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Abstract. Smale spaces were defined by D. Ruelle to describe
the properties of the basic sets of an Axiom A system for topologi-
cal dynamics. One motivation for this was that the basic sets of an
Axiom A system are merely topological spaces and not submani-
folds. One of the most important classes of Smale spaces is shifts of
finite type. For such systems, W. Krieger introduced a pair of in-
variants, the past and future dimension groups. These are abelian
groups, but are also with an order which is an important part of
their structure. The second author showed that Krieger’s invari-
ants could be extended to a homology theory for Smale spaces. In
this paper, we show that the homology groups on Smale spaces (in
degree zero) have a canonical order structure. This extends that
of Krieger’s groups for shifts of finite type.

1. Introduction

The original notion of a Smale space is due to David Ruelle, based
on the observation that the basic sets of Smale’s Axiom A systems do
not form submanifolds of the ambient manifold [16, 17, 2, 9, 8]. In
fact, Smale spaces are the topological dynamical systems that admit
a hyperbolic structure in terms of canonical coordinates of contracting
and expanding (or stable and unstable) directions. Hyperbolic toral
automorphisms, one-dimensional generalized solenoids as described by
R.F. Williams and shifts of finite type are all examples of Smale spaces.
In fact, any totally disconnected (irreducible) Smale space is conjugate
to a shift of finite type. In [11], W. Krieger defined two abelian groups
for shift of finite type called the past and future dimension groups in
terms of clopen sets of the stable and unstable sets. One of their most
important features is a natural order structure.

In [14], the second author defined a homology for Smale spaces which
extends the dimension groups for shifts of finite type. However, the
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homology groups as defined in [14] are not given any order structure.
In this paper, we prove that the homology groups of Smale spaces in
degree zero have a canonical order structure.

The paper is organized as follows. In the second section, we introduce
the basic concepts and notations (based on [14]) and state the main
results of this paper, which are proved in Sections 4 and 5. The shifts
of finite type which play an important role in the homology of Smale
spaces are reviewed in the third section and their dimension groups are
discussed as ordered groups.

2. Preliminaries

2.1. Smale spaces. A pair (X,ϕ) is called a dynamical system if X
is a topological space and ϕ is a homeomorphism of X. A dynamical
system (X,ϕ) is called irreducible if for every ordered pair of non-
empty open sets, U , V in X, there is a non-negative integer n such
that ϕn(U) ∩ V is non-empty. It is called mixing if for every ordered
pair of non-empty open sets, U , V in X, there is a non-negative integer
N such that ϕn(U) ∩ V is non-empty for any n ≥ N [2, 14].

Definition 2.1. ([16], 2.1.6 of [14]) For a compact metric space X, the
dynamical system (X,ϕ) is called a Smale space if there exist constants
εX and 0 < λ < 1 and a continuous map from

4εX = {(x, y) ∈ X ×X | d(x, y) ≤ εX}

to X (denoted by [·, ·]) such that, for every x, y, z ∈ X,
B 1 [x, x] = x,
B 2 [x, [y, z]] = [x, z],
B 3 [[x, y], z] = [x, z],
B 4 [ϕ(x), ϕ(y)] = ϕ([x, y]),

whenever both sides of the above equations are defined, and
C 1 d(ϕ(x), ϕ(y)) ≤ λ d(x, y), whenever [x, y] = y,
C 2 d(ϕ−1(x), ϕ−1(y) ≤ λ d(x, y), whenever [x, y] = x.

In a Smale space (X,ϕ), the local stable and unstable sets are de-
fined, for x in X and εX ≥ ε > 0, by

Xs(x, ε) = {y ∈ X | d(x, y) ≤ ε, [x, y] = y},
Xu(x, ε) = {y ∈ X | d(x, y) ≤ ε, [y, x] = y}.

It is a simple matter to show that, for any ε sufficiently small, [·, ·] :
Xu(x, ε) × Xs(x, ε) → X is a homeomorphism to its image, which is
a neighbourhood of x in X. The inverse is obtained by mapping y to
([x, y], [y, x]).
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Let (X,ϕ) be a Smale space. Two points x, y ∈ X are stable (resp,
unstable) equivalent if

lim
n→+∞

d(ϕn(x), ϕn(y)) = 0

(resp, limn→+∞ d(ϕ−n(x), ϕ−n(y)) = 0). We denote the stable (unsta-
ble) equivalence class of x by Xs(x) (resp, Xu(x))) [14].

Examples of Smale spaces include Anosov diffeomorphisms, the basic
sets from Smale’s Axiom A systems, various solenoids and certain sub-
stitution tiling spaces [10, 17, 4, 20, 21, 22]. Key examples are the shifts
of finite type, namely the doubly infinite path space of a finite directed
graph. We provide a more complete description in the next section. In
this case, the underlying space is totally disconnected [12, 14]. Con-
versely, any irreducible Smale space which is totally disconnected is
topologically conjugate to a shift of finite type.

A factor map π between dynamical systems (Y, ψ) and (X,ϕ) is a
continuous, surjective map π : Y → X satisfying ϕ◦π = π◦ψ. A factor
map π is finite-to-one if there is an upper bound on the cardinality of
the sets π−1{x}, as x runs over X [14]. It is almost one-to-one if
#π−1{x} = 1, for each x in some dense Gδ subset of X.

A map π : (Y, ψ)→ (X,ϕ) between Smale spaces is called s-bijective
(resp, u-bijective) if the restriction of π to Y s(y) (resp, Y u(y)) is a
bijection to Xs(π(y)) (resp. Xu(π(y))), for any y ∈ Y . Every s-
bijective (or u-bijective) map is finite-to-one [14].

Definition 2.2. (2.6.2 of [14]) Let (X,ϕ) be a Smale space. Then

π = (Y, ψ, πs, Z, ζ, πu)

is an s/u-bijective pair for (X,ϕ) if

• (Y, ψ) and (Z, ζ) are Smale spaces,
• πs : (Y, ψ) → (X,ϕ) is s-bijective and Xu(y) is totally discon-

nected, for every y ∈ Y,
• πu : (Z, ζ) → (X,ϕ) is u-bijective and Xs(y) is totally discon-

nected, for every z ∈ Z.

Theorem 2.3. (2.6.3 of [14]) Every irreducible Smale space (X,ϕ)
admits an s/u-bijective pair.

This result plays a crucial role in [14]. The homology is defined and
computed from such an object. While there may be many such s/u-
bijective pairs for a given (X,ϕ), it is shown in 5.5.1 of [14] that the
homology is independent of the choice.

Our first contribution here is to improve this situation by proving
the existence of s/u-bijective pairs with certain advantageous extra
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features. These will be important for our proofs later, but presumably,
will have many other applications.

Theorem 2.4. Every irreducible Smale space (X,ϕ) admits an s/u-
bijective pair π = (Y, ψ, πs, Z, ζ, πu) such that the Smale spaces (Y, ψ),
(Z, ζ) are irreducible and both maps πs and πu are almost one-to-one.

The proof is based on [15] and will be given in the subsection 4.1.

Definition 2.5. For any Smale space (X,ϕ), we say that an s/u-
bijective pair (Y, ψ, πs, Z, ζ, πu) is irreducible if both (Y, ψ) and (Z, ζ)
are irreducible and both maps πs and πu are almost one-to-one.

For a Smale space (X,ϕ) and s/u-bijective pair
π = (Y, ψ, πs, Z, ζ, πu), for each L,M ≥ 0, we define

ΣL,M(π) = {(y0, y1, . . . , yL, z0, z1, . . . , zM) ∈ Y L+1 × ZM+1 |
πs(yl) = πu(zm), for all 0 ≤ l ≤ L, 0 ≤ m ≤M}.

If we let σ be the obvious map on ΣL,M(π) induced by ψ and ζ,
(ΣL,M(π), σ) is a dynamical system. Indeed, it is also a Smale space
with totally disconnected stable and unstable sets, and so is a shift of fi-
nite type. In the special case that L = M = 0, this is usually called the
fibred product of (Y, ψ) and (Z, ζ). On the other hand, (ΣL,M(π), σ)
has an obvious action of the group SL+1 × SM+1, where SN+1 denotes
the permutation group of {0, 1, . . . , N} [14].

If the s/u-bijective pair is irreducible in the sense above, then the
fibred product is irreducible. By this we mean the shift of finite type
Σ0,0(π), σ) is irreducible. The other ΣL,M(π), σ) will not be, in general.
The proof of this result is long and will be given in subsection 4.2.

Theorem 2.6. Suppose (X,ϕ), (Y, ψ) and (Z, ζ) are irreducible Smale
spaces,

πs : (Y, ψ)→ (X,ϕ)

is an almost one-to-one, s-bijective factor map and

πu : (Z, ζ)→ (X,ϕ)

is an almost one-to-one, u-bijective factor map. Then the fibred product

Y ×X Z = {(y, z) ∈ Y × Z | πs(y) = πu(z)}

of maps πs and πu with ψ × ζ is an irreducible Smale space.
In addition, if (X,ϕ) is mixing then so is (Y ×X Z, ψ × ζ).

Of course, one application of the theorem is to an irreducible s/u-
bijective pair for (X,ϕ), but the result is more general, since it makes
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no assumptions that the local stable sets of Z or the local unstable sets
of Y are totally disconnected.

For a shift of finite type, (Σ, σ), Krieger introduced the dimension
group invariants, denoted here by Ds(Σ, σ) and Du(Σ, σ). These are
countable abelian groups and, if the shift of finite type is presented
as the edge shift of a finite directed graph G, they may be computed
directly as inductive limits from the adjacency matrix of G. We discuss
this more thoroughly in the next section.

The second author developed a homology theory for Smale spaces in
[14]. Let us briefly review the construction here. First, one considers
the dimension groups Ds(ΣL,M(π), σ) of the system, over all L,M ≥ 0.
At each index, a quotient of a certain subgroup is taken, denoted by
Ds
Q,A(ΣL,M(π), σ), which takes into account the action of the permu-

tation groups (section 5.1 of [14]). These groups are assembled into
a double complex, CsQ,A(π)L,M = Ds

Q,A(ΣL,M(π), σ), L,M ≥ 0, whose
homology is denoted by Hs

∗(π). There is an analogous construction of
Hu
∗ (π), using the unstable dimension groups Du. In [14], it is shown

that the result is independent of the choice of π, and so is written as
Hs
∗(X,ϕ) or Hu

∗ (X,ϕ) (Theorem 5.5.1 of [14]).
For the remainder of this paper, we will concentrate on Hs(X,ϕ).

Analogous results hold for Hu(X,ϕ).
The above construction is analogous to computing the Čech coho-

mology of a compact manifold by considering a ’nice’, finite, open cover
and the homology of its nerve. Here, the s/u-bijective pair replaces the
open cover. The shifts (ΣL,M(π), σ) evidently play the role of the nerve
of the cover, keeping track of the multiplicities of the cover. Finally,
Krieger’s dimension group invariant replaces the homology of the open
balls in the ’nice’ cover.

One of the most important features of Krieger’s invariant for a shift
of finite type is that it also carries a natural order structure. Moreover,
this is also easily computed from the corresponding directed graph. The
aim of this paper is to define a natural and canonical order structure
on the homology groups Hs

0(X,ϕ) and Hu
0 (X,ϕ).

Let us begin with the definition of an ordered abelian group.

Definition 2.7. [3] A pair (G,G+) is called an ordered abelian group
if G is an abelian group with a positive cone G+, which is a subset of
G satisfying the following conditions:

(1) G+ +G+ ⊆ G+,
(2) G+ −G+ = G,
(3) G+ ∩ −G+ = {0}.
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The elements of G+ are called positive elements of G and, for g1, g2

in G, we write g1 ≥ g2 (or g2 ≤ g1) when g1 − g2 ∈ G+.
A homomorphism Γ : G → H of ordered groups is called positive

if Γ(G+) ⊆ H+. An isomorphism Γ : G → H of ordered groups, is
an order isomorphism if both Γ and Γ−1 are positive homomorphisms
(equivalently, if Γ(G+) = H+). We remark that the inverse of a posi-
tive isomorphism is not positive in general. For example, consider the
ordered group Z2 with the positive cone {(m,n)|m,n ≥ 0}. The map
α(m,n) = (m + n, n) is a positive automorphism of Z2 whose inverse
is not positive.

The groups Ds(ΣL,M(π)), L,M ≥ 0, all carry canonical orders. Un-
fortunately, these do not induce orders on the groups Ds

Q,A(ΣL,M(π))
in our double complex, except in the special case when L = M = 0,
where Ds

Q,A(Σ0,0(π)) and Ds(Σ0,0(π)) are equal. We intend to lift
this order to the degree zero group in our double complex, namely
on ⊕L−M=0CsQ,A(π)L,M , by setting the positive cone to be those ele-
ments whose entries in the summand L = M = 0 are strictly positive,
together with the zero element. In particular, the entries in the posi-
tion L = M > 0 do not effect positivity. The positive cone Hs

0(π)+

in Hs
0(π) is then defined as those elements which are represented by a

positive cocycle in ⊕L−M=0CsQ,A(π)L,M . The difficulty is to show that
this gives a well-defined and well-behaved order on the homology.

Definition 2.8. Let π = (Y, ψ, πs, Z, ζ, πu) be an s/u-bijective pair for
the Smale space (X,ϕ). Let (CsQ,A(π), dsQ,A(π)) be the double complex
associated with π and Hs

∗(π) be the homology of this double complex.
We define the corresponding cones as follows:

(
⊕

L−M=0

CsQ,A(π)L,M))+ = {0} ∪ {a | 0 6= a0,0 ∈ CsQ,A(π)+
0,0},

and

Hs(π)+ = {a+ Im(
⊕

L−M=1

dsQ,A(π)L,M) |

a ∈ Ker(
⊕

L−M=0

dsQ,A(π)L,M) ∩ (
⊕

L−M=0

CsQ,A(π)L,M)+}.

Of course, both definitions are the obvious ones. The issue is now to
show that this provides good order structures, at least for irreducible
Smale spaces. The strategy is a simple one: we first assume that our
s/u-bijective pair is irreducible. We reduce to the case that the shift of
finite type, (Σ0,0(π), σ), is mixing. It follows that the order structure on
its dimension group is completely determined by the state which arises
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from its unique measure of maximal entropy, or the Parry measure -
see Theorem 3.4.

To take homology, we first pass to a subgroup (the cocycles) and then
take a quotient (by the coboundaries). The following rather elementary
result summarizes our task.

Theorem 2.9. [3] Let (G,G+) be an ordered abelian group and let
H ⊆ G be a subgroup.

(i) If G+ ∩H = {0}, then with

(G/H)+ = {a+H | a ∈ G+},
(G/H, (G/H)+) is an ordered abelian group.

(ii) If G+ ∩ H generates H, that is, (G+ ∩ H) − (G+ ∩ H) = H,
then (H,G+ ∩H) is an ordered abelian group.

The conditions for the subgroup and quotient in the above theorem
are complementary and could not hold at the same time (except for
trivial cases), but one should note that these conditions are going to
be applied to two separate cases with distinct subgroups (the subgroup
condition is applied to a ”kernel” in the complex, whereas the quotient
condition is used for the preceding ”image”).

Our first task is to show that G = Ker(
⊕

L−M=0 d
s
Q,A(π)L,M) and

H = Im(
⊕

L−M=1 d
s
Q,A(π)L,M) satisfy the hypotheses of the first part

of 2.9.

Theorem 2.10. Let π = (Y, ψ, πs, Z, ζ, πu) be an irreducible
s/u-bijective pair for the irreducible Smale space (X,ϕ). We have

(
⊕

L−M=0

CsQ,A(π)L,M)+ ∩ Im(
⊕

L−M=1

dsQ,A(π)L,M) = {0}.

Our second task is to show that G =
⊕

L−M=0 CsQ,A(π)L,M and
H = Ker(

⊕
L−M=0 d

s
Q,A(π)L,M) satisfy the hypotheses of the second

part of 2.9.

Theorem 2.11. Let π = (Y, ψ, πs, Z, ζ, πu) be an irreducible
s/u-bijective pair for the irreducible Smale space (X,ϕ). The subgroup
generated by

(
⊕

L−M=0

CsQ,A(π)L,M))+ ∩Ker(
⊕

L−M=0

dsQ,A(π)L,M)

is Ker(
⊕

L−M=0 d
s
Q,A(π)L,M).

As an immediate consequence of Theorems 2.9, 2.11 and 2.10, we
get our main result as follows.
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Theorem 2.12. Let (X,ϕ) be an irreducible Smale space and π =
(Y, ψ, πs, Z, ζ, πu) be an irreducible s/u-bijective pair for (X,ϕ). Then
Hs

0(π) is an ordered abelian group with the positive cone defined in 2.8.

The next issue is to see that the resulting order is independent of
the choice of π, in a suitable sense.

Theorem 2.13. Suppose (X,ϕ) is an irreducible Smale space, and

π = (Y, ψ, πs, Z, ζ, πu), π̃ = (Ỹ , ψ̃, π̃s, Z̃, ζ̃, π̃
u)

are s/u-bijective pairs for (X,ϕ). Assume that π is irreducible. Then

(1) Hs
0(π̃) is an ordered abelian group with the positive cone defined

in 2.8,
(2) There is an order isomorphism H from Hs

0(π) to Hs
0(π̃).

We also want to show that our order structure behaves well as a func-
tor. Already in [14], the functoriality for the groups alone is somewhat
subtle; Hs is covariant for s-bijective factor maps and contravariant for
u-bijective factor maps. We will show that the maps induced at the
level of groups from s-bijective factor maps and u-bijective factor maps
between the dynamical systems are positive group homomorphisms.

Theorem 2.14. Suppose (X,ϕ) and (X ′, ϕ′) are irreducible Smale
spaces.

(1) If ρ : (X,ϕ) → (X ′, ϕ′) is an s-bijective factor map. Then the
group homomorphism ρs0 : Hs

0(X,ϕ) → Hs
0(X ′, ϕ′) of [14] is

positive; that is, we have

ρs0(Hs
0(X,ϕ)+) ⊆ Hs

0(X ′, ϕ′)+.

(2) If ρ : (X,ϕ) → (X ′, ϕ′) is a u-bijective factor map. Then the
group homomorphism ρs∗0 : Hs

0(X ′, ϕ′) → Hs
0(X,ϕ) of [14] is

positive; that is, we have

ρs∗0 (Hs
0(X ′, ϕ′)+) ⊆ Hs

0(X,ϕ)+.

A couple of remarks are in order. All of our results are stated for
irreducible Smale spaces. They extend easily to Smale spaces in which
every point is non-wandering, since any such Smale space is the disjoint
union of a finite number of irreducible subsystems.

The ordered groups introduced by Krieger have a number of special
features. They are unperforated: if, for any element a, na is positive,
for some n ≥ 1, then a itself is positive. They also satisfy the Riesz
interploation property (see [7] for details). At this point, it is not clear
exactly which nice properties our ordered groups Hs

0(X,ϕ) may have.
However, one may observe, using [1], that they may have elements of
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finite order, which means that they are not unperforated in general.
It may be reasonable to expect them to be weakly unperforated: if
na > 0, for some n ≥ 1, then a > 0.

3. Dimension Groups and the Perron-Frobenius Theorem

3.1. Shifts of finite type. Shifts of finite type are usually defined
in terms of the alphabets and (forbidden) words, but here we use an
equivalent formulation in terms of graphs, which is more suitable for
our purposes.

A graph G consists of finite sets G0 and G1, consisting of vertices
and edges, respectively, and maps i, t : G1 → G0, marking the initial
and terminal points. The graph is drawn by depicting each vertex as
a dot and each edge e as an arrow from i(e) to t(e).

A path of length k in G is a sequence (e1, ..., ek), with ei ∈ G1, for
1 ≤ i ≤ k, such that t(ei) = i(ei+1), for 1 ≤ i < k. Let Gk denote the
set of all paths of the length k. For each k, Gk is a graph with vertices
Gk−1 and edges Gk, and the initial and terminal maps

i(e1, ..., ek) = (e1, ..., ek−1), t(e1, ..., ek) = (e2, ..., ek),

for (e1, . . . , ek) in Gk. To any graph G, a pair (ΣG, σ) is associated,
where

ΣG = { (en)n∈Z | en ∈ G
1, t(en) = i(en+1), n ∈ Z},

σ : ΣG → ΣG ; σ(e)n = en+1.

This is a dynamical system with the following metric

d(e, f) = inf{1, 2−K−1 | K ≥ 0, e[1−K,K] = f[1−K,K]}
on the ΣG, where e[K,L] = (eK , eK+1, . . . , eL), for K ≤ L, and e[K+1,K] =
t(eK) = i(eK+1).

It is easy to see that (ΣG, σ) is an Smale space with constants εX =
λ = 1

2
and

[e, f ]k =

{
fk k ≤ 0
ek k ≥ 1.

The system (ΣG, σ) is called the shift of finite type associated to the
graph G.

3.2. Dimension groups. In [11], Krieger defines two ordered groups
in terms of the clopen sets, for the shift of finite type, called the past
and future dimension groups.

Suppose (Σ, σ) is a shift of finite type and Σs(e) is the stable equiva-
lence class of e ∈ Σ. By Proposition 2.1.12 in [14], the set Σs(e) admits
a topology that is second countable and locally compact. This may be
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different from the relative topology of Σ. Let CO(Σ, σ) be the set of
non-empty, open and compact subsets of Σs(e), over all e in Σ, and ∼
be the smallest equivalence relation on CO(Σ, σ) such that E ∼ F if
[E,F ] = E and [F,E] = F and E ∼ F if and only if σ(E) ∼ σ(F ),
and let [E] denote the equivalence class of E.

Let Ds(Σ, σ) be the free abelian group on ∼-equivalence classes of
COs(Σ, σ) and and H be the subgroup generated by [E∪F ]− [E]− [F ],
where E, F and E∪F are in COs(Σ, σ) and E and F are disjoint. The
group Ds(Σ, σ) is defined to be Ds(Σ, σ)/H.

The order is obtained by defining

Ds(Σ, σ)+ = {[E] | E ∈ COs(Σ, σ)},
and then

Ds(Σ, σ)+ = {a+H | a ∈ Ds(Σ, σ)+}.
The ordered abelian group Du(Σ, σ) is defined in a similar way, by
replacing the unstable equivalence classes Σu(e) by Σs(e).

Krieger showed how this ordered group could be computed from the
underlying graph of the shift of finite type.

Before going into more details, we need some notation. Let A is a
finite set, then the free abelian group generated by A, ZA, is an ordered
abelian group with the positive cone {z1a1 + . . . + znan | z1, . . . , zn ∈
Z+ ∪ {0}, a1, . . . , an ∈ A, n ∈ N}. In our notation, A is considered as a
subset of ZA.

If A , B are finite sets and τ : A→ B is any function, then there is
a unique positive homomorphism Γ : ZA→ ZB extending τ .

For the finite set A, the integer-valued bilinear form 〈, 〉 is defined
on ZA× ZA which is additive in each variable, and for each a, b ∈ A,

〈a, b〉 =

{
1 if a = b,
0 if a 6= b

For two finite sets A, B, and homomorphism h : ZA→ ZB, there is
a unique homomorphism h∗ : ZB → ZA such that

〈h(a), b〉 = 〈a, h∗(b)〉,
for all a in ZA and b in ZB.

Let A = {a1, ..., am} and B = {b1, ..., bn}. We associate a matrix
[hij]n×m to the homomorphism h such that the entry hij is equal with
the coefficient bj in h(ai) when h(ai) is written in terms of the gener-
ating set B. We have

〈h(a), b〉 = 〈a, h∗(b)〉,
for a in ZA and b in ZB, that is, [h∗ij]m×n = ([hij]n×m)T , where MT

denotes the transpose of a matrix M .
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Now we compute the dimension group in terms of the underlying
graph of the shift of finite type.

Let (G0, G1, i, t) be a graph and (ΣG, σ) be the associated shift of
finite type. Suppose ZG0 is the free abelian group on the generating
set G0 and consider the homomorphism

γsG : ZG0 → ZG0; γsG(v) =
∑
t(e)=v

i(v) (v ∈ G0).

The past dimension group Ds(G) is defined as the inductive limit of
the system

ZG0 γsG−→ ZG0 γsG−→ . . . .

Since ZG0 is an ordered group and γsG is a positive homomorphism,
Ds(G) inherits an order structure in a natural way. Let us give a
brief and simple description of the elements of Ds(G). Two points
(a,m) and (b, n) in ZG0 × N are equivalent, denoted (a,m) ∼s (b, n),

if there exists l ∈ N ∪ {0} such that (γsG)n+l(a) = (γsG)m+l(b). The
equivalence class of (a,m) is denoted by [a,m]s and Ds(G) is the set
of all equivalence classes. The positive cone in this group consists of
those elements [a,m]s with (γsG)l(a) ∈ (ZG0)

+
, for some l in N.

The future dimension group for the graph (G0, G1, i, t) is defined in
a similar way, by replacing the homomorphism γuG : ZG0 → ZG0 by
γsG, where

γuG(v) = Σi(e)=vt(v),

for all v in G0. Note that γuG = (γsG)∗.
It is worth noting that in some places in the computation of the

homology, it is necessary to use the graph Gk instead of G, which does
not effect the answer. This can be viewed as a consequence of the next
theorem. The next two result appear as Theorems 3.3.3 and 3.5.5 in
[14], but without the order structure.

Theorem 3.1. Suppose G is a graph, (ΣG, σ) is the associated shift
of finite type and k ≥ 1. The homomorphism Ψ from Ds(ΣG, σ)
to Ds(Gk), defined on the generating elements by Ψ([Σs

G(e, 2−j)]) =
[e[1−j,k−j−1], j − k + 1], e ∈ ΣG, j ≥ k, is an order isomorphism.

We recall some notation from section 3.1 of [14], that if B is any
subset of A, Sum(B) =

∑
b∈B b ∈ ZA.

Theorem 3.2. Let G and H be graphs with a graph homomorphism
π : H → G and suppose that the associated map π : (ΣH , σ)→ (ΣG, σ)
is s-bijective, k ≥ 1, and K satisfies the conclusion of Lemma 2.7.1
in [14] for π. The induced map πs[a, j] = [πs,K(a), j] from Ds(Hk) to
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Ds(Gk+K) is a positive homomorphism, where a ∈ ZHk−1, j ≥ 1 and
πs,K(q) = Sum{π(q′) | q′ ∈ Hk+K , tK(q′) = q}.

3.3. The Perron-Frobenius Theorem. Let G be a finite directed
graph. The adjacency matrix, AG, is #G0×#G0 whose entries are the
number of edges between the different vertices of G. The shift of finite
type (ΣG, σ) is irreducible if and only if the graph G is irreducible, in
the sense that, for each ordered pair of vertices u and v in G, there
exists a path p in G starting at u and terminating at v. This is also
equivalent to the adjacency matrix being irreducible, in the sense that,
for each ordered pair of indices i, j, there is some non-negative integer
n such that (AG)ni,j > 0.

The shift of finite type (ΣG, σ) is mixing if and only if there is a
positive integer n such that, for every ordered pair of vertices u and v
in G, there exists a path of length n in G starting at u and terminating
at v. This is also equivalent to the adjacency matrix being primitive;
that is, there is some positive integer n such that (AG)ni,j > 0, for all
1 ≤ i, j ≤ m. If this holds for some fixed n, it also holds for all higher
values of n [12].

Let us recall the Perron-Frobenius Theorem (Theorem 4.2.3 of [12]).
If A is a non-negative irreducible square matrix, then it has a positive
eigenvalue λA and a right positive eigenvector vA associated to λA,
called the Perron eigenvalue and the Perron eigenvector, respectively,
such that |µ| ≤ λA, for every eigenvalue µ of A, and the corresponding
eigenspace of λA is both geometrically and algebraically simple.

Given our presentation using homomorphisms rather than matrices,
we state this in the following fashion. We apply this to both the adja-
cency matrix for the graph and its transpose, but these share the same
Perron eigenvalue. Assuming that the graph G is irreducible, there is
λG > 0 and vectors vsG, v

u
G in R+G0 such that

γsG(vsG) = λGv
s
G, γ

u
G(vuG) = λGv

u
G.

We have extended the definition of γsG, γ
u
G in the obvious way. We

remark that if we replace G by Gk, for some k ≥ 1, we obtain a higher
block presentation of the shift (see Definition 1.4.1 of [12]). The Perron
eigenvectors are changed, but not the eigenvalue: λGk = λG.

The Perron eigenvalue in the above result is related to the notion of
entropy as the below result shows. This could be defined for a general
dynamical system, but here we only deal with the shifts of finite type.
Let G be a graph and (ΣG, σ) be the corresponding shift of finite type.
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The entropy of (ΣG, σ) is defined (4.4.1 of [12]) by

h(ΣG, σ) = lim
n→∞

1

n
log #Gn

where #Gn is the number of paths of length n in G.

Theorem 3.3 (Theorem 4.4.4 [12]). If G is a graph, then we have
h(ΣG, σ) = log(λG).

The Perron-Frobenius Theorem also has a nice application for the
computation of the order structure of Ds(ΣG, σ), particularly in the
mixing case. This follows from Corollary 4.2 and Theorem 6.1 of [7].

Theorem 3.4. Let G be a finite directed graph whose associated shift
of finite type is mixing. For any n ≥ 1 and a in ZG0, the element [a, n]
is in Ds(G)+ − {0} if and only if < a, vuG > is positive.

We end this section with a result which gives a sufficient condition
for the surjectivity of maps between shifts of finite type.

Theorem 3.5 (Corollary 4.4.9 [12]). Suppose G and H are graphs
and π : (ΣG, σ) → (ΣH , σ) is a finite-to-one map. If the graph H is
irreducible and h(ΣG, σ) = h(ΣH , σ), then π is onto.

4. Irreducible s/u-bijective pairs and fibred products

4.1. Irreducible bijective pairs. The proof of the existence of s/u-
bijective pairs comes from [15]. Our proof of the existence of irreducible
ones must go back to the same starting point to see how the results of
[15] can be improved.

Suppose (X,ϕ) and (Y, ψ) are irreducible Smale spaces and π :
(X,ϕ) → (Y, ψ) is an almost one-to-one map. In [15], it is shown

that that there exist irreducible Smale spaces (X̃, ϕ̃), (Ỹ , ψ̃) and factor
maps α, β, π̃ such that the following diagram is commutative.

(X̃, ϕ̃)
π̃−→ (Ỹ , ψ̃)

α ↓ ↓ β
(X,ϕ)

π−→ (Y, ψ)

(4.1)

Moreover, the maps α, β are u-bijective and the map π̃ is s-bijective.
Regretably, it is not shown that α, β, π̃ are almost one-to-one, which is
what we undertake now. In fact, it will be enough to consider β. (The
space (X,ϕ) is appearing in a somewhat unfortunate position as the
domain, but we follow [15] for the moment.)

The proof involves finding a periodic point y0 in Y with π−1{y0} =
{x0}, a single point in X. Then W is the unstable set of the orbit
of x0 and it is shown that π(W ) is the unstable set of the orbit of
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y0. Let dX , dY be the metrics on X and Y , respectively. We view X
and Y as the completions of the space (W,dX) an d (π(W ), dY ). The
proof of [15] involves introduing new metrics on W and π(W ), δX and
δY , respectively so that X̃ and Ỹ are their completions. As these new
metrics are greater than or equal to the old ones, the factor maps α, β
appear automatically.

Here, we claim that β−1{y0} = {x0}. (The references here will all be
to [15].) To see this, it suffices to consider a sequence yn in π(W ) which
is Cauchy is δY and converges to y0 in dY and prove that it converges
to y0 in δY . For n sufficiently large, [y0, yn] is defined and using part 4
of 2.18, we have

δY (y0, yn) ≤ δY (y0, [y0, yn]) + δY ([y0, yn], yn)

≤ δY (y0, [y0, yn]) + (1− rλ)−1dY ([y0, yn], yn).

It suffices for us to show that [y0, yn] converges to y0 in δY . By replacing
yn by [y0, yn], we may assume that yn is in V s(y0, εY ). By part 2 of
2.12, we may assume that yn and y0 are ρ-compatible and then by
2.10, for all k ≥ 0, there is Nk ≥ 1, such that g−k(y0) and g−k(yn) are
ρ-compatible for n ≥ Nk.

Let ε > 0 be given. From the definition of δ0
Y in 2.14, it is bounded

by D. We may find K ≥ 1 such that
∑

k>K r
kD < ε/2. Find N ≥

max{Nk | 1 ≤ k ≤ K} so that, for n ≥ N and 0 ≤ k ≤ K, we have

dY (g−k(y0), g−k(yn) <
ε

2(K + 1)
.

It follows from 2.17 and part 4 of 2.15 that for such n,

δY (y0, yn) =
∞∑
k=0

rkδ0
Y (g−k(y0), g−k(yn))

≤
K∑
k=0

dY (g−k(y0), g−k(yn)) +
∞∑

k=K+1

rkD

<

K∑
k=0

ε

2(K + 1)
+
ε

2

= ε.

Exactly as in [15], we apply this result as follows. We begin with our
irreducible Smale space (X,ϕ) and find an irreducible shift of finite type
(Σ, σ) and an almost one-to-one factor map π : (Σ, σ) → (X,ϕ). The
system which is called (Ỹ , g̃) above, we denote by (Z, ζ) and the map
β by πu. The fact that Z has totally disconnected stable sets follows
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from the facts that Σ̃ is also a shift of finite type and π̃ is s-bijective.
Now, we also know that there is x0 in X with #π−1

u {x0} = 1.
We next want to show that if there is a single point x with #π−1{x} =

1, this will also hold for all points with dense forward or backward orbit
if we also assume that π is s-bijective or u-bijective. Recall that the
forward orbit of a point x is {ϕn(x) | n ≥ 0}, while the backward orbit
is {ϕn(x) | n ≤ 0}.
Lemma 4.1. Let (Y, ψ) and (X,ϕ) be Smale spaces and π : (Y, ψ) →
(X,ϕ) be an s-bijective (or u-bijective) factor map. Assume there is x0

in X such that π−1{x0} = 1. Then for any point x in X with a dense
forward (backward) orbit, we have #π−1{x} = 1.

Proof. We prove result in the case that π is s-bijective. List π−1{x} =
{y1, ..., yI}. Since the orbit of x is dense, we may find an increas-
ing sequence of positive integers nk such that ϕnk(x) converges to x0.
Passing to a subsequence, we may assume that for each 1 ≤ i ≤ I,
the sequence ψnk(yi) converges to some point of Y , and by continuity,
these points must all lie in π−1(x0). It remains to show that no such
two sequences can have the same limit. If there is 1 ≤ i 6= j ≤ I, then
d(ψnk(yi), ψ

nk(yj)) tends to zero, as k goes to infinity. Then we have

π(ψnk(yi)) = ϕnk(π(yi)) = ϕnk(x) = ϕnk(π(yj)) = π(ψnk(yi)).

Using the fact that π is s-bijective, Proposition 2.5.2 in [14] implies
that, for k sufficiently large,

ψnk(yi) ∈ Y u(ψnk(yj), επ),

which implies that
yi ∈ Y u(yj, λ

nkεπ).

Since this is true for all k, we conclude yi = yj, and we are done. �

The set of points with a dense forward orbit is rather large in an
irreducible system. The following result is standard; see, for example,
Theorem 5.9 of [18].

Proposition 4.2. Let (X,ϕ) be a dynamical system, with X a compact
metric space. If (X,ϕ) is irreducible, then the set of all points x with
dense forward orbit is a dense Gδ subset of X.

It is probabaly worth noting that Lemma 4.1 and Proposition 4.2
together prove the following.

Corollary 4.3. Let (Y, ψ) and (X,ϕ) be Smale spaces and π : (Y, ψ)→
(X,ϕ) be an s-bijective (or u-bijective) factor map. Then π is almost
one-to-one if and only if there is a point x0 in X such that #π−1{x0} =
1.
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We have also now proved Theorem 2.3, that every irreducible Smale
space has an irreducible s/u-bijective pair.

4.2. The fibred product of maps. Let π1 : (Y, ψ) → (X,ϕ) and
π2 : (Z, ζ)→ (X,ϕ) be maps between Smale spaces and

Y ×X Z = {(y, z) ∈ Y × Z | π1(y) = π2(z)}
be the fibred product of π1, π2, with the relative topology of Y ×Z. By
Theorem 2.4.2 in [14], Y ×X Z is an Smale space, with ψ × ζ(y, z) =
(ψ(y), ζ(z)), for (y, z) ∈ Y ×X Z. We also note that there are natural
maps ρ2 : (Y ×X Z, ψ × ζ) → (Z, ζ) defined by ρ2(y, z) = z and
ρ1 : (Y ×X Z, ψ × ζ)→ (Y, ψ) defined by ρ1(y, z) = y. We note that if
π1 is s-bijective (or u-bijective), then so is ρ2.

The drawback is that the fibred product of maps on irreducible Smale
spaces is not irreducible in general. In this section, we prove the irre-
ducibility of the fibred product (Y ×X Z, ψ × ζ) under certain natural
conditions.

Proposition 4.4. Let π1 : (Y, ψ)→ (X,ϕ) and π2 : (Z, ζ)→ (X,ϕ) be
either s-bijective or u-bijective, almost one-to-one factor maps between
irreducible Smale spaces. Then the natural maps ρ1 and ρ2 be from the
fibred product to Y and Z, respectively, are also almost one-to-one.

Proof. The set of x in X with #π−1
1 {x} = 1 is a dense Gδ, as is the set

of x with #π−1
2 {x} = 1. It follows that their intersection is non-empty.

If x is in this intersection and π1(y) = x, π2(z) = x, it is a simple
matter to see that

ρ−1
2 {z} = {(y, z)} = ρ−1

1 {y}.
Noting that ρ1 and ρ2 are also either s-bijective or u-bijective and
Corollary 4.3, this completes the proof. �

We will need two technical results for the proof of Theorem 2.6. The
first is a characterization of irreducibility.

Lemma 4.5. Let (X,ϕ) be a Smale space. If there exists a point x
in X whose forward orbit clusters on every periodic point of X, then
(X,ϕ) is irreducible.

Proof. Let y be an accumulation point of the backward orbit of x.
It is clearly non-wandering and so it is in the closure of the periodic
points. It follows that y is also a limit point of the forward orbit of
x. By patching the forward orbit of x that gets close to y with part
of the backward orbit of x that begins close to y, we can form pseudo-
orbits from x to itself and conclude that x is in the non-wandering
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set. The orbit of x will remain in the same irreducible component
of the non-wandering set. Hence all periodic points are in the same
irreducible component. This implies that there is only one irreducible
component. If X contained a wandering point, its forward orbit and
backward orbits would limit on two distinct irreducible components.
As this is not possible, X has no wandering points. �

Lemma 4.6. Let πs : (Y, ψ) → (X,ϕ) be an s-bijective almost one-
to-one factor map between irreducible Smale spaces and (X,ϕ) and
(Y, ψ). Let x0 be a periodic point of X with π−1{x0} = {y1, y2, ..., yI}.
For δ, ε > 0, put U = [Xu(x0, δ), X

s(x0, δ)] and, for 1 ≤ i ≤ I, let

Vi = {x ∈ U | π−1{[x, x0]} ⊆ Y (yi, ε)},

where Y (yi, ε) denotes the open ball at yi of radius ε. Then there exist
arbitrarily small positive pairs δ, ε such that

(i) Vi is open,
(ii) Vi is non-empty,
(iii) [Vi, U ] ⊂ Vi.

Proof. First choose ε to be smaller than επ and also smaller than half
of the distance between yi and yj, over all 1 ≤ i 6= j ≤ I. Then choose
δ > 0 so that Lemma 2.5.11 of [14] holds. It follows easily from the
continuity of the bracket and Lemma 2.5.9 of [14] that Vi is open for all
i. Let us next fix i and prove that Vi is non-empty. By hypothesis, there
exists a point x′ with dense forward orbit and #π−1{x′} = 1. Notice
that any point in the orbit of x′ also has these properties, as does any
point stably equivalent to a point in the orbit of x′. Let y′ in Y be
the unique point with π(y′) = x′. Since (Y, ψ) is irreducible, the stable
equivalence class of the orbit of y′ is dense. So there exists y′′ stably
equivalent to some point in the orbit of y′ in Y u(yi, ε). Let us check
that π(y′′) is in Vi. As ε < επ, we know [π(y′′), x0] = π([y′′, yi]) = π(y′′)
and hence π−1{[π(y′′), x0] = {y′′}} is in Y (yi, ε). Finally, we verify that
last condition. Suppose that x is in Vi and x1 is in Xu(x0, δ) and x2 in
Xu(x0, δ). Since [x, [x1, x2]] = [x, x2] is in Vi, [[x, x2], x0] = [x, x0] and
the conclusion follows. �

We have most of the ingredients for the proof of Theorem 2.6, but
for the last statement, we need some convenient characterizations of
mixing.

Lemma 4.7. Suppose (X,ϕ) is an irreducible Smale space. The fol-
lowing are equivalent.

(1) (X,ϕ) is mixing
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(2) For any periodic point x in X, we have Xs(x) ∩Xu(ϕ(x)) 6= ∅
and Xu(x) ∩Xs(ϕ(x)) 6= ∅.

(3) For some periodic point x in X, we have Xs(x)∩Xu(ϕ(x)) 6= ∅
and Xu(x) ∩Xs(ϕ(x)) 6= ∅.

Proof. This is a consequence of the Smale’s spectral decomposition. Let
∼ be the equivalence relation on the periodic points of (X,ϕ) in the
Smale’s spectral decomposition, that is, for two periodic points x, y ∈
X, x ∼ y, if and only if Xs(x) ∩ Xu(y) 6= ∅ and Xu(x) ∩ Xs(y) 6= ∅.
Then there are pairwise disjoint clopen sets X1, . . ., XN whose union
is X, ϕ(Xi) = ϕ(Xi+1) for 1 ≤ i ≤ N − 1, ϕ(XN) = X1 and (Xi, ϕ

N)
is a mixing Smale space, for every 1 ≤ i ≤ N . Moreover each Xi is
the closure of an equivalence class of ∼ and these sets are unique up
to relabeling.

If we assume that (X,ϕ) is mixing, then N above must equal 1 and
the second condition holds. The second part obviously implies the
third. Finally, if x is periodic point, so is ϕ(x). Suppose x ∈ Xi, for
some 1 ≤ i ≤ N−1, Xs(x)∩Xu(ϕ(x)) 6= ∅ and Xu(x)∩Xs(ϕ(x)) 6= ∅.
Then x ∼ ϕ(x), thus ϕ(x) ∈ Xi∩Xi+1. Since Xi’s are pairwise disjoint,
Xi = Xi+1. The same argument shows that Xi = Xi+1 = . . . = XN .
Similarly, if x ∈ XN , then XN = X1 = . . . = XN−1. Therefore, N = 1,
hence X = Xi and (X,ϕ) is a mixing space. �

Proposition 4.8. If π : (Y, ψ)→ (X,ϕ) is an almost one-to-one factor
map between Smale space, (Y, ψ) is irreducible and (X,ϕ) is mixing,
then (Y, ψ) is mixing also.

Proof. We will verify the condition of the last Lemma. Suppose y is
in Y and x is in X such that π−1{x} = {y}. Since (X,ϕ) is mix-
ing, it is irreducible and hence by Proposition 2.3 in [15], we can find
a periodic point x0 ∈ X with #π−1{x0} = 1. Let y0 ∈ Y with
π(y0) = x0. Since x0 is periodic and π is finite-to-one, y0 is a pe-
riodic point. By the argument of the proof of Lemma 2.4 in [15],
π−1(Xs(x0)) = Y s(y0), π−1(Xs(ϕ(x0))) = Y s(ψ(y0)), π−1(Xu(x0)) =
Y u(y0) and π−1(Xu(ϕ(x0))) = Y u(ψ(y0)). Since (X,ϕ) is a mixing
Smale space, we have

Xs(x0) ∩Xu(ϕ(x0)) 6= ∅, Xu(x0) ∩Xs(ϕ(x0)) 6= ∅
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that implies

Y s(y0) ∩ Y u(ψ(y0)) = π−1(Xs(x0)) ∩ π−1(Xu(ϕ(x0)))

= π−1(Xs(x0) ∩Xu(ϕ(x0))) 6= ∅,
Y u(y0) ∩ Y s(ψ(y0)) = π−1(Xu(x0)) ∩ π−1(Xs(ϕ(x0)))

= π−1(Xu(x0) ∩Xs(ϕ(x0))) 6= ∅.

Therefore, by the Lemma 4.7, (Y, ψ) is mixing. �

Proof. (Theorem 2.6) The sets of points of X with dense forward and
backward orbits are both dense Gδ’s and so their intersection is non-
empty. Let x be a point in X with a dense forward orbit and a dense
backward orbit. Let y and z be its unique pre-images under πs and πu,
respectively. By Lemma 4.5, it suffices to prove that the forward orbit
of (y, z) clusters on every periodic point. Let (y1, z1) be a periodic
point in the fibred product. Let x1 = πs(y1) = πu(z1). Enumerate
π−1
s {x1} = {y1, ..., yI} and π−1

u {x1} = {z1, ..., zJ}.
For small δ, ε, let Vi, 1 ≤ i ≤ I and Wj, 1 ≤ j ≤ J be the result of

applying Lemma 4.6 to the maps πs and πu, respectively. Observe that
since πu is u-bijective, the last condition on Wj is [U,Wj] ⊆ Wj . We
have

V1 ∩W1 ⊇ [V1, U ] ∩ [U,W1] ⊇ [V1,W1],

which is clearly non-empty. Also V1 ∩W1 is open. It follows that there
is n ≥ 1 with ϕn(x) ∈ V1 ∩W1. This implies that ψn(y) ∈ Y (y1, ε) and
ζn(z) ∈ Z(z1, ε). Since ε was arbitrary, this completes the proof of the
first part. The mixing case follows from two applications of Proposition
4.8. �

5. Homology

In this section, we prove the main results on the homology of Smale
spaces, stated in the first section. Suppose (X,ϕ) is a Smale space, then
so is (X,ϕn), for any positive integer n, and if π = (Y, ψ, πs, Z, ζ, πu)
is an s/u-bijective pair for (X,ϕ), then πn = (Y, ψn, πs, Z, ζ

n, πu) is an
s/u-bijective pair for (X,ϕn). The results in chapters 4 and 5 of [14]
show that (CQ,A(Σ(π)), dQ,A(Σ(π))) and (CQ,A(Σ(πn)), dQ,A(Σ(πn)))
admit the same cocycle and coboundaries. On the other hand, by
Smale’s spectral decomposition, for every irreducible Smale space,
(X,ϕ), X can be written as a union of pairwise disjoint clopen subsets
X1, ..., XL such that ϕL(Xi) = Xi, for each 1 ≤ i ≤ L, and (Xi, ϕ

L)’s
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are mixing Smale spaces [17]. Hence

Hs
N(X,ϕ) ∼= Hs

N(X,ϕL) ∼=
L⊕
i=1

Hs
N(Xi, ϕ

L),

for any positive integer N , and this along with Theorem 2.13 allows us
to replace an irreducible Smale space by a mixing one.

Under the assumption that (X,ϕ) is mixing, we find π, an irreducible
s/u-bijective pair for (X,ϕ). It follows at once from Propositions 4.8,
4.4 and Theorem 2.6, that (Σ0,0(π), σ) = (Y ×X Z, ψ×ζ) is mixing and
ρs and ρu are almost one-to-one.

We start with two lemmas that are simpler versions of Theorems 2.11,
2.10. Both of these consider the following situation: a shift of finite type
(Σ, σ), a Smale space (Y, ψ) and a factor map ρ : (Σ, σ)→ (Y, ψ) which
is either s-bijective or u-bijective. In Chapter 4 of [14], a complex is
formed from such a map. It is a simpler object than the double complex
associated to an s/u-bijective pair, but its importance lies in the fact
that the individual rows and columns of the double complex all arise in
this fashion. Applying this to our map ρs : (Σ0,0(π), σ)→ (Y, ψ) yields
the bottom row of our double complex. Similarly, applying this to our
map ρu : (Σ0,0(π), σ) → (Z, ζ) yields the left column of our double
complex.

To a factor map ρ as above, we let

ΣN(ρ) = {(x0, . . . , xN) ∈ ΣN+1 | ρ((x0) = . . . = ρ(xN)},
for all N ≥ 0. There are obvious maps δn : ΣN(ρ) → ΣN−1(ρ), for
0 ≤ n ≤ N and N ≥ 1.

Lemma 5.1. Let (Σ, σ) be a mixing shift of finite type, (Y, ψ) be a
mixing Smale space and ρs : (Σ, σ) → (Y, ψ) be an s-bijective, almost
one-to-one factor map. Then Im(δs0 − δs1) ∩Ds(Σ0(ρs))

+ = {0}.

Proof. We begin by finding a graph G whose associated shift (ΣG, σ)
is conjugate to (Σ, σ). (We suppress the conjugacy in our notation.)
From Theorem 4.2.8 in [14], this G may be chosen so that the map ρs
is regular. (The definition of regular is given in 2.3.3 of [14]. We will
not really need it here, but we will indicate where it is used shortly.)

If (x0, x1) is in Σ1(ρs), then x0 and x1 are bi-infinite paths in G and
if we take their 0-th entries we obtain a pair in G1×G1. We let G1

1 be
the set of all such pairs over all (x0, x1) in Σ1(ρs) and G0

1 be the image
of this set under t× t. Then G1 is a graph with obvious i, t maps. The
significance of our choice that ρs is regular is that

ΣG1 = Σ1(ρs).
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(The elements of the set on the left are infinite sequences of pairs of
edges of G, while those on the right are pairs of infinite sequences of
edges of G, but we feel no confusion will arise from equating the two.)

It is clear from letting x0 = x1 that Gi
1 contains all pairs (a, a) where

a is in Gi. We denote this subgraph by G∆
1 . As ρs is s-bijective, any

edge in G1 which terminates in G∆
1 must actually be in G∆

1 .
Let G′1 consist of those vertices not in G∆

1 and all edges whose initial
vertex is not in G∆

1 . This is a graph and its infinite path space ΣG′1
maps to ΣG by δ0. If this map is surjective, then every point of Y has
at least two distinct pre-images under ρs, contrary to our hypothesis.
Using Theorem 3.5, we conclude that

log(λG′1) = h(ΣG′1
, σ)) = h(δ0(ΣG′1

, σ)) < h(ΣG, σ) = log(λG).

It follows that there is a constant C such that #(G′1)j ≤ C(λG′1)
j, for

all j ≥ 1.
Following the discussion prior to Theorem 4.2.13 of [14], for k ≥ 0,

we choose Bk
1 to be a subset of of Gk

1 which contains no paths of the
form (p0, p1) if p0 = p1 and for p0 6= p1, it contains exactly one of
(p0, p1) and (p1, p0). Following Theorem 4.2.13 of [14], for any k ≥ 0,
j ≥ 1, p in Bk

1 , we let

t∗A(p, j) = {(q, α) ∈ Gk+j
1 × S2 | tj(q) = p, ij(q) · α ∈ Bk

1}.
The point here is that any path q with ij(q) = p ∈ Bk

1 ⊆ (G′1)k must lie
entirely in G′1. It is then clear that #t∗A(p, j) ≤ C(λG′1)

j+k. The map

γs
Bk

1
: ZBk

1 → ZBk
1 is defined just before 4.2.13 of [14]. We conclude

from the first part of 4.2.13 of [14] that if η : ZBk−1
1 → R is any

group homomorphism and a is in ZBk−1
1 , then there is a constant D

(depending on a) such that
η((γsB1

)j(a)) < D(λG′1)
j, for all j ≥ 1.

Consider the following diagram

ZBk
1

γs
Bk
1 //

Q
��

ZBk
1

Q
��

Q(Gk
1, S2)

γs
Gk
1 //

δs,K0 −δs,K1
��

Q(Gk
1, S2)

δs,K0 −δs,K1
��

ZGk+K
γs
Gk+K // ZGk+K .

The second part of 4.2.13 of [14] tells us that the top square com-
mutes and that the vertical maps are isomorphisms. The bottom square
commutes by Theorem 4.2.3, Definition 4.2.4 and Theorem 4.2.5 of [14].
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We consider η(·) =< (δs,K0 −δs,K1 )◦Q(·), vu
Gk+K >, where vu

Gk+K is the
Perron eigenvector for γu

Gk+K . It follows that, for any a in ZBk
1 , there

is D such that

D(λG′1)
j ≥ η((γsBk

1
)j(a))

= < (δs,K0 − δs,K1 ) ◦Q((γsBk
1
)j(a)), vuGk+K >

= < (γsGk+K )j(δs,K0 − δs,K1 ) ◦Q(a)), vuGk+K >

= < (δs,K0 − δs,K1 ) ◦Q(a)), (γuGk+K )j(vuGk+K ) >

= λjG < (δs,K0 − δs,K1 ) ◦Q(a)), vuGk+K > .

As 0 < λG′1 < λG, the conclusion we draw from this is that

< (δs,K0 − δs,K1 ) ◦Q(a)), vu
Gk+K > is not positive. This implies that

(δs,K0 − δs,K1 ) ◦Q(a) is not in Ds(Gk)+ − {0}. This holds for every a in

ZBk
1 , but as Q is an isomorphism, we also see that Im(δs,K0 − δs,K1 ) ∩

Ds(Gk)+ = {0}. The conclusion follows. �

Lemma 5.2. Let (Σ, σ) be a mixing shift of finite type, (Z, ζ) be a
mixing Smale space and ρu : (Σ, σ) → (Z, ζ) be a u-bijective, almost
one-to-one factor map. Then the subgroup generated by Ker(δs∗0 −δs∗1 )∩
Ds(Σ0(ρu))

+ is Ker(δs∗0 − δs∗1 ).

Proof. First, suppose that we have a strictly positive element a in
(ZGk+K)

+
such that (δs∗,K0 −δs∗,K1 )(a) = 0. Then [a, j] ∈ Ker(δs∗0 −δs∗1 ),

for every j in N. It follows that every [b, j] in Ker(δs∗0 − δs∗1 ) can be
written as the difference elements

[b, j] = [b+ na, j]− [na, j],

in which n ∈ N. It is a simple consequence of Theorem 3.4 that we

may chose n large enough such that b + na ∈ (ZGk+K
0,0 )

+
. This means

Ker(δs∗0 − δs∗1 ) ∩Ds(Σ0(ρu))
+ generates Ker(δs∗0 − δs∗1 ).

In order to obtain the element a as above, let us return to the proof
of Lemma 5.1, using ρu and replacing s with u throughout. We now
consider the diagram

ZBk
1

γu
Bk
1 //

J
��

ZBk
1

J
��

A(Gk
1, S2)

γu
Gk
1 //

δu,K0 −δu,K1
��

A(Gk
1, S2)

δu,K0 −δu,K1
��

ZGk+K
γu
Gk+K // ZGk+K
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The third part of 4.2.13 of [14] tells us that the top square commutes
and that the vertical maps are isomorphisms. The bottom square com-
mutes by Theorem 4.2.3, Definition 4.2.4 and Theorem 4.2.5 of [14].

The same argument as given earlier shows that
< (δu,K0 − δu,K1 )(a), vs

Gk+K > is not positive, for every a in
A(Gk

1, S2). But this also applies to −a and it follows that

0 =< (δu,K0 − δu,K1 )(a), vsGk+K >

for every a. Then by Lemma 3.5.6 of [14] (where there is a typo,
switching s∗ and u∗), we get

0 =< a, (δs∗,K0 − δs∗,K1 )(vsGk+K ) >

for every a. It follows that (δs∗,K0 − δs∗,K1 )(vs
Gk+K ) = 0. If vs

Gk+K had
integer entries, we would be done.

If we view (δs∗,K0 −δs∗,K1 ) as a linear map, the condition above means
that it has a non-trivial kernel. That kernel has a basis and since the
transformation has matrix with integer entries, we can obtain a basis
for the kernel consisting of rational vectors. We know that vs

Gk+K is a
positive vector and it also must be a linear combination of the rational
basis for the kernel. If we carefully choose rational scalars, we may
find a rational vector, also in the kernel, and sufficiently close to vs

Gk+K

so that all its entries are positive. If we then multiply by a suitable
integer, we find a positive integer vector a ∈ ZGk+K in the kernel of
(δs∗,K0 − δs∗,K1 ). This completes the proof. �

Proof. (Theorems 2.11 and 2.10) Consider the fibred product Σ0,0(π)
of maps πs and πu, and let G be a presentation of π. Since (X,ϕ) is
mixing, so is Σ0,0(π), by 2.6. From Theorem 5.1.4 of [14], the bottom
row in our double complex is the same as the complex for the map ρs
while the first column is the same as the complex for the map ρu. Now
the two theorems follow from Lemmas 5.1 and 5.2, respectively. �

Suppose π and π̃ are the s/u-bijective pairs given in Theorem 2.13.
It is shown in [14] that the homology of Smale spaces is independent
of the corresponding s/u-bijective pair. This is done in Section 4.5 of
[14], where an isomorphism is found between the homology of the rows
of the complexes

(⊕L−M=N(Cs
Q,A(π)L,M ,⊕L−M=N(dsQ,A(π)L,M)

and

(⊕L−M=N(Cs
Q,A(π̃)L,M ,⊕L−M=N(dsQ,A(π̃)L,M),
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and then using Theorem 3.9 of [13], it is extended to an isomorphism
between the homologies of the complexes

(⊕L−M=N(Cs
Q,A(π)L,M ,⊕L−M=N(dsQ,A(π)L,M)

and

(⊕L−M=N(Cs
Q,A(π̃)L,M ,⊕L−M=N(dsQ,A(π̃)L,M).

We use these isomorphisms to show that Hs
0(π̃) is an ordered group

with the positive cone defined in 2.8, and that, these are indeed ordered
isomorphisms.

Let us first remind the reader that there is a minor mistake in the
statement of Theorem 3.5.11 in [14] used to prove the independence and
functorial properties of the homology for Smale spaces (see Sections
5.4 and 5.5 in [14]). Deeley and co-authors proved that the surjectivity
condition in this theorem must be replaced by the conjugacy condition
[6]. It follows that we also need the conjugacy condition in Theorem
5.4.1 in [14]. Here we state the correct versions of these results from
[6].

Theorem 5.3. Suppose that

(Σ, σ)
η1−→ (Σ1, σ)

η2 ↓ ↓ π1

(Σ2, σ)
π2−→ (Σ0, σ)

is a commutative diagram of non-wandering shifts of finite type, in
which η1 and π2 are s-bijective factor maps, and η2 and π1 are u-
bijective factor maps. If η2 × η1 : (Σ, σ) → (Σ2, σ) π2 ×π1 (Σ1, σ) is a
conjugacy, then

ηs1 ◦ ηs
∗

2 = πs
∗

1 ◦ πs2 : Ds(Σ2, σ)→ Ds(Σ1, σ). (5.1)

Theorem 5.4. Let π = (Y, ψ, πs, Z, ζ, πu) and
π′ = (Y ′, ψ′, π′s, Z

′, ζ ′, π′u) be s/u-bijective pairs for the Smale spaces
(X,ϕ) and (X ′, ϕ′), respectively, and η = (ηY , ηX , ηZ) be a triple of
factor maps such that the following diagram commutes:

(Y, ψ)
πs−→ (X,ϕ)

πu←− (Z, ζ)

ηY

y ηX

y ηZ

y
(Y ′, ψ′)

π′s−→ (X ′, ϕ′)
π′u←− (Z ′, ζ ′).

(i) If η is a triple of s-bijective maps and

πu × ηZ : (Z, ζ)→ (X,ϕ) ηX ×π′u (Z ′, ζ ′)
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is a conjugacy, then for L ≥ 0,M ≥ 1,

(ΣL,M(π))
ηL,M−→ (ΣL,M(π′))

δ,m

y δ′,m

y
(ΣL,M−1(π))

ηL,M−1−→ (ΣL,M−1(π′)),

and for L ≥ 1,M ≥ 0,

(ΣL,M(π))
ηL,M−→ (ΣL,M(π′))

δl,

y δ′l,

y
(ΣL−1,M(π))

ηL−1,M−→ (ΣL−1,M(π′))

are commutative diagrams and

ηL,M × δ,m : (ΣL,M(π))→ (ΣL,M(π′)) δ′,m ×ηL,M−1
(ΣL,M−1(π))

is a conjugacy. Moreover, η induces chain maps between the
complexes Cs

Q,A(π) and Cs
Q,A(π′), and hence group homomor-

phisms ηs∗ : Hs
N(π)→ Hs

N(π′), for every integer N.
(ii) If η is a triple of u-bijective maps and

πs × ηY : (Y, ψ)→ (X,ϕ) ηX ×π′s (Y ′, ψ′)

is a conjugacy, then for L ≥ 0,M ≥ 1,

(ΣL,M(π))
ηL,M−→ (ΣL,M(π′))

δ,m

y δ′,m

y
(ΣL,M−1(π))

ηL,M−1−→ (ΣL,M−1(π′)),

and for L ≥ 1,M ≥ 0,

(ΣL,M(π))
ηL,M−→ (ΣL,M(π′))

δl,

y δ′l,

y
(ΣL−1,M(π))

ηL−1,M−→ (ΣL−1,M(π′))

are commutative diagrams and

ηL,M × δl, : (ΣL,M(π))→ (ΣL,M(π′)) δ′l, ×ηL−1,M
(ΣL−1,M(π))

is a conjugacy. Moreover, η induces chain maps between the
complexes Cs

Q,A(π′) and Cs
Q,A(π), and hence group homomor-

phisms ηs∗ : Hs
N(π′)→ Hs

N(π), for every integer N.



26 M. AMINI, I.F. PUTNAM, S. SAEIDI

We remark that the results obtained in [14] (the independence and
functorial properties) are all correct, because the diagrams constructed
there satisfy the conjugacy condition.

By Theorem 3.2, both maps ηs1 ◦ ηs∗2 and πs∗1 ◦ πs2 in 5.1 are positive
homomorphisms.

Theorem 5.5. For graphs G,H, suppose θ : H → G is a left-covering
graph homomorphism, (X,ϕ) is a Smale space and ρ : (ΣG, σ)→ (X,ϕ)
is a regular s-bijective factor map. The map θ induces an isomorphism
between the homologies of the chain complexes (Ds(Σ∗(ρ◦θ)), ds(ρ◦θ))
and (Ds(Σ∗(ρ), ds(ρ)).

In fact, the map θ induces homomorphisms θs∗ at all levels of the
complexes with the following commutative diagram:

Ds(Hk
N)

ds(ρ◦θ)N−→ Ds(Hk+K
N−1 )

θsN ↓ ↓ θsN−1

Ds(Gk
N)

ds(ρ)N−→ Ds(Gk+K
N−1),

for each N ≥ 1 and k ≥ 0, where K ≥ 1 satisfies the conclusion of
Lemma 2.7.2 in [14], for the map ρ.

To show that the induced homomorphism on the homology of the
above complexes by θs∗, is an isomorphism, one could choose a lifting
map λ : G0 → H0 with θ ◦ λ = IdG0 . Then Lemma 4.5.4 in [14] shows
that, for each N ≥ 0,

ds,K(ρ ◦ θ)N ◦ λ = λ ◦ ds,K(ρ)N . (5.2)

We claim that

θs(Ker(ds(θ ◦ ρ)N) ∩ (Ds(Hk
N))+) = Ker(ds(ρ)N) ∩ (Ds(Gk

N))+,

θs(Im(ds(θ ◦ ρ)N+1) ∩ (Ds(Hk+K
N ))+) = Im(ds(ρ)N+1) ∩ (Ds(Gk+K

N ))+.

By Theorem 3.2,

θs(Ker(ds(θ ◦ ρ)N) ∩ (Ds(Hk
N))+) ⊆ Ker(ds(ρ)N) ∩ (Ds(Gk

N))+

and

θs(Im(ds(θ ◦ ρ)N+1) ∩ (Ds(Hk+K
N ))+) ⊆ Im(ds(ρ)N+1) ∩ (Ds(Gk+K

N ))+.

Suppose that b ∈ ZGk
N+1 and j ≥ 0, with ds(ρ)N+1([b, j]) in

Ds(Gk+K
N )+. By Theorem 4.2.3 in [14],

ds(ρ)N+1([b, j]) = [ds,K(ρ)N+1(b), j] ∈ Ds(Gk+K
N )+,

which implies that, for some j′ ≥ 0,

(γsGN
)j
′
(ds,K(ρ)N+1(b)) ∈ (ZGk+K

N )+.
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By Theorem 4.2.3 in [14],

(γsGN
)j
′
(ds,K(ρ)N+1(b)) = ds,K(ρ)N+1((γsGN

)j
′
(b)) ∈ (ZGk+K

N )+.

Let b1 = (γsGN
)j
′
(b) and j1 = j′ + j. Then

[ds,K(ρ)N+1(b), j] = [ds,K(ρ)N+1(b1), j1],

and since λ((ZGk
N+1)+) ⊆ (ZHk

N+1)+, it follows from 5.2 that,

ds,K(ρ ◦ θ)N+1 ◦ λ(b1) = λ ◦ ds,K(ρ)N+1(b1) ∈ (ZHk+K
N )+.

Let a1 = λ(b1). Applying θs,0 = θ to both sides of the above equality,

θs,0(ds,K(ρ ◦ θ)N+1(a1)) = θs,0(λ ◦ ds,K(ρ)N+1(b1)) = ds,K(ρ)N+1(b1),

hence

[θs,0(ds,K(ρ ◦ θ)N+1(a1)), j1] = [ds,K(ρ)N+1(b1), j1] = [ds,K(ρ)N+1(b), j],

and so
θs(ds(ρ)N+1[a1, j1]) = ds(ρ)N+1([b, j]).

Since b is an arbitrary element in ZGk
N+1 with

ds(ρ)N+1([b, j]) ∈ Ds(Gk+K
N )+,

the last equality implies

Im(ds(ρ)N+1) ∩ (Ds(Gk+K))+ ⊆ θs(Im(ds(θ ◦ ρ)N+1) ∩ (Ds(Hk+K))+).

A similar argument shows that

Ker(ds(ρ)N) ∩ (Ds(Gk))+ ⊆ θs(Ker(ds(θ) ◦ ρ)N ∩ (Ds(Hk))+).

Combining Theorems 3.1, 5.5, with Theorem 4.5.3 in [14], we get the
following result.

Theorem 5.6. Suppose (X,ϕ) is a Smale space and (Σ, σ), (Σ′, σ)
are shifts of finite type with s-bijective maps ρ : (Σ, σ) → (X,ϕ) and
ρ′ : (Σ′, σ) → (X,ϕ). Let (Y ′′, ψ′′) be the fibred product of maps ρ :
(Σ, σ) → (X,ϕ) and ρ′ : (Σ′, σ) → (X,ϕ), and η, η′ be the natural s-
bijective maps from (Y ′′, ψ′′) to (Y, ψ) and (Y ′, ψ′), respectively. Then

(i) There is a chain map ηs from (Ds(ΣN(ρ ◦ η)), ds(ρ ◦ η)N) to
(Ds(ΣN(ρ)), ds(ρ)N) such that

ηs(Ker(ds(ρ ◦ η)N) ∩Ds(ΣN(ρ ◦ η))+) = Ker(ds(ρ)N ∩Ds(ΣN(ρ))+),

ηs(Im(ds(ρ ◦ η)N) ∩Ds(ΣN(ρ ◦ η))+) = Im(ds(ρ)N ∩Ds(ΣN(ρ))+).

(ii) There is a chain map C
′

from (Ds(ΣN(ρ′ ◦ η′)), ds(ρ′ ◦ η′)N) to
(Ds(ΣN(ρ′)), ds(ρ′)N) such that

η′
s
(Ker(ds(ρ′ ◦η′)N)∩Ds(ΣN(ρ′ ◦η′))+) = Ker(ds(ρ′)N ∩Ds(ΣN(ρ′))+),

η′
s
(Im(ds(ρ′ ◦ η′)N) ∩Ds(ΣN(ρ′ ◦ η′))+) = Im(ds(ρ′)N ∩Ds(ΣN(ρ′))+).
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(iii) ηs and η′s induce isomorphisms at the level of the associated
homologies of the chain complexes.

As in Section 5.5 of [14], we prove Theorem 2.13 in the case Z = Z̃,

ζ = ζ̃ and πu = π̃u. The cases Y = Ỹ , ψ = ψ̃, and πs = π̃s is proved
in a similar way, and the general result follows from these two special
cases.

Let (Y ′, ψ′) denote the fibred product of the maps πs : (Y, ψ) →
(X,ϕ), π̃s : (Ỹ , ψ̃) → (X,ϕ), and η′, η̃′ denote the the natural s-

bijective maps from (Y ′, ψ′) to (Y, ψ) and (Ỹ , ψ̃), respectively. Then
π′ = (Y ′, ψ′, πs ◦η′, Z, ζ, πu) is an s/u-bijective pair for the Smale space
(X,ϕ), and the following diagram is commutative:

(Y ′, ψ′)
πs◦η−→ (X,ϕ)

πu←− (Z, ζ)

η′
y IdX

y yIdZ
(Y, ψ)

πs−→ (X,ϕ)
πu←− (Z, ζ)

(5.3)

This diagram satisfies the conditions of the first part of Theorem 5.4,
and the triple of s-bijective η = (η′, IdX , IdZ) induces a chain map
on the double complexes used to define Hs

N(π′) and Hs
N(π), N ∈ Z.

Since Ds
Q,A(Σ(π), σ) = Ds(Σ(π), σ), Ds

Q,A(Σ(π′), σ) = Ds(Σ(π′), σ),
and ηsL,M , ηu∗L,M are positive homomorphisms, by Theorem 3.2, we have

ηs0,0(Ker(ds(π)0,0) ∩Ds(Σ(π), σ)+) ⊆ Ker(ds(π′)0,0) ∩Ds(Σ(π′), σ)+

ηs0,0(Im(ds(π)1,0) ∩Ds(Σ(π))+) ⊆ Im(ds(π′)1,0) ∩Ds(Σ(π′), σ)+

(5.4)

Let HN(η) be the induced homomorphism by the chain map ηs∗,∗ at
the level of homologies from HN(π′) to Hs

N(π). This is known to be an
isomorphism. We claim that this is ordered isomorphism after proving
that HN(π′) is an ordered group. To prove that HN(π′) is an ordered
group, it suffice to show that inclusions in 5.4 are indeed equalities.

To prove that HN(η) is an isomorphism, for N ∈ Z, one need to con-
sider the filterations F pCs

Q,(π
′) and F pCs

Q,(π) for the differential graded
abelian groups (Hs(π′), dsQ,A(π′)) and (Hs(π), dsQ,A(π)), respectively, as
in Section 5.5 of [14]. These filterations satisfy the conditions of Theo-
rem 3.9 in [13]. According to this theorem, every isomorphism Φ1 be-
tween E∗,∗1 terms of the associated spectral sequences (of these filtration
differential graded modules) induces an isomorphism Φ∞ between E∞
terms of the associated spectral sequences (roughly, Φ∞(a) = Φ1(a),
when we regard a as an element of the associated E∗,∗1 term). The iso-
morphisms HN(η) is then constructed using the isomorphisms between
the E∞ terms, for N ∈ N. The E∗,∗1 terms, for each of these filterations,
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are the homologies of the rows of the corresponding complexes, that is,

Ep,q
1 (π) = Ker(d̃s(ρ,M)L)/Im(d̂s(ρ,M)L+1),

and the same for π′, where

d̃s(ρ,M)L = ds(ρ,M)L |⊕L≥2p+q,M=p C
s
Q,(π)

and
d̂s(ρ,M)L+1 = ds(ρ,M)L+1 |⊕L≥2p+q+1,M=p C

s
Q,(π) .

Since the maps θ and ρu in Σ(π′)
θ−→ Σ(π)

ρu−→ (Z, ζ) are s-bijective,
where θ((y, ỹ), z) = (y, z), by Theorem 5.6, we have a chain map θs from
(Cs(π′)∗,M , d

s((ρu ◦ θ),M)∗) to (Cs(π)∗,M , d
s((ρu),M)∗), that induces an

isomorphism Hθ at the level of homologies of the complexes, for fixed
M ≥ 0, so that

θs(Ker(ds(ρ,M)L) ∩ (Cs(π′)L,M)+) = Ker(ds(ρ,M)L) ∩ (Cs(π)L,M)+,

and

θs(Im(ds(ρ,M)L+1) ∩ (Cs(π′)L,M)+) = Im(ds(ρ,M)L+1) ∩ (Cs(π)L,M)+,

for each L ≥ 0, and fixed M ≥ 0.
If one lifts Hθ at the level of homologies of the complexes

(Cs
Q,(π

′)∗,M , d
s
Q,((ρu ◦ θ),M)∗), (Cs

Q,(π)∗,M , d
s
Q,((ρu),M)∗),

by the first part of Theorem 4.3.1 in [14], for fixed M ≥ 0, since

Cs
Q,(π

′)0,0 = Cs(π′)0,0 = Ds(Σ0,0(π′), σ),

and
Cs
Q,(π0)0,0 = Cs(π)0,0 = Ds(Σ0,0(π), σ),

for
Ks(π) := Ker(ds(ρ,0)0) ∩ (Ds(Σ0,0(π′), σ))+),

and
Is(π) := Im(ds(ρ,0)0) ∩ (Ds(Σ0,0(π′), σ))+),

we have
Cθ(K

s(π′)) = Ks(π), Cθ(I
s(π′)) = Is(π′).

In fact, Hθ is an isomorphism between the terms E∗,∗1 (π′) and E∗,∗1 (π).
Therefore, Theorem 3.9 in [13] implies that there is an isomorphism
Hθ at the level of homologies of the complexes (Cs

Q,(π
′), dsQ,(π

′)) and
(Cs
Q,(π), dsQ,(π)), that is constructed by the induced isomorphism H∞

on E∗,∗∞ terms with Hθ (roughly, H∞(a) = Hθ(a) when we regard a ∈
E∗,∗∞ as an element of E∗,∗1 ). Since the isomorphism Hθ is directly
defined by H∞ (or Hθ), it is the same as the induced homomorphism
by the chain map ηsQ,, where η = (η′, IdX , IdZ) is the triple s-bijective
in the diagram 5.3 and ηsQ, exactly behaves like θs, when θs is considered
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as a map on the domain of ηsQ,. On the other hand, since the maps u and
ū in the proof of Theorem 3.9 in [13], are natural and Ds

Q,(Σ0,0, σ) =
Ds(Σ0,0, σ), for

Ks
Q, (π) := Ker(dsQ,(π

′)0,0) ∩ (Ds(Σ0,0(π′), σ))+,

and

IsQ, (π) := Im(dsQ,(π
′)1,0) ∩ (Ds(Σ0,0(π′), σ))+

we have

ηsQ,(K
s
Q, (π

′)) = Ks
Q, (π), ηsQ,(I

s
Q, (π

′)) = IsQ, (π). (5.5)

Let J (π′) and J (π) be the isomorphisms induced by the chain maps
JQ(π′) and JQ(π), as in Theorem 5.3.2 in [14], respectively. Then
H0(η) = J (π) ◦Hθ ◦J (π′)−1 and it is an isomorphism from Hs

N(π′) to
Hs
N(π), and since Ds

Q,A(Σ0,0, σ) = Ds(Σ0,0, σ), for

Ks
Q,A(π) := Ker(dsQ,A(π)0,0) ∩ (Ds(Σ0,0(π), σ))+,

and

IsQ,A(π) := Im(dsQ,A(π)1,0) ∩ (Ds(Σ0,0(π), σ))+,

we have

JQ(π)(Ks
Q,A(π′)) = Ks

Q,(π), JQ(π)(IsQ,A(π′)) = IsQ,(π). (5.6)

The equalities 5.5, 5.6 show that Ker(dsQ,A(π′)0,0) contains positive
elements if and only if Ker(dsQ,A(π)0,0) does so (and the same holds
for Im(dsQ,A(π′)1,0) and Im(dsQ,A(π)1,0)). Since Im(dsQ,A(π)1,0) does not
contain any positive element, and Ker(dsQ,A(π)0,0) contains at least one
positive element, Im(dsQ,A(π′)1,0) could not contain any positive element
and Ker(dsQ,A(π′)0,00 contains at least one positive element, and these
imply that Hs

0(π′) is an ordered group with the positive cone defined as
above. Also by 5.5 and 5.6, H(η) is an order isomorphism. Replacing

(Ỹ , ψ̃) by (Y, ψ) in 5.3, we get that Hs
0(π̃) is an ordered group with the

positive cone defined as in Definition 2.8 and H(η̃) = Hs
N(π′)→ Hs

N(π̃)
is an order isomorphism. Finally, H0(η̃) ◦H0(η)−1 is an order isomor-
phism from Hs

0(π) to Hs
0(π̃).

Proof. (Theorem 2.14) We only prove the first part. The other is proved
in a similar way. By Theorem 4.2 in [6], we can find s/u-bijective pairs
π = (Y, ψ, πs, Z, ζ, πu) and π′ = (Y ′, ψ′, π′s, Z

′, ζ ′, π′u) for Smale spaces
(X,ϕ) and (X ′, ϕ′), respectively, and s-bijective maps ηY and ηZ , such
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that the following diagram commutes:

(Y, ψ)
πs−→ (X,ϕ)

πu←− (Z, ζ)

ηY

y ρ
y ηZ

y
(Y ′, ψ′)

π′s−→ (X ′, ϕ′)
π′u←− (Z ′, ζ ′),

and πu × ηZ : (Z, ζ) → (X,ϕ) ρ ×π′u (Z ′, ζ ′) is a conjugacy. Therefore,
ρ induces a positive homomorphism ρs0 : Hs

0(X,ϕ) → Hs
0(X ′, ϕ′), by

Theorems 5.4, 3.2 and 2.13 and the order structure is independent of
the s/u-bijective pair. �
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