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We construct a family of purely infinite, simple, separable, nuclear C*-algebras , Q* for X € (0,1).
These algebras are also in the class 9, and therefore by results of E. Kirchberg and N. C. Phillips
they are classified by their K-groups. There is an action of the circle T with a unique KMS state v
on each Q*. For A = 1/n, Ql/n =~ 0,,, with its usual T action and KMS state. For A = p/q, rational
in lowest terms, Q* = O,, (n = ¢ — p+ 1) with UHF fixed point algebra of type (pq)>. For any n > 0,
Q* = O, for infinitely many A with distinct KMS states and UHF fixed-point algebras. However,
none of the Q* are isomorphic to Ou. For X irrational the fixed point algebras, are NOT AF and the
Q* are usually NOT Cuntz algebras. For A transcendental, Kl(Q)‘) = KO(Q)‘) & 7% so that Q* is
Cuntz’ Qy, [Cul]. If ) is algebraic (and not rational), then K1(Q*) and K,(Q") have the same finite
rank: K1 ® Q2 Ko ® Q =2 QF. If XA and A~! are both algebraic integers, the only O,, which appear
are those for which n = 3(mod 4). For each ), the representation of Q* defined by the KMS state 1/
generates a type IITy factor. These algebras fit into the framework of modular index theory / twisted
cyclic theory of [CPR2, CRT] and [CNNR].

These new examples were motivated by the ‘modular index theory’ of [CPR2, CNNR]. We were
aiming to find examples of algebras that were not Cuntz-Krieger algebras (or the CAR algebra) and
were not previously known in order to explore the possibilities opened by [CNNR]. These algebras, de-
noted by Q* for 0 < X\ < 1, are constructed as “corner algebras” of certain crossed product C*-algebras.

This note is an expanded version of a talk given at the Fields Institute in 2008: complete explanations
and proofs will appear elsewhere. I would like to thank Masoud Khalkhali for organizing this conference
on Noncommutative Geometry and inviting me to speak. It was a great conference.

1. THE CONSTRUCTION OF THE O}

Definition 1.1. For 0 < A < 1, let Ty be the countable additive abelian subgroup of R defined by:

k=N
F)\ = { Z nk/\k

k=—N

N >0 and nkGZ}.

Loosely speaking, Ty consists of Laurent polynomials in X\ and A\~' with integer coefficients. It is not
only a dense subgroup of R, but is clearly a unital subring of R. To get some idea of the structure of
these groups, we prove:

Proposition 1.2. Let 0 < )\ < 1.
(1) If \=p/q where 0 < p < q are integers in lowest terms, then I'y = Z[1/n|, where n = pq.
(2) If X and A\~! are both algebraic integers, then Ty = Z + ZX+ -+ + ZX4 is an internal direct
sum where d > 2 is the degree of the minimal (monic) polynomial in Z[z] satisfied by .
(3) If X is transcendental then, Ty = Py ZN* is an internal direct sum.
(4) If X = 1/y/n with n > 2 a square-free positive integer, then T'x = Z[1/n]+ Z[1/n] - \/n is an
internal direct sum.
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(5) In general, if X is algebraic with minimal polynomial, nA\% + --- +m = 0 over Z, then
1
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mn '
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ZRIAND---QZN I CT)\ CZ[—]|®Z[—\®--- D Z]
mn mn
Hence, rank(T'y) := dimg(T'y ®7z Q) =d.

Definition 1.3. Now let CJ(R) be the separable, commutative (AF) C*-subalgebra of L*®(R)
generated by the countable family of projections Xjqp) where a,b € T'x. That is,

CJ(R) = closure ({ >r_; ckXay o) | ek € G ak,br €Ta}).

We note that Cy(R) C C3(R), and that C3(R) consists of exactly of those C-valued function on R
which vanish at oco; are right-continuous at each point of I'y; have finite left-hand limits at each point
of I'y; and are continuous at each point not in I'y.

Definition 1.4. Let G) D Gg be the following countable discrete groups of matrices:

GA:{()E) ?) aEFA,nEZ}DG0:{<(1) ?) aePA}.

Of course, Gg is isomorphic to the additive group Ty, and G) is semidirect product of Z acting on
Gg 2 T'y. Welet Gy act on R as an “az+b” group, noting that the action leaves I'y invariant. That
18,

A" oa

for t € R and g:( 0 1

) € Gy define g-t:= "t +a.

We use this action on R to define the transpose action « of G on C3(R) :
ag(N)(®) = Flg™'t) for £ € CAR) and teR
Definition 1.5. We define the separable C*-algebras A O Aé as the crossed products:
AN = Gy Xq O3 (R) = Z % (G x4 CH(R)) D A} := G x4 CJ(R).

Proposition 1.6. The algebras A, and Aé‘ are simple, separable, nuclear and stable C*-algebras in
the bootstrap class Myye. Moreover, A* is purely infinite.

In order to obtain unital C*-algebras we cut-down these algebras by the projection, e corresponding
to Xjo,1) € C3'(R) C Ay C A*. Explicitly, we define:
Definition 1.7.
Q* :=eAe FA = eAe.
We will also have occasion to use the dense %-subalgebras Qi‘ and Fc)‘ consisting of finitely supported

functions © : G* — C}(R) (respectively, = : G§ — C3(R)) where the values x(g) are either O or finite
linear combinations of characteristic functions X, py with a,b € T'y.

Corollary 1.8. The algebras Q*, and F* are simple, separable, unital, nuclear C*-algebras in the
bootstrap class Nyye. Moreover, Q> is purely infinite, and The orthogonal family of projections e, =
Xnny1) € C()\(]R) for m € Z are mutually equivalent by partial isometries in Aé and the finite sums

Eyn = Zflv:__lN en = X|_n,n) form an approzimate identity for A> (and for A}) so that

AN~ Q @ K(12(Z)) and A = F* @ K(12(Z)).



2. K-THEORY OF THE ALGEBRAS C*(T)), Q*, AND F*.

We first compute the K-Theory of the algebras C*(I'y) = C(I")) using Proposition 1.2.

Proposition 2.1. Let 0 < )\ < 1.
(1) If A= p/q is rational in lowest terms so that Ty = Z[1/n], where n = pq, then

KO(C(f‘,\)):Z[lfA)] and K, (C(Ty)) = Z[1/n).

(2) If A and A\ are both algebraic integers, so that T'y = Z + ZA+ -+ + ZX?" 1 is an internal direct
sum as above, then

even d k odd d k
K@M)= AT= @ AT and Ki(CT))=ATH= @ AT
k=0,k even k=1,k odd
(3) If X is transcendental then,
. even [e's) k . odd o] k
K@) = A\NTy= @ AT and K (CT))=A\TH= @ AT
k=0,k even k=1,k odd

(4) If A=1/+/n with n > 2 a square-free positive integer, then
Ko(C(Ty) = Z@Z[1/n] and K (C(T')) = Z[1/n]® Z[1/n]
(5) In general, if X is algebraic with nA¢+---+m = 0 over Z then the composition of the inclusions
1 1 1
ZOIN® - QZA 1 CT\CZ[—]QZ[—\® - ® Z[—]\¢!
mn mn mn
induces an inclusion on K-Theory, so that both of the following maps are one-to-one

even odd

N (Z%) = Ko(C*(Z&- - ZX*)) — Ko(C(Ty)) and \(Z%) = K1 (C*(Z&--- ZX*™)) = K1(C(T'y)).

Item (1) is proved directly, while (2) and (3) follow from the known K-Theory of (commutative) tori.
Items (4) and (5) are deduced from results of C. Schochet [Sc] on the K-Theory of tensor products.

Proposition 2.2. If A\ = p/q is rational in lowest terms, we show directly that F» is a UHF algebra
of type n>° where n = pq, and so:

Ko(F*) = Z[1/n] and K;(F*) = {0}.
Since A =7 x A} and A} = F* ® K we use the Pimsner-Voiculescu ezact sequence to compute:

K1(Q") = {0}, and Ko(Q") = Z[1/(pa)]/(1 — NZ[1/(pa)] = Z(4—p)-

Remarks. Since the identity in Q* is a generator for Z4p) results of Kirchberg-Phillips imply that
Q> = 0, where m = (¢ — p) + 1. If A = 1/n we can explicitly write down the n generators for
QYn ~ O, and FY/" is (isomorphic to ) the usual UHF subalgebra of O,. However, for general
rational numbers A = p/q the situation remains a little mysterious.

For X irrational we again use the Pimsner-Voiculescu exact sequence to reduce to the K-Theory
of A}. However, in this case these algebras are never AF, and we must use the theory of groupoid
C*-algebras. In particular we must use Ian Putnam’s exact sequence for the K-Theory of certain
principal groupoid C*-algebras.

First we establish some notation. Let Ry be the locally compact Gelfand spectrum of the com-
mutative C*-algebra C3(R) so that C}(R) = Cy(Ry). Now, Cy(R) C Cp(Ry) and the induced proper
surjection: Ry — R has the property that points in R that are not in I'y have a single pre-image while
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points v € I'y have exactly two pre-images in Ry denoted by v~ and «*. To simplify notation, we
let ' =T = GR. Thus, I' C R is a countable dense subgroup of R which acts on R by translations.
Before looking at the crossed product of T' acting on C}(R) = Cp(R,) (which gives us A}) we first
consider the crossed product of I' acting on Cy(R). Since I' acts on R by translation we can Fourier
transform to get an isomorphism:
I'x Cy(R) 2R x C(T).
Then, by Connes’ Thom isomorphism we get for ¢ = 0, 1:
K(T % Co(R)) = Ki(R x C(1) 2 Ky (C(T).

We are able to identify the image of the generator of K;(Cy(R)) = Z with the class of the identity
function [1] in Ko(C(T)).
In the notation of [Put2] we define the transformation groupoids:
G:=RyxI, G':=RxI, and H:=T xT.
Then, A} = C}(G) is the reduced C*-algebra of G; I' x Cy(R) = C;(G") is the reduced C*-algebra of
G'; and K(I?(T)) = C}(H) is the reduced C*-algebra of H.
Thus, there are two disjoint embeddings of I" in R, :

i, i : D= Ry = do(y) =", @u(y)=~".

Now in order to mesh with the notation of [Put2], we let Y := I' with the equivalence relation,
“=": X := Ry, with the equivalence relation (ig(y) ~ 71(7)); and quotient 7 : X — X' := R where
X' = X/(io(7y) ~ i1(y)) = R; while the “factor groupoid” of G = Ry xI' = X xT'is G’ := RxI' = X'xT.

In a natural way we represent each of these three C*-algebras (faithfully) on H := I2(T') @ I2(T'™)
where I'* = {y* | v € T'}. Then from the six-term exact sequence of [Put2] we get:

K1 (Cr(H)) — Ko(CF(G")) — Ko(CF(G))
Ki(CH(G)) =—— K1(CF(G")) =— Ko(Cr(H))
In our set-up this becomes:

{0} Ko(r A Co(R)) —— K()(F A C()(R/\))

| |

Kl(FXCO(R)‘))<—K1(F X CO(R)) Z

Which by Connes’ Thom isomorphism becomes:

{0} K1 (C(I')) — Ko(4})

| |

K1(A3) =— Ko(C(I) Z

With a little more effort we obtain the following result on the K-Theory of Aé and hence of F2.
Proposition 2.3. For 0 < A < 1,

Ko(F*) = Ko(A)) = K1(C(1))) and K (F*) = K (4)) = Ko(C(T'y))/[1]Z.
In particular, if X is irrational, then K1(AQ) # {0} so that A} is not an AF-algebra.

Remarks. The last statement of the Proposition follows from items (3) and (5) of Proposition 2.1
since Ko(C(T'y)) is not singly generated when X is irrational.
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Now for X irrational we can use the Pimsner-Voiculescu exact sequence to calculate the K-Theory
of Q* in cases where we can effectively compute the action of A on the K-Theory of Aé. For example:

If ) is transcendental, then Ky(Q") = Z*® = K(Q"). Then by classification theory Q* is isomorphic
to Cuntz’s algebra, Ox.

If A = 1/+/n where n is square-free, then Ko(Q*) = Z/(n—1)Z = K;(Q"). In particular, if n = 2 then
QI/V2 Oy, but if n > 3 then Q'/vV™ is not even a Cuntz-Krieger algebra.

If A and A~ ! are both algebraic with minimal polynomial of degree d, then by Proposition 2.1
Ko(F*) = 72" and Ky (F) = 72"7'=1) with natural bases so that one can write down explicit
integer matrices for the actions of A\. By row and column reducing these matrices to obtain the Smith
Normal Form one can exactly compute the K-Theory of Q in this case.

For example, if A2+ a\ — 1 = 0 with @ > 0 so that A = (1/2)(v/a? + 4 — a) then K¢(Q*) = Z/aZ
and K1(Q") = Z/2Z. None of these algebras are Cuntz-Krieger algebras. In particular, if @ = 1 then
) is the inverse of the golden mean and K,(Q*) = {0} and K;(Q) = Z/2Z.

As another example, suppose A2 4+ aX + 1 = 0 where a < —3. Then, Ko(Q) = Z & (Z/(a + 2)7)
and K;(Q*) = Z. For these algebras, Q* has the correct K-theory to be a Cuntz-Krieger algebra,
and is therefore stably isomorphic to one. When a = —3 so that A = (1/2)(3 — +/5)) we have
Ko(QY) =Z = K:i(QY).

As a final specific example, suppose A\* + mA? + (m — 1)A + 1 = 0 with m > 0. Then K,(Q*) =
Z/(4m +2)Z and K,(Q*) = {0}. Then, Q* = O(4y,3). This example is not completely random as the
next result shows.

Proposition 2.4. If A\ and A\~ are both algebraic integers and Q* is stably isomorphic to a Cuntz
algebra O,, then the minimal polynomial of A has odd degree and constant term +1; n = 3(mod4); and
all such Cuntz algebras appear this way.

3. THE AcTION OF T ON Q* AND ITs UNIQUE KMS STATE

Now C2(R) has a faithful semifinite (norm) lower semicontinuous trace given by integration on
positive elements. This trace is clearly invariant under G} = I'y which acts by translations. Therefore
A} = G} x4 C}(R) also has a faithful semifinite (norm) lower semicontinuous trace obtained by
composing the trace on Cg(R) with the conditional expectation: A) — C2(R). Finally we obtain a
faithful semifinite (norm) lower semicontinuous weight on Q* by writing A* = Z x A} and composing
the trace on A} with the conditional expectation A* — A}. Now the projection e € A} obtained from
the element Xy 1) € C3(R) clearly has trace = 1 and therefore has weight = 1 as an element of A*.
Therefore the weight on A* restricted to @* = eA*e defines a state 1) on Q*.

Since A* = Z x A} there is a natural dual action of T on A* and the fixed point algebra under
this action of T is A}. Since e € A}, it is fixed by the action of T and therefore the action restricts to
an action of T on Q* = eA*e. We call this the gauge action of T on Q*. The fixed-point subalgebra
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of Q* under this action is exactly F* = eA}e, and 1 restricts to a (faithful, finite) trace 7 on F*. We
have the following theorem.

Theorem 3.1. The state 1 on Q* is invariant under the gauge action of T. Moreover, considered
as an action of R, the state ¢ is a KMSg state for B = log(A\™1). Furthermore, 1 is the unique KMS
state for this action regardless of . The GNS representation ©: Q) — B(Hy) afforded by v generates
a type 111y factor in B(Hy).

Remarks. It is not difficult to show that the conditional expectation, A* — Aé restricts to a condi-
tional expectation ® : Q* — F* and that the KMS state 1) = 7 o ®. We let D denote the generator
of the one parameter unitary group which implements the action of T on #H, and let A denote the
modular operator on H,, for state the 1. We have the following result.

Proposition 3.2. With the left action of Q* on Hy, the action of T is unitarily implemented on H,,
and the generator D of this unitary group is related to the modular operator A for ¢ by:

A = )\D or eitD _ Ait/log()\).

4. THE MODULAR SPECTRAL TRIPLE FOR Q"

Definition 4.1. To simplify notation let Q = Q* and F = F*. Then Q becomes a right pre-Hilbert
F-module with F-valued inner product (a|b) := ®(a*b). We let X denote the Hilbert F'-module obtained
by completing Q in the module norm ||z||x = ||®(z*z)||*/2.

Now the left action of Q on itself extends uniquely to an action of Q as adjointable operators on X.
Moreover the action of T on Q extends uniquely to a representation of T as unitaries on X. If we
denote this representation by z — u,, then for each k € Z we define the k-th spectral subspace of this
representation to be

Xy :={z € X | u,(x) = 2Fz for all z € T}.
The projection operator, ®; from X onto X; exists, is adjointable and defined by:
1

Qi (z) = o

/z_kuz(:v)dO, z=e? zeX.
T

For z € X we use the notation zy = ®,(z) and then define Xp C X to be the linear subspace

Xp={e=>) zpeX| | Kk (zx|zx) | < oo}.

k€EZ kEZ
For z € Xp we define D(z) = Y, o, kzy.

Proposition 4.2. The operator D : Xp — X is a self-adjoint, reqular operator on X with discrete
spectrum = Z and spectral projections @y for each k € Z.. Moreover, the finite sums ZI’CKN ®). converge
strictly to the identity operator on X.

Now, if a,b € Q then the “rank one” operator 8,5 : @ — Q defined by 6, (c) = a(b|c) = a®(b*c) is in
fact a bounded linear operator in the Hilbert space norm on #,, with bound at most || a |||| b || . This
is a straightforward calculation using the inequalities S*T*T'S <|| T ||? S$*S, and ®(z*z) < ®(z*)®(x),
since ® is 2-positive. So we regard these operators as operators in B(H).

Definition 4.3. We define N to be the von Neumann algebra on H,,, generated by all the rank one
operators Oqp with a,b in Q.
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Proposition 4.4. There is a faithful, normal, semifinite trace 7 on N such that all rank one operators
are in the ideal of definition of T and

H0up) = 70 8(5"a) = $(t"a), a,b€ Q.
Moreover, m(Q) C N; D is affiliated to N; and 7(®;) = A7F.

Since 7(®;) = A% we see that D does not satisfy any finite summability criterion. We use A = \?
to define a new weight on N'". For T € N let 7A(T') = supn7(ANT) where ANT = A(Y < Pi)-

Proposition 4.5. 7a is a faithful, normal, semifinite weight on N'T.

We now give another way to define 7o which is not only conceptually useful but also makes a number
of important properties straightforward to verify.

Notation. Let M be the relative commutant in A/ of the operator A. Equivalently, M is the relative
commutant of the set of spectral projections {®|k € Z} of D. Clearly, M =3, ., ®pN ;.

Definition 4.6. As 7 restricted to each ®N®y, is a faithful finite trace with 7(®y) = A% we define
7w on ®RN By, to be N\F times the restriction of 7. Then, T := YTk on M =3 ®eN Dy is a faithful
normal semifinite trace T with 7(®y) =1 for all k.

We now use 7T to give an alternative expression for 74 :

Lemma 4.7. An element m € N is in M if and only if it is in the fized point algebra of the action,
o;® on N defined for T € N by o;2(T) = A®TA~". Both n(F) and the projections ®y belong to
M. The map ¥ : N — M defined by ¥(T) = Y, ®,TPy is a conditional expectation onto M and
TA(T) = 7(U(T)) for all T € N*. That is, TA = To ¥ so that T(T) = 7a(T) for all T € M™. Finally,
if one of A,B € M is T-trace-class and T € N then Tao(ATB) = 1A(AY(T)B) = 7(A¥(T)B).

We now have the key lemma, but we omit the proof:

Lemma 4.8. Suppose g is a function on R such that g(D) is Ta trace-class in M, then for all f € F
we have

Ta(n(f)g(D)) = 7alg(D))7(f) = 7() ) _ 9(k)-

kEZ

Proposition 4.9. (i) We have (1+D?)~/2 € LIL®)(M, 7a) in the sense that, Ta((1+D?)~%/?) < oo
for all s > 1. Moreover, for all f € F*

lim (s — 1)7a((f)(1 + D2)~/2) = 27(f)

s—1t

so that w(f)(1 + D?) /2 is a measurable operator in the sense of [C].

(ii) For m(a) € m(Q}) C N the following (ordinary) limit exists and

7u(n(@) = = Tim (s — Dra(n(@)(1 +D?)=>/2) = 7 0 (a) = 9(a),

s—1t

the original KMS state 9 =70 ® on QM.

Proof. (i) This proof is identical to [CPR2, Proposition 3.12].
(ii) This proof is the same as [CPR2, Proposition 3.14] with Q*, F* replacing O,,, F. O
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Definition 4.10. Let A = Q) and let y be the gauge represntation of T as automorphism of Q. The
triple (A, H,D) along with v, ¥, N, Ta satisfying properties (0) to (3) below is called the modular
spectral triple of the dynamical system (Q*,7,)

0) The x-subalgebra A of Q* is faithfully represented in N acting on the Hilbert space Hy,

1) there is a faithful normal semifinite weight TA on N such that the modular automorphism group
of Ta is an inner automorphism group oy = Ad(A®) (for t € C) of (the Tomita algebra of) N with
0i|la = o in the sense that o;(n(a)) = 7(c(a)), where o is the automorphism o(a) = A~ (a) on A,

2) TA restricts to a faithful semifinite trace T on M = N9, with a faithful normal projection ¥ : N —
M satisfying 1A =To V¥ on N,

3) with D the generator of the one parameter group implementing the gauge action of T on H we
have: [D,w(a)] extends to a bounded operator (in N') for all a € A and for X\ in the resolvent set of
D, (A—D)~ !t € K(M,7a), where K(M,Ta) is the ideal of compact operators in M relative to Ta. In
particular, D is affiliated to M.

For matrix algebras A = Q) ® M}, over @2, (Q) ® My, H ® My, D ® Idy) is also a modular spectral
triple in the obvious fashion.

4.1. Modular K;. We now make appropriate modifications to [CPR2, Section 4]) using [CNNR]
introducing elements of these modular spectral triples (A, #H,D) (where A is a matrix algebra of
analytic elements over Q*) that will have a well defined pairing with our Dixmier functional 7,,. Let
A = Q. TFollowing [HR] we say that a unitary (invertible, projection,...) in the n x n matrices over
Q* for some n is a unitary (invertible, projection,...) over @*. We will also use o; for the inflated
automorphism o; ® Id, of A.

Definition 4.11. Let v be a partial isometry in the x-algebra A. We say that v satisfies the modular
condition with respect to o if the operators voi(v*) and v*oy(v) are in the fized point algebra F C A
for all t € R. Of course, any partial isometry in F is a modular partial isometry.

Lemma 4.12. ([CPR2, Lemma 4.8]) Let v € A be a modular partial isometry. Then we have

[ 1=v" v*
o = v 1—vv*

18 a modular unitary over A. Moreover there is a modular homotopy Uy ~ Uy .

Note that in [CPR2] we used a different approach which is implied by the one given here. In [CPR2]
we defined modular unitaries in terms of the regular automorphism:

m(o(a)) = 7(A7}(a)) = A7 w(a)A = oi(n(a)).

That is we said that a unitary in A is modular if uo(u*) and u*o(u) are in the fixed point algebra
Define the modular K7 group as follows.

Definition 4.13. Let K1(A,0) be the abelian group with one generator [v] for each partial isometry
v over A satisfying the modular condition and with the following relations:

1) [v] =0 if v is over F,

2)  [l+[w=heuw,

3) if v, t €[0,1], is a continuous path of modular partial isometries in some matriz algebra over A
then [vg] = [v1].

One could use modular unitaries as in [CPR2] in place of these modular partial isometries.

The following can now be seen to hold.



9

Lemma 4.14. (Compare [CPR2, Lemma 4.9]) Let (A, H,D) be our modular spectral triple relative
to (N,7A) and set F = A% and 0 : A — A. Let L*®(A) = L*(D) be the von Neumann algebra
generated by the spectral projections of A then L*°(A) C Z(M). Let v € A be a partial isometry with
vo*, v*v € F. Then w(v)Qn(v*) € M and w(v*)Qn(v) € M for all spectral projections Q of D, if and
only if v is modular. That is, m(v)An(v*) and w(v*)An(v) (or w(v)Dr(v*) and 7(v*)Dw(v)) are both
affiliated to M if and only if v is modular.

Thus we see that modular partial isometries conjugate A to an operator affiliated to M, and so vAv*
commutes with A (and vDv* commutes with D).

We will next show that there is an analytic pairing between (part of) modular K; and modular spectral
triples. To do this, we are going to use the analytic formulae for spectral flow in [CP2].

4.2. A local index formula for the algebras Q*. Using the fact that we have full spectral subspaces
we know from [CNNR] that there is a formula for spectral flow which is analogous to the local index
formula in noncommutative geometry. We remind the reader that 7oA = To ¥ where ¥ : N' — M is
the canonical expectation, so that 7o restricted to M is 7.

Theorem 4.15. (Compare [CPR2, Theorem 5.5]) Let (A, H,D) be the (1,00)-summable, modular
spectral triple for the algebra Q* we have constructed previously. Then for any modular partial isometry
v and for any Dizmier trace T; associated to T, we have spectral flow as an actual limit
1 N _ 1. _
sfz(vv*D,vDv*) = 3 1iI{l+(S—1)T('U['D,’U*](1+D2) 5/2) = iTa(v[D,v*](l—k’D?) 12y = 70®(v[D, v*)).
S—

The functional on A® A defined by ag®ay — 3 lim, 1+ (s — 1)7a(ao[D, a1](1 +D?)~%/2) is a o-twisted
b, B-cocycle (see the proof below for the definition).

Remark. Spectral flow in this setting is independent of the path joining the endpoints of unbounded
self adjoint operators affiliated to M however it is not obvious that this is enough to show that it is
constant on homotopy classes of modular unitaries. This latter fact is true but the proof is lengthy so
we refer to [CNNR].

Theorem 4.16. We let (Q) ® My, H ® C?,D ® 15) be the modular spectral triple of (Q} @ M>).
(1) For any k,j € Z we can define a modular unitary u of the form in Lemma 4.12 so that the spectral
flow is positive being given by

sfra(D,uDu*) = (k—j7)(M —M¥) € Z[A\] C Ty.

(2) If A= and A77 are not integers we let my, = [A\"%] and m; = [\77] we can define modular unitaries
u of the form in Lemma 4.12 where the spectral flow is given by

$fra(D,uDu*) = (k= )N ATF —my) = X¥(A™7 —m;)] € T,

Remarks. The actual form of the modular unitaries in the previous theorem is a little complicated
SO we omit it.

Remarks. The observation of [CPR2] that the twisted residue cocycle formula for spectral flow
is calculating Araki’s relative entropy of two KMS states [Ar] also applies to the examples in this
subsection.
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