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Abstract

Given a relatively prime pair of integers, n ≥ m > 1, there is
associated a topological dynamical system which we refer to as an
n
m -solenoid. It is also a Smale space, as defined by David Ruelle,
meaning that it has local coordinates of contracting and expanding
directions. In this case, these are locally products of the real and
various p-adic numbers. In the special case, m = 2, n = 3 and for
n > 3m, we construct Markov partitions for such systems. The second
author has developed a homology theory for Smale spaces and we
compute this in these examples, using the given Markov partitions,
for all values of n ≥ m > 1 and relatively prime.
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1 Introduction

This paper is concerned with certain topological dynamical systems of an
algebraic nature. Moreover, they are defined on metric spaces and have nat-
ural co-ordinates of contracting and expanding directions. In short, they
are examples of Smale spaces, as defined by David Ruelle [8] to provide an
axiomatic framework for the dynamics that appear on the basic sets (or the
non-wandering set) in Smale’s Axiom A systems [9]. In [7], the second author
introduced a kind of homology theory for Smale spaces and the principal ob-
jective of this paper is to compute this invariant for these algebraic examples.
This computation requires finding Markov partitions with particularly nice
properties for the systems. In [13], A.M. Wilson claimed to construct Markov
partitions for these systems, but there appears to be an error in the argu-
ment. We discuss this problem and give valid Markov partitions (in many,
although not all, cases).

We describe the dynamical systems of interest. Some of the material on
p-adic numbers is very basic, but we include it for completeness. We refer
the reader to [4] for a complete treatment. If p is any prime, we define a
norm on the set of rational numbers, Q, by |0|p = 0 and

|pk i
j
|p = p−k,

where k is any integer and i, j are non-zero integers relatively prime to p.
The formula |a − b|p then defines a metric (if fact, an ultrametric) on Q
and we let Qp denote its completion. It is a field called the p-adic numbers.
Topologically, Qp is a locally compact and totally disconnected ultrametric
space. We let Zp denote the closure of the usual integers, which is a compact,
open subset. It is also a subring and any non-zero integer relatively prime
to p has an inverse in Zp. The most interesting dynamical feature of Qp is
that multiplication by p is a contraction (by the factor p−1). Multiplication
by any non-zero integer relatively prime to p is an isometry.

If p < q are prime numbers, we consider Z[(pq)−1], the subgroup of the
rationals additively generated by all numbers of the form (pq)−k, k ≥ 1. The
map sending a in Z[(pq)−1] to (a, a, a) in Qp ×R×Qq embeds the former as
a lattice: its image is discrete and the quotient is compact. We let X denote
this quotient and ρ denote the quotient map.

We also define ϕ : X → X by

ϕ ◦ ρ(a, r, b) = ρ
(
p−1qa, p−1qr, p−1qb

)
,
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for a in Qp, r in R and b in Qq. Locally, our space X looks like Qp×R×Qq

and multiplication by p−1q expands in the first two factors and contracts in
the third. Without giving a precise definition, this means that (X,ϕ) is a
Smale space with local unstable sets that are homeomorphic to opens subsets
of Qp × R and local stable sets that are homeomorphic to open sets in Qq.
We refer the reader to [7, 8] for a more complete treatment.

We can extend the construction above to the case where 2 ≤ m < n
are relatively prime integers. We first define |a|m =

∑
p|m |a|p, where a is

a rational number. We let Qm and Zm be the completions of Q and Z
respectively in the associated metric. It is a consequence of the Chinese
Remainder Theorem that

Qm
∼= Πp|mQp,

with the rational numbers embedded diagonally on the right. Both Qm and
Zm are rings and, while the former is not a field, the latter contains an inverse
for every non-zero integer relatively prime to m. Again in the natural metric,
multiplication by m on Qm contracts; specifically, we have

|ma−mb|m ≤ 2−1|a− b|m,

for all a, b in Qm. Multiplication by any non-zero integer relatively prime to
m is an isometry.

We define X to be the quotient of Qm×R×Qn by the lattice Z[(mn)−1]
and define ϕ with the same formula as earlier, replacing p−1q by m−1n. The
same comments we made in the p, q-case on the stable and unstable sets are
valid here. We refer to (X,ϕ) as the n

m
-solenoid.

In [7], the second author defined a homology theory for Smale spaces
and the main objective in this paper is to compute this invariant on these
algebraic examples. To any Smale space (X,ϕ), at least with every point
non-wandering, there are associated countable abelian groups Hs

N(X,ϕ) and
Hu
N(X,ϕ), for all integers N . In addition, each comes with a canonical auto-

morphism induced by ϕ, denoted by ϕs∗ and ϕu∗ , respectively. These intend
to quantify the topology of the space and the dynamics in an analogous way
to what Cech cohomology does for topological spaces. The exact relationship
with more conventional cohomology theories is not understood, but they are
certainly different. For shifts of finite type, these groups are finite rank, while
that is not the case for the Cech cohomology of the underlying spaces which
are typically Cantor sets.
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Their definition relies in a critical way on Krieger’s dimension group in-
variants for a shift of finite type [5]. In fact, if (X,ϕ) is a shift of finite type,
these homology groups recover Krieger’s invariant at N = 0 and are zero
in all other degrees. This homology theory also provides a Lefschetz Theo-
rem which computes the periodic point data for (X,ϕ) in terms the trace of
the automorphism induced by ϕ. The existence of such a theory was first
conjectured by Bowen [3].

We also mention that this homology has been computed on rather differ-
ent solenoids of a more topological nature first constructed by Williams [12]
and later studied by Yi [14] and Thomsen [10] as inverse limits of branched
one-manifolds by the second author with M. Amini and S. Gholikandi Saeidi
[1].

We state the main results of this paper as follows.

Theorem 1.1. Let n > m ≥ 2 and assume that m,n are relatively prime.
Let (X,ϕ) be the associated n

m
-solenoid. We have

Hs
0(X,ϕ) ∼= Hu

0 (X,ϕ) ∼= Z[1/n],
Hs

1(X,ϕ) ∼= Hu
1 (X,ϕ) ∼= Z[1/m]

and Hs
N(X,ϕ) = Hu

N(X,ϕ) = 0, for all N 6= 0, 1. Moreover, under these
identifications, the canonical automorphisms induced by ϕ on the Hs

N(X,ϕ)
groups are

ϕs∗(a) = n−1a, a ∈ Hs
0(X,ϕ)

ϕu∗(b) = nb, b ∈ Hu
0 (X,ϕ)

ϕs∗(c) = m−1c, c ∈ Hs
1(X,ϕ)

ϕu∗(d) = md, d ∈ Hu
1 (X,ϕ).

Let us note the following consequence, which is already well-known.

Corollary 1.2. Let n > m ≥ 2 and assume that m,n are relatively prime.
Let (X,ϕ) be the associated n

m
-solenoid.

For each integer p ≥ 1, we have

#{x ∈ X | ϕp(x) = x} = np −mp.

It is also probably worth stating explicitly the computations for the in-
verse systems. Of course, if (X,ϕ) is the n

m
-solenoid, then (X,ϕ−1) is the

m
n

-solenoid.
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Corollary 1.3. Let n > m ≥ 2 and assume that m,n are relatively prime.
Let (X,ϕ) be the associated n

m
-solenoid. We have

Hs
0(X,ϕ−1) ∼= Hu

0 (X,ϕ−1) ∼= Z[1/n],
Hs
−1(X,ϕ

−1) ∼= Hu
−1(X,ϕ

−1) ∼= Z[1/m]

and Hs
N(X,ϕ−1) = Hu

N(X,ϕ−1) = 0, for all N 6= 0,−1. Moreover, un-
der these identifications, the canonical automorphisms induced by ϕ on the
Hs
N(X,ϕ−1) groups are

ϕs∗(a) = na, a ∈ Hs
0(X,ϕ−1)

ϕu∗(b) = n−1b, b ∈ Hu
0 (X,ϕ−1)

ϕs∗(a) = mc, c ∈ Hs
−1(X,ϕ)

ϕu∗(d) = m−1d, d ∈ Hu
−1(X,ϕ

−1).

Before getting into the details, let us discuss the computation of the
homology theory in general terms. Our Smale space, (X,ϕ), has the nice
feature that its local stable sets are totally disconnected. In this situation,
we must find a shift of finite type [6], (Σ, σ), with a factor map

π : (Σ, σ)→ (X,ϕ)

which is s-bijective; that is, each stable equivalence class in (Σ, σ) is mapped
bijectively to a stable equivalence class in (X,ϕ). (More specifically, we need
an s/u-bijective pair, in the language of [7]. The reader will not need to
understand this terminology for most of the paper.) The computation of the
homology then relies on a careful analysis on when the map π is N -to-one,
for various values of N . It is a fundamental result of [7] that the results of
these computations depend on (X,ϕ), but not on the choice of π or (Σ, σ).

The shift of finite type which we will use is the full shift on n symbols.
That is, we have Σ = {1, 2, . . . , n}Z with the usual left shift map σ. To find
a factor map π : (Σ, σ)→ (X,ϕ), it suffices for us to find subsets R1, . . . , Rn

of X which are pairwise disjoint, the union of their interiors is dense in X
and such that, for every ι in Σ = {1, 2, . . . , n}Z,

∩∞K=1∩Kk=−Kϕ−k(Int(Rι(k)))

is a single point. The value π(ι) is then defined to be the single point of
this intersection. We will refer to the collection R1, . . . , Rn as a Markov
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partition. The sets we construct (or rather their closures) will actually satisfy
the conditions for Markov partitions as described in [3], although we will not
need this fact nor prove it. Our only interest in them is in obtaining the map
π as described.

In [13], Wilson investigated these systems. He also considered the case
of endomorphisms of the solenoid, which we do not. The main result of
[13], for the automorphisms, is that they are Bernoulli. To prove this, a
measurable partition, denoted P , was defined. Using our notation, and in
the case m = 2, n = 3, P consists of the three sets

Ri = ρ
(
Z2 ×

[
3−1(i− 1), 3−1i

]
× Z3

)
, i = 1, 2, 3.

Part of the proof of the main result of [13] is showing that ∨∞n=−∞ϕ−n(P ) is
the partition into single points. This is false, as follows. Let
x = ρ (5−12, 5−12, 5−12). First, observe that ϕ(x) = ρ (5−13, 5−13, 5−13) and
that

ϕ2(x) = ρ
(
10−19, 10−19, 10−19

)
= ρ(

((
10−19, 10−19, 10−19

)
−
(
2−1, 2−1, 2−1

))
= x.

Second, since 3−1 < 5−12 < 5−13 < 3−12, x and ϕ(x) are both in R2 and
neither is in R1 or R3. In other words, {x, ϕ(x)} is invariant under ϕ and
is contained in a single element of P and is disjoint from the others. Hence,
the same statement holds for each partition ϕ−n(P ), n ∈ Z, and it follows
from this that {x, ϕ(x)} is contained in a single element of ∨∞n=−∞ϕ−n(P ).
It appears to the authors that the element of ∨∞n=−∞ϕ−n(P ) containing x
is actually a Cantor set. In our notation, with R1, R2, R3 as above and
ι(k) = 2, k ∈ Z, we have

{x, ϕ(x)} ⊆ ∩∞K=1∩Kk=−Kϕ−k(Int(Rι(k)))

The error in [13] would appear to be in the proof of Proposition 2.3 on
the top of page 73. In the notation given there, letting x = (5−12, 5−12, . . .)
and y = (5−13, 5−13, . . .), then xr and yr lie in the same element (in fact, in
the interior of the same element) of the partition ω−1Cr

∨ri=−r ω−r−i2 ω−r+i3 S(3).
Wilson’s argument that xr = yr is obviously incorrect.

In [11], the same partition is used and denoted ξ and the claim, in the
final case of the proof, that

diam
(
∨nj=−nαj(ξ)

)
→ 0, as n→∞,

6



follows from the arguments of [13], is also false.
Here, we will give R1, R2, . . . , Rn which do satisfy these conditions, but

are obviously different from the ones given in [13]. It is interesting to note
that, locally, our space is the product of Qm × R × Qn. One nice feature
of Wilson’s partition (if we ignore for the moment that it fails to prove the
desired conclusion) is that the elements are actually of the form A× B × C
in this local picture. Ours will not be; they will be of the form D×C, where
D ⊆ Qm × R. It seems unlikely that partitions with the desired properties
and elements of the stronger product form exist.

While the proof contains an error, the main result of [13], that the au-
tomorphisms are Bernoulli, is presumably valid. Indeed, Weiss [] claimed to
have a proof before [13], although the details did not appear.

This could also be deduced from our results here. We give a very explicit
description in Lemma 2.19 of exactly where our map π fails to be one-to-
one and from this it can be shown that it is one-to-one on a dense set of
full measure. Hence, our map π can be shown to be an isomorphism at the
level of measurable systems (with suitable measures). Of course, π is not an
isomorphism in the topological category and, indeed, this argument precisely
ignores our main interest in understanding where π is many-to-one.

There is yet one more possible proof that the automorphisms are
Bernoulli, using Wilson’s original partitions. Curiously, it seems likely that
the failure of Wilson’s argument happens only on a set of measure zero. More
precisely, the union of all elements of the partition ∨∞n=−∞ϕ−n(P ) which are
not single points appear to be measure zero. This means that one can define
a map π (different from ours) on a dense set of full measure and show that it
is a measurable isomorphism. This is speculative; the arguments presented
in [13] are not correct, since it is claimed they work everywhere. Of course,
even if all this works, this map will not be useful in the computation of the
homology.

In the second section, we construct our Markov partitions. We do this
first in the case of m = 2, n = 3, since there seems to be particular interest
in that case as being the most basic in an obvious sense. We then consider
the general case with the added hypothesis that 3m < n. The general idea
is the same, but there are some subtle differences.

Let us take a moment to discuss why the hypothesis 3m < n is appropri-
ate or even relevant. Since our space, locally, is the product of two totally
disconnected ones and the real line, its covering dimension is one. Therefore,
it seems reasonable to try to find a cover by a shift of finite type where the
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map is either one-to-one or two-to-one at every point. This is exactly the
case in [1]. As we indicated above, understanding where our factor map is
N -to-one, for various values of N , is key to the computation of our homology
theory. The situation of an at-most-two-to-one map has a greatly simplifying
effect.

The natural candidate for the covering shift of finite type is the full shift
on n symbols. Of course, this system has n fixed points while our solenoid
has n−m fixed points. Therefore, a necessary condition for the existence of
an at-most-two-to-one map from the full n-shift onto the n

m
-solenoid is that

2(n−m) ≥ n or n ≥ 2m. (One can already see this problem surfacing in our
construction for the case m = 2, n = 3.) In fact, for certain technical reasons,
it actually helps to make the stronger hypothesis that 3m < n. Moreover, it
turns out that this special case will actually suffice for the computations of
homology in the general case due to a somewhat sneaky argument.

In the third section, we make use of our factor map from the shift of finite
type obtained in the second section to compute the homology. This contains
the final proofs of our three main results above.

The authors are grateful to Tom Ward for several helpful conversations
and also to the referee for a thorough reading of the paper and numerous
helpful comments and suggestions.

2 Markov partitions

The aim of this section is to find Markov partitions for an n
m

-solenoid. We
begin with the special case n = 3,m = 2.

2.1 The case m = 2, n = 3

Define A = Z2 × (0, 1] and A = Z2 × [0, 1]. The notation is to suggest the
closure in Q2 × R. The following is proved in [11].

Lemma 2.1. The set A × Z3 is a fundamental domain for Z[6−1] in Q2 ×
R × Q3. That is, each coset of Z[6−1] in Q2 × R × Q3 intersects A × Z3 in
exactly one point.

In finding our Markov partition, the first step is to construct a subset of
A which will essentially describe the boundaries of the rectangles.
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For each i = 0, 1, define αi : A→ A by

αi(a, r) =
(
3−12a+ 3−1i, 3−12r + 3−1i

)
,

for (a, r) in A.

Lemma 2.2. 1. We have

α0(A) = 2Z2 × [0, 3−12],

α1(A) = (1 + 2Z2)× [3−1, 1].

2. The sets α0(A) and α1(A) are disjoint.

3. For i = 0, 1, b in Z3 and (a, r) in A, we have

ϕ−1(ρ(a, r, i+ 3b)) = ρ(αi(a, r), i+ 2b).

Moreover, (αi(a, r), i+ 2b) is in A× Z3.

Proof. The first statement is obvious from the definitions. The second follows
easily from the first.

For the last part, we consider the cases i = 0, 1 separately. First observe
that in both cases, if (a, r) is in A, then 3−12r is in (0, 3−12] and 3−12a is in
Z2.

If i = 0, then 2 · 3−13b is in Z3. It follows that (3−12a, 3−12r, 2b) is in
A× Z3 and we are done.

If i = 1, then 3−12(1 + 3b) is in Z3 + 3−12. Moreover, we have

3−12a+ 3−1 ∈ 2Z2 + 1

3−12r + 3−1 ∈ (0, 3−12] + 3−1 ⊂ (3−1, 1],

3−12(1 + 3b) + 3−1 ∈ Z3 + 3−12 + 3−1 = Z3.

Lemma 2.3. Let A0 = A and, for each k ≥ 1, define

Ak = α0(Ak−1) ∪ α1(Ak−1) ⊆ A.

1. For all k ≥ 0, the sets α0(Ak) and α1(Ak) are disjoint.

2. Ak is closed and Ak ⊆ Ak−1, for all k ≥ 1.
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3. For any a in Z2 and k ≥ 1, we have

Ak ∩ ({a} × [0, 1]) = {a} × I,

where I is a closed interval of length (3−12)
k
.

4. There exists a continuous function ∂ : Z2 → [0, 1] such that

A∞ = ∩∞k=1Ak = {(a, ∂(a)) | a ∈ Z2}.

5. The function ∂ satisfies

∂
(
3−12a

)
= 3−12∂(a), ∂

(
3−12a+ 3−1

)
= 3−12∂(a) + 3−1,

for all a in Z2.

6. For a in Z2, ∂(a) = 0 if and only if a = 0 and ∂(a) = 1 if and only if
a = 1.

Proof. The first three parts are all elementary and we omit the proofs. For
the fourth, it follows from the third that

A∞ ∩ ({a} × [0, 1]) = {a} × {r},

for some r in [0, 1] and setting ∂(a) = r yields the desired function. Its
continuity follows from the fact that A∞ is closed.

It follows from part 2 and the definition that

α0(Ak) ⊆ α0(Ak−1) ⊆ Ak.

and hence α0(A∞) ⊆ A∞. According to the definitions of ∂ and α0, this
means that

∂
(
3−12a

)
= 3−12∂(a),

for all a in Z2. Replacing α0 with α1 proves the second equality of part 5.
It is a simple matter to see that (0, 0), (1, 1) are in A and α0(0, 0) =

(0, 0), α1(1, 1) = (1, 1). It follows that (0, 0), (1, 1) are in A∞, or ∂(0) =
0, ∂(1) = 1.

From the fact that

A1 ∩ [0, 1]× (1 + 2Z2) ⊆ [1/3, 1]× (1 + 2Z2),
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we see that ∂(a) ≥ 3−1, for a in (1 + 2Z2). If k ≥ 1 and a is in 2kZ2 but not
in 2k+1Z2, then by induction, we have

∂(a) ≥
(
3−12

)k
3−1 > 0.

We conclude that ∂(a) = 0 implies a is in 2kZ2 for all k, and so a = 0. A
similar argument proves that ∂(a) = 1 implies the a = 1.

We define the set B ⊆ Z2 × [−1, 1] by

B = {(a, r) ∈ Z2 × R | ∂(a+ 1)− 1 < r ≤ ∂(a)}.

Lemma 2.4. The set B × Z3 is a fundamental domain for Z[6−1] in Q2 ×
R×Q3.

Proof. Define

B− = {(a, r) ∈ A | r ≤ ∂(a)}
B+ = {(a, r) ∈ A | ∂(a) < r}.

First write
A× Z3 = B+ × Z3 ∪B− × Z3

and the sets on the right are disjoint. It follows that

(B+ × Z3 − (1, 1, 1)) ∪B− × Z3

is also a fundamental domain. Next observe that

B+ × Z3 − (1, 1, 1) = {(a, r) ∈ Z2 × [−1, 1] | ∂(a+ 1) < r + 1 ≤ 1} × Z3

= {(a, r) ∈ Z2 × [−1, 1] | ∂(a+ 1)− 1 < r ≤ 0} × Z3

It follows that

(B+ × Z3 − (1, 1, 1)) ∪B− × Z3 = B × Z3.

and we are done.
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Define maps β0, β1, β2 : B → Z2 × R by

β0(a, r) =
(
3−12a, 3−12r

)
β1(a, r) =

(
3−12a+ 3−1, 3−12r + 3−1

)
β2(a, r) =

(
3−12a− 3−1, 3−12r − 3−1

)
,

for (a, r) in B. (Of course, β0, β1 are defined by the same formula as α0, α1,
respectively, but they have different domains.)

Lemma 2.5. 1. The sets β0(B), β1(B) and β2(B) are all contained in B,
they are pairwise disjoint and their union is B.

2. For any (a, r) in B, b in Z3 and j = 0, 1, 2, (βj(a, r), 2b) is in B × Z3

and
ϕ−1(ρ(a, r, j + 3b)) = ρ(βj(a, r), j + 2b).

3. For any j = 0, 1, 2 and X ⊆ B, we have

diam(βj(X)) ≤ 3−12diamX.

Proof. Suppose that (a, r) is in B. First, we observe that

∂
(
3−12a

)
= 3−12∂ (a) > 3−12r.

This provides the correct upper bound on β0(B). Secondly, we check that

∂
(
3−12a+ 3−1

)
= 3−12∂ (a) + 3−1 > 3−12r + 3−1.

This provides the correct upper bound on β1(B). Thirdly, we check that

∂
(
3−12a+ 1

)
− 1 = ∂

(
3−12(a+ 1) + 3−1

)
− 1

= 3−12∂ (a+ 1) + 3−1 − 1

= 3−12(∂ (a+ 1)− 1)

≤ 3−12r.

This provides the correct lower bound on β0(B). Fourthly, we check that

∂
(
3−12a− 3−1 + 1

)
− 1 = ∂

(
3−12(a+ 1)

)
− 1

= 3−12∂ (a+ 1)− 1

= 3−12 (∂ (a+ 1)− 1)− 3−1

≤ 3−12r − 3−1
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This provides the correct lower bound for β2(B).
To complete the proof it suffices to observe that all three maps preserve

order in the R component. Suppose (a, r) is in the lower boundary of B,
meaning that r = ∂(a+ 1)− 1, then

β1(a, r) =
(
3−12a+ 3−1, 3−12r + 3−1

)
=

(
3−12(a+ 1)− 3−1, 3−12(r + 1)− 3−1

)
= β2(a+ 1, r + 1)

where ∂(a + 1) = r + 1. That is, (a + 1, r + 1) is in the upper boundary of
β2(B). By reversing the argument we see that the upper boundary of β2(B)
coincides with the lower boundary of β1(B).

The proof of part 2 is analogous to that of Part 3 of Lemma 2.2 and the
third part is clear.

We are now ready to define our Markov partition.

Definition 2.6. 1. For j = 0, 1, 2, define

Rj = ρ(B × (j + 3Z3)).

2. For any K ≤ 0 ≤ L and function ι : {K,K + 1, . . . , L − 1, L} →
{0, 1, 2}, we define

Rι = ∩Lk=Kϕ−k(Rι(k)).

The following result essentially establishes the Markov property for our
rectangles, but gives even more information.

Lemma 2.7. 1. For 0 ≤ L and ι : {0, 1, . . . , L − 1, L} → {0, 1, 2}, we
have

Rι = ρ(βι(1) ◦ · · · βι(L)(B)× (ι(0) + 3Z3)).

2. For K ≤ 0 and ι : {K,K + 1, . . . ,−1, 0} → {0, 1, 2}, we have

Rι = ρ

(
B ×

(
0∑

k=K

(
2−13

)−k
ι(k) + 31−KZ3

))
.
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Proof. We argue by induction on L. The case L = 0 is trivial. Next suppose
that L > 0 and the statement holds for L− 1. Write

∩Ll=0ϕ
−l(Rι(l)) = Rι(0) ∩ ϕ−1(∩L−1l=0 ϕ

−l(Rι(l+1))).

We may apply the induction hypothesis to the function l → ι(l + 1) to see
that

∩L−1l=0 ϕ
−l(Rι(l+1)) = ρ

(
βι(2) ◦ · · · βι(L)(B)× (ι(1) + 3Z3)

)
.

Applying part 2 of Lemma 2.5, we see that

ϕ−1(∩L−1l=0 ϕ
−l(Rι(l+1))) = ϕ−1 ◦ ρ

(
βι(2) ◦ · · · βι(L)(B)

×(ι(1) + 3Z3))

= ρ
(
βι(1) ◦ · · · βι(L)(B)× Z3

)
.

Since all of our sets are contained in the fundamental domain B × Z3, we
have

∩Ll=0ϕ
−l(Rι(l)) = ρ

(
βι(1) ◦ · · · βι(L)(B)× Z3

∩B × (ι(0) + Z3))

= ρ(βι(1) ◦ · · · βι(L)(B)× (ι(0) + 3Z3)).

The second statement is also proved by induction, on −K with the case
K = 0 being clear. Now suppose K < 0 and that the statement holds for
K + 1. We write

Rι = ∩0k=Kϕ−k(Rι(k))

= Rι(0) ∩ ϕ(∩−1k=Kϕ
−1−k(Rι(k)))

= Rι(0) ∩ ϕ ◦ ρ

(
B ×

(
0∑

k=K+1

(
2−13

)−k
ι(k − 1) + 3−KZ3

))

= ϕ ◦ ρ

(
(βι(0)(B)× Z3) ∩

(
B ×

(
−1∑
k=K

(
2−13

)−1−k
ι(k) + 3−KZ3

)))

= ϕ ◦ ρ

(
βι(0)(B)×

(
−1∑
k=K

(
2−13

)−1−k
ι(k) + 3−KZ3

))

= ρ

(
B ×

(
0∑

k=K

(
2−13

)−k
ι(k) + 31−KZ3

))
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where we have used the induction hypothesis in the second line and the fact
that all our sets are contained in the fundamental domain B × Z3.

Theorem 2.8. For each 0 ≤ i, j ≤ 2, ϕ−1(Int(Ri))∩Int(Rj) 6= ∅. Moreover,
for any function ι in {0, 1, 2}Z, the intersection

∩∞K=0∩Kk=−Kϕk(Rι(k))

is a single point and the map sending ι to this point defines a factor map
from ({0, 1, 2}Z, σ) to (X,ϕ).

Proof. The set B × Z3 has finite diameter. It follows from Lemma 2.7 and
the final part of Lemma 2.5 that

diam
(
∩Kk=−Kϕk(Rι(k))

)
≤ 3−K2Kdiam(B) + 3−K .

The closure has the same diameter which tends to zero as K tends toward
infinity. Hence the intersection is at most a single point, but since the sets
are compact, it is also non-empty. The remaining parts of the proof are
standard.

2.2 The case 3m < n

As explained in the introduction, the hypothesis 2m < n is necessary to
obtain a factor map from a shift of finite type which is at most two-to-one.
We strengthen that slightly to 3m < n for technical reasons. This condition
will be assumed throughout the rest of the section.

Begin by letting A = Zm × (−1, 1] and A = Zm × [−1, 1]. For each
1 ≤ i ≤ m, define αi : A→ Zm × R by

αi(a, r) =
(
n−1ma− n−1i, n−1mr − n−1i

)
,

for (a, r) in A.

Lemma 2.9. 1. For 1 ≤ i ≤ m, we have

αi(A) ⊆
(
−n−1i+mZm

)
×
[
−2n−1m,n−1m

]
⊆ A.

2. The sets αi(A), 1 ≤ i ≤ m, are pairwise disjoint.
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Proof. First observe that

n−1m[−1, 1]− n−1i =
[
−n−1(m+ i), n−1(m− i)

]
⊆

[
−2n−1m,n−1m

]
⊆ [−1, 1] ,

since 3m < n. The first part follows easily from this.
The second part follows from the fact that the sets −n−1i + mZm are

pairwise disjoint in Zm since n is relatively prime to m.

We now repeat the construction of a subset of A which will essentially
describe the boundaries of the rectangles.

Lemma 2.10. Let A0 = A and, for each k ≥ 1, define

Ak = ∪mi=1αi(Ak−1) ⊆ A.

1. For each fixed k ≥ 0, the sets αi(Ak), 1 ≤ i ≤ m, are pairwise disjoint.

2. Ak is closed and Ak ⊆ Ak−1, for all k ≥ 1.

3. For any a in Zm and k ≥ 1, we have

Ak ∩ ({a} × [−1, 1]) = {a} × I,

where I is a closed interval of length 2 (n−1m)
k
.

4. There exists a continuous function ∂ : Zm → [−2n−1m,n−1m] such
that

A∞ = ∩∞k=1Ak = {(a, ∂(a)) | a ∈ Zm}.

5. A∞ and A∞ + (1, 1) are disjoint.

6. The function ∂ satisfies

∂
(
n−1ma− n−1i

)
= n−1m∂(a)− n−1i,

for all a in Zm and 1 ≤ i ≤ m.
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Proof. The first three parts are all obvious. For the fourth, it follows from
the third that

A∞ ∩ ({a} × [−1, 1]) = {a} × {r},
for some r in [−1, 1] and setting ∂(a) = r yields the desired function. Its
continuity follows from the fact that A∞ is closed.

We note that ∂(Zm) ⊆ [−2n−1m,n−1m] ⊆ (−2
3
, 1
3
), because of our hy-

pothesis on m,n. It follows that ∂(Zm) + 1 and ∂(Zm) are disjoint and part
5 follows.

It follows from part 2 and the definition that

αi(An) ⊆ αi(An−1) ⊆ An.

and hence αi(A∞) ⊆ A∞. So if (a, ∂(a)) is a point in A∞, then so is
(n−1ma−m−1i, n−1m∂(a)−m−1i). The conclusion for part 6 follows from
the definition of ∂.

We point out that condition 5 represents a substantial improvement on
what we had in the previous subsection where this failed.

We define the set B ⊆ Zm × [−1, 1] by

B = {(a, r) ∈ Zm × R | ∂(a+ 1)− 1 < r ≤ ∂(a)}.

The following result has the same proof as Lemma 2.4 and we omit the
details.

Lemma 2.11. The set B × Zn is a fundamental domain for Z[(mn)−1] in
Qm × R×Qn.

The following result is quite obvious, so we omit the proof, but it will be
convenient to have on record.

Lemma 2.12. We have

B \ Int(B) = A∞,

B \B = A∞ − (1, 1)

Define maps βj : B → Zm × R, 1 ≤ j ≤ n, by

βj(a, r) =
(
n−1ma− n−1j, n−1mr − n−1j

)
,

for (a, r) in B and 1 ≤ j ≤ n. (Of course, the first m of these maps agree
with the αi, but do not have the same domain.)
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Lemma 2.13. 1. Each of the maps βj, 1 ≤ j ≤ n preserves the obvious
order in the R-component.

2. For each n−m < j ≤ n, we have

βj((a, r)− (1, 1)) = βj−m(a, r),

for all (a, r) in A∞.

3. For each 1 ≤ j ≤ m, we have

βj(A∞) ⊆ A∞ ∩
(
−n−1j +mZm

)
× [−1, 1].

We also have

βj(a, r)− (1, 1) = βn−m+j((a, r)− (1, 1)),

for all (a, r) in A∞. In particular,

βn−m+j(A∞ − (1, 1)) ⊆ A∞ − (1, 1).

Proof. The first statement is obvious. For the second, let (a, r) be in A∞;
i.e. r = ∂(a). Then we have

βj(a− 1, ∂(a)− 1) =
(
n−1m(a− 1)− n−1j, n−1m(∂(a)− 1)− n−1j

)
=

(
n−1ma− n−1(m+ j), n−1m∂(a)− n−1(m+ j)

)
= βj+m(a, ∂(a)).

and the conclusion follows.
For the third part, we can repeat the argument above, but noting that

for 1 ≤ j ≤ m, we may apply part 6 of Lemma 2.10 to obtain

βj(a, ∂(a)) =
(
n−1ma− n−1j, n−1m∂(a)− n−1j

)
=

(
n−1ma− n−1j, ∂

(
n−1ma− n−1j

))
From this we see that βj maps A∞ into itself and also into (−n−1j +mZm)×
[−1, 1]. We also have

βn−m+j(a− 1, ∂(a)− 1) =
(
n−1m(a− 1)− n−1(n−m+ j),

n−1m(∂(a)− 1)− n−1(n−m+ j)
)

=
(
n−1ma− n−1(n+ j),

n−1m∂(a)− n−1(n+ j)
)
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and hence

βn−m+j(a− 1, ∂(a)− 1) + (1, 1) =
(
n−1ma− n−1(n+ j),

n−1m∂(a)− n−1(n+ j)
)

+ (1, 1)

=
(
n−1ma− n−1j,
n−1m∂(a)− n−1j

)
= βj(a, ∂(a)).

Lemma 2.14. 1. For 1 ≤ j ≤ n, the sets βj(B) are all contained in B,
are pairwise disjoint and their union is B.

2. For any 1 ≤ j ≤ j′ ≤ n, if βj(B) and βj′(B) meet, then j′ = j+m and
the intersection is

βj(A∞ − (1, 1)) = βj+m(A∞).

3. If (a, r) is in B, 1 ≤ j ≤ n and b is in Zn, then (βj(a, r),mb) is in
B × Zn and

ϕ−1 ◦ ρ(a, r,m−1j + nb) = ρ(βj(a, r),mb)

4. For any 1 ≤ j ≤ n, we have

ϕ−1 ◦ ρ(B × (j + nZn)) = βmj(B)× Zn,

where mj is understood modulo n.

5. For 0 ≤ j < n, if X is any subset of B, then

diam(βj(X)) ≤ 2−1diam(X).

Proof. First observe that βj(B) ⊆ −n−1j +mZ× [−1, 1], which means that
βj(B) and βj′(B) have disjoint closures if j, j′ are not congruent modulo m.
We fix 1 ≤ j ≤ m, and list the elements of its equivalence class modulo
m up to n: j = j1 < j2 < · · · < jL, where n − m < jL ≤ n. The top
boundary of βj0(B) lies in A∞ by part 3 of Lemma 2.13. Moreover, for each
1 ≤ l < L, the bottom boundary of βjl(B) coincides with the top boundary
of βjl+1

(B) by Lemma 2.12 and part 2 of Lemma 2.14. Finally, Lemma 2.13
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shows that the bottom boundary of βjL(B) lies in A∞ − (1, 1) and is part of
the bottom boundary of B. The first two parts of the Lemma follow from
these observations.

For the third part, we see that βj(a, r) does indeed lie in B from the first
two parts. Moreover, we have

ϕ−1 ◦ ρ(a, r,m−1j + nb) = ρ
(
n−1ma, n−1mr, n−1m

(
m−1j + nb

))
= ρ

(
n−1ma, n−1mr,

(
n−1j

)
+mb

)
= ρ

(
n−1ma− n−1j, n−1mr − n−1j,mb

)
= ρ(βj(a, r),mb).

The fourth statement follows immediately from the third.
For the last statement, in the Zm-coordinate, each βj multiplies by n−1m

and translates. Translation is an isometry, as is multiplication by n−1, while
multiplication by m contracts by a factor 2−1 as mentioned in the introduc-
tion. In the R-coordinate, the map multiplies by n−1m and translates and
n−1m < 2−1.

We are now ready to define the rectangles in our Markov partition.

Definition 2.15. 1. For 1 ≤ j ≤ n, define

Rj = ρ(B × (j + nZn)).

2. For any K ≤ 0 ≤ L and function ι : {K,K + 1, . . . , L − 1, L} →
{1, 2, . . . , n}, we define

Rι = ∩Lk=Kϕ−k(Rι(k)).

Lemma 2.16. 1. For 0 ≤ L and ι : {0, 1, . . . , L− 1, L} → {1, . . . , n}, we
have

Rι = ρ(βmι(1) ◦ · · · ◦ βmι(L)(B)× (ι(0) + nZn)),

where mι(i) is understood modulo n.

2. For K ≤ 0 and ι : {K,K + 1, . . . ,−1, 0} → {1, . . . , n}, we have

Rι = ρ

(
B ×

(
0∑

k=K

(
m−1n

)−k
ι(k) + n1−KZn

))
.
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Proof. Of course, the proof is similar to the m = 2, n = 3 case. We argue by
induction on L. The case L = 0 is trivial. Next suppose that L > 0 and the
statement holds for L− 1. Write

∩Ll=0ϕ
−l(Rι(l)) = Rι(0) ∩ ϕ−1(∩L−1l=0 ϕ

−l(Rι(l+1))).

We may apply the induction hypothesis to the function l → ι(l + 1) to see
that

∩L−1l=0 ϕ
−l(Rι(l+1)) = ρ(βmι(2) ◦ · · · ◦ βmι(L)(B)× (ι(1) + nZn))

Applying part 4 of Lemma 2.14, we see that

ϕ−1(∩L−1l=0 ϕ
−l(Rι(l+1))) = ϕ−1 ◦ q(βmι(2) ◦ · · · ◦ βmι(L)(B)

×(ι(1) + nZn))

= q(βmι(1) ◦ · · · ◦ βmι(L)(B)× Zn).

Since all of our sets are contained in the fundamental domain B × Zn, we
have

∩Ll=0ϕ
−l(Rι(l)) = q(βmι(1) ◦ · · · ◦ βmι(L)(B)× Zn

∩B × (ι(0) + Zn))

= q(βmι(1) ◦ · · · ◦ βmι(L)(B)× (ι(0) + nZn))

The proof of the second statement is exactly the same as that in Lemma
2.7 and we omit the details.

The following is proved in exactly the same way as Theorem 2.8, with part
5 of Lemma 2.14 and Lemma 2.16 replacing Lemmas 2.5 and 2.7, respectively,
and we omit the details.

Theorem 2.17. For any function ι in {1, . . . , n}Z, the intersection

∩∞K=0∩Kk=−Kϕ−k(Rι(k))

is a single point and the map sending ι to this point defines a factor map,
which we denote by π, from ({1, . . . , n}Z, σ) to (X,ϕ).

We will use Σ to denote {1, . . . , n}Z.
Our next task is to carefully analyze where π maps two points to one and

the first step is to understand the intersection of the elements of the Markov
partition.
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Lemma 2.18. Let j, j′ : {0, 1} → {1, . . . , n} satisfy j 6= j′ and

Rj ∩Rj′ 6= ∅.

Then, after possibly interchanging j and j′, we have exactly one of the fol-
lowing:

1. j(0) = j′(0), j(1) = j′(1) + 1(modn) and m < mj(1) ≤ n,

2. j(0) = j′(0) + 1(modn), j(1) = j′(1) + 1(modn) and 1 ≤ mj(1) ≤ m,

where mj(1) is interpreted as the unique element of its modn-equivalence
class which is between 1 and n.

Proof. From the results of Lemma 2.12, Lemma 2.13 and Lemma 2.14, we
see that for 1 ≤ mj(1) ≤ n−m, we have

Rj = ρ
(
βmj(1)(B)× (j(0) + nZn)

)
,

= ρ
(
βmj(1)(B ∪ (A∞ − (1, 1)))× (j(0) + nZn)

)
= ρ

(
(βmj(1)(B) ∪ βm(j(1)+1)(A∞))× (j(0) + nZn))

)
.

and that the set

(βmj(1)(B) ∪ βm(j(1)+1)(A∞))× (j(0) + nZn))

is contained in our fundamental domain B × Zn.
On the other hand, for n−m < mj(1) ≤ n, we have

Rj = ρ
(
βmj(1)(B)× j(0) + nZn

)
,

= ρ
(
βmj(1)(B ∪ (A∞ − (1, 1)))× (j(0) + nZn)

)
= ρ

(
βmj(1)(B)× (j(0) + nZn)

∪(βm(j(1)+1)(A∞)× (j(0) + 1 + nZn))
)
.

and that the set

βmj(1)(B)× (j(0) + nZn) ∪ βm(j(1)+1)(A∞)× (j(0) + 1 + nZn)

is contained in our fundamental domain B×Zn. Similar results hold for j′, of
course. Recall that the sets βmj(B) are pairwise disjoint for different values
of j. The same holds for j + nZn.
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First, we suppose that 1 ≤ mj(1),mj′(1) ≤ n−m and the sets

(βmj(1)(B) ∪ βm(j(1)+1)(A∞)) × (j(0) + nZn))

(βmj′(1)(B) ∪ βm(j′(1)+1)(A∞)) × (j′(0) + nZn))

have non-trivial intersection. Simply comparing the Zn-components, we see
that j(0) = j′(0). We also assume that j 6= j′, which means that j(1) 6=
j′(1), so we must have mj(1) = m(j′(1) + 1) (or the other way around)
and so j(1) = j′(1) + 1 as claimed. Since 1 ≤ mj′(1) ≤ n − m, we have
m < mj(1) ≤ n. This is covered by the first case in the conclusion.

Next, suppose that exactly one of mj(1),mj′(1) is greater than n − m,
say, 1 ≤ mj(1) ≤ n−m < mj′(1) ≤ n. We assume that the sets

(βmj(1)(B) ∪ βm(j(1)+1)(A∞)) × (j(0) + nZn))

βmj′(1)(B)× (j′(0) + nZn) ∪ βm(j′(1)+1)(A∞)× (j′(0) + 1 + nZn)

have non-trivial intersection. Again, we first compare the Zn components
and see that either j(0) = j′(0) or j(0) = j′(0) + 1. If j(0) = j′(0), since
j 6= j′, mj′(1) must equal m(j(1) + 1), or j′(1) = j(1) + 1. After reversing
the roles of j and j′, this is also covered by the first case of the conclusion.
If j(0) = j′(0) + 1, we must have m(j′(1) + 1) equals mj(1) or m(j(1) + 1).
As n − m < mj′(1) ≤ n, we have 1 ≤ m(j′(1) + 1) ≤ m < m(j(1) + 1)
and so the second is not possible. We conclude that j(0) = j′(0) + 1 and
m(j′(1) + 1) = mj(1), or j(1) = j′(1) + 1. This is covered by the second case
in the conclusion.

Finally, we consider the case that n−m < mj(1),mj′(1) ≤ n. We assume
that the sets

βmj(1)(B)× (j(0) + nZn) ∪ βm(j(1)+1)(A∞)× (j(0) + 1 + nZn)

βmj′(1)(B)× (j′(0) + nZn) ∪ βm(j′(1)+1)(A∞)× (j′(0) + 1 + nZn)

have non-trivial intersection. Since we assume that j 6= j′, the first set of each
cannot intersect the first of the other, and similarly for the second of each. We
are left to consider mj′(1) = m(j(1)+1). But as n−m < mj(1),mj′(1) ≤ n,
this is impossible.

The last Lemma then provides the following analogue for infinite se-
quences.
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Lemma 2.19. Consider the following three (mutually exclusive) conditions
on ι, ι′ in {1, . . . , n}Z

1. ι = ι′,

2. there is a unique integer k such that

ι(l) = ι′(l), if l < k,
ι(l) = ι′(l) + 1, if l ≥ k,
m < mι(k) ≤ n,
1 ≤ mι(l) ≤ m, if l > k,

3. ι(l) = ι′(l) + 1, and 1 ≤ mι(l) ≤ m, for every integer l.

We have π(ι) = π(ι′) if and only if, after possibly interchanging ι and ι′, one
of the three conditions holds.

Proof. Let us first consider the ’if’ implication. If ι = ι′, then the conclusion
is clear. Suppose that ι and ι′ satisfy the second condition. Since π◦σ = ϕ◦π,
by replacing ι, ι′ by σ1−k(ι), σ1−k(ι′), we may assume that k = 1. First, we
apply Lemma 2.16 in order to write

∩K−Kϕ−k(Rι(k)) = ρ(C ×D),

where
C = βmι(1) ◦ · · · βmι(K)(B),

and

D =
0∑

k=−K

(m−1n)−kι(k) + n1−KZn.

We have a similar expression for

∩K−Kϕ−k(Rι′(k)) = ρ(C ′ ×D′).
Notice that since ι(l) = ι′(l), for l < 1, we have D = D′.
We use Lemma 2.12 and the fact that 1 ≤ j = mι(l) ≤ m, ι(l) = ι′(l)−1,

for all 1 < l ≤ K and the second part of Lemma 2.13:

C ′ = βmι′(1) ◦ · · · βmι′(K)(B)

⊇ βmι′(1) ◦ · · · βmι′(K)(A∞ − (1, 1))

= βmι′(1) ◦ · · · βmι′(K−1)(βmι(K)(A∞)− (1, 1))

= βmι′(1) ◦ · · · βmι′(K−2)(βmι(K−1) ◦ βmι(K)(A∞)− (1, 1))

= · · ·
= βmι′(1)

(
βmι(2) ◦ · · · ◦ βmι(K)(A∞)− (1, 1)

)
.
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At this point, we use m < mι(1) ≤ n, ι(1) = ι′(1) + 1 and the first part of
Lemma 2.13 to conclude

C ′ ⊇ βmι(1) ◦ βmι(2) ◦ · · · ◦ βmι(K)(A∞).

On the other hand, Lemma 2.12 gives us

βmι(1) ◦ βmι(2) ◦ · · · ◦ βmι(K)(A∞) ⊆ βmι(1) ◦ βmι(2) ◦ · · · ◦ βmι(K)(B) = C.

From these calculations, we conclude that C × D ∩ C ′ ∩ D′ is non-empty.
Since this holds for every K, we see that {π(ι)} ∩ {π(ι′)} is also non-empty,
so π(ι) = π(ι′). This establishes the result in the case the second condition
holds.

In the third case, for each k in Z, define ιk, ι
′
k in {1, 2, . . . , n}Z as follows.

First, ιk(l) = ι′k(l) = 1, if l < k. Then set ιk(k) = m−1(m + 1) and ι′k(k) =
ιk(k)− 1 = m−1. Finally, set ιk(l) = ι′k(l), for all l > k.

Then for every k, ιk and ι′k satisfy the second condition so π(ιk) = π(ι′k).
On the other hand ιk and ι′k converge to ι and ι′, respectively as k goes to
−∞. Hence by continuity, we have π(ι) = π(ι′).

Now, we consider the ’only if’ implication. Fix an integer k for a moment.
We know that

π(ι) ∈ ϕ−k(Rι(k)) ∩ ϕ−k−1(Rι(k+1)),

and
π(ι′) ∈ ϕ−k(Rι′(k)) ∩ ϕ−k−1(Rι′(k+1)).

Since π(ι) = π(ι′), we know that the intersection of Rι(k)) ∩ ϕ−1(Rι(k+1))

and Rι′(k)) ∩ ϕ−1(Rι′(k+1)) is non-empty. We may apply Lemma 2.18 to the
functions sending i = 0, 1 to ι(k + i) and to ι′(k + i). This tells us that, if
ι(k) 6= ι′(k), then we have, after possibly interchanging ι and ι′,

ι(k) = ι′(k) + 1, ι(k + 1) = ι′(k + 1) + 1, 1 ≤ mι(k) ≤ m.

So if ι(k) 6= ι′(k), the same holds for all l > k. By negation, if ι(k) =
ι′(k), the same holds for l < k. Now if we have k where ι(k) = ι′(k) and
ι(k + 1) 6= ι′(k + 1), then the same argument using Lemma 2.18 shows that
1m < mι(k + 1) ≤ n (assuming ι(k) = ι′(k) + 1). This completes the
proof.

This last result establishes two properties of our factor map π which will
be very important for the computation of our homology.
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Theorem 2.20. The map π is s-bijective and #π−1{x} ≤ 2 for all x in X.

Proof. We have identified all pairs ι, ι′ with π(ι) = π(ι′) and it is clear that
no two are right tail equivalent, or stably equivalent. (Recall that ι, ι′ are
right tail equivalent if there is an integer L such that ι(l) = ι′(l), for all
l ≥ L.) Thus, π is s-resolving, meaning that it is injective when restricted
to a stable equivalence class. On the other hand, the full shift is obviously
mixing and so the same is true of the solenoid. It follows from Theorem 2.5.8
of [7] that π is also s-bijective.

Next, suppose that ι1, ι2, ι3 are distinct, but all have the same image
under π. Then, for all sufficiently large l, we have

ι1(l) = ι2(l)± 1, ι1(l) = ι3(l)± 1, ι2(l) = ι3(l)± 1.

But the first two imply that ι2(l) = ι3(l) or ι2(l) = ι3(l) ± 2 so this is
inconsistent with the third. Hence, π is at most two-to-one.

3 Homology

The objective of this section is to prove our three main results.

3.1 Proof of Theorem 1.1: the case 3m < n

We now begin our proof of Theorem 1.1 under the additional hypothesis that
3m < n. We will only concern ourselves with the computations of the groups
Hs
N(X,ϕ); the groups Hu

N(X,ϕ) are done similarly. We use the notation of
[7].

Let us recall a few basic concepts from [7]. From our s-bijective factor
map π : (Σ, σ)→ (X,ϕ), we define, for N ≥ 0,

ΣN(π) = {(ι0, ι1, . . . , ιN) | π(ι0) = π(ι1) = · · · = π(ιN)}.

Each is a shift of finite type and Σ0(π) = Σ.
For any shift of finite type, (Σ, σ), Krieger defined past and future dimen-

sion groups, which we denote by Ds(Σ, σ) and Du(Σ, σ). We will be mainly
interested in Ds(ΣN(π), σ), when N = 0, 1. In the case N = 1, there is an
obvious action of the permutation group on two symbols, S2, on Σ1(π) and
hence also on its dimension group. We write this action on the right. The
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group Ds
Q(Σ1(π), σ) is the quotient of Ds(ΣN(π), σ) by the subgroup gener-

ated by all elements a with a · α = sgn(α)a, for all α in S2 and all elements
of the form a · α− sgn(α)a, a in Ds(ΣN(π), σ).

First, Theorem 7.2.1 of [7] asserts that our homology groups Hs
∗(X,ϕ)

can be computed as the homology of the complex Ds
Q(Σ∗(π), dsQ(π)). (Rather

curiously, it will not be necessary for us to compute the boundary maps, so
we do not give the definition here.)

Next, Theorem 2.20 and Theorem 4.2.12 of [7] tells us that the groups
Ds
Q(ΣN(π), σ) are zero for N ≥ 2. Hence we are left with the computation

for N = 0, 1 and the map dsQ(π) between them.
The easiest calculation is the group for N = 0, for then we are simply

calculating Krieger’s dimension group invariant for the full n-shift. As the
underlying graph has n-vertices and exactly one edge between each pair,
Ds(Σ, σ) is the inductively limit

limZn → Zn → · · ·

where the maps are multiplication by the n× n matrix whose entries are all
ones. The result is Z[1/n] and the canonical automorphism induced by σ is
multiplication by n−1.

Next, we turn to Ds
Q(Σ1(π), σ). The first step is to find a graph which

presents the shift (Σ1(π), σ). We construct a graph, G1, as follows. The
vertex set is

G0
1 = {(i, i), (i, i+ 1), (i+ 1, i) | 1 ≤ i ≤ n},

where n+ 1 = 1. The edge set consists of ordered pairs of vertices:

G1
1 = {((i, i), (j, j)) | 1 ≤ i, j ≤ n}

∪{((i, i), (j, j + 1)), ((i, i), (j + 1, j)) | 1 ≤ i ≤ n,m < mj ≤ n}
∪{((i, i+ 1), (j, j + 1)), ((i+ 1, i), (j + 1, j)) | 1 ≤ mj ≤ m}.

The initial and terminal maps from G1
1 to G0

1 are simply the projection onto
the first and second ordered pairs, respectively. We let (ΣG1 , σ) denote the
edge shift associated with the graph G1.

The following is an immediate consequence of Lemma 2.19 and our defi-
nition of G1.

Lemma 3.1. The vertex shift (ΣG1 , σ) is explicitly conjugate to (Σ1(π), σ)
by suppressing the distinction that elements of the former set are infinite
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sequences of ordered pairs, while elements of the latter are ordered pairs of
infinite sequences.

The computation of Ds
Q(Σ1(π), σ) is given at the end of 4.2 of [7] and we

follow the notation there. In the permutation group on two symbols, S2, we
let ε denote the identity. We need to find a subset B0

1 of G0
1 which meets

each orbit with trivial isotropy exactly once and does not meet the others.
The obvious candidate is

B0
1 = {(i, i+ 1) | 1 ≤ i ≤ n},

where again n+ 1 = 1. For (i, i+ 1) in B0
1 , it is a simple matter to see that

t∗A((i, i+ 1), 1) = {(q, α) ∈ G1
1 × S2 | t(q) = (i, i+ 1), i(q) · α ∈ B0

1}
= {(((j, j + 1), (i, i+ 1)), ε) | 1 ≤ j ≤ n}

if 1 ≤ mi ≤ m and is empty for m < mi ≤ n. Then we have γsB : ZB0
1 → ZB0

1

is given by

γsB((i, i+ 1)) =
∑

(q,α)∈t∗((i,i+1),1)

sgn(α)i(q) · α

=
∑

1≤j≤n

(j, j + 1)

if 1 ≤ mi ≤ m and is zero otherwise. Combined with an easy computation
of the inductive limit

limZB0
1

γsB→ ZB0
1

γsB→ · · ·

Corollary 4.2.14 of [7] gives the following.

Lemma 3.2. We have

Ds
Q(Σ1(π), σ) ∼= Z[m−1],

and under this isomorphism, the map induced by σ is multiplication by m−1.

The last piece of information needed is the boundary map

dsQ(π) : Ds
Q(Σ1(π), σ)→ Ds

Q(Σ0(π), σ).
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It is a group homomorphism and we know the domain is isomorphic to Z[m−1]
and the range is isomorphic to Z[n−1]. We escape having to do any computa-
tions by simply observing that the only group homomorphism between these
groups is the zero homomorphism. We conclude that

Hs
1(X,ϕ) = ker(dsQ(π))1) = Ds

Q(Σ1(π), σ) ∼= Z[m−1],

while

Hs
0(X,ϕ) = Ds

Q(Σ0(π), σ)/Im(dsQ(π))1) = Ds
Q(Σ0(π), σ) ∼= Z[n−1],

and the maps induced by ϕ are as claimed.
The completes the proof in the special case that 3m < n.

3.2 Proof of Theorem 1.1: the general case

For the general case, m < n, we choose a positive, odd integer l such that
3ml < nl. The computations we have done hold for the solenoid (X,ϕl). But
this system has exactly the same homology groups as (X,ϕ) so

Hs
0(X,ϕ) = Hs

0(X,ϕl) ∼= Z[(nl)−1] = Z[n−1].

The map induced by ϕl is multiplication by n−l. We can view ϕ : (X,ϕl)→
(X,ϕl) as an s-bijective factor map, so it induces a map on homology. More-
over, its l-th power is the map induced by ϕl which is multiplication by
n−l. But as l was odd, we conclude that the map induced by ϕ must be
multiplication by n−1. A similar argument takes care of the first homology
group.

3.3 The remaining proofs

The proof of Corollary 1.2 is an immediate consequence of Theorem 1.1 and
Theorem 6.1.1 of [7].

For the proof of Corollary 1.3, we adopt the terminology of [7]. For the
proof of 1.1, we have used the fact that, with a small abuse of notation,
π = (Σ, σ, π,X, ϕ, idX) is an s/u-bijective pair for (X,ϕ). From this, we we
have computed the groups in the complex Cs

Q,A(π)L,M , L,M ≥ 0 and the
maps dsQ,A(π)L,M , L,M ≥ 0 between them.

We need to do the same for the Smale space (X,ϕ−1). Of course, the
main point is that the stable sets for ϕ−1 are precisely the unstable sets for
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ϕ, and vice verse. In short, π′ = (X,ϕ−1, idX ,Σ, σ
−1, π) is an s/u-bijective

pair for (X,ϕ−1).
The second key observation is that, for any shift of finite type (Σ, σ),

there is a natural isomorphism

Ds(Σ, σ−1) ∼= Du(Σ, σ)

and the isomorphism conjugates the canonical automorphism of the former
to that of the latter.

It follows from the definitions that, for all L,M ≥ 0,

Cs
Q,A(π′)L,M ∼= Cu

Q,A(π)M,L,

for all L,M ≥ 0, and this isomorphism conjugates the canonical automor-
phism of the former to that of the latter. The conclusion of 1.3 follows at
once.
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