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ABSTRACT. The principal aim of this paper is to give a dynamical presenta-
tion of the Jiang—Su algebra. Originally constructed as an inductive limit of
prime dimension drop algebras, the Jiang—Su algebra has gone from being a
poorly understood oddity to having a prominent positive role in George El-
liott’s classification programme for separable, nuclear C*-algebras. Here, we
exhibit an étale equivalence relation whose groupoid C*-algebra is isomorphic
to the Jiang—Su algebra. The main ingredient is the construction of minimal
homeomorphisms on infinite, compact metric spaces, each having the same
cohomology as a point. This construction is also of interest in dynamical sys-
tems. Any self-map of an infinite, compact space with the same cohomology
as a point has Lefschetz number one. Thus, if such a space were also to satisfy
some regularity hypothesis (which our examples do not), then the Lefschetz—
Hopf Theorem would imply that it does not admit a minimal homeomorphism.

0. INTRODUCTION

The fields of operator algebras and dynamical systems have a long history of mu-
tual influence. On the one hand, dynamical systems provide interesting examples
of operator algebras and have often provided techniques which are successfully im-
ported into the operator algebra framework. On the other hand, results in operator
algebras are often of interest to those in dynamical systems. In ideal situations, sig-
nificant information is retained when passing from dynamics to operator algebras,
and vice versa.

This relationship has been particularly interesting for the classification of C*-
algebras. An extraordinary result in this setting is the classification, up to strong
orbit equivalence, of the minimal dynamical systems on a Cantor set and the corre-
sponding K-theoretical classification of the associated crossed product C*-algebras
[8, 20]. Classification for separable, simple, nuclear C*-algebras remains an inter-
esting open problem. To every simple separable nuclear C*-algebra one assigns a
computable set of invariants involving K-theory, tracial state spaces, and the pair-
ing between these objects. George Elliott conjectured that for all such C*-algebras,
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an isomorphism at the level of invariants, now known as Elliott invariants, might
be lifted to a *-isomorphism at the level of C*-algebras.

A remarkable number of positive results have been obtained. However, examples—
including examples of some crossed product C*-algebras arising from minimal dy-
namical systems—have also shown pathologies undetectable by the Elliott invariant
[7, 24, 28, [32]. One such algebra, constructed by Xinhui Jiang and Hongbing Su,
gives a C*-algebra Z with invariant isomorphic to C [I0]. The importance of the
Jiang—Su algebra for the classification programme cannot be understated: in the
case that a C*-algebra A has weakly unperforated Ko-group (for a definition, see
for example [2, Definition 6.7.1]), its Elliott invariant is isomorphic to the Elliott
invariant of A ® Z. The original Elliott conjecture then predicts that for any sim-
ple separable nuclear C*-algebra, A 2 A ® Z. In such a case A is said to be a
Z-stable C*-algebra. So far, each counterexample to Elliott’s conjecture involves
two C*-algebras, one of which is not Z-stable. This leads to the following revised
conjecture:

0.1 CONJECTURE: Let A and B be simple separable unital nuclear C*-algebras.
Suppose that A and B are Z-stable and have isomorphic Elliott invariants. Then
A= B.

More recently, there has been significant interest in transferring C*-algebraic reg-
ularity properties to the language of topological dynamics with the aim of showing
that the appropriate properties pass from dynamical system to associated crossed
product C*-algebra. Much of the motivation for this has come from the theory of
von Neumann algebras, which has close ties to ergodic theory. Currently, the classi-
fication programme for C*-algebras is seeing rapid advancement by adapting results
for von Neumann algebras to the setting of C*-algebras. For a good discussion on
this interplay, we refer the reader to [25]. Of interest here are the comparisons
between Z and its von Neumann counterpart, the hyperfinite II;-factor, R.

Like the Jiang—Su algebras, R is strongly self-absorbing (see [29]), absorbed (after
taking tensor products) by certain factors with a particularly nice structure, and
can be characterised uniquely in various abstract ways. Francis Murray and John
von Neumann realise R using their group measure space construction, the von
Neumann algebra version of the crossed product of a commutative C*-algebra by
the integers [18]. Its ties to ergodic theory were deepened in [B], where Alain
Connes proves that R can be realised dynamically by any measure space (X, p)
with a probability measure preserving action of a discrete amenable group G. Such
a dynamical presentation for Z has so far been missing from the C*-algebraic theory.

In light of this, it has become increasingly important to find a suitable dynamical
interpretation of Z. In this paper, we construct such a presentation of the Jiang—
Su algebra via a minimal étale equivalence relation (that is, an equivalence relation
with countable dense equivalence classes.) See [22] for more about these groupoids.
Along the way, we tackle an old question in dynamical systems: which compact,
metric spaces admit minimal homeomorphisms?

Of course, many well-known systems provide positive answers (Cantor sets from
odometers, the circle from irrational rotations). Perhaps the most famous positive
result is that of Albert Fathi and Michael Herman who exhibited minimal, uniquely
ergodic homeomorphisms on all odd-dimensional spheres of dimension greater than
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one [6] and Alistair Windsor’s subsequent generalization to arbitrary numbers of
ergodic measures [33]. In fact, we will use these results in a crucial way in our
construction.

There are also negative results. Perhaps the most famous, and the most relevant
for our discussion, is the Lefschetz—Hopf theorem (see for example [4]) which asserts
that for “nice” spaces (for example, absolute neighbourhood retracts), the cohomol-
ogy of a space may contain enough information to conclude that any continuous
self-map of the space has a periodic point. If we also ask that the space be infinite,
then it does not admit a minimal homeomorphism. An example where this holds
is any even-dimensional sphere. The same conclusion holds for any contractible
absolute neighbourhood retract (ANR). More generally, it also applies to any ANR
whose cohomology is the same as a point.

Here we build minimal homeomorphisms ¢ on “point-like” spaces: infinite, com-
pact metric spaces with the same cohomology and K-theory as a point. In fact,
our spaces are inverse limit of ANR’s so while our results are positive, they sit
perilously close to the Lefschetz—Hopf trap. For a survey on fixed point properties,
see [I].

We construct such minimal dynamical systems with any prescribed number of
ergodic Borel probability measures. If the system (Z,() constructed is uniquely
ergodic case, the resulting C*-algebra C(Z) x¢ Z then has the same invariant as
Z, except for its nontrivial Kj-group. For such a crossed product, nontrivial K3
is unavoidable (the class of the unitary implementing the action is nontrivial).
However, upon breaking the orbit equivalence relation across a single point, K;
disappears while the rest of the invariant remains the same. Now the C*-algebra
arising from this equivalence relation does in fact have the correct invariant and we
are able to use classification theory to conclude that it must be Z.

Our construction itself is more general, and in fact we are able to produce C*-
algebras isomorphic to any simple inductive limit of prime dimension drop algebras
with an arbitrary number of extreme tracial states, as constructed in [I0]. From
the C*-algebraic perspective such a construction is interesting: even the range
of the invariant for such C*-algebras remains unknown. In the uniquely ergodic
case, classification for the resulting crossed product follows from [30, B1] (which
uses the main result in [27]). Without assuming unique ergodicity, we may appeal
to Lin’s generalisation [I3] of the third author’s classification result for products
with Cantor systems [20], to show all our minimal dynamical systems result in
classifiable crossed products. We note that as we were finishing this paper, Lin
posted a classification theorem for all crossed product C*-algebras associated to
minimal dynamical systems with mean dimension zero [14], but our results do not
rely on his proof.

In Section [T} we start with a minimal diffeomorphism, ¢, on an d-sphere, for
odd d > 1, which we denote by S¢. This is a logical place to begin since the
cohomology of the sphere differs from that of a point only in dimension d. From
this, we construct a space, Z, together with a minimal homeomorphism, ¢. This
system is an extension of (S¢,¢); that is, there a a factor map from (Z,() onto
(89, ). The space Z is an infinite compact finite-dimensional metric space with
the same cohomology and K-theory as a single point. From our minimal dynamical
system we show in Section 2| that the C*-algebra of the associated orbit-breaking
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equivalence relation is isomorphic to the Jiang—Su algebra, assuming we have begun
with uniquely ergodic (5%, ¢). In Section [3| we show that, with any number of
ergodic measures, the associated transformation group C*-algebras and their orbit-
breaking subalgebras can be distinguished by their tracial states spaces and are all
isomorphic to direct limits of dimension-drop algebras. Finally, in Section [4 we
make some comments on further questions.

1. CONSTRUCTING THE SYSTEM

In this section we fix d > 1 odd and a minimal diffeomorphism ¢ : §¢ — %,
but we remind the reader that the space constructed does in fact depend on which
minimal dynamical system (S¢, ) we use. In particular, we may choose (S, ) to
have any number of ergodic probability measures [33]. We fix an orientation on S?
and note that ¢ is orientation-preserving; otherwise the system would have a fixed
point.

1.1 LEMMA: Let x be any point of S and v any non-zero tangent vector at x.
There exists

A:[0,1] — S¢
satisfying the following:

(i) A(0) =z, A(0) = v, A(1) = (), N (1) = Dp(v),
(ii) X is a a C'-embedding, in particular N'(t) # 0, for all t in [0,1],
(iii) For alln #0,

©"(A([0,1)) N A([0,1)) = 0.

PROOF: The space of all C'-maps from [0, 1] into S¢ which satisfy the first condition
is a non-empty, complete metric space with the metric from the C'-norm. Let A
be the subset of these also satisfying the second condition of the conclusion. This
is clearly non-empty and open (see for example [9]). Thus, A is a Baire space.

We need to establish the existence of a map satisfying the third condition as well.
We treat the end points of [0, 1] separately.

For each integer n # 0,1, let A be those elements of A such that ¢"(z) ¢ [0, 1].
This is clearly an open dense subset of A. In particular, the intersection over all
n # 0,1, which we denote AY_, is a dense G5 in A, and hence also a Baire space.

Fix A in A. For each n > 1,k > 2, define

Roik(A) = {(s1,82,.-.,8k) | 8i €[0,1],"(A(s:)) = A(si41),1 < i < k},
Xnk(A) = {s1|(s1,82,...,8%) € Ry (M)}

Let us start with some simple observations.

(1) XnxN) 2 Xppt1(N), foralln > 1,k > 2.
(ii) It follows from the first condition that (0,1) € Ry 2()\) and is an isolated
point; 0 € X 2(A) and is an isolated point.
(iii) It follows from the preceding two properties that, for any k > 2, if 0 is in
X1,%(X), then it is an isolated point.
(iv) For all n,k, R, x()) is closed in [0,1]* and X, x()) is closed in [0, 1].
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(v) For alln > 1,k > 2, we have
Xn,k(>\) =0 Rn,k(/\) =)= Rn,k+1()\) =0 Xn,k—i—l(/\) = 0.

(vi) {A € A| X12(A) ={0}} is open in A.
(vii) For any n > 1,k > 2, {A € A | X,, x(A) = 0} is open in A.
(viil) If X7 9(A) = {0} and X, 2(\) =0, for all n # 0,1, then X satisfies the last
condition of the conclusion of the lemma.

Our first important claim is that, for any n > 1, there exists k > 1 with R,, x(\) =
(). Suppose the contrary. We note there is an obvious map from R,, i to R,, x—1 and
we may form the inductive limit of this system. Using the compactness of R, i,
we see that if each R,  is non-empty, we may find a sequence sy, s2, ... such that
©"(A(83)) = A(8i4+1), for all 4 > 1. But this means that the forward orbit of A(s1)
under ¢ is contained in U?Z}¢?(A[0,1]), which is a closed subset of S¢. Tt is non-

empty and cannot be all of S% on dimensionality grounds. This then contradicts
the minimality of .

Our second claim is the following. Suppose that A isin A, n > 1,k > 2, (n, k) #
(1,2) are such that X,, x11(A) = 0. Then for any ¢ > 0, there is p in A with
[IA— pllr < e and X, (1) = 0.

In view of the first claim above and the fact that X, x+1(A) = 0 is an open
property, there is no loss of generality if we assume that X is in A% . The immediate
consequence of this is that 0,1 are not in X, (A).

Suppose that s is in [0,1] with ¢™(A(s)) in A(Xnk(N))), then ¢™(A(s)) = 51
with (s1, $2,...,8k) in Ry, 1 () and it follows that (s,s1,s2,...,8k) is in Ry g41(N)
which contradicts our hypothesis that X, x+1(A) = 0. We conclude that the sets
AMXnk(N))) and ¢™(A[0,1]) must be disjoint. Without loss of generality assume
that € is strictly less than half the distance between these two compact sets.

For each s in X, 1,(\), select 0 < as < s < by < 1 such that A(as,bs) is contained
in the ball of radius €/2 about A(s). These open intervals cover X, x(A). We may
extract a finite subcover. If these intervals overlap, we may replace them with their
unions to obtain 0 < a; < by < ag < -+ < b, < 1 with the union of the (a;,b;),
which we denote by U, covering X,, (A). Observe that this means the points a;, b;
are not in X, ().

Based on dimensionality, we may make an arbitrarily small C''-perturbation of
A on U, which we call u, not changing the value or derivative at the endpoints, so
that the image is disjoint from =™ o A([0, 1] — U). To be slightly more precise, the
i can be chosen from A so that ||A — pll1 < €/2 and ||[p" o A — @™o p|; <e.

We claim this yu satisfies X,, ,(p) = 0. Suppose to the contrary that (s1, sz, ..., Sk)
is in X, k(). If, for some j < k, s; is in U, then u(s;) is not in ¢ =" o A([0,1] = U)
or equivalently, ¢™(u(s;)) is not in A([0,1] — U) = p([0,1] — U). On the other
hand, ¢™(u(s;)) is within € of ¢™(A[0, 1]) and hence outside the ball of radius e of
A(Xn,k(A)), which contains p(U). Between the two cases, we have shown that if s;
is in U, then ¢™(u(s;)) is not in p([0,1]). This contradicts ¢™(u(s;)) = p(sj41)-

The only remaining case is that s1,s2,...,S5—1 all lie in [0,1] — U. But on this
set, o = X and so we have (s1,82,...,sk) is in X, (1) = Xy, x(A) and hence s is
in X,, x(A) C U, a contradiction.



6 R.J. DEELEY, I.LF. PUTNAM, K.R. STRUNG

Our third claim is a minor variation of the second to deal with the special case
n = 1,k = 2, since 0 always lies in X 2(X). Suppose that A is in A such that
X1.3(A) = 0. Then for any € > 0, there is g in A with || — plj1 < e and X1 2(p) =
{0}. The idea is that 0 will be an isolated point of X; 2(x) and we can simply
repeat the rest of the argument above replacing X, x(p) by X7 2(p) — {0}.

Our fourth claim is that, for any n # 0,1, {\ | X, 2(A) = 0} is dense in A. Let A
be in A and let € > 0. From our first claim, we may find k with X,, x(\) = 0. Next,
use the second claim to find A; within €/2 of A with X,, x—1(A1) = 0. Apply the
second claim again to find Ao within €/4 of A\; with X, x_2(A\2) = 0. Continuing in
this way, we will end up with X, o(Ay_2) = 0 and

€ € €
||)\—)\k,2||1§§+1+...+2ki_2<6.

The fifth claim is a minor variation of the third: {\ | X7 2(\) = {0}} is dense in
A. The proof is the same as that of the fourth claim, using the third claim in place
of the second.

As a result of all of this, the set
AT X12(A) = {03} N (Mo, {A | Xn2(A) = 03)

is dense in A and hence non-empty. These maps satisfy all the desired conditions.

1
Given a map A : [0,1] — S? satisfying Lemma we define a second map
Ar R — 89 Ag(s) = ¢l* (A(s mod 1))
where |s] denotes the floor function applied to the real number s. The conditions
in Lemma ensure Ag is also a C'l-embedding.

1.2 LEMMA:  Let F : [1,2] xR~ — R be an orientation preserving C-embedding
such that, for each s € [1,2],

F(s,0) = (s,0).
Then, there ezists G : [—1,2] x R™1 — R? a continuous function satisfying the
following

(i) for s € [-1,2], G(s,0) = (s,0);
(ii) for x € R4t and s € [-1,0], G(s,7) = (s,);
(iii) for x € R and s € [1,2], G(s,x) = F(s,z);
(iv) there exists 6 > 0 such that G|[—1,2]xm is injective.
PrROOF: Note that we have
F(s,z) = (s+ Fi(s,x), Fx(s, x))
where F(s,0) = 0 and F(s,0) = 0. Observe that
14 28 (s, 2) Of (s, 1) )
DF , — Os ’ oz \7"
e ™A R

where by abuse of notation the partial derivative of F; with respect to z, 381; L,
where = (21,...,24-1) € R4! denotes (%’ ce a(ZdFil) and [DFg(s,x)]fj;12

is the minor of the Jacobian matrix of Fh(s,z) obtained by removing the first
row and column. The conditions Fi(s,0) = 0, respectively Fy(s,0) = 0 imply
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that aan L(s,0) = 0, respectively <5 o9k, 2(5,0) = 0. Moreover, the fact that I’ is an
orientation-preserving C'* embeddlng implies
det(DF(s,z)) > 0.
At = = 0 we have
det(DF(s,0)) = det([DFx(s,0)]¢. = 1),
so continuity implies that there is some § > 0 such that

(1) det([DFg(s,x)]” 5) >0
for every x € B471(6).
We define
F(s,x) : [1,2]
(3+F1(1 z), F»(1, 7)) : s €[3/4,1)
(s +4(s—1/2)F1(1,2), Fa(1,2)) [1/2,3/4)
Glsa) =4 (5, (45— 1) By(L, (s — 1))+ s e (1/4,1/2)

(1/4 [DF(1,0)]f,_, @) :os=1/4
(5, [aii ()){ 72, @)  s€[0,1/4)
(s,x) : s€[-1,0)

where [a,-J(s)]gl;il is a smooth arc of matrices with positive determinant with

[a: s (1/4)){72, = [DE (1,00 5, [aig (071, = 1.
(Recall that det([DFy(1,0)]¢ j=2) > 0.) It is easy to check that G(s, ) is a contin-
uous function satisfying (i) — (iii).

We show G satisfies (iv). On the interval [1,2] injectivity is clear since F is an
embedding.

For the next interval, [3/4,1) we have that (14 F1(1, ), F2(1,x)) is an embedding
from {1} xR9~1 < R?, by the same reasoning Suppose that (s+F1(1,z), Fa(l,z)) =
(s' + F1(1,2'), F»(1,2")). From equation (1)) we have det([DFx(1, x)]” 5) >0, so
using the inverse function theorem (and posslbly decreasing 0) F5(1,-) is invertible
in B4=1(§). Hence x = 2’ and then also s = s/, so G is injective on [3/47 1)x B4=1(6).

On [1/2,3/4), we again have that Fy(1,2) = Fy(1,2') implies that x = 2’ if
z,2’ € B¥71(). Moreover, if G(s,r) = G(s', 1), then s = §', so again G is injective
(this time on [1/2,3/4) x B4=1(§)).

In (1/4,1/2) if G(s,z) = G(¢',2’) it is automatic that s = s’, hence the result
follows again since F,(1,x) is injective on BI~1(4).

At s = 1/4 the result follows from the Jacobian condition on F; (equation ().

For the interval (0,1/4), the result follows from the fact that each [ai,j(s)]ij_'i1

have determinant greater than zero, hence G(s, ) is injective on [—1,2] x B~1(§).

We remark that G(s, ) is C! except for when s € {1/2,3/4,1}. With a bit more
care, one can show that G(s, ) could be made C*, but we will not need this.

1.3 LEMMA: There exists € > 0 and a continuous injection
70 : [—€,1+ € x Bd-1(1) — S¢
satisfying the following.
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(i) For|s| <€ and x in B4~1(1),
To(s +1,2) = ¢(70(s, 2)).
(ii) For alln # 0,
¢"(10([0,1) x {0})) N7o([0,1) x {0}) = 0.

PROOF: Let A\g : R — S? be as defined following the proof of Lemma By the
tubular neighbourhood theorem there exists a C! embedding

o [—=1/2,1+1/2] x R — g4
such that
(2) a(s,0) = Ar|[—1/2,141/2]-
There exist €,y > 0 such that

poa([-€€ x B!(y)) C Im(a).

Let B : R x B¥!(y) — R x B% () be given by §(s,z) = (s — 1,z). Define
F:[l1-¢1+¢ x B¥1(y) = R by
F=alopoaocp.

By construction, F' is an orientation-preserving C!-embedding satisfying F(s,0) =
(s,0) for every s € [l —¢€,1+ ¢]. Hence we may apply the previous lemma to get

G: |61+ ¢ x B¥(y) = [-1/2,1 4+ 1/2] x R¥~1. (Note that the intervals are
slightly different but this does not matter). From the lemma we have that

G(s,0) = (s,0)
for every s € [—¢,1 + €] and that G is injective by possibly shrinking ~.

Define 7q : [—€,1+¢] x B¥~1(1) — S% by 79 = a 0 G, (where we are tacitly using

the fact that B4=1(1) can be identified with B4=1(vy/2).)

We now show that 7o has properties (i) and (ii). Property (ii) follows immediately
from the fact that 79(s,0) = Ar(s) and Lemma (iv). For property (i) we have,
for s € [—¢, €], that

(s +1,2) = (00 G)(s + 1,2) = poao f(s + 1,2) = plals,)),
and
o(1o(s,2)) = plao G(s,z)) = p(als,z)).

Given 7y as in the previous lemma, we define 7 : R x B4-1(1) — S9 by
(3) 7(s,2) = pl*l79(s mod 1, z).
1.4 LEMMA: There exists a sequence of positive numbers 1 > p1 > ps > -+ >0
such that T|[—n—2,n+2]><m is injective.

Define functions r,, : R — [0, 1] by

0, |s| > n,
T (s) = n—Ils|, n—pn<ls|<n,
Pns Is| <n—pn.
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-n 0 n

FIGUrE 1. Graph of r,(s)

For n > 1, define
L, = 7([-n,n] x {0}), and Lo, = 7(R x {0}).
Also define, for each n > 1,

(4) X, =8"—71{(s,x) | —n < s <n,|z| <ra(s)}

1.5 LEMMA: The closure of X, Xn, is contractible.

PRrROOF: Tt is clear that 7({(s,z) | —n < s < n,|z| < r,(s)}) is the complement
of X,,, it is an open set in S? homeomorphic to an open ball. Removing an open
set of this form in S¢ yields a space homeomorphic to a closed ball in R?, which is
contractible. |

We define a function f3,, : S — L,, — S% as follows. Let
(5) R, =71{(s,z) | -n < s <n,0 < |z| < 2r,(s),z € RY}.

Observe that any point in R,, may be written uniquely as 7(s, tz), with —n < s < n,
0 <t <2r,(s) and x in S92, We then define

(©) butr(s.ta) =7 (s, (5 +7)) 2.

Observe that f3,, fixes any point with ¢ = 2r,(s). We set f,, to be the identity on
S — L, —R,.

1.6 LEMMA: For f3, : S* — L, — S? defined as in @, the following hold:

(i) Bn is continuous.
(ii) The image 3,(S? — L,) is X,,.
iil) B, is injective.
) Bl X, — 84— L, is continuous.

(
(iv
PROOF: Each of (i) — (iv) is a straightforward calculation. |

Let us add one more useful observation: at this point, (3, is not defined on
7(£n,0), but if we extend the definition to leave these fixed, it is still continuous.
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Let dg be any fixed metric on S¢ which yields the usual topology. Of course, since
S? is compact, dy is bounded.

We define a sequence of metrics, d, on S¢ — L,,, by

(7) dn(x,y) = do(Bu(2), Bu(y)), @,y € S~ Ln.

That is, /3, is an isometry from (S¢ — L,,,d,,) to (X,,do).
1.7 DEFINITION: Define Z, to be the completion of S* — Ly, in d,,.

Given these definitions, the following is obvious since the completion of X, in the
metric dg is simply its closure.

1.8 LEMMA: The map 3, extends to a homeomorphism from (Z,,d,) to (X,,do).
In particular, Z, is connected, contractible, compact, dim(Z,) < d and is an abso-
lute neighbourhood retract.

Now we establish the following important relations between our metrics.

1.9 LEMMA: Let (21)nen be a sequence in S — L, n > 1. Then

(i) if (zg)nen is Cauchy in d, then it is also Cauchy in dy,
(ii) 4f (2k)nen is Cauchy in d, then it is also Cauchy in d,_1.

PROOF: Let us consider the first part. It suffices to prove that if (zj)ren is any
sequence in S¢ — L, such that $,(z;) is Cauchy in S? in dy, then (23 )ren itself is
Cauchy in dy.

Let us first suppose that (zx)gen lies entirely in the complement of R,,. Then
By is the identity on z; and the conclusion is clear. Now let us assume the se-
quence lies entirely inside R,. We write zp = 7((sk, tkzr)), with s € [—n,n],
0 <ty < 2r,(sk) and x5, in S92, The fact (B, (21))ren is Cauchy in dy and that
7 is uniformly continuous means that (sk, (% + rn(sk)) ack) is Cauchy in the usual
metric of [-n,n] x RY71. It follows that (sg)ren converges to some s in [—n,n),
while (%’“ + Tn(Sk)) xj, converges to y. Taking norms and recalling that zj is a unit
vector, we see that % + 7, (s;) converges to |y|. Putting these together we have

2yl = 1i}£ntk + 27, (s) = 2rp(s) + lilgnt;C

and so t converges to 2(|y| — rn(s)).

If |y| — rn(s) = 0, then ¢xx), converges to the zero vector. If |y| — r,(s) # 0, then
21, k > 1 converges to (2(|y] — 7n(s))) "y and again txy is convergent.

Finally, we need to consider the case where (zx)ren contains infinitely many terms
outside the region and infinitely many terms inside the region. From the arguments
above, the two subsequence each converge in the usual topology to two points, say
Zout and z,, respectively. But we also have B, (zout) = Zout- S0 the entire sequence
Bn(zk) is converging to the point z,,: which lies in the range of §,. Then the
conclusion follows from the fact that 3! is continuous. This completes the proof
of the first statement.

For the second part, it suffices to prove that if (z;)ren is any sequence in S¢ — L,
such that (3, (zx))ren is Cauchy in S¢ in the usual metric, then (8,_1(2x))ren also
Cauchy.
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Let us consider the case when the sequence (zj)ren is outside R,. In this case,
we have (3, (zx) = zk. Then (2i)ren is Cauchy and hence convergent. We note that
the limit point lies outside of R,, or on its boundary, and hence is not in L,_;1. It
follows since (,,—1 is continuous that 3, _1(zx) is convergent and hence Cauchy.

Now suppose that z is in R, and write z; = 7(sg, tpzk) as before. As in the first
case, we know that s,, converges to some s in [—n, n], while % +r, (s )z, converges
toy. If |y| —rn(s) # 0, then as before, z;, is converging to a point in S¢ — L,,, which
is a subset of S% — L,,_1. We use the fact that 8,_;1 is continuous to conclude that
Brn—1(zk) is convergent and hence Cauchy.

Now suppose that |y| — r,(s) = 0. In this case, t) is converging to zero and this
means that

A .
y = hin (; + rn(sk)) Tp = hlgnrn(sk)xk.

First suppose that 1 —n < s < n — 1. This implies that r,(s) = r, # 0 and so
x is actually convergent. It follows that

hinﬁn—l(zk) = 11]?17 (Sk, (t; + T’n—l(sk)> $k> =T (S,Tn—l(s) liinxk>

and so B,-1(2k), k > 1 is Cauchy.

Next, suppose that n — 1 < |s| < n. Here we have r,_1(s) = 0 and so

liinﬁn,l(zk) = liinT (s;€7 (t; + rnl(sk)) xk> =17(s,0)

and again (B,-1(zk))ken is Cauchy.

Finally, suppose (8,,—1(2;))ken contains infinitely many terms outside the region
and infinitely many terms inside the region. As in the proof of (i), we can find two
subsequences (8,—1(2k))in and (Bn—1(2k)out). We know (B,—1(2k)out) converges to
some Zoyy by the above. One checks that x., lies outside R, so B, (Zout) = Tout-
By the same reasoning as in part (i), we have that (8, (zr))ren converges to Tout.
Then by continuity of 3,, 3, and 3,_1 we have that

Bn—l(zk) = 6n—1 o 5;1 o Bn(zk) — 6n—1(zout)a as k — o0
$0 (Bn—1(zk))ken is also Cauchy. |

Observe that, for every n > 1, S¢ is the completion of S — L,, in dy. It is also
the completion of S% — L, in dp.

The immediate consequence of the last lemma is that the identity map on S¢— L
extends to well-defined, continuous maps 7, : Z, — Zn_1 and g, : Z, — S
Furthermore, both 7, and ¢, are surjective since in both cases Im(Z,,) is compact
and dense.

Define a metric dss on S¢ — Lo by
doo(,y) = Y 27 "dn(,y).
n>1

This uses the fact that each d,, is bounded by the same number which bounds dj.
We observe that a sequence (zx)ren is Cauchy in dy if and only if it is Cauchy in
each d,,.
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1.10 DEFINITION: Define Z to be the completion of S* — Lo in the metric du.

Based on the relationship between the (Z,,,d,), n > 1, we also have the following
description of (Z,dw):

1.11 LEMMA: The space Z is homeomorphic to the inverse limit of the system

nE T

1.12 Many of the properties of Z,,,n > 1 which we observed in Lemma [1.8| are
preserved under inverse limits: compactness, connectedness and dim(Z,) < d. Of
course, contractibility is not preserved, but both cohomology and K-theory are
continuous. Therefore we have the following:

COROLLARY:  The space Z is an infinite connected, compact metric space with
finite covering dimension. It has the same cohomology and K -theory as a point; in
fact, C(Z) is KK -equivalent to C.

PROOF: The only thing we have not shown is the K K-equivalence, but this follows
from the UCT and K.(C(Z2)) = Z & 0. |

The identity map on S¢ — L., extends to a well-defined, continuous, surjective
map q: Z — S%.

1.13 LEMMA:  For each point x in S — Lo, ¢~ '{x} is a single point.

PROOF: We treat the points of Z and S? as equivalence classes of Cauchy sequences
in S¢— L, in the metrics do, and do, respectively. Let (wy,)ren and (zx)ren be two
Cauchy sequences S% — Lo, in do, and suppose they map to the same point under
q, That is, they are equivalent in the metric dy. Suppose also that they converge to
apoint z in S?— Lo indy. Fixn > 1. As zisin S — L it is also in S — L,,. The
latter is open in S? in the metric dy, so we may find an open ball B whose closure
is contained in S¢ — L,,. For k sufficiently large, both z; and wy are in B. The
function (3, is defined and continuous on B and so we conclude that both sequences
Bn(zx) and B, (wg) are converging to 8,(z) in dy. Hence, the sequences 2z and wy
are equivalent in the d,, metric. As this is true for every n, these sequences are also
equivalent in the d., metric and we are done. |

We now turn to the problem of defining our minimal dynamical system.

1.14 LEMMA: If a sequence (21 )pen in S — Lo is Cauchy in d,,, with n > 2, then
both sequences (¢(zx))ken and (¢~ (zk))ken are Cauchy in d,—1.

PROOF: We consider only the case (¢(2x))ken, the other being similar. Once again
it suffices to assume that (3,(zx))ren is Cauchy in dy and show the same is true
for (Bn—10¢(2k))ken-

If the entire sequence lies outside of R, then zp = B,(z;) converges (in the dj
metric) to some point, say y, in the complement of R, or on its boundary. If y is
not in L, then ¢(y) is not in L,,_; and then same argument using the continuity
of Bn_1 gives the desired result. The only point in the closure of the complement
of R, with ¢(y) in L,_1 is 7(—n,0) with ¢(y) = 7(1 — n,0). We noted earlier
that 8,_1 extends continuously to this point by fixing it and so the same argument
works here.
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Now assume that z; lies in R, but the sequence ¢(z) lies outside R,,—1. In this
case, Bn—1(p(zk)) = @(zx). But we know from the first part of Lemma that
(2k)ken is Cauchy with respect to dy and hence so is ¢(zx) and we are done.

Now assume zj, lies in R, and ¢(z;) lies in R,,_1. As before we write
zi = 7(8,tx),

with s € [-n,n], 0 <t < 2r,(s) and z € S972. In this case, using the definition of
7 given in (3)), we have

Brn_10 go(zk) =T <Sk +1, (t; + rn_l(sk + 1)> :L'k) .

The argument proceeds exactly as before. We know s converges to s and tg
converges to 2(|y| — y).

If this is positive then zj also converges and the desired result follows easily from
the formula above for 8,,_1 o ¢(zx).

If |y| = r,(s) then ¢; converges to zero. We break this up into three cases.
Case 1: s >n — 2. Then ¢(z) is not in R,,—1 and this case is already done.

Case 2: —n < s < n — 2. Here r,(s) > 0 and it follows from the fact that
(%‘ + Tn(sk)) x) is converging to y that the sequence xj itself is convergent. The
convergence of 3,1 o ¢(zx) follows from the formula above.

Case 3: s = —n. In this case, both t; and r,_1(sg + 1) are converging to 0 and
the convergence of 3,_1 o ¢(zx) again follows from the formula above.

Finally, when (zj)ren has infinitely many terms lying both outside and inside the
region, the proof is similar to previous calculations. |

1.15 COROLLARY: The map ¢ on S%— L., extends to a homeomorphism of (Z, dx),
denoted by (. Moreover, we have go( = pogq; that is q is a factor map from (Z,()

to (S ).
1.16 THEOREM: The homeomorphism ¢ of Z is minimal.

PROOF: Let Y be a non-empty, closed (hence compact), (-invariant subset of Z.
It follows that ¢(Y") is a non-empty, compact (hence closed) p-invariant subset of
S? and hence ¢(Y) = S%. As the quotient map ¢ is injective on S — Lo, C Z, it
follows that S% — Lo, C Y. As Y is closed and Z is defined as the completion of
S% — L, we conclude that Y = Z and so ¢ is minimal. |

1.17 THEOREM: The factor map q defined in Corollary[1.15 induces an affine bi-
jection between the (-invariant Borel probability measures on Z and the p-invariant
Borel probability measures on S¢.

PROOF: Let u be a (-invariant measure. Then ¢*(u) is @-invariant. The set Lo, is
a Borel subset of S?. It is also @-invariant. Moreover, the system ¢, restricted to
L, is conjugate to the map x — x + 1 on R, which has no nonzero finite invariant
measures. This implies that ¢*(1)(Leo) = 0. This means that S¢ — L., has full
measure under y and as ¢ is a bijection on this set, the conclusion follows. |

1.18 We remark that one may modify the construction of the embedding of R into
S% to an embedding of two disjoint copies of R. Proceeding in an analogous fashion,
the space Z,, is homeomorphic to the sphere with two open balls removed. This can
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easily seen to be homeomorphic to [0,1] x S?~!. Continuing, the space Z can be
seen to have the same cohomology as the even sphere S?~! and admits a minimal
homeomorphism (which can be arranged to be uniquely ergodic) while S%~! does
not by the Lefschetz—Hopf Theorem.

1.19 The map ¢ : Z — S? factors through Z,:

z™ 7z, g
where p,, is the obvious map from Z to Z,, n > 1. The sets ¢, (\(0)) C Z, and
¢ 1(A(0)) C Z are both seen to be homeomorphic to S¢~1. If we regard these as
embeddings of S9! into Z,, and Z, respectively, the former is clearly homotopic
to a point since Z,, is contractible. On the other hand, it would seem that the

latter is non-trivial and suggests that the homotopy group m4—1(Z) is non-trivial.
In particular, if this is correct, Z is not contractible.

2. A DYNAMICAL PRESENTATION OF THE JIANG—SU ALGEBRA

We begin this section by recalling some facts about the Jiang—Su algebra (see
[10]). In what follows, for any n € N, we let M,, denote the C*-algebra of n x n
matrices over C.

2.1 DEFINITION:  Let p,q € N. The (p,q)-dimension drop algebra A, , is the
defined to be

Apg ={f € C([0,1], M ® My | f(0) € Mp @14, f(0) € 1, @ My}

Note that when p and ¢ are relatively prime, A, 4 is projectionless, that is, its only
projections are 0 and 1.

2.2 THEOREM: [I0, Theorem 4.5] Let G be an inductive limit of a sequence of finite
cyclic groups and 0 a nonempty metrizable Choquet simplex. Then there exists a
simple unital infinite-dimensional projectionless C*-algebra A which is isomorphic
to an inductive limit of dimension drop algebras and satisfies

((Ko(A), Ko(A), [1a]), K1(A), T(A)) = (2, Z4,1), G, Q).

In the same paper, Jiang and Su showed that any two such simple inductive limits
of finite direct sums of dimension drop algebras are isomorphic if and only if their
Elliott invariants are isomorphic [I0, Theorem 6.2]. Moreover, the isomorphism of
C*-algebras can be chosen to induce the isomorphism at the level of the invariant.
2.3 DEFINITION:  The Jiang—Su algebra Z is the unique simple unital infinite-
dimensional inductive limit of finite direct sums of dimension drop algebras satis-
Jying
((Ko(2), Ko(2)+, [12]), K1(2),T(2)) ((Z,2Z4,1),0,{pt})

((KO((C)v KO((C)+7 [1([:])7 K, (C)a T(C))

1

1

The goal of this section is to exhibit the Jiang—Su algebra Z as the C*-algebra of a
minimal étale equivalence relation. As described in the introduction, this should be
seen in analogy to the von Neumann algebra—measurable dynamical setting where
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the hyperfinite II; factor R is shown to be the von Neumann algebra an amenable
measurable equivalence relation.

2.4 DEFINITION: Let X be a compact metrizable space. An equivalence relation
E C X x X with countable equivalence classes is called minimal if every equivalence
class is dense in X.

Let (X, a) be a minimal dynamical system of an infinite compact metric space.
Let £ C X x X denote the orbit equivalence relation of (X,«). As described in
[22], it is equipped with a natural topology in which it is étale. Note that the orbit
equivalence relation from a minimal dynamical system is a minimal equivalence
relation.

2.5 DEFINITION:  For y € X the orbit-breaking equivalence relation &, is defined
as follows: If (xz,2') € € then (z,2') € & if a"(x) # y for any n € Z or there
are n,m > 0 such that o™ (x) = o™(2') = y or there are n,m < 0 such that
an(x) — anl(x/) — y

Note that this splits any equivalence class in £ containing the point y into two
equivalence classes: one consisting of the forward orbit, the other of the backwards
orbit. It is easily seen to be an open subset of £ in the relative topology and, with
that topology, is also étale.

This next result is well-known, but we rephrase it in terms of equivalence relations
and give a proof for completeness.

2.6 PROPOSITION: Let (X, a) be a minimal dynamical system on an infinite com-
pact metrizable space. For any y € X, &, is minimal and C*(&,) is simple.

PRrROOF: Since a is minimal, for any point z € X both the forward orbit and
backwards orbit are dense in X. It follows that every equivalence classes of &, is
dense in X. Since £, is minimal the associated C*-algebra C*(&,) is simple. (That
C*(&y) is simple also shown in [16, Proposition 2.5].) |
2.7 In what follows, Q denotes the universal UHF algebra, that is, the UHF algebra
with Ko(Q) = Q.

PROPOSITION: Let Z be an infinite compact metrizable space satisfying K°(Z) = Z

and KY(Z) = 0. Let ( : Z — Z be a minimal, uniquely ergodic homeomorphism.
Then for any z € Z we have

Il

C* (&) = 2.

PROOF: First, we claim that the class of the trivial line bundle is the generator
of K°(Z). Taking any map from the one-point space into Z and composing with
the only map from Z onto a point, the composition (in that order) is clearly the
identity. It then follows from our hypothesis on K*(Z) that these two maps actually
induce isomorphisms at the level of K-theory and the claim follows.

Then, by the Pimsner—Voiculescu exact sequence, one calculates that
Ko(C(Z) % Z) 2L = K1(C(Z) x¢ Z).

Next, we use the six-term exact sequence in [21] Theorem 2.4] (see also [2I, Example
2.6]) to calculate that

Ko(C*(&:)) =2,  Ki(C'(£)) = 0.
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Furthermore, we have that T'(C(Z) x¢ Z) = T(C*(&,)) [I7, Theorem 1.2]. Thus
C*(&,) has the same invariant as Z. By [I7, Section 3], C*(£,) is a simple approxi-
mately subhomogeneous algebra with no dimension growth. Since there is only one
tracial state, projections separate traces and it follows from [3, Theorem 1.4] that
C*(€,) ® Q has real rank zero whence C*(€,) ® Q is tracially approximately finite
[34, Theorem 2.1]. Now Z® Q is also TAF. Since both these C*-algebras are in the
UCT class, we may apply [I5, Theorem 5.4] to get that C*(€,) = Z. |

2.8 THEOREM: There is a compact metric space Z with minimal, étale equivalence
relation € C Z x Z such that C*(€) = Z.

PRrOOF: For any d > 1 odd, there is a uniquely ergodic diffeomorphism ¢ : S¢ — S<.
Following the construction Section [1} there is a minimal dynamical system (Z, ()
where Z satisfies the hypotheses of Theorem by Hence for any z € Z we
have C*(&,) = Z. |

3. CLASSIFICATION IN THE NON-UNIQUELY ERGODIC CASE

At present, few examples of crossed product C*-algebras associated to minimal
dynamical systems without real rank zero are known. This is largely due to a lack of
examples of minimal dynamical systems (X, a) with dim X > 0 and more than one
ergodic measure. In general, classification for C*-algebras without real rank zero is
much more difficult. Real rank zero implies a plentiful supply of projections. Not
only does this suggest more information is available in the invariant (in particular,
the Kyp-group), but it also makes the C*-algebras easier to manipulate into a partic-
ular form, for example, to show it is tracially approximately finite (TAF) as defined
n [TI]. For a long time, the minimal diffeomorphisms of odd dimensional spheres
were the main example of minimal dynamical systems leading to C*-algebras which
were not at least rationally TAF (that is, tracially approximately finite after ten-
soring with the universal UHF algebra). Their classification remained elusive for
quite some time. By Theorem [I.16] our construction gives further examples lying
outside the real rank zero case and we are able to use the classification techniques
from the setting of the spheres to classify these crossed products. Furthermore, by
using Winter’s classification by embedding result [36, Theorem 4.2], we also classify
the projectionless C*-algebras obtained from the corresponding orbit-breaking sub
equivalence relations.

For a given minimal homeomorphism ¢ : S¢ — 8% let Z, denote the space
constructed in Section [I} and denote by ( the resulting minimal homeomorphism
¢:Zy,— Z, as in Theorem [T.16}

3.1 PROPOSITION: T(C(Z,) x¢ Z) 2 T(C(S%) x, Z).

Proor: This follows immediately from Theorem [T.17} since tracial states on the
crossed product are in one-to-one correspondence with invariant Borel probability
measures of the dynamical system. |

3.2 THEOREM: As above, Q denotes the universal UHF algebra. Let A be the class
of simple separable unital nuclear C*-algebras given by

A={C(Z,) % Z|p: 8" S d>1 odd, is a minimal diffeomorphism }.

Then for any A € A, A® Q is tracially approxzimately an interval algebra (TAI).
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PROOF: Z, is infinite, compact, connected, finite-dimensional and U(C(Z,)) =
Uo(C(Z,)). Since ¢ and idg(z,) induce the same map on K-theory of C(Z,) it
follows from the UCT that [(-) o (™!] = [id¢(z,)] in KK(C(Z,),C(Z,)) and hence
in KL(C(Z,),C(Z,)) [23, 2.4.8]. Tt follows from [13, Theorem 6.1] that A ® Q is
TAL |
3.3 COROLLARY: If A, B € A then A= B if and only if T(A) 2 T(B).

PROOF: It follows from the previous theorem and [12], Corollary 11.9] that A® Z =
B®Z if and only if Ell(A® Z) 2 Ell(B® Z). By [30, Theorem B] (or [31, Theorem
0.2]) A and B are both Z-stable. For any ¢ : S — S¢ minimal homeomorphism
we have

Ko(C(Z,) % ) 27, Ki(C(Z,) % 2) 2 7,
which follows immediately from the Pimsner—Voiculescu exact sequence and the

fact that (. is the identity on K-theory. Thus Elliott invariants are the same up to
the tracial state space and we see A 2 B if and only if T(A) = T(B). |

Let z € Z, and let £, denote the equivalence relation given by breaking the orbit
of ¢ at the point z.

3.4 THEOREM: For every z € Z, the C*-algebra C*(£,) ® Q is TAL

PrOOF: By [I7, Section 3] C*(€,) is an inductive limit of recursive subhomoge-
neous C*-algebras with base spaces of dimension less than or equal to dim(Z,).
Since dim(Z,) < oo it follows that C*(£.) has finite nuclear dimension. By Propo-
sition C*(&,) is simple.

Let ¢ : C*(€,) ® Q— A® Q denote the unital embedding. Then the map induced
on the tracial state spaces T'(¢) : T(C*(&,) ® Q) — T((C(Z,) x¢ Z) ® Q) is a
homeomorphism by Proposition [3.1] and the fact that Q has a unique tracial state
To. Moreover,

to : Ko(CH(E:) @ Q) = Ko(C(Zy) ¥ 2) @ Q)
is an ordered group isomorphism [27, Lemma 4.3], (see also [I9, Theorem 4.1 (5)]).
Since Ko(C(Z,) »¢ Z)) = Z, we have that S(Ko(C(Z,) x¢ Z))) is a point. Thus
T = 7. € S(Ko(C(Z,) ¢ Z))) for any 7,7 € T(C(Z,) x¢ Z)) and since any
tracial state on C(Z,) x¢ Z) ® Q is of the form 7 ® 7o, it follows that 7, = 7| €
S(Ko(C(Zy) x¢ Z) ® Q)) for any 7,7 € T(C(Z,) X¢ Z) ® Q).

By Theorem C(Z,) ¥¢ Z) ® Q is TAIL It now follows from [36, Theorem 4.2]
that C*(&;) ® Q® Q= C*(&,) ® Q is TAL |
3.5 COROLLARY: Let

B={C*(&)|2€ Zyp: 8= S d>1 odd, is a minimal diffeomorphism}.
Then A, B € B are isomorphic to projectionless inductive limits of prime dimension
drop algebras, and A = B if and only if T(A) = T(B).

ProoOF: If A € B then A is Z-stable by [35]. After noting this, the proof that
A2 B if and only if T(A) 2 T(B) is as in Corollary For any z € Z, we have
EKo(CH(E)) =L,  Ki(C*(&)) =0,  T(C*(E.)) =T(C(S) %, Z),

which follows from [21, Example 2.6], [I9, Theorem 4.1] and Proposition Now
it follows from [I0, Theorem 4.5] that A, B € B are isomorphic to projectionless
inductive limits of prime dimension drop algebras. |
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4. OUTLOOK

Although our construction shows that Z can be realized as a minimal étale equiv-
alence relation, it is certainly not unique (we can start with any odd dimensional
sphere, for example). It would be interesting to further investigate the possibility of
realizing various properties of Z at the dynamical level. For example, could there
be a suitable notion of “strongly self-absorbing” at the level of equivalence rela-
tions? Could we see regularity properties such as mean dimension zero (which may
be equivalent to Z-stability of the crossed product C*-algebra) after appropriately
taking a product with our system?
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