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Spectral triple, (H, A,D):

H Hilbert space
A ⊆ B(H) unital ∗-algebra
D : H → H unbounded self-adjoint

(1 +D2)−1/2 ∈ K(H)
[D, a] ∈ B(H) for all a ∈ A

Prototype:

H = L2(S1)
A = C∞(S1)

D(ξ) = (2πi)−1ξ′, ξ ∈ L2(S1),
[D, f ] = (2πi)−1f ′.

Despite the obvious connections with differen-
tial topology/geometry, there has been exten-
sive interest in the case A = C(X) or C(X)×G,
where X is compact, metrizable, totally dis-
connected with no isolated points; i.e. a Can-
tor set. There are important connections with
aperiodic order.

Connes, Pearson-Bellissard, Savinien, Kellen-
donk, Julien, Falconer.
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Let A be a finite set and consider AZ ( which

we regard as sequences), which is a Cantor set.

It is also a dynamical system

σ(x)n = xn+1, n ∈ Z, x ∈ AZ.

Definition 1. A subshift is a non-empty subset

X ⊆ AZ which is closed and satisfies σ(X) = X.

We will fix a σ-invariant measure µ on X which

we assume has full support.

Our Hilbert space is H = L2(X,µ).
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For n ≥ 1, a word of length n in X is a finite

sequence x1x2 · · ·xn, x ∈ AZ.

Xn denotes all words of length n.

If w is a word of length n = 2k, we define

U(w) = {x ∈ X | x1−k · · ·xk = w},

while for n = 2k + 1,

U(w) = {x ∈ X | x−k · · ·xk = w},

Define

Cn = span{χU(w) | w ∈ Xn}.

so that

C = C0 ⊆ C1 ⊆ C2 ⊆ · · ·

are finite-dimensional subspaces of H, or subal-

gebras of C(X), with union C∞(X), the locally

constant functions, which are dense.
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We follow Christensen-Ivan, who considered

AF-algebras and defined:

D|(Cn ∩ C⊥n−1) = αn, n ≥ 1,

where αn, n ≥ 1 is a sequence of non-negative

reals tending to infinity. (Observe D is not just

self-adjoint, but positive.)

The two main differences for us are first that

our sequence of subspaces/algebras Cn is canon-

ical from X ⊆ AZ.

Secondly, we have

Lemma 2. Letting uξ = ξ ◦σ−1, [D,u] extends

to a bounded operator if and only if αn−αn−1

is bounded.

Define DX using αn = n. So (L2(X,µ), A,DX)

is a spectral triple for either A = C∞(X) or

A = C∞(X)× Z.
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Summability

The function n → #Xn is well-studied in dy-
namics; it is called the complexity of the sub-
shift.

Theorem 3. 1. If s > h(X,σ) (the entropy of
(X,σ)) then Tr(e−sDX) <∞.

2. If Tr(e−sDX) <∞, then s ≥ h(X,σ).

Theorem 4. 1. If there are constants M, s0
such that #Xn ≤Mns0, for all n ≥ 1, then
for s > s0, Tr((D2

X + 1)−s/2) <∞.

2. If Tr((D2
X + 1)−s/2) < ∞, then there is a

constant M such that #Xn ≤Mns, for all n ≥
1.

Proof: the dimension of the eigenspace of DX
for eigenvalue n is #Xn −#Xn−1.
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The Connes metric

If (H, A,D) is a spectral triple, the formula

d(φ, ψ) = sup{|φ(a)− ψ(a)| | ‖[D, a]‖ ≤ 1}

may define a metric on the state space of A

and its topology may coincide with the weak-

* topology. If this occurs we call (H, A,D) a

quantum metric space (Rieffel).
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This now depends on the subshift in quite a

subtle way.

Two quantities play key parts:

1. For x in X, if the set of n where n = 2k+1

with

U(x−k · · ·xk) ( U(x1−k · · ·xk)

or n = 2k with

U(x1−k · · ·xk) ( U(x1−k · · ·xk−1)

is sparse, then this helps the Connes met-

ric.

2. If the numbers

µ(U(x1−k · · ·xk))

µ(U(x−k · · ·xk))
,
µ(U(x1−k · · ·xk−1))

µ(U(x1−k · · ·xk))

can be bounded, then this helps the Connes

metric.
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Shifts of finite type

A shift of finite type is a subshift of the fol-

lowing form: let G = (G0, G1, i, t) be a finite

directed graph.

XG = {x ∈ (G1)Z | t(xn) = i(xn+1), n ∈ Z}.

Theorem 5. If G is an irreducible, finite, di-

rected graph (there is a path from any vertex

to any other), then the Connes metric associ-

ated to (L2(XG), C∞(XG), DXG) is infinite.
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Substitutions

An example is the Thue-Morse substitution:

0 → 01,1 → 10 can be iterated to produce

infinite sequences:

0→ 01→ 0110→ 01101001→ · · ·

or, by substituting twice and making it sym-

metric about the middle,

0.1→ 0110.1001→ · · · .

Call the limiting sequence x and let X be the

closure of {σn(x) | n ∈ Z}.

Theorem 6. If X is a primitive substitution

subshift (or more generally a linearly recur-

rent subshift), then (H, C∞(X), DX) a quan-

tum metric space. (Connes metric is finite and

induces weak-* topology.)
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Sturmian subshifts

Begin with an irrational number 0 < θ < 1.

Draw a line in the plane of slope θ which does

not meet any point of Z2.

Put a 0 at a point on the line if its x-coordinate

is an integer and a 1 when the y-coordinate

is an integer. This produces a sequence in

{0,1}Z. The closure of all such sequences is

Xθ, a Sturmian subshift.
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Theorem 7. Let a1, a2, . . . be the continued

fraction expansion of θ. If there exist constants

M, s such that an ≤Mns, for all n ≥ 1, then

(L2(Xθ), C∞(Xθ), DXθ) is a quantum metric space.

Corollary 8. For almost all θ in [0,1],

(L2(Xθ), C∞(Xθ), DXθ) is a quantum metric space.

Theorem 9. There exists θ in [0,1] such that

Connes metric associated with

(L2(Xθ), C∞(Xθ), DXθ) is infinite.
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