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Preface

In the 1960’s, Steven Smale began an ambitious program to study the dy-
namics of smooth maps on manifolds [33]. This program has since become
a substantial part of the theory of dynamical systems and can be found in
many basic texts. In addition, many of the fundamental ideas and principles
have had a large influence throughout dynamical systems. For example, see
[7, 16, 20, 30].

Smale introduced the notion of an Axiom A system: the main condition
is that the map, when restricted to its set of non-wandering points, has a
hyperbolic structure. Smale showed that the non-wandering of an Axiom A
system can be canonically decomposed into finitely many disjoints sets, each
of which is irreducible in a certain sense. Such sets are called basic sets.
The study of the system then breaks down into the study of the individual
basic sets and the problem of how the rest of the manifold is assembled
around them. An important subtlety that Smale realized from the start was
that the basic sets were not typically submanifolds, but rather some sort of
fractal object. Moreover, the hyperbolic nature of the dynamics on the basic
set (along with the assumption that the periodic points are dense in the non-
wandering set) created the conditions which are now usually referred to as
chaos. This study forms the mathematical foundations for chaos, which has
had a profound impact in many areas of science and beyond.

David Ruelle introduced the notion of a Smale space in an attempt to
axiomatize the dynamics of an Axiom A system, when restricted to a basic
set (or the non-wandering set) [31]. This involved giving a definition of hy-
perbolicity for a homeomorphism of a compact metric space. From our point
of view here, there are two essential differences between the non-wandering
set for an Axiom A system and a Smale space. The first is that in the for-
mer, every point is non-wandering, which need not be the case for a Smale
space. Indeed our constructions will involve a number of Smale spaces with
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wandering points. Secondly, a Smale space can be described without seeing
it as a subset of a manifold (to which the dynamics extends in an appropriate
manner).

Very early on, a particular class of Smale spaces took a prominent role:
the shifts of finite type. As the name suggests, these are dynamical systems
of a highly combinatorial nature and the spaces involved are always totally
disconnected. They had been studied previously, but in this context they
appeared in two essential ways. First, Smale showed how such systems could
appear as basic sets for Axiom A system; the full 2-shift is a crucial feature
in Smale’s horseshoe. Secondly, they could be used to code more complicated
systems. This idea is originally credited to Hadamard for modelling geodesic
flows [19] and was pursued in work of Morse [26], Morse and Hedlund [27]
and many others. For a modern treatment, see [4]. For Axiom A systems,
Bowen [6], building on work of Adler-Weiss, Sinai and others, proved that
every basic set (or every Smale space) is the image of a shift of finite type
under a finite-to-one, continuous, equivariant surjection. The study of shifts
of finite type has become a major one in dynamical systems, in part due to
important connections with coding theory and information theory [23].

The zeta function of a dynamical system was introduced by Artin and
Mazur [2] as a convenient tool for encoding the data of the number of periodic
points (of all periods) of the system. Bowen and Landford [9] gave a simple
formula for the zeta function of a shift of finite type which is the inverse of
a polynomial. Following this, using Bowen’s result on the coding by a shift
of finite type, Manning [24] proved that the zeta function of the restriction
of an Axiom A system to any basic set was a rational function. Indeed, it
was written as a product of the zeta function for the coding shift and other
shifts which coded the multiplicities of the factor map. Based on this, Bowen
conjectured the existence of some sort of homology theory for basic sets and a
Lefschetz-type formula which would link the number of periodic points with
the trace of the action of the dynamics on this homology. (See section 3 of
[7].) At least formally, the situation is similar to that of the Weil conjectures
[17].

The first step in this direction was achieved independently by Bowen and
Franks [8] and Krieger [22] by describing invariants for shifts of finite type.
The two are slightly different (they appear almost to be duals of each other).
(A word of warning: the invariant usually referred to as the Bowen-Franks
group is not the one to which we refer here.) We will concentrate on Krieger’s
version, often referred to as the dimension group invariant. There are several
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reasons, primarily because it has been the focus of a great deal of research
in symbolic dynamics and has proved to be a highly effective invariant.

Having this invariant at hand for shifts of finite type makes Bowen’s
conjectured homology theory look even more likely, but the problem has
remained open until now. Here, we give a solution by presenting a homology
theory for Smale spaces which is built very much along the lines indicated,
using a refinement of Bowen’s coding by a shift of finite type and Krieger’s
invariant. In fact, our theory improves on Bowen’s conjecture by providing
finite rank groups, instead of finite-dimensional vector spaces.

In some sense, many of the usual tools of algebraic topology, such as Cech
cohomology, seem poorly suited to the study of basic sets. For example, the
Cech cohomology of the underlying space of an infinite shift of finite type
is not finite rank. It can be hoped that our homology theory will provide a
more useful and effective invariant for basic sets in an Axiom A system.

I am grateful to Mike Boyle and to Jerry Kaminker for many helpful
discussions on a wide variety of issues related to this work. I am also grateful
to Trung Luu for his help regarding ordered and alternating complexes. I am
grateful to David Ruelle for pointing out Corollary 6.1.2 and its significance.
I am also grateful to Robin Deeley, Brady Killough and Mike Whittaker for
finding a mistake in the original version of Theorem 3.5.11, and for many
interesting discussions around the issue and its resolution. Finally, I am
grateful to the referee for many helpful suggestions with the manuscript.
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Chapter 1

Summary

The aim of this paper is to define a type of homology theory for Smale spaces,
which include the basic sets for Smale’s Axiom A systems. The existence of
such a theory was conjectured by Rufus Bowen [7]. Our approach is based
on Krieger’s dimension group invariant for shifts of finite type. We will use
this chapter as an introduction to the concepts and a summary of the paper,
stating the main new definitions and results.

We will be concerned with Smale spaces, as defined by David Ruelle [31];
we summarize here informally, the precise definition will be given in Defini-
tion 2.1.6. We have a compact metric space (X, d) and a homeomorphism, ϕ,
of X. Such a topological dynamical system is called a Smale space if it pos-
sesses local coordinates of contracting and expanding directions. Roughly,
to any point x in X and ε sufficiently small, there exist subsets Xs(x, ε)
and Xu(x, ε) called the local stable and unstable sets at x. Their Cartesian
product is homeomorphic to a neighbourhood of x. The parameter ε controls
the diameter of these sets and, as it varies, these product neighbourhoods
form a neighbourhood base at x. The contracting/expanding nature of ϕ is
described by the condition that there is a constant 0 < λ < 1 such that

d(ϕ(y), ϕ(z)) ≤ λd(y, z), for all y, z ∈ Xs(x, ε),

d(ϕ−1(y), ϕ−1(z)) ≤ λd(y, z), for all y, z ∈ Xu(x, ε).

There is also a condition roughly indicating that the local product structure
is invariant under ϕ. Ruelle’s precise definition involves the existence of a
map [x, y] defined on pairs (x, y) which are sufficiently close and with range
in X. The idea is that [x, y] is the unique point in the intersection of the local
stable set of x and the local unstable set of y. Ruelle provided appropriate
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2 CHAPTER 1. SUMMARY

axioms for this map. Given the map [·, ·], the set Xs(x, ε) consists of those y
with d(x, y) ≤ ε and [x, y] = y, or equivalently (via the axioms) [y, x] = x.

Ruelle’s main objective in giving such a definition was to provide an ax-
iomatic framework for studying the basic sets for Smale’s Axiom A systems
[33, 7]. While Smale’s original definition is in terms of smooth maps of Rie-
mannian manifolds, the basic sets typically have no such smooth structure.
In addition, there are examples of Smale spaces, some of which will play an
important part in this paper, which do not appear in any obvious way as a
basic set sitting in a manifold. Moreover, basic sets, by their definition, are
irreducible while Smale spaces need not be. Again, there will be many Smale
spaces which play an important part here which fail to be non-wandering.

In a Smale space, two points x and y are stably equivalent if

lim
n→+∞

d(ϕn(x), ϕn(y)) = 0.

This is an equivalence relation on X and the equivalence class of a point
x is denoted Xs(x), also called its global stable set. There is an analogous
definition of unstable equivalence obtained by replacing ϕ with ϕ−1. As
the notation would suggest, there is a close link between the local stable
(unstable) sets and the global ones. This is made precise in Proposition
2.1.11. In addition, the local stable sets provide natural topologies on the
stable sets as described in Proposition 2.1.12.

For our purposes, the most important examples of Smale spaces are the
shifts of finite type. Begin with a finite directed graph G. The associated
shift space, ΣG, consists of all bi-infinite paths in G and the dynamics is
provided by the left shift map, σ. An excellent reference for these systems
is the book of Lind and Marcus [23]. We describe these precisely in Section
2.2, including the local product structure. We define shifts of finite type as
any system topologically conjugate to (ΣG, σ), for some graph G. There a
number of reasons why shifts of finite type play a crucial rôle. First of all,
there are important applications in coding theory. Secondly, many dynamical
problems in the general setting become combinatorial ones for shifts of finite
type. Thirdly, these are precisely the Smale spaces whose underlying space
is totally disconnected (Theorem 2.2.8) and we will use this fact frequently.
Finally, the two most important features for us here are Krieger’s dimension
group invariant (which we discuss below) and Bowen’s seminal result that,
given any irreducible Smale space, (X,ϕ), there exists a shift of finite type,
(Σ, σ), and a finite-to-one factor map π : (Σ, σ)→ (X,ϕ).
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In [22], motivated by R.F. Williams’ notion of shift equivalence [35], Wolf-
gang Krieger introduced a beautiful invariant for shifts of finite type. It is
an ordered abelian group having certain properties which are summarized
by saying it is a dimension group. In fact, there are two such invariants
associated to each shift of finite type, which Krieger called the past and the
future dimension groups. Here, we use the notation for stable and unstable
instead. For a shift of finite type, (Σ, σ), we will denote these two invariants
by Ds(Σ, σ) and Du(Σ, σ). Briefly, our aim in this paper is to extend the
definition of Krieger’s invariants so that they are defined for all Smale spaces.
We will not quite achieve this, but we will provide a definition for all Smale
spaces which are irreducible or even non-wandering (see 2.1.3), including the
basic sets of Axiom A systems.

The order structure on Krieger’s invariant is a very important part of the
theory. It will play no part in this paper and we treat the invariant simply
as an abelian group, but including this will be a goal of future investigations.

We present a precise treatment of Krieger’s invariant in chapter 3. For
the moment, we take the opportunity to discuss it in more general terms,
giving some history and motivation. Krieger’s starting point was the re-
alization that two C∗-algebras could be constructed from a shift of finite
type. This construction is quite ingenious, but since that time, more so-
phisticated techniques have been developed and, in modern language, these
are the C∗-algebras associated with stable and unstable equivalence. Krieger
also realized their structure could be described quite explicitly; each is the
closure of an increasing sequence of finite dimensional subalgebras. As such,
it was an easy matter to compute their K-theory groups, and these are are
the invariants. See [13].

Motivated by knowing the K-theory of the C∗-algebras involved, Krieger
gave a description of the invariants more directly related to the dynamics
[22]. As motivation, let us consider the computation of the Cech cohomol-
ogy of a compact, totally disconnected space X [14, 34, 5]. In general, to
compute cohomology, one begins with a (finite) open cover of the space. It
has associated a simplicial object called its nerve, coding which elements of
the open cover intersect non-trivially. One computes the (co-)homology of
this simplicial complex. Finally, one repeats this, refining the open covers,
obtaining an inductive system of cohomology groups and takes the limit.
One of the first main results is that any sequence of open covers will provide
the same result, provided they generate the topology of the space. Hence,
if X is totally disconnected, the simplest thing to do is to consider finite
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partitions of X into clopen sets. In this case, the nerve becomes trivial and
after taking the inductive limit one obtains the answer as the free abelian
group generated by all clopen subsets, modulo the subgroup generated by
U ∪ V − U − V , if U and V are clopen and disjoint.

With this in mind for motivation, we describe Krieger’s invariant for a
shift of finite type (Σ, σ) as follows. Consider all sets U which are clopen
subsets of a stable equivalence class, Σs(e), where, e varies over all points
of Σ. The topology on Σs(e) is that described in Proposition 2.1.12. There
are clearly too many such sets: if we look at a rectangular neighbourhood
in Σ, each stable fibre in the rectangle is homeomorphic to all of the others.
A clopen set in one has natural images in the others and we should con-
sider these as equivalent. We introduce an equivalence relation of this set
of subsets, take the free abelian group on the equivalence classes and finally
take the quotient by a subgroup as in the case of cohomology above. This
is described precisely in section 3.3. This is a minor variation on Krieger’s
original definition.

It is important to note that the equivalence relation above which we are
putting on the clopen subsets of the stable sets is derived naturally from
unstable equivalence. It would seem then, that we are attempting to com-
pute the Cech cohomology (in dimension zero) of the quotient space of Σ by
unstable equivalence. Fortunately, this is not the case, because this space is
uncountable but has only finitely many open subsets. The viewpoint of Alain
Connes’ program of noncommutative geometry is that such a badly behaved
quotient space should be replaced by a noncommutative C∗-algebra and this
is exactly what Krieger’s construction accomplishes in this case.

The next point to mention in the discussion of Krieger’s invariant is that
it is highly computable. If we are given a specific graph G and consider its as-
sociated shift of finite type, (ΣG, σ), the invariants Ds(ΣG, σ) and Ds(ΣG, σ)
can be computed from the graph. We review this in Section 3.2 and Theorem
3.3.3.

The functorial properties of Krieger’s invariant are quite a subtle matter.
Put simply, when does a map between two shifts of finite type induce a
map at the level of the invariants? To be more precise, a map between two
dynamical systems (Y, ψ) and (X,ϕ) is a continuous function π : Y → X such
that π◦ψ = ϕ◦π. Assuming both systems are Smale spaces, we say that π is
s-bijective if π maps the stable equivalence class of y bijectively to the stable
equivalence class of π(y), for each y in Y . There is obviously an analogous
definition of a u-bijective map. This definition is a slight variant of the
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notion of a resolving map, as introduced by David Fried [18], which requires
only injectivity when restricted to stable or unstable sets. A consequence is
that an s-bijective map is a homeomorphism between the local stable sets
(Theorem 2.5.12). This notion comes into play for Krieger’s invariant in a
crucial way. If π : (Σ, σ)→ (Σ′, σ) is an s-bijective map between two shifts of
finite type, then it induces a natural group homomorphism, denoted πs, from
Ds(Σ, σ) to Ds(Σ′, σ) and also one, denoted πu∗, from Du(Σ′, σ) to Du(Σ, σ).
Analogous results hold for u-bijective factor maps. Versions of these results
are proved in [10] but the approach there is to show the existence of specific
presentations of the shifts for which the construction of the induced maps
becomes quite simple. The first problem with this is that the naturality is
not clear; that is, if π and ρ are two such maps (with appropriate ranges
and domains), is (π ◦ ρ)s = πs ◦ ρs? By avoiding specific presentations, our
treatment makes this property clear. Of course, if the shifts of finite type are
presented by specific graphs, then we are faced with the problem of giving
explicit computations for the induced maps. This is done in Sections 3.4 and
3.5.

As mentioned above, one of the fundamental results on Smale spaces and
the reason that shifts of finite type play such an important role in the theory is
Bowen’s Theorem. To repeat, for any irreducible Smale space (X,ϕ), there is
a shift of finite type (Σ, σ) and a finite-to-one factor map π : (Σ, σ)→ (X,ϕ).

Let us speculate a little on how Bowen’s result might be used to obtain
an extension of Krieger’s invariant to a general Smale space (X,ϕ). Starting
from π : (Σ, σ)→ (X,ϕ) as above, we may form

ΣN(π) = {(e0, . . . , eN) | en ∈ Σ, π(e0) = π(e1) = · · · = π(eN)}.

for every N ≥ 0. With the obvious dynamics, this is also a shift of finite
type. So for each N , we may consider the invariant Ds(ΣN(π), σ). Further,
for each N ≥ 1 and 0 ≤ n ≤ N , there is a factor map, denoted by δn, from
(ΣN(π), σ) to (ΣN−1(π), σ) which simply deletes entry n. We would like to
consider the maps induced by the δn and sum over n, with alternating signs,
to obtain a boundary map from Ds(ΣN(π), σ) to Ds(ΣN−1(π), σ) and in this
way obtain a chain complex.

This approach is analogous to the computation of Cech cohomology for a
compact manifold. Here, (X,ϕ) replaces the manifold. An open cover may
be regarded as a surjection from another space which is the disjoint union of
Euclidean balls onto the manifold. Our (Σ, σ) plays the rôle of this disjoint
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union of Euclidean balls. The systems ΣN(π) are playing the roles of the
various intersections of the open sets in the covers. If one assumes these
are also topologically Euclidean balls (i.e. this is a good cover [5]), then the
cohomology of the manifold may be computed from the resulting complex
(and the knowledge of the cohomology of a Euclidean ball). In our situation,
the fact that each ΣN(π) is a shift of finite type is automatic.

The flaw in this plan comes exactly when one wants to consider the map
from Ds(ΣN(π), σ) to Ds(ΣN−1(π), σ) induced by δn. Without some extra
structure, there is no reason for δn to be s-bijective (or u-bijective). Hence,
the subtle nature of the functoriality of Krieger’s invariant is the obstruction.

The difficulties above are resolved if we begin with a factor map ρ :
(Σ, σ) → (X,ϕ), where (Σ, σ) is a shift of finite type, which is either s-
bijective or u-bijective. In the case the map ρ is s-bijective, the maps δn
will also be s-bijective and we may form a chain complex from the invariants
Ds(ΣN(ρ), σ). In the case the map ρ is u-bijective, the maps δn will be u-
bijective and we may form a cochain complex. It is worth noting however,
that this situation is a very special one. For example, the hypothesis that
the map ρ is s-bijective implies that the local stable sets in X are totally dis-
connected. Nevertheless, Chapter 4 is devoted to the study of the complexes
of such a map. This Chapter is rather technical and we will not review any
of the results here, but they are used in critical ways in the following chapter
where the homology is defined.

In this context, let us mention the work of Williams [36] who defined and
studied expanding attractors, which are basic sets in which the stable sets are
totally disconnected while the unstable sets are Euclidean. He gave a con-
struction of such systems as inverse limits of branched manifolds and showed
that every expanding attractor may be written in this way. More recently,
Wieler [37] generalized this to Smale spaces whose stable sets are totally
disconnected, without any hypothesis on the unstable sets. She provides an
inverse limit construction for such Smale spaces and proves that every irre-
ducible Smale space with totally disconnected stable sets can written in this
way.

Let us return now to the general case and the failed program we outlined
above which began with Bowen’s Theorem. The problem with the approach
really lies with Bowen’s Theorem, which is not strong enough. Instead of
beginning with a Smale space, (X,ϕ), and finding a shift of finite type which
maps onto it, we instead look for two other Smale spaces, (Y, ψ) and (Z, ζ)
along with factor maps πs : (Y, ψ) → (X,ϕ) and πu : (Z, ζ) → (X,ϕ). The
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key hypotheses are that πs and πu are s-bijective and u-bijective, respectively,
while Y u(y) and Zs(z) are totally disconnected, for every y in Y and z in
Z. What this means for (Y, ψ) is that its local unstable sets are totally
disconnected, while its local stable sets are homeomorphic to those of X.
Bowen’s Theorem gives the existence of a Smale space which covers X and
which is totally disconnected. Here, we ask for such constructions which
disconnect in each local coordinate separately.

Definition 2.6.2. Let (X,ϕ) be a Smale space. We say that
π = (Y, ψ, πs, Z, ζ, πu) is an s/u-bijective pair for (X,ϕ) if

1. (Y, ψ) and (Z, ψ) are Smale spaces,

2. πs : (Y, ψ)→ (X,ϕ) is an s-bijective factor map,

3. Y u(y) is totally disconnected, for every y in Y ,

4. πu : (Z, ζ)→ (X,ϕ) is a u-bijective factor map,

5. Zs(z) is totally disconnected, for every z in Z.

The crucial result for us here is the existence of s/u-bijective pairs. This
is proved (essentially) in [29] and [15]. It is worth mentioning here that the
systems (Y, ψ) and (Z, ζ) are Smale spaces: they are not given as basic sets
for Axiom A systems. This is the one point in our work where Smale spaces
take a preferred place over basic sets.

Theorem 2.6.3. If (X,ϕ) is a non-wandering Smale space, then there exists
an s/u-bijective pair for (X,ϕ).

Given an s/u-bijective pair π = (Y, ψ, πs, Z, ζ, πu) for a Smale space
(X,ϕ), we may first form the fibred product of the two maps πs and πu
as

Σ(π) = {(y, z) ∈ Y × Z | πs(y) = πu(z)}.

It is a compact metric space, the map ψ × ζ, which we denote by σ, defines
a homeomorphism of it. The two projection maps to Y and Z, denoted ρu
and ρs, are u-bijective and s-bijective factor maps, respectively 2.5.13. One
immediate consequence (already suggested by our notation) is that (Σ(π), σ)
is a shift of finite type. We can see now why our result on the existence of s/u-
bijective pairs is a strengthening of Bowen’s result because (Σ(π), σ) together
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with factor map πs◦ρu = πu◦ρs satisfies the conclusion of Bowen’s Theorem,
but with the added condition that the factor map has decompositions as
given. In fact, another way of stating our result is to ask for a shift of finite
type, (Σ, σ), and factor map onto (X,ϕ) which may be factored as πs ◦ ρu
and as πu ◦ ρs, with πs, ρs being s-bijective while πu, ρu are u-bijective . It is
not true that any factor map has such decompositions [21].

We return to our earlier idea of using the ΣN(π) to build a chain complex
from their dimension group invariants. Now, we consider a sort of two-
variable version of that construction.

Definition 2.6.4. Let π = (Y, ψ, πs, Z, ζ, πu) be an s/u-bijective pair for the
Smale space (X,ϕ). For each L,M ≥ 0, we define

ΣL,M(π) = {(y0, . . . , yL, z0, . . . , zM) | yl ∈ Y, zm ∈ Z,
πs(yl) = πu(zm), 0 ≤ l ≤ L < 0 ≤ m ≤M}.

For convenience, we also let Σ(π) = Σ0,0(π), which is simply the fibred prod-
uct of the spaces Y and Z. We let ρu(y, z) = y and ρs(y, z) = z denote the
usual maps from Σ(π) to Y and Z respectively.

For all, L,M ≥ 0, we also define

σ(y0, . . . , yL, z0, . . . , zM) = (ψ(y0), . . . , ψ(yL), ζ(z0), . . . , ζ(zM)),

for all (y0, . . . , yL, z0, . . . , zM) in ΣL,M(π).
Finally, for L ≥ 1 and 0 ≤ l ≤ L, we let δl, : ΣL,M(π) → ΣL−1,M(π) be

the map which deletes entry yl. Similarly, for M ≥ 1 and 0 ≤ m ≤ M , we
let δ,m : ΣL,M(π)→ ΣL,M−1(π) be the map which deletes entry zm.

As the notation would suggest, these systems are all shifts of finite type.
Moreover, we have the following key fact.

Theorem 2.6.13. Let π be an s/u-bijective pair for (X,ϕ).

1. For all L ≥ 1, M ≥ 0 and 0 ≤ l ≤ L, the map δl, : ΣL,M(π) →
ΣL−1,M(π) which deletes yl from (y0, . . . , yL, z0, . . . , zM) is an s-bijective
factor map.

2. For all L ≥ 0, M ≥ 1 and 0 ≤ m ≤ M , the map δ,m : ΣL,M(π) →
ΣL,M−1(π) which deletes zm from (y0, . . . , yL, z0, . . . , zM) is a u-bijective
factor map.
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In Chapter 5, we assemble these groups and maps into a double complex.

Definition 5.1.1. Let π be an s/u-bijective pair for the Smale space (X,ϕ).

1. For each L,M ≥ 0, we define

Cs(π)L,M = Ds(ΣL,M(π), σ).

We define these groups to be zero for all other integral values of L,M .
We define also

ds(π)L,M =
∑

0≤l≤L

(−1)lδsl, +
∑

0≤m≤M+1

(−1)L+mδs∗,m

on the summand Cs(π)L,M . Notice that the first sum has range
Cs(π)L−1,M , while the second has range Cs(π)L,M+1. The first term
only appears when L ≥ 1 and the second only for M ≥ 0.

2. For each L,M ≥ 0, we define

Cu(π)L,M = Du(ΣL,M(π), σ).

We define these groups to be zero for all other integral values on L,M .
We define

du(π)L,M =
∑

0≤l≤L+1

(−1)lδu∗l, +
∑

0≤m≤M

(−1)L+mδu,m

on the summand Cu(π)L,M . Notice that the first sum has range
Cu(π)L+1,M , while the second has range Cu(π)L,M−1. The first term
only appears when L ≥ 0 and the second only for M ≥ 1.

Notice that, if we let SN denote the permutation group on N symbols,
then there is an obvious action of SL+1×SM+1 on ΣL,M(π) which commutes
with the dynamics σ, for every L,M ≥ 0.

Returning to the comparison with Cech cohomology, one difference with
our approach is that our systems ΣL,M(π) clearly contain redundancies; for
example, if (y, z) is an element of Σ0,0(π), then (y, y, z, z) is in Σ1,1(π). These
redundancies are detected by the action of the permutation groups in a way
which will be made precise below.

The situation is analogous to that found in simplicial homology between
the ordered and alternating complexes [14, 34]. The complexes we have at
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this point are analogous to the ordered complex. In finding an analogue of the
alternating, there is a real problem here in that we have no obvious notion
of a simplex or of orientation. However, by considering the action of the
permutation groups on Krieger’s invariant, we are able to construct a version
of the alternating complex. In fact, there are three double complexes which
take into account the actions of the groups SL+1, SM+1 and SL+1 × SM+1,
respectively.

Definition 5.1.5. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
Let L,M ≥ 0.

1. We define Ds
B,(ΣL,M(π)) to be the subgroup of Ds(ΣL,M(π)) which is

generated by

(a) all elements b such that b = b · (α, 1), for some transposition α in
SL+1, and

(b) all elements of the form a− sgn(α)a · (α, 1), where a is in
Ds(ΣL,M(π)) and α is in SL+1.

2. We define Ds
Q,(ΣL,M(π)) to be the quotient of Ds(ΣL,M(π)) by the sub-

group Ds
B,(ΣL,M(π)) and we let Q denote the quotient map.

3. We define Ds
,A(ΣL,M(π)) to be the subgroup of all elements a in

Ds(ΣL,M(π)) satisfying a = sgn(β)a · (1, β), for all β in SM+1 and we
let J denote the inclusion map.

4. We define Ds
Q,A(ΣL,M(π)) to be the image in Ds

Q,(ΣL,M(π)) of
Ds
,A(ΣL,M(π)) under Q. We let QA denote the restriction of Q to

Ds
,A(ΣL,M(π)) and JQ denote the inclusion of Ds

Q,A(ΣL,M(π)) in
Ds
Q,(ΣL,M(π)).

There are analogous definitions of Du
A,(ΣL,M(π)), Du

,Q(ΣL,M(π)) and
Du
A,Q(ΣL,M(π)).

We have eight complexes, four based on Krieger’s Ds and four based on
Du. We will now concentrate our attention on the first four. Analogous
results hold for the others.
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Definition 5.1.7. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
For L,M ≥ 0, we define

Cs
Q,(π)L,M = Ds

Q,(ΣL,M(π)),

Cs
,A(π)L,M = Ds

,A(ΣL,M(π)),

Cs
Q,A(π)L,M = Ds

Q,A(ΣL,M(π)).

We also let

1. dsQ,(π)L,M be the map induced by ds(π)L,M on the quotient
Ds
Q,(ΣL,M(π)),

2. ds,A(π)L,M to be the restriction of ds(π)L,M to Ds
,A(ΣL,M(π)), and

3. dsQ,A(π)L,M to be the restriction of dsQ,(π)L,M to Ds
Q,A(ΣL,M(π)).

We summarize the situation as follows.

Theorem 5.1.8. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
We have a commutative diagram of chain complexes and chain maps as
shown:

(Cs
,A, d

s
,A)

QA
��

J // (Cs, ds)

Q

��
(Cs
Q,A, d

s
Q,A)

JQ // (Cs
Q,, d

s
Q,)

The first important general result about our four complexes is the follow-
ing.

Theorem 5.1.10. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
Let L0 and M0 be such that #π−1

s {x} ≤ L0 and #π−1
u {x} ≤M0, for all x in

X (which exist by Theorem 2.5.3).

1. If L ≥ L0, then Cs
Q,(π)L,M = 0.

2. If M ≥M0, then Cs
,A(π)L,M = 0.

3. If either L ≥ L0 or M ≥M0, then Cs
Q,A(π)L,M = 0.

Thus, the complex Cs
Q,A(π) is the simplest since it has only finitely many

non-zero entries. This is our analogue of the alternating complex in Cech
cohomology. Here is our main definition.
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Definition 5.1.11. Let π be an s/u-bijective pair for the Smale space (X,ϕ).

1. We define Hs
∗(π) to be the homology of the double complex

(Cs
Q,A(π), dsQ,A(π)). That is, for each integer N , we have

Hs
N(π) = Ker(⊕L−M=Nd

s
Q,A(π)L,M)/Im(⊕L−M=N+1d

s
Q,A(π)L,M).

2. We define Hu
∗ (π) to be the homology of the double complex

(Cu
A,Q(π), duA,Q(π)). That is, for each integer N , we have

Hu
N(π) = Ker(⊕L−M=Nd

u
A,Q(π)L,M)/Im(⊕L−M=N−1d

u
A,Q(π)L,M).

The first nice property of this homology (and one requested as part of
Bowen’s original conjecture) are the two finiteness properties in the following
theorem. Recall that an abelian group H is finite rank if H ⊗Z Q is a finite-
dimensional rational vector space.

Theorem 5.1.12. Let π be an s/u-bijective pair for the Smale space (X,ϕ)
and let L0 and M0 be as in Theorem 5.1.10.

1. The homology groups Hs
N(π) are finite rank, for each integer N .

2. The homology groups Hs
N(π) are zero for N ≤ −M0 and for N ≥ L0.

The principal aim of Section 5.3 is the following two results which show
that three of our four complexes all yield exactly the same homology.

Theorem 5.3.1. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
The chain map

QA : (Cs
,A(π), ds,A(π))→ (Cs

Q,A(π), dsQ,A(π))

induces an isomorphism on homology.

Theorem 5.3.2. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
The chain map

JQ : (Cs
Q,A(π), dsQ,A(π))→ (Cs

Q,(π), dsQ,(π))

induces an isomorphism on homology.
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In section 5.4, we discuss the functorial properties of of our homology
Hs(π). Not surprisingly, they are analogous to those of Krieger’s invariant.

In section 5.5, we establish perhaps the most important fact that the
homology Hs(π) does not depend on the choice of the s/u-bijective pair π,
but only on the underlying Smale space (X,ϕ), as follows.

Theorem 5.5.1. Let (X,ϕ) be a Smale space and suppose that
π = (Y, ψ, πs, Z, ζ, πu) and π′ = (Y ′, ψ′, π′s, Z

′, ζ ′, π′u) are two s/u-bijective
pairs for (X,ϕ). Then there are canonical isomorphisms between Hs

N(π) and
Hs
N(π′) and between Hu

N(π) and Hu
N(π′), for all integers N .

With this, we adopt the notation Hs(X,ϕ). We stress that the definition
does depend on the existence of an s/u-bijective pair, which we know to be
the case for all non-wandering Smale spaces and the basic sets for Smale’s
Axiom A systems.

Definition 5.5.2. Let (X,ϕ) be a Smale space which has an s/u-bijective
pair π. We define Hs

N(X,ϕ) = Hs
N(π) and Hu

N(X,ϕ) = Hu
N(π), for all

integers N .

With this notation we also establish the desired functorial properties.

Theorem 5.5.3. 1. The functor which associates the sequence of abelian
groups Hs

∗(X,ϕ) to a (non-wandering) Smale space (X,ϕ) is covari-
ant for s-bijective factor maps and contravariant for u-bijective factor
maps.

2. The functor which associates the sequence of abelian groups Hu
∗ (X,ϕ)

to a (non-wandering) Smale space (X,ϕ) is contravariant for s-bijective
factor maps and covariant for u-bijective factor maps.

If ρ : (Y, ψ)→ (X,ϕ) is an s-bijective factor map between non-wandering
Smale spaces, we use ρsN to denote the natural map from Hs

N(Y, ψ) to
Hs
N(X,ϕ) and ρu∗N to denote the natural map from Hu

N(X,ϕ) to Hu
N(Y, ψ).

There is analogous notation for u-bijective factor maps.
Chapter 6 is devoted to the Lefschetz formula. The key ingredient in

the proof is Manning’s argument for the rationality of the zeta function [24],
which was the original impetus for Bowen’s question.

We begin by observing that, for any Smale space (X,ϕ), ϕ and ϕ−1 are
each s-bijective and u-bijective factor maps from (X,ϕ) to itself.
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Theorem 6.1.1. Let (X,ϕ) be a Smale space which has an s/u-bijective
pair. Then, for every n ≥ 1, we have

#{x ∈ X | ϕn(x) = x} =
∑
N∈Z

(−1)NTr(((ϕ−1)sN ⊗ 1Q)n)

=
∑
N∈Z

(−1)NTr((ϕuN ⊗ 1Q)n)

=
∑
N∈Z

(−1)NTr((ϕs∗N ⊗ 1Q)n)

=
∑
N∈Z

(−1)NTr(((ϕ−1)u∗N ⊗ 1Q)n).

In addition, we derive a Corollary which shows that the zeta function for
an irreducible Smale space is not just rational, but actually has a canoni-
cal decomposition as a product of polynomials and their inverses which is
provided in a natural way by the homology.

Corollary 6.1.2. Let (X,ϕ) be an irreducible Smale space. For each inte-
ger N and real number t, define pN(t) to be the determinant of the linear
transformation

I − t(ϕ−1)sN ⊗ 1R : Hs
N(X,ϕ)⊗ R→ Hs

N(X,ϕ)⊗ R.

Each of the vector spaces is finite dimensional and all but finitely many are
trivial so that pN(t) is well-defined and all but finitely many are identically
one. Then we have

ζϕ(t) = ΠN∈ZpN(t)(−1)N+1

=
ΠN odd pN(t)

ΠN even pN(t)
.

Chapter 7 provides computations of some simple examples: shifts of fi-
nite type (where we recover Krieger’s original invariant), solenoids and a
hyperbolic toral automorphism. In particular, we prove the following.

Theorem 7.1.1. Let (Σ, σ) be a shift of finite type.

1. We have

Hs
N(Σ, σ) =

{
Ds(Σ, σ) N = 0,

0 N 6= 0.
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2. We have

Hu
N(Σ, σ) =

{
Du(Σ, σ) N = 0,

0 N 6= 0.

In Chapter 8, we formulate several questions for further investigation,
and in some cases, provide a few thoughts on their possible solution.
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Chapter 2

Dynamics

This chapter contains an introduction to most of the basic dynamical ideas
which will be used. Two very useful standard references are Katok and
Hasselblatt [20] and Robinson [30]. In addition, there is an interesting book
by Aoki and Hiraide [1] where the setting is completely topological and hence
rather closer to ours. Unfortunately, this seems now to be out of print.

We begin with some basics including the definition of a Smale space, due
to David Ruelle. These are systems which possess canonical local coordinates
(called the local stable sets and the local unstable sets) of contracting and
expanding directions. The second section concentrates on shifts of finite type.
These are described as arising from graphs, but they are precisely the Smale
spaces which are totally disconnected.

The third section discusses some basic results on factor maps between
Smale spaces. In the fourth section, we discuss the notion of a fibred product
of two factor maps and a subsequent special case where the fibred product
is taken from a single map with itself, and then this is iterated. We refer to
the sequence of such systems as self-products. Particular attention is paid to
the cases of Smale spaces and shifts of finite type.

In the fifth section, we discuss factor maps between Smale space pos-
sessing various special properties. These are called s-resolving, u-resolving,
s-bijective and u-bijective maps. In further developments, these play a cru-
cial role.

In the sixth section, we discuss the notion of an s/u-bijective pair for a
Smale space. Essentially, this is a refinement of Bowen’s seminal result that
a Smale space may be covered by a shift of finite type. The weakness in
Bowen’s Theorem is that the factor map constructed does not possess any of

17
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the resolving properties of the previous section. For irreducible Smale spaces,
we have a version of this result which does supply factor maps which may be
decomposed as compositions of maps with the desired special properties.

Finally, in the seventh section, we assemble a number of technical results
which play an important role in the later development.

2.1 Smale spaces

In the entire paper, our dynamical systems will always consist of a com-
pact space, together with a homeomorphism. Although this is a little more
restrictive than is usual, we make the following definition.

Definition 2.1.1. A dynamical system is a pair (X,ϕ) where X is a topo-
logical space and ϕ is a homeomorphism of X.

For the most part, we will restrict our attention to the case that X is
actually a compact metric space. If (X, d) is a metric space, we let X(x, ε)
denote the ball at x of radius ε for any x in X and ε > 0.

We recall the definition of an expansive dynamical system.

Definition 2.1.2. If X is a metric space, we say that a dynamical system
(X,ϕ) is expansive if there is a constant ε > 0 such that, for any x 6= y in
X, there exists an integer n such that d(ϕn(x), ϕn(y)) ≥ ε.

A key property will be the notion of a non-wandering point.

Definition 2.1.3. For a dynamical system (X,ϕ), a point x in X is called
non-wandering if for every open set U containing x, there is a positive integer
N such that ϕN(U)∩U is non-empty. We say that (X,ϕ) is non-wandering
if every point of X is non-wandering.

Another important idea will be the notion of irreducibility. There are
several equivalent formulations, but we will use the following.

Definition 2.1.4. A dynamical system (X,ϕ) is said to be irreducible if, for
every (ordered) pair of non-empty open sets U, V , there is a positive integer
N such that ϕN(U) ∩ V is non-empty.

It is plain that every irreducible system is also non-wandering.
Finally, we recall the notion of topological mixing.
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Definition 2.1.5. A dynamical system (X,ϕ) is said to be mixing if, for
every (ordered) pair of non-empty open sets U, V , there is a positive integer
N such that ϕn(U) ∩ V is non-empty for all n ≥ N .

It is clear that any mixing system is also irreducible.
We give our most important definition, a Smale space. Two words of

warning are in order before we embark on the definition. First, it is long.
Second, it is opaque. After we complete the correct technical definition and
note one important result, we will take a moment to give a more intuitive
description.

We begin with a compact metric space, (X, d), a homeomorphism, ϕ, of
X, constants εX > 0 and 0 < λ < 1 and a continuous map from

∆εX = {(x, y) ∈ X ×X | d(x, y) ≤ εX}

to X. The image of a pair (x, y) under this map is denoted [x, y]. These
satisfy a number of axioms (which will take a little time to describe).

First, we assume that

B1 [x, x] = x,
B2 [x, [y, z]] = [x, z],
B3 [[x, y], z] = [x, z],
B4 [ϕ(x), ϕ(y)] = ϕ[x, y],

for all x, y, z in X whenever both sides of an equation are defined.
We pause to note that if [x, y] = x, then we also have [y, x] = [y, [x, y]] =

[y, y] = y, using the second and first conditions above. Similarly, if [x, y] = y
then [y, x] = x.

Second, we assume the following two conditions. We have

C1 d(ϕ(x), ϕ(y)) ≤ λd(x, y), whenever [x, y] = y,

and
C2 d(ϕ−1(x), ϕ−1(y)) ≤ λd(x, y), whenever [x, y] = x.

Definition 2.1.6. A Smale space is a dynamical system (X,ϕ) together with
a metric d on X, constants εX , λ and map [, ] as above which satisfy the
Axioms B1, B2, B3, B4, C1 and C2.

For a given x in X, the sets where the estimates C1 and C2 hold are
called the local stable and unstable sets, respectively. In fact, it is useful to
include a parameter to control their size, as follows.



20 CHAPTER 2. DYNAMICS

Definition 2.1.7. Let (X,ϕ) be a Smale space. For any x in X and 0 <
ε ≤ εX , we define

Xs(x, ε) = {y ∈ X | d(x, y) < ε, [x, y] = y},
Xu(x, ε) = {y ∈ X | d(x, y) < ε, [x, y] = x}

These sets are called local stable and local unstable sets.

Let us just observe that that if x and y are close so that d(x, y) is defined
and within distance ε ≤ εX of x, then [x, [x, y]] = [x, y] by axiom B2 and so
[x, y] is in Xs(x, ε). Similarly, if it is within distance ε ≤ εX of y, then it is
in Xu(y, ε).

The main feature of a Smale space is that it is locally the product of its
local stable and local unstable sets, which we summarize as follows.

Proposition 2.1.8. Let x be in X and 0 < ε ≤ εX/2 satisfy

[X(x, ε), X(x, ε)] ⊂ X(x, εX/2).

The map [, ] defines a homeomorphism between Xu(x, ε) × Xs(x, ε) and a
neighbourhood of x. The inverse map sends a point y to ([y, x], [x, y]). As ε
varies, these sets form a neighbourhood base at x.

Now is a convenient moment to give a more intuitive description of a
Smale space. Usually, if one is given an example, one can see first the “lo-
cal product structure” with the contracting dynamics on the local stable set
and the expanding ( meaning “inverse contracting”) dynamics on the local
unstable sets as in Proposition 2.1.8 above and axioms C1 and C2. As an

example, consider Arnold’s cat map: the matrix

(
2 1
1 1

)
gives an auto-

morphism of the 2-torus which we consider as R2/Z2. This matrix has two
independent eigenvectors vs and vu whose respective eigenvalues λs and λu
satisfy 0 < λs < 1 and λu > 1. Thus the local stable and unstable sets are
given by short line segments through a point in the respective eigendirections.

Having the local stable and unstable sets, the bracket of two points x and
y, [x, y], is then defined to be the unique point in the intersection of the local
stable set of x with the local unstable set of y. To summarize, it is intuitively
easier to see the bracket as coming from the local stable and unstable sets,
but for theory, it is easier to view the local stable and unstable sets as arising
from the bracket.



2.1. SMALE SPACES 21

As we have described above, Arnold’s cat map is an example of a Smale
space. It can easily be generalized to hyperbolic toral automorphisms: let A
be any N ×N integer matrix with integer entries, determinant either 1 or -1
and no eigenvalues on the unit circle in the complex plane. Then this matrix
gives a homeomorphism of the N -torus, RN/ZN . Other examples of Smale
spaces are various solenoids, substitution tiling spaces and, most importantly,
the basic sets for Smale’s Axiom A systems. Another key class of examples
for our development are the shifts of finite type, which we describe in detail
in the next section.

We next note the following result - see 6.4.10 of [20] or Corollary 3.3 of
[30].

Proposition 2.1.9. A Smale space is expansive.

The Smale space then has two basic positive constants: one which controls
the domain of the bracket and the other which is the expansiveness constant.
As we may freely replace either a smaller constant, by replacing them by
their minimum, we may assume that εX is also the expansiveness constant
for X.

In addition to the notion of local stable and unstable sets, there is also
the notion of global stable and unstable sets.

Definition 2.1.10. Let (X,ϕ) be a Smale space. We say that two points x
and y in X are stably equivalent if

lim
n→+∞

d(ϕn(x), ϕn(y)) = 0.

It is clear that this is an equivalence relation and we let Xs(x) denote the
equivalence class of x. Similarly, we say that two points x and y in X are
unstably equivalent if

lim
n→−∞

d(ϕn(x), ϕn(y)) = 0.

It is clear that this is also an equivalence relation and we let Xu(x) denote
the equivalence class of x.

Obviously, the notation suggests that there is a close relation between
the local stable sets of a point x and Xs(x), which we call its global stable
set. It follows fairly easily from the axioms that Xs(x, ε) ⊂ Xs(x), for any
positive ε. Much more precisely, we have the following (6.4.9 of [20]).
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Proposition 2.1.11. Let (X,ϕ) be a Smale space. For any x in X and
0 < ε ≤ εX , we have

Xs(x) = ∪+∞
n=0ϕ

−n(Xs(ϕn(x), ε)),

and
Xu(x) = ∪+∞

n=0ϕ
n(Xu(ϕ−n(x), ε)).

This result is very useful, but slightly deceptive. While the local stable
and unstable sets are usually quite easy to describe, the global ones are
very complicated. This can probably be most easily seen in the geometric
example of Arnold’s cat map; the local stable and unstable sets are given
by the eigendirections of the matrix while the global ones are leaves of a
Kronecker foliation and are dense.

As suggested by the last comment above, the global stable and unstable
sets, with their relative topologies from X, are rather badly behaved (i.e. not
locally compact). They do possess very natural finer topologies which are
much more suitable.

Proposition 2.1.12. Let (X,ϕ) be a Smale space and let x0 be in X.

1. The collection of sets {Xs(x, ε) | x ∈ Xs(x0), 0 < ε ≤ εX} forms a
neighbourhood base for a topology on Xs(x0) which is second countable
and locally compact.

2. The function

ds(x, y) =

{
d(x, y) if y ∈ Xs(x, εX)
εX otherwise

defines a metric on Xs(x0) for this topology.

3. A sequence {xn | n ≥ 1} converges to x in Xs(x0) if and only if it
converges to x in X and, for all n sufficiently large, [xn, x] = x.

Proof. If x, x′ are in Xs(x0), ε, ε′ are positive and x′′ is in Xs(x, ε)∩Xs(x′, ε′),
then choose

0 < δ < min{ε− d(x, x′′), ε′ − d(x′, x′′)} ≤ εX .
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If d(y, x′′) < δ, then d(y, x′) < ε and d(y, x′′) < ε′ as usual. If in addition,
[x′′, y] = y, then it follows that [x, y] = [[x′′, x], y] = [x′′, y] = y. In a similar
way, we have [x′, y] = y and so

x′′ ∈ Xs(x′′, δ) ⊂ Xs(x, ε) ∩Xs(x′, ε′).

For the second part, we leave the proof that this function is a metric
to the reader. If ε ≥ εX , then any ball in ds of radius ε is just Xs(x0). If
ε < εX , then it is easy to see that the ds ball of radius ε is just Xs(x, ε). The
conclusion of the second part follows.

For the third part, first suppose the sequence xn, n ≥ 1 is converging to
x in ds. For sufficiently large n, ds(xn, x) < εX . It follows that xn is in
Xs(x, εX) and hence [xn, x] = xn, or, equivalently, [x, xn] = x. For such an
xn, we have ds(xn, x) = d(xn, x). From this we conclude that xn converges
to x. Conversely, if [x, xn] = x, then xn is in Xs(x, εX) and again we have
ds(xn, x) = d(xn, x): if xn is also converging to x, then it is doing so in the
metric ds as well.

We complete this summary of Smale spaces with Smale’s spectral decom-
position, which summarizes the relations between non-wandering, irreducible
and mixing in a simple fashion [7, 31].

Theorem 2.1.13. Let (X,ϕ) be a Smale space.

1. If (X,ϕ) is non-wandering, then there exists a partition of X into a fi-
nite number of closed and open, pairwise disjoint subsets, each of which
is invariant under ϕ and so that the restriction of ϕ to each is irre-
ducible. Moreover, this decomposition is unique.

2. If (X,ϕ) is irreducible, then then there exists a partition of X into
a finite number of closed and open, pairwise disjoint subsets which are
cyclicly permuted by ϕ. If the number of these sets is N , then ϕN (which
leaves each invariant) is mixing on each element of the partition.

2.2 Shifts of finite type

We give a description of the fundamental class of Smale spaces called shifts
of finite type. The data needed is a finite, directed graph. All of our graphs
will be finite and directed and we will simply use the term “graph”.
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We develop the basic ideas and show that these systems are Smale space,
giving explicit descriptions of the bracket and the local stable and unstable
sets. The main result here is that such systems are precisely the totally
disconnected Smale space, up to topological conjugacy.

Definition 2.2.1. A graph G consists of finite sets G0 and G1 and maps
i, t : G1 → G0. The elements of G0 are called vertices and the elements of
G1 are called edges. The notation for the maps is meant to suggest initial
and terminal and the graph is drawn by depicting each vertex as a dot and
each edge, e, as an arrow from i(e) to t(e).

We follow with a standard definition of a path in a graph.

Definition 2.2.2. 1. Let G be a graph and let K ≥ 2. A path of length K
in G is a sequence (e1, e2, . . . , eK) where ek is in G1, for each 1 ≤ k ≤ K
and t(ek) = i(ek+1), for 1 ≤ k < K.

2. We also let GK denote the graph whose vertex set is GK−1 and whose
edge set is GK with initial and terminal maps

i(e1, e2, . . . , eK) = (e1, e2, . . . , eK−1),

t(e1, e2, . . . , eK) = (e2, e3, . . . , eK)

We just remark that for every 1 ≤ L ≤ K, we have a maps iL, tL : GK →
GK−L which are simply the L-fold iterations of i and t, respectively. That
is, iK simply deletes the last K entries, while tK deletes the first K entries.

Finally, we note the obvious definition of a graph homomorphism.

Definition 2.2.3. Let G and H be graphs. A graph homomorphism, θ :
H → G, from H to G consists of of a pair of maps θ : H0 → G0 and
θ : H1 → G1 (this notation will cause no confusion) such that θ(i(e)) =
i(θ(e)), t(θ(e)) = θ(t(e)), for all e in H1.

Observe that a graph homomorphism θ : H → G induces maps θ : HK →
GK , for all K ≥ 2. Each of these is also a graph homomorphism.

With these preliminary notions established, we are ready to describe the
shift of finite type associated with a graph.

Definition 2.2.4. Let G be a graph. Its associated shift space, denoted ΣG,
consists of all doubly-infinite paths in G. That is, the elements are sequences
(ek)k∈Z such that ek is in G1 and t(ek) = i(ek+1), for all k in Z.

The map σ : ΣG → ΣG is the left shift: σ(e)k = ek+1, for all e in ΣG.
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We need to define a metric on the space ΣG and toward that end, we in-
troduce the following notation that will be used frequently in other contexts.
If e is in ΣG and K ≤ L are integers, we let e[K,L] = (eK , eK+1, . . . , eL), which
is in GL−K+1. It will also be convenient to define e[K+1,K] = t(eK) = i(eK+1),
which is in G0.

Proposition 2.2.5. Let G be a graph. The function

d(e, f) = inf{1, 2−K−1 | K ≥ 0, e[1−K,K] = f [1−K,K]}

defines a metric on ΣG. With this metric, (ΣG, σ) becomes a Smale space
with constant εΣG = 1, λ = 1

2
and

[e, f ]k =

{
fk k ≤ 0,
ek k ≥ 1

The proof is routine and we omit it. We remark that the topology for
this metric coincides with the relative topology viewing ΣG as a closed subset
of the infinite product space Πn∈ZG

1. Of course, the main feature of the
metric is that, for any e, f in ΣG and K ≥ 1, d(e, f) < 2−K if and only if
e[1−K,K] = f [1−K,K]. The product structure may be understood fairly easily
as follows. To any vertex v in G0, we may consider the set Σv to be those
elements of ΣG with t(e0) = i(e1) = v. These sets form a partition of ΣG

into pairwise disjoint clopen sets. In fact, the reader may check that each set
is the open ball of radius 1 at any of its points. For v fixed, Σv is a product
of the semi-infinite sequences starting at v with the semi-infinite sequences
terminating at v. This is a rather informal way of putting things. More
concretely, we have the following.

Lemma 2.2.6. Let G be a graph. For any e in ΣG and K ≥ 1, we have

Σs
G(e, 2−K) = {f ∈ σG | fk = ek, k ≥ 1−K},

Σu
G(e, 2−K) = {f ∈ σG | fk = ek, k ≤ K}

Proof. We prove the first part only. Let f be in Σs
G(e, 2−K). First, this

means that d(e, f) < 2−K and so e[1−K,K] = f [1−K,K]. Secondly, we know
that [e, f ] = f . For any k ≥ 1, we have ek = [e, f ]k = fk and we are done.

Conversely, if fk = ek, for all k ≥ 1−K, then it is clear that e[1−K,K] =
f [1−K,K] and so d(e, f) ≤ 2−K−1 < 2−K . It also means that [e, f ] is defined.
For k ≤ 0, we have [e, f ]k = fk, from the definition of [, ] while for k ≥ 1,
[e, f ]k = ek = fk as desired.
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We are now ready to give our definition of a shift of finite type.

Definition 2.2.7. A shift of finite type is any system (Σ, σ) which is topo-
logically conjugate to (ΣG, σ) for some graph G. In this case, we say that G
is a presentation of (Σ, σ).

This is not the usual definition which supposes, first, that Σ is a closed
subsystem of a full shift [23] and is described by a finite set of forbidden
words. For our purposes, this definition will be more convenient.

The main result of this section is the following.

Theorem 2.2.8. A Smale space (X,ϕ) is a shift of finite type if and only if
X is totally disconnected.

We refer the reader to Proposition 18.7.8 of [20] for a proof. It should be
noted though that the hypothesis that the set is a locally maximal hyperbolic
set of a diffeomorphism is not needed as only the bracket and notions of local
stable and unstable sets are used in the proof. This also means that no
irreducibility hypothesis is necessary.

Notice that if θ : H → G is a graph homomorphism, then it induces an
obvious map, also denoted by θ, from ΣH to ΣG. We note the following result
whose proof is elementary.

Proposition 2.2.9. Let G be a graph and let L > K ≥ 1. The graph
homomorphism iL−K induces a homeomorphism iL−K : ΣGL → ΣGK and
satisfies σ ◦ iL−K = iL−K ◦ σ. A similar statement holds for tL−K.

The graphs GK are usually referred to as higher block presentations for
the dynamical system (ΣG, σ).

2.3 Maps

In this section, we give some basic definitions of maps and factor maps be-
tween dynamical systems and establish basic properties of them in the case
that both domain and range are Smale spaces. The first is basically that
a map is necessarily compatible with the two bracket operations. We then
consider the case when the domain is a shift of finite type and introduce a
concept of regularity for a factor map.
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Definition 2.3.1. Let (X,ϕ) and (Y, ψ) be dynamical systems. A map π :
(Y, ψ)→ (X,ϕ), is a continuous function π : Y → X such that π ◦ψ = ϕ◦π.
A factor map from (Y, ψ) to (X,ϕ) is a map for which π : Y → X is also
surjective.

Theorem 2.3.2. Let (Y, ψ) and (X,ϕ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be a map. There exists επ > 0 such that, for all y1, y2 in Y with d(y1, y2) ≤ επ,
then both [y1, y2], [π(y1), π(y2)] are defined and

π([y1, y2]) = [π(y1), π(y2)].

Proof. Let εX , εY be the Smale space constants for X and Y , respectively. As
Y is compact and π is continuous, we may find a constant ε > 0 such that,
for all y1, y2 is in Y with d(y1, y2) < ε, we have d(π(y1), π(y2)) < εX/2. From
the continuity of the bracket map, we may choose επ such that 0 < επ < εY
and for all y1, y2 in X with d(y1, y2) ≤ επ, we have

d(y1, [y1, y2]), d(y2, [y1, y2]) < ε.

Now assume y1, y2 are in Y with d(y1, y2) ≤ επ. It follows that, [y1, y2] is
defined and we have the estimates above. Then, inductively for all n ≥ 0,
we have

d(ψn(y1), ψn[y1, y2]) ≤ λnd(y1, [y1, y2]) ≤ ε

and also
d(ψ−n(y2), ψ−n[y1, y2]) ≤ λnd(y2, [y1, y2]) ≤ ε

It follows from the choice of ε that, for all n ≥ 0, we have

d(π(ψn(y1)), π(ψn[y1, y2])) ≤ εX/2

d(ϕn(π(y1)), ϕn(π[y1, y2])) ≤ εX/2

and similarly
d(ϕ−n(π(y2)), ϕ−n(π[y1, y2])) ≤ εX/2.

On the other hand, these two estimates are also satisfied replacing
ϕn(π[y1, y2]) by ϕn[π(y1), π(y2)] and so, by expansiveness of (X,ϕ), we have
the desired conclusion.
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In the case where the domain is a shift of finite type with a specific
presentation, we introduce the notion of a map being regular. It is really
just an analogue of the conclusion of the last Theorem appropriate for shifts
of finite type.

Definition 2.3.3. Let G be a graph, (ΣG, σ) be the associated shift of finite
type and (X,ϕ) be a Smale space. We say that a map π : (ΣG, σ) → (X,ϕ)
is regular if, for all e, f in ΣG with t(e0) = t(f 0), we have d(π(e), π(f)) ≤ εX
and

π[e, f ] = [π(e), π(f)].

The first and most obvious case of a regular map is the following; the
proof is trivial and we omit it.

Proposition 2.3.4. Let G and H be finite directed graphs and let θ : H → G
be a graph homomorphism. The associated map θ : (ΣH , σ) → (ΣG, σ) is
regular.

In fact, after replacing the domain by a higher block presentation, we
may assume any map from a shift of finite type is regular. The following is
an easy consequence of Proposition 2.2.9 and Theorem 2.3.2 and we omit the
proof.

Theorem 2.3.5. Let (Σ, σ) be a shift of finite type, (X,ϕ) be a Smale space
and π : (Σ, σ) → (X,ϕ) be a map. Then there exists a graph G and a
conjugacy h : (ΣG, σ)→ (Σ, σ) such that π ◦ h is regular.

When G satisfies the conclusion of this Theorem, we will say (rather
imprecisely) that G is a presentation of π.

2.4 Self-products of a map

We begin with the standard definition of a fibred product or a pull-back,
which will be used frequently. One can apply this definition to a map and
itself, and then continue iteratively. We refer to the sequence of resulting
systems as “self-products” of the map. We go on to consider the special case
when this is applied to Smale spaces and show the resulting systems are also
Smale spaces. Finally, we specialize to the case where the domain is a shift
of finite type. If it is presented by a graph,and the map is regular in our
earlier sense, then we give specific graphs which present the fibred products.
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Definition 2.4.1. Suppose that (X,ϕ), (Y1, ψ1) and (Y2, ψ2) are dynamical
systems and that π1 : (Y1, ψ1)→ (X,ϕ) and π2 : (Y2, ψ2)→ (X,ϕ) are maps.
Their fibred product is the space

Z = {(y1, y2) | y1 ∈ Y1, y2 ∈ Y2, π1(y1) = π2(y2)}

equipped with the relative topology from Y1 × Y2 together with the map ζ =
ψ1×ψ2, which is clearly a homeomorphism of this space. There are canonical
maps from this system to (Y1, ψ1) and (Y2, π2) defined by ρ1(y1, y2) = y1 and
ρ2(y1, y2) = y2 which satisfy π1 ◦ ρ1 = π2 ◦ ρ2.

We observe the following. Its proof is routine and we omit it.

Theorem 2.4.2. Suppose that (X,ϕ), (Y1, ψ1) and (Y2, ψ2) are Smale spaces
and that π1 : (Y1, ψ1) → (X,ϕ) and π2 : (Y2, ψ2) → (X,ϕ) are maps. The
fibred product is also a Smale space with the metric

d((y1, y2), (y′1, y
′
2)) = max{d(y1, y

′
1), d(y2, y

′
2)},

constant εZ = min{επ1 , επ2} and bracket

[(y1, y2), (y′1, y
′
2)] = ([y1, y

′
1], [y2, y

′
2]),

provided d(y1, y
′
1), d(y2, y

′
2) ≤ εZ.

We will make extensive use of a variation of this idea. We consider a map
between two Smale spaces

π : (Y, ψ)→ (X,ϕ)

First, we may consider the fibred product of this map with itself. In addition,
we may iterate this process, taking fibred product with the same (Y, ψ) each
time. The result is a sequence of Smale spaces which records where the map
is many-to-one.

Definition 2.4.3. Let
π : (Y, ψ)→ (X,ϕ)

be a map. For each N ≥ 0, we define

YN(π) = {(y0, y1, y2, . . . , yN) ∈ Y N+1 | π(yi) = π(yj),

for all 0 ≤ i, j ≤ N}.
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We also define

ψ(y0, y1, y2, . . . , yN) = (ψ(y0), ψ(y1), ψ(y2), . . . , ψ(yN))

for all (y0, y1, y2, . . . , yN) in YN(π).

It will often be the case that no confusion will be caused by omitting the
π in the notation, writing just YN .

Finally, we note the obvious fact that the permutation group on
{0, 1, 2, . . . , N}, SN+1, acts on YN(π), commuting with ψ. We use the fol-
lowing notation; if y is in YN(π) and α is in SN+1, for some N ≥ 0, we let
y · α = (yα(0), yα(1), . . . , yα(N)).

It is worth noting that YN(π) is rarely irreducible for N ≥ 1, even if Y and
X are. We will also use the notation π for the map from YN(π) to X defined
by π(y0, y1, . . . , yN) = π(y0). It is easy to see that, for all N ≥ 1, (YN(π), ψ)
is the fibred product of (Y, ψ) and (YN−1(π), ψ). This, and Theorem 2.4.2,
immediately yields the following.

Proposition 2.4.4. If π : (Y, ψ) → (X,ϕ) is a map between Smale spaces
then, for each N ≥ 0, (YN(π), ψ) is also a Smale space with εYN (π) = επ and
bracket

[(y0, . . . , yN), (y′0, . . . , y
′
N)] = ([y0, y

′
0], . . . , [yN , y

′
N ]),

for all (y0, . . . , yN), (y′0, . . . , y
′
N) in YN(π) within distance επ.

Before proceeding further, let us introduce a standard piece of notation
which we will use frequently throughout the paper. If A is any set and N ≥ 1,
we define, for each 0 ≤ n ≤ N , δn : AN+1 → AN by

δn(a0, . . . , aN) = (a0, . . . , an−1, an+1, . . . , aN) = (a0, . . . , ân, . . . , aN).

We also note that if we regard (YN(π), ψ) as the fibred product of (Y, ψ) and
(YN−1(π), ψ) then δ0 is simply the map ρ2 of Definition 2.4.1.

We now specialize further by considering the situation of a regular map

π : (ΣG, σ)→ (X,ϕ),

where G is a graph and (X,ϕ) is a Smale space. In view of Theorem 2.3.5,
we will lose no generality in considering this case.
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For each N ≥ 0, we define graphs GN(π) by:

GN(π)0 = {t(e0) = (t(e0
0), t(e0

1), . . . , t(e0
N)) |

e = (e0, e1, . . . , eN) ∈ ΣN(π)}
GN(π)1 = {e0 = (e0

0, e
0
1, . . . , e

0
N) |

e = (e0, e1, . . . , eN) ∈ ΣN(π)}

If no confusion will arise, we will drop the π from the notation. Also, the
graph GN(π) has an action of SN+1. We begin by establishing a few simple
properties of the graphs.

We note that ΣN(π) consists of N+1-tuples of bi-infinite sequences in G1.
On the other hand, ΣGN (π) consists of bi-infinite sequences of N + 1-tuples
from G1. If we regard an N + 1-tuples of bi-infinite sequences as also being
a bi-infinite sequences of N + 1-tuples, we have the following.

Theorem 2.4.5. Let G be a graph, (X,ϕ) be a Smale space and

π : (ΣG, σ)→ (X,ϕ),

be a regular map. For each N ≥ 0, we have

(ΣGN (π), σ) = (ΣN(π), σ).

Proof. It is clear that we have containment ⊃. It remains to prove the other
direction. We will show by induction on K ≥ 1, that if p is any path of
length K in GN(π), then there exists an e in ΣN(π) such that e[1,K] = p. The
conclusion follows from an easy compactness argument. The case K = 1 is
clear. Now suppose that the statement is true for K ≥ 1 and we prove it for
K + 1. Let p be a path in GN(π) of length K + 1. By induction hypothesis,
we may find e in ΣN such that e[1,K] = p[2,K+1] and also a f in ΣN with
f 0 = p1. Since p is a path, t(f 0) = i(e1) and so we may form σ−1[e, f ] which
satisfies the desired conclusion.

2.5 s/u-resolving and s/u-bijective maps

In this section, we discuss special classes of maps called s-resolving, u-
resolving, s-bijective and u-bijective maps. These maps possess many nice
properties but the most important is that our invariants will behave in a
functorial way with respect to them.



32 CHAPTER 2. DYNAMICS

It is an easy consequence of the definitions that if (Y, ψ) and (X,ϕ) are
Smale spaces and

π : (Y, ψ)→ (X,ϕ)

is a map, then π(Y s(y)) ⊂ Xs(π(y)) and π(Y u(y)) ⊂ Xu(π(y)). We recall
the following definition due to David Fried [18].

Definition 2.5.1. Let (X,ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be a map. We say that π is s-resolving (or u-resolving) if, for any y in Y ,
its restriction to Y s(y) (or Y u(y), respectively) is injective.

The following is a useful technical preliminary result.

Proposition 2.5.2. Let (X,ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be an s-resolving (or u-resolving) map. With επ as in Theorem 2.3.2, if y1, y2

are in Y with π(y1) in Xu(π(y2), εX) (or π(y1) in Xu(π(y2), εX), respectively)
and d(y1, y2) ≤ επ, then y2 ∈ Y u(y1, επ) (y2 ∈ Y s(y1, επ), respectively).

Proof. It follows at once the from hypotheses that

π[y1, y2] = [π(y1), π(y2)] = π(y1).

On the other hand [y1, y2] is stably equivalent to y1 and, since π is s-resolving,
[y1, y2] = y1.

Resolving maps have many nice properties, the first being that they are
finite-to-one. We establish this, and a slight variant of it, as follows.

Theorem 2.5.3. Let (X,ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be an s-resolving map. There is a constant M ≥ 1 such that

1. for any x in X, there exist y1, . . . , yK in Y with K ≤M such that

π−1(Xu(x)) = ∪Kk=1Y
u(yk),

and
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2. for any x in X, we have #π−1{x} ≤M , .

Proof. Cover Y with balls of radius επ/2, then extract a finite subcover,
whose elements we list as Bm, 1 ≤ m ≤ M . We claim this M satisfies the
desired conclusions.

For the first statement, given x in X and y in π−1(Xu(x)), it is clear
that Y u(y) ⊂ Xu(x). We must show that there exist at most M unstable
equivalence classes in π−1(Xu(x)). For this, it suffices to show that if yi, 1 ≤
i ≤M+1, are in Y with π(yi) and π(yj) unstably equivalent, for all i, j, then
yi and yj are unstably equivalent for some i 6= j. Choose n ≤ 0 such that
ϕn(π(yi)) is in Xu(ϕn(π(yj)), εX), for all 1 ≤ i, j ≤M + 1. From the pigeon
hole principle, there exists distinct i and j such that ψn(yi) and ψn(yj) lie
in the same Bm, for some 1 ≤ m ≤ M . These points satisfy the hypotheses
of 2.5.2 and it follows that they are unstably equivalent. Then yi are yj are
also unstably equivalent.

For the second statement, suppose π−1{x} contains distinct points
y1, . . . , yM+1. Let δ denote the minimum distance, d(yi, yj), over all i 6= j.
Choose n ≥ 1 such that λnεπ < δ. Consider the points ψn(yi), 1 ≤ i ≤M+1.
By the pigeon-hole principle, there exists i 6= j with ψn(yi) and ψn(yj) in the
same set Bm. We have

π(ψn(yi)) = ϕn(π(yi)) = ϕn(x) = ϕn(π(yj)) = π(ψn(yj)).

From Proposition 2.5.2, ψn(yi) is in Y u(ψn(yj), επ). This implies that yi is in
Y u(yj, λ

nεπ). As λnεπ < δ, this is a contradiction.

Although the definition of s-resolving is given purely at the level of the
stable sets as sets, various nice continuity properties follow.

Theorem 2.5.4. Let (X,ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be either an s-resolving or a u-resolving map. For each y in Y , the maps

π : Y s(y)→ Xs(π(y)), π : Y u(y)→ Xu(π(y))

are continuous and proper, where the sets above are given the topologies of
Proposition 2.1.12.
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Proof. From the symmetry of the statement, it suffices to consider the case
that π is s-resolving.

We use the characterization of limits in Y s(y) and Xs(π(y)) given in
Proposition 2.1.12. From this, and Theorem 2.3.2, it is easy to see that π is
continuous on Y s(y). The same argument covers the case of π on Y u(y).

To see the map π on Y s(y) is proper, it suffices to consider a sequence yn
in Y s(y) such that π(yn) is convergent in the topology of Xs(π(y)), say with
limit x, and show that it has a convergent subsequence. As Y is compact
in its usual topology, we may find y′ which is a limit point of a convergent
subsequence ynk , k ≥ 1. It follows that

π(y′) = π(lim
k
ynk) = lim

k
π(ynk) = lim

n
π(yn) = x.

We also have, for k sufficiently large,

π[ynk , y
′] = [π(ynk), π(y′)] = [π(ynk), x] = x,

since π(ynk) is converging to x in the topology on Xs(π(y)) and using Propo-
sition 2.1.12. We know that π−1{x} is finite and contains y′ and [ynk , y

′], for
all k sufficiently large. Moreover, y′ is the limit of the sequence [ynk , y

′]. It
follows that there is K such that [ynk , y

′] = y′, for all k ≥ K. From this, we
see that y′ is in Y s(ynk) = Y s(y) and that the subsequence ynk converges to
y′ in Y s(y).

To see the map π on Y u(y) is proper, we begin in the same way with a
sequence yn such that π(yn) has limit x in the topology ofXu(π(y)). Again we
obtain a subsequence ynk with limit y′ in Y . Then we have, for k sufficiently
large,

π[ynk , y
′] = [π(ynk), π(y′)] = [π(ynk), x] = π(ynk),

since π(ynk) is converging to x in the topology on Xu(π(y)) and using Propo-
sition 2.1.12. On the other hand, [ynk , y

′] and ynk are stably equivalent and
since π is s-resolving, this implies they are equal. It follows that y′ is in
Y u(ynK ) = Y u(y) and ynk is converging to y′ in the topology of Y u(y).

There has been extensive interest in s/u-resolving maps. We will need a
slightly stronger condition, which we refer to as s/u-bijective maps.

Definition 2.5.5. Let (X,ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)
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be a map. We say that π is s-bijective (or u-bijective) if, for any y in Y ,
its restriction to Y s(y) (or Y u(y), respectively) is a bijection to Xs(π(y)) (or
Xu(π(y)), respectively).

It is relatively easy to find an example of a map which is s-resolving, but
not s-bijective and we will give one in a moment. However, one important
distinction between the two cases should be pointed out at once. The image
of a Smale space under an s-resolving map is not necessarily a Smale space.
The most prominent case is where the domain and range are both shifts of
finite type and the image is a sofic shift, which is a much broader class of
systems. (See [23].) This is not the case for s-bijective maps (or u-bijective
maps).

Theorem 2.5.6. Let (Y, ψ) and (X,φ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be either an s-bijective map or a u-bijective map. Then (π(Y ), ϕ|π(Y )) is a
Smale space.

Proof. The only property which is not clear is the existence of the bracket: if
y1 and y2 are in Y and d(π(y1), π(y2)) < εX , then it is clear that [π(y1), π(y2)]
is defined, but we must see that it is in π(Y ). If π is s-bijective, then
[π(y1), π(y2)] is stably equivalent to π(y1) and hence in the set π(Y s(y1)) and
hence in π(Y ). A similar argument deals with the case π is u-bijective.

If π : (Y, ψ)→ (X,ϕ) is a factor map and every point in the system (Y, ψ)
is non-wandering (including the case that (Y, ψ) is irreducible), then it follows
that the same is true of (X,ϕ) and in this case, any s-resolving factor map is
also s-bijective, as we will show. The distinction is important for us; although
we are mainly interested in our homology theory for irreducible systems, the
various self-products we constructed earlier, and which will be used in the
later definitions, will almost never be irreducible.

Example 2.5.7. Consider (Y, ψ) to be the shift of finite type associated with
the following graph:

v1
��

// v2
��

v3
��

// v4
��
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and (X,ϕ) to be the shift of finite type associated with the following graph:

w1
�� **

44 w2
��

It is clear that there is a factor map from (Y, ψ) to (X,ϕ) obtained by mapping
the loops in the first graph to those in the second 2-to-1, while mapping the
other two edges injectively. The resulting factor map is s-resolving and u-
resolving but not s-bijective or u-bijective.

Theorem 2.5.8. Let (X,ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be an s-resolving factor map. Suppose that each point of (Y, ψ) is non-
wandering. Then π is s-bijective.

The proof will be done in a series of Lemmas, beginning with the following
quite easy one.

Lemma 2.5.9. Let π : Y → X be a continuous map and let x0 be in X with
π−1{x0} = {y1, y2, . . . , yN} finite. For any ε > 0, there exists δ > 0 such that
π−1(X(x0, δ)) ⊂ ∪Nn=1Y (yn, ε).

Proof. If there is no such δ, we may construct a sequence xk, k ≥ 1 in X
converging to x0 and a sequence yk, k ≥ 1 with π(yk) = xk and yk not in
∪Nn=1Y (yn, ε). Passing to a convergent subsequence of the yk, let y be the
limit point. Then y is not in ∪Nn=1Y (yn, ε), since that set is open, while
π(y) = limk π(yk) = limk x

k = x0. This is a contradiction to π−1{x0} =
{y1, y2, . . . , yN}.

Lemma 2.5.10. Let π : (Y, ψ) → (X,ϕ) be a finite-to-one factor map be-
tween Smale spaces and suppose that (X,ϕ) is non-wandering. There exists
a periodic point x in X such that

#π−1{x} = min{#π−1{x′} | x′ ∈ X}.

Proof. Choose x0 in X which minimizes #π−1{x0} and let
π−1{x0} = {y1, . . . , yN}. Choose εY /2 > ε > 0 so that the sets Y (yn, ε), 1 ≤
n ≤ N are pairwise disjoint. Apply the last Lemma to find δ satisfying the
conclusion there for this ε.
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As (X,ϕ) is non-wandering, the periodic points are dense, so choose a
periodic point x in X(x, δ). We claim that, for any 1 ≤ n ≤ N , the set
π−1{x}∩Y (yn, ε) contains at most one point. Note that from this, it follows
at once that #π−1{x} ≤ N = #π−1{x0}. The reverse inequality is trivial
from the choice of x0 and the proof will be complete. Suppose that both y
and y′ are in π−1{x} ∩ Y (yn, ε). As they both map to x under π, they are
both periodic. As ε < εY /2, we may bracket y and y′. We have

π[y, y′] = [π(y), π(y′)] = [x, x] = x.

This implies that [y, y′] is also periodic. The periodic points y and [y, y′] are
stably equivalent and hence must be equal. Similarly, the periodic points y′

and [y, y′] are unstably equivalent and hence must be equal. We conclude
that y = y′ as desired.

We now prove a version of Lemma 2.5.9 for local stable sets.

Lemma 2.5.11. Let π : (Y, ψ) → (X,ϕ) be a factor map between Smale
spaces and suppose x0 in X is periodic and π−1{x0} = {y1, y2, . . . , yN}. Given
ε0 > 0, there exist ε0 > ε > 0 and δ > 0 such that

π−1(Xs(x0, δ)) ⊂ ∪Nn=1Y
s(yn, ε).

Proof. First, since x0 is periodic, so is each yn. Choose p ≥ 1 such that
ψp(yn) = yn, for all 1 ≤ n ≤ N , and hence ϕp(x0) = x0. The system (Y, ψp)
is also a Smale space. Choose ε0 > ε > 0 to be less than the Smale space con-
stant for this. Also, choose ε sufficiently small so that the sets Y (yn, ε), 1 ≤
n ≤ N are pairwise disjoint and so that ψp(Y (yn, ε)) ∩ B(ym, ε) = ∅, for
m 6= n. Use the Lemma 2.5.9 to find δ such that π−1{x} ⊂ ∪Nn=1Y (yn, ε).

Now suppose that x is in Xs(x0, δ) and π(y) = x. It follows that y is
in Y (ym, ε), for some m. Now consider k ≥ 1. We have π(ψkp(y)) = ϕkp(x)
which is in Xs(x0, λ

kpδ) ⊂ X(x, δ). It follows that ψkp(y) is in ∪Nn=1Y
s(yn, ε)

for all k ≥ 1. It then follows from the choice of ε and induction that ψkp(y)
is in Y s(ym, ε) for all k ≥ 1. This means that y is in Y s(ym, ε).

We are now prepared to give a proof of Theorem 2.5.8.

Proof. In view of the structure Theorem 2.1.13, it suffices for us to consider
the case that (X,ϕ) is irreducible. First, choose a periodic point x0 satisfying
the conclusion of Lemma 2.5.10. Let π−1{x0} = {y1, . . . , yN}. We will first
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show that, for each 1 ≤ n ≤ N , π : Y s(yn) → Xs(x0) is open and onto. We
choose ε0 > 0 so that the sets Y (yn, ε0), 1 ≤ n ≤ N, are pairwise disjoint. We
then choose ε0 > ε > 0 and δ > 0 as in Lemma 2.5.11. Let x be any point in
B(x0, δ). We know that π−1({x}) is contained in ∪Nn=1Y

s(yn, ε0). As the map
π is s-resolving, it is injective when restricted to each of the sets Y s(yn, ε).
This means that π−1{x} contains at most one point in each of these sets.
On the other hand, it follows from our choice of x0 that π−1{x} contains at
least N points. We conclude that, for each n, π−1{x} ∩ Y s(yn, ε) contains
exactly one point. Let Wn = π−1(X(x, δ)) ∩ Y s(yn, ε). The argument above
shows that π is a bijection from Wn to Xs(x0, δ), for each n. It is clearly
continuous and we claim that is actually a homeomorphism. To see this, it
suffices to show that, for any sequence yk in Wn such that π(yk) converges to
some x in Xs(x0, δ), it follows that yk converges to some y in Wn. As ε < ε0,
the closure of Wn is a compact subset of Y s(yn, ε0). So the sequence yk has
limit points; let y be one of them. By continuity, π(y) = x. On the other
hand, there is a unique point y′ in Wn such that π(y′) = x. Thus, y and y′

are both in Y s(yn, ε0) and have image x under π. As π is s-resolving, y = y′

and so y is in Wn. So the only limit point of the sequence yk is y′ and this
completes the proof that π is a homeomorphism.

Since Wn is an open subset of Y s(yn, ε), we know that
Y s(yn) = ∪l≥0ψ

−l(Wn) and the topology is the inductive limit topology.
Similarly, Xs(x0) = ∪l≥0ϕ

−l(Xs(x0, δ)) and the topology is the inductive
limit topology. It follows at once that π is a homeomorphism from the former
to the latter.

Now we turn to arbitrary point y in Y and x = π(y) in X and show
that π : Y s(y) → Xs(x) is onto. We choose x0 and {y1, . . . , yN} to be
periodic points as above so that π : Y s(yn)→ Xs(x0) are homeomorphisms.
By replacing x0 by another point in its orbit (which will satisfy the same
condition), we may assume that x is in the closure of Xs(x0). Then, we
may choose yn such that y is in the closure of Y s(yn). There exists a point
y′ is Y s(yn) in Y u(y, εY /2) and so that x′ = π(y′) is in Xu(x, εX/2). The
map π may be written as the composition of three maps. The first from
Y s(y, εY /2) to Y s(y′, εY ) sends z to [y′, z]. The second from Y s(y′, εY ) to
Xs(x′) is simply π. The third is the map from Xs(x′, εX/2) to Xs(x, εX)
sends z to [x, z]. Each is defined on an open set containing y, y′ and x′,
respectively and is an open map. The conclusion is that there exists some
ε′ > 0 such that π(Y s(y, ε′)) = U is an open set in Xs(x) containing x. It
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then follows that

Xs(x) = ∪l≥0ϕ
−l(U) = ∪l≥0π(ψ−l(Y s(y, ε))) ⊂ π(Y s(y)).

Now we want to observe that although the property of a map being s-
bijective is defined purely at the level of stable sets, continuity properties
follow as a consequence.

Theorem 2.5.12. Let (X,ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X,ϕ)

be an s-bijective (or u-bijective) map. Then for each y in Y , the map
π : Y s(y) → Xs(π(y)) (or π : Y u(y) → Xu(π(y)), respectively) is a homeo-
morphism.

Proof. The proof is the general fact that if A,B are locally compact Haus-
dorff spaces and f : A → B is a continuous, proper bijection, then f is a
homeomorphism. This can be seen as as follows. Let A+ and B+ denote
the one-point compactifications of A and B, respectively. That the obvious
extension of f to a map between these spaces is continuous follows from the
fact that f is proper. Since this extension is a continuous bijection between
compact Hausdorff spaces, it is a homeomorphism. The result follows from
this argument and Theorem 2.5.4.

We have established a number of properties of s/u-bijective maps. We
now want to consider the constructions from the last section of fibred prod-
ucts and self-products as they pertain to s/u-resolving maps and s/u-bijective
maps. The first basic result is the following.

Theorem 2.5.13. Let (Y1, ψ1), (Y2, ψ2) and (X,ϕ) be Smale spaces and sup-
pose that

π1 : (Y1, ψ1)→ (X,ϕ), π2 : (Y2, ψ2)→ (X,ϕ)

are maps. Let (Z, ζ) denote the fibred product:

Z = {(y1, y2) ∈ Y1 × Y2 | π1(y1) = π2(y2)}, ζ = ψ1 × ψ2.

We have maps ρ1 : (Z, ζ) → (Y1, ψ1), ρ2 : (Z, ζ) → (Y2, ψ2) defined by
ρ1(y1, y2) = y1, ρ2(y1, y2) = y2.
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1. If π1 is a factor map, then so is ρ2.

2. If π1 is s-bijective (or u-bijective), then ρ2 is s-bijective ( or u-bijective,
respectively).

Proof. We will not prove the first statement since it is well-known. A proof
can be found in Proposition 8.3.3 of [23], but is also very similar to what we
demonstrate below for the other part.

We assume that π1 is s-resolving and show that ρ2 is injective on stable
equivalence classes. Let (y1, y2) and (y′1, y

′
2) be stably equivalent points in Z

and satisfy ρ2(y1, y2) = ρ2(y′1, y
′
2). The first statement implies that y1 and y′1

are stably equivalent. The second implies that y2 = y′2. Since these points
are in Z, we have π1(y1) = π2(y2) = π2(y′2) = π1(y′1). As π1 is s-resolving, we
have y1 = y′1 and hence (y1, y2) = (y′1, y

′
2) as desired.

Next, we show that ρ2 maps stable equivalence classes surjectively. Let
(y1, y2) be in Z and y′2 be stably equivalent to ρ2(y1, y2) = y2. As (y1, y2) is
in Z, we have π1(y1) = π2(y2), which is stably equivalent to π2(y′2). As π1 is
s-bijective, we may find y′1 in Y1 such that y′1 is stably equivalent to y1 and
π1(y′1) = π2(y′2). This means that (y′1, y

′
2) is in Z and is stably equivalent to

(y1, y2). Finally, we note ρ2(y′1, y
′
2) = y′2.

Theorem 2.5.14. Let (Y, ψ) and (X,ϕ) be Smale spaces and let π : (Y, ψ)→
(X,ϕ) be a map.

1. If π is a factor map, then so is

δn : YN(π)→ YN−1(π)

then for all N ≥ 1 and 0 ≤ n ≤ N .

2. If π is an s-bijective (or u-bijective) map, then so is

δn : YN(π)→ YN−1(π)

for all N ≥ 1 and 0 ≤ n ≤ N .

Proof. We first consider the case N = 1. The result follows at once from
Theorem 2.5.13, since Y1(π) is the fibred product of Y with itself. If we have
established the result for some N ≥ 1, it follows for N + 1 by again applying
Theorem 2.5.13 and observing that YN+1(π) is the fibred product of Y with
YN(π).
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The final part of this section deals with the special case of maps between
two shifts of finite type. We begin with the following easy result.

Lemma 2.5.15. Let π : (ΣG, σ)→ (X,ϕ) be a regular map. Suppose N, k ≥
1 and p is in Gk

N(π).

1. If π is s-resolving and tk(pi) = tk(pj) for some i, j, then pi = pj.

2. If π is u-resolving and ik(pi) = ik(pj) for some i, j, then pi = pj.

Proof. We prove the second part only. Let e be any point in ΣN(π) such
that e[1,k] = p. It follows that i(e1

i ) = ik(pi) = ik(pj) = i(e1
j), and so we may

form [ei, ej]. As π is regular, we have π([ei, ej]) = [π(ei), π(ej)] = π(ei). As ei
and [ei, ej] are stably equivalent and π is s-resolving, ei = [ei, ej]. The same
argument also shows ej = [ei, ej]. We conclude that pi = pj as desired.

As we are discussing s/u-resolving maps between shifts of finite type, we
describe a simple condition on the underlying graphs which is related.

Definition 2.5.16. Let G and H be graphs. A graph homomorphism θ :
H → G is left-covering if it is surjective and, for every v in H0, the map
θ : t−1{v} → t−1{θ(v)} is a bijection. Similarly, π is right-covering if it
is surjective and, for every v in H0, the map θ : i−1{v} → i−1{θ(v)} is a
bijection.

The following result is obvious and we omit the proof.

Theorem 2.5.17. If G and H are graphs and θ : H → G is a left-covering
(or right-covering) graph homomorphism, then the associated map
θ : (ΣH , σ) → (ΣG, σ) is an s-bijective (or u-bijective, respectively) factor
map.

The following is a result due to Kitchens - see Proposition 1 of [11] and
the discussion just preceeding it.

Theorem 2.5.18. Let π : (Σ, σ)→ (ΣG, σ) be an s-bijective (or u-bijective)
factor map. There exists a graph H, a left-covering graph homomorphism
(or right-covering graph homomorphism, respectively) θ : H → G and a
conjugacy h : (ΣH , σ)→ (Σ, σ) such that π ◦ h = θ.
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Remark 2.5.19. At first glance, this would seem to indicate that, as long as
we are concerned with s/u-bijective factor maps between shifts of finite type,
we may effectively restrict our attention to ones coming from left-covering
graph homomorphisms. We must warn readers that this is not correct. The
result has some very serious limitations for our applications. Specifically, if
ρ an s-bijective factor map defined on a shift of finite type (Σ, σ), we will
consider the maps δn : (ΣN(ρ), σ) → (ΣN−1(ρ), σ). The last theorem states
that we may recode ΣN(ρ) so that δn is left-covering. Unfortunately, to do
so would destroy the presentation of ΣN(ρ) as N + 1-tuples from Σ. If G is
a graph which presents ΣG such that ρ is regular, then in view of Theorem
2.4.5, δn is plainly given by a graph homomorphism (in our notation, it is
also δn), but we cannot assume is left-covering.

2.6 s/u-bijective pairs

The main motivation for this section is the seminal result of Bowen, which
we state now.

Theorem 2.6.1. Let (X,ϕ) be a non-wandering Smale space. There exists
a shift of finite type, (Σ, σ) and a factor map

π : (Σ, σ)→ (X,ϕ).

Moroever, these may be chosen such that π is finite-to-one and one-to-one
on a dense Gδ subset of Σ.

The weakness of this result for us is that the map π does not necessarily
possess nice properties such as the ones we studied in the last section. The
most naive question, whether π might be chosen to be s-resolving can be seen
to have a negative general answer, as follows. If (X,ϕ) is, say, a hyperbolic
toral automorphism, then its local stable and unstable sets are Euclidean
spaces, while those of Σ are totally disconnected. In this case, π cannot be
s-bijective or u-bijective, by Theorem 2.5.14.

The next possibility is that π might be factored as a composition of s-
bijective and u-bijective maps. This is indeed the case - see Corollary 2.6.7
- but we begin in a slightly different way. One can view Bowen’s Theorem
above as saying that the Smale space (X,ϕ) may be “disconnected” in some
controlled way. Our improvement to this is to ask that we disconnect only
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the stable sets, while leaving the unstable sets unchanged. Of course, we can
also reverse the roles of the local stable and unstable sets. This is the content
of the following definition.

Definition 2.6.2. Let (X,ϕ) be a Smale space. We say that
π = (Y, ψ, πs, Z, ζ, πu) is an s/u-bijective pair for (X,ϕ) if

1. (Y, ψ) and (Z, ψ) are Smale spaces,

2. πs : (Y, ψ)→ (X,ϕ) is an s-bijective factor map,

3. Y u(y) is totally disconnected, for every y in Y ,

4. πu : (Z, ζ)→ (X,ϕ) is a u-bijective factor map,

5. Zs(z) is totally disconnected, for every z in Z.

The main result of this section is the following. As we will explain shortly,
it may be seen as an improved version of Bowen’s Theorem.

Theorem 2.6.3. If (X,ϕ) is a non-wandering Smale space, then there exists
an s/u-bijective pair for (X,ϕ).

Proof. By Theorem 2.1.13, it suffices to consider the case that (X,ϕ) is
irreducible. We apply Corollary 1.4 of [29] or Corollary 1.5 of [15] to find an
irreducible shift of finite type, (Σ, σ), an irreducible Smale space, (Y, ψ), and
factor maps

π1 : (Σ, σ)→ (Y, ψ), π2 : (Y, ψ)→ (X,ϕ)

where π1 is u-resolving and π2 is s-resolving. Since the systems are irre-
ducible, π1, π2 are s-bijective and u-bijective by Theorem 2.5.8. Let πs = π2.
As π1 is u-bijective, the unstable classes in Y are homeomorphic to those in
Σ, by Theorem 2.5.12, and hence totally disconnected.

A similar argument shows the existence of (Z, ζ, πu).

Definition 2.6.4. Let π = (Y, ψ, πs, Z, ζ, πu) be an s/u-bijective pair for the
Smale space (X,ϕ). For each L,M ≥ 0, we define

ΣL,M(π) = {(y0, . . . , yL, z0, . . . , zM) | yl ∈ Y, zm ∈ Z,
πs(yl) = πu(zm), 0 ≤ l ≤ L < 0 ≤ m ≤M}
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For convenience, we also let Σ(π) = Σ0,0(π), which is simply the fibred prod-
uct of the spaces Y and Z. We let ρu(y, z) = y and ρs(y, z) = z denote the
usual maps from Σ(π) to Y and Z respectively.

For all, L,M ≥ 0, we also define

σ(y0, . . . , yL, z0, . . . , zM) = (ψ(y0), . . . , ψ(yL), ζ(z0), . . . , ζ(zM)),

for all (y0, . . . , yL, z0, . . . , zM) in ΣL,M(π).
Finally, for L ≥ 1 and 0 ≤ l ≤ L, we let δl, : ΣL,M(π) → ΣL−1,M(π) be

the map which deletes entry yl. Similarly, for M ≥ 1 and 0 ≤ m ≤ M , we
let δ,m : ΣL,M(π)→ ΣL,M−1(π) be the map which deletes entry zm.

We note the following whose proof (like 2.4.4) is straightforward and
omitted.

Proposition 2.6.5. If π is an s/u-bijective pair for (X,ϕ), then for all
L,M ≥ 0, (ΣL,M(π), σ) is a Smale space.

In fact, we can say more.

Theorem 2.6.6. If π is an s/u-bijective pair for (X,ϕ), then for all
L,M ≥ 0, (ΣL,M(π), σ) is a shift of finite type.

Proof. We begin with the case L = M = 0. The map ρu : (Σ(π), σ)→ (Y, ψ)
is u-bijective. Hence it is a homeomorphism on unstable sets 2.5.12. On the
other hand, by definition, the unstable sets of (Y, ψ) are totally disconnected.
A similar argument using Z in stead of Y shows that the stable sets of Σ(π)
are totally disconnected. It follows that Σ(π) is totally disconnected and so,
by Theorem 2.2.8, it is a shift of finite type.

For L,M ≥, the map sending (y0, . . . , yL, z0, . . . , zM) to ((yl, zm))l,m is an
injection from ΣL,M(π) to Σ(π)(L+1)(M+1). It follows that ΣL,M(π) is also
totally disconnected and hence a shift of finite type.

Let us restate our main result (Theorem 2.6.3), so that it more closely
resembles Bowen’s result. It requires the additional hypothesis of
non-wandering, simply because 2.6.3 does.

Corollary 2.6.7. Let (X,ϕ) be a non-wandering Smale space. Then there
exists a shift of finite type, (Σ, σ), and a factor map

π : (Σ, σ)→ (X,ϕ).

such that π may be written as the composition of an s-bijective factor map
with a u-bijective factor map and vice verse.
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The fact that Bowen’s result (with the stronger hypothesis of
non-wandering) is a consequence is a little bit misleading: the proof of Corol-
lary 1.4 of [29] which is used in the proof of 2.6.3 uses Bowen’s Theorem.

We may find a graph G such that (Σ(π), σ) is conjugate to (ΣG, σ). For
a point (y, z) in (Σ(π), σ), we denote by e(y, z) the corresponding point in
(ΣG, σ). For a given integer k, we let ek(y, z) denote the kth entry of e(y, z)
which is an edge of G. We may find G satisfying the following definition.

Definition 2.6.8. Let π be an s/u-bijective pair for (X,ϕ). We say that a
graph G together with a conjugacy

e : Σ(π)→ ΣG

is a presentation of π if, for any (y, z), (y′, z′) in Σ(π) with t(e0(y, z)) =
t(e0(y′, z′)), it follows that [y, y′], [z, z′] and [π(y), π(y′)] are all defined and

[e(y, z), e(y′, z′)] = e([y, y′], [z, z′]),

for all (y, z), (y′, z′) in Σ(π).

For L,M ≥ 0, we define the graph GL,M as follows. The vertices are
those (L+ 1)× (M + 1) arrays of entries of G0 obtained as t(e0(yl, zm)), 0 ≤
l ≤ L, 0 ≤ m ≤ M , where (y0, . . . , yL, z0, . . . , zM) is in ΣL,M(π). Similarly,
the edge set G1

L,M is the set of those (L+ 1)× (M + 1) arrays of entries of G1

obtained as e0(yl, zm), 0 ≤ l ≤ L, 0 ≤ m ≤ M , where (y0, . . . , yL, z0, . . . , zM)
is in ΣL,M(π). The definition of the maps i and t are obvious. The proof of
the following Theorem is much the same as that of 2.4.5, and we omit it.

Theorem 2.6.9. Let π be an s/u-bijective pair for (X,ϕ) and suppose that
G is a presentation of π. Then for every L,M ≥ 0,

(ΣL,M(π), σ) ∼= (ΣGL,M , σ).

Although it is not needed now, it will be convenient for us to have other
descriptions of these systems. Toward that end, we make the following ad-
ditional definition.

Definition 2.6.10. 1. For each L ≥ 0, let ρL, : ΣL,0(π) → YL(πs) be the
map defined by

ρL,(y0, . . . , yL, z0) = (y0, . . . , yL).
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2. For each M ≥ 0, let ρ,M : Σ0,M(π)→ ZM(πu) be the map defined by

ρ,M(y0, z0, . . . , zM) = (z0, . . . , zM).

Theorem 2.6.11. Let π be an s/u-bijective pair for (X,ϕ).

1. For all L ≥ 0, ρL, is a u-bijective factor map.

2. For all M ≥ 0, ρ,M is an s-bijective factor map.

Proof. We prove the first statement only. It is clear that ρL, is continuous
and intertwines the dynamics. We check that it is onto. Let (y0, . . . , yL) be
in YL(πs). As πu is onto, we may find z in Z such that πu(z) = πs(y0). Then
(y0, . . . , yL, z) is in ΣL,0(π) and its image under ρL, is (y0, . . . , yL).

Next, we check that ρL, is u-resolving. Suppose that (y0, . . . , yL, z0) and
(y′0, . . . , y

′
L, z

′
0) are unstably equivalent and have the same image under ρL,.

The first fact implies, in particular, that z0 and z′0 are unstably equivalent.
The second fact just means that (y0, . . . , yL) = (y′0, . . . , y

′
L). Since the points

are in ΣL,0, we also have πu(z0) = πs(y0) = πs(y
′
0) = πu(z

′
0). As πu is

u-resolving, we conclude that z0 = z′0.
Finally, we check that ρL, is u-bijective. Suppose that (y0, . . . , yL, z0) is in

ΣL,0 and (y′0, . . . , y
′
L) in YL(πs) is unstably equivalent to ρL,(y0, . . . , yL, z0). It

follows that y0 is unstably equivalent to y′0 and hence πu(z0) = πs(y0) is un-
stably equivalent to πs(y

′
0). As πu is u-bijective, we may find z′0 in Z unstably

equivalent to z0 and with πu(z
′
0) = πs(y

′
0). It follows that (y′0, . . . , y

′
L, z

′
0) is

in ΣL,0, is unstably equivalent to (y0, . . . , yL, z0) and has image (y′0, . . . , y
′
L)

under ρL,.

Consider now the factor map ρL, : ΣL,0(π) → YL(πs). We are free to
take self-products of this map with itself as in Definition 2.4.3. That is, let
M ≥ 0 and consider M + 1 points in ΣL,0(π) which all have the same image
under ρL,. Using our earlier notation, this set is written as (ΣL,0(π))M(ρL,).
Each element of such an M + 1-tuple has the form (y0, . . . , yL, z0) and the
condition that they have the same image under ρL, simply means that the
y0, . . . , yL entries of each one are all the same. Thus, we could list them
as (y0, . . . , yL, z0), (y0, . . . , yL, z1), . . . , (y0, . . . , yL, zM). It is then easy to see
that (y0, . . . , yL, z0, . . . , zM) is actually in ΣL,M .

What we have described is a bijection between (ΣL,0(π))M(ρL,) and ΣL,M .
It is an easy matter to see it is invariant for the actions and a homeomor-
phism. Its biggest complication would be in writing it explicitly, which we



2.7. TECHNICAL RESULTS 47

avoid. The same kind of analysis applies to (Σ0,M(π))L(ρ,M). We have proved
the following.

Theorem 2.6.12. For any L,M ≥ 0, we have

(ΣL,0(π))M(ρL,) = ΣL,M(π) = (Σ0,M(π))L(ρ,M).

This result has the following easy consequence (although it could also be
proved directly earlier). It will be crucial in our development of the homology
theory in Chapter 5.

Theorem 2.6.13. Let π be an s/u-bijective pair for (X,ϕ).

1. For all L ≥ 1, M ≥ 0 and 0 ≤ l ≤ L, the map δl, : ΣL,M(π) →
ΣL−1,M(π) which deletes yl from (y0, . . . , yL, z0, . . . , zM) is an s-bijective
factor map.

2. For all L ≥ 0, M ≥ 1 and 0 ≤ m ≤ M , the map δ,m : ΣL,M(π) →
ΣL,M−1(π) which deletes zm from (y0, . . . , yL, z0, . . . , zM) is a u-bijective
factor map.

Proof. The first statement follows immediately from the second equality of
Theorem 2.6.12, the fact that ρ,M is s-bijective in Theorem 2.6.11 and The-
orem 2.5.14. The second statement uses the first equality of Theorem 2.6.12
and the same two other results.

2.7 Technical results

In this section, we assemble a number of technical results which will be crucial
in our arguments later on. These fall into two groups. Let us take a moment
to motivate the first.

Recall that Theorem 2.5.12 states that an s-bijective factor map is actu-
ally a homeomorphism on stable sets. We wish to establish analogues of this
result for factor maps between shifts of finite type. Of course, the statements
look rather different - one sees integer parameters instead of ε’s and δ’s, but
this is typical in symbolic dynamics. In doing so, we obtain slightly stronger
versions of 2.5.12; the continuity is uniform in some sense.

We begin considering a pair of graphs and a graph homomorphism be-
tween them and the associated factor map between shifts of finite type. If the
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graph homomorphism is left-covering, then our estimates are both simpler
to state and easier to prove. But we remind the reader that the case of the
a homomorphism δn : GN(π) → GN−1(π) cannot be assumed to have this
property.

Lemma 2.7.1. Let G,H be graphs and θ : H → G be a graph homomor-
phism.

1. If the associated map on the shift spaces is an s-resolving factor map,
then there is a constant Kθ ≥ 0 such that, if e, f are in ΣH and are
stably equivalent and k0 is an integer such that θ(e)k = θ(f)k, for all
k ≥ k0, then ek = fk, for all k ≥ k0 +Kθ.

2. If θ is left-covering, then Kθ = 0 will satisfy the condition of part 1.

3. If the associated map on the shift spaces is a u-resolving factor map,
then there is a constant Kθ ≥ 0 such that, if (e, f) are in ΣH and are
unstably equivalent and k0 is an integer such that θ(e)k = θ(f)k, for all
k ≤ k0, then ek = fk, for all k ≤ k −Kθ.

4. If θ is right-covering, then Kθ = 0 will satisfy the condition of part 3.

Proof. It obviously suffices to prove the first and second statements only.
We consider the first. If it is false, then for every K we may find a stably
equivalent pair of points satisfying the hypothesis, but not the conclusion.
This means that they are distinct, but stably equivalent so we may shift
them so that they are equal in all positive entries and different at zero. We
let eK , fK denote these points after applying a suitable power of σ so that
e0
K 6= f 0

K , while ekK = fkK , for all k ≥ 1. The fact that the points satisfied
the hypothesis means that θ(e)k = θ(f)k, for all k ≥ −K. After passing to
a subsequence, we may assume these have limit points e, f , respectively. It
follows immediately that e0 6= f 0, ek = fk for all k ≥ 1 and θ(e)k = θ(f)k,
for all integers k. This contradicts θ being s-resolving.

The proof of the second statement is clear from the fact that θ is injective
on t−1{v}, for every vertex v in H0.

The next result is, in some way, a more general form of the last one in
that there is no requirement that the range be a shift of finite type.

Lemma 2.7.2. Let G be a graph, (X,ϕ) be a Smale space and ρ : (ΣG, σ)→
(X,ϕ) be a regular, s-resolving factor map. There exists a constant Kρ ≥ 0
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such that, for e0, e1, f0, f1 in ΣG and k0 such that ρ(e0) = ρ(e1), ρ(f0) = ρ(f1),
ek0 = fk0 , for all k ≥ k0 and e1, f1 are stably equivalent, we have ek1 = fk1 , for
all k ≥ k0 +Kρ.

In the special case that (X,ϕ) is a shift of finite type associated with some
graph and ρ is induced by a graph homomorphism θ, then the constant Kθ of
Lemma 2.7.1 satisfies the conclusion.

Proof. As before, we let Σ1(ρ) denote the fibred product of the map ρ with
itself. It is a shift of finite type. Let δ0(e, f) = e be the usual factor map from
Σ1(ρ) onto ΣG. It is s-resolving by Theorem 2.5.13. The result follows at
once from considering e = (e0, e1) and f = (f0, f1) in Σ and using Kρ = Kδ0 .
The second statement is trivial and we omit the details.

As we see from the proof above, there is a close relation between the
constant Kρ of a factor map ρ : (ΣG, σ) → (X,ϕ) and that of the factor
map δ0 : (Σ1(ρ), σ)→ (ΣG, σ). In fact, the same relation exists for all higher
self-products of (ΣG, σ), as follows. The proof is straightforward and we omit
it.

Lemma 2.7.3. Let G be a graph, (X,ϕ) be a Smale space and ρ : (ΣG, σ)→
(X,ϕ) be a regular, s-resolving factor map. If K satisfies the condition of
Lemma 2.7.2 for ρ, then for all N ≥ 1 and 0 ≤ n ≤ N , it also satisfies the
conclusion of Lemma 2.7.1 for the map δn : (ΣN(ρ), σ)→ (ΣN−1(ρ), σ).

Lemma 2.7.4. Let G and H be graphs and (X,ϕ) be a Smale space. Sup-
pose that θ : H → G is a graph homomorphism such that the induced map
θ : (ΣH , σ) → (ΣG, σ) is an s-resolving factor map. Also suppose that
ρ : (ΣG, σ) → (X,ϕ) is an s-resolving factor map. If Kθ and Kρ are con-
stants satisfying the conclusion of Lemma 2.7.2 for θ and ρ, respectively, then
Kθ +Kρ satisfies 2.7.2 for the map ρ ◦ θ.

Proof. Let e0, e1, f0, f1 be in ΣH and satisfy ρ ◦ θ(e0) = ρ ◦ θ(e1), ρ ◦ θ(f0) =
ρ ◦ θ(f1), ek0 = fk0 , k ≥ k0 and ek1 = fk1 , k ≥ k0 + Kθ + Kρ. We apply the
hypothesis on the map ρ to the four points θ(e0), θ(e1), θ(f0), θ(f1). The
second part of 2.7.2 implies that θ(e1)k = θ(f1)k, k ≥ k0 + Kθ. One more
application of the second part of 2.7.2, this time to θ, yields the result.

The next technical result will be used frequently. Again, we consider a
graph homomorphism and its associated maps between shifts of finite type.
Under the hypothesis that this map is an s-bijective factor map, we know



50 CHAPTER 2. DYNAMICS

from Theorem 2.5.12 that it is a homeomorphism on stable sets. We need
to have a local version of the surjectivity and injectivity; i.e. a result that
applies to the maps between finite paths in the graphs. It is provided below.
Notice that the first and third statements are existence results (surjectivity),
while the second and fourth are uniqueness statements (injectivity).

Lemma 2.7.5. Let G,H be graphs and θ : H → G be a graph homomor-
phism.

1. Suppose the factor map θ : (ΣH , σ)→ (ΣG, σ) is s-bijective and suppose
K satisfies the condition of Lemma 2.7.1. For any k0 ≥ K, k1 ≥ 0,
p in Gk0+k1 and q in Hk0 satisfying θ(q) = tk1(p), there exists q′ in
Hk0+k1 such that tk1+K(q′) = tK(q) and θ(q′) = p.

2. Suppose the factor map θ : (ΣH , σ)→ (ΣG, σ) is s-bijective and suppose
K satisfies the condition of Lemma 2.7.1. For any k0 ≥ K, if q, q′ are
in Hk and satisfy π(q) = π(q′) and tk0(q) = tk0(q′), then tK(q) = tK(q′).

3. Suppose the factor map θ : (ΣH , σ)→ (ΣG, σ) is u-bijective and suppose
K satisfies the condition of Lemma 2.7.1. For any k0 ≥ K, k1 ≥ 0,
p in Gk0+k1 and q in Hk0 satisfying θ(q) = ik1(p), there exists q′ in
Hk0+k1 such that ik1+K(q′) = iK(q) and θ(q′) = p.

4. Suppose the factor map θ : (ΣH , σ)→ (ΣG, σ) is u-bijective and suppose
K satisfies the condition of Lemma 2.7.1. For any k0 ≥ K, if q, q′ are
in Hk and satisfy π(q) = π(q′) and ik0(q) = ik0(q′), then iK(q) = iK(q′).

Proof. We prove the first and second statements only. For the first, choose e
in ΣG such that e[1−k1,k0] = p and f in ΣH such that f [1,k0] = q. It follows that
e′ = [θ(f), e] is defined and is stably equivalent to θ(f). As θ is s-bijective
and e′ is stably equivalent to θ(f), we may choose f ′ in ΣH stably equivalent
to f such that θ(f ′) = e′. For all k ≥ 1, we have θ(f ′)k = θ(f)k. It follows
from Lemma 2.7.1 that (f ′)k = fk, for k ≥ 1 +K. Let q′ = (f ′)[1−k1,k0]. and
so tk1+K(q′) = tK(q). For 1− k1 ≤ k ≤ 0, we have θ(f ′)k = (e′)k = ek, while
for 1 ≤ k ≤ k0, we have θ(f ′)k = θ(f)k. It follows that θ(q′) = p as desired.

For the second statement, choose f and f ′ from ΣH so that f [1−k0,0] = q
and f ′[1−k0,0] = q′. Since tk0(q) = tk0(q′), we know that f̄ = [f, f ′] is defined
and f̄k = fk, for k ≥ 1. Now consider 1− k0 ≤ k ≤ 0. We have

θ(f̄k) = θ(f ′k) = θ(q′k+k0) = θ(qk+k0) = θ(fk).
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Thus, θ(f̄)k = θ(f)k, for k ≥ 1 − k0 and it follows from Lemma 2.7.1 that
f̄k = fk, for 1 ≥ 1− k0 +K. This implies the desired conclusion.

This brings us to the second set of technical results. These are concerned
with the action of SL+1×SM+1 of the system ΣL,M(π) and the graph GL,M(π),
associated with an s/u-bijective pair.

It is fairly easy to see that, given an action of SL+1 × SM+1 on a set, the
subgroups SL+1×1 and 1×SM+1 may have trivial isotropy at a point, without
the whole action doing so. (The reader may consider the case of L = M = 1
acting on the set of 2 × 2 matrices and the identity matrix.) However, it is
clear that this does not occur for the actions on ΣL,M(π). Roughly speaking,
we wish to see this special property is present for the actions of the graphs
GK
L,M , provided K is sufficiently large.

To begin, we want to establish analogue of the fairly simple result for
s/u-resolving maps in Lemma 2.5.15 for s/u-bijective pairs.

Lemma 2.7.6. Let π = (Y, ψ, πs, Z, ζ, πu) be an s/u-bijective pair for the
Smale space (X,ϕ). Let G be a graph which presents π. There exists K0 ≥ 0
such that if (y0, . . . , yL, z0, . . . , zM) is in ΣL,M(π) and satisfies ek(yl1 , zm1) =
ek(yl2 , zm2) for some 0 ≤ l1, l2 ≤ L, some 0 ≤ m1,m2 ≤M and all 1−K0 ≤
k ≤ K0, then

1. ek(yl1 , zm) = ek(yl2 , zm), for all k ≤ 0 and 0 ≤ m ≤M , and

2. ek(yl, zm1) = ek(yl, zm2), for all k ≥ 0 and 0 ≤ l ≤ L.

Proof. We use the continuity of the map t◦e0 : Σ(π)→ G0 to assert that there
is a constant 0 < ε < εY , εZ such that d(y, y′), d(z, z′) < ε implies t(e0(y, z)) =
t(e0(y′, z′)). Next, we choose K0 ≥ 1 such that d(e(y, z), e(y′, z′)) ≤ 2−K0

implies d(y, y′), d(z, z′) < ε. Then with (y0, . . . , yL, z0, . . . , zM) as above, we
prove the first statement only. Let 0 ≤ m ≤M be fixed. It follows from the
hypothesis and our choice of K0 that [yl1 , yl2 ] is defined and πs([yl1 , yl2 ]) =
[πs(yl1), πs(yl2)] = πs(yl1). As πs is s-bijective, it follows that [yl1 , yl2 ] = yl1 .
It also follows from our choice of ε that t(e0(yl1 , zm)) = t(e0(yl2 , zm)) and so
we may compute, for k ≤ 0,

ek(yl2 , zm) = [e(yl1 , zm), e(yl2 , zm)]k = ek([yl1 , yl2 ], [zm, zm]) = ek(yl1 , zm).
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Proposition 2.7.7. Let π(Y, ψ, πs, Z, ζ, πu) be an s/u-resolving pair for the
Smale space (X,ϕ) and let G be a graph which presents π. Suppose that
K ≥ 2K0, as in Lemma 2.7.6 and L,M ≥ 0.

1. If p is in GK
L,M satisfies pl1,m1 = pl2,m2 for some 0 ≤ l1, l2 ≤ L and 0 ≤

m1,m2 ≤M , then iK0(p)·((l1 l2), 1) = iK0(p) and tK0(p)·(1, (m1m2)) =
tK0(p).

2. If p is in GK
L,M and β is in SM+1 satisfy pl1,m = pl2,β(m), for some l1, l2

and all 0 ≤ m ≤M , then pl1,m = pl2,m, for all 0 ≤ m ≤M .

3. If p is in GK
L,M and α is in SL+1 satisfy pl,m1 = pα(l),m2, for some m1,m2

and all 0 ≤ l ≤ L, then pl,m1 = pl,m2, for all 0 ≤ l ≤ L.

4. If p is in GK
L,M , α is in SL+1 and β is in SM+1 satisfy p · (α, β) = p,

then
p · (α, 1) = p · (1, β) = p.

5. For p in GK+1
L,M , if t(p)·(α, 1) = t(p), for some α in SL+1, then p·(α, 1) =

p.

6. For p in GK+1
L,M , if i(p)·(1, β) = i(p), for some β in SM+1, then p·(1, β) =

p.

Proof. For the first four parts, we begin by choosing (y0, . . . , yL, z0, . . . , zM)
in GK

L,M such that

e[1−K0,K−K0](yl, zm) = pl,m, for all l,m. The first statement follows at once
from the last Lemma.

For the second part, it follows from Lemma 2.7.6 that ek(yl1 , zm) =
ek(yl2 , zm) for all k ≤ and all m. For k ≥ 1, the same result states that,
for any m, ek(yl2 , zm) = ek(yl2 , zβ(m)). In addition, for 1 − K0 ≤ k ≤ K0,
we also know ek(yl2 , zβ(m)) = ek(yl1 , zm). Putting these last two together, we
have ek(yl2 , zm) = ek(yl1 , zm), for 1 ≤ k ≤ K0 and all m. Together with the
first step, we have the desired conclusion

The proof of the third part is analogous to that of the second. The fourth
part follows from the second using l1 = l and l2 = α(l) and the third using
m1 = m and m2 = β(m).

For the fifth part, we begin by choosing (y0, . . . , yL, z0, . . . , zM) in GK
L,M

such that
e[−K0,K−K0](yl, zm) = pl,m, for all l,m. For any l, we apply Lemma 2.7.6
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with l1 = l, l2 = α(l) and any m1 = m2 = m. It follows that ek(yl, zm) =
ek(yα(l), zm) with k ≤ 0. Applying k = −K yields the result. The proof of
the last statement is analogous to the fifth and we omit it.
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Chapter 3

Dimension groups

In this chapter, we present background material on Krieger’s theory of di-
mension group invariants for shifts of finite type.

The first section presents some very simple observations on free abelian
groups. The second discusses two abelian groups, Ds(G) and Du(G), associ-
ated with a graph G. The third section outlines Krieger’s invariants, Ds(Σ, σ)
and Du(Σ, σ) associated with a shift of finite type. The main result here is
Krieger’s, that if G is a graph, then the invariant Ds(ΣG, σ) is isomorphic
to that of the graph, Ds(G). Of course, we establish explicit isomorphisms
between the two.

The reason we have two different presentations for the invariant is simple:
described as Ds(Σ, σ), it is clearly dependent only on the dynamics, while
the description as Ds(G) gives an effective tool for its computation. This
becomes particularly important in the next sections where we consider the
properties of these invariants as functors. That is, when π : (Σ′, σ)→ (Σ, σ)
is a map between shifts of finite type, does it induce group homomorphisms
between the invariants? The answer is subtle: for s-bijective maps, Ds is
covariant while Du is contravariant. The fourth section considers the covari-
ant situation, while the fifth section deals with the contravariant case. The
other important results here are to establish concrete formulae for the group
homomorphisms in terms of Ds(G) and Du(G).

55
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3.1 Free abelian groups

In this section, we establish some very simple ideas about free abelian groups
and homomorphisms between them. Simply put, we are transforming com-
binatorial objects to algebraic ones.

Let A be any (finite) set. The free abelian group on A, denoted by ZA is
the set of all formal integral combinations of elements of A. It is isomorphic
to ZA, but it will be most convenient for us to regard A as being a subset of
the group (which is not so convenient in ZA). Its main feature is that any
function α : A→ G, where G is an abelian group, has a unique extension to
a group homomorphism α : ZA→ G.

We will also make use of the following notation: for a subset C of A, we
let

Sum(C) =
∑
a∈C

a.

Some care must be taken. For example, if α : A→ B is any function between
finite sets and C is a subset of A, α(Sum(C)) and Sum(α(C)) are not equal
in general if α is not one-to-one.

For a finite set A, we introduce an integer-valued bilinear form <,>A on
the group ZA by setting

< a, b >=

{
1 if a = b,
0 if a 6= b

for any a, b in A and extend to pairs in ZA so that it is additive in each
variable. This is non-degenerate in the sense that, for any a in ZA, if
< a, b >= 0, for all b in ZA, then a = 0.

If A and B are two finite sets and h : ZA → ZB is any homomorphism,
there is a unique homomorphism h∗ : ZB → ZA such that

< h(a), b >B=< a, h∗(b) >A,

for all a in ZA and b in ZB. If h1 and h2 are two homomorphisms (with
appropriate domains), then (h1 ◦ h2)∗ = h∗2 ◦ h∗1.

The following result is a trivial consequence of the definitions and we
state it without proof.

Lemma 3.1.1. Let α : A→ B be any function. Also denote by α its unique
extension to a group homomorphism from ZA to ZB. Then the function
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α∗ : ZB → ZA satisfies

α∗(b) =
∑

a∈α−1{b}

a = Sum(α−1{b})

for all b in B.

3.2 The dimension group of a graph

Expanding on the ideas of the last section, we construct two abelian groups,
denoted Ds(G) and Du(G), from a graph G. These are called the dimension
groups associated with G. After presenting the definition, we will observe
one result: that the dimension groups associated with the graphs GK , K ≥ 1
from Definition 2.2.2 are all naturally isomorphic to those of G.

Let G be a graph. First, consider ZG0, the free abelian group on the
generating set G0 and we define a homomorphism

γsG : ZG0 → ZG0

by

γsG(v) =
∑
t(e)=v

i(e) = i ◦ t∗(v),

for all v in G0. If no confusion will arise, we suppress the subscript G. We
then let Ds(G) be the inductive limit of the system

ZG0 γs→ ZG0 γs→ · · ·

The usual definition is in terms of a universal property, but we will provide
a more concrete definition since it will be more useful.

On the set ZG0 × N, we define (a,m) ∼s (b, n) if there exists l ≥ 0
such that (γsG)n+l(a) = (γsG)m+l(b). It is easy to see this is an equivalence
relation. It is also easy to see that this is the equivalence relation generated
by (a,m) ∼ (γsG(a),m + 1), for (a,m) in ZG0 × N. For (a,m) in ZG0 × N,
we denote its equivalence class by [a,m]s.

The second dimension group associated with G is obtained by replacing
the map γsG by

γuG(v) =
∑
i(e)=v

t(e) = t ◦ i∗(v)
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and taking inductive limits. We denote the result by Du(G). It is immediate
that this coincides with the dimension group of the opposite graph Gop =
(G0, G1, t, i).

The equivalence relation ∼u is defined replacing γsG by γuG and the equiva-
lence class of (a,m) is denoted by [a,m]u. If no confusion will arise, we drop
the subscripts.

Definition 3.2.1. Let G be a graph. The set of equivalence class in ZG0×N
in the relation ∼s is denoted Ds(G). It is an abelian group with the operation
[a,m]s + [b,m]s = [a + b,m]s, for all a, b in ZG0 and m in N. The group
Du(G) is obtained in analogous way, using the relation ∼u.

We remark that an important aspect in Krieger’s theory is that the group
ZG0 has a natural order structure: the map γs is positive and the inductive
limit as actually taken in the category of ordered abelian groups. (For more
on this, see [23].) For our purposes here, we will ignore the order structure,
but it should presumably feature in further developments.

Of course, the same construction may be applied to any of the graphs
GK , K ≥ 1, described in Definition 2.2.2. We recall that the vertex set of
GK is GK−1 and so Ds(GK) is the inductive limit of the system

ZGK−1 γs→ ZGK−1 γs→ ZGK−1 γs→ · · ·

where the map γs = γsGK = i ◦ t∗.
It is worth noting the following easy result.

Lemma 3.2.2. For K ≥ 1, as maps defined on ZGK, we have

i ◦ t∗ = t∗ ◦ i,
t ◦ i∗ = i∗ ◦ t.

For K > j, as maps defined on ZGK, we have

(γs)j = ij ◦ tj∗ = tj∗ ◦ ij,
(γu)j = tj ◦ ij∗ = ij∗ ◦ tj.

Proof. Let p be in GK . By definition i ◦ t∗ =
∑

t(q)=p i(q), while t∗ ◦ i(p) =∑
t(q)=i(p) q. We claim that i : {q | t(q) = p} → {q′ | t(q′) = i(p)} is

a bijection. Since we suppose K ≥ 1, if q is such that t(q) = p, then
t(i(q)) = i(t(q)) = i(p). Moreover, the map sending q1 · · · qk to q1 · · · qKpK
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is the inverse of i and this establishes the claim. The conclusion follows at
once from this.

The second part is proved in the same way and the last two statements
are easy applications of the first two.

For a fixed graph G, its higher block presentations, GK , K ≥ 1, all have
the same Ds and Du invariants , stated precisely as follows. The proof is left
to the reader.

Theorem 3.2.3. Let G be a graph and let K,K ′ ≥ 0.

1. The maps sending [a, j] in Ds(GK) to [tK
′∗(a), j] in Ds(GK+K′) and

[b, j] in Ds(GK+K′) to [iK
′
(b), j + K ′] in Ds(GK) are inverse to each

other and hence implement inverse isomorphisms between the groups
Ds(GK) and Ds(GK+K′).

2. The maps sending [a, j] in Du(GK) to [iK
′∗(a), j] in Du(GK+K′) and

[b, j] in Du(GK+K′) to [tK
′
(b), j + j] in Du(GK) are inverse to each

other and hence implement inverse isomorphisms between the groups
Du(GK) and Du(GK+K′).

3.3 The dimension group of a shift of finite

type

Let (Σ, σ) be a shift of finite type. We will assign to (Σ, σ) two abelian groups,
denoted Ds(Σ, σ) and Du(Σ, σ). This construction is to due to Krieger [22]
but also see [23] or [10] for other treatments. Once again, these are actually
ordered abelian groups, but we will not concern ourselves with the order
structure here.

Let COs(Σ, σ) be the collection of all non-empty, compact, open subsets
of Σs(e), over all e in Σ. Notice that if E is in COs(Σ, σ), then any non-
empty subset which is compact and open relative to E is also in COs(Σ, σ).
Let ∼ be the smallest equivalence relation on COs(Σ, σ) such that E ∼ F if
[E,F ] = E and [F,E] = F (meaning that both sets are defined) and such
that E ∼ F if and only if σ(E) ∼ σ(F ). We let [E] denote the equivalence
class of E.
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Suppose that G is a graph. For e in ΣG and K ≥ 0, recall from Lemma
2.2.6 that

Σs
G(e, 2−K) = {f ∈ ΣG | ek = fk, for all k ≥ 1−K}.

It is easy to see that such sets are in COs(ΣG, σ) and that if e, e′ are in ΣG and
satisfy i(e1−K) = i(e′1−K) then Σs

G(e, 2−K) ∼ Σs
G(e′, 2−K). Moreover, every

set in COs(ΣG, σ) may be expressed as a finite union of such sets (allowing
both e and K to vary).

In a similar way, we let COu(Σ, σ) be the collection of all non-empty,
compact, open subsets of Σu(e). Let ∼ be the smallest equivalence relation
on COu(Σ, σ) such that E ∼ F if [E,F ] = F and [F,E] = E (meaning that
both sets are defined) and such that E ∼ F if and only if σ(E) ∼ σ(F ). We
let [E] denote the equivalence class of E.

If G is a graph, for e in ΣG and K ≥ 0, recall that

Σu
G(e, 2−K) = {f ∈ ΣG | ek = fk, for all k ≤ K}.

It is easy to see that such sets are in COu(ΣG, σ) and that if e, e′ are in ΣG

and satisfy t(eK) = t(e′K) then Σu
G(e, 2−K) ∼ Σu

G(e′, 2−K).

Remark 3.3.1. Krieger’s original definition appears slightly differently.
There, the clopen subsets of a stable set are considered equivalent if there
exists an element of an ample group which moves one to another. For the case
of the past and future dimension groups considered in section 4 of [22], this
is exactly the same as the equivalence relation we introduced above. A second
small variation is the following. Krieger defines addition of clopen sets by
means of taking unions. This requires some type of aperiodicity assumption
which we avoid by taking free abelian groups in the following.

Definition 3.3.2. Let (Σ, σ) be a shift of finite type. The group Ds(Σ, σ) is
defined to be the free abelian group on the ∼-equivalence classes of COs(Σ, σ),
modulo the subgroup generated by [E ∪F ]− [E]− [F ], where E,F and E ∪F
are in COs(Σ, σ) and E and F are disjoint.

The group Du(Σ, σ) is defined to be the free abelian group on the
∼-equivalence classes of COu(Σ, σ), modulo the subgroup generated by
[E ∪ F ]− [E]− [F ], where E,F and E ∪ F are in COu(Σ, σ) and E and F
are disjoint.



3.3. THE DIMENSION GROUP OF A SHIFT OF FINITE TYPE 61

The following theorem is due to Krieger (4.1 of [22]). It asserts that the
dimension group associated to a shift of finite type presented by a graph G is
the same as that of the underlying graph. This provides a concrete method of
computing the invariant. It will be useful for us to describe this isomorphism
in terms of the invariant Ds(Gk), for all k ≥ 1. Recall in the formulas below,
that for any e in ΣG and integer k, e[k+1,k] = i(ek+1) = t(ek), by convention.

Theorem 3.3.3. Let G be a graph, (ΣG, σ) be the associated shift of finite
type and k ≥ 1.

1. The map sending [Σs
G(e, 2−j)], e ∈ ΣG, j ≥ k to [e[1−j,k−j−1], j − k + 1]

extends to an isomorphism from Ds(ΣG, σ) to Ds(Gk).

2. The map sending [Σu
G(e, 2−j)], e ∈ ΣG, j ≥ k to [e[j−k+2,j], j − k + 1]

extends to an order isomorphism from Du(ΣG, σ) to Du(Gk).

Moreover, these isomorphisms, for different values of K are compatible with
the natural isomorphisms of Theorem 3.2.3.

Example 3.3.4. Let (Σ, σ) be the shift of finite type associated with the
following graph

v1
��

// v2
��

It is fairly easy to see that Σ may be identified with the two-point compacti-
fication of the integers, {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,+∞}. The points −∞
and +∞ correspond to the paths in the graph which only use the left loop and
the right loop respectively. The integer n corresponds to the unique path which
has the non-loop at entry n. Under this identification, σ sends n to n−1, for
n finite and each infinite point to itself. Each singleton {+∞} and {n}, n ∈ Z
is in COs(Σ, σ). Now, we have some notational difficulties because our space
carries an obvious order structure and we would like to look at intervals,
such as [−∞, n] = {a | −∞ ≤ a ≤ n}. Unfortunately, as we are in a Smale
space, the bracket has another meaning. We use [, ] in the order sense only.
Moreover, each interval [−∞, n], n ∈ Z is also in COs(Σ, σ). Notice that,
for n ≥ 1, the Smale bracket of n with +∞ is +∞ and so {n} ∼ {+∞}. It
follows that in the group Ds(Σ, σ), < [−∞, n] >=< [−∞,m] >, for every
m,n ∈ Z and < {n} >=< {+∞} >, for every n in Z. Moreover, Ds(Σ, σ)
is isomorphic to Z2, with these elements as generators. The order is lexico-
graphic.
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3.4 The dimension group as a covariant func-

tor

The construction of the dimension group has various subtle, but interesting
functorial properties. This is given in Theorem 3.2 of [10], in the implication
1 implies 2 only in the case m = 1. From our point of view, the result of [10]
is not completely satisfactory. The method there uses a recoding of domain
of the map which we would prefer to avoid (Remark 2.5.19). Secondly, the
key property of a functor, namely that the map induced by a composition is
the composition of the induced maps, is not clear with this approach. So we
give a complete treatment here, starting from Definition 3.3.2.

We begin by showing that the invariant Ds(Σ, σ) is covariant for s-
bijective maps. Having established this, we next assume that our shifts of
finite type are presented by graphs H and G and that the s-bijective map
arises from a graph homomorphism, π. We have seen in the last section that
Ds(ΣH , σ) and Ds(ΣG, σ) may be computed in terms of H and G. We need to
have specific formulae for the maps induced by π. Essentially, the situation
of [10] is to assume that π is actually left-covering. As was the case in the
last chapter, the results in that case are quite simple. But we need to work
in greater generality. The main result is summarized in Theorem 3.4.4, but
we also derive some other useful facts in Theorem 3.4.5 and Theorem 3.4.6.
Finally, we deal with an important special case. In general, any dynamical
system (X,ϕ) always comes with a natural automorphism, namely ϕ. In the
context of the this section, if (Σ, σ) is a shift of finite type, then both σ and
σ−1 may be regarded as maps from (Σ, σ) to itself. We obtained formulae
for their induced maps in the dimension group invariants in Theorem 3.4.7.

We begin with the following result which shows that the construction of
Ds(Σ, σ) is covariant for s-bijective maps. Of course, there is an analogous
result which we do not state that Du(Σ, σ) is covariant for u-bijective factor
maps. The idea is simple enough: suppose

π : (Σ, σ)→ (Σ′, σ)

is an s-bijective map, then for E in COs(Σ, σ), we will show that π(E) is in
COs(Σ′, σ). Moreover, this map extends in a well-defined fashion to a map
from Ds(Σ, σ) to Ds(Σ′, σ).

Theorem 3.4.1. Let (Σ, σ) and (Σ′, σ) be shifts of finite type and let

π : (Σ, σ)→ (Σ′, σ)



3.4. THE DIMENSION GROUP AS A COVARIANT FUNCTOR 63

be an s-bijective map.

1. If E is in COs(Σ, σ), then π(E) is in COs(Σ′, σ).

2. If E and F are in COs(Σ, σ) and E ∼ F , then π(E) ∼ π(F ).

3. If E,F and E ∪ F are all in COs(Σ, σ) with E and F disjoint, then
π(E) and π(F ) are also disjoint.

In particular, the map defined by πs[E] = [π(E)] induces a well-defined group
homomorphism πs : Ds(Σ, σ) → Ds(Σ′, σ). Finally, if π′ : (Σ′, σ) → (Σ′′, σ)
is another s-bijective map, then (π′ ◦ π)s = π′s ◦ πs.

Proof. The first and third statements follow easily from the fact that π :
Σs(y)→ Σs(π(y)) is a homeomorphism (Theorem 2.5.12). The second state-
ment is an easy consequence of the definitions and Proposition 2.5.2. The
last statements follow from the first three.

Example 3.4.2. Consider the graphs H and G of Example 2.5.7. Argu-
ing as in Example 3.3.4, it is easy to show that ΣH may be identified with
{a, b} × {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,+∞}, while ΣG may be identified with
{−∞,+∞}∪{a, b}×{. . . ,−2,−1, 0, 1, 2, . . .}. The factor map sends (a,±∞)
and (b,±∞) to ±∞ and is the identity on the other points. Fix n in Z and
notice that E = {(a, x) | −∞ ≤ x ≤ n} is in COs(ΣH , σ), while its image
under the factor map is not in COs(ΣG, σ). Hence, the first part of the result
above fails with the hypothesis of s-bijective replaced by s-resolving. Although
we have not computed the dimension groups explicitly, it is not difficult if
one begins by looking at Example 3.3.4. Let D denote the group Z2 with lexi-
cographic order. We have Ds(ΣH , σ) ∼= D⊕D, while Ds(ΣH , σ) ∼= D. There
does indeed exist a well-defined homomorphism from the former to the latter,
but it is not induced dynamically.

The next objective is to consider the case that the two shifts (Σ, σ) and
(Σ′, σ) are presented by graphs, H and G, and the map is induced by a
graph homomorphism, π. Identifying the invariants Ds(Σ, σ), Ds(Σ′, σ) with
the dimension groups of their graphs as in 3.3.3, we want to have an explicit
formula for the map πs. Toward that end, we begin by defining the sym-
bolic presentations for the induced map. Unlike 3.4.1, we give a complete
statement for both Ds and Du invariants.
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Definition 3.4.3. Let G and H be graphs and let π : H → G be a graph
homomorphism.

1. If π : (ΣH , σ) → (ΣG, σ) is an s-bijective map, then for any K, k ≥ 0,
define πs,K : ZHk → ZGk+K by

πs,K(q) = Sum{π(q′) | q′ ∈ Hk+K , tK(q′) = q},

for q in Hk.

2. If π : (ΣH , σ) → (ΣG, σ) is a u-bijective map, then for any K, k ≥ 0,
define πu,K : ZHk → ZGk+K by

πu,K(q) = Sum{π(q′) | q′ ∈ Hk+K , iK(q′) = q},

for q in Hk.

We remark, concerning the set {π(q′) | q′ ∈ Hk+K , tK(q′) = q}, that the
map π on the set of all q′ with tK(q′) = q may not be injective. This means
our sum above is not the same as the sum of π(q′) over all q′ with tK(q′) = q.
The latter may contain some repetitions while the former does not.

The relevance of the definition above is summarized by the following result
which states that the maps πs,K give presentations for πs on the invariants
for the graphs.

Theorem 3.4.4. Let G and H be graphs and let π : H → G be a graph
homomorphism. Let k ≥ 1.

1. Suppose the associated map π : (ΣH , σ) → (ΣG, σ) is an s-bijective
map and K satisfies the conclusion of Lemma 2.7.1. If we implicitly
identify Ds(ΣH , σ) with Ds(Hk) and Ds(ΣG, σ) with Ds(Gk+K) using
the isomorphism of Theorem 3.3.3, then we have

πs[a, j] = [πs,K(a), j],

for all j ≥ 1 and a in ZHk−1.

2. Suppose the associated map π : (ΣH , σ) → (ΣG, σ) is a u-bijective
map and K satisfies the conclusion of Lemma 2.7.1. If we implicitly
identify Du(ΣH , σ) with Du(Hk) and Du(ΣG, σ) with Du(Gk+K) using
the isomorphism of Theorem 3.3.3, then we have

πu[a, j] = [πu,K(a), j],

for all j ≥ 1 and a in ZHk−1.
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Proof. We prove the first part only. It suffices to prove the result for a = q,
where q is in Hk−1. Select f in ΣH with f [−j−k+2,−j] = q. From Theorem
3.3.3, the set Σs

H(f, 2−j−k+1) in COs(ΣH , σ) is identified with [q, j] in Ds(Hk).
Let A = {π(q′) | q′ ∈ HK+k−1, tK(q′) = q}. It follows from Definition 3.4.3
that πs,K(q) = SumA.

For each p in A, choose ep an element of ΣG with e
[−j−k−K+2,−j]
p = p. By

replacing ep with σ−j[σj(π(f)), σj(ep)], we may also assume that elp = π(f)l,
for all l > −j. The sets Σs

G(ep, 2
−j−K−k+1) are in COs(ΣG, σ) and are pairwise

disjoint for different values of p. Moreover, for each p, the isomorphism
of Theorem 3.3.3 identifies Σs

G(ep, 2
−j−k−K+1) with [p, j] in Ds(Gk+K). So

it suffices for us to prove that π(Σs
H(f, 2−j−k+1)) is the union of the sets

Σs
G(ep, 2

−j−k−K+1), p ∈ A.
Suppose that f1 is in Σs

H(f, 2−j−k+1). Letting p = π(f1)[−j−k−K+2,−j], it
is immediate that π(f1) is in Σs

G(ep, 2
−j−K−k+1). In addition,

p = π(f
[−j−k−K+2,−j]
1 ) with

tK(f
[−j−k−K+2,−j]
1 ) = f

[−j−k+2,−j]
1 = f [−j−k+2,−j] = q

and so p is in A. Hence, we have

π(Σs
H(f, 2−j−k+1)) ⊂ ∪p∈AΣs

G(ep, 2
−j−k−K+1).

Conversely, suppose that p is in A and e is in Σs
G(ep, 2

−j−k−K+1). From the
definition of A, there exists q′ in HK+k−1 such that π(q′) = p and tK(q′) = q.

Let f1 be any element of ΣH such that f
[−j−k−K+2,−j]
1 = q′. It follows that

f2 = σ−j[σj(f), σj(f1)] is defined and f l2 = f l for l > −j, while f l2 = f l1 for

l ≤ −j. In particular, we have f
[−j−k−K+2,−j]
2 = q′. For l > −j, we have

π(f l2) = π(f l) = elp = el,

while

π(f
[−j−k−K+2,−j]
2 ) = π(q′) = p = e[−j−k−K+2,−j]

p = e[−j−k−K+2,−j].

Since π(f2) and e are stably equivalent, there is f3 in ΣH with π(f3) = e
and f3 stably equivalent to f2. By Lemma 2.7.1, since π(f l2) = el, for l >
−j − k −K + 2, we have f l2 = f l3, for l > −j − k + 2. We have seen already
that f l2 = f l, for l > −j − k + 2 and so f3 is in Σs

H(f, 2−j−k+1).

The following result will be used frequently.
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Theorem 3.4.5. Let G and H be graphs.

1. Suppose that π : H → G is a graph homomorphism, the associated
map π : (ΣH , σ) → (ΣG, σ) is s-bijective and suppose K satisfies the
conclusion of Lemma 2.7.1 for this map. We have

πs,K ◦ t∗ = πs,K+1 = t∗ ◦ πs,K
πs,K ◦ i = i ◦ πs,K ,
πs,K ◦ γsH = γsG ◦ πs,K .

2. Suppose that π : H → G is a graph homomorphism, the associated map
π : (ΣH , σ) → (ΣG, σ) is u-bijective and K satisfies the conclusion of
Lemma 2.7.1 for this map . We have

πu,K ◦ i∗ = πu,K+1 = i∗ ◦ πu,K
πu,K ◦ t = t ◦ πu,K ,
πu,K ◦ γuH = γuG ◦ πu,K .

Proof. We prove the first part only. For the first two equalities, it suffices to
consider the case that the domain is ZH0 and the range is ZGK+1. Let v be in
H0. It follows directly from the definitions that πs,K◦t∗(v) =

∑
t(e)=v SumAe,

where Ae = {π(q) | q ∈ HK+1, tK(q) = e}. We claim that the sets Ae are
disjoint for distinct e with t(e) = v. Suppose that t(e) = t(e′) = v and there
exist q, q′ with tK(q) = e and tK(q′) = e′ and π(q) = π(q′). It follows that

tK+1(q) = t(tK(q)) = t(e) = v = t(e′) = tK+1(q′)

so by part 4 of Lemma 2.7.5, we conclude e = tK(q) = tK(q′) = e′. This
means that πs,K ◦ t∗(v) = SumA, where A = ∪t(e)=vAe.

Next, from the definition, we have πs,K+1(v) = SumB, where

B = {π(q) | q ∈ HK+1, tK+1(q) = v}.

If q is in HK+1 and tK+1(q) = v, then letting e = tK(q), we see that t(e) = v
and tK(q) = e, so π(q) is in Ae. Conversely, if t(e) = v and a is in Ae so that
a = π(q), where tK(q) = e, then tK+1(q) = t(tK(q)) = t(e) = v and so π(q)
is in B. We have shown A = B and this proves the first desired equality.

For the second equality, again using the definitions, we have

t∗ ◦ πs,K(v) =
∑

{π(q)|q∈HK ,tK(q)=v}

∑
t(q′)=π(q)

q′.
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Let C denote the collection of q′ in GK+1 such that t(q′) = π(q), for some q in
HK with tK(q) = v so that t∗◦πs,K(v) = SumC. First, we claim that B ⊂ C,
for if q is in HK+1 with tK+1(q) = v, then t(q) is in HK , t(π(q)) = π(t(q))
and tK(i(q)) = v, so π(q) is in C.

Conversely, let us show C ⊂ B. Suppose that q′ is in C. Then there
exists q in HK with t(q′) = π(q) and tK(q) = v. We may find f in ΣH such
that f [1−K,0] = q and e in ΣG such that e[−K,0] = q′. It follows that we may
form [π(f), e] which is stably equivalent to π(f). As π is s-bijective, we may
find f1, stably equivalent to f such that π(f1) = [π(f), e]. It follows that
for k ≥ 1, π(f1)k = π(f)k, while π(f1)[−K,0] = e[−K,0] = q′. In particular,
π(f1)[1−K,0] = e[1−K,0] = t(q′) = π(q) = π(f)[1−K,0]. It follows from Lemma

2.7.1 that fk1 = fk, for k ≥ 1. Consider f
[−K,0]
1 , which is in HK+1. We have

i(f 1
1 ) = i(F 1) = tK(f [1−K,0]) = tK(q) = v

and π(f [−K,0]) = q′. Thus q′ is B. This completes the proof of the second
equality.

We now consider the second line. Let v be in Hk, with k ≥ 1. It follows
immediately from the definitions that πs,K ◦ i(v) = SumA, where

A = {π(q) | q ∈ Hk+K−1, tK(q) = i(v)}

and i ◦ πs,K(v) = SumB, where

B = {i(π(q)) = π(i(q)) | q ∈ Hk+K , tK(q) = v}.

We claim that A = B, and the result follows. Suppose a is in A so that
a = π(q), q in Hk+K−1 with tK(q) = i(v). Let q′ = qvk which is in Hk+K

and tK(q′) = tK(qvk) = tK(q)vk = i(v)vk = v. This means that π(i(q′)) is
in B and π(i(q′)) = π(q) = a. Conversely, suppose that b is in B so that
b = π(i(q)), for some q in Hk+K with tK(q) = i(v). Then i(q) is in Hk+K−1

and tK(i(q)) = i(tK(q)) = i(v). It follows that π(i(q)) is in A and π(i(q)) = b.
The third equation follows immediately from the earlier ones as γs =

i ◦ t∗.

Theorem 3.4.6. Let I,H and G be graphs, η : I → H and π : H → G
graph homomorphisms such that their induced maps on the shift spaces are
s-bijective. Let Kη and Kπ satisfy the conclusion of Lemma 2.7.1 for these
maps. Then we have

(π ◦ η)s,Kπ+Kη = πs,Kπ ◦ ηs,Kη .
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Proof. Let k ≥ 0 and q be in Ik. It follows directly from the definitions that
ηs,Kη(q) = Sum(A0), where

A0 = {η(q′) | q′ ∈ Ik+Kη , tKη(q′) = q}.

For each q′ in Ik+Kη with tKη(q′) = q, let

A(q′) = {π(q′′) | q′′ ∈ Hk+Kη+Kπ , tKπ(q′′) = η(q′)}.

It is clear that if η(q′) = η(q̄′), then A(q′) = A(q̄′). We claim that if A(q′)
and A(q̄′) have non-empty intersection, then η(q′) = η(q̄′). Suppose there is
a q′′ with tKπ(q′′) = η(q′), tKπ(q̄′′) = η(q̄′) and π(q′′) = π(q̄′′). It follows that

tKπ+Kη(q′′) = tKη(η(q′)) = η(tKη(q′)) = η(q) = η(tKη(q̄′)) = tKπ+Kη(q̄′′).

It follows from the uniqueness statement of 2.7.5 that tKπ(q′′) = tKπ(q̄′′); but
the former is η(q′) and the latter η(q̄′) and the conclusion follows.

From the claim above and the definition, we see that

πs,Kπ ◦ ηs,Kη(q) =
∑
q′∈R

Sum(A(q′)),

where R is a subset of the possible q′’s with the value η(q′) represented exactly
once by an element of R. This means that πs,Kπ ◦ ηs,Kη(q) = Sum(A), where

A = {π(q′′) | q′′ ∈ Hk+Kη+Kπ ,∃q′ ∈ Ik+Kη , tKπ(q′′) = η(q′), tKη(q′) = q}.

On the other hand, it follows from the definitions that (π ◦ η)s,Kπ+Kη(q) =
Sum(B), where

B = {π(η(q̄)) | q̄ ∈ Ik+Kπ+Kη , tKπ+Kη(q̄) = q}.

We now claim that A = B. For the containment A ⊃ B, if π(η(q̄)) is
in B, with q̄ as described above, then let q′′ = η(q̄) and q′ = tKη(q̄). It is
immediate that π(q′′) = π(η(q̄)) is in A.

Now suppose that q′′ and q′ are as given if the definition of A, so that π(q′′)
is in A. We apply Lemma 2.7.5 to the graph homomorphism η, the paths
q′′ in Hk+Kη+Kπ and q′ in Ik+Kη to find q̄ in Ik+Kη+Kπ with η(q̄) = q′′ and
tKη+Kπ(q̄) = tKη(q′). The second condition immediately implies tKη+Kπ(q̄) =
q while the former means that π(η(q̄)) = π(q′′) is in B.
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We conclude by examining the special case where we consider σ and σ−1

as maps from (Σ, σ) to itself. We work with a fixed specific presention by a
graph G.

Theorem 3.4.7. Let G be a graph and (ΣG, σ) be the associated shift of
finite type.

1. If we consider σ−1 : (ΣG, σ) → (ΣG, σ), then it is an s-bijective factor
map. For any K ≥ 1, if we identity Ds(ΣG, σ) with Ds(GK) as in
Theorem 3.3.3, then the map (σ−1)s is given by

(σ−1)s[p, k] = [γs(p), k],

for any p in GK−1 and k ≥ 1.

2. If we consider σ : (ΣG, σ) → (ΣG, σ), then it is an u-bijective factor
map. For any K ≥ 1, if we identity Du(ΣG, σ) with Du(GK) as in
Theorem 3.3.3, then the map σu is given by

σu[p, k] = [γu(p), k],

for any p in GK−1 and k ≥ 1.

Proof. We begin with the first statement. The properties claimed for σ−1

are obvious. Let J = k + K − 1 and e in ΣG such that e[1−J,J−K+1] = p so
that, under the isomorphism of 3.3.3, [p, k] = [Σs

G(e, 2−J)]. It is immediate
from the definitions that

σ−1(Σs
G(e, 2−J)) = Σs

G(σ−1(e), 2−J+1).

Going back to Ds(G), Σs
G(σ−1(e), 2−J+1) corresponds to

[σ−1(e)[1−J+1,K−J ], J − 1 +K − 1] = [e[1−J,J−K+1], K − J ]

= [p,K − J ]

= [γs(p), K − J + 1]

= [γs(p), k].

For the second statement, again let k = J−K+1 and choose e such that
e[J−2+K,J ] = p so that Σu

G(e, 2−J) is associated with [p, k]. Again it follows
from the definitions that

σ(Σu
G(e, 2−J)) = Σu

G(σ(e), 2−J+1)
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and under 3.3.3, this is associated with

[σ(e)[J−K+1,J−1], J −K] = [e[J−K+2,J ], J −K]

= [p, J −K]

= [γu(p), J −K + 1]

= [γu(p), k].

3.5 The dimension group as a contravariant

functor

In contrast to the situation of the last section, the invariant Ds(Σ, σ) is
contravariant for u-bijective maps, while Du(Σ, σ) is contravariant for s-
bijective maps. This section is devoted to establishing this fact and others
which are direct analogies with the results from the last section. At the end,
there is one new result, Theorem 3.5.11, which deals with the case where
we have a commuting diagram consisting of four shifts of finite type and
four maps, two of which are s-bijective and two which are u-bijective. The
conclusion is that, under certain hypotheses, the associated maps on our
invariant are also commuting in an appropriate way.

The precise statement of Ds as a contravariant functor for u-bijective
maps follows. In its simplest form, the idea is that, if π : (Σ, σ) → (Σ′, σ)
is u-bijective and E ′ is in COs(Σ′, σ), then π−1(E ′) is in COs(Σ, σ). As
stated, this is false, simply because π−1(E ′) is not contained in a single stable
equivalence class. However, we show that π−1(E ′) may be written (uniquely,
in a certain sense) as a finite disjoint union of elements of COu(Σ, σ). Just
as in Theorem 3.4.1, we state the following result for the Ds-invariant only.

Theorem 3.5.1. Let (Σ, σ) and (Σ′, σ) be shifts of finite type and let

π : (Σ, σ)→ (Σ′, σ)

be a u-bijective map.
If E ′ is in COs(Σ′, σ), then there exist a finite collection E1, . . . , EL in

COs(Σ, σ) such that,

1. for 1 ≤ i 6= j ≤ L, no point of Ei is stably equivalent to any point of
Ej, and
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2. π−1(E ′) = ∪Ll=1El.

The collection satisfying these two conditions, is unique, up to re-ordering.
If E ′ and F ′ are in COs(Σ′, σ) and E ′ ∼ F ′ and π−1(E ′) = ∪Ll=1El and

π−1(F ′) = ∪Mm=1Fm are as above, then

[E1] + [E2] + · · ·+ [EL] = [F1] + [F2] + · · ·+ [FM ]

in Ds(Σ, σ).
In particular, the map defined by πs∗[E ′] =

∑L
l=1[El] induces a well-

defined group homomorphism πs∗ : Ds(Σ′, σ) → Ds(Σ, σ). Finally, if π′ :
(Σ′′, σ)→ (Σ′, σ) is another u-bijective factor map, then (π◦π′)s∗ = π′s∗◦πs∗.

Proof. Let e′ be any point in E ′, so that E ′ ⊂ Σ′s(e′). From Theorem
2.5.3, π−1(Σ′s(e′)) can be written as the union of a finite number of distinct
stable equivalence classes, Σs(e1), . . . ,Σs(eL). Let El = π−1(E ′)∩Σs(el), for
1 ≤ l ≤ L. The fact that each El is compact and open follows from the fact
that π : Σs(el) → Σ′s(e′) is proper and continuous (Theorem 2.5.4). The
desired properties of this collection and its uniqueness are immediate.

For the second statement, we suppose that Σ = ΣH and Σ′ = ΣG, for
some graphs G and H, and π is induced by a graph homomorphism. Suppose
that E ′, F ′ are in COs(Σ′, σ) satisfy [E ′, F ′] = E ′, [F ′, E ′] = F ′. Let e′0 be in
E ′ and f ′0 be in F ′. It follows from the fact that [E ′, F ′] is defined that every
element of E ′ and F ′ passes through the same vertex, denoted v, between
edges zero and one. So E ′ is contained in Σ′s(e′0, 1) and F ′ is contained in
Σ′s(f ′0, 1) and t(e′00 ) = t(f ′00 ) = v. Let K be as in Lemma 2.7.1 and P be the
collection of all paths of length K terminating at v. For each p in P , define

E ′p = {e′ ∈ E ′ | e′[1−K,0] = p}, F ′p = {f ′ ∈ F ′ | f ′[1−K,0] = p}.

It is easy to see that each E ′p is in COs(Σ′, σ), they are pairwise disjoint
and their union is E ′. Analogous statements hold for the F ′p. We claim that
[E ′p, F

′
p] = E ′p, [F

′
p, E

′
p] = F ′p. It suffices to show the first condition. If e′

is in E ′p and f ′ is in F ′p, then [e′, f ′] is in [E ′, F ′] = E ′ and [e′, f ′][1−K,0] =

e′[1−K,0] = p and hence we have [E ′p, F
′
p] ⊂ E ′p. For the reverse inclusion, let

f ′ be in F ′p. Then f ′ is in F ′ and hence equals [f ′′, e′], for some e′ in E ′ and
f ′′ in F ′. But since F ′ is contained in Σ′s(f ′0, 1), we have f ′′ = [f ′, f ′′] and
hence

f ′ = [f ′′, e′] = [[f ′, f ′′], e′] = [f ′, e′].
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Also, e′[1−K,0] = [f ′, e′][1−K,0] = f ′[1−K,0] = p and is therefore in E ′p. This
completes the proof of the claim.

So it suffices to prove the desired conclusion under the added hypothesis
that E ′ is contained in Σ′s(e′0, 2

−K), F ′ is contained in Σ′s(f ′0, 2
−K), for some

e′0 in E ′ and f ′0 in F ′ with e′k0 = f ′k0 , for all k < 0.
As e varies over π−1(E ′), the sets Σ′s(e, 2−K) form an open cover. Also,

any two such sets are either equal or disjoint, so we may find a finite subcover
and write π−1(E ′) as the disjoint union of Ei = π−1(E ′)∩Σ′s(ei, 2

−K), 1 ≤ i ≤
I, each being in COs(Σ, σ). We claim that, if t(e−Ki ) = t(e−Kj ), for some i, j,
then Ei = Ej. Consider the points ei and ē = σK [σ−K(ej), σ

−K(ei)], which
is defined since t(e−Ki ) = t(e−Kj ). It is clear that eki = Ēk, for all k ≤ K.

On the other hand, for k > K, we have π(eki ) = e′k and π(ēk) = π(ekj ) = e′k.
It follows that ei and ē are unstably equivalent and have the same image
under π. Since π is u-resolving, it follows that ē = ei and it follows that
Σ′s(ei, 2

−K) = Σ′s(ē, 2−K) = Σ′s(ej, 2
−K). Henceforth, we assume these sets

are all distinct and so t(e−Ki ) 6= t(e−Kj ), for i 6= j.
For each i, the point [f ′0, π(ei)] is in F ′. It is also unstably equivalent to

π(ei) and since π is u-bijective, we may find a unique point fi in π−1(F ′),
unstably equivalent to ei and such that π(fi) = [f ′0, π(ei)]. It follows from
Lemma 2.7.1 that eki = fki , for all k < −K. For each i, we define Fi =
σ−K [σK(fi), σ

K(Ei)] which is a compact open subset of F ∩ Σs(fi, 2
−K) and

hence in COs(Σ, σ). Since t(f−Ki ) = t(e−Ki ) 6= t(e−Kj ) = t(f−Kj ), for i 6= j,
these sets are pairwise disjoint. Moreover, we have Ei ∼ Fi, for all i.

We claim that the union of the Fi is all of F . Let f be in F so that π(f)
is in F ′. Let e′ = [e′0, π(f)] which is in E ′. As π is u-bijective, there exists e,
stably equivalent to f , such that π(e) = e′. Hence, e is in E and is in Ei, for
some i. As π(f)k = π(e)k, for all k ≤ 0, we have fk = ek, for all k ≤ −K, by
Lemma 2.7.1. As t(f−Ki ) = t(e−Ki ) = t(e−K) = t(f−K) an argument like the
one above showing that the sets Ei are disjoint or equal then implies that
fki = fk, for all k > −K. It follows that f = σK [σ−K(fi), σ

−K(e)] and hence
is in Fi as desired.

Remark 3.5.2. A word of warning is in order regarding our notation. If
π : (Σ, σ)→ (Σ′, σ) is a factor map, it may be that it is both s-bijective and
u-bijective. (The case Σ = Σ′ and π = σ will be of some special interest and
qualifies.) In this case, we have four different induced group homomorphisms
πs, πs∗, πu and πu∗. The first pair are defined on the Ds invariants and the
latter on the Du invariants. This must be kept in mind particularly in the
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case Σ = Σ′ as the domain and range no longer distinguish πs and πs∗.

Example 3.5.3. We return again to example 2.5.7 and 3.3.4. Now we use
the observation that the factor map π is u-resolving. Let n be in Z and
consider the sets {(a, n)}, {(b, n)}, {+∞}, each of which is in COs(ΣG, σ).
Observe that

π−1{(a, n)} = {(a, n)},
π−1{(b, n)} = {(b, n)},
π−1{+∞} = {(a,+∞), (b,+∞)}

and that
< {(a, n)} >=< {+∞} >=< {(b, n)} >6= 0

in Ds(ΣG, σ), while

< {(a,+∞), (b,+∞)} >=< {(a,+∞)} > + < {(b,+∞)} >

in Ds(ΣH , σ). This provides a counter-example to the statement of the last
Theorem obtained by replacing u-bijective with u-resolving.

Having established the result for the functorial properties, we now turn
to the issue of having explicit formulae for the computation of these maps if
we assume our shifts are given by specific graphs. Again, we begin with a
definition.

Definition 3.5.4. Let G and H be graphs and let π : H → G be a graph
homomorphism.

1. If π : (ΣH , σ)→ (ΣG, σ) is u-bijective, then for any K, k ≥ 0, we define
πs∗,K(p) : ZGk+K → ZHk by

πs∗,K(p) = Sum{iK(q) | q ∈ Hk+K , π(q) = p},

for p in ZGk+K.

2. If π : (ΣH , σ)→ (ΣG, σ) is s-bijective, then for any K, k ≥ 0, we define
πu∗,K(p) : ZGk+K → ZHk by

πu∗,K(p) = Sum{tK(q) | q ∈ Hk+K , π(q) = p},

for p in ZGk+K.
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The maps πs∗,K provide symbolic presentations for πs∗ analogous to those
of the last section. This is stated precisely as follows.

Theorem 3.5.5. Let G and H be graphs and π : H → G a graph homomor-
phism. Let k ≥ 1.

1. Suppose that the associated π : (ΣH , σ)→ (ΣG, σ) is an s-bijective map
and that K satisfies the conclusion of Lemma 2.7.1. If we implicitly
identify Du(ΣG, σ) with Du(Gk+K) and Du(ΣH , σ) with Du(Hk) using
the isomorphisms of 3.3.3, then we have

πu∗[a, j] = [πu∗,K(a), j +K],

for all j ≥ 0 and a in ZGK+k−1.

2. Suppose that the associated π : (ΣH , σ)→ (ΣG, σ) is a u-bijective map
and that K satisfies the conclusion of Lemma 2.7.1. If we implicitly
identify Ds(ΣG, σ) with Ds(Gk+K) and Ds(ΣH , σ) with Ds(Hk) using
the isomorphisms given in 3.3.3, then we have

πs∗[a, j] = [πs∗,K(a), j +K]

for all j ≥ 0 and a in ZGk+K.

Proof. We prove only the first statement. It suffices to consider the case
a = p ∈ GK+k−1. We find e be in ΣG such that e[j+1,j+K+k−1] = p. It
follows from Theorem 3.3.3 that the element [Σu

G(e, 2−j−K−k+1)] in Du(ΣG, σ)
is identified with [p, j] in Du(GK+k).

From the Definition 3.5.4, we have πu∗,K(p) = SumB, where B = {tK(q) |
q ∈ Hk+K , π(q) = p}. We claim that, for each b in B, we may find fb is ΣH

such that π(fb) is in Σu
G(e, 2−j−K−k+1) and f

[j+K+1,j+K+k−1]
b = b. As b is in

B, we may find q in Hk+K−1 such that π(q) = p and tK(q) = b. Choose
f such that f [j+1,j+K+k−1] = q. This means that e1 = σ−j[σj(π(f1)), σ(e)].
Moreover, el1 = π(f1)l, for all l > j. As π is s-bijective, we may find fb stably
equivalent to f such that π(fb) = e1. In addition, by Lemma 2.7.1, we have
f lb = f l for l > j +K. This implies that

f
[j+K+1,j+K+k−1]
b = f [j+K+1,j+K+k−1] = tK(f [j+1,j+K+k−1]) = tK(q) = b.

By definition, for l ≤ j, el1 = el, while

e
[j+1,j+K+k−1]
1 = π(f [j+1,j+K+k−1]) = π(q) = p = e[j+1,j+K+k−1]
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and so π(fb) = e1 is in Σu
G(e, 2−j−K−k+1) .

It is clear from the definitions that the sets Σu
H(fb, 2

−j−K−k+1) are pairwise
disjoint, for different values of b in B. Now, we claim that

π−1(Σu
G(e, 2−j−K−k+1)) = ∪b∈BΣu

H(fb, 2
−j−K−k+1).

The containment ⊃ is clear from the definitions and the choice of fb. As for
the reverse inclusion, let f in ΣH be such that π(f) is in Σu

G(e, 2−j−K−k+1).
Let q = f [j+1,j+K+k−1], which is in HK+k−1. Moreover,
π(q) = π(f)[j+1,j+K+k−1] = e[j+1,j+K+k−1] = p and hence b = tK(q) is in

B. It follows that b = f
[j+1,j+K+k−1]
b = f [j+1,j+K+k−1]. Consider f1 =

σ−j[σj(f), σk(fb)], which is defined and stably equivalent to f . For l > j, we
have π(f l1) = π(f1)l = π(f l). On the other hand, for l ≤ j, we have π(f l1) =
π(f lb) = el = π(f l). We conclude that π(f1) = π(f), but as π is s-resolving,
it follows that f1 = f and this implies that f is in Σu

H(fb, 2
−j−K−k+1).

We now have that

[π−1(Σu
G(e, 2−j−K−k+1)] =

∑
b∈B

[π−1(Σu
H(fb, 2

−j−K−k+1)].

Under the isomorphism of Theorem 3.3.3, for each b in B,
[π−1(Σu

H(fb, 2
−j−K−k+1)] corresponds to [f

[j+K+1,j+K+k−1]
b , j+K] in Du(HJ).

Moreover, f
[j+K+1,j+K+k−1]
b = tK(f

[j+1,j+K+k−1]
b ) = b. The conclusion follows

since SumB = πu∗,K(p).

We want to establish other basic properties analogous to those of the last
section. In fact, we can avoid repeating all the proofs by simply noting the
following duality.

Lemma 3.5.6. Let k,K ≥ 0 and let π : H → G be a graph homomorphism.

1. If the induced map π : (ΣH , σ)→ (ΣG, σ) is s-bijective, then

< p, πs,K(q) >Gk+K=< πs∗,K(p), q >Hk ,

for all p in ZGk+K and q in ZHk.

2. If the induced map π : (ΣH , σ)→ (ΣG, σ) is u-bijective, then

< p, πu,K(q) >Gk+K=< πu∗,K(p), q >Hk ,

for all p in ZGk+K and q in ZHk.
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Proof. We prove the first statement only. It clearly suffices to consider the
case that p is in Gk+K and q is in Hk. It follows from the definitions that
the left hand side is 1 exactly when there exists q′ in Hk+K with tK(q′) = q
and π(q′) = p and is zero otherwise. The right hand side has the same value,
also from the definition.

The next result is the analogue of Theorem 3.4.5. In fact, its proof may
be deduced from Theorem 3.4.5, the last Lemma and the non-degeneracy of
the pairings. We omit the details.

Theorem 3.5.7. Let G and H be graphs.

1. Suppose that π : H → G is a graph homomorphism such that the
associated map π : (ΣH , σ) → (ΣG, σ) is s-bijective and suppose K
satisfies the conclusion of Lemma 2.7.1 for this map. We have

πs∗,K ◦ i = πs∗,K+1 = i ◦ πs∗,K
πs∗,K ◦ t∗ = t∗ ◦ πs∗,K ,
πs∗,K ◦ γsG = γsH ◦ πs∗,K .

2. Suppose that π : H → G is a graph homomorphism such that the
associated map π : (ΣH , σ) → (ΣG, σ) is u-bijective and suppose K
satisfies the conclusion of Lemma 2.7.1 for this map. We have

πu∗,K ◦ t = πu∗,K+1 = t ◦ πu∗,K
πu∗,K ◦ i∗ = i∗ ◦ πu∗,K ,
πu∗,K ◦ γuG = γuH ◦ πu∗,K .

We now establish an analogue of Theorem 3.4.6. The same comments
made about the proof of the last result apply here as well.

Theorem 3.5.8. Let I,H and G be graphs, η : I → H and π : H → G
graph homomorphisms such that their induced maps on the shift spaces are
s-bijective. Let Kη and Kπ satisfy the conclusion of Lemma 2.7.1 for these
maps. Then we have

(π ◦ η)s∗,Kπ+Kη = ηs∗,Kη ◦ πs∗,Kπ .

Exactly as in the last section, we take note of the following special case
where we regard σ and σ−1 a maps from (ΣG, σ) to itself.
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Theorem 3.5.9. Let G be a graph and (ΣG, σ) be the associated shift of
finite type.

1. If we consider σ : (ΣG, σ) → (ΣG, σ), then it is an u-bijective factor
map. For any J ≥ 1, if we identity Ds(ΣG, σ) with Ds(GJ) as in
Theorem 3.3.3, then the map σs∗ is given by

σs∗[p, k] = [γs(p), k],

for any p in GJ−1 and k ≥ 1.

2. If we consider σ−1 : (ΣG, σ) → (ΣG, σ), then it is an s-bijective factor
map. For any J ≥ 1, if we identity Du(ΣG, σ) with Du(GJ) as in
Theorem 3.3.3, then the map (σ−1)u∗ is given by

(σ−1)u∗[p, k] = [γu(p), k],

for any p in GJ−1 and k ≥ 1.

Proof. This follows immediately from the corresponding result Theorem 3.4.7
for the covariant case. Just consider the first statements for a moment. In
3.4.7 we consider the image of local stable sets under the map σ−1. In this
case, we must consider pre-images of local stable sets under under σ. As σ
is a homeomorphism, these coincide. Or put briefly, σ−1 = σ−1.

Up to this point, this section has been devoted to proving results in the
contravariant case which are analogous to those of the last section in the
covariant case. The last item here concerns a mix of the two situations,
where both type of functorial properties are in play. Specifically, we will
consider a commutative diagram of maps

(Z, ζ)
η1 //

η2

��

(Y1, ψ1)

π1

��
(Y2, ψ2)

π2 // (X,ϕ)

.

Our interest will be in the situation where the horizontal maps are s-bijective
and the vertical maps are u-bijective.

Before getting to the main result, we need to establish the following
Lemma. Observe that the map sending z in Z to (η2(z), η1(z)) has range
in the fibred product of π2 and π1. We denote this map by η2 × η1.
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Lemma 3.5.10. Let (Z, ζ), (Y1, ψ1), (Y2, ψ2) and (X,ϕ) be dynamical systems
and suppose that

(Z, ζ)
η1 //

η2

��

(Y1, ψ1)

π1

��
(Y2, ψ2)

π2 // (X,ϕ)

is a commutative diagram of maps. Assume that the map η2× η1 is a surjec-
tion from Z to the fibred product of π2 and π1. Then, for any set E in Y2,
we have

π−1
1 (π2(E)) = η1(η−1

2 (E)).

Proof. We first prove the containment ⊂. Let y be in π−1
1 (π2(E)). This

means that π1(y) = π2(y2), for some y2 in E. This implies (y2, y) is in the
fibred product so we may find z in Z such that η2 × η1(z) = (y2, y). As
η2(z) = y2, which is in E, z is in η−1

2 (E). So η1(z) = y is in η1(η−1
2 (E)).

For the reverse containment, suppose that y is in η1(η−1
2 (E)). This means

that y = η1(z) for some z in η−1
2 (E). Then we have π2(η2(z)) = π1(η1(z)) =

π1(y). As η2(z) is in E, y is in π−1
1 (π2(E)).

Our main result follows more or less immediately from this last Lemma
and the definitions given in Theorems 3.4.1 and 3.5.1 and we omit the details.

Theorem 3.5.11. Suppose that (Σ1, σ), (Σ2, σ) and (Σ0, σ) are shifts of finite
type and

πi : (Σi, σ)→ (Σ0, σ), i = 1, 2,

are factor maps with π1 u-bijective and π2 s-bijective. Let (Σ, σ) be the fibred
product:

(Σ, σ)
η1 //

η2

��

(Σ1, σ)

π1

��
(Σ2, σ)

π2 // (Σ0, σ)

Then we have

ηs1 ◦ ηs∗2 = πs∗1 ◦ πs2 : Ds(Σ2, σ)→ Ds(Σ1, σ)

and
ηu2 ◦ ηu∗1 = πu∗2 ◦ πu1 : Du(Σ1, σ)→ Du(Σ2, σ).
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Proof. We prove the first statement only. It suffices for us to consider e in
Σ2 and a compact open subset E of Σs

2(e). By hypothesis, π2 maps Σ2(e)
bijectively to Σ0(π2(e)) and, by Theorem 2.5.12, π2(E) is compact and open.
Apply the first part of Theorem 2.5.3 to the map π1 (while reversing s and
u) to obtain f1, . . . , fK in Σ1 with

π−1
1 (Σs

0(π2(e))) = ∪Kk=1Σs
1(fk).

It follows from Theorem 3.5.1 that we may find compact open sets Fk ⊂
Σs

1(fk) satisfying the conditions of 3.5.1 so that

πs∗1 ◦ πs2[E] = [F1] + · · ·+ [FK ].

For each 1 ≤ k ≤ K, we may find ek in Σs
2(e) such that π2(ek) = π1(fk).

It is easily seen that the points (ek, fk), 1 ≤ k ≤ K satisfy the first part of
the conclusion of Theorem 2.5.3 for the factor map η2 and the point e and
also that the sets η−1

1 (Fk), 1 ≤ k ≤ K satisfy the conclusion of Theorem 3.5.1
for the map η2 and the set E. This means that

ηs1 ◦ ηs∗2 = ηs1([η−1
1 (F1)] + · · ·+ [η−1

1 (FK)]

= [F1] + · · ·+ [FK ].

This completes the proof.
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Chapter 4

The complexes of an
s/u-bijective factor map

In this chapter, we consider a shift of finite type, (Σ, σ), a Smale space,
(X,ϕ), and a factor map

ρ : (Σ, σ)→ (X,ϕ).

Under the hypothesis that ρ is s-bijective, we associate to this data two chain
complexes and two cochain complexes which are based on the dimension
group invariants from the last chapter applied to the systems (ΣN(π), σ) of
Section 2.4. There are analogous complexes in the case of a u-bijective map.
There is obviously a degree of symmetry in our definitions. Usually, we state
main definitions and results in all cases, but on occasion we will just use one
case for brevity with the understanding that analogous results hold for the
other.

This situation is obviously a rather special one. Given (X,ϕ), (Σ, σ) and
ρ as above, it follows from Theorem 2.5.12 that the stable sets of (Σ, σ) and
(X,ϕ) are homeomorphic and hence the latter must be totally disconnected
and this is a severe restriction.

Before proceeding, let us mention some related work. First, Williams [36]
defined the notion of an expanding attractor. These are basic sets where the
stable coordinate is totally disconnected, while the unstable coordinate is a
Euclidean space. He provided a construction of such basic sets as inverse
limits of branched manifolds and also proved that every expanding attractor
could be written in this way. More recently, Wieler [37] gave a generalization

81
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of this result to the setting of Smale spaces. While keeping the hypothesis
that the stable sets are totally disconnected, there is no hypothesis on the
unstable sets. She also provides a construction via inverse limits and also
shows that every irreducible Smale space with totally disconnected stable
sets can be written in this way.

Let us take a moment to hint, at least, at the later importance of this
situation. If we begin with an arbitrary Smale space (X,ϕ) with an s/u-
bijective pair, then, for each fixed L ≥ 0, we have an s-bijective factor map
ρL, : (ΣL,0(π), σ) → (YL(πs), ψ), from Theorem 2.6.11, whose domain is a
shift of finite type. In the next chapter, we will associate double complexes
to the s/u-bijective pair π and the restriction of one of these to its Lth row
will be one of the complex we consider here for the map ρL,.

The first section will simply give the definitions and establish the impor-
tant fact that these are indeed chain complexes. In the second section, we
assume that we have a graph G which presents the map ρ and describe our
complexes in terms of the graph and its dimension group invariants. In the
third section, we establish a basic result that the two chain complexes for
an s-bijective factor map have isomorphic homologies. There are three other
analogous results.

The fourth section elaborates on the functorial properties of the chain
complexes and their homologies.

The fifth section is devoted to proving a very important result: that the
homology of our complexes do not depend on (Σ, σ) or ρ, but only on (X,ϕ),
in some natural sense. Again, this will be an important ingredient in proving
analogous results for the double complexes which follow in the next chapter.

4.1 Definitions of the complexes

In this section, we give the definitions. If ρ : (Σ, σ) → (X,ϕ) is an s-
bijective factor map, then we may form the systems (ΣN(ρ), σ), for each
N ≥ 0 exactly as in Definition 2.4.3. From Theorem 2.4.5, each such system
is also a shift of finite type. Moreover, for 0 ≤ n ≤ N , there is a factor
map δn : (ΣN(ρ), σ) → (ΣN−1(ρ), σ) which deletes entry n. It follows from
Theorem 2.5.14 that each of these maps is also s-bijective and so we may
invoke the functorial properties of the last chapter on the invariants. It
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follows that

δsn : Ds(ΣN(ρ), σ) → Ds(ΣN−1(ρ), σ)

δu∗n : Du(ΣN−1(ρ), σ) → Du(ΣN(ρ), σ)

are well-defined by Theorem 3.4.1. There are analogous statements for the
case ρ is u-bijective.

Remark 4.1.1. For the rest of this chapter (and much of what follows
later) it will be convenient to drop the σ from our notation and simply write
Ds(ΣN(π)).

Definition 4.1.2. Let (Σ, σ) be a shift of finite type, let (X,ϕ) be a Smale
space and let

ρ : (Σ, σ)→ (X,ϕ).

be a factor map.

1. Suppose that ρ is s-bijective.
We define ds(ρ)N : Ds(ΣN(ρ))→ Ds(ΣN−1(ρ)) by

ds(ρ)N =
N∑
n=0

(−1)n(δn)s,

for N ≥ 1. We set ds(ρ)0 to be the zero map. We also define du∗(ρ)N :
Du(ΣN(ρ))→ Du(ΣN+1(ρ)) by

du∗(ρ)N =
N+1∑
n=0

(−1)n(δn)u∗,

for N ≥ 0.

2. Suppose that ρ is u-bijective. We define
ds∗(ρ)N : Ds(ΣN(ρ))→ Ds(ΣN+1(ρ)) by

ds∗(ρ)N =
N+1∑
n=0

(−1)n(δn)s∗,

for N ≥ 0. We also define du(ρ)N : Du(ΣN(ρ))→ Du(ΣN−1(ρ)) by

du(ρ)N =
N∑
n=0

(−1)n(δn)u,

for N ≥ 1. We set du(ρ)0 to be the zero map.
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The first important property is that these groups with these maps form
chain or cochain complexes.

Lemma 4.1.3. Let
ρ : (Σ, σ)→ (X,ϕ).

be a factor map. If ρ is s-bijective then

ds(ρ)N−1 ◦ ds(ρ)N = 0, du∗(ρ)N+1 ◦ du∗(ρ)N = 0,

for all integers N . If ρ is u-bijective then

du(ρ)N−1 ◦ du(ρ)N = 0, ds∗(ρ)N+1 ◦ ds∗(ρ)N = 0,

for all integers N .

Proof. We prove the first part only and we may assume N ≥ 2. The compo-
sition is the sum of terms (−1)m+n(δm)s ◦ (δn)s, ranging over 0 ≤ m ≤ N − 1
and 0 ≤ n ≤ N . The map sending (m,n) to (n,m+ 1) is a bijection between
the set of pairs with m ≥ n and those with m < n. Moreover, for such a pair
(m,n), we have

(δm)s ◦ (δn)s = (δm ◦ δn)s = (δn ◦ δm+1)s = (δn)s ◦ (δm+1)s,

where we have used the functorial property of Ds from Theorem 3.4.1 in the
first and last steps. So each pair (m,n) with m ≤ n now appears twice, once
with coefficient (−1)m+n and once with coefficient (−1)n+m−1 and hence the
sum is zero.

To summarize, we have proved the following.

Theorem 4.1.4. Let (Σ, σ) be a shift of finite type, let (X,ϕ) be a Smale
space and let

ρ : (Σ, σ)→ (X,ϕ).

be a factor map.

1. If ρ is s-bijective then (Ds(ΣN(ρ)), ds(ρ)N) is a chain complex.

2. If ρ is s-bijective then (Du(ΣN(ρ)), du∗(ρ)N) is a cochain complex.

3. If ρ is u-bijective then (Ds(ΣN(ρ)), ds∗(ρ)N) is a cochain complex.
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4. If ρ is u-bijective then (Du(ΣN(ρ)), du(ρ)N) is a chain complex.

When considering the homology of a simplicial complex, there are two
different complexes, usually called the ordered complex and the alternat-
ing complex. It is an important fact that the two yield the same homology
groups. In the first case, one considers the N -chains as the free abelian group
generated by all N + 1-tuples (v0, v1, . . . , vN), whose elements are contained
in a simplex. That is, the order of the entries is considered and repeated
entries are allowed. In the second case, one ignores all N + 1-tuples contain-
ing a repeated entry and the order is not considered, except for orientation.
That is, the generators are the N -simplices. More rigorously, the alternat-
ing complex is a quotient of the ordered in the computation of simplicial
homology. In the computation of cohomology, the alternating complex has
a slightly different definition and it is a sub-complex of the ordered. The
ordered complex has various theoretic advantages, especially in terms of the
use of the formulae involved in the boundary maps, and is more natural from
a combinatorial point of view. The alternating has substantial advantages
for performing computations (the groups are “smaller”) and is more natural
from a geometric point of view. Most modern texts on the subject deal only
with the alternating complex.

The complexes above are analogous to the ordered complex. We now
introduce a version of the alternating. There is some subtlety here as it is
not so obvious exactly what a simplex is in our systems ΣN(ρ). This can be
avoided by considering the actions of the permutation groups at the level of
the invariant.

We begin, as before, with an s-bijective factor map from a shift of finite
type, ρ : (Σ, σ) → (X,ϕ). For N ≥ 0, (ΣN , σ) has an action of the group
SN+1, written on the right, we may regard this action as an s-bijective or
u-bijective factor map. For an element α in SN+1, we write αs for induced
map on the invariant Ds(ΣN).

Definition 4.1.5. Let (ΣN , σ) be a shift of finite type which has an action
of the permutation group SN+1 (commuting with the shift).

1. We define Ds
A(ΣN) to be the subgroup of Ds(ΣN) of all a such that

αs(a) = sgn(α)a, for all α in SN+1, and we let J denote the inclusion
map of this subgroup in the group.

2. We define Ds
B(ΣN) to be the subgroup of Ds(ΣN) which is generated by

all elements:
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(a) b satisfying αs(b) = b, for some non-trivial transposition α in
SN+1, and

(b) all elements of the form b− sgn(α)αs(b).

3. We define Ds
Q(ΣN) to be the quotient of Ds(ΣN) by the subgroup

Ds
B(ΣN) and we let Q denote the quotient map.

Our alternating complexes will be formed by the groups Ds
A(ΣN(ρ)) and

Ds
Q(ΣN(ρ)) of the last definition. Let us take a moment to explain why

two different complexes are needed. The quotient Ds
Q(ΣN(ρ)) is most nat-

urally suited to chain complexes, while Ds
A(ΣN(ρ)) is most naturally suited

to cochain complexes. We need to see these groups are compatible with our
boundary maps.

Lemma 4.1.6. Let (Σ, σ) be a shift of finite type, (X,ϕ) be a Smale space
and ρ : (Σ, σ)→ (X,ϕ) be a factor map.

1. Suppose ρ is s-bijective. We have

ds(ρ)N(Ds
B(ΣN(ρ))) ⊂ Ds

B(ΣN−1(ρ))

and, hence, ds(ρ)N descends to a well-defined map, denoted dsQ(ρ)N , on
Ds
Q(ΣN). In addition, we have

du∗(ρ)N(Du
A(ΣN(ρ))) ⊂ Du

A(ΣN+1(ρ))

and, hence, du∗(ρ)N restricts to a well-defined map, denoted du∗A (ρ)N ,
on Du

A(ΣN(ρ)).

2. Suppose ρ is u-bijective. We have

du(ρ)N(Du
B(ΣN(ρ))) ⊂ Du

B(ΣN−1(ρ))

and, hence, du(ρ)N descends to a well-defined map, denoted duQ(ρ)N , on
Du
Q(ΣN(ρ)). In addition, we have

ds∗(ρ)N(Ds
A(ΣN(ρ))) ⊂ Ds

A(ΣN+1(ρ))

and, hence, ds∗(ρ)N restricts to a well-defined map, denoted ds∗A (ρ)N ,
on Ds

A(ΣN(ρ)).
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Proof. We prove the first part only. For the first statement, we first consider
b in Ds

B(ΣN(ρ)) such that αs(b) = b, for some α = (i j) in SN+1. We may
suppose that i < j. We must check that ds(ρ)N(b) is in Du

B(ΣN−1(ρ)). For
n 6= i, j, it is clear that δn ◦α = β ◦ δn, for some transposition β in SN . Then
we have

δsn(b) = δsn ◦ αs(b) = (δn ◦ α)s(b) = (β ◦ δn)s(b) = βs ◦ δsn(b)

and so δsn(b) is in Ds
B(ΣN−1(ρ)). Also, we have δi ◦ α = β ◦ δj, where β =

(i j − 1 j − 2 · · · i + 1) is a cyclic permutation and sgn(β) = (−1)j−i+1. It
follows that

(−1)iδsi (b) + (−1)jδsj (b) = (−1)iδsi (α
s(b)) + (−1)jδsj (b)

= (−1)iδsi (α
s(b)) + (−1)jδsj (b)

= (−1)i(δi ◦ α)s(b) + (−1)jδsj (b)

= (−1)i(β ◦ δj)s(b) + (−1)jδsj (b)

= (−1)iβs ◦ δsj (b) + (−1)jδsj (b)

= (−1)j(δsj (b)− (−1)i−j−1βs ◦ δsj (b))
= (−1)j(δsj (b)− sgn(β)βs ◦ δsj (b))

is in Ds
B(ΣN−1(ρ)).

Next, we consider any a in Ds(ΣN(ρ), σ), α in SN+1 and the element
b = a − sgn(α)αs(a), which is in Ds

B(ΣN(ρ)) and show that ds(ρ)N(b) is
in Ds

B(ΣN−1(ρ)). It suffices to check α = (i i + 1), 0 ≤ i < N , since such
elements generate SN+1. For n 6= i, i + 1, we have δn ◦ α = β ◦ δn, for some
transposition β in SN and so

δsn(b) = δsn(a+ αs(a))

= δsn(a) + δsn ◦ αs(a)

= δsn(a) + (δn ◦ α)s(a)

= δsn(a) + (β ◦ δn)s(a)

= δsn(a) + βs(δsn(a))

is in Ds
B(ΣN−1(ρ)). On the other hand, δi ◦ α = δi+1 and δi+1 ◦ α = δi so the
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remaining terms in the sum giving ds(ρ)N(b) are

(−1)iδsi (b) + (−1)i+1δsi+1(b) = (−1)iδsi (a) + (−1)iδsi (α
s(a))

+(−1)i+1δsi+1(a) + (−1)i+1δsi+1(αs(a))

= (−1)iδsi (a) + (−1)i(δi ◦ α)s(a))

+(−1)i+1δsi+1(a) + (−1)i+1(δi+1 ◦ α)s(a))

= (−1)iδsi (a) + (−1)iδsi+1(a))

+(−1)i+1δsi+1(a) + (−1)i+1δsi (a))

= 0.

This completes the proof of the first statement.
Now we must check the second statement. Let a be in Du(ΣN(ρ)) and

suppose that αs(a) = sgn(α)a, for all α in SN+1. We must check that
αu(du∗(ρ)N(a)) = sgn(α)du∗(ρ)N(a), for every α in SN+2. It suffices to check
the case α = (i i+ 1), for some 0 ≤ i < N + 1, since such elements generate
SN+2. We use the conditions observed earlier: for n 6= i, i + 1, we have
δn ◦ α = β ◦ δn for some transposition β in SN+1 and

αu(δu∗n (a)) = (δn ◦ α)u∗(a)

= (β ◦ δn)u∗(a)

= δu∗n (βu(a))

= δu∗n (−a)

= −δu∗n (a).

On the other hand, we also have δi ◦ α = δi+1, δi+1 ◦ α = δi and

αu((−1)iδu∗i (a) + (−1)i+1δu∗i+1(a)) = (−1)i(δi ◦ α)u∗(a)

+(−1)i+1(δi+1 ◦ α)u∗(a)

= (−1)iδu∗i+1(a)

+(−1)i+1δu∗i (a)

= −((−1)iδu∗i (a)

+(−1)i+1δu∗i+1(a))).

Putting all this together yields the desired conclusion.

Theorem 4.1.7. Let (Σ, σ) be a shift of finite type, let (X,ϕ) be a Smale
space and let

ρ : (Σ, σ)→ (X,ϕ).
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be a factor map.

1. If ρ is s-bijective then (Ds
Q(ΣN(ρ)), dsQ(ρ)N) is a chain complex and the

quotient map Q from Ds(ΣN(ρ)) to Ds
Q(ΣN(ρ)) is a chain map.

2. If ρ is s-bijective then (Du
A(ΣN(ρ)), du∗A (ρ)N) is a cochain complex and

the inclusion map J from Du
A(ΣN(ρ)) to Du(ΣN(ρ)) is a cochain map.

3. If ρ is u-bijective then (Ds
A(ΣN(ρ)), ds∗A (ρ)N) is a cochain complex and

the inclusion map J from Ds
A(ΣN(ρ)) to Ds(ΣN(ρ)) is a cochain map.

4. If ρ is u-bijective then (Du
Q(ΣN(ρ)), duQ(ρ)N) is a chain complex and the

quotient map Q from Du(ΣN(ρ)) to Du
Q(ΣN(ρ)) is a chain map.

4.2 Symbolic presentations

We now work under the assumption that our shift of finite type map is
presented by a graph and the factor map is regular (as in 2.3.3). That is, we
assume that ρ : (ΣG, σ)→ (X,ϕ) is s-bijective and regular. We let K satisfy
the conclusion of Lemma 2.7.2. We also note that, by Lemma 2.7.3, the same
K satisfies the same condition for each map δn : (ΣGN , σ)→ (ΣGN−1

, σ), for
all N ≥ 1 and 0 ≤ n ≤ N . We recall the maps δs,Kn as defined in 3.4.3 and
δu∗,Kn as defined in 3.5.4

We make an obvious analogue of the Definition 4.1.2. For this definition,
we also include the case for a u-bijective factor map.

Definition 4.2.1. Let G be a graph, (X,ϕ) be a Smale space and
ρ : (ΣG, σ)→ (X,ϕ) be factor map.

1. If ρ is an s-bijective factor map and K satisfies the conclusion of
Lemma 2.7.2, for each N ≥ 1 and k ≥ 0, we define ds,K(ρ)N : ZGk

N →
ZGk+K

N−1 by

ds,K(ρ)N =
N∑
n=0

(−1)nδs,Kn ,

and, for N ≥ 0 and k ≥ 0, we define du∗,K(ρ)N : ZGk+K
N → ZGk

N+1 by

du∗,K(ρ)N =
N+1∑
n=0

(−1)nδu∗,Kn .
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2. If ρ is a u-bijective factor map and K satisfies the conclusion of Lemma
2.7.2, for each N ≥ 1 and k ≥ 0, we define du,K(ρ)N : ZGk

N → ZGk+K
N−1

by

du,K(ρ)N =
N∑
n=0

(−1)nδu,Kn ,

and, for N ≥ 0 and k ≥ 0, we define ds∗,K(ρ)N : ZGk+K
N → ZGk

N+1 by

ds∗,K(ρ)N =
N+1∑
n=0

(−1)nδs∗,Kn .

We take a moment to state one easy result. It will be used later. The
proof is actually an immediate consequence of applying Lemma 3.5.6 to each
of the s-bijective factor maps δn.

Lemma 4.2.2. Let G be a graph, (X,ϕ) be a Smale space, ρ : (ΣG, σ) →
(X,ϕ) be an s-bijective factor map and K satisfying the conclusion of Lemma
2.7.2. For each N ≥ 1 and k ≥ 0, we have

< p, ds,K(ρ)N(q) >Gk+K
N−1

=< du∗,K(ρ)N−1(p), q >GkN
,

for all p in ZGk+K
N−1 and q in ZGk

N .

For the moment, we will concentrate on the maps ds,K(ρ)N . We sum-
marize their basic properties in the next result. The proof is trivial since
ds,K(ρ)N is a sum of maps δs,Kn and the conclusions hold for each of them by
virtue of Theorems 3.4.4 and 3.4.5.

Theorem 4.2.3. Let G be a graph, (X,ϕ) be a Smale space and
ρ : (ΣG, σ) → (X,ϕ) be an s-bijective factor map. Suppose that K satisfies
the conclusion of Lemma 2.7.2 for the map ρ.

1. We have

ds,K(ρ)N ◦ t∗ = ds,K+1(ρ)N = t∗ ◦ ds,K(ρ)N ,
ds,K(ρ)N ◦ i = i ◦ ds,K(ρ)N ,
ds,K(ρ)N ◦ γs = γs ◦ ds,K(ρ)N

Moreover, for any k ≥ 0, if we identify Ds(ΣGN ) with Ds(Gk
N) and

Ds(ΣGN−1
) with Ds(Gk+K

N−1), by Theorem 3.2.3, then we have

ds(ρ)N [a, j] = [ds,K(ρ)N(a), j],

for all a in ZGk−1
N and j ≥ 1.
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2. We have

du∗,K(ρ)N ◦ t = du∗,K+1(ρ)N = t ◦ du∗,K(ρ)N ,
du∗,K(ρ)N ◦ i∗ = i∗ ◦ du∗,K(ρ)N ,
du∗,K(ρ)N ◦ γu = γu ◦ du∗,K(ρ)N

Moreover, for any k ≥ 0, if we identify Du(ΣGN ) with Du(Gk
N) and

Du(ΣGN ) with Du(Gk+K
N ), by Theorem 3.2.3, then we have

du∗(ρ)N [a, j] = [du∗,K(ρ)N(a), j],

for all a in ZGk
N and j ≥ 1.

We now turn to the issue of local formulae for our alternating complexes.

Definition 4.2.4. Let k,N ≥ 0.

1. Let

A(Gk
N , SN+1) = {a ∈ ZGk

N | a · α = sgn(α)a, for all α ∈ SN+1},

which is a subgroup of ZGk
N . We denote the inclusion map by J .

2. We let B(Gk
N , SN+1) denote the subgroup of ZGk

N by the subgroup gener-
ated by all elements p in Gk

N such that p = p ·α, for some transposition
α and all elements p− sgn(α)p ·α, where p is in Gk

N and α is in SN+1.

3. We let Q(Gk
N , SN+1) denote the quotient

ZGk
N/B(Gk

N , SN+1),

and Q denote the quotient map.

The following result is standard and we omit the proof, but we state it
for future reference. It provides us with a basic idea of duality between the
two constructions.

Lemma 4.2.5. Let k,N ≥ 0.

1. For any a in ZGk
N , < a, b >= 0, for all b in B(Gk

N , SN+1) if and only
if a is in A(Gk

N , SN+1).

2. For any b in ZGk
N , < a, b >= 0, for all a in A(Gk

N , SN+1) if and only
if b is in B(Gk

N , SN+1).
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Lemma 4.2.6. Let N ≥ 0.

1. For any k ≥ 1, we have

i(A(Gk
N , SN+1)) ⊂ A(Gk−1

N , SN+1)

t(A(Gk
N , SN+1)) ⊂ A(Gk−1

N , SN+1)

i(B(Gk
N , SN+1)) ⊂ B(Gk−1

N , SN+1)

t(B(Gk
N , SN+1)) ⊂ B(Gk−1

N , SN+1).

2. For any k ≥ 0, we have

i∗(A(Gk
N , SN+1)) ⊂ A(Gk+1

N , SN+1)

t∗(A(Gk
N , SN+1)) ⊂ A(Gk+1

N , SN+1)

i∗(B(Gk
N , SN+1)) ⊂ B(Gk+1

N , SN+1)

t∗(B(Gk
N , SN+1)) ⊂ B(Gk+1

N , SN+1).

3. The maps i, t, i∗, t∗ descend to the quotient groups Q(Gk
N , SN+1) such

that, using the same notation, we have

Q ◦ i = i ◦Q, Q ◦ t = t ◦Q,
Q ◦ i∗ = i∗ ◦Q, Q ◦ t∗ = t∗ ◦Q

Proof. The first item is clear since the action of SN+1 commutes with i and t.
The second item follows from the first and characterization of these subgroups
given in Lemma 4.2.5 above. The third item is immediate from the first
two.

Now we can incorporate the inductive limits as follows.

Definition 4.2.7. Let N ≥ 0 and k ≥ 1. We define γs = i ◦ t∗ and γu =
t ◦ i∗, which we regard as endomorphisms of the groups A(Gk−1

N , SN+1) and
Q(Gk−1

N , SN+1), using the same notation for both cases.
Furthermore, we define

Ds
A(Gk

N) = limA(Gk−1
N , SN+1)

γs→ A(Gk−1
N , SN+1)

γs→,

Du
A(Gk

N) = limA(Gk−1
N , SN+1)

γu→ A(Gk−1
N , SN+1)

γu→,

Ds
Q(Gk

N) = limQ(Gk−1
N , SN+1)

γs→ Q(Gk−1
N , SN+1)

γs→,

Du
Q(Gk

N) = limQ(Gk−1
N , SN+1)

γu→ Q(Gk−1
N , SN+1)

γu→,
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We note the following analogue of Theorem 3.2.3 which relating the alter-
nating invariants for the system with those of the graphs, for different values
of k.

Theorem 4.2.8. Let G be a graph and ρ : (ΣG, σ)→ (X,ϕ) be an s-bijective
regular factor map. For any k ≥ 1 and N ≥ 0, let h denote the isomorphism
of Theorem 3.3.3 between Ds(ΣN(ρ)) and Ds(Gk

N).

1. For any e in Ds(ΣN(ρ)) with h(e) = [a, j], for some a in ZGk−1
N and

j ≥ 0, e is in Ds
B(ΣN(ρ)) if and only if [Q(a), j] = 0 in Ds

Q(Gk
N).

Consequently, this map induces an isomorphism between Ds
Q(ΣN(ρ))

and Ds
Q(Gk

N).

2. For any e in Ds(ΣN(ρ)), e is in Ds
A(ΣN(ρ)) if and only if h(e) =

[a, j], for some a in A(Gk−1
N , SN+1) and j ≥ 0. Consequently, this map

induces an isomorphism between Ds
A(ΣN(ρ)) and Ds

A(Gk
N).

Proof. First, it is clear that the map commutes with the action of SN+1.
In the first part, suppose that e is in Ds

Q(ΣN(ρ)). There are two cases to
consider, the first being that e · α = e, for some transposition α. It follows
that, for some j′ ≥ 0, (γs)j

′
(a) = (γs)j

′
(a · α) = (γs)j

′
(a) · α. We write

the element (γs)j
′
(a) as a sum over the generating set Gk−1

N . For each p in
Gk−1
N with p · α = p, the term in (γs)j

′
(a) for p is in B(Gk−1, SN+1). As for

other p, the equation above means that the coefficient of p and of p · α are
equal and so their sum is a multiple of p− p · α and is in B(Gk−1, SN+1). In
total, we conclude (γs)j

′
(a) is in B(Gk−1, SN+1). This means that [Q(a), j] =

[Q((γs)j
′
(a)), j + j′] is zero in Ds

Q(Gk
N).

The second case is when e = e′ − sgn(α)e′ · α, for some e′ in Ds(ΣN(ρ)).
Let h(e′) = [b, j]. It is then immediate that [a, j] = [b, j]− sgn(α)[b, j] · α =
[b− sgn(α)b · α, j] and Q(a) = 0.

Next, we suppose that [Q(a), j] = 0. It follows that a may be written as
a sum of terms of the form p, where p is in Gk−1

N satisfies p · α = p, for some
transposition α and terms of the form q−sgn(β)q ·β, where q is in Gk−1

N and
β is in SN+1. In the former case, h−1[p, j] ·α = h−1[p, j] is in Ds

B(ΣN(ρ)) and
in the latter

h−1[q − sgn(β)q · β, j] = h−1[q, j]− sgn(β)h−1[q, j] · β

which is also in Ds
B(ΣN(ρ)). We conclude that e is in Ds

B(ΣN(ρ)) as desired.
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For the second part, the ’if’ part is clear. We suppose that e is in
Ds
A(ΣN(ρ)). For each α in SN+1, we know that

[a · α, j] = [a, j] · α = h(e) · α = h(e · α) = sgn(α)h(e) = sgn(α)[a, j].

We find Jα such that, for all j′ ≥ Jα, we have (γs)j
′
(a ·α) = sgn(α)(γs)j

′
(a)).

Letting J be the maximum of Jα, over all α in SN+1, we see that (γs)j
′
(a) is

in A(Gk−1
N , SN+1) and h(e) = [a, j] = [(γs)j

′
(a), j + j′], for any j′ ≥ J .

Our next ingredient is to verify that our local version of the boundary
operator preserves the subgroups of interest. Its proof is similar to that of
Lemma 4.1.6.

Lemma 4.2.9. Suppose that (X,ϕ) is a Smale space, G is a graph and that
ρ : (ΣG, σ)→ (X,ϕ) is a regular factor map. Let k ≥ 0.

1. If ρ is s-bijective and and K satisfies the condition of Lemma 2.7.2,
then we have

ds,K(ρ)N(B(Gk
N , SN+1)) ⊂ B(Gk+K

N−1 , SN),

du∗,K(ρ)N(A(Gk+K
N , SN+1)) ⊂ A(Gk+K

N+1 , SN+2).

2. If ρ is u-bijective and and K satisfies the condition of Lemma 2.7.2,
then we have

du,K(ρ)N(B(Gk
N , SN+1)) ⊂ B(Gk+K

N−1 , SN),

ds∗,K(ρ)N(A(Gk+K
N , SN+1)) ⊂ A(Gk

N+1, SN+2).

Proof. To prove the first statement, we first consider the case that p in Gk
N

has a repeated entry, say pi = pj, where i < j. We will actually show that
the desired containment actually holds replacing ds,K(ρ)N by δs,Kn , for each
0 ≤ n ≤ N . The desired conclusion follows.

For i, j < n, it is clear that the set {δn(q) | tK(q) = p} is invariant under
the permutation switching entries i and j. If we eliminate those elements
which are fixed by this permutation and hence are in Q, the remaining sum
can be written as Sum(A) + Sum(A · (i j)), for some set A, and hence is in
the kernel of Q since sgn(i j) = −1. A similar argument deals with the other
cases n 6= i, j. Finally, it is easy to see that if Ai = {δi(q) | tK(q) = p} and
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Aj = {δj(q) | tK(q) = p}, then Ai = Aj ·σ, where σ is the cyclic permutation
σ = (j − 1 . . . i+ 1 i). Notice that sgn(σ) = (−1)j−1−i. It follows that

(−1)iSum(Ai) + (−1)jSum(Aj) = (−1)i(Sum(Ai)− sgn(σ)Sum(Ai · σ)),

which is in B(Gk+K
N−1 , SN).

Next, we must consider a generator of B(Gk
N , SN+1) of the form p −

sgn(α)p ·α, where p is in Gk
N and α is in SN+1. In fact, it suffices to consider

α to be the transposition which switches entries i and i+ 1, 0 ≤ i < N , since
such elements generate SN+1. It is fairly easy to see that

{δi(q) | tK(q) = p · (i i+ 1)} = {δi+1(q) | tK(q) = p},
{δi+1(q) | tK(q) = p · (i i+ 1)} = {δi(q) | tK(q) = p}.

From this it follows that

(−1)iδs,Ki (p+ p · (i i+ 1)) + (−1)i+1δs,Ki+1(p+ p · (i i+ 1)) = 0,

which is certainly in B(Gk+K
N−1 , SN). We are left to consider the remaining

terms δn(p+ p · (i i+ 1)), where n 6= i, i+ 1. Here, it is easy to see that

δs,Kn (p+ p · (i i+ 1)) = δs,Kn (p) + δs,Kn (p) · (i− 1 i)

if n < i and

δs,Kn (p+ p · (i i+ 1)) = δs,Kn (p) + δs,Kn (p) · (i i+ 1)

if n > i + 1. In all cases, the right hand side is in B(Gk+K
N−1 , SN). This

completes the proof of the first part.
The proof of the second part is obviously the same. The third and fourth

parts follow from the first two and the characterization of A(Gk+K
N−1 , SN) given

in Lemma 4.2.5.

Definition 4.2.10. Suppose that (X,ϕ) is a Smale space, G is a graph and
that ρ : (ΣG, σ)→ (X,ϕ) is a regular factor map.

1. If ρ is s-bijective, then for any K which satisfies the conclusion of
Lemma 2.7.2 and k ≥ 0, we define ds,KQ (ρ)N to be the map from

Q(Gk
N , SN+1) to Q(Gk+K

N , SN+1) such that

ds,KQ (ρ)N ◦Q = Q ◦ ds,K(ρ)N .

We also define, for k ≥ K, du∗,KA (ρ)N to be the restriction of du∗,K(ρ)N
to A(Gk

N , SN+1).
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2. If ρ is u-bijective, then for any K which satisfies the conclusion of
Lemma 2.7.2 and k ≥ 0, we define du,KQ (ρ)N to be the map from

Q(Gk
N , SN+1) to Q(Gk+K

N , SN+1) such that

du,KQ (ρ)N ◦Q = Q ◦ du,K(ρ)N .

We also define, for k ≥ K, ds∗,KA (ρ)N to be the restriction of ds∗,K(ρ)N
to A(Gk

N , SN+1).

Finally, we note that the definitions above provide a method for com-
putation of the boundary operator for the alternating complex. Its proof is
immediate from the definitions and Theorem 4.2.3.

Theorem 4.2.11. Suppose that (X,ϕ) is a Smale space, G is a graph and
that ρ : (ΣG, σ) → (X,ϕ) is a regular factor map. Suppose that K satisfies
the conclusion of Lemma 2.7.2 for the map ρ.

1. Suppose that ρ is s-bijective. Using implicitly the identifications of
Theorem 4.2.8, we have

dsQ(ρ)N [Q(a), j] = [ds,KQ (ρ)N(Q(a)), j],

for a in ZGk
N and j ≥ 0, and

du∗A (ρ)N [a, j] = [du∗,KA (ρ)N(a), j]

for all a in A(Gk
N , SN+1) and j ≥ 0.

2. Suppose that ρ is u-bijective. Using implicitly the identifications of
Theorem 4.2.8, we have

duQ(ρ)N [Q(a), j] = [du,KQ (ρ)N(Q(a)), j],

for a in ZGk
N and j ≥ 0, and

ds∗A (ρ)N [a, j] = [ds∗,KA (ρ)N(a), j]

for all a in A(Gk
N , SN+1) and j ≥ 0.

We finish this section with a useful consequence of the symbolic presen-
tations.
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Theorem 4.2.12. Suppose that (X,ϕ) is a Smale space, (Σ, σ) is a shift
of finite type and that ρ : (ΣG, σ) → (X,ϕ) is a factor map which is either
s-bijective or u-bijective. Let N0 ≥ 1 be such that #ρ−1{x} ≤ N0, for all x
in X (whose existence follows from Theorem 2.5.3). For any N ≥ N0, we
have

Ds
Q(ΣN(ρ)) = Ds

A(ΣN(ρ)) = Du
Q(ΣN(ρ)) = Du

A(ΣN(ρ)) = 0.

Proof. Select a graph G which presents ρ. We suppress the isomorphisms
between ΣN(ρ) and ΣGN given in Theorem 2.4.5. Fix k ≥ 0. If p is in Gk

N ,
then p = e[1,k], for some e in ΣN(ρ). From the choice of N and N0, we see
that ei = ej, for some i 6= j. Then we have p = p · (i j) and so p is in
B(Gk

N , SN+1). Since p was arbitrary, we see that

Ds
Q(ΣN(ρ)) = Du

Q(ΣN(ρ)) = 0.

Now suppose that a is in A(Gk
N , SN+1). For any p in Gk

N , we find a
transposition (i j) as above. As a = −a · (i j), the coefficient of p in the
expression for a must be zero. But as p was arbitrary, a = 0. It follows that

Ds
A(ΣN(ρ)) = Du

A(ΣN(ρ)) = 0.

In principle, Theorem 4.2.8 provides a method for computation of the
alternating invariants Ds

A(ΣN) and Ds
Q(ΣN), but there is a more concrete

form available for each.
Recall that the isotropy subgroup of SN+1 at an element p in Gk

N is the set
of all α such that p ·α = p and we say that p has trivial isotropy if this group
consists of only the identity element. In this case, the isotropy subgroup of
every point in the orbit of p is also trivial.

For each k ≥ 0 and N ≥ 0, suppose that Bk
N is a subset of Gk

N which
meets each orbit having trivial isotropy exactly once and does not meet any
orbit having non-trivial isotropy. For p in Bk

N and j ≥ 1, let

t∗A(p, j) = {(q, α) ∈ Gk+j
N × SN+1 | tj(q) = p, ij(q) · α ∈ Bk

N}
i∗A(p, j) = {(q, α) ∈ Gk+j

N × SN+1 | ij(q) = p, tj(q) · α ∈ Bk
N}.
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We define γsB : ZBk−1
N → ZBk−1

N by

γsA(p) =
∑

(q,α)∈t∗A(p,1)

sgn(α)i(q) · α,

γuA(p) =
∑

(q,α)∈i∗A(p,1)

sgn(α)t(q) · α.

These maps are well-known; they are exactly the signed subset matrices
as used in the computation of the zeta function for a sofic shift, as described
in Theorem 6.4.8 of [23].

Theorem 4.2.13. Suppose that (X,ϕ) is a Smale space, (Σ, σ) is a shift of
finite type and that ρ : (ΣG, σ)→ (X,ϕ) is a regular factor map and is either
s-bijective or u-bijective. Let k ≥ 1 and N ≥ 0, and suppose Bk

N ⊂ Gk
N is as

above.

1. For any j ≥ 1, we have

(γsB)j(p) =
∑

(q,α)∈t∗A(p,j)

sgn(α)ij(q) · α,

(γuB)j(p) =
∑

(q,α)∈i∗A(p,j)

sgn(α)tj(q) · α.

2. The restriction of Q from ZBk
N to Q(Gk

N , SN+1) is an isomorphism and

Q ◦ γsB = γs ◦Q, Q ◦ γuB = γu ◦Q.

3. The map A from ZBk
N to A(Gk

N , SN+1) defined by

A(p) =
∑

α∈SN+1

sgn(α)p · α,

for p in Bk
N , is an isomorphism and

A ◦ γsB = γs ◦ A, A ◦ γuB = γu ◦ A.

Proof. The first statement we show the first part only. The proof is by
induction on j, with the case j = 1 being the definition. Now assume the
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result is true for j. By direct computation, for any p in Bk
N , we have

(γsB)j+1(p) = γsB((γsB)j(p))

= γsB(
∑

(q,α)∈t∗A(p,j)

sgn(α)ij(q))

=
∑

(q′,α′)∈t∗A(ij(q)·α,1)

∑
(q,α)∈t∗A(p,j)

sgn(α)i(q′) · α′.

Suppose that (q′′, α′′) is in t∗A(p, j + 1). We claim that ij ◦ t(q′′) has trivial
isotropy. Suppose the contrary. If ρ is s-bijective, then it follows from Lemma
2.5.15 that ij(q′′) also has non-trivial isotropy and hence so does ij+1(q′′). But
this contradicts the assumption that q′′ is in t∗A(p, j + 1). Similarly, if ρ is
u-bijective, then it follows from Lemma 2.5.15 that t(q′′) also has non-trivial
isotropy and hence so does tj+1(q′′) = p and we reach another contradiction.

Therefore, there exists a unique α such that ij ◦ t(q′′) · α is in Bk
N . Now

(t(q′′), α) is in t∗A(p, j) and (ij(q′′) · α, α−1α′′) is in t∗A(t ◦ ij(q′′) · α, 1). It is
fairly easy to check that the map described which associates to (q′′, alpha′′)
the pair (q, α) = (t(q′′), α) in t∗A(p, j) and (ij(q′′) · α, α−1α′′) = (q′, α′) in
t∗A(q, 1) is a bijection. Moreover, i(q′) = ij+1(q′′) and sgn(α)sgn(α′) =
sgn(α)sgn(α−1α′′) = sgn(α′′). This means that the sum we have above
is equal to

(γsB)j+1(p) =
∑

(q′′,α′′)∈t∗A(p,j+1)

sgn(α′′)ij+1(q′′) · α′′.

The fact that Q is an isomorphism is evident: the inverse may be de-
scribed as follows. If p is any element of Gk

N having to repeated entries, then
Q−1(p) = sgn(α)p · α, where α is the unique element of SN+1 such that p · α
is in Bk

N . For any p in Bk
N , we have

Q ◦ γsB(p) = = Q(
∑

(q,α)∈t∗A(p,1)

sgn(α)i(q) · α))

=
∑

(q,α)∈t∗A(p,1)

Q(sgn(α)i(q) · α))

=
∑

(q,α)∈t∗A(p,1)

Q(i(q)).

On the other hand, if we consider the set of all q with t(q) = p, this may be
divided into two groups: those for which i(q) contains no repeated entry and



100 CHAPTER 4. MAP COMPLEXES

those for which it does. For each q in the former class, there is a unique α
for which (q, α) is in t∗A(p, 1). For each q in the latter class, Q(i(q)) = 0. So
we see the sum above is equal to

Q ◦ γsB(p) =
∑
t(q)=p

Q(i(q)) = Q(i ◦ t∗(p)) = Q ◦ γs(p).

For the third part, consider the map, R, defined on ZGk
N which is the

identity on each generator in Bk
N and zero on all others. It is easy to verify

this, when restricted to A(Gk
N , SN+1), is an inverse to the map A.

Let p be in Bk
N . First, the map sending q to q · α−1 provides a bijection

from the set of q with t(q) = p · α and the set of q′ with t(q′) = p. Secondly,
consider the set of q in Gk+1

N with t(q) = p and let C be the set of such q
where i(q) has trivial isotropy and D the those q where i(q) has non-trivial
isotropy. For q in D, there exists a transposition β that fixes i(q). Then if
the sum of sgn(α)i(q) · α over all α in a coset of the subgroup {1, β} is zero
and hence we conclude that the sum over all α in SN+1 is also zero. Putting
these things together we obtain

γs ◦ A(p) = γs(
∑

α∈SN+1

sgn(α)p · α)

= i(
∑

t(q)=p·α

∑
α∈SN+1

sgn(α)q)

= i(
∑

α∈SN+1

∑
t(q)=p

sgn(α)q · α−1)

=
∑
t(q)=p

∑
α∈SN+1

sgn(α)i(q · α−1)

=
∑
q∈C

∑
α∈SN+1

sgn(α)i(q · α−1) +
∑
q∈D

∑
α∈SN+1

sgn(α)i(q · α−1)

=
∑
q∈C

∑
α∈SN+1

sgn(α)i(q · α−1).

For each q in C, there exists a unique αq in SN+1 such that i(q) · αq is in
Bk
N . In this case, (q, αq) is in t∗A(p, 1) and each element of this sets occurs
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uniquely in this way. Then we have

γs ◦ A(p) =
∑
q∈C

∑
α∈SN+1

sgn(αα−1
q )i(q · (αα−1

q )−1)

=
∑

(q,αq)∈t∗A(p,1)

sgn(αq)
∑

α∈SN+1

sgn(α)(i(q) · αq) · α−1

=
∑

(q,αq)∈t∗A(p,1)

sgn(αq)A(i(q) · αq)

= γsB ◦ A(p).

Corollary 4.2.14. The groups Ds
A(ΣN(ρ)) and Ds

Q(ΣN(ρ)) are both isomor-
phic with the inductive of the system

ZBk
N

γsB→ ZBk
N

γsB→ · · ·

4.3 Equivalence of the complexes

With the relevant definitions and the methods of computation via the graphs
in place, we are ready to state our main theorem of this section, which relates
the homology of the ordered and alternating complexes.

Theorem 4.3.1. Suppose that (X,ϕ) is a Smale space, G is a graph and
that ρ : (ΣG, σ)→ (X,ϕ) is a regular factor map.

1. If ρ is s-bijective then the map Q is a chain map from
(Ds(Σ∗(ρ)), ds(ρ)) to (Ds

Q(Σ∗(ρ)), dsQ(ρ)) which induces an
isomorphism on homology.

2. If ρ is s-bijective then the map J is a chain map from
(Du
A(Σ∗(ρ)), du∗A (ρ)) to (Du(Σ∗(ρ)), du∗(ρ)) which induces an

isomorphism on homology.

3. If ρ is u-bijective then the map Q is a chain map from
(Du(Σ∗(ρ)), du(ρ)) to (Du

Q(Σ∗(ρ)), duQ(ρ)) which induces an
isomorphism on homology.
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4. If ρ is u-bijective then the map J is a chain map from
(Ds
A(Σ∗(ρ)), ds∗A (ρ)) to (Ds(Σ∗(ρ)), ds∗(ρ)) which induces an

isomorphism on homology.

The proof of this result requires a series of lemmas and will occupy the
rest of the section.

We follow the usual idea by finding a type of inverse for the maps Q and
J , which we will denote by Q# and J#. Some care must be taken since these
will not actually be chain maps. Both of them are done by choosing a linear
order, denoted <, on the vertex set G0. We define Q# from Q(Gk

N , SN+1) to
ZGk

N as follows. First, we define a function F on Gk
N . If p = (p0, . . . , pN)

is in Gk
N and all entries are distinct, it follows from Lemma 2.5.15 that the

entries of tk(p) are also distinct. We define

F (p) = sgn(α)p · α,

where α is the unique element of SN+1 such that tk(pα(0)) < . . . < tk(pα(N)).
On the other hand, if two entries of p are equal, then we set F (p) = 0. This
map extends to a unique group homomorphism on ZGk

N . We check that it
is zero on the subgroup B(Gk

N , SN+1). First, if pi = pj, for some i 6= j, then
it is clear that F (p) = 0 and also that F (p− sgn(α′)p · α′) = 0, for any α′ in
SN+1. Finally, suppose that all entries of p are distinct and that α is as in
the definition of F . We again want to check that F (p − sgn(α′)p · α′) = 0,
for any α′ in SN+1. It follows at once that (α′)−1 ◦ α is the element of SN+1

that puts the entries of tk(p · α′) into ascending order. This means that

F (p · α′) = sgn(α′)sgn(α)(p · α′·((α′)−1 · α) = sgn(α′)sgn(α)p · α.

All together, we have

F (p− sgn(α′)p · α′) = sgn(α)p · α− sgn(α′)sgn(α′)sgn(α)p · α = 0.

We conclude, as claimed, that F is identically zero on B(Gk
N , SN+1) and so

we define Q#(Q(p)) = F (p), for all p in Gk
N . It is easily seen that Q ◦Q# is

the identity on Q(Gk
N , SN+1).

We also define J# : ZGk
N → A(Gk

N , SN+1) by setting

J#(p) =

{ ∑
α∈SN+1

sgn(α)p · α if tk(p0) < · · · < tk(pN)

0 otherwise

for p in Gk
N . It is easily seen that J# ◦J is the identity map on A(Gk

N , SN+1).
We will need the following result.
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Lemma 4.3.2. For all N ≥ 0, we have

1.
t ◦Q# = Q# ◦ t, t ◦ J# = J# ◦ t,

if k ≥ 1,

2.
t∗ ◦Q# = Q# ◦ t∗, t∗ ◦ J# = J# ◦ t∗,

if k ≥ 0,

3.
< Q# ◦Q(p), q >=< p, J ◦ J#(q) >,

for k ≥ 0 and p, q in Gk
N .

Proof. For the first statement, for p in Gk
N , to compute Q#(t(Q(p))) =

Q#(Q(t(p)), we consider the vertices of tk−1(t(p)) = tk(p). If one is repeated,
then the result is zero. Otherwise, the result is sgn(α)t(p)·α = t(sgn(α)p·α),
where α puts the vertices in increasing order. In either case, this is the same
as t(Q#(Q(p))). The proof of the second equation is the same.

The second part follows from the third, the first and Lemma 4.2.6.
For the third part, we first suppose that there exists α in SN+1 so that

p · α = q and that the entries of tk(q) are in ascending order. It follows that
Q# ◦Q(p) = sgn(α)p ·α and the left hand side is sgn(α). On the other hand,
J ◦ J#(q) =

∑
β∈SN+1

sgn(β)q · β. Pairing this sum with p, all terms are zero

except for β = α−1 and we get sgn(β) = sgn(α) and the desired equality.
For the next case, suppose that there exists an α such that the entries of

tk(p) · α are in ascending order, but p · α 6= β. It follows that the left hand
side is zero. If the entries of tk(q) are not in ascending order, then the right
hand side is also zero. If they are, since this is true also of tk(p) ·α, tk(q) and
tk(p) must have distinct SN+1 orbits. It follows the same is true of q and p
and this implies the right hand side is again zero.

Finally, we consider the case that tk(p) contains a repeated entry. Then
the left hand side is zero. On the right, for J#(q) to be non-zero, then entries
of tk(q) must all be distinct, so tk(q)·α cannot equal tk(p) and hence q ·α 6= p,
for any α in SN+1. In any case, the right hand side is zero.
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Lemma 4.3.3. For any N ≥ 0, we have

Q# ◦ ds,KQ (ρ)N = ds,K(ρ)N ◦Q#,

du∗,KA (ρ)N ◦ J# = J# ◦ du∗,K(ρ)N .

Proof. We begin with the first equation. Let p be in Gk
N which is in the range

of Q#. This means that tk(p0) < tk(p1) < · · · < tk(pN). Suppose q is in Gk+K
N

and tK(q) = p. It follows that tk+K(q0) < tk+K(q1) < · · · < tk+K(qN) and the
same inequalities hold if we delete any entry. It follows then that for such
q and any 0 ≤ n ≤ N , we have Q# ◦ Q(q) = q. It then follows from the
definition of ds,K(ρ)N that

Q# ◦Q ◦ ds,K(ρ)N ◦Q# = ds,K(ρ)N ◦Q#.

But from part 3 of Lemma 4.2.6, the left hand side is just

Q# ◦Q ◦ ds,K(ρ)N ◦Q# = Q# ◦ ds,KQ (ρ)N ◦Q ◦Q# = Q# ◦ ds,KQ (ρ)N

as desired.
For the second equation, let a, b be in ZGk

N . As J# ◦ du∗,K(ρ)N(a) is in
A(Gk−K

N+1 , SN+2), we may consider

< J ◦ J# ◦ du∗,K(ρ)N(a), b > = < du∗,K(ρ)N(a), Q# ◦Q(b) >

= < a, ds,K(ρ)N ◦Q# ◦Q(b) >

= < a,Q# ◦Q ◦ ds,K(ρ)N(b) >

= < J ◦ J#(a), ds,K(ρ)N(b) >

= < du∗,K(ρ)N ◦ J ◦ J#(a), b >

= < J ◦ du∗,KA (ρ)N ◦ J#(a), b > .

As b was arbitrary and J is injective, the conclusion follows.

We now concentrate our attention on the proof of the first of the four
parts of Theorem 2.7.2. In the end, the proof of the second will follow from
what we establish to prove the first and some duality arguments. We shall
continue to assume that ρ is s-bijective.

The technique is an adaptation of the method of acyclic carriers found in
[14, 34] We introduce a new complex, first fixing a positive integer K which
satisfies the conclusion of 2.7.2 for the map ρ. We define EN = ⊕k≥0ZGk

N

with map dN = ⊕kds,K(ρ)N .
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For each 0 ≤ I ≤ #G0, let K(M) = K(#G0 − I) and

VI = {(v0, v1, . . . , vI) ∈ GK(I)
I |

tK(I)(v0) < tK(I)(v1) < · · · < tK(I)(vI)}.

Notice, in particular, that the entries of any v in VI are all distinct.
For v in VI , first, for every k ≥ K(I), N ≥ 0, let

G̃k
N(v) = {p ∈ Gk

N | tk−K(I)(p0) = v0,

tk−K(I)(pn) ∈ {v0, . . . , vI}, 1 ≤ n ≤ N}.

and secondly, let
Gk
N(v) = δ0(G̃k

N+1(v)).

We make some elementary observations.

1. Whether p in Gk
N is in Gk

N(v) or G̃k
N(v) is completely determined by

tk−K(I)(p).

2. We have t(G̃k
N(v)) ⊂ G̃k−1

N (v) and hence t(Gk
N(v)) ⊂ Gk−1

N (v).

3. If p is in G̃k
N(v), then ε0(p) = (p0, p0, p1, . . . , pN) is in G̃k

N+1(v) and

δ0(ε0(p)) = p. This shows that G̃k
N(v) ⊂ Gk

N(v).

4. The set Gk
N(v) is invariant under the action of SN+1 (but G̃k

N(v) is not).

5. For any 1 ≤ n ≤ N , we have δn(G̃k
N(v)) ⊂ G̃k

N−1(v). For any 0 ≤ n ≤
N , we have δn(Gk

N(v)) ⊂ Gk
N−1(v).

We define EN(v) = ⊕k≥K(M)ZGk
N(v). The first subtle point is the follow-

ing.

Lemma 4.3.4. 1. The subsets E∗(v) define a subcomplex of (E∗, d∗).

2. Suppose I ≥ 1, v is in VI , w is in G
K(M)+K
N with tK(w) = v. Then for

all 0 ≤ i ≤ I, δi(w) is in VI−1 and

EN(δi(w)) ⊂ EN(v),

for all N .
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Proof. We consider the first statement. It suffices to show that, for any
0 ≤ n ≤ N and k ≥ K, we have δs,Kn (ZGk

N(v)) ⊂ ZGk+K
N−1(v). To do this, we

let q be in G̃k
N+1(v) and compute δs,Kn (δ0(q)) = Sum(A), where

A = {δn(p) | p ∈ Gk+K
N , tK(p) = δ0(q)}.

Let p be in Gk+K
N with tK(p) = δ0(q). We apply Lemma 2.7.5 to the map

δ0 : GN+1 → GN . We may find q′ in Gk+K
N+1 such that t2K(q′) = tK(q) and

δ0(q′) = p. From the first observation above and the fact that q is in G̃k
N+1(v),

it follows that q′ is in G̃k+K
N+1(v). Moreover, we have

δn(p) = δn(δ0(q′)) = δ0(δn+1(q′)) ∈ δ0(G̃k+K
N (v)) = Gk+K

N−1(v)

using the final observation above. We have shown that A is contained in
Gk+K
N−1(v). This completes the proof.

For the second statement, the fact that δi(w) is in VI−1 is clear. For the
last part, we first consider the case i = 0. Let p be in G̃k

N+1(δ0(w)) so that

δ0(p) is a typical element of Gk
N(δ0(w)). As p is in G̃k

N+1(δ0(w)), for each 0 ≤
n ≤ N + 1, tk−K(I)−K(pn) is in {w1, . . . , wI}. Define w′ = (w0, t

k−K(I)−K(p))

which is in G
K(I)+K
N+1 and δ0(w′) = tk−K(I)−K(p). By Lemma 2.7.5, there exists

p′ in Gk
N+1 such that δ0(p′) = p and tk−K(I)(p′) = tK(w′). We claim that p′

is in G̃k
N+1(v); from this it follows that p = δ0(p′) is in Gk

N(v) as desired. For
any 0 ≤ n ≤ N + 1, we have

tk−K(I)(p′n) = (tk−K(I)(p′))n = tK(w′)n = tK(w′n).

For n = 0, we know that tK(w′0) = tK(w0) = v0. For 1 ≤ n ≤ N + 1, we have

tK(w′n) = tK(tk−K(I)−K(pn−1)) ∈ tK{w0, w1, . . . , wI} = {v0, v1, . . . , vI}.

Finally, we consider the case 0 < i ≤ I. Again, let p be in G̃k
N+1(δ0(w))

so that δ0(p) is a typical element of Gk
N(δ0(w)). This means that

tk−K(I)−K(p0) = δi(w)0 = w0 and

tk−K(I)−K(pn) ∈ {δi(w)0, δi(w)1, . . . , δi(w)I−1} ⊂ {w0, w1, . . . , wI}.

It follows at once that tk−K(I)(p0) = tK(w0) = v0 and

tk−K(I)(pn) ⊂ tK{w0, w1, . . . , wI} = {v0, v1, . . . , vI}

From this, we see that p is in G̃k
N+1(v) and the conclusion follows.
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We now define, for v in VI fixed, a group homomorphism hv : ZGk
N(v)→

ZGk
N+1, for all k ≥ K(I), N ≥ 0, by hv(p) = Sum(A), where

A = {q ∈ G̃k
N+1(v) | δ0(q) = p},

for any p in Gk
N(v). It follows from the definition of Gk

N(v) that A above
is non-empty. We also note that the range of hv is contained in ZG̃k

N+1(v),
which in turn is contained in ZGk

N(v).

Lemma 4.3.5. We have
δs,K0 ◦ hv = tK∗

and, for 1 ≤ n ≤ N ,
δs,Kn ◦ hv = hv ◦ δs,Kn−1.

Moreover, we have

ds,K(ρ)N+1 ◦ hv + hv ◦ ds,K(ρ)N = tK∗.

Proof. First, we compute δs,Kn ◦ hv(p), for p in Gk
N(v), k ≥ K. From the

definition, we have

hv(p) = Sum{q ∈ G̃k
N+1(v) | δ0(q) = p}.

For a q in the set, define

A(q) = {q′ ∈ Gk+K
N+1 | t

K(q′) = q}

and we note that A(q) is contained in G̃k
N+1(v).

Next, we claim that, for 0 ≤ n ≤ N + 1, the sets δn(A(q)) are pairwise
disjoint for distinct values of q. Suppose that q′ is in A(q) and q̄′ is in A(q̄)
and δn(q′) = δn(q̄′). We have

δ0 ◦ tk+K(q′) = δ0 ◦ tk(q) = tk(p) = δ0 ◦ tk(q̄) = δ0 ◦ tk+K(q̄′)

and so, for all m ≥ 1, we have tk+K(q′m) = tk+K(q̄′m). On the other hand for
m = 0, we have

tk+K−K(I)(q′0) = tk−K(I)(q0) = v0 = tk−K(I)(q̄0) = tk+K−K(I)(q̄′0)

since q and q′ are in G̃k
N+1(v). We conclude that

tk+K−K(I)(q′) = tk+K−K(I)(q̄′). In addition, we have δn(q′) = δn(q̄′) and the
fact that

q = tK(q′) = tK(q̄′) = q̄
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follows from the uniqueness statement of Lemma 2.7.5. This completes the
proof of the claim.

It follows that δs,Kn ◦ hv(p) = Sum(A), where

A = {δn(q) | q ∈ G̃k+K
N+1(v), δ0 ◦ tK(q) = p}.

We first consider the case n = 0. Of course, we have tK∗(p) = Sum(B),
where

B = {q | q ∈ Gk+K
N , tK(q) = p}.

It is clear that A ⊂ B. For the reverse inclusion, let q be in B. We know
that p = δ0(p̃) for some p̃ in G̃k

N+1(v). Applying part one of Lemma 2.7.5.
we may find q̃ in Gk+K

N+1 such that δ0(q̃) = q and t2K(q̃) = tK(p̃). The latter

implies that q̃ is in G̃k+K
N+1(v) and hence q is in A.

We now turn to the case n ≥ 1. It follows from the definitions that
hv ◦ δn−1(p) = Sum(B), where

B = {q ∈ G̃k+K
N (v) | δ0(q) = δn−1(q′), for some q′ ∈ Gk+K

N , tK(q′) = p}.

Suppose that q is in G̃k+K
N+1(v) with δ0 ◦ tK(q) = p. Since n ≥, we have δn(q)

is in G̃k+K
N (v) and

δ0(δn(q)) = δn−1 ◦ δ0(q).

Moreover, we have tK(δ0(q)) = δ0(tK(q)) = p. This implies that δn(q) is in B
and we have shown A ⊂ B. For the reverse conclusion, let q be in B and q′

be as in the definition. Since p is in Gk
N(v), we may find p̃ in G̃k

N+1 such that
δ0(p̃) = p. We also have tK(q′) = p and so we may apply the existence part
of Lemma 2.7.5 to find p̃′ in Gk+K

N+1 such that δ0(p̃′) = q′ and t2K(p̃′) = tK(p̃).
We have

tk+K(p̃′0) = tk(p̃0) = v0 = tk+K(q0)

since p̃ is in G̃k+K
N+1(v) and q is in G̃k+K

N (v). We also have

δ0(q) = δn−1(q′) = δn−1 ◦ δ0(p̃′) = δ0 ◦ δn(p̃′).

The uniqueness part of Lemma 2.7.5 implies that tK(q) = tK(δn(p̃′)) = δn ◦
tK(p̃′). We again apply the existence part of Lemma 2.7.5 to find q̃ in Gk+K

N+1

such that δn(q̃) = q and t2K(q̃) = tK ◦ tK(p̃′) = tK(p̃). Now, we have

δn−1(δ0(q̃)) = δ0 ◦ δn(q̃) = δ0(q) = δn−1(q′).
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Moreover, we also have

t2K(δ0(q̃)) = δ0 ◦ tK(p̃) = tK ◦ δ0(p̃) = tK(p),

and
t2K(q′) = tK ◦ tK(q′) = tK(p).

One more application of the uniqueness part of 2.7.5 implies that tK(δ0(q̃)) =
tK(q′) = p. It follows that q̃ satisfies the condition so that δn(q̃) = q is in A.
This completes the proof.

The final statement is an immediate consequence of the first two.

Lemma 4.3.6. let p be in Gk
N , with k ≥ K#G0. There is a unique minimal

0 ≤ I ≤ N and v in VI such that p is in Gk
N(v).

Proof. Consider the vertices tk(p) and assume there are I + 1 distinct ones.
We choose distinct entries of tk−K(M)(p) and order them appropriately. That
is, we find tk(pn0) < · · · < tk(pnI ). Let v = tk−K(I)(pn0 , . . . , pnI ). It is clear
that (pn0 , p0, . . . , pN) is in G̃k

N+1(v) and hence p is in Gk
N(v). The minimality

of I and the uniqueness of v are clear.

Lemma 4.3.7. There exists a homomorphisms HN : EN → EN+1, N ∈ Z
satisfying

tK∗ ◦HN−1 ◦ ds,K(ρ)N − ds,K(ρ)N+1 ◦HN = t(N+1)K∗ ◦ (1−Q# ◦Q).

Proof. Our proof is by induction on N , but we had an extra hypothesis to
the induction statement. Suppose p is in Gk

N , for some k ≥ K#G0. Let v in
VI be as in Lemma 4.3.6 so that p is in Gk

N(v). We require that HN(p) is in
EN+1(v).

We begin by setting HN = 0, for all N ≤ 0 and then proceed by induction.
These satisfy the induction hypothesis for N ≤ 0 (since Q#◦Q is the identity
map on E0). Assume that HN−1 has been defined, where N > 0, satisfying
the desired conclusion.

Let p be in Gk
N and find the minimal M and v in VI as in 4.3.6. We define

HN(p) = hv[HN−1 ◦ ds,KN (ρ)(p) + tNK∗(p)− tNK∗ ◦Q# ◦Q(p)].

In doing so, we note that since p is in Gk
N(v), so is #Q◦Q(p), since it is either

zero or a permutation of p. This means that tNK∗(p) and tNK∗(Q# ◦ Q(p))
are in EN(v). As for the other term, if q is any element of Gk+K

N such that
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tK(q) = p and 0 ≤ n ≤ N , if tk(pn) = tk+K(qn) is a repeated entry of
tk(p) = tk+K(q) then v is the minimal element such that δn(q) is in Gk+K

N (v)
and hence by lemma 4.3.4, HN−1(δn(q)) is in EN(v). On the other hand, if
this is not a repeated entry, then it is equal to tK(I)(vm), for some m. We
form w in VI−1 by taking the distinct entries of tk−K(I)(q) arranging them
in the proper order. It follows that the desired minimal element for δn(q)
is δm(w). This w satisfies the conditions of part 2 of Lemma 4.3.4 and it
follows that EN(δm(w)) ⊂ EN(v). Then by our induction hypothesis, we
have HN−1(δn(q)) is in EN(v). In this way, we see that HN(p) is well-defined
and in EN+1(v), as desired.

To prove that the formula holds, we proceed as follows. First, we apply
Lemma 4.3.5 to see

ds,KN+1 ◦HN = ds,KN+1 ◦ hv ◦ (HN−1 ◦ ds,KN + tNK∗ − tNK∗ ◦Q# ◦Q)

= (−hv ◦ ds,KN + tK∗)

◦(HN−1 ◦ ds,KN + tNK∗ − tNK∗ ◦Q# ◦Q)

= −hv ◦ ds,KN ◦HN−1 ◦ ds,KN
+tK∗ ◦HN−1 ◦ ds,KN−1

−hv ◦ ds,KN ◦ (tNK∗ − tNK∗ ◦Q# ◦Q)

+t(N+1)K∗ − t(N+1)K∗ ◦Q# ◦Q.

Considering just the first term on the right and applying the induction hy-
pothesis gives

hv ◦ ds,KN ◦HN−1 ◦ ds,KN = −hv ◦ (tK∗ ◦HN−2 ◦ ds,KN−1 − t
NK∗

+tNK∗ ◦Q# ◦Q) ◦ ds,KN
= −hv ◦ tK∗ ◦HN−2 ◦ ds,KN−1 ◦ d

s,K
N

+hv ◦ (tNK∗ − tNK∗ ◦Q# ◦Q) ◦ ds,KN
= 0 + hv ◦ (tNK∗ − tNK∗ ◦Q# ◦Q) ◦ ds,KN
= hv ◦ ds,KN ◦ (tNK∗ − tNK∗ ◦Q# ◦Q),

where in the last step we have used Lemma 4.3.3. Returning to the first
display above, we now see that the first and third terms on the right cancel.
This gives the desired conclusion.

We are now ready to give a proof of Theorem 4.3.1.
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Proof. We begin by proving the first statement. As Q is a chain map, it
induces a well-defined homomorphism at the level of homologies. Let us first
check that it is onto. Suppose that b is in Q(Gk

N , SN+1) and j is N with
dsQ(ρ)N [b, j] = 0. This means that for some j′ ≥ 0, (γs)j ◦ ds,KQ (ρ)N(b) = 0.

Now consider a = Q# ◦ (γs)j
′
(b). First, we note that

ds,K(ρ)N(a) = ds,K(ρ)N ◦Q# ◦ (γs)j
′
(b)

= Q# ◦ ds,KQ (ρ)N ◦ (γs)j
′
(b)

= Q# ◦ (γs)j
′ ◦ ds,KQ (ρ)N(b)

= 0.

Furthermore, we have

Q[a, j + j′] = [Q(a), j + j′]

= [Q ◦Q# ◦ (γs)j
′
(b), j + j′]

= [(γs)j
′
(b), j + j′]

= [b, j].

It follows that the map on homology is onto.
Next, we show that the map induced by Q is injective. Let a be in

ZGk
N and j ≥ 1. We may assume that k ≥ #G0K. Further suppose that

ds(ρ)N [a, j] = 0 and [Q(a), j] is zero in the homology of (Cs
Q(ρ), dsQ(ρ)).

We may then find j′ ≥ 0 such that (γs)j
′ ◦ ds,K(ρ)N(a) = 0 and b in

Q(Gk−K
N+1 , SN+2) such that [Q(a), j] = [ds,KQ (ρ)N+1(b), j]. The latter means

that we may find j′′ ≥ 0 such that (γs)j
′′
(Q(a)) = (γs)j

′′ ◦ ds,KQ (ρ)N+1(b). By
replacing j′ and j′′ by the larger of the two, we may assume they are equal.

Now, we apply both sides of the equation of Lemma 4.3.7 to the element
(γs)j

′ ◦ i(N+1)K(a). On the left hand side, we get two terms. The first is

tK∗ ◦HN−1 ◦ ds,K(ρ)N ◦ (γs)j
′ ◦ i(N+1)K(a) =

tK∗ ◦HN−1 ◦ i(N+1)K ◦ (γs)j
′ ◦ ds,K(ρ)N(a) = 0.

We do not need to know the second, except that it is in the image of
ds,K(ρ)N+1. On the right hand side, the first term is

t(N+1)K∗ ◦ (γs)j
′ ◦ i(N+1)K(a) = (γs)j

′+(N+1)K(a).
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The second term on the right (ignoring the negative sign) is

t(N+1)K∗ ◦Q# ◦Q ◦ (γs)j
′ ◦ i(N+1)K(a) =

t(N+1)K∗ ◦Q# ◦ i(N+1)K ◦ (γs)j
′ ◦Q(a) =

t(N+1)K∗ ◦Q# ◦ i(N+1)K ◦ (γs)j
′ ◦ ds,KQ (ρ)N+1(b) =

Q# ◦ (γs)j
′+(N+1)K ◦ ds,KQ (ρ)N+1(b) =

ds,K(ρ)N+1 ◦Q# ◦ (γs)j
′+(N+1)K(b).

Putting this all together we conclude that

(γs)j
′+(N+1)K(a) = ds,K(ρ)N+1(c),

for some c. It follows that [a, j] = [(γs)j
′+(N+1)K(a), j + j′ + (N + 1)K] is

in the image of ds(ρ)N+1 and hence is zero in homology. This completes the
proof of the first part of 4.3.1.

For the second part, we have already noted that J : Du
A(Σ∗(ρ)) →

Du(Σ∗(ρ)) is a chain map. Let us first show that it surjective an homol-
ogy. Suppose that b is in ZGk

N , j ≥ 1 and du∗(ρ)N [b, j] = 0. It follows that
for some l ≥ 0, we have (γu)l ◦ du∗,K(ρ)N(b) = 0. Without loss of generality,
we may assume that l > (N + 1)K.Consider a = J# ◦ (γu)l(b). Then, using
Lemma 4.3.3, we have

du∗,KA (ρ)N(a) = du∗,KA (ρ)N ◦ J# ◦ (γu)l(b)

= J# ◦ (γu)l ◦ du∗,KA (ρ)N(b)

= 0.

This means that that . Next, we claim that c = (γu)l+(N+1)K(b)− J(a) is in
the image of du∗(ρ)N−1. Once this is shown, then we know the class of [b, j] =
[(γu)l+(N+1)K(b), j+l+(N+1)K] is equal to the class of [J(a), j+l+(N+1)K]
in homology and our proof of surjectivity is done.

As for the claim, let p be any element of ZGk
N and we use Lemma 4.3.2

to see that

< p, c > = < p, (1− J ◦ J#) ◦ (γu)l+(N+1)K(b) >

= < (1−Q# ◦Q)(p), (γu)l+(N+1)K(b) >

= < (1−Q# ◦Q)(p), tl+(N+1)K ◦ i(l+(N+1)K)∗(b) >

= < t(N+1)K∗ ◦ (1−Q# ◦Q)(p), tl ◦ i(l+(N+1)K)∗(b) > .
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We may now apply Lemma 4.3.7, then Lemma 4.2.2 and finally the second
part of Theorem 4.2.3:

< p, c > = < t(N+1)K∗ ◦ (1−Q# ◦Q)(p), tl ◦ i(l+(N+1)K)∗(b) >

= < tK∗ ◦HN−1 ◦ ds,K(ρ)N(p), tl ◦ i(l+(N+1)K)∗(b) >

− < ds,K(ρ)N+1 ◦HN(p), tl ◦ i(l+(N+1)K)∗(b) >

= < p, du∗,K(ρ)NH
∗
N−1 ◦ tl+K ◦ i(l+(N+1)K)∗(b) >

− < HN(p), du∗,K(ρ)N+1 ◦ tl ◦ i(l+(N+1)K)∗(b) >

= < p, du∗,K(ρ)NH
∗
N−1 ◦ tl+K ◦ i(l+(N+1)K)∗(b) >

− < p,H∗N ◦ i(N+1)K∗ ◦ du∗,K(ρ)N+1 ◦ (γu)l(b) >

= < p, du∗,K(ρ)NH
∗
N−1 ◦ tl+K ◦ i(l+(N+1)K)∗(b) > −0.

As this is valid for any p in ZGk
N , the claim is proved.

We now prove that the map J is injective on homology. Suppose that a
is in A(Gk

N , SN+1), j ≥ 1, that [a, j] is in the kernel of du∗(ρ)N and [J(a), j]
is zero in the homology of Du(Σ∗(ρ)). The last condition means that [a, j] =
du∗(ρ)N−1[b, j′], for some b in ZGk+K

N−1 . It follows that, for some l ≥ 0, we

have (γu)j+l ◦ du∗,K(ρ)N−1(b) = (γu)j
′+l(a). Then J#(b) is in A(Gk+K

N−1 , SN).
Moreover, using Lemma 4.3.3, we have

du∗,K(ρ)N−1 ◦ J# ◦ (γu)j+l(b) = J# ◦ du∗,K(ρ)N−1 ◦ (γu)j+l(b)

= J# ◦ (γu)j+l ◦ du∗,K(ρ)N−1(b)

= J# ◦ (γu)j
′+l(a)

= (γu)j
′+l(a)

since a and hence (γu)j
′+l(a) are in A(Gk

N , SN+1). From this it follows that

du∗(ρ)N−1[J# ◦ (γu)j+l(b), j + j′ + l] = [(γu)j
′+l(a), j + j′ + l] = [a, j]

and hence [a, j] is zero in homology of Du
A(Σ∗(ρ)).

The third and fourth parts are immediate consequences of the first two.

4.4 Functorial properties

In this section, we establish some simple functorial properties of the com-
plexes introduced in Section 4.1.
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Theorem 4.4.1. Let (X,ϕ) and (X ′, ϕ′) be Smale spaces, (Σ′, σ) be a shift
of finite type and ηX : (X,ϕ)→ (X ′, ϕ′) and ρ′ : (Σ′, σ)→ (X ′, ϕ′) be factor
maps. Let (Σ, σ) be the fibred product::

(Σ, σ)
ρ //

ηΣ

��

(X,ϕ)

ηX
��

(Σ′, σ)
ρ′ // (X ′, ϕ′)

1. If ρ′ and ηX are s-bijective, then, for each N ≥ 0, ηΣ induces a nat-
ural s-bijective factor map ηN : (ΣN(ρ), σ) → (ΣN(ρ′), σ). The in-
duced maps ηsN are chain maps from the complex (Ds(Σ∗(ρ)), ds(ρ)) to
(Ds(Σ∗(ρ

′)), ds(ρ′)).

2. If ρ′ is s-bijective while ηX is u-bijective, then, for each N ≥ 0, ηΣ

induces a natural u-bijective factor map ηN : (ΣN(ρ), σ)→ (ΣN(ρ′), σ).
The induced maps ηu∗N are chain maps from the complex (Du(Σ∗(ρ

′)), du∗(ρ′))
to (Du(Σ∗(ρ)0, du∗(ρ)).

3. If ρ′ is u-bijective while ηX is s-bijective, then, for each N ≥ 0, ηΣ

induces a natural s-bijective factor map ηN : (ΣN(ρ), σ)→ (ΣN(ρ′), σ).
The induced maps ηs∗N are chain maps from the complex (Ds(Σ∗(ρ

′)), ds∗(ρ′))
to (Ds(Σ∗(ρ)), ds∗(ρ)).

4. If ρ′ and ηX are u-bijective, then, for each N ≥ 0, ηΣ induces a nat-
ural u-bijective factor map ηN : (ΣN(ρ), σ) → (ΣN(ρ′), σ). The in-
duced maps ηuN are chain maps from the complex (Ds(Σ∗(ρ)), du(ρ)) to
(Du(Σ∗(ρ

′)), du(ρ′)).

Proof. We prove the first statement. It follows from Theorem 2.5.13 that
both ηΣ and ρ are s-bijective factor maps.

It is a simple matter to check that for any N ≥ 0, ΣN(ρ) is simply the
fibred product of ηX and ρ′ : (ΣN(ρ′), σ) → (X ′, ϕ′). This establishes the
first statement of the conclusion.

It follows from Theorem 3.4.1 that ηN induces a homomorphism between
the chain groups Ds(ΣN(ρ), σ)) and Ds(ΣN(ρ′), σ)). In addition, it is clear
that δn ◦ ηN = ηN−1 ◦ δn, for any 0 ≤ n ≤ N and N ≥ 1. From this, the
functorial property of the dimension group invariant and the definitions, it
follows that

ds(ρ′)N ◦ ηsN = ηsN−1 ◦ ds(ρ)N
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and hence is a chain map.
The other three parts are done in an almost identical fashion except in

the mixed cases (2 and 3), we need to apply Theorem 3.5.11 to conclude
that we have a chain map. For that, it is a simple matter to fix 0 ≤ n ≤ N
and begin with δn : (ΣN(ρ′), σ) → (ΣN−1(ρ′), σ) and ηN−1 : (ΣN−1(ρ), σ) →
(ΣN−1(ρ′), σ) and see that the fibred product is exactly

(ΣN(ρ), σ)
δn //

ηN
��

(ΣN−1(ρ))

ηN−1

��
(ΣN(ρ′), σ)

δn // (ΣN−1(ρ′), σ)

This allows us to apply Theorem 3.5.11.

4.5 Independence of resolution

Here, we show that the homology (or cohomology) of the chain complex
(cochain complex, respectively) of Section 4.1 is independent of the shift of
finite type, (Σ, σ) and the factor map ρ. This is done in a sequence of three
Theorems. The first treats the special case where we have graphs G and H
and s-bijective factor maps

(ΣH , σ)
θ→ (ΣG, σ)

ρ→ (X,ϕ)

and the map θ is induced by a left-covering graph homomorphism θ : H → G.
Then we show that the complexes for ρ and θ ◦ ρ yield naturally isomorphic
homologies. The second theorem drops the hypothesis that there are specific
presentations for the two shifts of finite type above. The third Theorem
treats the general case.

Of these three, the first is the most difficult; the other two follow in fairly
easy fashion from the first. We actually delay the proof of the first until
we have stated all three. It is then done in a series of Lemmas. The basic
ideas are standard ones from the proofs of analogous results in algebraic
topology. However, they are not completely routine because some of the
maps involved which function as chain homotopies are only defined via the
symbolic presentations of the invariants and are not chain maps in the usual
sense because they do not pass through to the inductive limit groups.
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Theorem 4.5.1. Suppose that G,H are graphs, θ : H → G is a left-covering
graph homomorphism, (X,ϕ) is a Smale space and ρ : (ΣG, σ)→ (X,ϕ) is a
regular s-bijective factor map.

1. The map θ induces an isomorphism between the homologies of the chain
complexes (Ds(Σ∗(ρ ◦ θ)), ds(ρ ◦ θ)) and (Ds(Σ∗(ρ), ds(ρ)).

2. The map θ∗ (3.1) induces an isomorphism between the cohomologies of
the cochain complexes (Du(Σ∗(ρ)), du∗(ρ)) and (Du(Σ∗(ρ ◦ θ)), du∗(ρ ◦
θ)).

The proof will be done in a series of Lemmas, but we postpone the start
while noting some more important consequences.

Theorem 4.5.2. Let (X,ϕ) be a Smale space and (Σ, σ) and (Σ′, σ) be shifts
of finite. Suppose that ρ : (Σ, σ) → (X,ϕ) and θ : (Σ′, σ) → (Σ, σ) are s-
bijective factor maps.

1. The map θ induces an isomorphism between the homologies of the chain
complexes (Ds(Σ∗(ρ ◦ θ)), ds(ρ ◦ θ)) and (Ds(Σ∗(ρ)), ds(ρ)).

2. The map θ∗ (3.1) induces an isomorphism between the cohomologies of
the cochain complexes (Du(Σ∗(ρ)), du∗(ρ)) and (Du(Σ∗(ρ ◦ θ)), du∗(ρ ◦
θ)).

Proof. First, we may find a graph G which presents the map ρ; that is, (Σ, σ)
is conjugate to (ΣG, σ) and, after identifying them, the map ρ is regular.
By Proposition 1 of [11], we may find a graph H and a left-covering graph
homomorphism, also denoted θ, from H to G such that (Σ′, σ) is conjugate to
(ΣH , σ) and, after suitable identifications, the factor map θ is induced by the
graph homomorphism θ. The result now follows from the last Theorem.

Finally, our main result is the following.

Theorem 4.5.3. Let (X,ϕ) be a Smale space and suppose that (Σ, σ) and
(Σ′, σ) are shifts of finite type with factor maps ρ : (Σ, σ) → (X,ϕ) and
ρ′ : (Σ′, σ)→ (X,ϕ).

1. If ρ and ρ′ are s-bijective, then there are canonical isomorphisms be-
tween the homologies of the complexes (Ds(Σ∗(ρ)), ds(ρ)) and
(Ds(Σ∗(ρ

′)), ds(ρ′)) and between the cohomologies of the cochain com-
plexes (Du(Σ∗(ρ)), du∗(ρ)) and (Du(Σ∗(ρ

′)), du∗(ρ′)).
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2. If ρ and ρ′ are u-bijective, then there are canonical isomorphisms be-
tween the homologies of the complexes (Du(Σ∗(ρ)), du(ρ)) and
(Du(Σ∗(ρ

′)), du(ρ′)) and between the cohomologies of the cochain com-
plexes (Ds(Σ∗(ρ)), ds∗(ρ)) and (Ds(Σ∗(ρ

′)), ds∗(ρ′)).

Proof. Let (Σ′′, σ) denote the fibred product of ρ and ρ′. It comes with
natural factor maps θ to (Σ, σ) and θ′ to (Σ′, σ). The conclusion now follows
from two applications of the last Theorem.

We now turn to the proof of Theorem 4.5.1. Of course, we consider the Cs

complex only. First, we fix a K ≥ 1 such that the conclusion of Lemma 2.7.2
is satisfied for the map ρ. We will assume throughout the rest of the section
that this holds. It follows from Theorem 4.4.1 (using (X ′, ϕ′) = (X,ϕ) and
η = id) that θ induces a chain map.

Since θ is a graph homomorphism, we have t ◦ θ = θ ◦ t, i ◦ θ = θ ◦ i.
Moreover, since θ is left-covering, we also have t∗ ◦ θ = θ ◦ t∗. From Theorem
3.4.6, we also know that δs,Kn ◦ θ = θ ◦ δs,Kn , for any 0 ≤ n ≤ N , and hence
ds,K(ρ)N ◦ θ = θ ◦ ds,K(ρ ◦ θ)N .

Now, we choose a lifting for the function θ between the vertex sets of the
two graphs. Specifically, since θ is surjective, we find a function λ : G0 → H0

such that θ(λ(v)) = v, for all v in G0. From the fact that θ is left-covering,
for any k ≥ 1 and p in Gk, there is a unique path, denoted λ(p), in Hk

such that θ(λ(p)) = p and λ(p) terminates at the vertex λ(tk(p)); that is,
tk(λ(p)) = λ(tk(p)). It is important to note that λ is not, in general, a graph
homomorphism as the condition i◦λ = λ◦i may fail. However, the important
properties of λ are summarized in the two lemmas below.

Lemma 4.5.4. Let N ≥ 0, k ≥ 0. If p′ is in Hk+K
N and tK(p′) = λ(p), for

some p is in Gk
N , then p′ = λ ◦ θ(p′).

Proof. It is clear from the fact that λ is a lift of θ that the paths p′ and
λ ◦ θ(p′) have the same image under θ. Moreover, we have

tK(λ ◦ θ(p′)) = λ ◦ θ(tK(p′)) = λ ◦ θ(λ(p)) = λ(p) = tK(p′).

As θ is left-covering, it follows that p′ = λ ◦ θ(p′).
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Lemma 4.5.5. For N ≥ 0 and 0 ≤ n ≤ N , we have

t ◦ λ = λ ◦ t,
t∗ ◦ λ = λ ◦ t∗,

δs,Kn (ρ ◦ θ) ◦ λ = λ ◦ δs,Kn (ρ),

ds,K(ρ ◦ θ)N ◦ λ = λ ◦ ds,K(ρ)N .

Proof. The first two properties follow from the definitions. For the third part,
let p be in Gk

N . It follows from the definitions that δs,Kn (ρ) ◦λ(p) = Sum(A),
where

A = {δn(q) | q ∈ Hk+K
N , tK(q) = λ(p)}.

It also follows from the definitions and the fact that λ is injective that λ ◦
δs,Kn (ρ)(p) = Sum(B), where

B = {λ(δn(p′)) | p′ ∈ Gk+K
N , tK(p′) = p}.

We claim that A = B and the conclusion follows. Suppose that q is in
Hk+K
N with tK(q) = λ(p) so that δn(q) is in A. Applying θ to both sides, we

have tK(θ(q)) = p. Then applying λ, we have tK(λ(θ(q))) = λ(p) = tK(q).
But this implies that λ(θ(q)) = q. Then p′ = θ(q) is in Gk+K

N and satisfies
tK(p′) = tK(θ(q)) = p and

λ(δn(p′)) = δn(λ(p′)) = δn(λ(θ(q))) = δn(q).

It follows that δn(q) is in B.
Conversely, suppose that p′ is in Gk+K

N with tK(p′) = p so that λ(δn(p′))
is in B. Let q = λ(p′), which is in Hk+K

N . Moreover, tK(q) = tK(λ(p′)) =
λ(tK(p′)) = λ(p) so that δn(q) = λ(δn(p′)) is in A.

The fourth formula follows from the third.

We now define maps κn : ZHk
N → ZHk

N+1, for all k ≥ 0 and 0 ≤ n ≤ N ,
by

κn(p0, . . . , pN) = (λ ◦ θ(p0), . . . , λ ◦ θ(pn), pn, . . . , pN),

for all (p0, . . . , pN) in Hk
N . We set κ =

∑N
n=0(−1)nκn. Since t commutes with

both θ and λ (4.5.5), we have the following.

Lemma 4.5.6. For 0 ≤ n ≤ N , we have tk ◦κn = κn ◦ tk and tk ◦κ = κ ◦ tk.

Next, we establish an analogue of the property that κ is a chain homotopy
from λ ◦ θ to the identity.
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Lemma 4.5.7. For N ≥ 0, we have

ds,K(θ ◦ ρ)N+1 ◦ κ− κ ◦ ds,K(θ ◦ ρ)N = tK∗ ◦ λ ◦ θ − tK∗.

Proof. Let p be in Hk
N and fix 0 ≤ n ≤ N . We claim that for p′ in Hk+K

N+1 ,

tK(p′) = κn(p) if and only if there exists p′′ in Hk+K
N such that tK(p′′) = p

and p′ = κn(p′′).
For the ‘if’ direction, if such a p′′ exists, then we have

tK(p′) = tK(κn(p′′)) = κn(tK(p′′)) = κn(p).

Conversely, suppose that tK(p′) = κn(p). For 0 ≤ i ≤ n, we know that
tK(p′i) = λ ◦ θ(pi). It follows from Lemma 4.5.4 that p′i = λ ◦ θ(p′i). We also
have that

θ(tK(p′i)) = θ(λ ◦ θ(pi)) = θ(pi).

From the fact that θ is left-covering, there is a unique path p′′i in HK+k

such that θ(p′′i ) = θ(p′i) and tK(p′′i ) = pi. Notice that, in particular, from
considering the n + 1 entries of tK(p′) = κn(p), we have tK(p′n+1) = pn and
so, by uniqueness, p′′n = p′n+1. We let p′′i = p′i+1 for n ≤ i ≤ N . We claim
that p′′ is in HK+k

N . This follows from the fact that θ(p′′) = θ(p′) and θ(p′)
is in GK+k

N . It is clear that tK(p′′) = p. Finally, we see that κn(p′′) = p′ as
follows. For n < i ≤ N + 1, we have (κn(p′′))i = p′′i−1 = p′i, by definition. For
0 ≤ i ≤ n, we have

(κn(p′′))i = λ ◦ θ(p′′i ) = λ ◦ θ(p′i).

We also know that tK(p′i) = λ◦θ(pi) and so it follows from Lemma 4.5.4 that
λ ◦ θ(p′i) = p′i. This completes the proof of the claim.

We are now ready to prove the result. We compute directly from the
definitions, for p in Hk

N , 0 ≤ m ≤ N + 1 and 0 ≤ n ≤ N ,

δs,Km ◦ κn(p) = Sum{δm(p′) | p′ ∈ Hk+K
N+1 , t

K(p′) = κn(p)}.

The claim above shows that this is equal to

δs,Km ◦ κn(p) = Sum{δm(κn(p′′)) | p′′ ∈ Hk+K
N , tK(p′′) = p}.

Now we use the standard, easily computed facts:

δm ◦ κn = κn−1 ◦ δm if m < n
δm ◦ κn = κn ◦ δm−1 if m > n+ 1

δn+1 ◦ κn = δn+1 ◦ κn+1.



120 CHAPTER 4. MAP COMPLEXES

Summing over all 0 ≤ m ≤ N + 1 and 0 ≤ n ≤ N with a coefficient of
(−1)m+n yields

ds,K(θ ◦ ρ)N+1 ◦ κ(p) =
∑
p′′∈B

(
N∑

m,n=0

(−1)m+nκn ◦ δm(p′′) + λ ◦ θ(p′′)− p′′
)
,

where B = {p′′ ∈ Hk+K
N | tK(p′′) = p}.

We are now ready to prove Theorem 4.5.1.

Proof. Considering the first statement of 4.5.1, we first show that the map on
homology induced by θ is injective. Let a be in ZHK

N and j ≥ 0. Suppose that
[a, j] as an element of Ds(HK+1

N ) is a cocycle. That means that 0 = ds(ρ ◦
θ)N [a, j]. From 4.2.3, we know that ds(ρ◦θ)N [a, j] = [ds,K(ρ◦θ)N(a), j] and it
follows that, for some j′ ≥ 0, (γsHn)j

′
(ds,K(ρ◦θ)N(a)) = 0. By Theorem 4.2.3,

0 = (γsHN−1
)j
′
(ds,K(ρ◦θ)N(a)) = ds,K(ρ◦θ)N((γsHN )j

′
(a)). Let a1 = (γsHN )j

′
(a)

and j1 = j + j′. We have [a, j] = [a1, j1] and ds,K(ρ ◦ θ)N(a1) = 0. The fact
that θ maps the class of the cocycle to zero means that in the group Ds(GN),
[θ(a1), j1] = ds(ρ)N [b, j′′], for some b in ZG0

N+1. We know from Theorem 4.2.3
that ds(ρ)N [b, j′′] = [ds,K(ρ)N+1(b), j′′] and so we know there is l ≥ 0 such
that

(γsGN )j
′′+l(θ(a1)) = (γsGN )j1+l(ds,KN+1(ρ)(b)).

Letting a2 = (γsHN )j
′′+l(a1) and b2 = (γsGN+1

)j1+l(b), we have [a2, j1 +j′′+ l] =

[a, j], ds,K(ρ ◦ θ)N(a2) = 0 and

θ(a2) = ds,K(ρ)N+1(b2).

Now we apply both sides of Lemma 4.5.7 to the element a2 and obtain

ds,K(ρ ◦ θ)N+1(κ(a2)) = t∗K ◦ λ ◦ θ(a2)− t∗K(a2)

= t∗K ◦ λ ◦ ds,KN+1(ρ)(b2)− t∗K(a2)

= ds,K(ρ ◦ θ)N+1 ◦ t∗K ◦ λ(b2)− t∗K(a2).

Applying iK to both sides and using the fact that i commutes with
ds,K(ρ ◦ θ)N+1, we see that (γsN)K(a2) is in the image ds,K(ρ ◦ θ)N+1 and it
follows that [a, j] is in the image of ds(ρ◦θ)N+1 and hence is zero in homology.
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Now, we must show the map is surjective. Let b be in ZGK
N and j ≥ 1. We

assume that ds(ρ)N [b, j] = 0. Arguing in much the same fashion as above,
we may assume that ds,K(ρ)N(b) = 0. It follows from Lemma 4.5.5 that

ds(ρ ◦ θ)N+1(λ(b)) = λ(ds(ρ)N+1(b)) = 0,

so that [λ(b), j] is a cocycle and θ[λ(b), j] = [θ ◦ λ(b), j] = [b, j] and we are
done.

The proof of the second part regarding the cochain complexes is done in
much the same way. We just observe that analogues of the four Lemmas
4.5.4, 4.5.5, 4.5.6, 4.5.7 all hold for θ∗ by simply using the duality of 3.1.1
and Lemma 3.5.6. We omit the details.
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Chapter 5

The double complexes of an
s/u-bijective pair

This chapter represents the heart of our theory: the definition of the ho-
mology theories for a Smale space and their basic properties. In the first
section, we consider a Smale space (X,ϕ) and an s/u-bijective pair π for it.
From this we construct several double complexes. There are eight in all, four
based on Krieger’s invariant Ds and four on Du. For most of what follows,
we restrict our attention to the first four. The differences between these four
are analogous to the ordered verses alternating complexes we saw in the last
chapter. Indeed, much of this chapter runs parallel to the developments in
the last chapter. In addition, for many of the proofs, the difficult part has
already been established in the special cases done in the last chapter. Our
invariants, denoted Hs(π) and Hu(π) are defined as the homology of two of
these double complexes. We stress that, at this point, it is defined for an
s/u-bijective pair.

The second section develops the symbolic versions of the objects we de-
fined in the first section. These will be crucial in working with the definitions.

The third section is devoted to comparing the alternating and ordered
complexes of the first section. In particular, we shall show that three of these
all have the same homology, in a natural way. This is a natural extension of
Theorem 4.3.1. At this point, it is likely that the fourth complex also has
the same homology, but this seems out of the reach of standard techniques.

The fourth section outlines the functorial properties of our invariants.
Put briefly, Hs is covariant for s-bijective factor maps and contravariant
for u-bijective factor maps. Not surprisingly, Hu is covariant for u-bijective

123
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factor maps and contravariant for s-bijective factor maps. These are exactly
the same as for Krieger’s invariants.

The constructions of the first section will clearly be dependent on the
choice of s/u-bijective pair. In the last section, we establish the crucial fact
that while the double complexes depend on this choice, their homologies do
not. That is, our invariant depends only on the Smale space and not the
s/u-bijective pair. With this result, we write the invariants as Hs(X,ϕ) and
Hu(X,ϕ).

5.1 Definitions of the complexes

We begin with a Smale space (X,ϕ) and assume that it has an s/u-bijective
pair, π. Based on π, we construct first two double complexes: the groups
in the first are Krieger’s invariant Ds, applied to the shifts of finite type
ΣL,M(π) defined in 2.6.4. The second complex simply replaces Ds with Du.
These complexes will be denoted by (Cs(π), ds(π)) and (Cu(π), du(π)).

We note one important result: if we restrict our attention to a single row
or column in the double complex, the result is a complex of the type we
considered in the last chapter. This will allow us ultimately to transfer a
number of results from the last chapter to the situation here.

Following this, we introduce six other double complexes, three associated
with the invariant Ds and three with Du. These will be analogues of the
alternating complexes from the last chapter. They correspond to the natural
actions of the groups SL+1 × 1, 1 × SM+1 and SL+1 × SM+1 on the spaces
ΣL,M(π). Ignoring the Du case for the moment, these three new complexes
will be denoted (Cs

Q,(π), dsQ,(π)), (Cs
,A(π), ds,A(π)) and (Cs

Q,A(π), dsQ,A(π)).
Our homology, denoted Hs(π), will be defined as the homology of the last.

We recall the definition from section 2.6: for each L,M ≥ 0,

ΣL,M(π) = {(y0, . . . , yL, z0, . . . , zM) | yl ∈ Y, zm ∈ Z,
πs(yl) = πu(zm), 0 ≤ l ≤ L, 0 ≤ m ≤M},

which is a shift of finite type from Theorem 2.6.6.
We also recall the maps δl, and δ,m of Definition 2.6.4, which delete entries

yl and zm, respectively, and the fact from Theorem 2.6.13 that the former
are all s-bijective and the latter are all u-bijective. This fact is at the heart
of the following definition.
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Definition 5.1.1. Let π be an s/u-bijective pair for the Smale space (X,ϕ).

1. For each L,M ≥ 0, we define

Cs(π)L,M = Ds(ΣL,M(π), σ).

We define these groups to be zero for all other integral values of L,M .
We define also

ds(π)L,M =
∑

0≤l≤L

(−1)lδsl, +
∑

0≤m≤M+1

(−1)L+mδs∗,m

on the summand Cs(π)L,M . Notice that the first sum has range
Cs(π)L−1,M , while the second has range Cs(π)L,M+1. The first term
only appears when L ≥ 1 and the second only for M ≥ 0.

2. For each L,M ≥ 0, we define

Cu(π)L,M = Du(ΣL,M(π), σ).

We define these groups to be zero for all other integral values on L,M .
We define

du(π)L,M =
∑

0≤l≤L+1

(−1)lδu∗l, +
∑

0≤m≤M

(−1)L+mδu,m

on the summand Cu(π)L,M . Notice that the first sum has range
Cu(π)L+1,M , while the second has range Cu(π)L,M−1. The first term
only appears when L ≥ 0 and the second only for M ≥ 1.

For the moment, we concentrate on Cs(π). For any integer N , we may
consider ⊕L−M=NC

s(π)L,M and observe that the map

⊕L−M=Nd
s(π)L,M : ⊕L−M=NC

s(π)L,M → ⊕L−M=N−1C
s
L,M(π).

Suppose for a moment that we fix an integer M and consider
Cs(π)L,M , L ∈ Z, as a Z-graded subgroup of Cs(π). We refer to the re-
striction of (Cs(π), ds(π)) to row M to be this graded group with the map∑

0≤l≤L(−1)lδsl,. This is exactly the restriction of ds(π) to Cs(π)L,M , L ∈ Z,
in the usual sense, followed by the projection onto Cs(π)L,M , L ∈ Z. There
is an analogous definition of the restriction of (Cs(π), ds(π)) to column L.
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Recall from Definition 2.6.10 and Theorem 2.6.11 that, for each L ≥ 0,
we have a u-bijective factor map

ρL, : (ΣL,0(π), σ)→ (YL(πs), ψ)

and, for each M ≥ 0, we have an s-bijective factor map

ρ,M : (Σ0,M(π), σ)→ (ZM(πu), ζ)

From Theorem 2.6.12, ΣL,M(π) is the same as Σ0,M(π)L(ρ,M). Moreover,
under this identification, the map δ,m, which deletes entry m, is the same for
these two systems. This leads us to the first part below; the others follow in
a similar way.

Lemma 5.1.2. 1. For each L,M , as maps defined on Cs
L,M(π), we have∑

0≤l≤L

(−1)l(δl,)
s = ds(ρ,M)L∑

0≤m≤M+1

(−1)m(δ,m)s∗ = ds∗(ρL,)M

ds(π)L,M = ds(ρ,M)L + (−1)Lds∗(ρL,)M

2. For each L,M , as maps defined on Cu
L,M(π), we have∑

0≤l≤L+1

(−1)l(δl,)
u∗ = du∗(ρ,M)L∑

0≤m≤M

(−1)m(δ,m)u = du(ρL,)M

du(π)L,M = du∗(ρ,M)L + (−1)Ldu(ρL,)M

The first important consequence is that (Cs(π), ds(π)) and (Cu(π), du(π))
do indeed form complexes. We state the relevant result for the former only.

Lemma 5.1.3. Let π be an s/u-bijective pair. For all N in Z, we have

(⊕L−M=N−1d
s(π)L,M) ◦ (⊕L−M=Nd

s(π)L,M) = 0.
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Proof. Fix L,M . We must show that the composition is zero on Cs(π)L,M .
The only non-trivial cases are for L ≥ 1 and M ≥ 0. We first apply
ds(π)L,M = ds(ρ,M)L + (−1)Lds∗(ρL,)M . The first term has its image in
Cs(π)L−1,M and the second in Cs(π)L,M+1. On the first, we apply ds(π)L−1,M

and, on the second, ds(π)L,M+1. We summarize: the restriction of the com-
position to Cs(π)L,M is

ds(ρ,M)L−1 ◦ ds(ρ,M)L + (−1)L−1ds∗(ρL−1,)M ◦ ds(ρ,M)L

+(−1)Lds(ρ,M+1)L ◦ ds∗(ρL,)M + ds∗(ρL,)M+1 ◦ ds∗(ρL,)M .

The first and last terms are zero by Lemma 4.1.3 and we are left to consider
the two middle terms. Here, we get(

(−1)L−1
∑
m

(−1)m(δ,m)s∗

)
◦

(∑
l

(−1)l(δl,)
s

)

+

(∑
l

(−1)l(δl,)
s

)
◦

(
(−1)L

∑
m

(−1)m(δ,m)s∗

)
= (−1)L−1

∑
l,m

(−1)l+m((δl,)
s ◦ (δ,m)s∗ − (δ,m)s∗ ◦ (δl,)

s).

It is clear that, for every l and m, the maps δl, and δ,m commute. Consider
the diagram

ΣL,M+1
δl, //

δ,m
��

ΣL−1,M+1

δ,m
��

ΣL,M
δl, // ΣL−1,M

We apply Theorem 3.5.11, using η1 = δl, = π2 and η2 = δ,m = π1 (there is a
slight abuse of notation since δl, and δ,m each have two different domains) to
conclude that each term in the sum above is zero and our proof is complete.
Notice that it is a trivial matter to see that the diagram above is actually
the fibred product.

We have already observed the following result, but we state it for empha-
sis.

Theorem 5.1.4. 1. For fixed M ≥ 0, row M of the complex (Cs(π), ds(π)
is the same as the complex (Ds(Σ∗,M(ρ,M)), ds(ρ,M)).
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2. For fixed L ≥ 0, column L of the complex (Cs(π), ds(π) is the same as
the complex (Ds(ΣL,∗(ρL,)), d

s(ρL,)).

Next, we need to consider analogues of the alternating complexes in this
setting. Of course, there are two different permutation groups acting, SL+1

and SM+1. For the former, we are using a chain complex in that variable, so
we need to consider the quotient complex and for the latter we are using a
cochain complex and need to consider the subcomplex.

Definition 5.1.5. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
Let L,M ≥ 0.

1. We define Ds
B,(ΣL,M(π)) to be the subgroup of Ds(ΣL,M(π)) which is

generated by

(a) all elements b such that b = b · (α, 1), for some transposition α in
SL+1, and

(b) all elements of the form a− sgn(α)a · (α, 1), where a is in
Ds(ΣL,M(π)) and α is in SL+1.

2. We define Ds
Q,(ΣL,M(π)) to be the quotient of Ds(ΣL,M(π)) by the sub-

group Ds
B,(ΣL,M(π)) and we let Q denote the quotient map.

3. We define Ds
,A(ΣL,M(π)) to be the subgroup of all elements a in

Ds(ΣL,M(π)) satisfying a = sgn(β)a · (1, β), for all β in SM+1 and we
let J denote the inclusion map.

4. We define Ds
Q,A(ΣL,M(π)) to be the image in Ds

Q,(ΣL,M(π)) of
Ds
,A(ΣL,M(π)) under Q. We let QA denote the restriction of Q to

Ds
,A(ΣL,M(π)) and JQ denote the inclusion of Ds

Q,A(ΣL,M(π)) in
Ds
Q,(ΣL,M(π)).

There are analogous definitions of Du
A,(ΣL,M(π)), Du

,Q(ΣL,M(π)) and
Du
A,Q(ΣL,M(π)).

Lemma 5.1.6. For L,M ≥ 0, as maps on Ds(ΣL,M(π)), we have

ds(ρ,M)L(Ds
B,(ΣL,M(π))) ⊂ Ds

B,(ΣL−1,M(π))

ds∗(ρL,)M(Ds
B,(ΣL,M(π))) ⊂ Ds

B,(ΣL,M+1(π))

ds,K(ρ,M)L(Ds
,A(ΣL,M(π))) ⊂ Ds

,A(ΣL−1,M(π))

ds∗,K(ρL,)M(Ds
,A(ΣL,M(π))) ⊂ Ds

,A(ΣL,M+1(π))
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Proof. For the first part, the value M is held constant and the result here is
an immediate consequence of the first statement in part 1 of Lemma 4.1.6, ap-
plied to the s-bijective factor map ρ,M . Similarly, the fourth part is obtained
from the second statement in part 2 of 4.1.6 applied to the u-bijective factor
map ρL,. The second part follows from the fact that the action of SL+1 × 1
commutes with ds∗,K(ρL,)M . The third is analogous to the second.

Definition 5.1.7. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
For L,M ≥ 0, we define

Cs
Q,(π)L,M = Ds

Q,(ΣL,M(π)),

Cs
,A(π)L,M = Ds

,A(ΣL,M(π)),

Cs
Q,A(π)L,M = Ds

Q,A(ΣL,M(π)).

We also let

1. dsQ,(π)L,M be the map induced by ds(π)L,M on the quotient
Ds
Q,(ΣL,M(π)),

2. ds,A(π)L,M to be the restriction of ds(π)L,M to Ds
,A(ΣL,M(π)), and

3. dsQ,A(π)L,M to be the restriction of dsQ,(π)L,M to Ds
Q,A(ΣL,M(π)).

The following simply summarizes these last definitions and a simple con-
sequence of Lemma 5.1.6.

Theorem 5.1.8. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
We have a commutative diagram of chain complexes and chain maps as
shown:

(Cs
,A, d

s
,A)

QA
��

J // (Cs, ds)

Q

��
(Cs
Q,A, d

s
Q,A)

JQ // (Cs
Q,, d

s
Q,)

Before proceeding further towards our main definition, we want to make
some important (although fairly simple) observations about the four com-
plexes of the last theorem.

Theorem 5.1.9. Let π be an s/u-bijective pair for the Smale space (X,ϕ).

1. For a fixed M ≥ 0, row M of the complex Cs
Q,(π), dsQ,(π)) is the same

as (Ds
Q(Σ∗,M(ρ,M)), dsQ(ρ,M)) of Theorem 4.1.4.
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2. For a fixed L ≥ 0, column L of the complex Cs
A,(π), dsA,(π)) is the same

as (Ds
A(ΣL,∗(ρL,)), d

s∗
A (ρL,)) of Theorem 4.1.4.

Let us now make a preliminary observation as to why these alternating
complexes may be useful and/or simpler than our original.

Theorem 5.1.10. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
Let L0 and M0 be such that #π−1

s {x} ≤ L0 and #π−1
u {x} ≤M0, for all x in

X (which exist by Theorem 2.5.3).

1. If L ≥ L0, then Cs
Q,(π)L,M = 0.

2. If M ≥M0, then Cs
,A(π)L,M = 0.

3. If either L ≥ L0 or M ≥M0, then Cs
Q,A(π)L,M = 0.

Proof. The first two parts follow immediately from the last Theorem and the
analogous result for the map complexes given in Theorem 4.2.12.

As for the third part, for any L,M ≥ 0, the map QA defines a homomor-
phism from Cs

,A(π)L,M to Cs
Q,(π)L,M whose image is Cs

Q,A(π)L,M . So if either
its domain or range is zero, then so is its image.

This brings us to our main definition, but some comments are in order
before we give it. To an s/u-bijective pair π, we have associated four double
complexes, (Cs(π), ds(π)), (Cs

Q,(π), dsQ,(π)), (Cs
,A(π), ds,A(π)) and

(Cs
Q,A(π), dsQ,A(π)). The first of these stands alone as having the simplest

definition, in a certain sense. On the other hand, it is the most troublesome
of the complexes because it is non-zero in infinitely many positions as either
L or M tend to infinity. In addition, because its boundary has components
of degree (−1, 0) and (1, 0), it is really a second (or fourth) quadrant double
complex, which make it less accessible to standard techniques of spectral
sequences.

The next two complexes are both non-zero in infinitely many coordinates,
but each in only a single direction. This means they are much more amenable
to study by the use of spectral sequences. Finally, the last complex is actually
only non-zero in finitely many positions, which makes it the simplest, in some
sense.

Ultimately (in the next section), we will show that the second, third and
fourth all yield isomorphic homologies. At this point, we believe the first
also yields the same homology, but this does not follow easily from standard
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methods. So we choose as our definition, the homology of the last complex.
It is this which is the simplest to compute and which gives the right answer
for the next chapter.

Definition 5.1.11. Let π be an s/u-bijective pair for the Smale space (X,ϕ).

1. We define Hs
∗(π) to be the homology of the double complex

(Cs
Q,A(π), dsQ,A(π)). That is, for each integer N , we have

Hs
N(π) = Ker(⊕L−M=Nd

s
Q,A(π)L,M)/Im(⊕L−M=N+1d

s
Q,A(π)L,M).

2. We define Hu
∗ (π) to be the homology of the double complex

(Cu
A,Q(π), duA,Q(π)). That is, for each integer N , we have

Hu
N(π) = Ker(⊕L−M=Nd

u
A,Q(π)L,M)/Im(⊕L−M=N−1d

u
A,Q(π)L,M).

It is worth observing that the homology groups are actually defined for an
s/u-bijective pair. Our main result of section 5.5 will show that it actually
only depends on (X,ϕ) and we will ultimately use the notation Hs

∗(X,ϕ)
and Hu

∗ (X,ϕ). (The definition does rely on the existence of an s/u-bijective
pair.)

The bounds on the complexes given in Theorem 5.1.10, particularly for
Cs
Q,A(π)L,M , will be very useful. Recall that an abelian group H is finite

rank if the rational vector space H ⊗Z Q is finite dimensional. If we consider
the case of a finitely generated free abelian group, such as ZGk

L,M , we note
that we may identify ZGk

L,M ⊗Z Q with the vector space of formal linear
combinations of the generating set, Gk

L,M , which we denote by QGk
L,M . Here,

Gk
L,M is a basis and this vector space is finite dimensional.

Continuing, we note that Ds(Gk
L,M) ⊗Z Q is the inductive limit of the

system

QGk−1
L,M⊗

γs→ QGk−1
L,M

γs→ · · ·

Now suppose V is any finite dimensional (rational) vector space and α :
V → V is any linear transformation. Let W denote the inductive limit of
the system

V
α→ V

α→ · · · .

The sequence of subspaces αn(V ), n ≥ 0 is decreasing and hence there exists
some N ≥ 1 with dim(αN(V )) = dim(αN+1(V )). It follows that α restricts
to an isomorphism between αN(V ) and αN+1(V ). It is then a simple matter
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to prove that the map sending v in αN(V ) to [v, 1] in W is an isomorphism
and hence dim(W ) = dim(αN(V )) ≤ dim(V ). So we conclude from this
that Ds(Gk

L,M) (and also Du(Gk
L,M)) is finite rank. The following result is an

immediate consequence.

Theorem 5.1.12. Let π be an s/u-bijective pair for the Smale space (X,ϕ)
and let L0 and M0 be as in Theorem 5.1.10.

1. The homology groups Hs
N(π) are finite rank, for each integer N .

2. The homology groups Hs
N(π) are zero for N ≤ −M0 and for N ≥ L0.

5.2 Symbolic presentations

With the assumption that we are given a graph which represents an s/u-
bijective pair for the Smale space (X,ϕ), we develop appropriate symbolic
presentations for computations of our invariants. Most of the material in this
section is an immediate adaptation of the results in Section 4.2.

Definition 5.2.1. For any k, L,M ≥ 0, we define:

1. B(Gk
L,M , SL+1×1) is the subgroup of ZGk

L,M generated by all p in Gk
L,M

such that p · ((l l′), 1) = p, for some 0 ≤ l 6= l′ ≤ L and all p · (α, 1) −
sgn(α)p, where p is in Gk

L,M and α is in SL+1,

2. Q(Gk
L,M , SL+1 × 1) is the quotient of ZGk

L,M by B(Gk
L,M , SL+1 × 1) and

Q is the quotient map,

3. A(Gk
L,M , 1×SM+1) is the subgroup of ZGk

L,M of all elements a satisfying
a · (1, β) = sgn(β)a, for all β in Gk

L,M .

Just as in Section 4.2, the groups B(Gk
L,M , SL+1 × 1) and A(Gk

L,M , 1 ×
SM+1) are invariant under the map γs. We use the same notation for the
map induced on the quotient, Q(Gk

L,M , SL+1 × 1).

Definition 5.2.2. For any k, L,M ≥ 0, we define:

1.

Ds
Q,(G

k
L,M) = limQ(Gk

L,M , SL+1 × 1)
γs→ Q(Gk

L,M , SL+1 × 1)
γs→
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2.

Ds
,A(Gk

L,M) = limA(Gk
L,M , 1× SM+1)

γs→ A(Gk
L,M , 1× SM+1)

γs→

3.

Ds
Q,A(Gk

L,M) = limQ(A(Gk
L,M , 1×SM+1))

γs→ Q(A(Gk
L,M , 1×SM+1))

γs→

We will (also) let QA be the map from Ds
,A(Gk

L,M) to Ds
Q,A(Gk

L,M) which
is the restriction of Q. We let J denote the inclusion of Ds

,A(Gk
L,M) into

Ds(Gk
L,M) and JQ be the inclusion of Ds

Q,A(Gk
L,M) in Ds

Q,(G
k
L,M). Thus, we

have a commutative diagram

Ds
,A(Gk

L,M)

QA
��

J // Ds(Gk
L,M)

Q

��
Ds
Q,A(Gk

L,M)
JQ // Ds

Q,(G
k
L,M).

We have an analogue of Theorem 4.2.8 that allows to compute the groups
in our alternating complexes using the presentation G.

Theorem 5.2.3. Let π be an s/u-bijective pair for the Smale space (X,ϕ)
and let G be a presentation of π. Let L,M ≥ 0 and k ≥ 1. The isomorphism
of Theorem 3.3.3 between Ds(ΣL,M(π)) and Ds(Gk

L,M) induces isomorphisms

1. Ds
Q,(ΣL,M(π)) and Ds

Q,(G
k
L,M),

2. Ds
,A(ΣL,M(π)) and Ds

,A(Gk
L,M), and

3. Ds
Q,A(ΣL,M(π)) and Ds

Q,A(Gk
L,M).

We now bring in the boundary maps.

Lemma 5.2.4. Suppose that K satisfies the conclusion of Lemma 2.7.2 for
ρs and ρu. Then for any k ≥ K,L,M ≥ 0, we have

ds,K(ρ,M)L(B(Gk
L,M , SL+1 × 1)) ⊂ B(Gk+K

L−1,M , SL × 1),

ds∗,K(ρL,)M(B(Gk−K
L,M , SL+1 × 1)) ⊂ B(Gk

L,M+1, SL+1 × 1),

ds,K(ρ,M)L(A(Gk+K
L,M , 1× SM+1)) ⊂ A(Gk

L−1,M , 1× SM+1),

ds∗,K(ρL,)M(A(Gk−K
L,M , 1× SM+1)) ⊂ A(Gk

L,M+1, 1× SM+2).
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Proof. For the first part, the value M is held constant and the result here is
an immediate consequence of the first conclusion of Lemma 4.2.9, applied to
the s-bijective factor map ρ,M . Similarly, the fourth part is obtained from the
third part of 4.2.9 applied to the u-bijective factor map ρL,. The second part
follows from the fact that the action of SL+1× 1 commutes with ds∗,K(ρL,)M .
The third is analogous to the second.

As a consequence of the first two parts, we obtain well-defined boundary
maps for our three new complexes.

Theorem 5.2.5. Let π be an s/u-bijective pair for the Smale space (X,ϕ)
and let G be a presentation of π. Let K satisfy the conclusion of Lemma 2.7.2
for ρs and ρu. With the identifications given in Theorem 5.2.3, we have

1.

dsQ,(π)L,M [Q(a), j] = [Q(ds,K(ρ,M)L(a)), j]

+(−1)L[Q(ds∗,K(ρL,)M(a)), j],

for k ≥ K, j ≥ 1 and a in ZGk
L,M ,

2.

ds,A(π)L,M [a, j] = [ds,K(ρ,M)L(a), j]

+(−1)L[ds∗,K(ρL,)M(a), j],

for j ≥ 1, k ≥ K and a in A(Gk
L,M , 1× SM+1) and

3.

dsQ,A(π)L,M [Q(a), j] = [Q(ds,K(ρ,M)L(a)), j]

+(−1)L[Q(ds∗,K(ρL,)M(a)), j],

for j ≥ 1, k ≥ K and a in A(Gk
L,M , 1× SM+1).

Let us remark that if we look just at the first boundary map, the term
Q(ds,K(ρ,M)L(a)) actually lies in Q(Gk+K

L,M , SL+1 × 1). We implicitly identify

its class in Ds
Q,(G

k+K
L,M ) with an element of Ds

Q,(G
k
L,M). We leave it as an

exercise to see that each is well-defined and independent of the choice of k
and K.
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Let us now fix k, L,M . We choose k sufficiently large so that k ≥ 2K0,
as in Lemma 2.7.6. We choose Bk

L,M , a subset of Gk
L,M , which meets SL+1 ×

SM+1-orbit having trivial isotropy exactly once and does not meet any other
orbits.

We note the following definition for future reference.

Definition 5.2.6. For each p in Bk
L,M and j ≥ 1, define

t∗Q,A(p, j) = {(q, α, β) ∈ Gk+j
L,M×SL+1×SM+1 | tj(q) = p, ij(q)·(α, β) ∈ Bk

L,M}.

Define a homomorphism on the vector space ZBk
L,M by setting, for q in

Bk
L,M ,

γsB(p) =
∑

q,α,β)∈t∗Q,A(p,j)

sgn(α)sgn(β)i(q′) · (α, β).

Lemma 5.2.7. Let j ≥ 1. Then, we have

(γsB)j(p) =
∑

(q,α,β)∈A(p,n)

sgn(α)sgn(β)in(q) · (α, β).

Proof. The proof is by induction and the step j = 1 is simply the definition
of γsB. Assume the result is true for j and let us consider (γsB)j(p).

Let (q, α, β) be in t∗Q,A(p, j + 1). First, we claim that ij(t(q′)) is in B.
Suppose there exist α′, β′ such that ij(t(q)) · (α′, β′) = ij(t(q′)). Then by part
2 of Proposition 2.7.7, we know that ij(t(q′))·(α′, 1) = ij(t(q′)). Then by part
3 of the same result, we have ij(q′)·(α′, 1) = ij(q′) and hence ij+1(q′)·(α′, 1) =
ij+1(q′). From our choice of q′, it follows that α′ = 1. A similar argument
shows that β′ = 1 as well and so our claim is established.

We may find a unique (α′, β′) such that in(t(q))·(α′, β′) is in B0. It follows
immediately that that (t(q), α′, β′) is in A(q, n).

We also claim that (in(q) · (α′, β′), (α′)−1α, (β′)−1β) is in t∗Q,A(t(in(q)), 1).
The first condition is trivially satisfied. For the second, we have

i(ij(q) · (α′, β′)) · ((α′)−1α, (β′)−1β) = ij+1(q) · (α, β) ∈ Bk
L,M ,

from the fact (q, α, β) is in t∗Q,A(p, j + 1).
Let A denote the set of all sextuples (q′, α′, β′, q′′, α′′, β′′) where (q′, α′, β′)

is in t∗Q,A(p, j) and (q′′, α′′, β′′) is in t∗Q,A(ij(q′), 1). We claim that the map
f : t∗Q,A(p, j + 1)→ A defined by

f(q, α, β) = (t(q), α′, β′, ij(q) · (α′, β′), (α′)−1α, (β′)−1β).
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The inverse may be written explicitly as follows.
Let (q′, α′, β′, q′′, α′′, β′′) be in A. Since

(q′′, α′′, β′′) is in t∗Q,A(ij(q′), 1), we know that t(q′′) = ij(q′) ·(α′, β′). It follows
that there is a unique path q with t(q) = q′ and in(q̃) ·(α′, β′) = q′′. We check
that (q, α′α′′, β′β′′) is in t∗Q,A(q, j + 1). First, we have tj+1(q) = tj(q′) = p
since (q′, α′, β′) is in t∗Q,A(ij(q′), 1). Secondly, we have

ij+1(q) · (α′α′′, β′β′′) = i(ij(q) · (α′, β′)) · (α′′, β′′) = i(q′′) · (α′′, β′′) ∈ Bk
L,M .

Let us set g(q′, α′, β′, q′′, α′′, β′′) = (q, α′α′′, β′β′′).
It is a simple matter to verify that f and g are inverses and we omit

the details.
It follows that

(γsB)j+1(p) = γsB

 ∑
(q′,α′,β′)∈t∗Q,A(p,j)

sgn(α′)sgn(β′)ij(q′) · (α′, β′)


=

∑
(q′,α′,β′)∈t∗Q,A(p,j)

∑
(q′′,α′′,β′′)∈t∗Q,A(ij(q′)·(α′,β′),1)

sgn(α′)sgn(β′)sgn(α′′)sgn(β′′)i(q′′) · (α′, β′) · (α′′, β′′)
=

∑
A

sgn(α′α′′)sgn(β′β′′)i(q′′) · (α′α′′, β′β′′)

=
∑

(q,α,β)∈t∗Q,A(p,j+1)

sgn(α)sgn(β)ij+1(q) · (α, β).

Lemma 5.2.8. Define a homomorphism A : ZGk
L,M → A(Gk

L,M , 1 × SM+1)
by

A(p) =
∑

β∈SM+1

sgn(β)p · (1, β),

for all p in Gk
L,M . The map

QA : ZBk
L,M → Q(A(Gk

L,M , 1× SM+1))

is an isomorphism and the following diagram commutes.

ZBk
L,M

QA

��

γsB // ZBk
L,M

QA

��
Q(A(Gk

L,M , 1× SM+1))
γs // Q(A(Gk

L,M , 1× SM+1)).
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Proof. We first show the map is onto. It is clear that the map A maps
ZGK

L,M onto A(GK
L,M , 1 × SM+1) and, by definition, Q maps the latter onto

Q(A(GK
L,M , 1 × SM+1)). Consider q in GK

L,M and QA(q). If q is in B, then
there is a unique (α, β) such that q · (α′, β′) is in Bk

L,M . Moreover, we have

QA(q) = Q(
∑

β∈SM+1

sgn(β)q · (1, β))

= Q(
∑

β∈SM+1

sgn(β)sgn(β′)q · (1, β′β))

= Q(
∑

β∈SM+1

sgn(α′)sgn(β)sgn(β′)q · (α′, β′β))

= sgn(α′)sgn(β′)Q(
∑

β∈SM+1

sgn(β)(q · (α′, β′)) · (1, β)

= sgn(α′)sgn(β′)QA(q · (α′, β′))
∈ QA(ZBk

L,M).

On the other hand, if q is not in B, then q ·(α, β) = q, for some (α, β) 6= (1, 1)
and it follows from the second part of Proposition 2.7.7 that q · (α, 1) = q =
q · (1, β). First, suppose that β 6= 1. Then we may find a transposition β′

such that q · (1, β′). Let C be a subset of SM+1 which contains exactly one
entry of each right coset of the subgroup {1, β′}. It follows that

A(q) =
∑

β′′∈SM+1

sgn(β′′)q · (1, β′′)

=
∑
β′′∈C

sgn(β′′)q · (1, β′′) + sgn(β′β′′)q · (1, β′β′′)

=
∑
β′′∈C

sgn(β′′)q · (1, β′′)− sgn(β′′)q · (1, β′′)

= 0.

Hence, we have QA(q) is in QA(QB0). Now we consider the case α 6= 1.
Here, we have Q(q) = 0. But it is also the case that Q(q · (1, β)) = 0, for all
β in SM+1 and so we have QA(q) = 0. Again,we have QA(q) is in QA(QB0).
This completes the proof that QA is surjective.

We define a variant of the map Q# of Section 4.3. We choose an order
on the set of SM+1 orbits of elements in Gk

0,M . Let p be in Gk
L,M . From part
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2 of Proposition 2.7.7, two rows of p are either equal or have distinct SM+1

orbits. So we define Q#(Q(p)) = 0 or two rows are equal and Q#(Q(p)) =
sgn(α)p · (α, 1) if the rows are all distinct, where α is the unique element
of SL+1 which puts the SM+1 orbits of the rows into increasing order. (Of
course, to do this correctly, we should proceed as in Section 4.3 by defining
a version on ZGk

L,M and showing it is zero on B(Gk
L,M , SL+1 × 1), but this is

very similar to what was done earlier and we skip this.)
We make the following two claims, which are both quite clear. First,

Q# ◦ Q commutes with the action of 1 × SM+1 and hence also with the
map A. Secondly, for any p in Bk

L,M , Q# ◦ Q(p) is in Zp · SL+1 × 1. For
different elements p, these subgroups have trivial intersection and it follows
that Q#◦Q(p) is injective on ZBk

L,M . In addition, we see that Q#◦Q(p) maps
Bk
L,M into Bk

L,M · SL+1 × 1. It is a simple matter to see that the restriction
of A to ZBk

L,M · SL+1 × 1 is injective.
Now, if a is in ZBk

L,M and QA(a) = 0, then we have 0 = Q# ◦Q ◦A(a) =
A ◦ Q# ◦ Q(a). It follows from the last paragraph that Q# ◦ Q(a) = 0 and
hence that a = 0, as desired.

We now prove the commutativity of the diagram. We first consider p in
Bk
L,M and

γs(p) = i ◦ t∗(p) =
∑

i(q),

where the sum is over all q in Gk+1
L,M such that t(q) = p. We divide the set

of all such q into two groups: one with i(q) having trivial isotropy and the
others with i(q) having non-trivial isotropy. Consider q in the latter class for
the moment. This means that i(q) · (α, β) = i(q), for some α in SL+1 and β
in SM+1, not both the identity. It follows from the fourth part of Proposition
2.7.7 that we have

i(q) · (α, 1) = i(q) = i(q) · (1, β).

The second equality and part five of 2.7.7 then imply that q = q · (1, β) and
hence t(q) · (1, β) = t(q) and as t(q) = p is in Bk

L,M , we conclude that β = 1.
This means that α 6= 1. It follows that i(t(p)) · ((l l′), 1) = i(t(p)), for some
l 6= l′ and this implies that Q(i(t(p))) = 0. We conclude from this that

Q(γs(p)) =
∑

Q(i(q)),

where the sum s over all q with t(q) = q and i(q) having trivial isotropy. As
each such element is in the SL+1 × SM+1 orbit of a point in Bk

L,M , we may
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re-write this as
Q(γs(p)) =

∑
(q,α,β)∈A(p,1)

Q(i(q)).

Now let p be in Bk
L,M and β′ in SM+1 and consider Q(γs(p · (1, β′))) =

Q(γs(p) · (1, β′)). The action of (1, β) does not affect i(q) having repeated
rows and so we conclude that

Q(γs(p · (1, β′))) =
∑

(q,α,β)∈t∗Q,A(p,1)

Q(i(q) · (1, β′)).

Summing over β′ with a sgn(β′), we have

γs ◦QA(p) =
∑

β′∈SM+1

∑
(q,α,β)∈t∗Q,A(p,1)

sgn(β)Q(i(q) · (1, β′)).

On the other hand, we may use the fact that sgn(α)Q(q · (α, 1)) = Q(q)
to compute

QA ◦ γsB(p) = QA

 ∑
(q,α,β)∈t∗Q,A(p,1)

sgn(α)sgn(β)i(q) · (α, β)


= Q

 ∑
β′∈SM+1

∑
(q,α,β)

sgn(α)sgn(β)sgn(β′)i(q) · (α, ββ′)


= Q

 ∑
(q,α,β)

∑
β′∈SM+1

sgn(ββ′)i(q) · (1, ββ′)


= Q

 ∑
(q,α,β)

∑
β′∈SM+1

sgn(β′)i(q) · (1, β′)


= γs ◦QA(p)

as desired.

Theorem 5.2.9. For any k ≥ 2K0 and L,M ≥ 0, Ds
Q,A(ΣL,M(π)) is iso-

morphic to the inductive limit of the system

ZBk
L,M

γsB→ ZBk
L,M

γsB→ · · ·

Moreover, this isomorphism intertwines the automorphism (σ−1)s with the
automorphism of the inductive system defined by γsB[a, j] = [γsB(a), j].
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5.3 Equivalence of the complexes

The main objective of this section is to show that, for a Smale space (X,ϕ)
with s/u-bijective pair π, the complexes (Cs

Q,(π), dsQ,(π)), (Cs
,A(π), ds,A(π))

and (Cs
Q,A(π), dsQ,A(π)), all have the same homology. Specifically, we prove

the following two results.

Theorem 5.3.1. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
The chain map

QA : (Cs
,A(π), ds,A(π))→ (Cs

Q,A(π), dsQ,A(π))

induces an isomorphism on homology.

Theorem 5.3.2. Let π be an s/u-bijective pair for the Smale space (X,ϕ).
The chain map

JQ : (Cs
Q,A(π), dsQ,A(π))→ (Cs

Q,(π), dsQ,(π))

induces an isomorphism on homology.

Let us begin the proof of Theorem 5.3.1. We consider the two filtrations:

F pCs
,A(π) = ⊕L≥0,M≥pC

s
,A(π)L,M

F pCs
Q,A(π) = ⊕L≥0,M≥pC

s
Q,A(π)L,M

Notice that the first filtration is decreasing and bounded: that is,

Cs
,A(π) = F 0Cs

,A(π) ⊃ F 1Cs
,A(π) ⊃ · · · ⊃ FM0Cs

,A(π) = 0,

where M0 is as in Theorem 5.1.10. The same holds for the second.
The first page of the spectral sequence associated to each, E∗,∗1 , is ob-

tained by computing the homology of each row of the complex. We will
show that the chain map QA induces an isomorphism between the resulting
homologies. The conclusion of Theorem 5.3.1 then follows from standard
results on spectral sequences, for example Theorem 3.5 of [25].

Restricting our attention to row M of the two complexes, they are sub-
complexes of (Ds(Σ∗,M(ρ,M)), ds(ρ,M)) and (Ds

Q,(Σ∗,M(ρ,M)), dsQ,(ρ,M)), re-
spectively. We know from part one of Theorem 4.3.1 that the quotient map
Q induces an isomorphism on the homology of these complexes. It is true
that Q is also equivariant for the action of 1 × SM+1 and so passes to a



5.3. EQUIVALENCE OF THE COMPLEXES 141

map between the subcomplexes, but it does not follow at once that it is also
an isomorphism on homology. Instead, we must adapt the proof given in
Theorem 4.3.1. Fortunately, the adjustments are fairly minor.

We want to show that the arguments in the proof of Theorem 4.3.1 show-
ing that, for fixed M , q induces an isomorphism between the homologies
of the complexes (Ds(Σ∗,M(ρ,M)), ds(ρ,M)) and (Ds

Q,(Σ∗,M(ρ,M)), dsQ,(ρ,M)),
may be adapted to reach the same conclusion for the subcomplexes
(Ds

,A(Σ∗,M(ρ,M)), ds(ρ,M)) and (Ds
Q,A(Σ∗,M(ρ,M)), dsQ,(ρ,M)). We state for

emphasis that M will be fixed throughout.
Recall that the starting point for the proof of Theorem 4.3.1 was to choose

an order on the vertex set G0, which in our case is G0
0,M . The first step will

be to replace this by G2K0
0,M , where K0 satisfies the condition of Proposition

2.7.7. This has almost no effect, except for changing some tk to tk−2K0 and
considering Gk

L,M , only for k ≥ 2K0.

The second step is to choose an order, instead of on G2K0
0,M , on the SM+1-

orbits in G2K0
0,M . One alternative is then to use this order and replace com-

parison of vertices with comparison of their orbits. Instead, we will simply
extend this order to G2K0

0,M so that the comparison of elements in G2K0
0,M is done

first by comparing their orbits and secondly, if they have the same orbit, by
some pre-assigned order on each orbit.

With this special choice of an order on G2K0
L,M , we follow the proof exactly

as it is given for Theorem 4.3.1, with some additional observations. The
crucial one is the first: by part 3 of Proposition 2.7.7, if p is in G2K0

L,M and
two rows have the same 1×SM+1-orbits, then they are equal. So now, while
it is not true that our order in G2K0

L,M is 1× SM+1-invariant, it is true that if

the rows of p in G2K0
L,M are in strictly increasing order, then so are the rows of

p · (1, β), for any β in SM+1.
This means that both functions Q# and J# commute with the action of

1×SM+1. Also, the set VI is globally invariant under 1×SM+1. Moreover, if v
is in VI and β in SM+1, we have G̃k

L+1,M(v·β) = G̃k
L+1,M(v)·(1, β) and Gk

L,M(v·
β) = Gk

L,M(v)·(1, β). For p in Gk
L,M(v), we have hv·β(p·(1, β)) = hv(p)·(1, β).

Finally, it follows from all of this that the function HN is equivariant for
the action of 1 × GM+1. Therefore it maps EN ∩ ⊕A(Gk

L,M , 1 × SM+1) to
EN ∩ ⊕A(Gk

L,M , 1× SM+1). The remainder of the proof is exactly the same
as in Chapter 4. This completes the proof of Theorem 5.3.1.

We now turn to the proof of Theorem 5.3.2. But we will make use of
the results already established in the proof of Theorem 5.3.1. Consider the
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dynamical system (X,ϕ−1). It is a trivial matter to see that this is also a
Smale space whose local stable sets are the local unstable sets for (X,ϕ),
etc. An s/u-bijective pair for it is π̄ = (Z, ζ−1, πu, Y, ψ

−1, πs). For any
L ≥ 0, it is an easy matter to see that the s-bijective factor map for the π̄
system, ρ̄,L, is equal to ρL,. (Of course, the reason the latter is u-bijective
while the former is s-bijective is because their domains are the same space
but with inverse maps.) The systems ΣL,M(π̄) coincide with ΣM,L(π), for
all L,M , except that the inverse maps are used. Consider the complexes
(Du(Σ∗,L(ρ̄,L)), du∗(ρ̄,L)) and its subcomplex (Du

A(Σ∗,L(ρ̄,L)), du∗A (ρ̄,L)). By
part 2 of Theorem 4.3.1, the inclusion map J from the latter to the former
induces an isomorphism on homology. At this point, we must realize that we
have made a simplification in out notation which is slightly misleading. We
should, in fact, be considering the groups Du(Σ∗,L(ρ̄,L), σ−1). It is obvious
from the definitions that

Du(Σ∗,L(ρ̄,L), σ−1) = Ds(Σ∗,L(ρ̄,L), σ) = Ds(ΣL,∗(ρL,), σ)

and that under this identification, the chain map du∗(ρ̄,L)) equals ds∗(ρL,)).
Now we return to the proof we have given above for 5.3.1, as it applies to

the s/u-bijective pair π̄. We have noted that the map J# is also equivariant
for the action of SM+1 and hence the proof that J is an isomorphism is
equally valid for the quotient complexes Du

Q,(Σ∗,L(ρ̄,L)) and its subcomplex
Du
Q,A(Σ∗,L(ρ̄,L)). This completes the proof.

5.4 Functorial properties

Our aim in this section is to show that our homology theories have exactly
the same functorial properties as Krieger’s original dimension groups.

Theorem 5.4.1. Let π = (Y, ψ, πs, Z, ζ, πu) and π′ = (Y ′, ψ′, π′s, Z
′, ζ ′, π′u)

be s/u-bijective pairs for the Smale spaces (X,ϕ) and (X ′, ϕ′), respectively.
Let η = (ηX , ηY , ηZ) be a triple of factor maps

ηX : (X,ϕ) → (X ′, ϕ′)

ηY : (Y, ψ) → (Y ′, ψ′)

ηZ : (Z, ζ) → (Z ′, ζ ′)
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such that the diagrams

(Y, ψ)

ηY
��

πs // (X,ϕ)

ηX
��

(Y ′, ψ′)
π′s // (X ′, ϕ′)

and
(Z, ζ)

ηZ
��

πu // (X,ϕ)

ηX
��

(Z ′, ζ ′)
π′u // (X ′, ϕ′)

are both commutative and satisfy the conditions that ηY ×πs and ηZ ×πu are
surjective onto the respective fibred products.

1. If ηX , ηY and ηZ are s-bijective, then they induce chain maps and be-
tween the complexes Cs

Q,A(π) and Cs
Q,A(π′) and hence group homomor-

phisms
ηs : Hs

N(π)→ Hs
N(π′),

for every integer N .

2. If ηX , ηY and ηZ are u-bijective, then they induce chain maps and be-
tween the complexes Cs

Q,A(π′) and Cs
Q,A(π) and hence group homomor-

phisms
ηs∗ : Hs

N(π′)→ Hs
N(π),

for every integer N .

These construction are functorial in the sense that if η1 and η2 are both triples
of s-bijective factor maps and the ranges of θ1 are the domains of θ2, then

(θ2 ◦ θ1)s = θs2 ◦ θs1.

An analogous statement holds for the composition of u-bijective factor maps.

Proof. For each L,M ≥ 0, we define η : ΣL,M(π)→ ΣL,M(π′) by setting

η(y0, . . . , yL, z0, . . . , zM) = (ηY (y0), . . . , ηY (yL), ηZ(z0), . . . , ηZ(zM)).

The fact that η is surjective is proved in much the same fashion is in the
proof of Theorem 4.4.1. It is clear that these maps are s-bijective if ηY and
ηZ are and that they commute with the action of SL+1 × SM+1. The rest of
the proof is routine and we omit the details.
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Theorem 5.4.2. Let (X,ϕ) and (X ′, ϕ′) be non-wandering Smale spaces and
suppose η : (X,ϕ)→ (X ′, ϕ′) is a factor map.

1. If η is s-bijective, then there exist s/u-bijective pairs, π and π′, for
(X,ϕ) and (X ′, ϕ′), respectively, and a triple of s-bijective factor maps
η = (η, ηY , ηZ) which satisfy the hypotheses of Theorem 5.4.1.

2. If η is u-bijective, then there exist s/u-bijective pairs, π and π′, for
(X,ϕ) and (X ′, ϕ′), respectively, and a triple of u-bijective factor maps
η = (η, ηY , ηZ) which satisfy the hypotheses of Theorem 5.4.1.

Proof. We prove the first part only. By Theorem 2.6.3, let Y, ψ, πs be the
first half of an s/u-bijective pair for (X,ϕ) and let Z ′, ζ ′, π′u be the second
half of an s/u-bijective pair for (X ′, ϕ′). Let (Z, ζ) be the fibred product of
the maps η : (X,ϕ)→ (X ′, ϕ′) and π′u : (Z ′, ζ ′)→ (X ′, ϕ′). We denote by the
two canonical factor maps by πu : (Z, ζ)→ (X,ϕ) and ηZ : (Z, ζ)→ (Z ′, ζ ′).
By Theorem 2.5.13, the former is u-bijective since π′u is, while the latter is s-
bijective since θ is. Moreover, since the sets Z ′s(z′) are totally disconnected,
for every z′ in Z ′ and ηZ : (Z, ζ) → (Z ′, ζ ′) is s-bijective, it follows from
Theorem 2.5.12 that Zs(z) is totally disconnected, for every z in Z. It then
follows that π = (Y, ψ, πs, Z, ζ, πu) is an s/u-bijective pair for (X,ϕ).

On the other hand, since η is s-bijective, π′ = (Y, ψ, η ◦ πs, Z ′, ζ ′, π′u) is
an s/u-bijective pair for (X ′, ϕ′).

The proofs that these satisfy the hypotheses of Theorem 5.4.1 are imme-
diate.

5.5 Independence of s/u-bijective pair

In this section, we will prove that, for a given Smale space (X,ϕ) with an
s/u-bijective pair π, the homology groups Hs

N(π) and Hu
N(π) are independent

of the choice of π, and depend only on (X,ϕ). We then use this result and
the results of the last section to deduce a final result on functoriality.

Theorem 5.5.1. Let (X,ϕ) be a Smale space and suppose that
π = (Y, ψ, πs, Z, ζ, πu) and π′ = (Y ′, ψ′, π′s, Z

′, ζ ′, π′u) are two s/u-bijective
pairs for (X,ϕ). Then there are canonical isomorphisms between Hs

N(π) and
Hs
N(π′) and between Hu

N(π) and Hu
N(π′), for all integers N .
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Proof. It suffices to prove the result in the case that Z ′ = Z, ζ ′ = ζ and
π′u = πu, for a similar argument will deal with the case Y = Y ′, ψ = ψ′ and
π′s = πs and the result follows from these two special cases.

Assuming that Z ′ = Z, ζ ′ = ζ and π′u = πu, let (Y ′′, ψ′′) be the fi-
bred product of πs : (Y, ψ) → (X,ϕ) and π′s : (Y ′, ψ′) → (X,ϕ). Let η :
(Y ′′, ψ′′)→ (Y, ψ) denote the usual map and let π′′ = (Y ′′, ψ′′, πs◦η, Z, ζ, πu).
We will show that η implements an isomorphism at the level of homol-
ogy. This will complete the proof since the same argument also shows that
η′ : (Y ′′, ψ′′) → (Y ′, ψ′) (denoting the usual map) also induces an isomor-
phism on homology.

First, note that η is s-bijective by Theorem 2.5.13. Define θ : Σ(π′′) →
Σ(π) by θ(y′′, z) = (η(y′′), z), for all y′′ in Y and z in Z with π′′s (y′′) = πu(z).
It is a simple matter to see that θ is s-bijective. Also observe that ρ′′s :
Σ(π′′)→ Z may be written as ρs ◦ θ.

We may find a graph G such that (Σ(π), σ) is conjugate to (ΣG, σ) and
so that ρs and ρu are regular. Then we may find a graph H and left-covering
graph homomorphism from H to G so that (Σ(π′′), σ) is conjugate to (ΣH , σ)
and, under these identifications, the map induced by the graph homomor-
phism agrees with θ. For convenience, we denote the graph homomorphism
by θ also.

For each M ≥ 0, θ also defines a graph homomorphism from H0,M to
G0,M . We claim that this is also left-covering. Fix a vertex in H0,M . This
consists of an M + 1-tuple of vertices in H:

v = (v0, . . . , vM) = (t(e0(y′′, z′′0 )), . . . , t(e0(y′′, z′′M)),

where (y′′, z′′0 , . . . , z
′′
M) is in Σ0,M(π′′). The graph homomorphism θ is applied

entry-wise and since it is injective on each set t−1{vm}, 0 ≤ m ≤ M , it is
injective on t−1{v}.

We now turn to the issue of surjectivity. With the vertex v in H0,M as
above, consider an edge in G0,M whose terminus is θ(v). Such an edge is an
M+1-tuple (e0(y, z0), . . . , e0(y, zM), where (y, z0, . . . , zM) is in Σ0,M(π), with
t(e0(y, zm)) = t(e0(y′′, z′′m)), for all m. Since θ from H to G is left-covering,
for each m we may find a point (y′m, z

′
m) in Σ(π′′) such that θ(ek(y′m, z

′
m)) =

ek(y, z′m) for all k ≤ 0 and t(e0(y′m, z
′
m)) = t(e0(y′′, z′′m)). The second con-

dition and the regularity of θ imply that we may form [(y′′, z′′m), (y′m, z
′
m)] =

([y′′, y′m], [z′′m, z
′
m)]). Moreover, we have

θ(ek(([y′′, y′m], [z′′m, z
′
m)])) = θ(ek((y′m, z

′
m))) = ek(y, z′m),
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for k ≤ 0. On the other hand, we have

θ(ek(([y′′, y′m], [z′′m, z
′
m)])) = θ(ek((y′′, z′′m))) = ek(θ(y′′), z′′m),

for k ≥ 1. It follows that

ek(θ[y′′, y′m], [z′′m, z
′
m]) = θ(ek(([y′′, y′m], [z′′m, z

′
m)]))

= ek([(θ(y′′), z′′m), (y, zm)])

= ek([θ(y′′), y], [z′′m, zm]),

for all k. We conclude that θ[y′′, y′m] = [θ(y′′), y]. For the various different
values of m, the points [y′′, y′m] are all stably equivalent to y′′ and they have
the same image under θ. Since θ is s-bijective, we conclude they are all equal.

From this it follows that the point ([y′′, y′0], [z′′0 , z
′
0], . . . , [z′′M , z

′
M ]) is in

Σ0,M(π′′). Moreover, for each m, we have

θ(e0([y′′, y′0], [z′′m, z
′
m])) = θ(e0([y′′, y′m], [z′′m, z

′
m]))

= θ(e0(y′m, z
′
m))

= e0(y, zm).

Also, we have

t(e0([y′′, y′0], [z′′m, z
′
m])) = i(e1([y′′, y′0], [z′′m, z

′
m]))

= i(e1(y′′, z′′m))

= t(e0(y′′, z′′m))

as desired. This completes the proof that θ mapping H0,M to G0,M is left-
covering.

Now, we may apply Theorem 4.5.1 to each θ : H0,M → G0,M and ρ,M :
Σ0,M(π) → (ZM(πu), ζ). The conclusion is that, for each fixed M , the
map θ will induce an isomorphism between the homology of the complex
(Ds(Σ∗,M(ρ,M ◦ θ)), ds(ρ,M ◦ θ)) that of (Ds(Σ∗,M(ρ,M)), ds(ρ,M)).

On the other hand, we know from part 1 of Theorem 4.3.1, that these
complexes have the same homologies as (Ds

Q(Σ∗,M(ρ,M ◦ θ)), dsQ(ρ,M ◦ θ)) and
(Ds
Q(Σ∗,M(ρ,M)), dsQ(ρ,M)), respectively.
Let us return to consider our double complexes Cs(π′′) and Cs(π). For

each L,M ≥ 0, the map

θ(y0, . . . , yL, z0, . . . , zM) = (η(y0), . . . , η(yL), z0, . . . , zM)
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is a factor map from ΣL,M(π′′) to ΣL,M(π). It is easy to see that it is s-
bijective and, after identifying the systems with their presentations by G, is
induced by the graph homomorphism θ.

We use Theorem 5.3.2 to observe that the homologies of the complexes
Cs
Q,A(π′′) and Cs

Q,A(π) are isomorphic to those of Cs
Q,(π

′′) and Cs
Q,(π), so to

establish our result, it suffices to show the map induced by θ on the latter
pair induces an isomorphism on homology.

We consider the filtration

F pCs
Q,(π

′′) = ⊕L≥0,M≥pC
s
Q,(π

′′)L,M

and the obvious analogue for π. These filtrations are decreasing and, while
not bounded, they are exhaustive and since ∩p≥0F

pCs
Q,(π

′′) = 0, they are
weakly convergent [25]. Finally, we claim that they are complete [25]. As
noted in Theorem 5.1.10, the complex Cs

Q,(π
′′) has non-zero entries only for

L < L0 and it follows that the entries of F pCs
Q,(π

′′) are non-zero only for
L < L0 and M ≥ p. (Here, L0,M0 are the constants for the maps πs ◦ η and
πu.) But this means the homology of this double complex is non-zero only in
dimensions N = L−M < L0− p. Combining Theorems 5.3.2 and 5.1.12, we
see that the homology of Cs

Q,(π
′′) is zero in dimensions N < −M0. It follows

that under the natural inclusion, the image of the homology of F pCs
Q,(π

′′) in
that of Cs

Q,(π
′′) is zero, if p > L0 +M0. From this it follows at once that the

filtration is complete. The same argument applies to the filtration of Cs
Q,(π).

To compute the E∗,∗1 term for each of these filtrations is done by com-
puting the homology of the rows of the complexes and we have already es-
tablished above that we get the same answer for each. We may now apply
Theorem 3.9 of [25] to complete the proof.

With this result established, we set out the following notation.

Definition 5.5.2. Let (X,ϕ) be a Smale space which has an s/u-bijective
pair π. We define Hs

N(X,ϕ) = Hs
N(π) and Hu

N(X,ϕ) = Hu
N(π), for all

integers N .

The final result of this section is a re-statement of the functorial properties
of Theorem 5.4.1 for the invariants Hs

∗(X,ϕ) and Hu
∗ (X,ϕ).

Theorem 5.5.3. 1. The functor which associates the sequence of abelian
groups Hs

∗(X,ϕ) to a (non-wandering) Smale space (X,ϕ) is covari-
ant for s-bijective factor maps and contravariant for u-bijective factor
maps.
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2. The functor which associates the sequence of abelian groups Hu
∗ (X,ϕ)

to a (non-wandering) Smale space (X,ϕ) is contravariant for s-bijective
factor maps and covariant for u-bijective factor maps.

Proof. The existence of the desired induced maps on homology follows from
Theorem 5.4.2. The main issue we must address is showing that the map
induced by a composition is the same as the composition of the induced
maps. Let (X,ϕ), (X ′, ϕ′) and (X ′′, ϕ′′) be non-wandering Smale spaces.
Let (Y, ψ, πs) be the first half of an s/u-bijective pair for (X,ϕ) and let
(Z ′′, ζ ′′, π′′u) be the second half of an s/u-bijective pair for (X ′′, ϕ′′). Let
(Z ′, ζ ′) be the fibred product of the maps η′X′ and π′′u. Also, let π′u be the
canonical factor map from (Z ′, η′) to (X ′, ϕ′) and let η′Z′ be the canonical
factor map from (Z ′, η′) to (Z ′′, ζ ′′). Repeat this procedure: let (Z, ζ) be
the fibred product of the maps ηX and π′u and define πu and ηZ analogously.
It follows that π = (Y, ψ, πs, Z, ζ, πu) is an s/u-bijective pair for (X,ϕ),
π′ = (Y, ψ, ηX ◦ πs, Z ′, ζ ′, π′u) is an s/u-bijective pair for (X ′, ϕ′) and π′′ =
(Y, ψ, η′X′ ◦ηX ◦πs, Z ′′, ζ ′′, π′′u) is an s/u-bijective pair for (X ′′, ϕ′′). Finally, we
define ηY , η

′
Y ′ to be the identity maps. With these choices for s/u-bijective

pairs, η′′ = (η′X′ ◦ ηX , η′Y ′ ◦ ηY , η′Z′ ◦ ηZ) and Theorem 5.5.1, the conclusion of
the Theorem is immediate.



Chapter 6

A Lefschetz formula

The goal of this chapter is to prove the following version of the Lefschetz
formula for our homology theory. We present the statement in the first
section and the remaining two sections are devoted to its proof; each deals
with one side of the formula.

6.1 The statement

Let (X,ϕ) be a Smale space, which we assume has an s/u-bijective pair π. We
may regard ϕ and ϕ−1 as s-bijective or u-bijective factor maps from (X,ϕ)
to itself, then we consider ϕs and ϕs∗ to be the maps induced on Hs

∗(X,ϕ)
and ϕu and ϕu∗ to be the maps induced on Hu

∗ (X,ϕ). We denote by ϕsN ⊗1Q
and ϕs∗⊗1Q the associated maps on the rational vector space Hs

N(X,ϕ)⊗Q.
We recall from Theorem 5.1.12 that this space is finite dimensional. There
is analogous notation for the maps on Hu

N(X,ϕ)⊗Q.

Theorem 6.1.1. Let (X,ϕ) be a Smale space which has an s/u-bijective

149
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pair. Then, for every n ≥ 1, we have

#{x ∈ X | ϕn(x) = x} =
∑
N∈Z

(−1)NTr(((ϕ−1)sN ⊗ 1Q)n)

=
∑
N∈Z

(−1)NTr((ϕuN ⊗ 1Q)n)

=
∑
N∈Z

(−1)NTr((ϕs∗N ⊗ 1Q)n)

=
∑
N∈Z

(−1)NTr(((ϕ−1)u∗N ⊗ 1Q)n).

In view of Theorem 5.5.1, we fix an s/u-bijective pair π for (X,ϕ), which
we use to compute our homology theory. In fact, we will also compute the
periodic point data for (X,ϕ) in terms of that of the systems (ΣL,M(π), σ).
The computations involving the periodic point data are based on ideas of
Anthony Manning and we will be done in the next section. The following
section will deal with the homological data. The proof of the theorem follows
from the fact that these two sections finally arrive at the same expression.

Before proceding to the proof, we note the following consequence. Recall
that for a dymanical system (X,ϕ), its zeta function is

ζϕ(t) = exp(
∞∑
n=1

#{x ∈ X | ϕn(x) = x}
n

tn)

at least formally, provided #{x ∈ X | ϕn(x) = x} is finite, for all n ≥ 1.
If (X,ϕ) is a Smale space, this series converges for small values of t an
defines a rational function of t [23]. Our next result shows that our homology
theory provides a canonical decomposition of the zeta function as a product
of polynomials and their inverses.

Since our power series will actually converge uniformly and we are using a
real variable t, it seems most convenient to use the real numbers rather than
the rationals as our scalars for the vector space version of the homology.
Theorem 6.1.1 remains true replacing Q by R.

Corollary 6.1.2. Let (X,ϕ) be an irreducible Smale space. For each inte-
ger N and real number t, define pN(t) to be the determinant of the linear
transformation

I − t(ϕ−1)sN ⊗ 1R : Hs
N(X,ϕ)⊗ R→ Hs

N(X,ϕ)⊗ R.
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Each of the vector spaces is finite dimensional and all but finitely many are
trival so that pN(t) is well-defined and all but finitely many are identically
one. Then we have

ζϕ(t) = ΠN∈ZpN(t)(−1)N+1

=
ΠN odd pN(t)

ΠN even pN(t)
.

Proof. We give a proof under the assumption that Theorem 6.1.1 holds. It
is fairly standard that if A is a square matrix with real entries, then

exp

(
∞∑
n=1

Tr(An)

n
tn

)
= det(I − tA)−1.

(See 6.4.6 of [23].) In our case, let AN be a matrix representing the linear
transformation (ϕ−1)sN ⊗ 1R. It follows from Theorem 6.1.1 that

ζϕ(t) = exp

(
∞∑
n=1

∑
N(−1)NTr(AnN)

n
tn

)

= exp

(∑
N

(−1)N
∞∑
n=1

Tr(AnN)

n
tn

)

= ΠN

(
exp

(∑
N

(−1)N
∞∑
n=1

Tr(AnN)

n
tn

))(−1)N

= ΠN det(I − tAN)(−1)N+1

.

6.2 The periodic point side

The heart of the proof (here presented in Theorem 6.2.1) is an argument
due to A. Manning [24]. We will need some new notation for it. Suppose
that G = SN1 × SN2 × · · · × SNI is the product of permutation groups. We
denote the identity element by 1. We extend the definition of the sign of a
permutation to elements of G by setting

sgn(α1, · · · , αI) = sgn(α1) · sgn(α2) · · · sgn(αI),
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for any (α1, · · · , αI) in G.
If X is a set with an action of G (written on the right), we let X1 denote

the set of of those points of X with trivial isotropy; that is, x is in X1 if the
only element α of G with x · α = x is the identity.

Suppose that X is a set with an action of G and ϕ is a bijection of X
which commutes with the G action. For any integer n ≥ 1, we define

PerG(X,ϕ, n) = {x ∈ X1 | ϕn(x) = x · α, for some α ∈ G}.

Notice that if x in PerG(X,ϕ, n), it is also in X1 and hence, the α in the con-
dition given is unique (for a fixed n). We define sgn(x, n) to be sgn(α), where
α in G is chosen so that ϕn(x) = x · α. We also notice that PerG(X,ϕ, n) is
invariant under G and since

ϕn(x · β) = ϕn(x) · β = (x · α) · β = (x · β) · (β−1αβ),

the function sgn(x, n) is constant on G orbits. Therefore, whenever
PerG(X,ϕ, n) is finite, we define

perG(X,ϕ, n) =
∑

x∈PerG(X,ϕ,n)/G

sgn(x, n).

If G is the trivial group with one element, we suppress the G in our
notation and write

Per(X,ϕ, n) = {x ∈ X | ϕn(x) = x}

and
per(X,ϕ, n) = #Per(X,ϕ, n),

provided it is finite.
Suppose that (Y, ψ) and (X,ϕ) each have actions of G, as above, and

that
π : (Y, ψ)→ (X,ϕ)

is a finite-to-one factor map equivariant for the actions of G. That is, for all
y in Y and α in G, we have π(y · α) = π(y) · α.

Theorem 6.2.1. Let (Y, ψ) and (X,ϕ) have actions of G and let

π : (Y, ψ)→ (X,ϕ)
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be a finite-to-one factor map equivariant for the actions of G. If, for any
p ≥ 1, PerG(X,ϕ, n) is finite, then PerG×SN+1(YN(π), ψ, n) is also finite for
all N ≥ 0 and is empty for all but finitely many N . Moreover, we have

perG(X,ϕ, n) =
∑
N≥0

(−1)NperG×SN+1(YN(π), ψ, n).

Proof. First of all, we note that PerG(X,ϕ, n) = PerG(X,ϕn, 1) and
perG(X,ϕ, n) = perG(X,ϕn, 1). It follows from this (and analogous state-
ments for the systems YN(π)) that it suffices to prove the result for n = 1.

Next, it is clear that π maps PerG×SN+1(YN(π), ψ, 1) to PerG(X,ϕ, 1).
Since the latter set is assumed to be finite and the map is finite-to-one,
the former set must be finite also. In addition, as π is finite-to-one, there
is a N0 ≥ 1 such that π−1{x} contains at most N0 points, for any x in
X. It follows then that for any N ≥ N0, any element of YN(π) must con-
tain a repeated entry. Hence, we see that YN(π)1 is empty and hence so is
PerG×SN+1(YN(π), ψ, 1), for all such N .

So if we fix x in PerG(X,ϕ, 1), we can consider PerG×SN+1(YN(π), ψ, 1)∩
π−1{x ·G}, which we denote by YN(π, x), for convenience. We claim that

sgn(x, 1) =
∑
N≥0

(−1)N
∑

y∈YN (π,x)/G×SN+1

sgn(y, 1)

Once this claim is established, summing both sides over x in PerG(X,ϕ, 1),
we obtain the desired conclusion.

Let α be the unique element of G such that ϕ(x) = x · α. Next, using
the fact that π is finite-to-one, write π−1{x} = {y0, y1, . . . , yL}. Notice that,
since we write this as a set, we assume the elements are all distinct. For each
0 ≤ l ≤ L, we have

π(ψ(yl · α−1)) = ϕ(π(yl) · α−1) = ϕ(x · α−1) = x.

and it follows that there is a permutation σ in SL+1 such that

ψ(y0, . . . , yL) = (y0, . . . , yL) · (α, σ).

Moreover, as the yl are all distinct, σ is unique. Write σ as the product of
disjoint cycles;

σ = σ1σ2 · · ·σI .



154 CHAPTER 6. A LEFSCHETZ FORMULA

(We include elements which are fixed as cycles of length one.) Let Li be the
length of cycle σi, 1 ≤ i ≤ I. We have

∑
i Li = L + 1 and also sgn(σi) =

(−1)Li−1. As the order on the yl has been arbitrary up to this point, we may
assume now that they are ordered so that we have

σ1 = (0 1 · · · L1 − 1),

σ2 = (L1 L1 + 1 · · · L1 + L2 − 1),

σi = (L1 + L2 + · · ·Li−1 · · · L1 + L2 + · · ·Li − 1).

Now suppose that A is any non-empty subset of {1, 2, . . . , I}. We define
a point yA as follows. First of all, let NA =

∑
i∈A Li − 1 and yA will be in

YNA(π). It consists of those yl where l is part of the cycle σi, for some i in A.
More precisely, for L1 + · · ·+Li−1 ≤ l ≤ L1 + · · ·+Li−1 +Li − 1, for some i
in A, we include yl in YA. These are written in increasing order.

We observe the following properties of the points yA. First, we have

ψ(yA) = yA · (α,
∏
i∈A

σi).

In fact, the notation
∏

i∈A σi is not good, as this is a permutation of
{0, 1, . . . , L} and we have deleted a number of the entries of y in forming yA.
In fact,

∏
i∈A σi is really meant to represent a permutation having exactly the

same cyclic structure as
∏

i∈A σi, but with the fix-points removed. It follows
that

(−1)NAsgn(α,
∏
i∈A

σi) = (−1)NAsgn(α)
∏
i∈A

(−1)Li−1

= (−1)NAsgn(α)(−1)
∑
i∈A Li(−1)#A

= (−1)NAsgn(α)(−1)NA+1(−1)#A

= −sgn(α)(−1)#A.

Next, we claim that yA is in YN(π)1; that is, the only element of G× SNA+1

which fixes it is the identity. Suppose that yA · (α′, σ′) = yA, for some (α′, σ′)
in G×SNA+1. Applying π, we see that x ·α′ = x and it follows from the fact
that x is in X1 that α′ is the identity. It follows from the construction of yA
that all of its entries are distinct. This then implies σ′ is also the identity.

We observe that the elements yA are distinct for different sets A. This
is because the yl are all distinct. But more is true. No two lie in the same
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orbit of G× SN+1, for any N . Finally, we claim that if N ≥ 0 and y′ is any
element of YN(π, x), then y′ is in the G × SN+1 orbit of some yA. Suppose
π(y′) = x · β, for some β in G. Then we have π(y′ · β−1) = x and so the
entries of y′ are of the form yl · β. Secondly, no yl · β may be repeated. We
know that ψ(y′) = y′ · (α′, σ′), for some σ′ in G and σ′ in SN+1. Applying π
and arguing as before, we see that α′ = α. Next, we note that if y′i = yl · β,
then y′σ′(i) = yσ(l) · β. This means that the set of l such that yl · β appears in
y′ is invariant under σ. After re-ordering the entries of y′, we see that it is
of the form yA · β, for some A, as desired. This completes the proof of our
claim.

We may now compute∑
N

∑
y∈YN (π,x)/G×SN+1

(−1)Nsgn(y, 1) =
∑

∅6=A⊂{1,...,I}

(−1)NAsgn(yA, 1)

=
∑

∅6=A⊂{1,...,I}

(−1)NAsgn(α,
∏
i∈A

σi)

=
∑

∅6=A⊂{1,...,I}

−sgn(α)(−1)#A

= sgn(x, 1)(1−
∑

A⊂{1,...,I}

(−1)#A).

For a fixed 0 ≤ i ≤ I, there are exactly

(
I
i

)
sets A with i elements. This

means we have

∑
A⊂{1,...,I}

(−1)#A =
I∑
i=0

(
I
i

)
(−1)i

= (1− 1)I

= 0.

We can apply the result above in the situation of an s/u-bijective pair π
for a Smale space (X,ϕ). The proof is immediate from 6.2.1.

Theorem 6.2.2. Let (X,ϕ) be a Smale space and suppose that
π = (Y, ψ, πs, Z, ζ, πu) is an s/u-bijective pair for (X,ϕ). Then, for any
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n ≥ 1 we have

per(X,ϕ, n) =
∑
L≥0

(−1)LperSL+1(YL(πs), ψ, n)

=
∑
M≥0

(−1)MperSM+1(ZM(πu), ζ, n)

=
∑
L,M≥0

(−1)L+MperSL+1×SM+1(ΣL,M(π), σ, n).

We will conclude this section with a final result.

Lemma 6.2.3. Let π be an s/u-bijective pair for a Smale space (X,ϕ). For
every L,M ≥ 0, k ≥ 2K0 as in Lemma 2.7.6, we suppose that Bk

L,M is a
subset of Gk

L,M which meets each orbit of SL+1 × SM+1 with trivial isotropy
in exactly one point and no other orbits. For n ≥ 1, let

A(n) = {(q, α, β)Gk+n
L,M × SL+1 × SM+1 | tn(q) = in(q) · (α, β) ∈ Bk

L,M}.

Then we have

perSL+1×SM+1(ΣL,M(π), σ, n) =
∑

(q,α,β)∈A(n)

sgn(α)sgn(β).

Proof. Define Ã(n) to be the set of all (q, α, β) in Gk+n
L,M × SL+1 × SM+1 such

that tn(q) = in(q) · (α, β) and tn(q) has trivial isotropy for the action of
SL+1 × SM+1.

For (q, α, β) in Ã(n), we define e(q, α, β) in ΣL,M(π) by setting

e(q, α, β)i+jn = qi · (αj, βj),

for 1 ≤ i ≤ n, j ∈ Z.
First, we show that e(q, α, β) is in ΣL,M(π). In the case i < n, we have

t(e(q, α, β)i+jn) = t(qi) · (αj, βj) = i(qi+1) · (αj, βj) = i(e(q, α, β)i+jn+1).

On the other hand, if i = n, then we have t(e(q, α, β)i+jn) = t(qn) · (αj, βj)
while i(e(q, α, β)i+jn+1) = i(q1) · (αj+1, βj+1). We use the fact that tn(q) =
in(q) · (α, β); comparing their first entries, we have qn+1 = q1 · (α, β). From
this it follows that

t(qn) · (αj, βj) = i(qn+1) · (αj, βj) = i(q1) · (αj+1, βj+1)
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as desired.
Moreover, it is clear that σn(e(q, α, β)) = e(q, α, β) · (α, β). Since (q, α, β)

is in Ã(n), there is no non-trivial element of SL+1 × SM+1 which fixes tn(q)
and so e(q, α, β) is in (ΣL,M(π))1. Putting all this together, we see that
(e, α, β) is in PerSL+1×SM+1(ΣL,M , σ, n).

We now show the map e(·) is injective. If (q, α, β) and (q′, α′, β′) are in
A and e(q, α, β) = e(q′, α′, β′) then we know that

e(q, α, β) · (α, β) = σn(e(q, α, β))

= σn(e(q′, α′, β′))

= e(q′, α′, β′) · (α′, β′)
= e(q, α, β) · (α′, β′).

But we have also shown that e(q, α, β) is in (ΣL,M(π))1 and so we conclude
that α = α′ and β = β′. Then for 1 ≤ i ≤ n, we have

qi = e(q, α, β)i = e(q′, α′, β′)i = (q′)i.

The condition tn(q) = in(q) · (α, β) means that qi+jn = qi · (αj, βj), provided
1 ≤ i ≤ n and i+ jn ≤ k+ n and a similar statement for q′. Hence, we have

qi+jn = qi · (αj, βj) = (q′)i · (α′j, β′j) = (q′)i+jn.

We have shown (q, α, β) = (q′, α′, β′) as desired.
We now show that e(·) is surjective. Suppose e is in

PerSL+1×SM+1(ΣL,M , σ, n), so that σn(e) = e · (α, β), for some unique (α, β).
We claim that e[1,k] has trivial isotropy. If not, then e[1,k] · (α′, β′) = e[1,k], for
some (α′, β′) 6= (1, 1). We may apply the fourth part of Proposition 2.7.7 to
conclude that e[1,k] · (1, β′) = e[1,k]. Then applying the sixth part of the same
result i times, we see that e[1,k+i] · (1, β′) = e[1,k+i], for any k ≥ 1. But as e is
periodic (in the usual sense), we find that e · (1, β′) = e. As e was assumed to
be in PerSL+1×SM+1(ΣL,M , σ, n), it follows that β′ = 1. A similar argument
proves that α′ = 1. This establishes our claim.

Define q = e[1,k+n]. It follows immediately that (q, α, β) is in Ã(n) and
e(q, α, β) = e, so e(·) is surjective.

The map sending (q, α, β) to e(q, α, β) is clearly covariant for the action
of SL+1 × SM+1 and we have established above that it is a bijection from Ã
to PerSL+1×SM+1(ΣL,M , σ, n). The conclusion now follows from the definition
and the fact that Bk

L,M meets each SL+1 × SM+1 orbit with trivial isotropy
exactly once.
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6.3 The homological side

In this section, we turn to the right hand side of Theorem 6.1.1. We carry
out the calculations for the first part only, then describe how the other three
follow in a similar way.

First, we introduce some notation. If A is any finite set, we let QA
denote the rational vector space which is formal linear combinations of the
elements of A. Obviously, A is a basis for this space. We suppress the obvious
identification of ZA ⊗ Q with QA. We also use the same choices for B and
B0 as in the last section.

Let us fix π = (Y, ψ, πs, Z, ζ, πu), an s/u-bijective pair for (X,ϕ). We are
considering ηX = ϕ−1 as a factor map from (X,ϕ) to itself. This may be
lifted to our s/u-bijective pair, as in Theorem 4.4.1, by setting ηY = ψ−1 and
ηZ = ζ−1. The map induced on each ΣL,M(π) is then simply σ−1.

To compute the homology Hs
∗(X,ϕ), we use the complex Cs

Q,A. By The-
orem 5.1.10, this has the advantage of being non-zero in only finitely many
positions. We may therefore apply the Hopf trace formula [12] to conclude
that ∑

N∈Z

(−1)NTr(((ϕ−1)s ⊗ 1Q)n) =
∑
L,M≥0

(−1)L+MTr(((σ−1)s ⊗ 1Q)n),

where σ is the usual shift map on ΣL,M(π). We may identify
Ds
Q,A(ΣL,M(π), σ) with Ds

Q,A(GK
L,M) by Theorem 5.2.3 Now we may assume

that we have a graph G which presents π, that k is sufficiently large and that
we have selected a subset Bk

L,M of Gk
L,M as in Theorem 5.2.9. This then, in

turn, allows us to identify Ds
Q,A(GK

L,M) with the inductive limit in Theorem
5.2.9. These identifications also conjugate the automorphism (σ−1)s with the
automorphism γsB[a, j] = [γsB(a), j], for any a in ZBk

L,M .
The following general fact is probably well-known, but we state it here

for completeness and provide a short sketch of the proof.

Proposition 6.3.1. Let E be a finite-dimensional vector space and let T :
E → E be a linear transformation. Let V be the inductive limit

E
T→ E

T→ · · · .

The automorphism of V sending [v, k] to [T nv, k] has trace equal to the trace
of T n.
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Proof. The sequence of subspaces T kE is decreasing and so their dimensions
form a non-increasing sequence of integers bounded above by the dimension of
E and below by zero. Therefore, there exists K ≥ 1 such that dim(TK+1E) =
dim(TKE). Then T is a surjection from TKE to itself and hence is an
isomorphism. We claim that E = TKE ⊕ ker(TK). Let u be any element
of E. Then TKu is in TKE, on which TK is an isomorphism. Hence, there
exists v in TKE such that TKv = TKu and we may write u = v + (u − v),
the former being in TKE and the latter in ker(TK). As TK is invertible on
TKE, its kernel there is trivial. This means that TKE ∩ ker(TK) = 0. Each
of TKE and ker(TK) are invariant under all powers of T and so the trace
of T p is the sum of its restrictions to the two subspaces. On the latter, it is
nilpotent and so the trace there is zero.

Finally, it is an easy matter to check that the map from TKE to V sending
u to [u, 1] is an isomorphism of vector spaces and conjugates the restriction
of T n with the map induced by T n on the inductive limit.

Lemma 6.3.2. Suppose that Bk
L,M ⊂ Gk

L,M is as in Theorem 5.2.9 and n ≥ 1.
We have

Tr((γsB ⊗ 1Q)n) =
∑

(q,α,β)∈A(n)

sgn(α)sgn(β)

where

A(n) = {(q, α, β)Gk+n
L,M × SL+1 × SM+1 | tn(q) = in(q) · (α, β) ∈ Bk

L,M}.

is as in Lemma 6.2.3.

Proof. The set Bk
L,M forms a basis for QBk

L,M . Using Lemma 5.2.7, the
coefficient of p in (γsB)n(p) is the sum of sgn(α)sgn(β) over all (q, α, β) in
A(p, n) with in(q) · (α, β) = p. Now the trace of (γsB ⊗ 1Q)n is obtained by
summing this over all p in Bk

L,M and this yields the desired result.

The proof of the first equality in the Lefschetz formula of Theorem 6.1.1
is an immediate consequence of Theorem 6.2.2, Lemma 6.2.3, Proposition
6.3.1, Lemma 6.3.2 and the discussion above. The other three equalities are
obtained in an analogous fashion. We omit the details.
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Chapter 7

Examples

In this chapter, we present a number of simple examples to illustrate the
theory. First, we consider a shift of finite type, (Σ, σ) and show that the the
homology groups Hs

N(Σ, σ) are all zero, except for the case N = 0, in which
case, we recover Krieger’s original invariant: Hs

0(Σ, σ) ∼= Ds(Σ, σ).
Secondly, we consider the case of an irreducible Smale space whose stable

sets are totally disconnected. Here, we will show that the double complex
used in the calculation of our homology from Chapter 5 essentially reduces
to the complex appearing in Chapter 4.

Our third example is a special case of the second, where we consider the
m∞-solenoid (precise definitions will be given). The main ingredient in the
s/u-bijective pair is the usual covering by the full m-shift. We will carry out
the computation in full detail.

Our fourth example is a specific hyperbolic toral automorphism. We will
not give a full treatment, but we summarize the computations which will
appear elsewhere.

7.1 Shifts of finite type

Let (Σ, σ) be a shift of finite type. The first step in computing its homology
is to find an s/u-bijective pair. It is easy to see that (Y, ψ) = (Σ, σ) = (Z, ζ)
and πs = πu = idΣ will suffice. We denote it by id, for emphasis. (Of course,
there are many other choices.) It follows at once from Theorem 5.1.10 that
Cs
Q,A(id)L,M = 0 if either L or M are greater than zero. Moreover, we have

Cs
Q,A(id)0,0 = Ds(Σ, σ). In consequence, we have the following.

161



162 CHAPTER 7. EXAMPLES

Theorem 7.1.1. Let (Σ, σ) be a shift of finite type.

1. We have

Hs
N(Σ, σ) =

{
Ds(Σ, σ) N = 0,

0 N 6= 0.

2. We have

Hu
N(Σ, σ) =

{
Du(Σ, σ) N = 0,

0 N 6= 0.

7.2 Totally disconnected stable sets

Let us begin by supposing that we have a Smale space, (X,ϕ), a shift of
finite type, (Σ, σ) and an s-bijective factor map πs : (Σ, σ) → (X,ϕ). It
follows from Theorem 2.5.12 that Xs(x) is totally disconnected, for every
x in X. Conversely, if Xs(x) is totally disconnected, for every x in X and
if, in addition, we assume that (X,ϕ) is irreducible, then from Corollary
3 of [29], we may find an irreducible shift of finite type, (Σ, σ), and an s-
resolving factor map πs : (Σ, σ)→ (X,ϕ). From Theorem 2.5.8, the map πs
is also s-bijective. In any case, it follows that π = (Σ, σ, πs, X, ϕ, idX) is an
s/u-bijective pair for (X,ϕ).

In this case, we have M0 = 1 in Theorem 5.1.10 and so the complex
Cs
Q,A(π) is non-zero only in row zero, where it is precisely

(Ds
Q(Σ∗(πs)), d

s(πs)).

Theorem 7.2.1. Let (X,ϕ) be a Smale space and suppose that πs : (Σ, σ)→
(X,ϕ) is an s-bijective factor map. Then the homology Hs

N(X,ϕ) is naturally
isomorphic to the homology of the complex (Ds

Q(Σ∗(πs)), d
s(πs)) of 4.1.7.

Similarly, the homology Hu
N(X,ϕ) is naturally isomorphic to the homology of

the complex (Du
A(Σ∗(πs)), d

u∗(πs)) of 4.1.7.

Corollary 7.2.2. Let (X,ϕ) be a non-wandering Smale space with Xs(x) to-
tally disconnected, for every x in X. Then we have Hs

N(X,ϕ) ∼= Hu
N(X,ϕ) ∼=

0, for all N < 0.

Things are just slightly more complicated in the case of a u-bijective
factor map πu : (Σ, σ) → (X,ϕ). In this case, an s/u-bijective pair is π =
(X,ϕ, idX ,Σ, σ, πu). The remaining argument as above is the same, reversing
references to rows versus columns. In the end, the homology of the double
complex, either Hs or Hu, is reduced to that of the first column. In the
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former case, this first column is the same as the complex Cs∗(πu), except
that the grading is reversed (N is replaced by −N).

Theorem 7.2.3. Let (X,ϕ) be a Smale space and suppose that πu : (Σ, σ)→
(X,ϕ) is a u-bijective factor map. Then the homology Hs

N(X,ϕ) is naturally
isomorphic to the homology of the complex (Ds

A(Σ∗(πs)), d
s∗(πu)) of 4.1.7,

with the reverse grading. Similarly, the homology Hu
N(X,ϕ) is naturally iso-

morphic to the homology of the complex (Du
Q(Σ∗(πs)), d

u(πu)) of 4.1.7, with
the reverse grading.

Corollary 7.2.4. Let (X,ϕ) be a non-wandering Smale space with Xu(x) to-
tally disconnected, for every x in X. Then we have Hs

N(X,ϕ) ∼= Hu
N(X,ϕ) ∼=

0, for all N > 0.

7.3 Solenoids

In this section, we consider a specific example of the general type of the last
section. We fix an integer m ≥ 2 and consider the m∞-solenoid. Let T
denote the unit circle in the complex plane. Our space X is the inverse limit
obtained from the system

T z→zm←− T z→zm←− · · ·

That is, we have

X = {(z0, z1, . . .) | zn ∈ T, zmn+1 = zn, for all n ≥ 0}.

The map ϕ is given by ϕ(z0, z1, . . .) = (zm0 , z
m
1 , . . .) with ϕ−1(z0, z1, . . .) =

(z1, z2, . . .). This example was first done jointly with T. Bazett and will
appear in [3], but we give most of the details here.

The metric on X is d(w, z) =
∑

n≥0 2−n‖wn − zn)‖, where ‖w′ − z′‖ is
the arclength distance on the circle. Our Smale space constant εX = π

2
. In

particular, if d(w, z) ≤ εX , then ‖w0 − z0‖ ≤ 1
4

and so we may find a unique
−1

4
≤ t ≤ 1

4
such that w0 = z0e

2πit. In this case, the bracket is defined by

[w, z] = (z0e
2πit, z1e

πit, z2e
πit/2, . . .).

The shift of finite type which maps onto (X,ϕ) is the full m-shift. That
is, the graph G consists of a single vertex v0 and edges {0, 1, 2, . . . ,m − 1}.
We may write the factor map πs : (ΣG, σ)→ (X,ϕ) quite explicitly as

πs(e)n = e2πi
∑
k≥1m

−kek−n .
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Consider e, f in ΣG with πs(e) = πs(f). There are three possibilities. The
first is that e = f . The second is that ek = 0, fk = m − 1, for all k (or
vice verse). The third is that, for some K, ek = fk for all k < K, while
ek = 0, fk = m−1, for all k ≥ K (or vice verse). From this fact, we conclude
that L0 = 2.

By Theorem 5.1.10, the only two non-zero groups in our complex occur at
positions 0, 0 and 1, 0. Here, the factor map is not regular, but if we replace
G by G2, then the induced map is regular. The vertex set for G2 is just
G1 and there is exactly one edge between every pair of vertices. It is fairly
easy to see that the map sending [i, j], i ∈ Gk−1, j ∈ N to m−j−k+1 is an
isomorphism from Ds(Gk) to Z[1/m], the subgroup of all rational numbers
of the form l/mj, where l ∈ Z and j ≥ 0. To summarize, we have

Ds
Q(Σ0(πs)) = Ds(Σ, σ) ∼= Z[

1

m
].

The vertex set for G2
1(π) is {(0, 0), . . . , (m−1,m−1), (0,m−1), (m−1, 0)}.

The edge set consists of all pairs (p, p), where p is in G2 and the edges
(0 0,m − 1m − 1), (m − 1m − 1, 0 0) and (i 0, im − 1), (im − 1, i 0), where
0 ≤ i < m. To compute the homology, we first appeal to Theorem 7.2.1,
which means that we will just consider the complex (Ds

Q(Σ∗(πs)), d
s(πs)).

¿From this it is easy to see that Q(G2
1, S2) is an infinite cyclic group

with generator Q(0m − 1). Moroever, γs(0m − 1) = (0m − 1) and hence
Ds
Q(G2

1(πs)) is the integers and is generated by [Q(0m−1), j], for any j ≥ 1.
We now need to compute

ds,KQ (πs)(Q(0m− 1)) = δs,K0 (0m− 1)− δs,K1 (0m− 1).

We compute δs,K0 (0m−1) using the definition given in 3.4.3: we must consider
all paths q in G1+K

1 with tK(q) = (0m−1). We do need to list them all since
we are going to apply δ0 and then take the sum (without repetition). It is
clear from the graph that we get every p in G1+K with tK(p) = 0. Using the
isomorphism above with Z[1/m], we see that the image of our generator is
1/m. A similar computation shows the same result for δ1 and we conclude
that ds(πs)1 = 0.

We summarize the conclusion as follows:

Hs
N(X,ϕ) =


Z[1/m] N = 0,

Z N = 1,
0 N 6= 0, 1.
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We also observe that the groups Hu
N(X,ϕ) are exactly the same. In this

case, the groups in the complex are exactly the same as above. Curiously,
the computation of the boundary map is made easier by the fact that the
zero map is the only group homomorphism from Z[1/m] to Z.

7.4 A hyperbolic toral automorphism

We consider the matrix A =

(
1 1
1 0

)
. In the usual way, it induces an

automorphism of the two-torus T2, which we denote by ϕ. We also let q :
R2 → T2 denote the usual quotient map. The local stable and unstable sets
are given by the eigenvectors of the matrix, which are (γ, 1) and (1,−γ),
where γ denotes the golden mean. The associated eigenvalues are γ and
−γ−1, respectively.

The detailed computation was carried out jointly with T. Bazett and the
details will appear elsewhere [3]. Here, we present a summary. The (Y, ψ)
and (Z, ζ) we choose are both DA systems [30]. The space Y is obtained from
T2 by removing the stable set of q(0, 0), which is the line {q(s,−γs) | s ∈ R}
and replacing it with two copies of itself, separated by a gap. The space Z is
obtained from a similar alteration to the unstable set at q(0, 0). The system
(Σ(π), σ) is associated to the Markov partition of T2 having three rectangles
which may be found in many texts on dynamical systems. For example, see
page 207-212 of [23]. A description of the graph presenting (Σ, σ) can be
found in [23]. It has three vertices and five edges. Here, the map γs is an
isomorphism and we have Ds(Σ, σ) ∼= Z3.

The constants L0 and M0 of 5.1.10 are both two. The only non-zero
groups in our double complex (besides the one above) are

Cs
Q,A(π)1,0

∼= Z2,

Cs
Q,A(π)0,1

∼= Z2,

Cs
Q,A(π)1,1

∼= Z.

The boundary maps may also be computed explicitly and the resulting
homology is as follows:

Hs
1(T2, ϕ) ∼= Z,

Hs
0(T2, ϕ) ∼= Z2,

Hs
−1(T2, ϕ) = Z.
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It is also worth noting that the automorphism of these groups induced by
ϕ is the identity on Hs

−1(T2, ϕ), minus the identity on Hs
1(T2, ϕ) and given

by the matrix A−1 on Hs
0(T2, ϕ).



Chapter 8

Questions

8.1 Order on homology groups

One the great strengths of Krieger’s invariant which has not appeared at all
in our presentation is that it is not simply an abelian group, but an ordered
abelian group. That is, given a shift of finite type (Σ, σ), there are natural
positive cones, which we denote by Ds(Σ, σ)+ and Du(Σ, σ)+, in Ds(Σ, σ) and
Du(Σ, σ), respectively. In the former case, this is simply the sub-semigroup
generated by the equivalence classes of the compact open sets in COs(Σ, σ).
These provide a great deal more information than the groups on their own. It
is natural to ask whether this has any generalization to our homology theory.
Probably the right formulation is the following.

Question 8.1.1. For a Smale space (X,ϕ), is there a natural order struc-
ture on on the groups Hs

0(X,ϕ) and Hu
0 (X,ϕ)? That is, are there natural

subsemigroups Hs
0(X,ϕ)+ ⊂ Hs

0(X,ϕ) and Hu
0 (X,ϕ)+ ⊂ Hu

0 (X,ϕ) which
generate the groups in question? This should be functorial in the sense that,
if π : (Y, ψ)→ (X,ϕ) is an s-bijective factor map, then the induced map πs :
Hs

0(Y, ψ) → Hs
0(X,ϕ) should be positive; i.e. πs(Hs

0(Y, ψ)+) ⊂ Hs
0(X,ϕ)+.

Analogous statements should hold for a u-bijective factor map and for Hu as
well.

Concentrating just on the case of Hs for the moment, one could pro-
ceed as follows. Let π be an s/u-bijective pair for (X,ϕ). Observe that
Ds
Q,A(Σ0,0(π)) = Ds(Σ0,0(π)) and so this group carries a natural order. Next

define an order on the group ⊕L−M=0D
s
Q,A(ΣL,M(π)) by setting the posi-

tive cone to be those elements whose entry in the summand L = M = 0

167
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are strictly positive, together with the zero element. That is, entries for
L = M > 0 do not effect positivity. Now we can (attempt to) define a
positive cone in Hs

0(π) as those elements which are represented by a positive
cocycle in ⊕L−M=0D

s
Q,A(ΣL,M(π)).

In short, three things need to be verified. The first that this positive
cone generates the group. The second is that there are no elements which
are positive and their inverses are positive as well. (Strictly speaking, the
definition of an ordered group does not prohibit this. For example, letting the
positive cone be the entire group is a valid order. But it seems desirable in
our situation that we avoid this.) Finally, one needs to see that the positive
cone is independent of the s/u-bijective pair which is used.

For the first point, observe that the kernel of

δs∗,0 − δs∗,1 : Ds
Q,A(Σ0,0(π))→ Ds

Q,A(Σ0,1(π))

also lies in the kernel of ⊕L−M=0d
s(π)L,M and hence determine homology

classes. It suffices to prove that

ker(δs∗,0 − δs∗,1 ) ∩Ds(Σ0,0(π))+

generates ker(δs∗,0 − δs∗,1 ).
For the second point, it suffices to verify that the coboundaries, that is,

the range of ⊕L−M=1d
s(π)L,M lies in the part of the group which does not

effect positivity. Immediately from our definition, the maps ds(π)L,M satisfy
this condition for L > 1. So it suffices to verify that this condition holds for

δs0, − δs1, : Ds
Q,A(Σ1,0(π))→ Ds

Q,A(Σ0,0(π)).

Since the range is the direct sum of simple acyclic dimension groups, positiv-
ity is determined by the states on this group [13] and so this should provide
a method for verifying the desired property.

As a final comment, it is well-known that Krieger’s invariant is a dimen-
sion group [13]. In our generalization, it seems unclear whether one should
expect H0(X,ϕ) to be torsion free.

8.2 Machinery

Of course, one would like to be able to actually compute the homology theory
in specific examples. In the few examples we have given, this has been done
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mostly by resorting to the definition. In algebraic topology, the computa-
tions of homology and cohomology are done by appealing to very powerful
machinery such as long exact sequences, excision, homotopy invariance, and
so on. It is natural to look for such techniques here as well, but exact ana-
logues of these are not so clear. One possibility would be something along
the following lines.

Question 8.2.1. If (X,ϕ), (Y, ψ) and (Z, ζ) are Smale spaces and

π : (Y, ψ)→ (X,ϕ), ρ : (Z, ζ)→ (X,ϕ)

are factor maps, are there some hypotheses on these maps which will yield
a long exact sequence in Hs involving the three Smale spaces and the fibred
product of the maps?

In particular, if (X,ϕ) is a Smale space with s/u-bijective pair
π = (Y, ψ, πs, Z, ζ, πu), can the homology of (X,ϕ) be computed from that of
(Y, ψ), (Z, ζ) and Σ0,0(π)?

One particularly difficult aspect in the computation of our homology is
that it is done via a double complex. It may be possible to eliminate some of
this. As an example, here is a fairly simple result. The hypothesis is slightly
odd, but the conclusion is quite nice.

Theorem 8.2.2. Suppose that (X,ϕ) is a Smale space with s/u-bijective pair
π = (Y, ψ, πs, Z, ζ, πu) which satisfies

min{#π−1
s {x},#π−1

u {x}} = 1,

for all periodic points x in X. Then Cs
Q,A(π)L,M = 0, if either L ≥ 1 or

M ≥ 1.

We will not give a proof of this result, but it is a fairly simple consequence
of the results we have already.

Let us observe that it could be used for the computation done for the hy-
perbolic toral automorphism in Section 7.4 if we use a different s/u-bijective
pair. In fact, Y, ψ, πs would be exactly the same. But instead of obtaining
Z by replacing the line which is the stable set (0, 0), we would do exactly
the same with the three lines which are the stable sets of the periodic orbit
consisting of (1/2, 0), (1/2.1/2) and (0, 1/2). We will not complete the com-
putation except to observe that this s/u bijective pair satisfies the hypothesis
of the theorem. In fact, the same technique can be used for any hyperbolic
map of the 2-torus.
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Question 8.2.3. Does any irreducible Smale space have an s/u-bijective pair
satisfying the hypotheses of Theorem 8.2.2?

On the positive side, since the maps in an s/u-bijective pair can be chosen
so that πs and πu are both one-to-one on a dense Gδ, there is some genericity
sense that this might be possible or even likely. Nevertheless, it seems too
good to be true in general.

8.3 Relation with Cech (co)homology

It seems natural ask if there is some relation between our homology for the
Smale space (X,ϕ) and the usual Cech (co)homology of X. There are old
questions about which manifolds admit an Anosov or even Axiom A diffeo-
morphism. It seems conceivable that an explicit relation between our homol-
ogy and the Cech cohomology might have applications for such questions.

Let us formulate a couple of concrete questions.

Question 8.3.1. Let (X,ϕ) be an irreducible Smale space. Under which con-
ditions is there a group homomorphism from H∗(X) to Hs(X,ϕ)⊗Hu(X,ϕ)?

There are several problems here, since it is not really clear in what sense
the range group is a functor.

However, let us observe that the result holds for a shift of finite type,
(Σ, σ). In this case, the Cech cohomology lives in dimension zero and can be
seen as being generated by the clopen subsets of Σ. In fact, it is generated
by clopen sets which are rectangles. That is, clopen sets of the form [U, V ],
where U is a clopen subset of Σu(e, ε/2) and V is a clopen subset of Σs(e, ε/2).
The map that sends [U, V ] to [V ] ⊗ [U ] can be shown to give a well-defined
homomorphism of the type desired.

The Cech cohomology of the product of two spaces is closely related to the
tensor product of their cohomology (see the Künneth Theorem [34]). The
question above would provide a homological remnant of the local product
structure.

Another question which may be more reasonable, but perhaps more diffi-
cult, would be to know cases where our homology and the Cech cohomology
agree, up to a shift in degree. This is mainly based on examples.
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Question 8.3.2. If the stable (or unstable) sets in a Smale space (X,ϕ) are
contractible in the topology of 2.1.12, is there an integer k such that

Hn(X) ∼= Hs
n−k(X,ϕ),

for all n ≥ 0?

8.4 C∗-algebras

As we mentioned, Krieger showed how C∗-algebras could be constructed from
a shift of finite type. Moreover, these have a relatively nice structure: they
are inductive limits of finite-dimensional C∗-algebras. This fact makes their
K-theory readily computable, and it is exactly Krieger’s invariant.

The construction of C∗-algebras was extended to the general setting of
Smale spaces by David Ruelle [32, 28]. To an irreducible Smale space (X,ϕ),
we associate C∗-algebras to stable and unstable equivalence, denoted by
S(X,ϕ) and U(X,ϕ), respectively. However, unlike the situation for shifts
of finite type, the result has no obvious inductive limit structure and so the
computation of the K-theory of these C∗-algebras is not immediately clear.
The work of this paper began as an attempt to compute these K-groups and
in future work we plan to show how this may be done from the homology
presented here.

Question 8.4.1. For an irreducible Smale space (X,ϕ), can the K-theory of
S(X,ϕ) and U(X,ϕ) may be computed from Hs

∗(X,ϕ) and Hu
∗ (X,ϕ)?

The answer is presumably some type of spectral sequence.
Due to some regrettable choices for terminology, the K-theory of S(X,ϕ)

should be computed from Hu
∗ (X,ϕ).
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