Spectral triples for subshifts

Antoine Julien (NTNU), Ian F. Putnam (UVic)

Spectral triple, (\mathcal{H}, A, D) :

Prototype:

$$\mathcal{H} = L^{2}(\mathbb{S}^{1})
A = C^{\infty}(\mathbb{S}^{1})
D(\xi) = (2\pi i)^{-1} \xi', \xi \in L^{2}(\mathbb{S}^{1}),
[D, f] = (2\pi i)^{-1} f'.$$

Despite the obvious connections with differential topology/geometry, there has been extensive interest in the case A = C(X) or $C(X) \times G$, where X is compact, metrizable, totally disconnected with no isolated points; i.e. a Cantor set. There are important connections with aperiodic order.

Connes, Pearson-Bellissard, Savinien, Kellendonk, Julien, Falconer.

Let \mathcal{A} be a finite set and consider $\mathcal{A}^{\mathbb{Z}}$ (which we regard as sequences), which is a Cantor set. It is also a dynamical system

$$\sigma(x)_n = x_{n+1}, n \in \mathbb{Z}, x \in \mathcal{A}^{\mathbb{Z}}.$$

Definition 1. A subshift is a non-empty subset $X \subseteq \mathcal{A}^{\mathbb{Z}}$ which is closed and satisfies $\sigma(X) = X$.

We will fix a σ -invariant measure μ on X which we assume has full support.

Our Hilbert space is $\mathcal{H} = L^2(X, \mu)$.

For $n \geq 1$, a word of length n in X is a finite sequence $x_1x_2\cdots x_n$, $x \in \mathcal{A}^{\mathbb{Z}}$.

 X_n denotes all words of length n.

If w is a word of length n = 2k, we define

$$U(w) = \{x \in X \mid x_{1-k} \cdots x_k = w\},\$$

while for n = 2k + 1,

$$U(w) = \{x \in X \mid x_{-k} \cdots x_k = w\},\$$

Define

$$C_n = span\{\chi_{U(w)} \mid w \in X_n\}.$$

so that

$$\mathbb{C} = C_0 \subseteq C_1 \subseteq C_2 \subseteq \cdots$$

are finite-dimensional subspaces of \mathcal{H} , or subalgebras of C(X), with union $C_{\infty}(X)$, the locally constant functions, which are dense.

We follow Christensen-Ivan, who considered AF-algebras and defined:

$$D|(C_n \cap C_{n-1}^{\perp}) = \alpha_n, n \ge 1,$$

where $\alpha_n, n \geq 1$ is a sequence of non-negative reals tending to infinity. (Observe D is not just self-adjoint, but positive.)

The two main differences for us are first that our sequence of subspaces/algebras C_n is canonical from $X \subseteq \mathcal{A}^{\mathbb{Z}}$.

Secondly, we have

Lemma 2. Letting $u\xi = \xi \circ \sigma^{-1}$, [D, u] extends to a bounded operator if and only if $\alpha_n - \alpha_{n-1}$ is bounded.

Define D_X using $\alpha_n = n$. So $(L^2(X, \mu), A, D_X)$ is a spectral triple for either $A = C_\infty(X)$ or $A = C_\infty(X) \times \mathbb{Z}$.

Summability

The function $n \to \# X_n$ is well-studied in dynamics; it is called the *complexity* of the subshift.

- **Theorem 3.** 1. If $s > h(X, \sigma)$ (the entropy of (X, σ)) then $Tr(e^{-sD_X}) < \infty$.
 - 2. If $Tr(e^{-sD_X}) < \infty$, then $s \ge h(X, \sigma)$.
- **Theorem 4.** 1. If there are constants M, s_0 such that $\#X_n \leq Mn^{s_0}$, for all $n \geq 1$, then for $s > s_0$, $Tr((D_X^2 + 1)^{-s/2}) < \infty$.
 - 2. If $Tr((D_X^2+1)^{-s/2})<\infty$, then there is a constant M such that $\#X_n\leq Mn^s$, for all $n\geq 1$.

Proof: the dimension of the eigenspace of D_X for eigenvalue n is $\#X_n - \#X_{n-1}$.

The Connes metric

If (\mathcal{H}, A, D) is a spectral triple, the formula

$$d(\phi, \psi) = \sup\{|\phi(a) - \psi(a)| \mid ||[D, a]|| \le 1\}$$

may define a metric on the state space of A and its topology may coincide with the weak* topology. If this occurs we call (\mathcal{H}, A, D) a quantum metric space (Rieffel).

This now depends on the subshift in quite a subtle way.

Two quantities play key parts:

1. For x in X, if the set of n where n = 2k+1 with

$$U(x_{-k}\cdots x_k)\subsetneq U(x_{1-k}\cdots x_k)$$

or n = 2k with

$$U(x_{1-k}\cdots x_k)\subsetneq U(x_{1-k}\cdots x_{k-1})$$

is sparse, then this helps the Connes metric.

2. If the numbers

$$\frac{\mu(U(x_{1-k}\cdots x_k))}{\mu(U(x_{-k}\cdots x_k))}, \frac{\mu(U(x_{1-k}\cdots x_{k-1}))}{\mu(U(x_{1-k}\cdots x_k))}$$

can be bounded, then this helps the Connes metric.

Shifts of finite type

A shift of finite type is a subshift of the following form: let $G = (G^0, G^1, i, t)$ be a finite directed graph.

$$X_G = \{x \in (G^1)^{\mathbb{Z}} \mid t(x_n) = i(x_{n+1}), n \in \mathbb{Z}\}.$$

Theorem 5. If G is an irreducible, finite, directed graph (there is a path from any vertex to any other), then the Connes metric associated to $(L^2(X_G), C_\infty(X_G), D_{X_G})$ is infinite.

Substitutions

An example is the Thue-Morse substitution: $0 \rightarrow 01, 1 \rightarrow 10$ can be iterated to produce infinite sequences:

$$0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow \cdots$$

or, by substituting twice and making it symmetric about the middle,

$$0.1 \rightarrow 0110.1001 \rightarrow \cdots$$

Call the limiting sequence x and let X be the closure of $\{\sigma^n(x) \mid n \in \mathbb{Z}\}.$

Theorem 6. If X is a primitive substitution subshift (or more generally a linearly recurrent subshift), then $(\mathcal{H}, C_{\infty}(X), D_X)$ a quantum metric space. (Connes metric is finite and induces weak-* topology.)

Sturmian subshifts

Begin with an irrational number $0 < \theta < 1$. Draw a line in the plane of slope θ which does not meet any point of \mathbb{Z}^2 .

Put a 0 at a point on the line if its x-coordinate is an integer and a 1 when the y-coordinate is an integer. This produces a sequence in $\{0,1\}^{\mathbb{Z}}$. The closure of all such sequences is X_{θ} , a Sturmian subshift.

Theorem 7. Let $a_1, a_2, ...$ be the continued fraction expansion of θ . If there exist constants M, s such that $a_n \leq Mn^s$, for all $n \geq 1$, then $(L^2(X_\theta), C_\infty(X_\theta), D_{X_\theta})$ is a quantum metric space.

Corollary 8. For almost all θ in [0,1], $(L^2(X_{\theta}), C_{\infty}(X_{\theta}), D_{X_{\theta}})$ is a quantum metric space.

Theorem 9. There exists θ in [0,1] such that Connes metric associated with $(L^2(X_\theta), C_\infty(X_\theta), D_{X_\theta})$ is infinite.