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Abstract

We consider Smale spaces, a particular class of hyperbolic topo-
logical dynamical systems, which include the basic sets for Smale’s
Axiom A systems. We present an algebraic invariant for such systems
which is based on Krieger’s dimension group for the special case of
shifts of finite type. This theory provides a Lefschetz formula relating
trace data with the number of periodic points of the system, answer-
ing a question posed by R. Bowen. The key ingredient is the existence
of Markov partitions with special properties.

1 Introduction

Smale introduced the notion of an Axiom A diffeomorphism of a compact
manifold [16]. For such a system, a basic set is a closed invariant subset of
the non-wandering set which is irreducible in a certain sense. One of Smale’s
key observations was that such a set need not be a submanifold. Typically,
it is some type of fractal object.

The Artin-Masur zeta function encodes the data of the periodic points for
a dynamical system. Manning proved that for any basic set of an Axiom A
system, the associated Artin-Masur zeta function is rational. This led Bowen
to conjecture the existence of a homology theory for such systems which had a
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Lefschetz-type theorem. Such a theory would immediately imply Manning’s
rationality result. Such a theory is given in [14]. The aim of this article is to
give a short summary of this theory without proofs.

The theory takes, as its starting point, the notion of the dimension group
of a shift of finite type introduced by Krieger [9] and the fundamental result
of Bowen [2] that every basic set is a factor of a shift of finite type.

In an effort to give a purely topological (i.e. without reference to any
smooth structure) description of the dynamics on a basic set, Ruelle intro-
duced the notion of a Smale space [15]: a Smale space is a compact metric
space, (X,d), and a homeomorphism, ¢, of X, which possesses canonical
coordinates of contracting and expanding directions. The precise definition
involves the existence of a map |[,] giving canonical coordinates. Here, we
review only the features necessary for the statements of our results.

There is a constant ex > 0 and, for each z in X and 0 < € < ey,
there are sets X*(z, €) and X*(z, €), called the local stable and unstable sets,
respectively, whose product is homeomorphic to a neighbourhood of . As €
varies, these form a neighbourhood base at . Moreover, there is a constant
0 < A < 1 such that

d(e(y), v(2)) < Ad(y,2), y,2¢€ X*(z,ex)
Al (), 9 '(2)) < Ad(y,z), y,ze€ X"(z,ex)

The bracket [z,y] is the unique point in the intersection of X*(x,ey) and
X*(y,ex). We say that (X, ¢) is non-wandering if every point of X is non-
wandering for ¢ [8].
Stable and unstable equivalence relations are defined by
/o= {(z,y) | lim d("(z),¢"(y)) = 0}

n—-+00
R* = {(z,y)| lim d(e™"(x),¢™"(y)) = 0}.
We let X*(z) and X“(x) denote the stable and unstable equivalence classes
of x in X. However, there are natural, much nicer topologies which are given
by using the families X*(2,¢),2" € X*(2),0 < € < ex and X“(2/,¢€),2" €
X*%(x),0 < € < ey, respectively, as bases.

The main examples of such systems are shifts of finite type (of which
we will say more in a moment), hyperbolic toral automorphisms, solenoids,
substitution tiling spaces (under some hypotheses) and, most importantly,
the basic sets for Smale’s Axiom A systems [16, 3].
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Let (Y, ) and (X, ¢) be Smale spaces. A factor map from (Y, ) to (X, ¢)
is a function 7 : Y — X which is continuous, surjective and satisfies m o) =
pom. It is clear that, for any y in Y, m(Y*(y)) C X*(7(y)) and 7(Y*(y)) C
X*(m(y)). David Fried [7] defined 7 to be s-resolving (or w-resolving) if,
for every y in Y, the restriction of m to Y*(y) (or to Y*(y), respectively)
is injective. We say that 7 is s-bijective (or u-bijective) if, for every y in
Y, 7 is a bijection from Y*(y) to X*(w(y)) (or from Y"(y) to X*(n(y)),
respectively). This actually implies that 7 is a local homeomorphism from
the local stable sets (or unstable sets, respectively) in Y to those in X. In the
case that (X, ) is non-wandering, s-resolving (u-resolving) and s-bijective
(u-bijective, respectively) are equivalent.

2 Shifts of Finite type

Shifts of finite type are described in detail in [10]. We consider a finite
directed graph G. This consists of a finite vertex set G°, a finite edge set G*
and maps 4,¢ (for initial and terminal) from G* to G°. The associated shift
space
EG = {6 = <€k)kez | ek € Gl,t(ek) = i<€k+1), ke Z}

consists of all bi-infinite paths in G, specified as an edge list. The map o is
the left shift on X defined by o(e)* = ef+1 for all e in ¥ and k in Z. By a
shift of finite type, we mean any system topologically conjugate to (X, o),
for some graph G. This is not the usual definition, but is equivalent to it
(see Theorem 2.3.2 of [10]). For e in ¥, we define el®t] = (eX ... el), for
all integers K < L and also elf*1K] = ¢(eX) | for convenience. We then use
the metric

d(e, f) = inf{1, 27V [ =N = fUERAL N> 0},

for e, f in Xg. We observe that such systems are Smale spaces by not-
ing that the bracket operation is defined, with ex = 1/2, as follows. For
e, [ in Xg, [e, f] is defined if t(e°) = ¢(fY) and then it is the sequence,
(..., f74 f% e e?...). For any [ > 1 and ey in Xg, the local stable and
unstable sets are given by

Yi(e,27Y) = {eeX|ef =eb k> 1},

Ye(eg,27) = {eeX | =ek k<)

It is a simple matter to see the constant A = 1/2 will satisfy the axioms.
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Theorem 2.1. Shifts of finite type are exactly the zero-dimensional (i.e.
totally disconnected) Smale spaces.

The fundamental role of shifts of finite type is demonstrated by the fol-
lowing universal property, due to Bowen [2]. This builds on earlier results by
many others, including Adler and Weiss and Sinai.

Theorem 2.2 (Bowen). Let (X, ) be a non-wandering Smale space. Then
there exists a mon-wandering shift of finite type (X,0) and a finite-to-one
factor map

T (%,0) = (X, ).

3 Krieger’s dimension group invariant

Krieger [9] defined the past and future dimension groups of a shift of finite,
(3,0), as follows. Consider D*(X, o) to be the collection of compact open
subsets of ¥%(e, €), as e varies over ¥ and 0 < € < ex. We let ~ denote the
smallest equivalence relation on D*(3, o) such that

1. If E, F are in D*(3,0) with [E, F| = F and [F, E] = E (meaning both
are defined), then £ ~ F

2. If E,F,p(F) and ¢(F) are all in D*(X,0), then E ~ F if and only if
P(E) ~ o(F).

As an example, it is a simple matter to check that for any eg, fo and integer
[ > 1, the sets X% (eg, 27!) and & ( fo, 27!) (as described just prior to Theorem
2.2) are equivalent if i(ey') = i(f5 ).

We generate a free abelian group on the equivalence classes of elements,
E, of D*(X,0) (denoted [E]) subject to the additional relation that [FUF] =
[E] + [F], if EUF is in D*(X,0) and F and F are disjoint. The result is
denoted by D*(X, ). There is an analogous definition of D*(¥, o).

Theorem 3.1 (Krieger [9]). Let G be a finite directed graph and (X¢,0) be
the associated shift of finite type. Then D*(Xq,0) (or D*(¥q,0), respec-
tively) is isomorphic to the inductive limit of the sequence

7G5 760 s .
where ZG° denotes the free abelian group on the vertex set G and the map
v (v) = Zt(e):vi(e), for any v in G° (or respectively, replacing ~v* by v,
whose definition is the same, interchanging the roles of i and t).
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The first crucial result for the development of our theory is the following
functorial property of D® and D", which can be found in [4].

Theorem 3.2. Let (X,0) and (X', 0) be shifts of finite type and let
m:(X,0) = (X, 0) be a factor map.

1. If 7 is s-bijective, then there are natural homomorphisms
™ . D%(X,0) — D*(X, o),
T . DX, o) — DX, 0).

2. If w is u-bijective, then there are natural homomorphisms
7™ = D%X,0) — D"(X, o),
™ . D¥(X o) — D%, 0).

The idea is simple enough: in the covariant case, the induced map sends
the class of a set £/ in D*(3, o) to the class of 7(E), while in the contravariant
case, the map sends the class of E' in D*(¥’, ¢) to the class of 7~1(E’). The
latter is not correct since 7~'(E’) may not even be contained in a single
stable equivalence class, but it suffices that it may be written as a finite
union of elements of D*(X, o). These ideas can be made precise under the
stated hypotheses.

4 s/u-bijective pairs
The key ingredient in our construction is the following notion.

Definition 4.1. Let (X, ) be a Smale space. An s/u-bijective pair, w, for
(X, ) consists of Smale spaces (Y, ®) and (Z,() and factor maps

T (Y,0) = (X,9),  m:(Z,0) = (X, )
such that
1. Y"(y,€) is totally disconnected, for ally in'Y and 0 < e < ey,
2. s 15 s-bijective,

3. Z°(z,¢€) is totally disconnected, for all z in Z and 0 < € < €z,
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4. m, 1s u-biyjective.

To summarize the idea in an informal way, the space Y is an extension
of X, where the local unstable sets are totally disconnected, while the local
stable sets are homeomorphic to those in X. The existence of such s/u-
bijective pairs, at least for non-wandering (X, ¢), can be deduced from the
results of [13] or [6]. It can be viewed as a coordinate-wise version of Bowen’s
theorem.

If (Y, ¢, my, Z,(, ) is an s/u-bijective pair for (X, ¢), then we form the
fibred product (7)) = {(y,2) € Y x Z | w5(y) = mu(2)} with the map
0 = 1 X (|x(x) and the two canonical projections p, : 3(m) — Y and p; :
Y(m) — Z. It is an easy matter to check that the former is u-bijective while
the latter is s-bijective. It follows that both local stable and local unstable
sets in X(m) are totally disconnected and, hence, that (X(7),0) is a shift of
finite type. Thus, we recover Bowen’s result 2.2 with the additional condition
that m may be factored as m = m50p, = m,0ps, with maps with the additional
properties described. We remark that it is not true that an arbitrary map
as in Theorem 2.2 has such a decomposition.

Theorem 4.2. If (X, ¢) is non-wandering, then there exists an s/u-bijective
pair for (X, p).

Definition 4.3. Let 7 = (Y, ¢, 7y, Z,(,7s) be an s/u-bijective pair for

(X, ). For each L, M > 0, we define

EL,M(W> = {(y()a"'ayLvZOa"')ZM)’yl EY,ZmEZ,
Ts(y) = Tu(2m),0 <1< L0 <m < M}

For simplicity, we also denote ¥ () by X(7).
We deﬁne orL.M*: EL7M(7T) — EL,M(W) by

oM (Yo, -3 YLy 205 -+ -5 2m) = (V(Wo), -, ¥ (yr), C(20)s - - -, C(2m))-

For L >1and 0 <1 < L, weleté, : Xpu(m) = Xp_1m(m) be the
map which deletes entry y,. Similarly, the map 6., : X p(7) = Xpar—1(m)
deletes entry z,,, for M > 1,0 <m < M.

The important properties of these systems and maps is summarized as
follows.



Theorem 4.4. 1. Forevery L, M >0, (X, m(7),00.:) is a shift of finite
type.

2. For L>1,0<1<L, the map 4, is an s-bijective factor map.

3. For M >1,0<m < M, the map ¢, is a u-bijective factor map.

5 Homology

There are actually two homology theories here. One, based on the dimension
group D?® will be denoted by H? and the other, based on D", will be denoted
by HY. We will concentrate on the former for the remainder of this note.

It is worth noting that, if (X, ¢) is a Smale space, then so is (X, p™1),
although ’stable’ in the former is the same as 'unstable’ in the latter. Fol-
lowing this idea carefully through the theory, one can check that H"(X, )
is naturally isomorphic to H*(X, o).

Let (X, ) be a Smale space and suppose that
m = (Y,¢,7s, Z,(,m,) is an s/u-bijective pair for (X,p). By applying
Krieger’s invariant to each of the shifts of finite type, ¥, p(7), and the
maps between them induced by the maps 0;,9,,,0 <1 < L,0 <m < M, one
obtains a double complex. In a standard way, we can take the homology of
this double complex as follows.

We define

CS(W)NZ @ DS(ZL’M(W%O'L,M)

L—-M=N

for every N in Z and a boundary map d*(m)y : C%(7) — C%_,(w) by

L M+1
d(m)n| DY (Spar, ona) = > (=10 + Y (1) Hes
=0 m=0

where, in the special case L = 0, we set d5 = 0.

Unfortunately, this complex is rather large and we will replace it with
others that are more manageable. In more technical terms, the fact that
Krieger’s invariant is covariant for the maps 9; but contravariant for the
maps 0, mean that the the double complex is a ’second quadrant’ double
complex, despite our choice of indexing L, M > 0. In simplicial homology,
there are two complexes which may be used. One is called the ordered
complex (which is analogous to one which we have above) and the second is
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called the alternating complex. In the former, the N-chains are constructed
from N + 1-tuples of vertices, all in a single simplex. In the latter, the N-
chains are constructed from the N-simplices. The difference is that the former
allows for repetition of vertices (i.e. degenerate simplices) and distinguishes
between permutations of the vertices. The latter does not consider the order,
except for orientation.

In our case, we have actions of the group permutation group Sy X Shr41
on (X p(m), o ) and hence on the invariant D*(Xp, a (), o ar). We write
these actions on the right. We form Dg (31 (), o1,a7) which the quotient
of D*(Xpa(m),0p.m) by the subgroup of all elements which are fixed under
some transposition and all elements of the form a—sgn(a)a-(a, 1), where a is
in Spy1. We also form a subgroup D*,(Xp ar(7), or,n) of D*(3p0(7),0,01)
consisting of those elements a such that a - (1,) = sgn(f)a, for all § in
Sy1- Finally, we form a subgroup of the former, also a quotient of the
latter, DG (X, (m), 0r,0), which incorporates the action of Sp1 X Spr41.
We define complexes (C (), dg (7)), (C4(m), d4(7))
and (Cg 4(m),dg 4(m)) using these groups instead.

The most obvious advantage of these new complexes is the following.
Each s-bijective or u-bijective factor map is finite-to-one. Indeed, there are
constants Ly and My such that

#m, {x} < Lo, #m,  {x} < M,

for all z in X. Tt follows that Dg (Xpa(7),00.n) = 0 if L > Ly,
D?A(ZL,M(W),OLVM) =0if M > M, and DE7A(ZL7M(7T),O'L’M) = 0 if either
L 2 LO or M Z M().

Standard techniques in homological algebra yield the following.

Theorem 5.1. Let w be an s/u-bijective pair for the Smale space (X, p). We
have a commutative diagram of chain complexes and chain maps as shown:

(C2(m), diy(m) —— (C*(x), d*(m))

QAL QL
(O (), d 4 (7)) 22 (O (), d (7))

Moreover, the maps Q4 and Jg both induce isomorphisms on homology.

So the three new complexes all have the same homology. It seems likely
that the original complex also has the same homology, but this does not seem
to follow easily from standard techniques.
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Definition 5.2. Let (X, ) be a Smale space and 7 be an s/u-bijective pair
for (X, ). We define H*(m) to be the homology of the complex
(Cya(m),dg 4(7)). There is an analogous definition of H" ().

We remark that the definition is valid for any Smale space which has an
s/u-bijective pair, which includes all non-wandering Smale spaces.

6 Properties

We want to establish some basic properties of our theory. The first crucial
result is the following. It is stated in a slightly informal manner, but one
which conveys the main idea.

Theorem 6.1. Let (X, ) be a Smale space and 7 be an s/u-bijective pair
for (X, ). Hi(m) is independent of the s/u-bijective pair
m= (Y, 7, Z,(,m,) and depends only on (X, ).

Henceforth, we denote H?(mw) by H:(X, ) instead.

Theorem 6.2. The homology theory H: is functorial in the following sense.
If p: (X, ) = (X', ¢') is an s-bijective factor map, then there are induced
group homomorphisms

p° Hy (X, ) = Hy (X', ¢'),

for all N in Z. If the map p is a u-bijective factor, then there are induced
group homomorphisms

p™ i HY (X' ¢') = HY (X, ),
for all N in Z.

The following is an easy consequence of our earlier observation that
D 4(Xrm(7),00,0) is non-zero for only finitely many values of L and M
and the fact that Krieger’s invariant is always a finite rank abelian group.

Theorem 6.3. For any Smale space (X, ) which has an s/u-bijective pair,
the groups H%, (X, @) are finite rank and are non-zero for only finite many
values of N.



Finally, we have the following analogue of the Lefschetz formula. Given
(X, ), we can regard ¢! as a factor map from this system to itself. It is both
s-bijective and u-bijective and so, by Theorem 6.2, induces an automorphism
of our invariant, denoted (¢ ~1)*. The proof of the following result, already
known in the case of shifts of finite type, uses ideas of Manning [11].

Theorem 6.4. For any non-wandering Smale space (X, ) and p > 1, we
have

Yonez(=DNTr((07) @ )P - HY(X, ) @ Q = HY (X, 9) ® Q)
= #{r € X [¢(z) =z}

7 Examples

We present four examples where the computations above may be carried out
quite explicitly. All of the examples are computed using the double complex

(CSQ,A(W)v dsQ,A(W))'

Example 7.1. Suppose (X,0) is a shift of finite type. In this case, an s/u-
bijective pair is just (Y,v) = (Z,() = (X,0). Only the 0,0-term in the
double complex is non-zero and it is just D*(X,0). Hence, H3(X,0) is just
D*(X,0), for N =0, and zero otherwise.

Example 7.2. For m > 2, let (X, ) be the m™-solenoid. More specifically,
we let
X ={(20,21,...) | zn €T, 2z, = 2,1, n > 0},

with the map
©(z0,21,...) = (20, 21", 29", .. ),

for (zo,z1,...) in X. In this case, there is an s-bijective factor map onto
(X, ) from the full m-shift (i.e. G is the graph with one vertez and m edges).
The simplest s/u-bijective pair here is (Y,v) = (Xg,0) and (Z,¢) = (X, ¢).
The only non-zero groups in the double complex occur for (L, M) equal to
(0,0) and (1,0) and these are Z[m™'| and Z, respectively. The boundary maps
are all zero (only one needs to be computed) and Hy (X, ) is isomorphic to
ZIm™Y, for N =0, Z, for N = 1 and zero for all other N.

This is a special of a one-dimensional solenoid. The general case is de-
scribed and analyzed in [1].
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Example 7.3. Let n > m > 1 be relatively prime. Let X be the mn-solenoid
as above and define

2 2 2
©(z0,21,...) = (27,29 , 23 ,...),

Note that X s the dual of the discrete group Z[%] and ¢ 1s the dual of
the automorphism which is multiplication by 7. We refer to (X, ¢) as an
~-solenoid. Here, the local stable sets are totally disconnected (in fact, they
are open sets in the field of n-adic numbers) while the local unstable sets are
of the form (—t,t) x C, where C' is totally disconnected. Here, (Y, o) is the
full shift on n symbols, while Z = X.

We have H3 (X, ¢) is isomorphic to Z[1/n| for N = 0, Z[1/m], for N =1,
and 0 for all other values of N. For complete details, see [5].

Example 7.4. Let X be the 2-torus, T?, and ¢ be the hyperbolic automor-
phism determined by the matriz

11
A= ( bl ) .
The systems (Y,v) and (Z,() are both DA (or derived from Anosov) sys-
tems. Moreover, the shift of finite type (X00(7), 000) arises from the Markov
partition with three rectangles which appears in many dynamics texts, for ex-
ample [10]. The only non-zero terms in the double complex are in positions
(L,M) = (0,0),(1,0),(0,1) and (1,1). The calculation yields H (X, p) is
Z for N =1 and N = —1 and is Z* for N = 0. Notice that the homology
coincides with that of the torus, except with a dimension shift.

Example 7.5. There is an example via tnverse limits roughly based on the
Sierpinski gasket. Its local stable sets are totally disconnected while its local
unstable sets look like the Sierpinski gasket. Its homology is the same as
that of the full 3-shift. The example is given in [17], although the homology
calculations have not appeared as yet.

8 Concluding remarks

Remark 8.1. [t is certainly a natural question to ask whether this theory
can be computed from other (already existing) machinery. A more specific
question would be to relate our homology to, say, the Cech cohomology of the

11



classifying space of the topological equivalence relation R®. (For a discussion
of the topology, see [12].) There are examples, such as the first three above,
where they are different, but only up to a dimension shift (depending on the
space under consideration).

Remark 8.2. An important motivation in the construction of this theory was
to compute the K-theory of certain C*-algebras associated with the Smale
space (X, p). See [12] for a discussion of these C*-algebras. At present,
there seems to be a spectral sequence which relates the two; this work is still
1n progress.

Remark 8.3. I would like to thank the referee for a number of helpful com-
ments.
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