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Abstract. We present a new construction of the entropy-maximizing, invari-
ant probability measure on a Smale space (the Bowen measure). Our con-

struction is based on points that are unstably equivalent to one given point,

and stably equivalent to another: heteroclinic points. The spirit of the con-
struction is similar to Bowen’s construction from periodic points, though the

techniques are very different. We also prove results about the growth rate of
certain sets of heteroclinic points, and about the stable and unstable compo-

nents of the Bowen measure. The approach we take is to prove results through

direct computation for the case of a Shift of Finite type, and then use resolving
factor maps to extend the results to more general Smale spaces.

1. Introduction

A Smale space, as defined by David Ruelle [11], is a compact metric space, X,
together with a homeomorphism, ϕ, which is hyperbolic. These include the basic
sets of Smale’s Axiom A systems [13]. Another special case of great interest are
the shifts of finite type [3], [6] where the space, here usually denoted Σ, is the path
space of a finite directed graph and the homeomorphism, σ, is the left shift.

The structure of (X,ϕ) is such that each point x in X has two local sets associ-
ated to it: Xs(x, ε), on which the map ϕ is (uniformly) contracting; and Xu(x, ε),
on which the map ϕ−1 is contracting. We call these sets the local stable and unsta-
ble sets for x. Furthermore, x has a neighbourhood, U(x, ε) that is isomorphic to
Xu(x, ε)×Xs(x, ε). In other words, the sets Xu(x, ε) and Xs(x, ε) provide a coor-
dinate system for U(x, ε) such that, under application of the map ϕ, one coordinate
contracts, and the other expands.

The basic axiom for a Smale space is the existence of a map defined on pairs
(x, y) in X × X which are sufficiently close. The image of (x, y) is denoted [x, y]
and is the unique point in Xs(x, ε)∩Xu(y, ε). This satisfies a number of identities
and, in particular defines a homeomorphism from Xu(x, ε)×Xs(x, ε)→ U(x, ε).

There is also a notion of a global stable (unstable) set for a point x, which
we denote Xs(x) (Xu(x)). This is simply the set of all points y ∈ X such that
d(ϕn(x), ϕn(y)) → 0 as n → +∞ (−∞). The collection of sets {Xs(y, δ) | y ∈
Xs(x), δ > 0} forms a neighbourhood base for a topology on Xs(x) that is locally
compact and Hausdorff. This is the topology that we use on Xs(x) (not the relative
topology from X). There is an analogous topology on Xu(x). The global stable
(unstable) sets partition the Smale space X into equivalence classes. In other
words, there are three equivalence relations defined on X. We say x and y are
stably equivalent if Xs(x) = Xs(y), unstably equivalent if Xu(x) = Xu(y), and
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homoclinic if they are both stably and unstably equivalent. Finally, we say that a
point z is a heteroclinic point for the pair (x, y) if z is stably equivalent to x and
unstably equivalent to y (i.e. z ∈ Xs(x) ∩Xu(y)).

For an irreducible Smale space, (X,ϕ), there is a unique ϕ-invariant probability
measure maximizing the entropy of ϕ [12], [5]. This measure is known as the Bowen
measure and we denote it by µX , or when the space is obvious, simply µ.

In [2], Bowen constructed the measure of maximum entropy as a limit of mea-
sures supported on periodic points. Our main goal in this paper is to present
an alternative construction in which the Bowen measure is obtained as the limit
of measures supported on heteroclinic points. The main result is Theorem 2.10,
which is proved in section 4. From our construction we are also able to relate the
growth rate of certain sets of heteroclinic points to the topological entropy of the
Smale space. A similar result concerning the growth rate of homoclinic orbits was
proved by Mendoza in [7], using different techniques.

We would like to thank the referee for many helpful comments.

2. Main Results

It was shown in [12] that, if a small subset of X is written as a product, then
the Bowen measure on this set can be written as a product measure. This gives
us a useful way of dealing with the Bowen measure. The following theorem makes
this result precise. While this theorem is due to Ruelle and Sullivan, we will pro-
vide a new proof of the result. Along the way, we will also see how this product
decomposition is preserved under resolving maps.

Theorem 2.1. Let X be an irreducible Smale space. For each x in X, there exist
measures µs,xX and µu,xX defined on Xs(x) and Xu(x), respectively. These measures
are not finite, but are regular Borel measures. Moreover, these satisfy the following
conditions.

(1) For all x in X, ε > 0 and Borel sets B ⊂ Xu(x, ε) and C ⊂ Xs(x, ε), we
have

µ([B,C]) = µu,x(B)µs,x(C)

whenever ε is sufficiently small so that [B,C] is defined.
(2) For x, y in X, ε > 0 and a Borel set B ⊂ Xu(x, ε), we have

µu,y([B, y]) = µu,x(B),

whenever d(x, y) and ε are sufficiently small so that [B, y] is defined.
(3) For x, y in X, ε > 0 and a Borel set C ⊂ Xs(x, ε), we have

µs,y([y, C]) = µs,x(C),

whenever d(x, y) and ε are sufficiently small so that [y, C] is defined.
(4) µs,ϕ(x) ◦ ϕ = λ−1µs,x.
(5) µu,ϕ(x) ◦ ϕ = λµu,x.

Here log(λ) is the topological entropy of (X,ϕ).

In [2] the unique entropy maximizing ϕ-invariant probability measure is con-
structed as the weak-∗ limit of the sequence µn, where µn is defined as follows. Let
Sn = ∪n1Perk(X,ϕ) then

µn =
1

#Sn

∑
z∈Sn

δz,
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where δz is the point mass at z. In our construction we use points which are
heteroclinic to a given pair of points instead of periodic points. It is worth noting
that in Bowen’s construction each µn is a ϕ-invariant probability measure. In our
case, the measures constructed are not ϕ-invariant, but in the limit we recover
ϕ-invariance.

Definition 2.2. Let (X,ϕ) be a mixing Smale space, x, y ∈ X, B ⊂ Xu(x) and
C ⊂ Xs(y) open with compact closure. For each positive integer k, we define

hkB,C = ϕk(B) ∩ ϕ−k(C)

and the measure

µkB,C =
1

#hkB,C

∑
z∈hk

B,C

δz.

Remark 2.3. • As Xu(x) and Xs(y) intersect transversally and ϕk(B) and
ϕ−k(C) have compact closure for each k, #hkB,C is finite for each k.

• hkB,C may be empty, and hence µkB,C may not be well defined for some
positive integers k. However, for given B, C there exists a K such that for
all k > K, µkB,C is well defined. Since we will be interested in the (weak-∗)
limit of these measures as k →∞ we will not be concerned with the finite
number of k’s for which our definition is not valid.

We have the following result relating the growth of the heteroclinic sets hkB,C to
the topological entropy.

Theorem 2.4. Let (X,ϕ) be a mixing Smale space, B, C as in Defn. 2.2. Then
we have

lim
k→∞

λ−2k#hkB,C = µu,xX (B)µs,yX (C),

where µu,xX and µs,yX are as in Theorem 2.1, and log(λ) = h(X,ϕ) is the topological
entropy of (X,ϕ). In consequence, we also have

lim
k→∞

log(#hkB,C)

2k
= h(X,ϕ).

Theorem 2.5. Let (X,ϕ) be a mixing Smale space, and let µkB,C be as in Defn.
2.2. For each continuous function f : X → C we have

lim
k→∞

∫
X

fdµkB,C =

∫
X

fdµX ,

where µX is the Bowen measure. In other words µkB,C → µX in the weak-∗ topology.

Now suppose (X,ϕ) is an irreducible Smale space (not necessarily mixing). By
Smale’s spectral decomposition[13] we can find a partition of X into pairwise dis-
joint clopen subsets, X1, X2, . . . , XI such that ϕ(Xi) = Xi+1 (with the indices
interpreted modulo I) and ϕI |Xi mixing, for each i.

Definition 2.6. With the notation as above, let x, y be in the same component,
Xi0 , of X and let B ⊂ Xu(x) and C ⊂ Xs(y) be open with compact closures. For
each k, we define

hkB,C = ∪I−1
i=0 (ϕkI+i(B) ∩ ϕ−kI+i(C))
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and the measure

µkB,C =
1

#hkB,C

∑
z∈hk

B,C

δz.

Remark 2.7. • The same remark concerning hkB,C being empty as before
applies.
• In the case that (X,ϕ) is mixing (and I = 1), this clearly reduces to the

same definition as before.

With this extended definition, the analogous results as stated above for the
mixing case also hold in the irreducible case.

Theorem 2.8. Let (X,ϕ) be an irreducible Smale space, B, C as in Defn. 2.6.
Then we have

lim
k→∞

λ−2kI#hkB,C = Iµu,xX (B)µs,yX (C),

where µu,xX and µs,yX are as in Theorem 2.1, and log(λ) = h(X,ϕ) is the topological
entropy of (X,ϕ). In consequence, we also have

lim
k→∞

log(#hkB,C)

2kI
= h(X,ϕ).

Remark 2.9. Theorem 3.1 in [7] is essentially this result, replacing hkB,C with

ϕk(hkB,C) in the case that the heteroclinic points happen to be homoclinic points.

Theorem 2.10. Let (X,ϕ) be an irreducible Smale space, and let µkB,C be as in
Defn. 2.6. For each continuous function f : X → C we have

lim
k→∞

∫
X

fdµkB,C =

∫
X

fdµX ,

where µX is the Bowen measure. In other words µkB,C → µX in the weak-∗ topology.

3. Resolving Factor Maps and the Bowen Measure

In the case that the Smale Space is a shift of finite type (SFT), the Bowen
measure is the same as the Parry measure. We present a brief description of the
Parry measure for a mixing SFT, and prove Theorem 2.1 in this case.

Let (Σ, σ) be a mixing SFT, considered as the edge shift on a directed graph G
with adjacency matrix A. See [6] for a thorough treatment of SFTs. (Σ, σ) is mixing
precisely when A is primitive, i.e. when there exists N such that, for n ≥ N An

is strictly positive. This allows us to use the consequence of the Perron-Frobenius
theorem (Thm. 4.5.12 in [6]), which says limn→∞ λ−nAn = urul, where ur, ul are
the right/left Perron-Frobenius eigenvectors of the matrix A normalized so that
ulur = 1, and λ is the Perron-Frobenius eigenvalue. This result is critical in the
proof of our main result in the case of SFTs. Fix m > N , vertices vi, vj in the
graph, and let ξ be a path of length 2m, indexed from −m+ 1 to m, originating at
vi and terminating at vj (A primitive guarantees such a ξ exists). Consider the set

Σm,i,j(ξ) = {x ∈ Σ |xk = ξk for −m+ 1 ≤ k ≤ m}.
The collection of such sets, as m, i, j, and ξ vary over all possible values, forms a
base for the topology on Σ. The Parry measure on such a basic set is

µΣ(Σm,i,j(ξ)) = λ−2mul(i)ur(j).
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Fix x in Σ and suppose t(xm) = vj , i(x−l+1) = vi. That is to say, x−l+1 originates
at vertex vi, and xm terminates at vertex vj . Consider the sets

Σu(x, 2−m) = {z ∈ Σ | zk = xk ∀k ≤ m}
Σs(x, 2−l) = {z ∈ Σ | zk = xk ∀k ≥ −l + 1},

These sets form a base for the topology on Σu(x) (respectively Σs(x)) in a neigh-
bourhood of x. Suppose now that Σu(z, 2−m) ⊂ Σu(x, ε) and Σs(y, 2−l) ⊂ Σs(x, ε)
Then the stable/unstable components of the Parry measure are

µu,xΣ (Σu(z, 2−m)) = λ−mur(j)

µs,xΣ (Σs(y, 2−l)) = λ−lul(i)

Proposition 3.1. Theorem 2.1 holds for (Σ, σ) a mixing SFT, with µu,xΣ , µs,xΣ

defined as above.

Proof. We must verify the 5 conditions stated in Theorem 2.1.

(1) This is obvious from the formulas defining the measures on basic sets.
(2) Consider the homeomorphism w 7→ [w, x′] from Σu(x, ε) to Σu(x′, ε′). Un-

der this map

Σu(z, 2−m) 7→ {v ∈ Σ | vk = zk ∀0 ≤ k ≤ m, vk = x′k ∀k ≤ 0} = Σu([z, x′], 2−m).

Now

µu,x
′

Σ (Σu([z, x′], 2−m)) = λ−mur(j) = µu,xΣ (Σu(z, 2−m)).

(3) Similarly, the map w 7→ [x′, w] takes the measure µs,xΣ to µs,x
′

Σ .
(4) Now consider

(µ
u,σ(x)
Σ ◦ σ)(Σu(z, 2−m)) = µ

u,σ(x)
Σ (Σu(σ(z), 2−m+1))

= λ−m+1ur(j)

= λµu,xΣ (Σu(z, 2−m)).

(5) Similarly,

(µ
s,σ(x)
Σ ◦ σ)(Σs(y, 2−l)) = µ

s,σ(x)
Σ (Σs(σ(y), 2−l−1))

= λ−l−1ul(i)

= λ−1µs,xΣ (Σs(y, 2−l)).

�

In the case of a SFT, the topological entropy h(Σ, σ) = log(λ), where λ is
the Perron-Frobenius eigenvalue of the adjacency matrix associated with the SFT.
Similarly, for other Smale spaces X we will write λ such that h(X,ϕ) = log(λ).
Whenever we are talking about 2 or more Smale spaces, there will be an almost
one-to-one factor map between them, so the entropies will be equal, hence it will
be unnecessary to distinguish which space the λ comes from.

Definition 3.2 (Fried [4]). A factor map π : (Y, ψ) → (X,ϕ) is s-resolving (u-
resolving) if for every y ∈ Y , π|Y s(y) (π|Y u(y) respectively) is injective.

We will primarily be concerned with almost one-to-one resolving factor maps.
A factor map π : (Y, ψ) → (X,ϕ), where (Y, ψ) is irreducible, is called almost
one-to-one if there exists x ∈ X such that #π−1(x) = 1.
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In [1], Bowen showed that for an irreducible Smale space, (X,ϕ), there exists an
irreducible SFT (Σ, σ) and an almost one-to-one factor map π : Σ→ X. Moreover,
letting E = {x ∈ X | #π−1(x) = 1}, Bowen showed that µΣ(π−1(E)) = 1. In
other words, π is one-to-one µΣ-a.e. It follows that for any Borel set B ⊂ X,
µX(B) = µΣ(π−1(B)) (Theorem 34 in [1]).

In Cor. 1.4 of [9], the second author showed that the factor map, π, can be
realized as the composition of two resolving factor maps. In other words, given an
irreducible Smale space (X,ϕ), we can find a Smale space (Y, ψ), a SFT (Σ, σ), and
factor maps π1 : Σ→ Y , π2 : Y → X such that

(1) (Σ, σ) and (Y, ψ) are irreducible,
(2) π1 and π2 are almost one-to-one,
(3) π1 is s-resolving and π2 is u-resolving.

The Bowen measures on X, Y can be obtained from the Bowen measure on Σ as
follows

(1) for E ⊂ Y the Bowen measure on (Y, ψ) is µY (E) = µΣ(π−1
1 (E)),

(2) for F ⊂ X the Bowen measure on (X,ϕ) is µX(F ) = µY (π−1
2 (F )) =

µΣ((π2 ◦ π1)−1(F )).

This requires only that π1, π2 be almost one-to-one factor maps, not that they
are resolving. We now wish to define the measures on the stable and unstable
equivalence classes in (Y, ψ) and (X,ϕ), from µs,·Σ , µu,·Σ , π1, and π2. In this case,
it is not enough that the factor maps are almost one-to-one, resolving plays an
important role in what follows. We begin by stating the following result which is
proved by the second author in [8].

Proposition 3.3. Let (Y, ψ) and (X,ϕ) be irreducible Smale spaces, and π :
Y → X be an almost one-to-one u-resolving factor map. If x ∈X with π−1(x) =
{y1, y2, . . . , yn} then

π−1(Xu(x)) =

n⋃
i=1

Y u(yi),

and the union is disjoint. Moreover, using the topologies from the introduction, for
each 1 ≤ i ≤ n

π|Y u(yi) : Y u(yi)→ Xu(x)

is a homeomorphism.

Lemma 3.4. Let (Y, ψ) and (X,ϕ) be irreducible Smale spaces, and π : Y →
X be an almost one-to-one u-resolving factor map. Fix y ∈ Y , the set {y′ ∈
Y s(y) | π(y′) = π(ỹ) for some ỹ 6= y′} has µs,yY measure zero. In other words,
π|Y s(y) is one-to-one µs,yY almost everywhere.

Proof. As Y is compact, we may cover Y with a finite number of sets of the form
Ui = [Y u(zi, δi), Y

s(zi, δi)]. Fix Ui and y ∈ Ui, let Bi = [Y u(zi, δi), y], Ci =
[y, Y s(zi, δi)], so we can write Ui = [Bi, Ci].

Let Si = {y′ ∈ Ci | π(y′) = π(ỹ) for some ỹ 6= y′}. Since π is u-resolving, the
set Ui ∩ {y′ ∈ Y | π(y′) = π(z) for some z 6= y′} = [Bi, Si]. Now, we know that π
is 1-to-1 µY almost everywhere, so

0 = µY ([Bi, Si]) = µu,yY (Bi)µ
s,y
Y (Si).

We also know that

0 6= µY (Ui) = µY ([Bi, Ci]) = µu,yY (Bi)µ
s,y
Y (Ci).
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So µu,yY (Bi) 6= 0 and thus µs,yY (Si) = 0. The conclusion follows. �

Note that the analogous result with an s-resolving map and µu,yY also holds.

Proposition 3.5. Let (Y, ψ) and (X,ϕ) be irreducible Smale spaces, and π : Y →
X an almost one-to-one u-resolving factor map. Let x ∈ X and y1, y2 ∈ π−1{x}.
Let B ⊂ Xu(x, ε) be a Borel set, then µu,y1

Y (π−1(B)) = µu,y2

Y (π−1(B)).

Proof. For each z1 ∈ Y u(y1) there exists a unique z2 ∈ Y u(y2) such that π(z1) =
π(z2). Consider the following set

E = {z1 ∈ Y u(y1) | z2 ∈ Y s(y1)}
and its compliment in Y u(y1), Ec. We will show that µu,y1

Y (Ec) = 0, and that on
E the map defined by f(z1) = z2 takes the measure µu,y1

Y to µu,y2

Y .
We begin by showing that E is non-empty. Fix x ∈ X such that x has a

unique pre-image under π, π−1{x} = {y}. Now, since Y u(y1) is dense in Y we
can find a sequence {zi} ⊂ Y u(y1) such that zi → y. Now consider the sequence
{z′i} ⊂ Y u(y2) where π(zi) = π(z′i). By compactness of Y , {z′i} has a convergent
subsequence {z′ik}. Denote the limit of this subsequence by y′. Now by continuity
of π we have

π(y′) = π( lim
k→∞

z′ik) = lim
k→∞

π(z′ik) = lim
k→∞

π(zik) = π( lim
k→∞

zik) = π(y) = x.

As x has a unique pre-image, we see that y′ = y. It follows that for k sufficiently

large, d(zik , z
′
ik

) < επ. Therefore, by Lemma 3.3 from [8] we have zik
s∼ z′ik and

hence E is non-empty.

We now show that E is open in Y u(y1). Let z1 ∈ E. Since z1
s∼ z2, we can

find n large enough so that d(ψn(z1), ψn(z2)) < επ/3. Choose δ small enough so
that Y u(ψn(z1, δ)) ⊂ Y u(ψn(z1), επ/3) and the set U(ψn(z2)) ⊂ Y u(ψn(z2), επ/3).
Where π(U(ψn(z2)) = π(Y u(ψn(z1), δ)). Let A1 = ψ−n(Y u(ψn(z1), δ)), A2 =
ψ−n(U(ψn(z2))). Now for each z ∈ A1, the unique z′ ∈ A2 such that π(z) = π(z′)
is such that d(ψn(z), ψn(z′)) < επ and π(ψn(z)) = π(ψn(z′)). By Lemma 3.3 from

[8] we have that ψn(z)
s∼ ψn(z′) and therefore z

s∼ z′. So A1 ∈ E and hence E is
open.

Now E open (and non-empty) implies that µu,y1

Y (E) > 0, and since E is ψ-
invariant and µu,y1

Y (ψ(E)) = λµu,y1

Y (E) we must have that µu,y1

Y (E) =∞.
We now show that on the set E the map f(z1) = z2 takes µu,y1

Y to µu,y2

Y . Let n,
A1, A2 be as above. Then for z ∈ A1 the map f(z) = z′ ∈ A2 can be written as
f(z) = ψ−n([ψn(z), ψn(z2)]. So for a Borel set B ⊂ A we have

µu,y2

Y ◦ f(B) = µu,y2

Y (ψ−n([ψn(B), ψn(z2)]))

= λ−nµu,y2

Y ([ψn(B), ψn(z2)])

= λ−nµu,y1

Y (ψn(B))

= µu,y1

Y (B).

It remains to show that µu,y1

Y (Ec) = 0 (by the above ψ-invariance remark, the
measure of Ec is either 0 or ∞). Fix y ∈ Y u(y1), δ < εY /2 and consider the sets
A1 = [E ∩ Y u(y, δ), Y s(y, δ)], A2 = [Ec ∩ Y u(y, δ), Y s(y, δ)]. We know

µY (A1) = µu,y1

Y (E ∩ Y u(y, δ))µs,yY (Y s(y, δ)) > 0

and
µY (A2) = µu,y1

Y (Ec ∩ Y u(y, δ))µs,yY (Y s(y, δ)).
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Since µs,yY (Y s(y, δ)) > 0, to prove that µu,y1

Y (Ec) = 0 it suffices to show that
µY (A2) = 0. To this end consider ψ(A2). A typical point z ∈ A2 can be written
z ∈ Y s(z′, δ) where z′ = [z, y] ∈ Ec. So ψ(z) ∈ ψ(Y s(z′, δ)) ⊂ Y s(ψ(z′), δ)
where ψ(z′) ∈ Ec. This shows that A1 ∩ ψ(A2) = ∅. Similarly we can show that
A1 ∩ψk(A2) = ∅ for any k ≥ 0. However, ψ is strong mixing with respect to µY so
we have

µY (A1)µY (A2) = lim
k→∞

µY (A1 ∩ ψk(A2)) = µY (∅) = 0.

Since we know µY (A1) > 0, we have µY (A2) = 0 and hence µu,y1

Y (Ec) = 0.
�

We state the following result which was proved by the second author as Theorem
2.5.3 in [10].

Theorem 3.6. Let (Y, ψ) and (X,ϕ) be Smale spaces, and π : Y → X an almost
one-to-one u-resolving factor map. There is a constant M ≥ 1 such that

(1) For any x ∈ X there exist y1, . . . , yK with K ≤M such that

π−1(Xs(x)) =
K⋃
i=k

Y s(yk)

and
(2) for any x ∈ X, #π−1{x} ≤M .

The previous two results allow us to make the following definition.

Definition 3.7. Let (Y, ψ) and (X,ϕ) be irreducible Smale spaces, and π : Y → X
an almost one-to-one u-resolving factor map. Let x ∈ X Fix y ∈ π−1{x}, and fix
{y1, . . . , yK} as in Theorem 3.6. Define measures on Xs(x), Xu(x) by

µs,xX =

K∑
k=1

π∗µs,ykY

µu,xX = π∗µu,yY

Remark 3.8. We have stated Defn. 3.7 in terms of an almost one-to-one u-
resolving factor map. Given two Smale spaces and an almost one-to-one s-resolving
factor map, we would make the analogous definition, interchanging roles of stable
and unstable sets.

Proposition 3.9. Let (Y, ψ), (X,ϕ) be irreducible Smale spaces, and π : Y → X be
an almost one-to-one resolving factor map (s, or u-resolving). Suppose Y satisfies
the conclusion of Theorem 2.1. With the measures defined in Defn. 3.7, X also
satisfies the conclusion of Theorem 2.1.

Proof. We prove the result in the case that π is u-resolving. The s-resolving case
is completely analogous. Let x ∈ X and let C = Xs(x1, δ) ⊂ Xs(x, ε), B =
Xu(x2, δ) ⊂ Xu(x, ε). Fix y ∈ Y and U(y) ⊂ Y u(y) such that π(y) = x2, π(U(y)) =
Xu(x2, δ) = B. We need to show

(1) µX([B,C]) = µu,xX (B)µs,xX (C)
(2) For z close to x, µu,xX (B) = µu,zX ([B, z])

(3) µ
u,ϕ(x)
X (ϕ(B)) = λµu,xX (B)

(4) For z close to x, µs,xX (C) = µs,zX ([z, C])
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(5) µ
s,ϕ(x)
X (ϕ(C)) = λ−1µs,xX (C).

We will prove item 2 first, as we will use this result in the proof of item 1.

P2 We can find y′ ∈ π−1(z) such that y′ is ‘close’ to y. Then,

µu,xX (B) = µu,yY (U(y)) = µu,y
′

Y ([U(y), y′]) = µu,zX (π([U(y), y′]))

but π([U(y), y′]) = [π(U(y)), π(y′)] and π(U(y)) = B, π(y′) = z so we have

µu,xX (B) = µu,zX (π([U(y), y′])) = µu,zX ([π(U(y)), π(y′)]) = µu,zX ([B, z]).

P1 Since C ⊂ Xs(x, ε) is open with compact closure, by lemma 3.6 we can
write

π−1(C) =

m⋃
i=1

C ′i

where C ′i ⊂ Y s(yi) for some yi ∈ Y . Moreover, we write each C ′i as a
disjoint union of finitely many sets

C ′i =

ki⋃
j=1

C ′ij

where C ′ij ⊂ Y s(yij , εY /2), and yij ∈ C ′ij . Let xij = π(yij), and let Bij =
[B, xij ]. Let B′ij ⊂ Y u(yij) be such that π : B′ij → Bij is a homeomorphism.
We can then write

[B,C] = π

⋃
i,j

[B′ij , C
′
ij ]

 .

So

µX([B,C]) = µY

⋃
i,j

[B′ij , C
′
ij ]

 =
∑
i,j

µY ([B′ij , C
′
ij ])

=
∑
i,j

µ
u,yij
Y (B′ij)µ

s,yij
Y (C ′ij).

Now µ
u,yij
Y (B′ij) = µ

u,xij

X (Bij) = µu,xX (B) for all i, j (by part 1), so we have

µX([B,C]) = µu,xX (B)
∑
i,j

µ
s,yij
Y (C ′ij) =

µu,xX (B)
∑
i

µs,yiY (C ′i) = µu,xX (A)µs,xX (B).

P3

µ
u,ϕ(x)
X (ϕ(B)) = µ

u,ψ(y)
Y (ψ(U(y))) = λµu,yY (U(y)) = λµu,xX (B).

P4 We can find y′ ∈ π−1(z) such that y′ ∈ Y u(y, ε). Let xij , yij , C
′
i, C

′
ij be as

in part 2. Let Cij = π(C ′ij), zij = [z, xij ], C(z)ij = [z, Cij ], y
′
ij ∈ π−1(zij)

s.t. y′ij ∈ Y u(yij , ε) and C̃ ′ij = [y′ij , C
′
ij ]. Then zij = π(y′ij), Cij = π(C ′ij),
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π(C̃ ′ij) = [zij , Cij ], and ∪C(z)ij = [z,∪Cij ] = [z, C] so

µs,xX (C) =
∑
i

µs,yiY (C ′i) =
∑
i,j

µ
s,yij
Y (C ′ij)

=
∑
i,j

µ
s,y′ij
Y (C̃ ′ij) = µs,zX (∪ijC(z)ij) = µs,zX ([z, C])

P5

µ
s,ϕ(x)
X (ϕ(C)) =

∑
i

µ
s,ψ(yi)
Y (ψ(C ′i)) =

∑
i

λ−1µ
s,yi
Y (C ′i) = λ−1µs,xX (C)

�

Proof of Theorem 2.1. As in Cor. 1.4 in [9], for the irreducible Smale space (X,ϕ)
we can find another irreducible Smale space (Y, ψ) and an irreducible SFT (Σ, σ),
as well as almost 1-to-1 factor maps π1 : Σ → Y , π2 : Y → X such that π1 is
s-resolving and π2 is u-resolving. The conclusion then follows from Prop. 3.1 and
2 applications of Prop. 3.9. �

4. Proof of Main Result

To prove Theorem 2.5 we first establish the result for a mixing SFT and use the
machinery of resolving maps to obtain the more general result.

Proposition 4.1. Let (Σ, σ) be a mixing SFT. Fix x, y ∈ Σ, n,m ∈ Z and define

B = {z ∈ Σ | zi = xi ∀i ≤ n} = Σun(x) ⊂ Σu(x, εΣ)

C = {z ∈ Σ | zi = yi ∀i ≥ −m+ 1} = Σsm(y) ⊂ Σs(y, εΣ).

For each function f ∈ C(Σ) we have

lim
k→∞

∫
Σ

fdµkB,C =

∫
Σ

fdµΣ.

In other words, µkB,C → µΣ in the weak-∗ topology.

Proof. Let A be the adjacency matrix for the SFT. It suffices to prove the result
for a function of the form el(ξ) = χEl(ξ). Where El(ξ) = Σl,i′,j′(ξ). Now for
k ≥ max{n+ l,m+ l}∫

Σ

el(ξ)dµ
k
B,C = µkB,C(El(ξ)) =

#
(
El(ξ) ∩ hkB,C

)
#hkB,C

.

Consider a point z ∈ El(ξ)∩hkB,C . Since z ∈ El(ξ), zp = ξp for all−l+1 ≤ p ≤ l, and

since z ∈ hkB,C , zp = xp for all p ≤ n− k, zp = yp for all p ≥ −m+ 1 + k. Therefore

the number of points in El(ξ) ∩ hkB,C is equal to the number of paths of length

−l+ 1− (n−k)− 1 = k− (n+ l) from t(σk(x)−k+n) = t(xn) = vi to i(ξ−l+1) = vi′ ,

which equals A
k−(n+l)
ii′ , times the number of paths of length −m+ 1 + k − l − 1 =

k− (m+ l) from t(ξl) = vj′ to i(σ−k(y)k−m+1) = i(y−m+1) = vj , or A
k−(m+l)
j′j . The

number of points in hkB,C is the number of paths from t(σk(x)−k+n) = t(xn) = vi

to i(σ−k(y)k−m+1) = i(y−m+1) = vj , or A
2k−(n+m)
ij . We therefore have∫

Σ

el(ξ)dµ
k
B,C =

A
k−(n+l)
ii′ A

k−(m+l)
j′j

A
2k−(n+m)
ij

,
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and

lim
k→∞

∫
Σ

el(ξ)dµ
k
B,C

= lim
k→∞

A
k−(n+l)
ii′ A

k−(m+l)
j′j

A
2k−(n+m)
ij

= lim
k→∞

eiA
k−(n+l)ei′ej′A

k−(m+l)ej
eiA2k−(n+m)ej

= λ−2l ei limk(λ−k+(n+l)Ak−(n+l))ei′ej′ limk(λ−k+(m+l)Ak−(m+l))ej
ei limk(λ−2k+(n+m)A2k−(n+m))ej

= λ−2l ei(urul)ei′ej′(urul)ej
ei(urul)ej

(by Thm. 4.5.12 in [6])

= λ−2l ur(i)ul(i
′)ur(j

′)(ul(j)

ur(i)ul(j)

= λ−2lul(i
′)ur(j

′)

= µΣ(Σl,i′,j′(ξ))

=

∫
Σ

el(ξ)dµΣ.

�

In the above, the choice of the sets B, C, is limited to certain basic sets. We
now wish to extend this result to open sets with compact closure B′ ⊂ Σu(x),
C ′ ⊂ Σs(x). To do this we will first need the following lemmas.

Lemma 4.2. Let (Σ, σ) be a mixing SFT. Fix x, y ∈ Σ, n,m ∈ Z and define

B = {z ∈ Σ | zi = xi ∀i ≤ n} = Σun(x) ⊂ Σu(x, εΣ)

C = {z ∈ Σ | zi = yi ∀i ≥ −m+ 1} = Σsm(y) ⊂ Σs(y, εΣ).

Then
lim
k→∞

λ−2k#hkB,C = µu,xΣ (B)µs,yΣ (C),

where log(λ) = h(Σ, σ).

Proof. Let t(xn) = vi and i(y−m+1) = vj . We then have

lim
k→∞

λ−2k#hkB,C = lim
k→∞

λ−2kA
2k−(n+m)
ij

= λ−(n+m) lim
k→∞

λ−2k+n+meiA
2k−(n+m)ej

= λ−(n+m)eiurulej

= λ−nur(i)λ
−mul(j)

= µu,xΣ (B)µs,yΣ (C).

�

Lemma 4.3. Let B ⊂ Σu(x), C ⊂ Σs(y) be open and compact. Then

lim
k→∞

λ−2k#hkB,C = µu,xΣ (B)µs,yΣ (C),

where log(λ) = h(Σ, σ).
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Proof. If B and C are clopen, then each is a finite disjoint union of cylinder sets of
the form considered in Lemma 4.2. Let

B =

n∑
i=1

Bi, C =

m∑
i=1

Ci,

then for fixed k the hkBi,Cj
are pairwise disjoint and ∪i,jhkBi,Cj

= hkB,C . Using

Lemma 4.2 we can now write

lim
k→∞

λ−2k#hkB,C = lim
k→∞

∑
i,j

λ−2k#hkBi,Cj

=
∑
i,j

lim
k→∞

λ−2k#hkBi,Cj

=
∑
i,j

µu,xΣ (Bi)µ
s,y
Σ (Cj)

= µu,xΣ (B)µs,yΣ (C).

�

Lemma 4.4. Let B ⊂ Σu(x), C ⊂ Σs(y) be open with compact closure. Then

lim
k→∞

λ−2k#hkB,C = µu,xΣ (B)µs,yΣ (C),

where log(λ) = h(Σ, σ).

Proof. Fix ε > 0 We can find sets B1 ⊆ B ⊆ B2 ⊂ Σu(x) and C1 ⊆ C ⊆ C2 ⊂ Σs(y)
such that B1, B2, C1 and C2 are compact and open and

µu,xΣ (B2)µs,yΣ (C2)− ε < µu,xΣ (B)µs,yΣ (C) < µu,xΣ (B1)µs,yΣ (C1) + ε.

Notice that #hkB1,C1
≤ #hkB,C ≤ #hkB2,C2

, so

µu,xΣ (B)µs,yΣ (C)− ε < µu,xΣ (B1)µs,yΣ (C1)

= lim
k→∞

λ−2k#hkB1,C1

≤ lim inf
k→∞

λ−2k#hkB,C

and

µu,xΣ (B)µs,yΣ (C) + ε > µu,xΣ (B2)µs,yΣ (C2)

= lim
k→∞

λ−2k#hkB2,C2

≥ lim sup
k→∞

λ−2k#hkB,C .

As this hold for all ε > 0 we have

lim sup
k→∞

λ−2k#hkB,C ≤ µ
u,x
Σ (B)µs,yΣ (C) ≤ lim inf

k→∞
λ−2k#hkB,C

and hence
lim
k→∞

λ−2k#hkB,C = µu,xΣ (B)µs,yΣ (C).

�

We are now ready to prove the more general version of Prop. 4.1.

Proposition 4.5. The result of Prop. 4.1 holds with B ⊂ Σu(x), C ⊂ Σs(y) open
with compact closure.
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Proof. We can write

B =
⋃
i

Bi, C =
⋃
j

Ci

where each Bi, Ci is of the form considered in Prop. 4.1, and the unions are disjoint.
For brevity we write

hk = hkB,C , µk = µkB,C

and

hkij = hkBi,Cj
, µkij = µkBi,Cj

Notice that for fixed k the hkij ’s are pairwise disjoint and ∪i,jhkij = hk. We can
write

lim
k→∞

∫
Σ

fdµk = lim
k→∞

∑
i,j

#hkij
#hk

∫
Σ

fdµkij .

Now let M = supz∈Σ |f(z)|, which is finite as f is continuous and Σ is compact.

For each k,
∑
i,j

#hk
ij

#hk = 1 so for any I ∈ N we can write

1 = lim
k→∞

∑
i,j

#hkij
#hk

= lim
k→∞

I∑
i,j=1

#hkij
#hk

+ lim
k→∞

∑
I+

#hkij
#hk

.

Where I+ is the set of all pairs (i, j) such that either i > I, or j > I. We also know
that

1 =
∑
i,j

µu,xΣ (Bi)µ
s,y
Σ (Cj)

µu,xΣ (B)µs,yΣ (C)

and we may choose I large enough so that

lim
k→∞

∑
I+

#hkij
#hk

<
ε

2M
,

and

|
I∑
i,j

µu,xΣ (Bi)µ
s,y
Σ (Cj)

µu,xΣ (B)µs,yΣ (C)
− 1| < ε

2M
.
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Using Lemma 4.4 and Prop. 4.1 we now have∣∣limk→∞
∫

Σ
fdµk −

∫
Σ
fdµΣ

∣∣
=

∣∣∣∣limk→∞
∑
i,j

#hk
ij

#hk

∫
Σ
fdµkij −

∫
Σ
fdµΣ

∣∣∣∣
=

∣∣∣∣(limk→∞
∑I
i,j

#hk
ij

#hk + limk→∞
∑
I+

#hk
ij

#hk

)∫
Σ
fdµkij −

∫
Σ
fdµΣ

∣∣∣∣
=

∣∣∣∣∑I
i,j limk→∞

λ−2k#hk
ij

λ−2k#hk

∫
Σ
fdµkij + limk→∞

∑
I+

#hk
ij

#hk

∫
Σ
fdµkij −

∫
Σ
fdµΣ

∣∣∣∣
=

∣∣∣∣∑I
i,j

µu,x
Σ (Bi)µ

s,y
Σ (Cj)

µu,x
Σ (B)µs,y

Σ (C)

∫
Σ
fdµΣ + limk→∞

∑
I+

#hk
ij

#hk

∫
Σ
fdµkij −

∫
Σ
fdµΣ

∣∣∣∣
≤

∣∣∣∫Σ fdµΣ

(∑I
i,j

µu,x
Σ (Bi)µ

s,y
Σ (Cj)

µu,x
Σ (B)µs,y

Σ (C)
− 1
)∣∣∣+

∣∣∣∣limk→∞
∑
I+

#hk
ij

#hk

∫
Σ
fdµkij

∣∣∣∣
≤

∣∣∣M (∑I
i,j

µu,x
Σ (Bi)µ

s,y
Σ (Cj)

µu,x
Σ (B)µs,y

Σ (C)
− 1
)∣∣∣+

∣∣∣∣M limk→∞
∑
I+

#hk
ij

#hk

∣∣∣∣
< M ε

2M +M ε
2M

= ε.

This holds for all ε > 0 so

lim
k→∞

∫
Σ

fdµk =

∫
Σ

fdµΣ

�

We now wish to extend this result to the mixing Smale space case. The main
tool will be resolving factor maps, and the results in [9].

The following proposition allows us to extend the result of lemma 4.4 to general
mixing Smale spaces.

Proposition 4.6. Let (X,ϕ), and (Y, ψ) be mixing Smale spaces, π : Y → X an
almost 1-to-1 (s or u) resolving factor map, and suppose the conclusion of lemma
4.4 holds for (Y, ψ). Then the conclusion of lemma 4.4 holds for (X,ϕ).

Proof. Suppose π is u-resolving (the s-resolving case is completely analogous). Let
x1, x2 ∈ X and B ⊂ Xu(x1), C ⊂ Xs(x2), and let

hkX = hkB,C , µkX = µkB,C .

Now, set C ′ = π−1
1 (C). By Lemma 3.6 C ′ = ∪m1 C ′i, where the union is disjoint

and C ′i ⊂ Y s(y2,i) for some y2,i ∈ Y . Also, fix y1 ∈ π−1(x1), and set B′ such that
π : B′ → B is a homeomorphism, so B′ ∈ Y u(y1). Now

hkB′,C′ =

m⋃
1

hkB′,C′i , #hkB′,C′ =

m∑
1

#hkB′,C′i

Notice that since hkB′,C′ ⊂ Y u(ϕ−k(y1)) and π is u-resolving, π is one-to-one (and

hence bijective) on hkB′,C′ . In other words #hkB,C = #hkB′,C′ . Also, recall from
prop. 3.9 that

µu,x1

X (B) = µu,y1

Y (B′), and µs,x2

X (C) =

m∑
1

µ
s,y2,i

Y (C ′i).
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Now,

lim
k→∞

λ−2k#hkB,C = lim
k→∞

λ−2k#hkB′,C′

= lim
k→∞

m∑
1

λ−2k#hkB′,C′i

=

m∑
1

µu,y1

Y (B′)µ
s,y2,i

Y (C ′i)

= µu,x1

X (B)µs,x2

X (C)

�

We are now ready to prove Theorem 2.4

Proof of Theorem 2.4. As in Cor. 1.4 in [9], for the mixing Smale space (X,ϕ) we
can find another mixing Smale space (Y, ψ) and a mixing SFT (Σ, σ), as well as
almost 1-to-1 factor maps π1 : Σ → Y , π2 : Y → X such that π1 is s-resolving
and π2 is u-resolving. The first conclusion then follows from lemma 4.4 and 2
applications of Prop. 4.6.

For the second statement notice that

lim
k→∞

λ−2k#hkB,C = µu,xX (B)µs,yX (C).

and hence
lim
k→∞

log(λ−2k#hkB,C) = log(µu,xX (B)µs,yX (C)).

It follows that

lim
k→∞

(
log(#hkB,C)− 2k log(λ)− log(µu,xX (B)µs,yX (C))

)
= 0.

lim
k→∞

(
log(#hkB,C)

2k
− h(X,ϕ)−

log(µu,xX (B)µs,yX (C))

2k

)
= 0.

lim
k→∞

(
log(#hkB,C)

2k
− h(X,ϕ)

)
= 0.

�

The following proposition allows us to extend Prop. 4.5 from the mixing SFT
case to the mixing Smale space case and prove Theorem 2.5.

Proposition 4.7. Let (X,ϕ), and (Y, ψ) be mixing Smale spaces, π : Y → X an
almost 1-to-1 (s or u) resolving factor map, and suppose the conclusion of Theorem
2.5 holds for (Y, ψ). Then the conclusion of Theorem 2.5 holds for (X,ϕ).

Proof. Suppose π is u-resolving (the s-resolving case is completely analogous). Let
x1, x2 ∈ X and B ⊂ Xu(x1), C ⊂ Xs(x2), and let

hkX = hkB,C , µkX = µkB,C .

Now, set C ′ = π−1(C). By Lemma 3.6 C ′ = ∪m1 C ′i, where the union is disjoint
and C ′i ⊂ Y s(y2,i) for some y2,i ∈ Y . Also, fix y1 ∈ π−1(x1), and set B′ such that
π : B′ → B is a homeomorphism, so B′ ∈ Y u(y1). Now set

hkX = hkB′,C′ =

m⋃
1

hkB′,C′i , µkX = µkB′,C =

m∑
1

#hkB′,C′i
#hkB′,C′

µkB′,C′i .
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Notice that since hkY ⊂ Y u(ϕ−k(y1)) and π is u-resolving, π is one-to-one (and
hence bijective) on hkY . In other words hkX = π(hkY ), and therefore µkY = (µkX ◦ π).
Also recall from Lemma 2.4 that

lim
k→∞

#hkB′,C′i
#hkB′,C′

=
µ
u,y2,i

Y (C ′i)∑k
j=1 µ

u,y2,j

Y (C ′j)
.

Now, for f ∈ C(X)∫
X

fdµX =

∫
π−1(X)

(f ◦ π)d(µX ◦ π) =

∫
Y

(f ◦ π)dµY

= lim
k→∞

∫
Y

(f ◦ π)dµkB′,C′i for any i, by hypothesis

=

(
lim
k→∞

∫
Y

(f ◦ π)dµkB′,C′i

) m∑
i=1

µ
u,y2,i

Y (C ′i)∑k
j=1 µ

u,y2,j

Y (C ′j)

=

(
lim
k→∞

m∑
1

#hkB′,C′i
#hkB′,C′

∫
Y

(f ◦ π)dµkB′,C′i

)

= lim
k→∞

∫
Y

(f ◦ π)dµkY

= lim
k→∞

∫
Y

(f ◦ π)d(µkX ◦ π)

= lim
k→∞

∫
X

fdµkX

�

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. As in Cor. 1.4 in [9], for the mixing Smale space (X,ϕ) we
can find another mixing Smale space (Y, ψ) and a mixing SFT (Σ, σ), as well as
almost one-to-one factor maps π1 : Σ→ Y , π2 : Y → X such that π1 is s-resolving
and π2 is u-resolving. The conclusion then follows from Prop. 4.5 and 2 applications
of Prop. 4.7. �

Finally, we prove Theorems 2.8 and 2.10.

Proof of Theorems 2.8 and 2.10. We assume that B,C are contained in Xi0 . With-
out loss of generality, we assume i0 = 1. Since for any n ≥ 0, ϕn(B), ϕn(C) are
both contained in X1+n (where 1 + n is interpreted modulo I), the intersection of
hkB,C with Xi is ϕkI+i−1(B)∩ ϕ−kI+i−1(C), which we denote by hki . Furthermore,
we define

µki = (#hki )−1
∑
z∈hk

i

δz.

With 1 ≤ i ≤ I fixed, consider Theorem 2.4 applied to the system (Xi, ϕ
I | Xi) with

local unstable and stable sets ϕi−1(B) and ϕi−1(C). Notice also that h(Xi, ϕ
I) =



BOWEN MEASURE FROM HETEROCLINIC POINTS 17

Ih(X,ϕ), so if log(λ) = h(X,ϕ), log(λI) = h(Xi, ϕ
I). It now follows that

lim
k

#hki (λI)−2k = µ
u,ϕi−1(x)
X (ϕi−1(B))µ

u,ϕi−1(y)
X (ϕi−1(C))

= λ1−iµu,xX (B)λi−1µs,yX (C)

= µu,xX (B)µs,yX (C).

Noticing that

lim
k

#hkB,C
#hki

= I

we have

lim
k

#hkB,Cλ
−2kI = Iµu,xX (B)µs,yX (C).

It then follows as in the proof of Theorem 2.4 that

lim
k

hkB,C
2kI

= h(X,ϕ).

We also note that, Theorem 2.5 implies

lim
k
µki = µXi

.

Putting all of this together, we have

lim
k
µkB,C = lim

k
(#hkB,C)−1

∑
z∈hk

B,C

δz

= lim
k

(#hkB,C)−1
I∑
i=1

∑
z∈hk

i

δz

= lim
k

I∑
i=1

#hki
#hkB,C

(#hki )−1
∑
z∈hk

i

δz

= lim
k

I∑
i=1

#hki∑I
j=1 #hkj

µki

= lim
k

I∑
i=1

#hki λ
−2kI∑I

j=1 #hkjλ
−2kI

µki

=

I∑
i=1

µu,xX (B)µs,yX (C)

Iµu,xX (B)µs,yX (C)
µXi

=

I∑
i=1

1

I
µXi

= µX .

�
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