊂ Z(M). Let v ∈ A be a partial isometry with
vv∗, v∗v ∈ F . Then π(v)Qπ(v∗) ∈M and π(v∗)Qπ(v) ∈M for all spectral projections Q of D, if and
only if v is modular. That is, π(v)∆π(v∗) and π(v∗)∆π(v) (or π(v)Dπ(v∗) and π(v∗)Dπ(v)) are both
affiliated to M if and only if v is modular.
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Thus we see that modular partial isometries conjugate ∆ to an operator affiliated toM, and so v∆v∗
commutes with ∆ (and vDv∗ commutes with D).

We will next show that there is an analytic pairing between (part of) modularK1 and modular spectral
triples. To do this, we are going to use the analytic formulae for spectral flow in [CP2].

3.4. The mapping cone algebra. Our aim in the remainder is to calculate an index pairing explicitly
for the matrix algebras A over the smooth subalgebra Qλc of Qλ. In the following few pages we will
sometimes abuse notation and write a in place of π(a) for a ∈ A in order to make our formulae more
readable. Whenever we do this, however, we will use σi(·) = ∆−1(·)∆ the spatial version of the algebra
homomorphism, σ. We will generally use the spatial version σi when in the presence of operators not
in π(A).

We briefly review some results from [CNNR], that provide an interpretation of the modular index
pairing given by the spectral flow.

If F ⊂ A is a sub-C∗-algebra of the C∗-algebra A, then the mapping cone algebra for the inclusion is

M(F,A) = {f : R+ = [0,∞)→ A : f is continuous and vanishes at infinity, f(0) ∈ F}.
When F is an ideal in A it is known that K0(M(F,A)) ∼= K0(A/F ), [Put1]. In general, K0(M(F,A))
is the set of homotopy classes of partial isometries v ∈ Mk(A) with range and source projections
vv∗, v∗v in Mk(F ), with operation the direct sum and inverse −[v] = [v∗]. All this is proved in [Put1].

It is shown in [CNNR] that there is a natural map that injectsK1(A, σ) into KT
0 (M,F ), the equivariant

K-theory of the mapping cone algebra. Note that the T action on A lifts in the obvious way to the
mapping cone. Now, it was shown in [CPR1] that certain Kasparov A,F -modules extend to Kasparov
M(F,A), F -modules, and this was extended to the equivariant case in [CNNR]. Importantly the theory
applies to the equivariant Kasparov module coming from a circle action. The extension is explicit,
namely there is a pair (X̂, D̂) which is a graded unbounded Kasparov module for the mapping cone
algebra M(F,A) constructed using a generalised APS construction, [APS3].

If v is a partial isometry in Mk(A), setting

ev(t) =

(
1− vv∗

1+t2
−iv t

1+t2

iv∗ t
1+t2

v∗v
1+t2

)
,

defines ev as a projection over M(F,A).

Then in [CNNR] we showed that if v ∈ A is a modular partial isometry we have

〈[ev]−
[(

1 0
0 0

)]
, [(X̂, D̂)]〉 = −Index(PvP : v∗vP (X)→ vv∗P (X)) ∈ K0(F )

= Index(Pv∗P : vv∗P (X)→ v∗vP (X)) ∈ KT
0 (F ).(4)

We thus obtain an index map K1(A, σ) → KT
0 (F ). The latter may be thought of as the ring of

Laurent polynomials K0(F )(χ, χ−1) where we think of χ, χ−1 as generating the representation ring of
T. We may obtain a real valued invariant from this map by evaluating χ at e−β where β is the inverse
temperature of our KMS state and applying the trace to the resultant element of K0(F ). Then one of
the main results of [CNNR] is that the real valued invariant so obtained is identical with the spectral
flow invariant of the next subsection. However the general theory of [CNNR] does not tell us the range
of this index map and it is the latter that is of interest for these explicit calculations.



33

3.5. A local index formula for the algebras Qλ. Using the fact that we have full spectral subspaces
we know from [CNNR] that there is a formula for spectral flow which is analogous to the local index
formula in noncommutative geometry. We remind the reader that τ∆ = τ̂ ◦ Ψ where Ψ : N → M is
the canonical expectation, so that τ∆ restricted toM is τ̂ .

Theorem 3.25. (Compare [CPR2, Theorem 5.5]) Let (A,H,D) be the (1,∞)-summable, modular
spectral triple for the algebra Qλ we have constructed previously. Then for any modular partial isometry
v and for any Dixmier trace τ̂ω̃ associated to τ̂ , we have spectral flow as an actual limit

sfbτ (vv∗D, vDv∗) =
1
2

lim
s→1+

(s−1)τ̂(v[D, v∗](1+D2)−s/2) =
1
2
τ̂ω̃(v[D, v∗](1+D2)−1/2) = τ ◦Φ(v[D, v∗]).

The functional on A⊗A defined by a0⊗a1 7→ 1
2 lims→1+(s−1)τ∆(a0[D, a1](1+D2)−s/2) is a σ-twisted

b,B-cocycle (see the proof below for the definition).

Remark. Spectral flow in this setting is independent of the path joining the endpoints of unbounded
self adjoint operators affiliated to M however it is not obvious that this is enough to show that it is
constant on homotopy classes of modular unitaries. This latter fact is true but the proof is lengthy so
we refer to [CNNR].

Theorem 3.26. We let (Qλc ⊗M2,H⊗ C2,D ⊗ 12) be the modular spectral triple of (Qλc ⊗M2).
(1) Let u be a modular unitary defined in Section 5 of the form

u{k,m},{j,n} =
(

1− Pk,m Sk,mS
∗
j,n

Sj,nS
∗
k,m 1− Pj,n

)
.

Then the spectral flow is positive being given by

sfτ∆(D, uDu∗) = (k − j)(λj − λk) ∈ Z[λ] ⊂ Γλ.

(2) Let u be a modular unitary defined in Section 5 of the form:

uj,k =
(

1− Pk SkS
∗
j

SjS
∗
k 1− Pj

)
,

where SkS∗j = Sk,mk
S∗j,mj

and Pk and Pj are its range and initial projections, respectively. Then the
spectral flow is given by

sfτ∆(D, uDu∗) = (k − j)[λj(λ−k −mk)− λk(λ−j −mj)] ∈ Γλ.

Proof. We have already observed that these are, in fact modular unitaries. For the computations we
use a calculation from the proof of Lemma 3.20 to get in example (1):

u[D ⊗ 12, u] =
(

1− Pk,m Sk,mS
∗
j,n

Sj,nS
∗
k,m 1− Pj,n

)(
0 [D, Sk,mS∗j,n]

[D, Sj,nS∗k,m] 0

)

=
(

1− Pk,m Sk,mS
∗
j,n

Sj,nS
∗
k,m 1− Pj,n

)(
0 (k − j)Sk,mS∗j,n

(j − k)Sj,nS∗k,m 0

)
= (k − j)

( −Pk,m 0
0 Pj,n

)
.

So using Theorem 3.25 and our previous computation of the Dixmier trace, Proposition 3.17, and the
fact that Pk,m = Sk,mS

∗
k,m = X[mλk,(m+1)λk) · δ1 so that τ(Pk,m) = λk we have

sfτ∆(D, uk,mDuk,m) = (k − j)τ(Pj,n − Pk,m) = (k − j)(λj − λk).
This number is always positive as the reader may check, and is contained in Z[λ].

The computations in example (2) are similar and use the fact that Pk = X[mkλk,mkλk+λk(λ−j−mj)) · δ1,
so that τ(Pk) = λk(λ−j − mj) ∈ Γλ. In these examples, the spectral flow is not contained in the
smaller polynomial ring, Z[λ]. ¤
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Remarks. The observation of [CPR2] that the twisted residue cocycle formula for spectral flow
is calculating Araki’s relative entropy of two KMS states [Ar] also applies to the examples in this
subsection.

References

[Ar] H. Araki, Relative entropy of states of von Neumann algebras, Publ. RIMS, Kyoto Univ., 11 (1976) 809–833
and Relative entropy for states of von Neumann algebras II, Publ. RIMS, Kyoto Univ., 13 (1977) 173–192.

[APS3] M.F. Atiyah, V.K. Patodi, I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Camb.
Phil. Soc., 79 (1976) 71–99.

[BR1] O. Bratteli, D. Robinson, Operator algebras and quantum statistical mechanics 1, Springer-Verlag, 2nd Ed,
1987.

[BR2] O. Bratteli, D. Robinson, Operator algebras and quantum statistical mechanics 2, Springer-Verlag, 2nd Ed,
1987.

[CNNR] A.L. Carey, R. Nest, S. Neshveyev, A. Rennie, Twisted cyclic theory, equivariant KK-theory and KMS states,
to appear in J. reine angew. Math.

[CP1] A. L. Carey, J. Phillips, Unbounded Fredholm modules and spectral flow, Canadian J. Math., 50 (4) (1998)
673–718.

[CP2] A. L. Carey, J. Phillips, Spectral flow in θ-summable Fredholm modules, eta invariants and the JLO cocycle,
K-theory, 31 (2004) 135–194.

[CPR1] A.L. Carey, J. Phillips, A. Rennie, A noncommutative Atiyah-Patodi-Singer index theorem in KK-theory, J.
reine angew. Math., 643 (2010) 59–109.

[CPR2] A.L. Carey, J. Phillips, A. Rennie, Twisted cyclic theory and an index theory for the gauge invariant KMS
state on Cuntz algebras, Journal of K-theory, 6 (2010) 339–380.

[CPS2] A.L. Carey, J. Phillips, F. Sukochev, Spectral flow and Dixmier traces, Adv. Math, 173 (2003) 68–113.
[CPRS2] A.L. Carey, J. Phillips, A. Rennie, F. Sukochev, The local index formula in semifinite von Neumann algebras

I: Spectral Flow, Adv. in Math., 202 (2006) 451–516.
[CRSS] A. L. Carey, A. Rennie, A. Sedaev, F. Sukochev, The Dixmier trace and asymptotics of zeta functions, J.

Functional Analysis, 249 (2007) 253–283.
[CRT] A.L. Carey, A. Rennie, K. Tong, Spectral flow invariants and twisted cyclic theory from the Haar state on

SUq(2), J. Geom. Phys., 59 (2009) 1431–1452.
[C1] A. Connes, Une classification des facteurs de type III, Annales Scientifiques de le’Ecole Norm. Sup., 4em serie

t. 6 (1973) 18–252.
[C2] A. Connes, Noncommutative geometry, Academic Press, 1994.
[Cu] J. Cuntz, Simple C∗-algebras generated by isometries, Commun. Math. Phys., 57 (1977) 173–189.
[Cu1] J. Cuntz, C∗-algebras associated with the ax+ b-semigroup over N inK-theory and Noncommutative Geometry,

Eds, G. Cortinas, J. Cuntz, M Karoubi, R. Nest, C.A. Weibel, EMS Series of Congress Reports, Volume 2.
[D] J. Dixmier, von Neumann algebras, North-Holland, 1981.
[E] G. Elliott, Some simple C∗-algebras constructed as crossed products with discrete outer automorphism groups,

Publ. RIMS Kyoto Univ., 16 (1980) 299-311.
[FK] T. Fack and H. Kosaki, Generalised s-numbers of τ -measurable operators, Pac. J. Math., 123 (1986) 269–300.
[HR] N. Higson, J. Roe, Analytic K-homology, Oxford University Press, 2000.
[KNR] J. Kaad, R. Nest, A. Rennie, KK-theory and spectral flow in von Neumann algebras, arXive:math.OA/0701326.
[KR] R.V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, Vol. II: advanced theory,

Academic Press, 1986.
[K] G. G. Kasparov, The operator K-functor and extensions of C∗-algebras, Math. USSR. Izv., 16 No. 3 (1981)

513–572.
[KMT] J. Kustermans, G. Murphy, L. Tuset, Differential calculi over quantum groups and twisted cyclic cocycles, J.

Geom. Phys., 44 (2003) 570–594.
[L] E. C. Lance, Hilbert C∗-modules, Cambridge University Press, Cambridge, 1995.
[LS] M. Laca, J. Spielberg, Purely infinite C∗-algebras from boundary actions of discrete groups, Journal für die

reine und ang. Mathematik, 480 (1996) 125–139.
[LSS] S. Lord, A. Sedaev, F. A. Sukochev, Dixmier traces as singular symmetric functionals and applications to

measurable operators, Journal of Functional Analysis, 224 no.1 (2005) 72–106.
[PR] D. Pask, A. Rennie, The noncommutative geometry of graph C∗-algebras I: The index theorem, Journal of

Functional Analysis, 233 (2006) 92–134.
[PhR] J. Phillips, I. Raeburn, Semigroups of isometries, Toeplitz algebras and twisted crossed products, J. Int. Equat.

and Op. Th., 17 (1993) 579-602.



35

[Ped] G. K. Pedersen, C∗-algebras and their automorphism groups, London Math. Soc. monographs 14, Academic
Press, London 1979.

[PT] G. K. Pedersen, M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973)
53–87.

[Put1] I. Putnam, An excision theorem for the K-theory of C∗-algebras, J. Operator Theory, 38 (1997) 151–171.
[Put2] I. Putnam, On the K-theory of C∗-algebras of principal groupoids, Rocky Mountain J. Math., 28 no. 4 (1998)

1483–1518.
[RS] M. Rørdam and E. Størmer, Classification of nuclear C∗-algebras. Entropy in operator algebras, Encyclopedia

of Mathematical Sciences, 126 (2002), Springer, Berlin.
[Sc] C. Schochet, Topological methods for C∗-algebras II: geometric resolutions and the Künneth formula, Pac. J.
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