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Abstract. In [LT16], Kathryn Lindsey and the second author constructed a translation
surface from a bi-infinite Bratteli diagram. We continue an investigation into these surfaces.
The construction given in [LT16] was essentially combinatorial. Here, we provide explicit
links between the path space of the Bratteli diagram and the surface, including various
intermediate topological spaces. This allows us to relate the C∗-algebras associated with
tail equivalence on the Bratteli diagram and the foliation of the surface, under some mild
hypotheses. This also allows us to relate the K-theory of the C∗-algebras involved. We
also treat the case of finite genus surfaces in some detail, where the process of Rauzy-Veech
induction (and its inverse) provide an explicit construction of the Bratteli diagrams involved.
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1. Introduction

There has been considerable interest over many years in the dynamics of foliations and
flows on translation surfaces or flat surfaces. We refer the reader to [Via06] for a broader
discussion.

In [LT16], Kathryn Lindsey and the second author introduced a construction of translation
surfaces based on combinatorial data. The main point of the construction was that, while
giving an alternate view of the finite genus case, it also provided a very general method
of construction of surfaces of infinite genus. In addition, it was shown that the dynamical
behavior on these infinite genus surfaces was much broader than the finite genus case.
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The combinatorial data needed for the construction is a variation of a Bratteli diagram.
A Bratteli diagram is a locally finite, but infinite directed graph. They first appeared in Ola
Bratteli’s seminal work on inductive limits of finite dimensional C∗-algebras, or AF-algebras
[Bra72]. Bratteli used the diagrams to encode combinatorial data on maps between direct
sums of matrix algebras. Later, Renault [Ren80] showed that the diagrams could also be used
to construct topological groupoids (equivalence relations) and the C∗-algebras constructed
from such examples coincided with those considered by Bratteli. More specifically, one
considers the topological space of infinite paths in the diagram along with the equivalence
relation known as tail equivalence: two paths are tail equivalent if they are equal beyond
some fixed point.

More recently, Bratteli diagrams also been used extensively in dynamical systems, initiated
by the work of Vershik [Ver82, Ver95] and subsequently, Herman, Putnam and Skau [HPS92].
In particular, this involved introducing the notion of an ordered Bratteli diagram.

Bratteli diagrams were first used in the context of the dynamics of translation surfaces by
A. Bufetov [Buf14]. This was expanded upon by K. Lindsey and the second author [LT16].
Their innovation was to consider a bi-infinite Bratteli diagram, where the vertex and edge
sets are indexed by the integers, rather than the positive integers as is usually the case. They
also assume a pair of orders on the edge set the first compares edges having the same range
or terminus and the second compares edges having the same source or origin.

The construction of the surface was then given in [LT16] in a combinatorial manner: finite
paths gave open rectangular components for the surface and the terminus, origin and order
data provides rules for attaching them. One also sees that the leaves of the horizontal and
vertical folitations correspond to right and left tail equivalence in the diagram. From a
dynamical standpoint that is quite satisfactory, but it leaves open the question: if we think
about the AF-algebra of the diagram and the foliation C∗-algebra, how exactly are they
related? The main goal of this paper is to address this question.

On the one hand, we have a very satisfactory description of the AF-algebra as given by
Renault, by looking at the path space of the diagram, tail equivalence on it, and the standard
construction of a groupoid C∗-algebra. What is missing on the other side is a description
of the surface itself in terms of the infinite path space of the diagram. At first glance, this
seems a tall order because the former is a locally Euclidean space while the latter is totally
disconnected. A good clue that these are not so far apart is provided by a very familiar, but
under-appreciated, notion: decimal expansion. This is already a familiar idea in dynamics
through the use of Markov partitions to code hyperbolic systems. Let us take some time to
describe this simple idea more clearly as it is essentially the basis for the remainder of the
paper.

Everyone is familiar with the fact that every real number has a decimal expansion which
is (almost) unique. A more mathematically precise view of decimal expansion is as a map
from

∏∞
1 {0, 1, 2, . . . , 9} to [0, 1] (simply ignoring the integer part). It is surjective and each

point in the image has a unique pre-image, except a countable subset: rational numbers of
the form k/10l, k ∈ Z, l ≥ 1.

This becomes more interesting if the first space is given the product topology. The map is
then continuous, but the two spaces are remarkably different: the first is totally disconnected,
while the second is connected.
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Another viewpoint is to realize that the first space can be endowed with lexicographic
order. The order topology coincides with the product topology and the map is order pre-
serving. In fact, more is true: if we note, for example, that .19999 · · · and .2000 · · · are both
decimal expansions of 1

5
, the latter is precisely the successor of the former in the lexicographic

order. In fact, two points are identified by the map if and only if one is the successor of the
other.

Bratteli diagrams offer a vast generalization of this idea. A Bratteli diagram, B, consists
of a sequence of finite non-empty vertex sets Vn, n ≥ 0 (we assume #V0 = 1 for convenience)
and edge sets En, n ≥ 1: each edge e in En has a source s(e) in Vn−1 and a range r(e) in
Vn. We can then consider the space of infinite paths, denoted XB. It has natural topology
making it compact and totally disconnected. We add two pieces of data: a state ν (see
Definition 2.6) and a partial order on the edge sets where two edges, e, f , are comparable if
and only if s(e) = s(f). Such items always exist. The path space XB then becomes linearly
ordered by lexicographic order. In addition, the state provides a measure on this space
in a natural way (3.8). We can then define explicitly a map from XB to a closed interval
which is order-preserving and identifies two points if and only if one is the successor of the
other. We leave the details to Lemma 4.3. Usual decimal expansion can be seen in the case
#Vn = 1,#En = 10, for all n ≥ 1.

This is appealing, though not terribly deep. The Lindsey-Treviño starting point is to
consider a bi-infinite Bratteli diagram where the vertex and edge sets are indexed by the
integers rather than the natural numbers. We drop the condition that #V0 = 1. In addition,
we require two orders on the edge sets, one based on s (as before) and the other on r and
two states, νs, νr. Our path space XB now consists of bi-infinite paths. Basically, our surface
is now obtained as a quotient of XB by identifying successor/predecessors in both orders.
That is overly simplistic and we need to make some subtle alterations. But let us leave
that aside for the moment and describe this space, locally. If we fix a finite path p in the
diagram going from vertex v in Vm to w in Vn, m < n, we can look at the set of all bi-infinite
paths which agree with p between m and n. This is a clopen set. But it is clear that such a
path consists of three parts, from −∞ to s(p), then p, then from r(p) to ∞. The first and
third parts are clearly independent and lie in the path spaces of two subdiagrams (although
the first is oriented the wrong direction). Applying the map we described earlier using the
r-data to the first and the s-data to the third, we obtain a map to a closed rectangle in
the plane which descends to a local homeomorphism on our quotient space. These maps
can be used to define an atlas for the quotient space which satisfy the condition making it a
translation surface. Moreover, if two points are right-tail equivalent then they lie on the same
horizontal line, while two points that are left-tail equivalent lie on the same vertical line.
So our quotient map from XB to the surface maps right-tail equivalence to the horizontal
foliation and left-tail equivalence to the vertical foliation. This provides the links between
the AF-algebras and the foliation algebras which is our main goal.

In section 2, we describe basics of Bratteli diagrams. In particular, we have the classic
version, the bi-infinite version and ordered versions of both. This includes some basic con-
cepts such as a simple diagram (2.4) (some telescope has full edge connections) and finite
rank (2.5), which means that there is a uniform bound on the cardinality of the vertex sets.
The third section describes the path space of a Bratteli diagram, both classic and bi-infinite
versions. In the fourth section, we describe the consequences for the infinite path space
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of orders on a Bratteli diagram. This includes a complete description of the analogues of
decimal expansion as discussed above.

As we indicated above, our basic idea is to begin with a bi-infinite ordered Bratteli diagram,
B, and take a quotient of the path space of a bi-infinite Bratteli diagram, XB. However, there
are some bad points in this space that need to be dealt with, just as flat surfaces in genus
greater than one necessarily have singularities. These fall into two types. The first are those
in which every path is maximal in the ≤s-order or maximal in the ≤r-order or minimal in the
≤s-order or minimal in the ≤r-order. We refer to these as extremal (5.1) and, if the diagram
is finite rank, it is a finite set. More subtly, there is a second type of point, which we call
singular. We have two (partially defined) operations: taking the successor in the ≤s-order
and taking the successor in the ≤r-order. There may be points where their compositions
are defined, in either order, but fail to yield the same result. This is our ordered Bratteli
diagram’s way of telling us the common point they represent in the quotient space will fail
to have a flat neighourhood. These points, which we denote by ΣB, must be removed (5.1).
The set is at worst countable and its union with the extremal points is closed. We now
restrict our attention to the open compliment of this, which we denote by YB (6.1).

In section 6, we introduce our surface, SB. This is done by identifying points of YB
with their ≤s-successors and their ≤r-successors. Of course, this means that there are two
intermediary spaces where only one of the two identifications is done. The main work of
this section is to explicitly describe an atlas for the space SB whose transition maps are
translations. That is, we show SB is a flat surface. It is worth noting that SB depends only
on the ordered Bratteli diagram, but the atlas also depends on the given state.

In section 7, we pass from the various spaces of the previous section, to groupoids as-
sociated with them. While we use the term groupoid, these are really simply equivalence
relations. For the bi-infinite path space XB or its open subset YB, we have right and left tail
equivalence. For the surface, SB, we have horizontal and vertical foliations. The process of
constructing a C∗-algebra from a groupoid is technical; in particular, the groupoid requires
its own topology. We describe all of these in quite concrete terms. Finally, our maps between
the various spaces of section 6 all induce maps at the level of equivalence relations and we
describe their properties. Indeed, one of the quotient maps from YB does not respect tail
equivalence in general and we are forced to make a small modification of it in Definition 7.4.

We turn to the C∗-algebras in section 8. We explicitly show how the C∗-algebras of tail
equivalence can be written as inductive limits of a nested sequence of finite-dimensional
subalgebras. In the case of one of the intermediate subalgebras, we also have an inductive
system 8.11 and 8.12 of subalgebras which are ’subhomogeneous’. That is, they involve only
continuous functions from certain spaces into matrices. The same also holds for the foliation
algebra.

In section 9, we construct a very natural Fredholm module for our AF-algebra. The
notion of a Fredholm module for C∗-algebras had its origins in the seminal work of Brown,
Douglas and Fillmore on extensions of C∗-algebras but also from index theory through ideas
of Atiyah and Kasparov, among many others. There are many good references but we
mention the three books by Blackadar [Bla86], Higson and Roe [HR01] and Connes [Con94].
The prototype here is the C∗-algebra of continuous functions on a smooth manifold together
with an elliptic differential operator (or a bounded version of it). The algebra and operator
interact in a special way. In our situation, our Fredholm module provides a purely algebraic
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way of describing our quotient spaces (see Theorem 9.7). This description, in turn, is critical
to some K-theory computations of the next section.

We describe the K-theory of the various C∗-algebras involved in section 10, beginning with
the AF-algebra. The computation of the K-theory of an AF-algebra from a Bratteli diagram
goes back to Elliott’s seminal paper [Ell76], but we give a treatment in some detail for those
readers for whom this is new. We also compute the K-theory of one intermediate C∗-algebra
in generality in Theorem 10.4. In many specific situations of interest, this C∗-algebra has
K1 equal to the integers, while its inclusion in the AF-algebra induces an order isomorphism
on K0 (see Theorem 10.5). We go on to compute the K-theory of the foliation algebra in
Theorems 10.7 and 10.9. One interesting conclusion of these computations is that, when the
Bratteli diagram has finite rank, the K0 group of the AF-algebra does also, in the sense of
group theory. However, if that group is not finitely-generated, then our surface has infinite
genus (Corollary 10.11).

We end the paper with two sections in which we apply the tools developed so far: in
section 11, we work out the K-theory of the horizontal foliation of Chamanara’s surface.
Chamanara’s surface is perhaps the best known flat surface of infinite genus and finite area.
In particular, we show how one can explicitly construct representatives of certain K0 classes
coming from the surface. We also show that the set of singular points ΣB is non-empty and
give an explicit identification of this set.

Section 12 deals with flat surfaces of finite genus. Starting with basic definitions of flat
surfaces, we review Veech’s construction of zippered rectangles and Rauzy-Veech (RV) in-
duction, which is a procedure used in the renormalization of the vertical foliation of a flat
surface. We follow this by developing an analogous induction procedure for the horizontal
foliation, which we call RH induction. This is formally the inverse of RV induction, but
we motivate it geometrically and develop it independently of RV induction. As far as we
know a lot of this has not been published before, although many items appear in the recent
work of Berk [Ber21]. The reason we focus on the induction for the horizontal foliation is
that it turns out to give an ordered bi-infinite Bratteli diagram which is simpler to analyse.
We show that the set ΣB of singular points for the typical surface is empty, implying that
the singularities which appear in the infinite genus case appear precisely because these the
set of singular ΣB is non-empty. We compute the K-theory of the foliation algebra of the
horizontal foliation of the typical flat surface of finite genus. We also show that the order
structure on the K0 groups is defined by the Schwartzman asymptotic cycle.

Acknowledgements: R.T. was partially supported by NSF grant 1665100 and Simons
Collaboration Grant 712227. I.F.P. was supported by a Discovery Grant from NSERC
(Canada).

2. Bratteli diagrams: ordered and bi-infinite

In this section, we discuss the notion of a Bratteli diagram. This is a fairly well-known
combinatorial object, but we will need to discuss a bi-infinite variation and also the notion
of orders on both types.

Definition 2.1. A Bratteli diagram is two sequences Vn, n ≥ 0, En, n ≥ 1, of pairwise
disjoint, finite, nonempty sets along with surjective maps r : En → Vn and s : En → Vn−1
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for n ≥ 1. We also assume that V0 consists of a single element we write as v0. We write V
for the union of the Vn and E for the union of the En. We also write B = (V,E, r, s).

Definition 2.2. A bi-infinite Bratteli diagram is two sequences Vn, En, n ∈ Z, of pairwise
disjoint, finite, nonempty sets (dropping the requirement that #V0 = 1) along with surjective
maps r : En → Vn and s : En → Vn−1. We write V for the union of the Vn and E for the
union of the En. We also write B = (V,E, r, s).

A standard convention when drawing in drawing Bratteli diagrams is to draw them ver-
tically, with v0 at the top of the diagram and level Vn+1 drawn below Vn. Here, we prefer
to draw them horizontally. That is, Vn+1 lies to the right of Vn, as shown below. For ordi-
nary Bratteli diagrams, this change is rather minor, but it seems helpful when considering
bi-infinite ones, not to have to imagine the diagram extending off the top of page.

V−1 V0 V1 V2

Definition 2.3. If B is a bi-infinite Bratteli diagram, for every pair of integers m < n, we
let Em,n be the set of all paths from Vm to Vn: that is, it consists of p = (pi)m<i≤n with
pi in Ei, m < i ≤ n, and r(pi) = s(pi+1), for m < i < n. We define r : Em,n → Vn by
r(p) = r(pn) and s : Em,n → Vm by s(p) = s(pm+1). We make the same definition if B is a
Bratteli diagram, restricting to 0 ≤ m < n.

We note the fairly standard notion of simplicity of a Bratteli diagram and its obvious
extension to the bi-infinite case.

Definition 2.4. (1) A Bratteli diagram B is simple if and only if, for every m ≥ 1,
there is n > m such that for every vertex v in Vm and w in Vn, there is a path p in
Em,n with s(p) = v, r(p) = w.

(2) A bi-infinite Bratteli diagram B is B is simple if, for every integer m, there are
integers l < m < n such that there is a path from every vertex of Vl to every vertex
of Vm and there is a path from every vertex of Vm to every vertex of Vn.

We also introduce the following notion which will be convenient for much of what follows.

Definition 2.5. A Bratteli diagram (or bi-infinite Bratteli diagram) is finite rank if there
is a constant K such that #Vn ≤ K, for all n ≥ 0 (or all n ∈ Z, respectively).

We next discuss the notion of a state on a Bratteli diagram, and its analogue for the
bi-infinite case. We add as a small remark that it is usual to begin with a Bratteli diagram
and consider the set of all possible states on it. For our applications later, we will usually
think of a Bratteli diagram, together with a fixed state, as our data.
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Definition 2.6. (1) Let B be a Bratteli diagram. A state on B is a function νs : V →
[0,∞) which is not identically zero, satisfying

νs(v) =
∑
s(e)=v

νs(r(e)),

for all v in V . We say that the state is normalized if νs(v0) = 1 and faithful if
νs(v) > 0, for all v in V . We let S(B) be the set of all states on B and S1(B) denote
the set of normalized states.

(2) Let B be a bi-infinite Bratteli diagram. A state on B is a pair of functions νr, νs :
V → [0,∞), neither identically zero, satisfying

νr(v) =
∑
r(e)=v

νr(s(e)),

νs(v) =
∑
s(e)=v

νs(r(e)),

for all v in V . We say that the state is normalized if∑
v∈V0

νr(v)νs(v) = 1

and is faithful if νr(v), νs(v) > 0, for all v in V . We let S(B) be the set of all states
on B and S1(B) denote the set of normalized states.

Lemma 2.7. If νr, νs is a state on bi-infinite Bratteli diagram, B, then∑
v∈Vn

νr(v)νs(v) =
∑
v∈V0

νr(v)νs(v)

for every integer n.

Proof. If n is any integer, we have∑
v∈Vn

νr(v)νs(v) =
∑
v∈Vn

νr(v)
∑
s(e)=v

νs(r(e))

=
∑
v∈Vn

∑
s(e)=v

νr(v)νs(r(e))

=
∑

e∈En+1

νr(s(e))νs(r(e))

=
∑

v∈Vn+1

∑
r(e)=v

νr(s(e))νs(v)

=
∑

v∈Vn+1

νr(v)νs(v).

The conclusion follows. �

The following result is not difficult but quite useful in translating results from the standard
case to the bi-infinite case. The point is rather easy to state in words: in a bi-infinite Bratteli
diagram, for any fixed vertex v in V , if we look at all vertices which can be reached from
a path starting at v, and all the edges of such paths, this forms a Bratteli diagram in the
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usual sense. There is some re-indexing of vertex and edge sets. The same is true if we look
at paths ending at v instead, although the re-indexing is more complicated and we need to
switch s and r maps.

Proposition 2.8. Let B be a bi-infinite Bratteli diagram, (νr, νs) a state on B and v be any
vertex of V .

(1) Define W0 = {v} and then, inductively, for all n ≥ 1, Fn = s−1(Wn−1), Wn = r(Fn).
Then B+

v = (W,F, r, s) is a Bratteli diagram, the restriction of νs to Wn, which we
denote νvs , is a state on it.

(2) Define W0 = {v} and then, inductively, for all n ≥ 1, Fn = r−1(Wn−1), Wn = s(Fn).
Then B−v = (W,F, s, r) is a Bratteli diagram, the restriction of νr to Wn, which we
denote νvr , is a state on it.

Let us remind the reader that the computation of the set of states for a one-sided Bratteli
diagram is a standard result, which can be easily adapted to the bi-infinite case. It is
convenient to assume that Vn = {n} × {1, 2, . . . , dn}, for all integers n. Without causing
confusion, we can interpret En as a dn× dn−1 non-negative integer matrix whose j, i-entry is
the number of edges in En from (n−1, i) in Vn−1 to (n, j) in Vn. In the following, we let R+m

denote vectors in Rm,m ≥ 1 (written as row vectors), whose entries are all non-negative.

Proposition 2.9. Let B be a bi-infinite Bratteli diagram. If νr, νs is a state on B, then for
all integers n, we have

(νr(n, i))
dn
i=1 ∈

⋂
m>n

R+dmEmEm−1 · · ·En+1,

(νs(n, i))
dn
i=1 ∈

⋂
m<n

R+dmET
m+1E

T
m+2 · · ·ET

n .

Conversely, letting ∆d−1 denote the standard d− 1-simplex in R+d, the sets⋂
m>0

R+dmEmEm−1 · · ·E1 ∩ ∆d0−1

⋂
m<0

R+dmET
m+1E

T
m+2 · · ·ET

0 ∩ ∆d0−1

are non-empty. Let x0 be in the former and set νr(0, i) = x0
i , 1 ≤ i ≤ d0, νr(n, i) =

(xE0E−1 · · ·En+1)i, for n < 0, 1 ≤ i ≤ dn. Finally, for each n > 0, inductively, there is xn

in R+dn with xn−1 = xnEn and set νr(n, i) = xni , 1 ≤ i ≤ dn. We may also define νs in an
analogous way and νs, νr is a state on B.

Proof. For any state νr, νs and any integer n, we regard (νr(n, i))
dn
i=1 and (νs(n, i))

dn
i=1 as

vectors in R+dn . The definition of state immediately implies that

(νr(n, i))
dn
i=1En = (νr(n− 1, i))dn−1

i=1 ,

(νs(n− 1, i))dn−1

i=1 ET
n = (νs(n, i))

dn
i=1 .

The first part of the conclusion follows immediately. (In fact, these equations are equivalent
to the conditions on a state given in part 2 of Definition 2.6.)

For the converse direction, it is easy to see from the fact that the matrices En, n ∈
Z are non-negative that the sets R+dmEmEm−1 · · ·E1,m > 1 are closed and decreasing
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as m increases. They are also invariant under multiplication by positive scalars so their
intersections with the simplex ∆d0−1 are compact, non-empty and decreasing as m increases.
It follows that the intersection over all m > 0 is non-empty.

It is a simple matter to check that, for any n ≥ 1, the map sending x in
⋂
m>n

R+dmEmEm−1 · · ·En+1

to xEn is a surjection to
⋂
m>n

R+dmEmEm−1 · · ·En. It follows that the sequence xn, n ∈ Z, is

well-defined and satisfies xnEn = xn−1. This implies that νr is a state.
The case for νs is done in a similar way. �

Proposition 2.10. Let B be a Bratteli diagram or a bi-infinite Bratteli diagram.

(1) S(B) is non-empty.
(2) If B is simple, then every state is faithful.

Proof. We prove the bi-infinite case. The other case is an easy consequence of that and
Proposition 2.8.

The first part is a consequence of Proposition 2.9. For the second part, the following are
easy consequences of the definition:
(2a) If there is a vertex v in Vn such that νr(v) > 0, then there exists a vertex w in Vn−1

such that νr(w) > 0.
(2b) If m < n is such that there is a path from every vertex in Vm to every vertex in Vn,
and there is there is a vertex v in Vm such that νr(v) > 0, then for every vertex w in Vn−1,
νr(w) > 0.

Now let n be an integer. By Lemma 2.7, there is some v in Vn such that νr(v) > 0. Next,
choose m < n such that Em,n has full connections. It follows from the first point above that
there exists w in Vm such that νr(w) > 0. It then follows from the second point above that
νr(v

′) > 0, for all v′ in Vn. As n was arbitrary, this completes the proof. �

We will ultimately be interested in ordered bi-infinite Bratteli diagrams. We make the
definition now, although we will not make use of it until section 4.

Definition 2.11. A bi-infinite, ordered Bratteli diagram is a bi-infinite Bratteli diagram,
B = (V,E, r, s), along with partial orders ≤s,≤r on E such that, for any e, f in E, they are
≤s-comparable if and only if s(e) = s(f), and are ≤r-comparable if and only if r(e) = r(f).
We write B = (V,E, r, s,≤r,≤s).

We adopt the following obvious notation: e <r f (respectively, e <s f) if and only if
e ≤r f (respectively, e ≤s f) and e 6= f .

The definition of the orders can also be extended to Em,n using the lexicographic order
carefully noting that ≤r works right-to-left while ≤s works left-to-right.

If e is any edge in E, we let Ss(e) be its ≤s-successor, provided it exists. Similar, Ps(e)
denotes its ≤s-predecessor. There are analogous definitions of Sr and Pr. These definitions
also extend to Em,n,m < n.

If B is a bi-infinite ordered Bratteli diagram, we say an edge or finite path e is r-maximal
if it is maximal in the ≤r order. Analogous definitions exist for r-minimal, s-maximal and
s-minimal.
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3. The path space

In this section, we pass from combinatorics to topology: to each Bratteli diagram we
associate a topological space, the path space along with a topological equivalence relation,
tail equivalence. Of course, most of this is well-known for standard Bratteli diagrams, so we
focus here on the bi-infinite case.

Definition 3.1. (1) If B is a Bratteli diagram, we let XB be the space of infinite paths
in B: that is, an element of XB is a sequence, (xn)n≥1, where xn is in En and
r(xn) = s(xn+1), for every positive integer n.

(2) If B is a bi-infinite Bratteli diagram, we let XB be the space of bi-infinite paths
in B: that is, an element of XB is a sequence, (xn)n∈Z, where xn is in En and
r(xn) = s(xn+1), for every integer n.

We introduce some notation which is not strictly necessary when dealing with one-sided
Bratteli diagrams, but helps when dealing with bi-infinite ones.

First, if v is any vertex in Vn, n ∈ Z, we let X+
v be the set of all one-sided infinite paths

x = (xn+1, xn+2, . . .) with xi in Ei, for all i > n, and s(xn+1) = v. Observe that this coincides
with the one-sided path space of B+

V , of Proposition 2.8. There is a similar definition for X−v
as one-sided infinite paths ending at v.

Secondly, if x is any point in XB and m < n, we let x(m,n] or x[m+1,n] denote (xm+1, . . . , xn)
which is in Em,n. We also let x(m,∞) or x[m+1,∞) denote (xm+1, xm+2, . . .) and x(−∞,n] or
x(−∞,n+1) denote (. . . , xn−1, xn). Observe that if x is in XB, then x[n,∞) is in X+

s(xn) while

x(−∞,n] is in X−r(xn).

Thirdly, if p is in El,m and q is in Em,n with r(p) = s(q), we let pq denote their concatena-
tion, which lies in El,n. In a similar way, if p is in Em,n, x is in X+

r(p) and y is in X−s(p), then

px is in X+
s(p), yp is in X−r(p) and ypx is in XB.

Finally, we also use this concatenation notation for sets of paths, rather than single ele-
ments. As an example, pX+

r(p) is the set of all px with x in X+
r(p). Also, note that, for any

vertex v in Vn, X−v X
+
v is the set of all x with r(xn) = s(xn+1) = v.

We introduce the natural topology on the path space, for both infinite and bi-infinite
cases.

Proposition 3.2. (1) Let B be a Bratteli diagram. We regard XB as a subset of
∏∞

n=1En.
Each En is endowed with the discrete topology,

∏∞
n=1En with the product topology and

XB with the relative topology. In this, XB is compact, metrizable and totally discon-
nected. Moreover, if p is any path in E0,n, then the set

pX+
r(p) = {x ∈ XB | xi = pi, 1 ≤ i ≤ n}.

is clopen and, as p and n vary, these form a base for the topology of XB.
(2) Let B be a bi-infinite Bratteli diagram., We regard XB as a subset of

∏
n∈ZEn. Each

En is endowed with the discrete topology,
∏

n∈ZEn with the product topology and XB
with the relative topology. In this, XB is compact, metrizable and totally disconnected.
Moreover, if p is any path in Em,n,m < n, then the set

X−s(p)pX
+
r(p) = {x ∈ XB | xi = pi,m < i ≤ n}.

is clopen and, as m < n, p vary, these form a base for the topology of XB.
10



We remark that the path space XB is a metric space (even an ultrametric space) with the
formula, for x, y in XB,

d(x, y) = inf{2−n | n ≥ 0, xi = yi, 1 ≤ i ≤ n}

in the one-sided case and

d(x, y) = inf{2−n | n ≥ 0, xi = yi, 1− n ≤ i ≤ n}

for the bi-infinite case.
Before going further, we want to look at the path spaces for simple diagrams. One of the

difficulties of the definition of simplicity is that it does not guarantee that the path space is
infinite. This must be allowed since the C∗-algebra of n×n-matrices is a simple AF-algebra,
whose associated Bratteli diagram has a finite path space. On the other hand, it is often nice
to rule out this case as not being terribly interesting. This problem doubles for bi-infinite
Bratteli diagrams. For the moment, we make a small useful observation.

Theorem 3.3. Let B be a Bratteli diagram. It is simple and XB is infinite if and only if,
for every m ≥ 1, there is n > m such that for every vertex v in Vm and w in Vn, there are
at least two paths p, p′ in Em,n with s(p) = s(p′) = v, r(p) = r(p′) = w.

Proof. Let us first assume that B is simple and XB is infinite. Fix m ≥ 1. From simplicity,
we know there is m′ > m such that there is a path from every vertex in Vm to every vertex
in Vm′ . If we consider all paths p in E0,m′ , the sets pXr(p) form a finite cover of XB. As we
assume this space is infinite, there must exist x 6= y which lie in the same element. That
is, there is m′′ > m′ such that xm′′ 6= ym′′ . Using simplicity again, we find n > m′′ such
that there is a path from every vertex of Vm′′ to Vn. It is now an easy matter to check that
there are at least two paths from every vertex of Vm to every vertex of Vn, one that follows
xm′+1, . . . , xm′′ and one that follows ym′+1, . . . , ym′′ .

For the converse, the two-path condition obviously implies the diagram is simple. It also
implies that there are at least 2n paths in E0,n and so XB is infinite. �

Let us also note the following result for the bi-infinite case, which is an easy consequence
of the last result and Proposition 2.8..

Lemma 3.4. Let B be a simple bi-infinite Bratteli diagram. The following are equivalent

(1) Both X+
v and X−v are infinite, for some v in V .

(2) Both X+
v and X−v are infinite, for all v in V .

(3) For every integer m, there are l < m < n such that for every vertex u in Vl, v in Vm
and w in Vn, there are at least two paths p, p′ in El,m with s(p) = s(p′) = u, r(p) =
r(p′) = v and at least two paths q, q′ in Em,n with s(q) = s(q′) = v, r(q) = r(q′) = w.

If any of these conditions hold, we say that B is strongly simple.

Definition 3.5. We say that a bi-infinite Bratteli diagram B is strongly simple if it is simple
and the conditions Lemma 3.4 hold.

We also need the notion of tail equivalence. As paths in the bi-infinite case have two tails,
this becomes two equivalence relations.

11



Definition 3.6. (1) Let B be a Bratteli diagram. For each x in XB, we let T+(x) be the
set of paths which are right-tail equivalent to x. More precisely, for N ≥ 0, we define

T+
N (x) = {px(N,∞) | p ∈ E0,N , r(p) = r(xN)}

= {y ∈ XB | yn = xn, for all n > N}
and T+(x) = ∪N∈ZT+

N (x).
(2) Let B be a bi-infinite Bratteli diagram. For each x in XB, we define T+(x) ( T−(x) ) to

be the set of all paths which are right-tail equivalent (left-tail equivalent, respectively)
to x. More precisely, for N in Z, we define

T+
N (x) = X−r(xN )x(N,∞)

= {y ∈ XB | yn = xn, for all n > N}
T+(x) =

⋃
N∈Z

T+
N (x),

and

T−N (x) = x(−∞,N ]X
+
r(xN )

= {y ∈ XB | yn = xn, for all n ≤ N}
T−(x) =

⋃
N∈Z

T−N (x).

Each set T+
N (x) is endowed with the relative topology from XB, while T+(x) is given the

inductive limit topology. We use T+(XB) to denote the equivalence relation (or groupoid)
on XB whose equivalence classes are the sets T+(x), x ∈ XB. There is an analogous relation
T−(XB), but we will work mostly with T+(XB).

Let us recall that the inductive limit topology on T+(x), x ∈ XB, is the finest topology
which makes each inclusion T+

N (x) ⊆ T+(x) continuous. One can check quite easily that, for
every N , T+

N (x) is an open subset of T+
N+1(x). In consequence, a subset U ⊆ T+(x) is open

in the inductive limit topology if and only if U ∩ T+
N (x) is open in T+

N (x), for every N . We
leave it as an instructive exercise for the reader to show that a sequence yn, n ≥ 1, in T+(x)
converges to y in T+(x) in this topology if and only if it converges to y in XB and there
exists some N such that y, yn, n ≥ 1, are all contained in T+

N (x).
In a standard Bratteli diagram, each tail equivalence class, T+

N (x), is finite and each
T+(x) is countable. This is not usually the case for bi-infinite diagrams. Instead, we must
investigate the topology on the tail equivalence classes.

Proposition 3.7. Let B be a bi-infinite Bratteli diagram and let x be in XB. For any path
p in Em,n with r(p) = r(xn), the set

X−s(p)px(n,∞) = {y ∈ XB | yi = pi,m < i ≤ n, yi = xi, i > n}.

is a compact open subset of T+(x). Moreover, as m,n, p vary, these sets form a base for the
topology of T+(x). There is an analogous statement for x(−∞,m]pX

+
r(p) in T−(x), for p with

s(p) = s(xm+1).

To this point, our discussion of the path spaces has not involved the states in any way. We
now see how states on the Bratteli diagram give rise to measures on the path space. There
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are some subtleties in the bi-infinite case, but the first case is well-known. We provide a
sketch of the proof for convenience.

Proposition 3.8. Let B be a Bratteli diagram and ν be a state on B. There is a unique
measure, also denoted ν, on XB such that

ν(pX+
r(p)) = ν(r(p)),

for each p in E0,n, n ≥ 1.

Proof. For each n ≥ 1, let Cn be the linear span of characteristic functions of sets pX+
r(p),

where p is in E0,n, which we denote χpX+
r(p)

. The function νn : Cn → C defined as follows. If

f =
∑

p∈E0,n
apχpX+

r(p)
, where ap is a complex scalar for each p in E0,n, then we define

νn(f) =
∑
p∈E0,n

apν(r(p)).

This is clearly a linear map and it is a simple matter to see that, with f as above,

|νn(f)| ≤ max{|ap| | p ∈ E0,n}
∑
p∈E0,n

apν(r(p)) = ‖f‖∞ν(v0).

Moreover, Cn is a linear subspace of Cn+1, for all n ≥ 1, and it is a consequence of the
definition of a state that νn+1 agrees with νn on Cn so the union of the νn, which we also
denote ν, defines a linear map on the union. The analogous norm inequality above holds for
all f in the union. Hence, ν extends to a bounded linear functional on the completion of the
functions in the supremum norm. It is a simple consequence of the Stone-Weierstrass Theo-
rem (see V.8.1 of [Con90]) that this completion is C(XB). Finally, the Riesz Representation
Theorem (III.5.7 of [Con90]). �

We want to establish properties of this measure. The following technical result will be of
use later.

Lemma 3.9. (1) Let B be a simple Bratteli diagram with Xv infinite and let ν be a state
on B. Then we have

lim
n→∞

max{ν(v) | v ∈ Vn} = 0.

(2) Let B be a strongly simple bi-infinite Bratteli diagram and νs, νr be a state on B.
Then we have

lim
n→∞

min{νr(v) | v ∈ Vn} = +∞.

Proof. We begin with the first part. Let n > 1 and v be any vertex of Vn. As we assumed
the map r is surjective, there is e in En with r(e) = v. Let w = s(e) so

ν(v) = ν(r(e)) ≤
∑
s(f)=w

ν(r(f)) = νw) ≤ max{ν(v′) | v′ ∈ Vn}.

Taking the maximum over v in Vn, we see the sequence we are considering is decreasing in
n. Now fix an integer positive m. In view of Theorem 3.3, there is n > m such that, for all
v in Vm and w in Vn, there are at least two paths from v to w. It follows from the definition
of state that ν(v) ≥ 2ν(w), for all such v, w and so

max{ν(v) | v ∈ Vm} ≥ 2 max{ν(v) | v ∈ Vn}.
13



The conclusion follows.
For the second part, we first note that by Proposition 2.10, νr is faithful, so the minima are

all strictly positive. A similar argument to the first case shows that the sequence min{νr(v) |
v ∈ Vn} is increasing in n. Another minor variation of the remaining argument above shows
that, for any m ≥ 1, there is n > m such that

2 min{ν(v) | v ∈ Vm} ≤ min{ν(v) | v ∈ Vn}.
The result follows. �

Proposition 3.10. Let B be a Bratteli diagram and ν be a non-zero state on B. If B is
simple, then the measure ν of Proposition 3.8 has full support. If, in addition, XB is infinite,
then ν has no atoms.

Proof. If U is any non-empty open set, then there is n ≥ 1 and a path p in E0,n such that
pX+

r(p) ⊆ U and ν(pX+
r(p)) = ν(r(p)). As B is simple, ν is faithful (Proposition 2.10), so

ν(r(p)) > 0.
For the second part, if x in any point in x, for any n ≥ 1, we have

ν({x}) ≤ ν(x[1,n]X
+
r(xn)) = ν(r(xn)) ≤ max{ν(v) | v ∈ Vn}.

The conclusion now follows from Lemma 3.9. �

If B = (V,E, r, s) is a bi-infinite Bratteli diagram, and p is any finite path in XB, it is
clear that X−s(p)×X

+
r(p) and X−s(p)pX

+
r(p) are homeomorphic in an obvious way. We may apply

Proposition 3.8 to each of XB+
r(p)

and XB−
s(p)

to obtain measures on X−s(p) and X+
r(p) and their

product can be regarded as a measure on X−s(p)pX
+
r(p) via the isomorphism above. It is an

easy exercise to see that this collection of measures agree where they overlap. This then
proves the following analogue of Proposition 3.8 in the bi-infinite case.

Proposition 3.11. Let B = (V,E, r, s) be a bi-infinite Bratteli diagram and suppose that
νs, νr : V → R is a state. There is a unique measure, which we denote by νr×νs on XB such
that

νr × νs(X−s(p)pX
+
r(p)) = νr(s(p))νs(r(p)),

for every p in Em,n, with m ≤ n. If the state is faithful, then this measure has full support.
If B is strongly simple, then this measure has no atoms.

There remains one more class of measures to be defined in the bi-infinite case: on tail
equivalence classes.

Let B be a bi-infinite Bratteli diagram and x be any point in XB. For each n, we may
consider the space T+

n (x) = X−r(xn)x(n,∞) which is a compact open subset of T+(x). There

is obvious homeomorphism from this space to X−s(xn) and the measure ν
r(xn)
r can be pulled

back to T+
n (x). It is a trivial computation to check that, for any m < n, the two measures

obtained agree on T+
m(x) ⊆ T+

n (x). The following is an immediate consequence of this and
Proposition 3.11.

Proposition 3.12. Let B be a bi-infinite Bratteli diagram and νr, νs be a state on B. For
each x in XB, there is a measure νxr on T+(x) such that

νxr (X−s(p)px(n,∞)) = νr(s(pm+1)),
14



for each p in Em,n,m < n with r(p) = r(xn). For x, y in B, if T+(x) = T+(y), then νxr = νyr .
There is also a measure νxs on T−(x) such that

νxs (x(−∞,m]pX
+
r(p)) = νs(r(pn)),

for each p in Em,n,m < n with s(p) = s(xm). For x, y in B, if T−(x) = T−(y), then νxs = νys .
If B is strongly simple, then these measures have full support and have no atoms.

4. Orders on the path space

We defined orders for a bi-infinite diagram in Definition 2.11. We now see what effect
these orders have on the infinite path space of the last section.

The first result is a fairly standard one, adapted to the bi-infinite setting. We will not
give a proof.

Proposition 4.1. Every bi-infinite ordered Bratteli diagram, B, contains an infinite path
such that every edge is r-maximal (r-minimal, s-maximal or s-minimal). We let Xr−max

B
(Xr−min
B , Xs−max

B , Xs−min
B , respectively) denote the set of all such paths. We also let Xext

B
denote their union. Each of these sets is closed in XB.

If B is finite rank and K is a positive integer which bounds #Vn, for every n in Z, then
each of these sets has at most K elements.

Proof. The set of r-maximal edges in each vertex set, which we denote by Fn for the moment,
is a finite subset of En. For a given positive integer n, the set of paths x in XB such that xm
is r-maximal for all −n ≤ m ≤ n is clearly closed. Intersecting these sets over all values of
n produces Xr−max

B , so this is also closed. The same argument applies to the other sets.
For the last statement, if v is any vertex in Vn, there is a unique r-maximal element e of

En with r(e) = v. As a consequence, if x, y are in Xr−max
B and r(xm) = r(ym), for some

m, then xn = yn, for all n < m. If x 6= y, we may find m(x, y) such that r(xm) = r(ym),
not only for m = m(x, y), but all m ≥ m(x, y) as well. If Xr−max

B contains K + 1 distinct
elements, say x1, . . . , xK+1, then letting m be the minimum of m(xi, xj), over all i 6= j, the
function sending xi to r(xim) is injective, contradicting our hypothesis. The other sets are
done in a similar way. �

We start with some fairly easy observations regarding ordinary (one-sided) Bratteli dia-
grams. To motivate this, it is probably worth consider the standard ternary Cantor set in
the real line.

We consider the usual order inherited from R which is, of course, linear. In any linearly
ordered set X, we say y is the successor of x if x < y and there is no z with x < z < y.
In this case, we also say that x is the predecessor of y. In the integers, every element has
a successor while in the real numbers, none does. In the Cantor ternary set, most points
have neither a successor nor predecessor. The points having a successor are exactly the left
endpoints of any open interval which is removed in the construction. The right endpoints of
these intervals are precisely the points with a predecessor.

In fact, these facts extend rather easily to the path space of an ordinary Bratteli diagram,
equipped with an order, ≤s. Let p be any finite path in an ordered Bratteli diagram from
v0 to Vn−1, n ≥ 1. Choose any edge en with s(en) = r(p) which is not maximal in the ≤s
order. Let fn be its successor. Then, inductively for i > n, let ei be the greatest edge in the
order ≤s with s(ei) = r(ei−1). Similarly, inductively for i > n, let fi be the least edge in the
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order ≤s with s(fi) = r(fi−1). Then the path pfnfn+1 · · · is the successor of penen+1 · · · . In
fact, all successor/predecessor pairs occur in this manner. We summarize the properties on
the order on the path space.

Lemma 4.2. Let B be a Bratteli diagram and assume that ≤s is an order on the edge set E
such that e, f are comparable in ≤s if and only if s(e) = s(f). (Caution: the usual definition
of an ordered Bratteli diagram uses r(e) = r(f).) We define the (lexicographic) order on XB
as follows: for x, y in XB, we have x <s y if there is a positive integer n such that xi = yi,
for all 1 ≤ i < n and xn <s yn.

(1) The relation ≤s on XB is a linear order.
(2) For each v in Vn, n ≥ 1, there is a unique path, denoted by xs−maxv in X+

v such that
(xs−maxv )i is maximal for every i > n. Moreover, if p is in E0n with r(p) = v, then
pxs−maxv is the greatest element of pX+

v . Similarly, there is a unique path, denoted by
xs−minv in X+

v such that (xs−minv )i is minimal for every i > n. Moreover, if p is in
E0n with r(p) = v, then pxs−minv is the least element of pX+

v .
(3) For p in E0,n and r(p) = v, we have pX+

v = {x ∈ XB | pxs−minv ≤ x ≤ pxs−maxv }.
(4) An element x of XB has a successor in the order ≤s if and only if there is n such

that xn is not maximal and x(n,∞) = xs−maxr(xn) . Similarly, an element x of XB has a

predecessor in the order ≤s if and only if there is n such that xn is not minimal and
x(n,∞) = xs−minr(xn) .

(5) The order topology from ≤s on XB coincides with the usual topology given in Propo-
sition 3.2.

Proof. The statement is quite easy and we omit it except to remark that to see the order on
the path space is linear, we need the condition V0 is a single vertex.

In the second part, the existence of the infinite paths easily follows from the fact that
for any vertex v, s−1{v} is linearly ordered so it contains unique s-maximal and s-minimal
elements and a simple induction argument. The properties of the paths pxs−minr(p) , pxs−maxr(p) are

obvious from the definitions.
For the third part, if y is in pX+

v and i is the least integer such that yi 6= (pxs−minv )i,
then i > n and so y ≥ pxs−minv . Similarly y ≤ pxs−maxv . Conversely, suppose pxs−minv ≤ y ≤
pxs−maxv . The first inequality implies y1 ≤ p1 while the second implies y1 ≤ p1. Together,
these show y1 = p1. Continuing in this way shows that y[1,n] = p which implies y is in pX+

v .
We next prove the first statement of part 4: suppose x has the property stated, for some

n. Let yn be the successor of xn in ≤s, y[1,n) = x[1,n) y(m,∞) = xs−minr(yn) . We claim that there

is no z with x <s z <s y, so that y is the successor of x. First, an argument similar to
the one of part three shows that z[1,n) = x[1,n) = y[1,n). Our hypothesis on z then implies
that xn ≤s zn ≤s yn and the choice of yn implies there is no zn with both inequalities strict.
Suppose zn = xn. As xi is s-maximal for all i > n, it follows that x >s z, a contradiction. A
similar argument shows that if x has the other property stated, it has a predecessor.

We now prove part 5. We use the fact that the product topology is generated by cylinder
sets, that is, sets of the form pX+

r(p), for some path p in E0,n, while the order topology is

generated by open intervals of the form (y, z). First, if we consider such an open set pX+
r(p),

let z be the successor of pxs−maxr(p) and y be the predecessor of pxs−minr(p) . It follows from part

3 and the one direction of part 4 that pX+
r(p) = [pxs−minr(p) , pxs−maxr(p) ] = (y, z). On the other
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hand suppose that (y, z) is a non-empty open interval. Choose x in (y, z). Let i be the least
positive integer such that xi 6= yi and j be the least positive integer such that xj 6= zj. Let
p = x1,max{i,j}]. It follows that x ∈ pX+

r(p) ⊆ (y, z). This completes the proof.

Finally, we consider the converse direction of part 4. If the condition stated fails, then
there is a strictly increasing of positive integers ni such that xni is not s-maximal. For each
i, choose yi such that y[1,ni) = x[1,ni) and yni >s xni . So yi >s x, for all i, but converges to
x. It follows, using part 5, that the open set (x, y) is non-empty, for any y >s x so x has no
successor. �

This structure, as an ordered space, has a nice interaction with states, as summarized
below, at least in the case that the diagram is simple and XB is infinite.

Lemma 4.3. Let B be a simple Bratteli diagram with XB infinite and with an order ≤s as
in 4.2 and faithful state ν. Define ϕ : XB → [0, ν(v0)] by

ϕ(x) = ν{y ∈ XB | y ≤s x},
for x in XB, where ν is the measure defined in Proposition 3.8. The following hold.

(1) ϕ preserves order in the sense that x ≤s y implies ϕ(x) ≤ ϕ(y), for all x, y in XB.
(2) ϕ is continuous.
(3) For x 6= y in X, ϕ(x) = ϕ(y) if and only if x, y are predecessor/successors of each

other.
(4) ϕ is surjective.
(5) If λ denotes Lebesgue measure on [0, ν(v0)], then ϕ∗(ν) = λ.

Proof. The first property is clear. For the second, we observe that, for any x in XB and
n ≥ 1, we have

ν(x(0,n]X
+
r(xn)) = ν(r(xn))

which tends to zero as n goes to infinity by Lemma 3.3. It follows that ν({x}) = 0, so ν has
no atoms. We also see that

ϕ(x(0,n]x
s−min
r(xn) ) ≤ ϕ(x) ≤ ϕ(x(0,n]x

s−max
r(xn) )

and

ϕ(x(0,n]x
s−max
r(xn) ) = ϕ(x(0,n]x

s−min
r(xn) )

+ν({y | ϕ(x(0,n]x
s−min
r(xn) < ϕ(y) ≤ ϕ(x(0,n]x

s−max
r(xn) })

= ϕ(x(0,n]x
s−min
r(xn) ) + ν(x(0,n]X

+
r(xn))

= ϕ(x(0,n]x
s−min
r(xn) ) + ν(r(xn).

The continuity of ϕ follows from these two estimates and the observation that ν(r(xn)) tends
to zero as n tends to infinity.

We next suppose that y is the successor of x and show ϕ(x) = ϕ(y). We know from the
first part that ϕ(x) ≤ ϕ(y). It follows from the definitions that

ϕ(y)− ϕ(x) = ν{z | x < z ≤s y}
= ν({y})
= 0
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as ν has no atoms. Now suppose that x ≤s y, but is not the successor. There is n ≥ 1 such
that xi = yi, 1 ≤ i < n and xn < yn. From part 4 of Lemma 4.2, we know that there is some
m > n such that either xm is not maximal or ym is not minimal. Let us assume the former
(the other case is similar). Let zm be any edge with s(zm) = s(xm) and zm <s xm. If we let
p = x1 . . . xm−1zm, it follows that

x <s pX
+
r(p) <s y

and so

ϕ(y)− ϕ(x) ≥ ν(pX+
r(p)) = ν(r(zm)) > 0,

since ν is faithful by Proposition 2.10.
For the last part, it is clear that, for any path p in E0,n, we have

ν(pX+
r(p)) = ν(r(p))

= ϕ(pxs−maxr(p) )− ϕ(pxs−minr(p) )

= λ(ϕ(pxs−minr(p) ), ϕ(pxs−maxr(p) ))

= λ(ϕ(pX+
r(p)))

so ν and ϕ∗(λ) agree on all sets of the form pX+
r(p) and as these are a base for the topology,

they are equal. �

Probably it is worth noting that in the standard Cantor ternary set (and the correct choice
of measure ν), the function ϕ is the Devil’s staircase, or more precisely, its restriction to the
Cantor set.

We are going to extend this notion of order to the bi-infinite case, as follows.

Definition 4.4. Let B be a strongly simple bi-infinite ordered Bratteli diagram. We define
orders ≤s,≤r on XB as follows.

(1) for x, y in XB, we have x <r y if there is an integer n such that xi = yi, for all i > n
and xn <r yn. For any x, y in XB, we define

[x, y]r = {z ∈ XB | x ≤r z ≤r y}

and (x, y)r similarly.
(2) for x, y in XB, we have x <s y if there is an integer n such that xi = yi, for all i < n

and xn <s yn. For any x, y in XB, we define

[x, y]s = {z ∈ XB | x ≤s z ≤s y}

and (x, y)s similarly.

Lemma 4.5. The following properties hold.

(1) For x, y in XB, they are comparable in ≤r if and only if T+(x) = T+(y). In particular,
≤r is a linear order on each tail equivalence class T+(x).

(2) For x, y in XB, they are comparable in ≤s if and only if T−(x) = T−(y). In particular,
≤s is a linear order on each tail equivalence class T−(x).

(3) For x in XB, T+(x) ∩ (Xr−max
B ∪Xr−min

B ) is at most a single point.
(4) For x in XB, T−(x) ∩ (Xs−max

B ∪Xs−min
B ) is at most a single point.
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(5) For each v in Vn, there is a unique path, denoted by xs−maxv (and xs−minv ) in X+
v such

that (xs−maxv )i is maximal (minimal, respectively) for every i > n. Moreover, if x is
in XB and p is in Em,n with s(p) = s(xm), then

x(−∞,m)pX
+
r(p) = [x(−∞,m)px

s−min
r(p) , x(−∞,m)px

s−max
r(p) ]s.

(6) For each v in Vn, there is a unique path, denoted by xr−maxv (and xr−minv ) in X−v such
that (xr−maxv )i is maximal (minimal, respectively) for every i ≤ n. Moreover, if x is
in XB and p is in Em,n with r(p) = r(xn), then

X−s(p)px(n,∞) = [xr−mins(p) px(n,∞), x
r−max
s(p) px(n,∞)]r.

(7) An element x of XB has a successor in the order ≤r if and only if there is m such
that xm is not r-maximal and x(−∞,m) = xr−maxs(xm) . Similarly, an element x of XB has

a predecessor in the order ≤r if and only if there is m such that xm is not r-minimal
and x(−∞,m) = xr−mins(xm) .

(8) An element x of XB has a successor in the order ≤s if and only if there is n such
that xn is not s-maximal and x(n,∞) = xs−maxr(xn) . Similarly, an element x of XB has a

predecessor in the order ≤s if and only if there is n such that xn is not s-minimal
and x(n,∞) = xs−minr(xn) .

Proof. The first two parts follow at once from the definitions.
For the third, as ≤r is linear on T+(x), it can contain at most one element of Xr−max

B and
one element of Xr−min

B . It remains to prove it cannot contain one from each, say y and z
respectively. If so, there is some n0 such that yn = zn, for all n ≥ n0. For each n ≥ n0 the
path y[n0,n] = z[n0,n] is both r-maximal and r-minimal, implying that there is only one path
from s(yn0) to r(yn). As this holds for all such n, it contradicts the assumption that B is
strongly simple.

The remaining parts of the proof follows from Proposition 2.8 and Lemma 4.2. �

The last two parts of this result regarding successors and predecessors in the two orders
are important enough to warrant the following definition.

Definition 4.6. Let B be a strongly simple bi-infinite ordered Bratteli diagram.

(1) Let ∂rXB be the set of all points x which have either a successor or predecessor in
the order ≤r. Part 5 of Lemma 4.5 characterizes such points and obviously, the m
involved is unique and we denote it by m(x). If x has a successor in ≤r, we denote
it by Sr(x), while its predecessor is denoted by Pr(x), if it exists. For such an x, we
denote by ∆r(x) either the ≤r-successor or ≤r-predecessor of x, noting that it cannot
have both. We regard ∆r : ∂rXB → ∂rXB such that ∆r ◦∆r is the identity.

(2) Let ∂sXB be the set of all points x which have either a successor or predecessor in
the order ≤s. Part 6 of Lemma 4.5 characterizes such points and obviously, the n
involved is unique and we denote it by n(x). If x has a successor in ≤s, we denote
it by Ss(x), while its predecessor is denoted by Ps(x), if it exists. For such an x, we
denote by ∆s(x) either the ≤s-successor or ≤s-predecessor of x, noting that it cannot
have both. We regard ∆s : ∂sXB → ∂sXB such that ∆s ◦∆s is the identity.

Notice that (Xr−max
B ∪Xr−min

B )∩∂rXB is necessarily empty, as is (Xs−max
B ∪Xs−min

B )∩∂sXB.
The following result is rather trivial, but probably worth observing.
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Lemma 4.7. Let B be a bi-infinite ordered Bratteli diagram, (νr, νs) a state on B and v be
any vertex of V . On the Bratteli diagram B+

v (or B−v ) of Proposition 2.8, ≤s (≤r, respectively)
is an order satisfying the conditions of Lemma 4.2.

Lemma 4.3 considered a one-sided ≤s-ordered Bratteli diagram and showed how a state,
ν provided a natural map from the path space to the real line. It had a number of good
features, but perhaps the nicest is part 3: it identifies two points if and only if they are
predecessor/successor in the other. Our next task is an analogue of this lemma for bi-infinite
ordered diagrams. In fact, there are two versions to consider. Each defines its own function:
they are closely related, but the domains are different, so it is important to distinguish them.

Definition 4.8. Let B be a strongly simple bi-infinite ordered Bratteli diagram with state
(νr, νs). For any v in Vn, we define ϕvr : X−v → [0, νr(v)] by

ϕvr(x) = νr{y ∈ X−v | y ≤r x},
for x in X−v . (By νr we mean the measure defined by Proposition 3.6 applied to the state
νr of Proposition 2.8 which is the restriction of νr to the diagram B−v .) Also, we define
ϕvs : X+

v → [0, νs(v)] by
ϕvs(x) = νs{y ∈ X+

v | y ≤s x},
for x in X+

v .

These two functions satisfy the conclusion of Lemma 4.3 with a few obvious adjustments.
The one which is worth noting is property 4 states that ϕvs(x) = ϕvs(y) if and only if x, y are
predecessor/successors in the ≤s order while ϕvr(x) = ϕvr(y) if and only if x, y are predeces-
sor/successors in the ≤r order.

It will be very useful for us to compare these functions, for different vertices, in the
following sense.

Lemma 4.9. Let p be in Em,n,m < n.

(1) For each x in X−s(p), we have

ϕr(p)r (xp) = ϕs(p)r (x) + ϕr(p)r (xr−mins(p) p)

(2) For each x in X+
r(p), we have

ϕs(p)s (px) = ϕr(p)s (x) + ϕs(p)s (pxs−maxr(p) ).

Proof. The first follows from the facts that x in X−s(p) {y ∈ X
−
r(p) | y ≤r xp} is the disjoint

union of {y ∈ X−r(p) | y ≤r x
r−min
s(p) p} and {zp | z ∈ X−s(p), z ≤r x} and the value of ν

r(p)
r on

the latter agrees with νrs(p){z ∈ X
−
s(p) | z ≤r x}. The second part is similar. �

Now we turn to the second, defining analogous maps to those of Lemma 4.3 on entire
tail-equivalence classes. We restrict our attention to right-tail-equivalence.

Lemma 4.10. Let B be a strongly simple bi-infinite ordered Bratteli diagram with state let
νs, νr. For each x in XB, we define ϕxr : T+(x)→ R, by

ϕxr (y) =

{
νxr {z ∈ T+(x) | x ≤r z ≤r y}, x ≤r y
−νxr {z ∈ T+(x) | y ≤r z ≤r x}, y ≤r x

where νxr is defined in Proposition 3.12. There is an analogous definition of ϕxs : T−(x)→ R
The following hold.
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(1) For any y in T+(x), we have ϕyr = ϕxr − ϕxr (y).
(2) ϕxr preserves order.
(3) If T+(x) is given the topology of Definition 3.6, then ϕxr is continuous.
(4) For y 6= z in T+(x), ϕxr (y) = ϕxr (z) if and only if y, z are predecessor/successors of

each other in ≤r.
(5) If T+(x) is given the topology of Definition 3.6, then ϕxr is proper.
(6) Exactly one of three possibilities hold:

(a) T+(x) ∩Xr−max
B = T+(x) ∩Xr−min

B = ∅ and in this case ϕxr (T
+(x)) = R,

(b) T+(x) ∩ Xr−max
B = {y}, T+(x) ∩ Xr−min

B = ∅ and in this case ϕxr (T
+(x)) =

(−∞, ϕxr (y)],
(c) T+(x) ∩ Xr−max

B = ∅, T+(x) ∩ Xr−min
B = {z} and in this case ϕxr (T

+(x)) =
[ϕxr (z),∞)

(7) If λ denotes Lebesgue measure on ϕxr (T
+(x)), then (ϕxr )∗(ν

x
r ) = λ.

Proof. This first property follows from the definition.
The definition of νxr is given in terms of its restriction to the sets T+

N , for various values
of N . Furthermore, Lemma 4.5 applies to these restrictions, so the second, third and fourth
parts follow immediately. It follows from the first part and the fourth part of 4.3 that

ϕxr (T
+
N (x)) = [ϕxr (x

r−min
r(xN ) x(N,∞)), ϕ

x
r (x

r−max
r(xN ) x(N,∞)))]

which is an interval of length νr(r(xN).
In part 6, the fact that these are the only three possibilities follows from part 3 of Lemma

4.5. We must prove the range of ϕxr is a claimed. If xN is not r-maximal, it is an easy exercise
to check that

ϕxr (x
r−max
r(xN ) x(N,∞))− ϕxr (xr−maxr(xN−1)x(N−1,∞)) ≥ νr(r(xN)).

Similarly, if xn is not r-minimal, then

ϕxr (x
r−min
r(xN−1)x(N,∞))− ϕxr (xr−minr(xN ) x(N−1,∞)) ≤ −νr(r(xN)).

Our hypotheses and Proposition 3.9 shows that

lim
N→∞

min{νr(v) | v ∈ VN} =∞.

Conclusions five and six follow easily from these observations and results from 3.2.
The last statement follows from the last part of Lemma 4.3. �

5. Singular points

We are now ready to begin the journey from the infinite path space of an ordered bi-infinite
Bratteli diagram, B, together with a state, νs, νr, to the surface SB.

The basic idea is an extremely simple one: to make a quotient space from the path space
XB by identifying x with ∆s(x), for all x in ∂sXB and y with ∆r(y), for all y in ∂rXB.
We can already see in Lemma 4.8 that this works quite well, at least locally, and that
our functions ϕvs , ϕ

v
r provide an explicit homeomorphism between the quotient space and a

Euclidean one. But there are a number of subtleties to deal with. Ultimately, it is necessary
pass to a distinguished subset, YB, of XB. This can already be seen to be necessary since
XB is compact, while our surface will not be. In fact, there two types of points which need
to be removed. The first, which might be called extremal with respect to the ordering are
fairly obvious and we have seen these already in Proposition 4.1. The second type, which we
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call singular, are more subtle. The main objective of this section is to identify these points
precisely and discuss some of their properties.

For this section, we assume that B is a strongly simple ordered bi-infinite Bratteli diagram
with state νr, νs.

Recall the definitions of Xext
B , Xs−max

B , Xs−min
B , Xr−max

B , Xr−min
B given in Proposition 4.1.

These will be removed from XB simply because our maps ∆s,∆r are not defined on them
(in general).

Also recall that in Definition 4.6, the domains of ∆s,∆r, ∂sXB, ∂rXB, respectively, are
defined to exclude Xext

B .
As we are going to take a quotient by identifying points under both ∆s and ∆r, we need

some compatibility between these maps. In short, we require that they commute when both
are defined.

As we have seen above, ∆s(x) will be left-tail equivalent to x and we have even given a
name to the least integer where they differ: n(x). Similarly, the greatest integer where x
and ∆r(x) differ is called m(x). If we are to compute ∆r ◦∆s(x) (assuming for the moment
it is defined), one of two rather distinct things happens. If m(x) < n(x), the computation
of ∆s(x) changes no entry, xn, with n < n(x). It follows that n(∆s(x)) = n(x). Moreover,
the computation of ∆r(∆s(x)) is pretty much the same as that of ∆r(x).

The following picture should prove helpful:

m(x) n(x)

One can actually see four different paths here: x,∆s(x),∆r(x) and ∆r(∆s(x)). The im-
portant conclusion one draws is that ∆r ◦∆s(x) = ∆s ◦∆r(x).

Of course, there is a second possibility when n(x) ≤ m(x), summarized by the following
picture:

n(x) m(x)

which shows the paths x,∆s(x) and ∆r(x). The issue now becomes whether or not ∆r ◦
∆s(x) = ∆s ◦∆r(x). It is possible but there is no reason that it must occur. At this point,
the reader may wish to take a look at the example in section 11.

Let us take a moment to discuss why the equation ∆r◦∆s(x) = ∆s◦∆r(x) is important. If
one thinks back to the example of the Cantor ternary set, identifying successor/predecessor
pairs produces a closed interval. One can think of the two points which are identified as a
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’left coordinate’ and a ’right coordinate’ of the point. Passing to a bi-infinite diagram, we
will realize our quotient space in R2: the left tail provides the x-coordinate and the right,
the y-coordinate. Some points will have two coordinates in both x and y directions. What
our formula is designed to capture is the notion that if we move horizontally first and then
vertically we should get the same as moving vertically first and then horizontally. If we do
not (as we suggest above), then this tells us that the space is not ’flat’ at such a point.

We now develop these ideas more precisely.

Definition 5.1. If B is a strongly simple bi-infinite ordered Bratteli diagram, we define
∂XB = ∂sXB ∩ ∂rXB and

ΣB = {x ∈ ∂XB | ∆s ◦∆r(x) 6= ∆r ◦∆s(x)}.

Proposition 5.2. We have ∆s(∂XB) = ∂XB, ∆r(∂XB) = ∂XB and ∆s(ΣB) = ΣB =
∆r(ΣB).

Proof. The first two equalities are already noted in in Definition 4.6. We prove the second
equality of the last statement. Assume x is not in ΣB so that ∆s ◦∆r(x) = ∆r ◦∆s(x). We
have

∆s ◦∆r(∆r(x)) = ∆s ◦∆r ◦∆r(x)

= ∆s(x)

= ∆r ◦∆r ◦∆s(x)

= ∆r ◦∆s ◦∆r(x)

= ∆r ◦∆s(∆r(x))

implying that ∆r(x) is also not in ΣB. �

We now give a proper written proof of what was shown by our first diagram above.

Lemma 5.3. Let x be in ∂XB. If m(x) < n(x), then x is not in ΣB.

Proof. It is clear that ∆r(x)i = xi, whenever i > m(x). It follows that n(∆r(x)) = n(x) and
that ∆s ◦ ∆r(x)i = ∆s(x)i for all i > m(x). It also follows from the definition of ∆s that
∆s ◦∆r(x)i = ∆r(x)i, for all i < n(x).

The same argument shows that ∆s(x)i = xi, whenever i < n(x) and that ∆r ◦∆s(x)i =
∆r(x)i for all i < n(x). It also follows from the definition of ∆r that ∆r ◦∆s(x)i = ∆s(x)i,
for all i > m(x).

Combining the first fact with the fourth, if i > m(x), we have

∆s ◦∆r(x)i = ∆s(x)i = ∆r ◦∆s(x)i.

Combining the second fact with the third, if i < n(x), we have

∆s ◦∆r(x)i = ∆r(x)i = ∆r ◦∆s(x)i.

As every i satisfies either i > m(x) or i < n(x), we conclude that

∆s ◦∆r(x) = ∆r ◦∆s(x).

�

The set ΣB plays an important part in what follows and it will be useful to establish some
simple facts about it.
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Lemma 5.4. Define functions εr, εs : ∂XB → E by

εr(x) = xm(x),

εs(x) = xn(x).

The function εr×εs : ∂XB → E×E is finite-to-one. In particular, ∂XB is a countable subset
of X.

The restriction of εr to ΣB is at most four-to-one. The only possible limit points of ΣB
are in Xext

B .

Proof. By definition, for a given x in ∂XB = ∂sXB∩∂rXB, there are exactly four possibilities.
One of them is that for all i < m(x), xi is ≤r-minimal and for all i > n(x), xi is ≤s-maximal.
The other three are obtained by replacing one, other or both ’maximal’ by ’minimal’. It
follows then by a simple induction argument that xm(x) uniquely determines xi for all i ≤
m(x). Similarly, xn(x) uniquely determines xi for all i ≥ n(x). Finally, there are only finitely
many paths from r(xm(x)) to s(xn(x)), when m(x) < n(x).

If, in addition, x is in ΣB, then we know from Lemma 5.3 that m(x) ≥ n(x). Hence, x is
determined uniquely by xm(x).

If xk, k ≥ 1 is any sequence in ΣS
B, let us assume each term satisfies the first of the four

possibilities above. If, in addition, the points are all distinct, then the values of m(xk) are
distinct, for k ≥ 1. We may then assume that they are converging to +∞. It is simple to
check that any limit point of this sequence is contained in Xr−min

B . �

We complete this section with a very useful technical result on how the map ∆s preserves
the order ≤r and the measures νxr .

Proposition 5.5. Let x ≤r y be in XB ∩ ∂sXB such that [x, y]r is disjoint from ΣB ∪Xext
B .

Then

∆s([x, y]r) = [∆s(x),∆s(y)]r.

and the restriction of ∆s to [x, y]r preserves ≤r.
Moreover, we have ν

∆s(x)
r (∆s(E)) = νxr (E), for every Borel set E ⊆ [x, y]r.

Proof. We will assume that xn, yn are s-maximal for all sufficiently large n; the other case is
similar. Choose n(x), n(y) < n such that x(n,∞) = y(n,∞).

Let m < n(x), n(y) and define Pm to be all paths p in Em,n such that r(p) = r(xn) = r(yn),
x[m,n] ≤r p ≤r y[m,n] and p is all s-maximal edges. Observe that if p is in Pm, then p[m+1,n]

is in Pm+1 (if m + 1 < n(x), n(y)). If Pm is non-empty for all m < n(x), n(y), a standard
compactness argument shows that we can find z in X−r(xn) consisting entirely of s-maximal

edges and satisfying x ≤r zx(n,∞) ≤ y. This contradicts the condition that [x, y]r is disjoint
from Xext

B . Hence, there exists m < n(x), n(y) such that Pm is empty.
We fix such an m. The elements p of Em,n with r(p) = r(xn) and x[m,n] ≤r p ≤r y[m,n] are

linearly ordered by ≤r and we list them as

x[m,n] = p0 <r p
1 <r · · · <r p

k = y[m,n].

Using our choice of m, we let qi = Ss(p
i) for 0 ≤ i ≤ k.

For each 0 ≤ i ≤ n, the set X−
s(pi)

pix(n,∞) is linearly ordered by ≤r. Moreover, the order

is determined by the entries less than m. On the other hand, applying ∆s affects only the
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entries greater than or equal to m. This implies that ∆s preserves order on each of these
sets. We also note that

∆s(X
−
s(pi)

pix(n,∞)) = X−
s(pi)

qixs−min
r(qi)

.

For 0 ≤ i ≤ k, it is clear that xi = xr−max
s(pi)

pix(n,∞) is the largest element of X−
s(pi)

pix(n,∞)

in ≤r. It is also in [x, y]r as well as ∂sXB and ∂rXB.
Using our hypothesis that [x, yr is disjoint from ΣB, we can now compute, for 0 ≤ i < k,

Ss(x
i) <r Sr ◦ Ss(xi)

= Ss ◦ Sr(xi)
= Ss(x

r−min
s(pi+1)

pi+1xr−maxr(p) )

= xr−min
s(pi+1)

qi+1xr−min
r(qi+1)

which is the least element of ∆s(X
−
s(pi+1)

pi+1x(n,∞)). It follows that ∆s preserves order when

applied to all of [x, y]r.
For the last statement, let z be any point of [x, y]r and k be any integer less than or equal

to m. We consider the set E = X−s(zk+1)z(k,∞). This is a clopen subset of [x, y]r and such

subsets are a base for its topology, so it suffices to prove the statement for this set. By
Proposition 3.12, we have νxr (E) = νr(s(zk+1).

As k ≤ m, we have ∆s(E) = X−s(zk+1)∆s(z)(k,∞) ν
x
r (∆s(E)) = νr(s(zk+1) also. �

6. The surface

Having identified extremal points and singular points in the last section, the goal of this
section is to pass from the infinite path space of a bi-infinite ordered Bratteli diagram, XB,
to its associated surface, which we will denote by SB. Moreover, if we are given a state on the
Bratteli diagram, we will construct an explicit system of charts for this space which shows
that it is a translation surface.

There are a number of intermediary steps. First, we must remove both extremal and
singular points from XB. Then, we must identify points x and ∆r(x) and also x and ∆s(x).
These two identifications commute precisely because we have removed the singular points.
However, if we simply do the first identifications, we obtain an intermediate space, which we
denote by SrB. Doing the other identification first results in SsB.

Definition 6.1. Let B be a bi-infinite ordered Bratteli diagram, We define

YB = XB −Xext
B − ΣB.

For m < n, we define EY
m,n to be those p in Em,n which are neither s-maximal, s-minimal,

r-maximal nor r-minimal and for which X−s(p)pX
+
r(p) is contained in YB.

Remark 6.2. If B is finite rank, then the set Xext
B if finite and Xext

B ∪ ΣB is countable and
closed, by Lemma 5.4. Hence, YB is an open set in XB.

The surfaces we construct will be quotient of YB. Of course, we cannot use XB since
translation surfaces are not generally compact. As we will see later, it is interesting that the
finite genus case will be done with ΣB empty. Its appearance is essential in the infinite genus
case.
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Further to this, let us observe if p is in EY
m,n and e is in Em with r(e) = s(p) then ep is in

EY
m−1,n; if f is in En+1 with s(f) = r(p), then pf is in EY

m,n+1. Let us also show that the sets

X−s(p)pX
+
r(p), p ∈ ∪m<nEY

m,n form an open cover of YB. If x is in YB, then it must have edges

which are not s-maximal, not s-minimal, not r-maximal and not r-minimal. Select m′ < n′

so that the path p = x[m′,n′] contains one of each. In addition, as x is in YB which is open,
we may find m < m′ < n′ < n such that X−s(xm)x(m,n]X

+
r(xn) ⊆ YB. It follows that x(m,n] is in

EY
m,n.
The next result is quite easy and will be useful later on.

Proposition 6.3. Let B be a finite rank, strongly simple bi-infinite ordered Bratteli diagram.
There exists m < 0 such that r : EY

m,0 → V0 is surjective. In fact, r : EY
m−n,n → Vn is

surjective for all n ≥ 0.

Proof. Let K be a bound on the size of the vertex sets. As there is a unique s-maximal path
and a unique s-minimal from each vertex in Vl, l < 0, the total number of such paths in El,0
is 2K. As our diagram is strongly simple, we may choose l < 0 such that there are more
than 2K paths from Vl to each vertex of V0. Now choose m < l such that there are at least
three paths between each vertex of Vm and each vertex in Vl.

Let v be in V0. Choose p in El,0 with r(p) = v which is neither s-maximal nor s-minimal.
Next choose q in Em,l with r(q) = s(p) which is not r-maximal nor r-minimal. If x is any
path in X−s(q)qpX

+
v , it is clear that it is not in Xext

B . In addition, if x is in ∂XB, then n(x) ≥ l

while m(x) < l. By Lemma 5.3, x is not in ΣB. So qp is in EY
m,0 with r(qp) = v. �

There is one more property which we will require of YB: it should be invariant under both
∆r and ∆s.

This will follow from the assumptions that Xext
B ∩ ∂sXB and Xext

B ∩ ∂rXB are empty. In
fact, the set ∂sXB is defined to be disjoint from Xs−max

B and Xs−min
B , but as the ≤s and ≤r

orders are essentially independent, there is no reason the same should be true of Xr−max
B and

Xr−min
B .
It will be convenient to collect the hypotheses we need for most of the remainder of the

paper.

Definition 6.4. We say that a bi-infinite ordered Bratteli diagram, B, satisfies the standing
assumptions if

(1) B is finite rank (Definition 2.5),
(2) B is strongly simple (Definition 3.5),
(3) Xext

B ∩ ∂sXB and Xext
B ∩ ∂rXB are empty.

We are going to make various quotient spaces from YB by making identifications of x
and ∆r(x) and y with ∆s(y), for appropriate x and y. Moreover, we will have specific
homeomorphisms between these spaces and some locally Euclidean ones.

Definition 6.5. Let B be an ordered bi-infinite Bratteli diagram.

(1) We define the quotient space

SrB = YB/x ∼ ∆r(x), x ∈ ∂rXB ∩ YB.

We let πr denote the quotient map from YB to SrB.
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(2) We define the quotient space

SsB = YB/y ∼ ∆s(y), y ∈ ∂sXB ∩ YB.

We let πs denote the quotient map from YB to SsB.
(3) We define the quotient space

SB = YB/y ∼ ∆s(y), x ∼ ∆r(x), x ∈ ∂rXB ∩ YB, y ∈ ∂sXB ∩ YB.

As this space is obviously a quotient of both SrB and SsB, we let ρs be the map from
the former and ρr be the map from the latter and

π = ρs ◦ πr = ρr ◦ πs.

That is, we have a commutative diagram

YB
πr

~~

πs

  
SrB

ρs   

SsB

ρr~~
SB

Our next goal is to provide local descriptions of the spaces involved. More specifically, we
need charts for the surace. Of course, this is a crucial step if we are to show that SB is a
translation surface. Along the way, we will also obtain local descriptions of SrB, S

s
B, which

are somewhat simpler.
Our charts will actually be defined as functions on the space YB to the plane, which are

constant on equivalence classes. If a point of SB is represented by a single point x in YB,
the collection of sets X−s(xm)x(m,n]X

+
r(xn),m < n, form a neighbourhood base at the point x.

In addition, the maps ϕ
s(xm)
r and ϕ

r(xn)
s of Definition 4.8 can be used to define a map to the

plane. This is not quite suitable for a chart since the image is a closed rectangle, rather than
an open set, but eliminating the sides of this rectangle from the image by restriction is a
simple matter and the result will be one of our charts.

A second possibility is that a point of SB is represented by a pair, x, y = ∆r(x), for
some x in ∂rXB ∩ YB. It follows from Lemma 4.5 that x(i,∞) = y(i,∞), yi is the ≤r-successor

(or predecessor) of xi and x(−∞,i) = xs−mins(xi)
, y(−∞,i = xs−maxs(yi)

, for some integer i. In this

case, we will use the pair of paths (x(m,n], y(m,n]), where m < i < n, to parameterize our
neighbourhoods.

Of course ,there is a third case where the point is represented by a pair, x, y = ∆s(x), for
some x in ∂sXB ∩ YB and a fourth case where it is represented by four points.

We formally introduce the sets which will parameterize our charts.

Definition 6.6. Let B be a bi-infinite ordered Bratteli diagram with faithful state νs, νr.

(1) For m < n, we let Er
m,n denote the set of pairs (p1, p2) with p1, p2 in EY

m,n such that

p2 = Sr(p
1); that is p2 is the successor in the ≤r order. This implies r(p1) = r(p2),

which we denote by r(p).
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For p = (p1, p2) in Er
m,n, we define

V r
1 (p) = (X−s(p1) − {x

r−min
s(p1) })p

1X+
r(p),

V r
2 (p) = (X−s(p2) − {x

r−max
s(p2) })p

2X+
r(p)

and V r(p) = V r
1 (p) ∪ V r

2 (p).

(2) For p in Er
m,n, we define cr(p) = ϕ

r(p)
r (xr−maxs(p1) p1) = ϕ

r(p)
r (xr−mins(p2) p2) and ψpr : V r(p)→

R by

ψpr (x) = ϕr(p)r (x(−∞,n])− cr(p),
for x in V r(p).

(3) For m < n, we let Es
m,n denote the set of pairs (p1, p2) with p1, p2 in EY

m,n such that

p2 = Ss(p
1); that is p2 is the successor in the ≤s order. This implies s(p1) = s(p2)

which we denote by s(p).
For p = (p1, p2) in Es

m,n, we define

V s
1 (p) = X−s(p)p

1(X+
r(p1) − {x

s−min
r(p1) }),

V s
2 (p) = X−s(p)p

2(X+
r(p2) − {x

s−max
r(p2) })

and V s(p) = V s
1 (p) ∪ V s

2 (p).
(4) For p in Es

m,n, we define cs(p) = ϕs(p)(p1xs−maxr(p1) ) = ϕs(p)(p2xs−minr(p2) ) and ψps : V s(p)→
R by

ψps(x) = ϕs(p)s (x[m,∞))− cs(p),
for x in V s(p).

The basic properties if these sets are summarized in the following. For brevity, we say
that a subset A ⊆ XB is ∆r-invariant (or ∆s-invariant) if ∆r(A ∩ ∂rXB) = A ∩ ∂rXB (or
∆s(A ∩ ∂sXB) = A ∩ ∂sXB, respectively).

Lemma 6.7. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4 and with faithful state νs, νr. Let m < n and p = (p1, p2) be in Er

m,n.

(1) The set V r(p) is an open subset of YB.
(2) If x is in V r(p) ∩ ∂rXB then exactly one of the following holds.

(a) m ≤ m(x) ≤ n and if x is in Vi(p), i = 1, 2, then ∆r(x) is in V3−i(p),
(b) m(x) < m and if x is in Vi(p), i = 1, 2, then ∆r(x) is in Vi(p).

In either case, ∆r(x)(n,∞) = x(n,∞) and V r(p) is ∆r-invariant.
(3) For x in V r(p), we have

ψpr (x) =

{
ϕ
s(p1)
r (x(−∞,m))− νr(s(p1) x ∈ V r

1 (p),

ϕ
s(p2)
r (x(−∞,m)) x ∈ V r

2 (p).

(4)

ψpr (V
r

1 (p)) = (−νr(s(p1), 0],

ψpr (V
r

2 (p)) = [0, νr(s(p
2)).

(5) The map which sends x ∈ V r(p) → ψpr (x) is continuous and identifies two distinct
points x, y if and only if ∆r(x)(−∞,n] = y(−∞,n].
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Proof. For the first part, the fact that p1, p2 are in Er
m,n ⊆ EY

m,n implies that V r
i (p) ⊆

X−
s(pi)

piX+
r(p), i = 1, 2 are contained in YB. The fact that V r(p) is open is clear.

For the second, first suppose that m(x) ≥ m and that x(−∞,m(x)) is all r-maximal edges.
From the definition of V2(p), x cannot be in V2(p), so x(m,n] = p1. As p1 is not r-maximal,
m(x) ≤ n and ∆r(x) = x(−∞,m)p

2x(n,∞) which is in V2(p). Similarly, if x(−∞,m(x)) is all
r-minimal edges, then x is not in V2(p), ∆r(x) is in V1(p) and m(x) ≤ n. If m < m(x),
then ∆r(x)[m,∞) = x[m,∞) so if x is in Vi(p), so is ∆r(x). The fact that m ≤ n in either case
implies ∆r(x)(n,∞) = x(n,∞).

For the third part, consider x in V1(p). We apply Lemma 4.9 with p = p1 in the second
line below:

ψpr (x) = ϕr(p)r (x(−∞,n])− cr(p)
= ϕr(p)r (x(−∞,m)p

1)− ϕr(p)r (xr−maxs(p1) p1)

= ϕs(p
1)

r (x(−∞,m)) + ϕr(p)r (xr−mins(p1) p1)− ϕr(p)r (xr−maxs(p1) p1)

= ϕs(p
1)

r (x(−∞,m))− νr(s(p1)).

For x in V r
2 (p), we use the same result:

ψpr (x) = ϕr(p)r (x(−∞,n])− cr(p)
= ϕr(p)r (x(−∞,m)p

2)− ϕr(p)r (xr−mins(p2 p2)

= ϕs(p
2)

r (x(−∞,m)) + ϕr(p)r (xr−mins(p2) p2)− ϕr(p)r (xr−mins(p2 p2).

Part 4 is an immediate consequence of part 3, the definitions and two applications of part
4 of Lemma 4.3.

Part 5 follows from parts 2 and 3 of Lemma 4.3 applied to B−s(p) and the fact that

ϕ
r(p)
r (xr−maxs(p1) p1) = ϕ

r(p)
r (xr−mins(p2) p2). �

The next result, while slightly technical, essentially shows that there are enough sets V r(p)
to cover YB.

Lemma 6.8. If y is in SrB and U is an open set in YB such that (πr)−1{y} ⊆ U , then there
exists m ≥ 1 and p = (p1, p2) ∈ Er

−m,m such that neither p1, p2 are r-maximal nor r-minimal

in EY
−m,m and (πr)−1{y} ⊆ V r(p) ⊆ U .

Proof. We first consider the case when (πr)−1{y} = {x}, which is not in ∂rXB. As YB is open,
we may find 1 ≤ k such that X−s(x−k)x[−k,k]X

+
r(xk) is contained in U . As x is not in ∂rXB, we

may find m > l > l′ > k such that x−m, x−l are not r-maximal and xl′ is not r-minimal. Let
y−m be the r-successor of x−m. Let p1 = x[−m,m], p

2 = y−mx(−m,m] so p2 is the r-successor of
p1 in EY

−m,m. As p1
[−k,k] = p2

[−k,k] = x[−k,k], V
r(p) contains x and is contained in U . Clearly,

p1 is not r-maximal and p2 is not r-minimal in EY
−m,n. Also, p1 is not r-minimal since x−l′

is not r-minimal. Similarly, p2 is not r-maximal since x−l is not r-minimal.
Next, we consider the case that (πr)−1{y} = {x, Sr(x)} which are in ∂rXB. We may choose

k > |m(x)| such that X−s(x−k)x[−k,k]X
+
r(xk) and X−s(x−k)Sr(x)[−k,k]X

+
r(xk) are contained in U . We

now choose m > k such that there are at least two paths in E−m,−k with range s(x−k) and
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at least two paths in E−m,−k with range s(Sr(x)−k). Let p1 = x[−m,m], p
2 = Sr(x)[−m,m]. It is

straightforward to check p = (p1, p2) satisfies the conclusion. �

There are obvious analogues of the last two results for p in Es
m,n.

The following follows quite easily from the technical results above.

Corollary 6.9. Let B be an ordered bi-infinite Bratteli diagram satisfying the conditions of
Definition 6.4.

(1) The space SrB is a locally compact Hausdorff space and πr : YB → SrB is a continuous,
proper surjection.

(2) The space SsB is a locally compact Hausdorff space and πs : YB → SsB is a continuous,
proper surjection.

Proof. We prove the first part only. Continuity and surjectivity follow from the definition of
SrB. We prove that the quotient map is proper. As YB is a metric space, it suffices to show
that if K ⊆ SrB is limit point compact, then so is (πr)−1(K) ⊆ YB.

Let A be an infinite subset of (πr)−1(K). As πr is at most two-to-one, πr(A) is also infinite
and since K is compact, it has a limit point, we call z in K.

Let us first consider the case (πr)−1{z} = {y}. We will show y is a limit point of A. It
follows that y is not in ∂rXB. Let z ∈ U ⊆ YB be open. We may n sufficiently large so that,
y−n is not r-maximal, y(−∞,−n) are not all r-minimal and X−r(y−n)y[−n+1,n−1]X

+
s(yn) is contained

in U . Let p1 = y[−n,n] and p2 be its r-successor. This means that p2
[−n+1,n−1] = y[−n+1,n−1]

also so y ∈ V r(p) ⊆ U . It follows that z = πr(y) ∈ πr(V r(p)) which is an open set in SrB. It
follows that πr(V r(p)) contains a point of πr(A). Hence A contains a point of V r(p) ⊆ U .

In the second case, we assume that (πr)−1{z} = {y1, y2}, where ∆r(y
1) = y2 is the r-

successor of y1. We claim that either y1 or y2 is a limit point of A. For sufficiently large
values of n, the pair p = (p1, p2) = (y1

[−n,n], y
2
[−n,n]) will be in Er

−n,n. We also note that yi is

in V r
i (p) for i = 1, 2. The set πr(V r(p)) is open and contains z, hence it contains a point

of πr(A). It follows that A meets either V r
1 (p) or V r

2 (p). This statement holds for each n
sufficiently large. It follows that there are infinitely many n such that A∩V r

1 (p) is not empty
or A∩ V r

2 (p) is not empty. In the former case, y1 is a limit point of A, while in the latter y2

is. �

The next result is a comparison of the different V r(p), p ∈ Er
m,n, n > m, at least in the

case m = −n. We observe that the conclusion already hints at the condition for the charts
in a translation surface.

Lemma 6.10. Let B be a bi-infinite, ordered Bratteli diagram.
Suppose 1 ≤ m < n, p = (p1, p2) in Er

−m,m and q = (q1, q2) in Er
−n,n. Suppose that

neither p1 nor p2 are r-minimal or r-maximal in EY
−m,m. If V r(q)∩V r(p) is not empty, then

q1
(m,n] = q2

(m,n] and we have

ψqr(x) = ψpr (x) + cr(p)− cr(q[−n,m]),
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for each x in V r(p) ∩ V r(q). Moreover, we have

cr(p)− cr(q[−n,m]) =



ϕ
s(p1)
r (xr−maxs(q1) q1

[−n,−m))− νr(s(p1)), q1
[−m,m] = p1

−νr(s(p1)), q1
[−m,m] 6= q2

[−m,m] = p1

ϕ
s(p2)
r (xr−mins(q2) q2

[−n,−m)), q2
[−m,m] = p2

νr(s(p
2)), q2

[−m,m] 6= q1
[−m,m] = p2

0, q1
[−m,m] = p1, q2

[−m,m] = p2.

Proof. We first show that m(q) ≤ m. If m(q) > m, then q1
[−m,m] consists of all r-maximal

edges while q2
[−m,m] consists of all r-minimal edges. with the hypothesis that p1, p2 are not

r-maximal or r-minimal implies V r(q) ∩ V r(p) is empty. As an immediate consequence, we
see that q1

(m,n] = q2
(m,n].

Let x be in V r(p) ∩ V r(q). We will to apply Lemma 4.9 in the third and fourth lines:

ψqr(x) = ϕr(q)r (x(−∞,n])− cr(q)
= ϕr(q)r (x(−∞,m]q

1
(m,n])− cr(q)

= ϕr(p)r (x(−∞,m]) + ϕr(q)r (xr−minr(p) q1
(m,n])− ϕr(q)(xr−maxr(q) q1)

= ψpr (x) + cr(p)− ϕr(p)r (xr−maxr(p) q1
[−n,m])

= ψpr (x) + cr(p)− cr(q[−n,m]).

If we assume that q1
[−m,m] = p1, then we again use Lemma 4.9

cr(p)− cr(q[−n,m]) = −ϕr(p)r (xr−maxs(p1) p1) + ϕ
r(q[−n,m])
r (xr−maxs(q1) q1

[−n,−m)p
1)

= −ϕr(p)r (xr−maxs(p1) p1) + +ϕs(p
1)

r (xr−maxs(p1) q1
[−n,−m)) + ϕr(p)r (xr−mins(q1) p1)

= −νr(s(p1)) + ϕs(p
1)

r (xr−maxs(p1) q1
[−n,−m)).

If we assume that q1
[−m,m] 6= q2

[−m,m] = p1, then we again use Lemma 4.9

cr(p)− cr(q[−n,m]) = −ϕr(p)r (xr−maxs(p1) p1) + ϕ
r(q[−n,m])
r (xr−mins(q2) q2

[−n,−m)p
1)

= −ϕr(p)r (xr−maxs(p1) p1) + +ϕs(p
1)

r (xr−mins(p1) q2
[−n,−m)) + ϕr(p)r (xr−mins(q1) p1)

= −νr(p1) + ϕs(p
2)

r (xr−mins(p2) q2
[−n,−m)).

We claim that q2
[−n,−m) must consist of r-minimal edges. If not, the predecessor of q2 would

be unchanged in entries m and greater. This would mean that q1
[−m,m] = q2

[−m,m], which is a

contradiction. It follows that ϕ
s(p2)
r (xr−mins(p2) q2

[−n,−m)) = 0.

The third and fourth cases are done in a similar way and we omit the details.
Finally, we suppose that q1

[−m,m] = p1 and q2
[−m,m] = p2. If q1 contained an edge which was

not r-maximal between −n and −m, then it r-successor would be unchanged between −m
and m. This is not the case so q1

[−n,−m) is r-maximal and q2
[−n,−m) is r-minimal. It follows

that ϕ
s(p2)
r (xr−mins(q2) q2

[−n,−m)) = 0 and cr(p)− cr(q[−n,m]) = 0 so from the third case. �

The surface SB is more complicated. In particular, our nice open cover is rather more
technical than the previous ones, where a point in SB has two pre-images under both ρr
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and ρs, or four pre-images in YB. While this takes a bit of effort, we are rewarded with an
immediate proof that SB is a translation surface.

Definition 6.11. For integers m < n, we define E
r/s
m,n to be the set of all quadruples p =

(p1,1, p1,2, p2,1, p2,2) of distinct paths in EY
m,n such that

(1) (a) p1,2 is the s-successor of p1,1 in Em,n,
(b) p2,1 is the r-successor of p1,1 in Em,n,
(c) p2,2 is the s-successor of p2,1 and the r-successor of p1,2 in Em,n.

(2) For p be in E
r/s
m,n, we define

V1,1(p) =
(
X−s(p1,1) − {x

r−min
s(p1,1) }

)
p1,1

(
X+
r(p1,1) − {x

s−min
r(p1,1)}

)
V2,1(p) =

(
X−s(p2,1) − {x

r−max
s(p2,1) }

)
p2,1

(
X+
r(p2,1) − {x

s−min
r(p2,1)}

)
V1,2(p) =

(
X−s(p1,2) − {x

r−min
s(p1,2) }

)
p1,2

(
X+
r(p1,2) − {x

s−max
r(p1,2) }

)
V2,2(p) =

(
X−s(p2,2) − {x

r−max
s(p2,2) }

)
p2,2

(
X+
r(p2,2) − {x

s−max
r(p2,2) }

)
and

V (p) = V1,1(p) ∪ V1,2(p) ∪ V2,1(p) ∪ V2,2(p).

(3) We also define ψp : V (p)→ R2 by

ψp(x) =



(
ϕ
s(p1,1)
r (x(−∞,m))− νr(s(p1,1)), ϕ

r(p1,1)
s (x(n,∞))− νs(r(p1,1)))

)
, x ∈ V1,1(p)(

ϕ
s(p1,2)
r (x(−∞,m))− νr(s(p1,2)), ϕ

r(p1,2)
s (x(n,∞)))

)
, x ∈ V1,2(p)(

ϕ
s(p2,1)
r (x(−∞,m)), ϕ

r(p2,1)
s (x(n,∞))− νs(r(p2,1)))

)
, x ∈ V2,1(p)(

ϕ
s(p2,2)
r (x(−∞,m)), ϕ

r(p2,2)
s (x(n,∞))

)
, x ∈ V2,2(p).

We let ψp(x)1 and ψp(x)2 denote the first and second entries of ψp(x).

Let us make some observations relating this new definition with the previous ones. We
will not prove the following as it is a simple observation from the definitions.

Lemma 6.12. Let p be in E
r/s
m,n.

(1) For j = 1, 2, we have (p1,j, p2,j) is in Er
m,n and V1,j(p) ∪ V2,j(p) ⊆ V r(p1,j, p2,j) and,

for x in V1,j(p) ∪ V2,j(p),

ψp(x)1 = ψ(p1,j ,p2,j)
r (x).

(2) For i = 1, 2, we have (pi,1, pi,2) is in Es
m,n and Vi,1(p)∪Vi,2(p) ⊆ V s(pi,1, pi,2) and, for

x in Vi,1(p) ∪ Vi,2(p),

ψp(x)2 = ψ(pi,1,pi,2)
s (x).

We first need a version of Lemma 6.7. Fortunately, most of this follows quite easily from
Lemmas 6.7 and 6.12.

Lemma 6.13. (1) If p is in E
r/s
m,n,m < n, then V (p) is open in YB.

(2) If p is in E
r/s
m,n,m < n, then V (p) is invariant under ∆r and ∆s.
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(3)

ψp(V1,1(p)) =
(
−νr(s(p1,1)), 0

]
×
(
−νs(r(p1,1)), 0

]
ψp(V2,1(p)) = [0, νr(s(p2,1)))× (−νs(r(p2,1)), 0]

ψp(V1,2(p)) = (−νr(s(p1,2)), 0]× [0, νs(r(p1,2))))

ψp(V2,2(p)) = [0, νr(s(p2,2)))× [0, νs(r(p2,2)))

ψp(V (p)) = (−νr(s(p1,1)), νr(s(p2,2)))× (−νs(r(p1,1)), νs(r(p2,2)))

(4) For p in E
r/s
m,n,m < n, ψp is continuous and, for x, y in V (p), ψp(x) = ψp(y) if and

only if π(x) = π(y) in SB.

Proof. The first part is clear from the definition.
For the second part, if we let q = (p1,1, p2,1), then q is in Er

m,n and so V r(q) is ∆r-
invariant by part 2 of Lemma 6.7. This V r(q) contains V1,1(p) ∪ V2,1(p), although they are
not equal. However, part 2 in 6.7 shows that if x is in V r(q)∩∂rXB, then ∆r(x)(n,∞) = x(n,∞)

which implies that V1,1(p) ∪ V2,1(p) is ∆r-invariant. In a similar way with q = (p1,2, p2,2),
V1,2(p)∪V2,2(p) is ∆r-invariant so V (p) is ∆r-invariant. The proof for ∆s-invariant is similar,
using the fact that q = (pi,1, pi,2) is in Es

m,n, for i = 1, 2.
The third part of the conclusion is an immediate consequence of the definition and Lemma

4.3 applied to the Bratteli diagrams B−
s(pi,j)

and B+
r(pi,j)

. The continuity of ψp on each of the

sets Vi,j(p) also follows from 4.3 and the observations preceding the Lemma.
Let us now prove that, for any x in V (p) ∩ ∂rXB, ψp(∆r(x)) = ψp(x). It is easy to see

that V1,1(p) ∪ V2,1(p) and V1,2(p) ∪ V2,2(p) are both ∆r-invariant and the conclusion, for the
first coordinates, follows by restricting to these sets and using part 5 of Lemma 6.7. Similar
arguments deal with the second coordinate and show that ψp(∆s(x)) = ψp(x), for any x in
V (p) ∩ ∂sXB.

It remains for us to prove the converse: suppose that x, y are in V (p) and ψp(x) = ψp(y),
we must show they are related by ∆r and ∆s. For a first case, suppose that x, y both lie in
the same V1,1 ∪ V2,1, If we use q = (p1,1, p2,1) as before, we can appeal to the results we have
above and part 5 of 6.7. The equality of the first coordinates tells us that y(−∞,n] = x(−∞,n]

or possibly that y(−∞,n] = ∆r(x)(−∞,n] if x is in ∂rXB. In the latter case, we also know that
∆r(x)(n,∞) by part 2 of Lemma 6.7.

In addition, Lemma 4.3 applied to B+
r(p) shows that either y[m,∞) = x[m,∞) or y[m,∞) =

∆s(x)[m,∞) if y is in ∂sXB. All together, the four possibilities amount to y = x, y = ∆r(x), y =
∆s(x) or y = ∆r ◦∆s(x).

Similar arguments deal with the cases x, y lie in V (p)1,1 ∪ V1,2(p), V (p)1,2 ∪ V2,2(p) or in
V (p)2,1 ∪ V2,2(p). We move on to the case x is in V1,1(p) while y is in V2,2(p). Part 3 of the
conclusion then implies that ψp(x) = πp(y) = (0, 0). From this it follows that x(−∞,m) is all
r-maximal edges, x(n,∞) is all s-maximal edges, y(−∞,m) is all r-minimal edges and y(n,∞) is
all s-minimal edges. From this we see that y = ∆r ◦∆s(x). The case x is in V1,2(p) while y
is in V2,1(p) is similar. This completes the proof.

A similar argument using q = (p1,1, p1,2) is Es
m,n shows y[m,∞) = ∆s(x)([m,∞) if x is in ∂sXB

and y[m,∞) = x[m,∞) otherwise. The conclusion follows.
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In addition to showing part 2, these arguments and part 4 of Lemma 6.7 also prove that
the map ψp has the following form: for x in V1,1(p), i, j = 1, 2,

ψp(x) =
(
ψri,j(x(−∞,m)), ψ

s
i,j(x(n,∞))

)
,

where the functions are provided by various applications of Lemma 6.7. Letting x =
xr−maxs(p1,1) p

1,1xs−maxr(p1,1) , we also have

ψp(x) = ψp(∆r(x)) = ψp(∆s(x)) = ψp(∆r ◦∆s(x)) = (0, 0)

Parts 3, 4 and 5 of the conclusion also follow from these observations. �

We need actually need to add a rather technical condition on our choices for p. Fortunately,
we still have an ample supply of such p, as follows.

Lemma 6.14. Let y be in SB and U be an open set in YB such that π−1{y} ⊆ U . Then
there exist m ≥ 1 and paths pi,j, 0 ≤ i, j ≤ 3 in EY

−m,m such that for i < 3, pi+1,j is the

r-successor of pi,j and for j < 3, pi,j+1 is the s-successor of pi,j in EY
−m,m and such that

π−1{y} ∈ V (p) ⊆ U , where p = (p1,1, p1,2, p2,1, p2,2).

Proof. The first case to consider is when π−1{y} = {x}, which is in neither ∂rXB nor ∂sXB.
Then we can find m > 1 such that X−s(x−m)x[−m,m]X

+
r(xn) is contained in U and there are

−m ≤ i1 < i2 < i3 < 0, xi1 , xi2 are not r-maximal and and xi3 is not r-minimal and there
are 0 < j3 < j2 < j1 ≤ m, xj1 , xj2 are not s-maximal and xj3 is not s-minimal. We let
p1,1 = x[−m,m]. Having defined pi,j for some i, j, we set pi+1,j to be its r-successor, pi,j+1

to be its s-successor, pi−1,j to be its r-predecessor and pi,j+1 to be its s-predecessor. This
defines pi,j for all 0 ≤ i, j ≤ 3. We note that since i1, i2, i3 < 0 < j1, j2, j3, taking the
r-successor followed by taking the s-successor is the same as performing the operations in
the other order.

In addition, there are values of i < −m for which xi is not r-minimal and i > m for which
xi is not s-minimal, so x lies in V1,1(p).

The second case is that x lies in ∂rXB, but not in ∂sXB. Without loss of general-
ity, we assume that ∆r(x) is the r-successor of x. We choose m > |m(x)| such that
X−s(x−m)x[−m,m]X

+
r(xm) and X−s(x−m)∆r(x)[−m,m]X

+
r(xm) contained in U . In addition, m is chosen

so that there are m(x) < j3 < j2 < j1 < m such that xj1 , xj2 are not s-maximal and j3 is
not s-minimal. We also choose m sufficiently large so that there are at least two paths in
EY
−m,m(x) with range equal to s(x−m) and at least three paths with range equal to s(∆(x)−m).

We let p1,1 = x[−m,m] and define the other pi,j as before. Arguments similar to the last case
show the conclusion holds.

The case when x lies in ∂sXB, but not in ∂rXB is similar and we omit the details.
Finally, we consider the case x lies in in ∂rXB ∩ ∂sXB. Without loss of generality, as-

sume ∆r(x) = Sr(x) and ∆s(x) = Ss(x). We choose k ≥ |m(x)|, |n(x)| such that the sets
X−s(x−k)x[−k,k]X

+
r(xm), X

−
s((Sr(x)−k)x[−k,k]X

+
r(Sr(x)m), X

−
s((Ss(x)−k)x[−k,k]X

+
r(Ss(x)m) and

X−s((Sr◦Ss(x)−k)x[−k,k]X
+
r(Sr◦Ss(x)m) are all contained in U .

We then choose m > k such that there are at least three paths from V−m to each vertex
V−k and at least three paths from each vertex of Vk to Vm. We define p1,1 = x[−m,m] and
the remaining pi,j as before. The remaining details of the proof are similar to the other
cases. �
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Lemma 6.15. Let B be a bi-infinite ordered Bratteli diagram. Let p be in E
r/s
−m,m, q in in

E
r/s
−n,n with 1 ≤ m ≤ n such that V (p) ∩ V (q) is not empty. Assume that p satisfies the

condition of Lemma 6.14. There is a constant c(p, q) in R2 such that

ψp(x) = ψq(x)− c(p, q),

for all x in V (p) ∩ V (q).

Proof. We will only prove the equation above holds when considering the first coordinates,
ψp(x)1 and ψq(x)1, respectively. The other coordinate is done in a similar way (by replacing
all appearances of r with s.)

Let assume that V1,1(q) meets V (p); the other cases are similar. Suppose V1,1(q) meets

Vi,j(p), for some 1 ≤ i, j ≤ 2 which implies that q1,1
[−m,m] = pi,j. From the existence of the

pk,l, 0 ≤ k, l ≤ 3, we see that q1,1 is not r-maximal in EY
−n,n. In particular, q2,1

(m,n] = q1,1
(m,n].

Similarly, as q1,1 is not s-maximal q1,2
[−n,−m) = q1,1

[−n,−m).

We will consider four cases separate;y depending on whether q1,1
(m,n] is s-maximal or not

and whether q1,1
[−n,−m) is r-maximal or not.

Let us first suppose that q1,1
(m,n] is not s-maximal and q1,1

[−n,−m) is not r-maximal. It fol-

lows that taking successors in either order leaves the entries between m and m unchanged:
q1,1

[−m,m] = q2,1
[−m,m] = q1,2

[−m,m] = q2,2
[−m,m] = pi,j.

In this case, we have V (q) ⊆ Vi,j(p) and we can apply Lemma 6.10 twice. First, to the
pair (p1,j, p2,j) and (q1,1, q2,1) and then to the pair (p1,j, p2,j) and (q1,2, q2,2). In the first case,
we have q1,1

[−m,m] = p1,j and the translation involved is

ϕs(p
1,1)

r (xr−maxs(q1,1) q
1,1
[−n,−m))− νr(p

1,1)

and in the second, we have q1,2
[−m,m] = p1,j and it is

ϕs(p
1,1)

r (xr−maxs(q1,2) q
1,2
[−n,−m))− νr(p

1,1)

Since q1,2
[−n,−m) = q1,1

[−n,−m), these are equal and the desired conclusion follows.

Next, we continue to suppose that q1,1
(m,n] is not s-maximal and that q1,1

[−n,−m) is r-maximal.

Then we have q2,1
[−m,m] = q2,2

[−m,m] = pi+1,j. If i = 2, V2,1(q) ∪ V2,2(q) is disjoint from V (p)

and the conclusion follows from an application of Lemma 6.10 to the pair (p1,j, p2,j) and
(q1,1, q2,1).

If 1 = 1, then we can apply Lemma 6.10 twice, first with with (p1,j, p2,j) and (q1,1, q2,1)
and then with the pair (p1,j, p2,j) and (q1,2, q2,2). As we have p1,j = q1,1

[−m,m] = q1,2
[−m,m] and

p2,j = q2,1
[−m,m] = q2,2

[−m,m], both translations are trivial.

We next consider the case when q1
(m,n] is s-maximal while q1

[−n,−m) is not r-maximal. Then

it follows that q2,1
[−m,m] = pi,j while q1,2

[−m,m] = q2,2
[−m,m] = pi,j+1. If j = 2, V1,2(q) ∪ V2,2(q) is

disjoint from V (p) we apply Lemma 6.10 to the pair (p1,j, p2,j) and (q1,1, q2,1) If j = 1, then
we make two applications of part 2 of Lemma 6.10. The first is to the pair (p1,1, p2,1) and
(q1,1, q2,1) and the second to the pair (p1,2, p2,2) and (q1,2, q2,2). Since q1,1

[−n,−m) = q1,2
[−n,−m), the

two translations are equal.
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We finally come to the case when q1
(m,n] is s-maximal and q1

[−n,−m) is r-maximal. If i =

j = 1, then we have qi
′,j′

[−m,m] = pi
′,j′ for all i′, j′. the conclusion follows from two applications

of part 5 of Lemma 6.10; first to the pair (p1,1, p2,1) and (q1,1, q2,1) and then to the pair
(p1,2, p2,2) and (q1,2, q2,2). If i = 1 and j = 2, then V1,2(q) ∪ V2,2(q) are disjoint from V (p)
and the result follows from an application of part 4 of Lemma 6.10 to the pair (p1,2, p2,2) and
(q1,1, q2,1). If i = 2 and j = 1, the result follows from applications of part 2 of Lemma 6.10
to (p1,1, p2,1) and (q1,1, q2,1) and to (p1,2, p2,2) and (q1,2, q2,2). The two translations are equal
since s(p2,1) = s(p2,2). If i = 2 and j = 2, then V (q)∩V (p) = V1,1(q)∩V2,2(p) and the result
follows from Lemma 6.10 using (p1,2, p2,2) and (q1,1, q2,1). �

Theorem 6.16. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of

6.4. For each n ≥ 1 and p in E
r/s
−n,n, define Y (p) = π(V (p)) ⊆ SB and let ηp : Y (p)→ R2 be

the unique map satisfying ηp = ψp ◦ π. Then each Y (p) is open and ηp is a homeomorphism
to its image. The space SB is a surface and the collection of maps ηp, where p ranges over

∪n≥1E
r/s
−n,n, is an atlas for SB making it a translation surface.

7. Groupoids

A groupoid, G, very roughly, is a group whose product is only defined on a subset G2 ⊆
G×G. We will not need a complete definition, but we refer the reader to Renault [Ren80]
and Williams [Wil19] for details. One important class of examples are equivalence relations.
These are also called principal groupoids and are the only ones we consider here. We refer
the reader to Renault [Ren80].

Let Y be a set and R ⊆ Y ×Y be an equivalence relation. It is a groupoid with operations

(x, y)(x′, y′) = (x, y′), if y = x′

and
(x, y)−1 = (y, x)

for all (x, y), (x′, y′) in R. The space of units in the groupoid, R0, consists of all pairs (y, y),
y ∈ Y and we find it convenient to identify this with Y in the obvious way. Doing this, our
range and source maps are r(x, y) = x, s(x, y) = y. (See [Ren80] and[Wil19].) Hence, for
any unit y, we have

Ry = r−1{y} = {y} × [y]R,

(using the notation of Renault [Ren80]) which we identify with [y]R.
For us, the set Y will be a topological space and our equivalence relations, as groupoids,

must come with their own topologies. This is almost never the relative topology from the
product space Y × Y . Let us remark that, in general, when we speak about the topology on
equivalences classes, we usually mean using the identification of the equivalence class with
the set {y}× [y]R (using the identification with [y]R×{y} yields the same topology) and the
relative topology from the equivalence relation rather than the topology as a subset of Y .

In addition to having topologies, our groupoids must come with a Haar system. As the
name suggests, a Haar system is a generalization of the notion of Haar measure on a group
appropriate to groupoids. For equivalence relations, this amounts to having a collection of
measures on the equivalence relation, νy, indexed by the points of the underlying space. The
support of the measure νy is the equivalence class of y, or more precisely {y}×[y]R. There are
two important properties for a Haar system. The first is a left-invariance condition which,
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in our case, is simply that νx = νy when (x, y) is in R. The second condition is that, for any
continuous compactly-supported function f on R, the map sending y in Y to

∫
f(z)dνy(z)

is continuous.
Initially, we considered the bi-infinite path space of a Bratteli diagram B, which we de-

noted XB. The notions of right and left tail equivalence on XB, T+(XB) and T−(XB), were
introduced back in Definition 3.6. For the rest of the paper we will focus on T+(XB). Defini-
tion 3.6 even included the definition for our topology on T+(XB). In addition, the collection
of measures in Proposition 3.12 provide a Haar system.

In the last section, we introduced four new spaces, YB, S
s
B, S

r
B and SB, the last being a

surface, along with certain maps between them. In addition, a state on the diagram gave us
an atlas for the surface. Our aim in this section is to transfer the equivalence relation T+(XB)
to the other spaces by means of our given quotient maps and to consider the horizontal
foliation on the translation surface. We will meet subtleties along the way.

Our ultimate aim will be to associate C∗-algebras with these equivalence relation via the
groupoid construction. We will discuss this in the next section.

7.1. AF-equivalence relations T+(XB), T+(YB).

Our first result concerns the relations of right-tail equivalence, T+(XB), and left-tail equiv-
alence, T−(XB). We will focus on the former. Our first result gives some basic information,
including a nice basis for the topology defined in Definition 3.6, which we repeat in the state-
ment for convenience. The result is standard and we omit the proof (see Renault [Ren80]).

Proposition 7.1. Let B be a bi-infinite Bratteli diagram with faithful state νs, νr. For each
integer N , we define

T+
N (XB) = {(x, y) ∈ X2

B | x(N,∞) = y(N,∞)},
which is endowed with the relative topology from XB ×XB. Let

T+(XB) =
⋃
N∈Z

T+
N (XB)

be endowed with the inductive limit topology and let νxr , x ∈ XB, be the measures defined in
3.12.

(1) T+(XB) is a locally compact, Hausdorff groupoid.
(2) The collection of measures νxr , x ∈ XB (Proposition 3.12) is a Haar system for

T+(XB).
(3) For m < n and p, q in Em,n with r(p) = r(q), the set

T+(p, q) = {(x, y) | x(m,n] = p, y(m,n] = q, x(n,∞) = y(n,∞)}
is a compact, open subset of T+(XB). The map sending (x, y) in T+(p, q) to
(x(−∞,m], y(−∞,m], x(n,∞)) is a homeomorphism from T+(p, q) to X−s(p) ×X

−
s(q) ×X

+
r(p).

Moreover, as m,n, p, q vary these sets form a base for the topology of T+(XB).

It will be helpful for us to keep track of the individual equivalences classes as we progress.
The basic description of T+(x), x ∈ XB is contained in Lemma 4.10 which we summarize
here. First, T+(x) is linearly ordered by ≤r and its intersection with ∂rXB is ∆r-invariant.
The map ϕxr : T+(x) → R is continuous, order preserving and identifies two points y, z if
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and only ∆r(t) = z. If T+(x) ∩ Xr−max
B is non-empty. then it is a single point, y, then

T+(x) ∩ Xr−min
B is empty and ϕxr (T

+(x)) = (−∞, ϕxr (y)] If T+(x) ∩ Xr−min
B is non-empty.

then it is a single point, z, then T+(x) ∩Xr−max
B is empty and ϕxr (T

+(x)) = [ϕxr (z),∞). In
all other cases, ϕxr (T

+(x)) = R.
Of course, we need to restrict this equivalence relation to the subspace YB ⊆ XB.

Definition 7.2. Let B be a bi-infinite ordered Bratteli diagram . We define

T+(YB) = T+(XB) ∩ (YB × YB)

and

T−(YB) = T−(XB) ∩ (YB × YB) .

We remark that this creates some notational confusion. If y is in YB, does T+(y) refer to
its class in T+(XB) or in T+(YB)? To keep things clearer, we always mean the former so
that latter is written as T+(y) ∩ YB.

We observe the following general result.

Theorem 7.3. Let X be a locally compact, Hausdorff, topological space with an equivalence
relation R and a Haar system νx, x ∈ X. Suppose that S is an open subequivalence relation
of R. The set Y = {y ∈ X | (y, y) ∈ S} is an open subset of X and the collection of measures
νSy = νy|[y]S, for y in Y is a Haar system of S.

Proof. The fact that Y is open is clear. As νx is a Haar system for R, the support of each
measure is {x} × [x]R and since S is open, the measure νSy will have support {y} × [y]S, for
each y in Y . The continuity property of the measures is immediate. �

We note that if B is finite rank and strongly simple, then T+(YB) is an open subequivalence
relation of T+(XB) and Proposition 7.1 also holds for T+(YB), if we replace Em,n with EY

m,n, in
the last condition and use Haar system provided by the last theorem. We will not introduce
a new notation for these measures.

7.2. Equivalence relation T ](YB).

Ultimately, we want to move our equivalence relations to our quotient spaces where we
identify x with ∆r(x) and y with ∆s(y), for x in ∂r(XB) ∩ YB and y in ∂s(XB) ∩ YB. The
first poses no real problem since (x,∆r(x)) lies in T+(YB). The second does, however. This
is because if x, y are in ∂s(XB) and (x, y) is in T+(YB), (∆s(x),∆s(y)) may not be T+(YB).
We make the obvious adjustment.

Definition 7.4. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4.

We define T ](YB) to be the subset of T+(YB) consisting of all pairs (x, y) in T+(YB) satis-
fying the additional condition that (∆s(x),∆s(y)) is in T+(YB), if x, y are in ∂sXB. We let
T ](y) denote the equivalence class of y in T ](YB).

It is clear that T ](YB) is a subset of T+(YB). We want to show it is open. In fact, it will
be useful for us to have a local description.
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Proposition 7.5. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4.

Let m < n and p, q be in Es
m,n (as in Definition 6.6) with r(p) = (r(p1), r(p2)) =

(r(q1), r(q2)) = r(q). We define

T ](p, q) =
[
(V s

1 (p)× V s
1 (q)) ∩ T+

n (XB)
]
∪
[
(V s

2 (p)× V s
2 (q)) ∩ T+

n (XB)
]

=
(
T+(p1, q1)−X−s(p)p

1xs−minr(p1) ×X
−
s(q)q

1xs−minr(q1)

)
∪
(
T+(p2, q2)−X−s(p)p

2xs−maxr(p2) ×X
−
s(q)q

2xs−maxr(q2)

)
.

We have T ](YB) is an open subgroupoid of T+(YB).

(1) If (x, y) is in T ](p, q) with x, y in ∂sXB, then (∆s(x),∆s(y)) is in T ](p, q).
(2) T ](p, q) is open in T ](YB).
(3) As m,n, p, q vary the sets T ](p, q) cover T ](YB).

Proof. For the first part, let us assume that (x, y) is in T+(p1, q1)−X−s(p)p1xs−minr(p1) ×X
−
s(q)q

1xs−minr(q1) ;

the other case is similar. If n(x) > n, then n(y) = n(x) since (x, y) is in T+
n (XB). It is then

clear that computing ∆s(x) and ∆s(y) leaves the entries less than n(x) unchanged and their
entries greater than or equal to n(x) will be equal. The conclusion follows. If n(x), n(y) ≤ n,
then as the entries greater than n are not s-minimal, they must all be s-maximal. This
means ∆s = Ss on x, y. Since p1, q1 are not s-maximal, we have m ≤ n(x), n(y) ≤ y and
∆s(x) = x(−∞,m)p

2xs−minr(p2) . A similar computation for ∆s(y) and the fact that r(p2) = r(q2)

shows the conclusion.
It is clear that T ](p, q) is an open subset of T+(p1, q1) ∪ T+(p2, q2) since X−s(p)px

s−min
r(p1) ×

X−s(q)px
s−min
r(q1) and X−s(p)px

s−max
r(p2) ×X

−
s(q)px

s−max
r(q2) are closed. The second part of the conclusion

follows from this and the first part.
The proof of the third part is similar to that of Lemma 6.8 and we omit the details.
The final statement follows from the first three parts. �

We will now develop a better understanding of T ](YB). The process raises an interesting
issue. A one-sided Bratteli diagrams with a ≤r-order is usually called properly ordered if
there is a unique infinite path of all maximal edges, and a unique infinite path of all minimal
edges. The first condition is equivalent to the fact that any two infinite paths which are
≤r-maximal for all but finitely many edges, must be tail equivalent. It turns out the the
situation is rather different for bi-infinite diagrams.

Consider the following:

This shows only the s-maximal edges in some bi-infinite ordered Bratteli diagram. Note that
there is a unique infinite path of s-maximal edges, while there are two infinite paths whose
edges are all s-maximal, for sufficiently large indices, but are not tail-equivalent.

On the other hand if we look at:
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again only showing the s-maximal edges, there are two infinite paths of s-maximal edges,
but these are tail equivalent.

It turns out that the number of distinct tail-equivalence classes is the important thing
here, not the number of paths in Xs−max

B and this leads to the following proposition.

Proposition 7.6. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4. The set ∂sXB is invariant under the equivalence relation T+(YB) and if B is
finite rank, then it is the union of a finite number of equivalence classes. More specifically,
we may find positive integers IB, JB, x1, . . . , xIB ∈ YB such that, for all i, (xi)n is s-maximal,
for all but finitely many n ≥ 0, and xIB+1, . . . , xIB+JB ∈ YB such that, for all j, (xj)n is
s-minimal, for all but finitely many n ≥ 0, and so that

∂sXB =

IB+JB⋃
i=1

T+(xi)

and the sets on the right are pairwise disjoint.

Proof. Suppose that x1, . . . , xI are all eventually s-maximal and no two are right-tail equiv-
alent. Then we can find N , such that (xi)n is s-maximal, for all 1 ≤ i ≤ I, n ≥ N . If
s((xi)N) = s((xj)N), for some i, j, it follows from this fact that xi and xj are right-tail
equivalent and so i = j. It follows that I ≤ #VN−1. As B is finite rank, we see that I must
be bounded by the same constant that bounds the size of the sets Vn. A similar argument
deals with paths that are eventually s-minimal. �

Looking back at the two examples given above, the first has IB = 2, while the second has
IB = 1.

Our problem can now be summarized by noting that while

∆s :

IB⋃
i=1

T+(xi)→
IB+JB⋃
j=IB+1

T+(xj),

is a bijection, it does not respect the decomposition in the unions. This is easily remedied
in the following way.

Definition 7.7. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4 and IB, JB, x1, . . . , xIB+JB be as in Proposition 7.6. We define

IB ?∆ JB = {(xi, xj), 1 ≤ i ≤ IB < j ≤ IB + JB | ∆s(T
+(xi)) ∩ T+(xj) 6= ∅}.

The following is an immediate consequence of the definitions.

Proposition 7.8. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4. The equivalences classes in T ](YB) can be listed as T+(x) ∩ YB, where
T+(x)∩∂sXB is empty and T+(xi)∩∆s(T

+(xj))∩YB, ∆s(T
+(xi))∩T+(xj)∩YB, where (i, j)

is in IB ?∆ JB.

Most importantly, the groupoid is now invariant under ∆s and so we may pass it on to
SsB.

We also note the following which follows immediately from Proposition 7.8.
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Proposition 7.9. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4. We have T ](YB) = T+(YB) if and only if IB = JB and, for each 1 ≤ i ≤ IB
there is a unique 1 ≤ j ≤ JB with (i, j) in IB ?∆ JB. In particular, if IB = JB = 1 then
T ](YB) = T+(YB).

Recall that each equivalence class in T+(YB) is linearly ordered by ≤r. Our final result
for this subsection relates this order with equivalence classes of T ](YB). The following is an
immediate consequence of Proposition 5.5.

Proposition 7.10. For (x, y) in T+(XB), if [x, y]r is contained in YB, then it is contained
in a single T ](YB) equivalence class.

7.3. Equivalence relation T ](SsB).

We now take the quotient by the map πs : YB → SsB. By definition, the equivalence
relation T ](YB) is preserved under this quotient map.

Definition 7.11. We define T ](SsB) to be πs × πs(T ](YB)) and endow it with the quotient
topology. For each z in SsB, we denote its class in T ](SsB) by T ](z).

We first need a local description of the quotient analogous to Proposition 7.17. In fact,
this is an immediate consequence of 7.17 and the definitions and Lemma 6.10.

Proposition 7.12. Let m < n and p, q be in Es
m,n (as in Definition 6.6) with r(p) =

(r(p1), r(p2)) = (r(q1), r(q2)) = r(q).

(1) πs × πs(T ](p, q)) is open in T ](SsB).
(2) As m,n, p, q vary the sets πs × πs(T ](p, q)) cover T ](SsB).
(3) The map sending (πs(x), πs(y)) in πs × πs(T ](p, q)) to (x(−∞,m], y(−∞,m], ψ

p,r(x(n,∞))
is a homeomorphism to X−s(p1) ×X

−
s(q1) × (−νs(r(p1), νs(r(p

2)).

(4) The map πs × πs : T ](YB)→ T ](SsB) is continuous and proper.

Finally, we list the equivalence classes for T ](SsB) which is an immediate consequence of
Proposition 7.8 and the definition of πs. The last statement is an immediate consequence of
Proposition 5.5.

Proposition 7.13. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4. The equivalences classes in T ](SsB) can be listed as πs(T+(x)∩ YB), where
T+(x) ∩ ∂sXB is empty and

πs
(
T+(xi) ∩∆s(T

+(xj) ∩ YB)
)

= πs
(
∆s(T

+(xi)) ∩ T+(xj) ∩ YB
)
,

where (i, j) is in IB?∆JB. The restriction of πs to each equivalence class is a homeomorphism
to its image.

If E is a Borel subset of T+(xi) ∩∆s(T
+(xj) ∩ YB, then νxir (E) = ν

xj
r (∆s(E)). For each

y in YB, we define ν
πs(y)
r (πs(E)) = νyr (E), for each Borel set E in T ](y). Then this is a

well-defined Haar system for T ](SsB).
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7.4. Equivalence relation T ](SB).

We now want to move the groupoid T ](YB) to our surface, SB. Recall that we denote the
quotient map by ρr : SsB → SB and π = ρr ◦ πs : YB → SB .

Definition 7.14. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4. We define

T ](SB) = ρr × ρr(T ](SsB)) = π × π(T ](YB))

and endow it with the quotient topology. For each z in SB, we denote its class in T ](SB) by
T ](z).

Proposition 7.15. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions

of Definition 6.4. Let p, q be in E
r/s
m,n,m < n satisfy r(p) = r(q).

We define

U ](p, q) = (T ]((p1,1, p1,2), (q1,1, q1,2))− xr−mins(p1,1)X
+
s(p1,1) × x

r−min
s(q1,1)X

+
s(q1,1))

∪(T ]((p2,1, p2,2), (q2,1, q2,2))− xr−maxs(p2,1) X
+
s(p2,1) × x

r−max
s(q2,1) X

+
s(q2,1)).

(1) U ](p, q) is an open subset of T ](YB).
(2) Let (x, y) be in U ](p, q). If x, y are in ∂rXB then (∆r(x),∆r(y)) is also in U ](p, q).

If x, y are in ∂sXB then (∆s(x),∆s(y)) is also in U ](p, q).

(3) For each y in YB and Borel set E in T ](y), we define ν
π(y)
r (π(E)) = νyr (E) =

ν
πs(y)
r (πs(E)). The system of measures νzr , z ∈ SB is a Haar system for is a Haar

system for T ](SB). In addition, for each y in YB, the map ρr from (T ](πs(y)), ν
πs(y)
r )

to (T ](π(y)), ν
π(y)
r ) is an isomorphism of measure spaces.

(4) The map sending (π(x), π(y)), for (x, y) in U ](YB), to
(ψpr (x), ψqr(y), ψps(x)) is a homeomorphism from π×π(U ](p, q)) to (−νr(s(p1,1), νr(s(p

2,1)))×
(−νr(s(q1,1), νr(s(q

2,1)))× (−νs(r(p1,1), νs(r(p
1,2)).

(5) The maps ρr × ρr : T ](SsB) → T ](SB) and π × π : T ](YB) → T ](SB) are continuous
and proper.

We now want a description of the equivalence classes in T ](SB). Let x be in YB. First,
recall that, if x is in ∂rXB, ∆r(x) is in T+(x). We also recall Proposition 4.10 which defines
a function ϕxr : T+(x)→ R. it is continuous, proper and identifies two points x, y if and only
if x is in ∂rXB and y = ∆r(x). In addition, the range is either a closed semi-infinite interval
or R. It remains for us to remove the points of Xext

B ∪ ΣB.

Proposition 7.16. Let x be in YB. The set ϕxr (T
+(x) ∩ YB) is an open subset of the real

numbers and hence consists of a countable collection of open intervals. Let W be a subset of
T+(x)∩ YB whose image under ϕxr is one of these open intervals. Then W is closed in YB if
and only if the interval is bounded and is dense in YB otherwise. Moreover, ϕxr (T

+(x) ∩ YB)
has a bounded interval if and only if T+(x) ∩ (Xext

B ∪ ΣB) has at least two points.

Proof. From Proposition 4.10, if T+(x) meets Xr−max
B then it does so at a single point, say

z. The range of ϕxr (T
+(x)) = (−∞, ϕxr (z)]. We know from Proposition 4.1 that Xext

B is finite
and contains z and from Lemma 5.4 that ΣB is countable and its only limits points are in
Xext
B . The first part of the conclusion follows. The cases that T+(x) meets Xr−max

B and that
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T+(x) ∩ Xr−max
B and T+(x) ∩ Xr−min

B are empty are done in a similar way. We omit the
details.

For the second part, if ϕxr (W ) is a bounded interval, then it equal (ϕxr (y), ϕxr (z), where
y, z are in Xext

B ∪ ΣB. It is clear that W = Ir(y, z) ( as in Proposition 7.10) is equal to
{w ∈ XB | y ≤r w ≤r z} ∩ YB which is clearly closed in YB

To prove that W is dense in YB when the image is unbounded, there are three cases to
consider, depending on which of T+(x)∩Xr−max

B and T+(x)∩Xr−min
B are empty. We consider

the case the first is empty and leave the other to the reader. The hypothesis, along with
Lemma 4.10, implies that we have y in T+(x) such that

{z ∈ T+(x) | y ≤r z} ∩
(
Xext
B ∪ ΣB

)
is empty. We claim the set {z ∈ T+(x) | y ≤r z} is dense in XB, from which the conclusion
follows.

Let m be a positive integer and let p be any path in E−m,m. As B is strongly simple, we
may find n > m such that there is a path from r(pm) to every vertex of Vn. If yi is r-maximal
for every i ≥ n, with y′i = yi, for i ≥ n and inductively defining y′n−j to be the unique r-

maximal edge with range s(y′n−j+1) for all j ≥ 1, we see that y′ is in Xr−max
B ∩ T+(x), which

we assumed to be empty. Hence, we can find i ≥ n with yi not r-maximal. Define z as
follows: zj = yj, for j > n, zi to be the r-successor of yi, z(n,i) to be any path from r(pm) to
s(zi), z[−m,m] = p−m,m] and z(−∞,m) any path with range s(p−m). Then z is in T+(x), z >r y
and z[−m,m] = p[−m,m]. This establishes the claim.

The last statement is now trivial. �

The following result follows immediately.

Proposition 7.17. Each equivalence class in T ](SB) consists of a countable collection of
open intervals.

7.5. The foliation F+(SB).

Definition 7.18. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4. We define F+

B to be the open subequivalence relation of T ](SB) whose
equivalence classes are the path connected components of the equivalence classes of T ](SB).
For any x in SB, we denote its equivalence class in F+

B by F+
B (x).

We remark that, in consequence of the description of the equivalence classes of T ](SB)
given in 7.17, there is no distinction between path connected and connected.

The next result shows that F+
B is the horizontal foliation for our surface SB, when equipped

with the charts of Theorem 6.16.

Theorem 7.19. Let p be in E
r/s
m,n for m < n and let u, v be in Y (p) ⊆ SB (see Theorem 6.16).

Then (u, v) is in π × π(U ](p, p)) if and only if ηp(u) and ηp(v) lie on the same horizontal
line.

Proof. First assume (u, v) is in π × π(U ](p, p)). By Definition 7.11, for i = 1 or i = 2, we
have u = π(x), v = π(y), with (x, y) in T ]((pi,1, pi,2), (pi,1, pi,2)). Again by definition (7.5),
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we have j = 1 or j = 2 such that (x, y) is in Vi,j(p) × Vi,j(p) ∩ T+
n (XB). For the moment,

assume j = 2 as the other case is similar.
According to the definition (6.11), considering only the y-coordinate

ηp(u)2 = ηp(π(x))2 = ψp(x) = ϕr(p
i,2)

s (x(n,∞)) = ϕr(p
i,2)

s (y(n,∞)) = ηp(v)2.

since (x, y) is in T+
n (XB). Of course, this means they lie on the same horizontal line.

For the converse, let us assume without loss of generality that ηp(u) and ηp(v) lie in the
upper half plane. So we can find i = 1 or i = 2 and x in Vi,2(p) with ψp(x) = ηp(u). Similarly,
there is j, y in Vj,2(p) with ψp(x) = ηp(v). Then considering the y-coordinate, we have

ϕr(p
1,2)

s (x(n,∞)) = ηp(u)2 = ηp(v)2 = ϕr(p
j,2)

s (y(n,∞)).

Of course, r(p1,2) = r(pj,2) and part 4 of Lemma 4.10 implies that either x(n,∞) = y(n,∞) or
one is the s-successor of the other, in which case y is in ∂sXB and we replace it by ∆s(y).
The result is a pair (x, y) in U ](p, p) with π × π(x, y) = (u, v). �

Theorem 7.20. If B is a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4, F+

B is an open subgroupoid of T ](SB).

Proof. If n ≥ 1 and p is in E
r/s
−n,n, then ηp(Y (P )) = ψp(V (p)) is an open rectangle from

Lemma 6.13. It follows from Theorem 7.19 that a pair of points in the image are in the
image π × π(U ](p, p)) if and only if their images under ηp line on the same horizontal line.
Since the horizontal lines in an open rectangle are connected, we see that any pair (x, y) in
π × π(U ](p, p)) also lies in F+

B .
Now suppose that (x, y) is in F+

B . We may find a continuous function h from [0, 1] to the
class of x in F+

B with h(0) = x, h(1) = y. The points in the image of h may be covered

by sets of the form Y (p), p in E
r/s
−n,n, n ≥ 1. We extract a finite subcover corresponding to

p1, . . . , pk and order them so that there is xi in Y (pi) for 1 ≤ i ≤ k with x1 = x, xk = y and
(xi, xi+1) on the same horizontal line in ηp(Y (p)). If we then look at the set of all (z1, . . . , zk)
such that there exist (zi, zi+1) is in π× π(U ](pi, pi)) for 1 ≤ i < k, the set of pairs (z1, zk) is
open in T ](SB) and contained in F+

B . �

Theorem 7.21. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4. The foliation F+

B is minimal if and only if the equivalence relation T+(XB)
is trivial on Xext

B ∪ ΣB.

Proof. This is an immediate consequence of Proposition 7.16. �

8. C∗-algebras

We now begin our investigations into the various C∗-algebras associated with the groupoids
of the last section.

We begin with a general discuss of the construction of the C∗-algebra from an equivalence
relation. We assume that all of our spaces are locally compact and Hausdorff. Let Y be a
topological space, R ⊆ Y × Y be an equivalence relation on Y such that the product map
from R × R sending ((x, y), (y, z)) to (x, z) is continuous. We also suppose we have a Haar
system; that is, a collection of measures νx, x ∈ Y on R such that νx is supported on [x]R,
νx = νy whenever (x, y) is in R and, for any continuous function of compact support on R,
f , the function sending x in Y to

∫
f(x, z)dνy(z) is continuous.
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These measures are then used to turn the linear space of compactly-supported continuous
complex-valued functions on R, denoted Cc(R), into an algebra with the product of two
elements, f, g, given by the formula;

(f · g)(x, y) =

∫
z∈[x]R

f(x, z)g(z, y)dνx(z),

for (x, y) in R. The hypotheses on the Haar system is needed to see that the product f · g
is again continuous and compactly-supported.

For the uninitiated reader, it is probably a good idea at this point to think of the example
where Y = {1, 2, . . . , n} and R = Y × Y . The Haar system is counting measure on each
equivalence class and the product above is simply matrix multiplication.

We can also define an involution as follows: for f in Cc(R),

f ∗(x, y) = f(y, x),

for (x, y) in R. In the finite case above, this is simply the conjugate transpose of the matrix.
To obtain a C∗-algebra, we need to define a norm on this algebra and take then its

completion. All of our equivalence relations are amenable and so this norm is actually
unique. However, we do not give a proof of this here. Instead we consider only the norm
from the left regular representation and its completion which is the reduced C∗-algebra. We
explain as follows.

For each y in Y , we consider the Hilbert space L2([y]R, νy) and we define a representation
λy of Cc(R) as operators on this Hilbert space by setting

(λy(f)ξ)(x) =

∫
f(x, z)ξ(z)dνy(z),

for f in Cc(R), ξ in L2([y]R, νy) and x in Y . This is a bounded operator and

‖f‖red = sup{‖λy(f)‖ | y ∈ Y }

is finite. The completion of Cc(R) in this norm is C∗λ(R).
Now, we turn to our equivalence relations of interest on our various spaces. We can

summarize the results of the last section with a simple schematic showing our equivalence
relations:

T+(XB) ⊇ T+(YB) ⊇ T ](YB)
πs×πs−→ T ](SsB)

ρr×ρr−→ T ](SB) ⊇ F+
B .

Here, each containment is as an open subequivalence relation and each map is a contin-
uous proper surjection which maps equivalence classes surjectively to equivalence classes.
The most obviously important ones are the first and last: those associated with right tail
equivalence on the Bratteli diagram and horizontal foliation of the surface.

We begin with a general result on the construction.

Theorem 8.1. Let X be a locally compact, Hausdorff, topological space with an equivalence
relation R and a Haar system νx, x ∈ X. Suppose that S is an open subequivalence relation
of R. The set Y = {y ∈ X | (y, y) ∈ S} is an open subset of X and the collection of measures
νSy = νy|[y]S, for y in Y is a Haar system of S. Then the natural inclusion Cc(S) ⊆ Cc(R)
extends to an inclusion C∗λ(S) ⊆ C∗λ(R).
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Proof. It is a simple matter to check that that the inclusion Cc(S) ⊆ Cc(R) is not only linear
but also preserves the product and involution. Finally, for any x in X, we can find a subset
Yx such that

[x]R ∩ Y = ∪y∈Yx [y]S,

and the sets on the right are pairwise disjoint. It follows that L2([x]R, νx) = ⊕y∈YxL2([y]S, ν
S
y )⊕

N , where N is the orthogonal complement of the direct sum. If f is any function in Cc(S),
then λx(f) is zero on N and leaves each summand L2([y]S, ν

S
y ) invariant. Moreover, the

restriction of λx(f) to L2([y]S, ν
S
y ) is simply λy(f). Taking the supremum of the norms of

all λx(f), we see that the inclusion is actually isometric for the reduced norms. �

Corollary 8.2. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4. We have C∗λ(T ](YB)) ⊆ C∗λ(T+(YB)) ⊆ C∗λ(T+(XB)) and C∗λ(F+

B ) ⊆
C∗λ(T ](SB)).

We next turn to the two factor maps. These are slightly different and we must deal with
each individually.

Theorem 8.3. Let B be a e bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4.

The map sending f in Cc(T
](SsB)) to f ◦ (πs × πs) in Cc(T

](YB)) extends to an inclusion
C∗λ(T ](SsB)) ⊆ C∗λ(T ](YB)).

Proof. If πs(y) = πs(y′) for some y 6= y′ in YB, then y is in ∂sXB and ∆s(y) = y′. It
follows from Proposition 5.5 that νyr (E) = νy

′
r (∆s(E)) and so the Haar system is well-

defined. In addition, πs is a homeomorphism from the equivalence class of y in T ](YB) to the
equivalence class of πs(y) in T ](SsB). sending f in Cc(T ](SsB)) to f ◦ (πs× πs) in Cc(T

](YB))
is a ∗-homomorphism.

It also induces a unitary equivalence between the representation λy of C∗λ(T ](YB)) and
λπs(y) of C∗λ(T ](SsB)) and hence the map is isometric. �

Corollary 8.4. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of

Definition 6.4. For each y in SsB, defining ν
ρr(y)
r (ρr(E)) = νyr (E), for each Borel set E with

{y} × E in T ](SsB) is a Haar system for T ](SB).
The map sending f in Cc(T

](SB)) to f ◦(ρr×ρr) in Cc(T
](SsB)) extends to an isomorphism

C∗λ(T ](SB)) ∼= C∗λ(T ](SsB)).

Proof. By Proposition 7.15, ρr, when restricted to a single equivalence class of T ](SsB), maps
surjectively to a single equivalence class of T ](SB). Moreover, it is an isomorphism at the

level of measure spaces with ν
ρr(y)
r as defined.

It is a simple computation to see that the map sending f in Cc(T
](SB)) to f ◦ (ρr × ρr) in

Cc(T
](SsB)) is a ∗-homomorphism. An argument similar to that in the proof of Proposition

8.3 shows that it is injective. To show that the map is surjective on the completion, we must
show the range of Cc(T

](SB)) is dense in Cc(T
](SsB)).

Let m < n and p, q be in E
r/s
m,n with r(p) = r(q). Let

f : X−s(p1,1) → C,

g : X−s(q1,1) → C,

h : (−νs(p1,1), νs(p
1,2)) → C
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be continuous and compactly supported. Identifying πs × πs(T ])((p1,1, p1,2), (q1,1, q1,2)) with
X−s(p1,1)×X

−
s(q1,1)×(−νs(p1,1), νs(p

1,2)) as in part 3 of Proposition 7.12, the map we denote f⊗
g⊗h sending (πs(x), πs(y)) in the former to f(x(−∞,m])g(y(∞,m])h(ψp,r(n,∞)) is a continuous
function of compact support on Cc(T

](SsB)). If we also include analogous functions using
p2,i, q2,i instead of p1,i, q1,i, the linear span of such functions is dense in C∗λ(T ](SsB)).

For each (y, i) in X+
r(p1,i)

×{1, 2}, letM(y,i) denote the space of L2-functions supported on

X−
s(p1,i)

p1,iy and N(y.i) denote the space of L2-functions supported on X−
s(q1,i)

pq1,iy. For any

z in SsB, it follows from the definition that the operator λz(f ⊗ g ⊗ h) is zero except on the
spaces M(y,i) which is mapped to N(y,i). Moreover, if ξ is in M(y,i), we have

λz(f ⊗ g ⊗ h)ξ = h(y)f〈ξ, ḡ〉.
From this it follows that ‖λz(f ⊗ g ⊗ h)‖ = ‖h‖∞‖f‖2‖g‖2.

Let ε > 0. The map ϕ
s(p1,1)
r : X−s(p1,1) → [−νs(p

1,1)
r , 0] is one-to-one except on a countable

set and so induces an isomorphism of measure spaces. We may find a continuous function

f ′ : [−νs(p
1,1)

r , ν
s(p2,1)
r ]→ C which is zero at the left end-point and the interval [0, ν

s(p2,1)
r ] and

such that ‖f − f ′ ◦ ϕs(p
1,1)

r ‖2 < ε. Similarly, we may find g′[−νs(q
1,1)

r , ν
s(q2,1)
r ] → C such that

‖g− g′ ◦ϕs(q
1,1)

r ‖2 < ε. We may now define f ′⊗ g′⊗ h in an analogous way as f ⊗ g⊗ h and
the result is a continuous function of compact support on the open set U ](p, q) ⊆ T ](SB) as
described in Proposition 7.15.

A simple computation now shows that

‖λ(f ⊗ g ⊗ h)− λ(f ′ ⊗ g′ ⊗ h)‖ ≤ ε‖h‖∞ (‖f‖2 + ‖g‖2 + ε) .

This shows that the range is dense. �

In the following subsections, we give more precise descriptions of these C∗-algebras, par-
ticularly focusing on inductive limit structures. Following that, our objective is to compute
their K-theory.

It is probably worth noting that this does not need an ordered Bratteli diagram. Also, it
uses a state, but it is independent of the choice.

Proposition 8.5. Let m < n be integers and let p, q be in Em,n with r(p) = r(q). For (x, y)
in T+(XB), define

ap,q(x, y) = νr(s(p))
−1/2νr(s(q))

−1/2

if (xm+1, . . . , xn) = p, (ym+1, . . . , yn) = q and xi = yi, for all i > n. Define ap,q(x, y) = 0
otherwise. Then ap,q is a continuous, compactly supported function on T+(XB) and hence
lies in C∗λ(T+(XB)). Moreover, we have

(1) If p′, q′ is another pair in Em,n with r(p′) = r(q′), then

ap,qap′,q′ =

{
ap,q′ if q = p′,

0 if q 6= p′

In particular, if r(p) 6= r(p′) then this product is zero.
(2) a∗p,q = aq,p.
(3) ap,q =

∑
s(e)=r(p) ape,qe,

(4) ap,q =
∑
νr(s(e))

−1/2νr(s(f))−1/2νr(r(e))
1/2νr(r(f))1/2aep,fq, where the sum is over

all e, f in Em−1 with r(e) = s(p), r(f) = s(q).
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Proposition 8.6. For integers m < n, let Am,n denote the span of all elements ap,q, where
p, q are in Em,n with r(p) = r(q). If v is a vertex in Vn, let Am,n,v denote the span of all
elements ap,q, where p, q are in Em,n with r(p) = r(q) = v.

(1) Am,n,v is isomorphic to Mj(C), where j is the number of paths p in Em,n with r(p) = v.
(2) Am,n = ⊕v∈VnAm,n,v, In particular, each Am,n is a finite dimensional C∗-subalgebra

of C∗λ(T+(XB)).
(3) For all m,n, K0(Am,n) ∼= Z#Vn.
(4) For all m,n we have Am−1,n ⊆ Am,n ⊆ Am,n+1.
(5) With the identifications above, the inclusion Am−1,n ⊆ Am,n is the identity map on

K0 and the inclusion Am,n ⊆ Am,n+1 is the map on K0 given by the edge matrix for
En+1.

(6) The union of Am,n over all m,n is dense in C∗λ(T+(XB)).

Proposition 8.7. Let B be a finite rank strongly simple bi-infinite ordered Bratteli diagram.
Assume that m < n are such that r : EY

m,n → Vn is surjective. Define AYm,n,v and AYm,n as in

Proposition 8.6 using p, q in EY
m,n. The conclusion of Proposition 8.6 holds when replacing

C∗λ(T+(XB)) by C∗λ(T+(YB)).

Let m < 0 be chosen as in 6.3. We consider the sequence of subalgebras Am−n,n, n ≥ 0 in
C∗λ(T+(XB)) and AYm−n,n, n ≥ 0 in C∗λ(T+(YB)).

Recall that if B is a C∗-subalgebra of a C∗-algebra A, we say that B is full if every
closed two-sided ideal of A has non-trivial intersection with B [Rie82]. We also say that B
is hereditary if a is in A and b is in B with 0 ≤ a ≤ b, then b is in B also [Rie82]. These two
conditions imply that A and B are Morita equivalent and the inclusion B ⊆ A induces an
isomorphism on K-theory.

Theorem 8.8. Let B be a finite rank strongly simple bi-infinite ordered Bratteli diagram.
The C∗-algebras C∗λ(T+(YB)) ⊆ C∗λ(T+(XB)) are both AF-algebras and both have Bratteli
diagram (Vn, En+1), n ≥ 0. Both are simple and the former is a full hereditary subalgebra of
the latter.

Proof. The first statement follows from our earlier results and the choice of inductive systems
given above. The fact that our diagram is strongly simple implies the C∗-algebras are simple
was shown by Bratteli [Bra72]. The shortest proof that the subalgebra is hereditary is to
consider the function f(x) = dist(x,XX − YX ), using any metric on XB which yields the
usual topology. This can be viewed as an element of the multiplier algebra for the larger
(see [Put21]) and fC∗λ(T+(XB))f = C∗λ(T+(YB)) is an easy computation which implies the
conclusion. �

We remark that C∗(T ](YB)) is also an AF-algebra, but we will not give a proof. It can
be done in a similar way to what we have above and what follows below and in the next
subsection.

It will be useful for us to identify another sequence of approximating subalgebras, although
these are not finite-dimensional.

Let us explain some notation we will use. It involves tensor products, but for our case,
no knowledge of tensor products is needed. If A is any C∗-algebra and X is a compact
Hausdorff, we can view the elements of A ⊗ C(X) as functions from X to A which are
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continuous in the norm topology of A. Specifically, for a in A and f in C(X), we identify
a⊗ f(x) = f(x)a, x ∈ X, which takes values in a one-dimensional subspace of A.

In our case, let p, q be in Em,n with m < n and let f : X+
r(p) → C be continuous. We

denote ap,q ⊗ f the function on T+(XB) defined by

(ap,q ⊗ f)(x, y) =

{
f(x(n,∞))ap,q, x[m,n] = p, y[m,n] = q, x(n,∞) = y(n,∞)

0, otherwise

It is immediate that ap,q⊗f is in Cc(T
+(XB) and, if p, q are in EY

m,n, then it is in Cc(T
+(YB).

For v in Vn, we then identify Am,n,v ⊗ C(X+
v ) as a subalgebra of Cc(T

+(XB)). Every
element may be written uniquely as a sum over p, q in Em,n with r(p) = r(q) = v of terms
ap,q ⊗ fp,q. We may also identify Am,n,v as a subalgebra with each fp,q being a constant
function. Finally, we define ACm,n = ⊕v∈VnAm,n,v ⊗ C(X+

v ).

Proposition 8.9. Let p, q in Em,n with m < n and r(p) = r(q) = v and f in C(X+
v ). For

any n < n′ and p′ in En,n′, let ep′ : X+
r(p′) → X+

s(p′) be defined by ep′(x) = p′x, for x in X+
r(p′).

(1) We have

(ap,q ⊗ f) =
∑

app′,qp′ ⊗ (f ◦ ep′),
where the sum is over p′ in En,n′ with s(p′) = r(p). In particular, ACm,n is contained
in ACm,n′.

(2) Identifying ap,q in Am,n with ap,q⊗1 in ACm,n, we have Am,n is a subalgebra of ACm,n.
(3) The union of all ACm,n is dense in C∗λ(T+(XB)).

Our next aim is to analyze the C∗-algebra of the equivalence relation T ](SB) on the space
SB. Our main result is to establish an inductive limit structure on this algebra,

Recall from Corollaries 8.2 and 8.4 we have C∗(T ](SB)) = C∗(T ](SsB)) = C∗(T ](YB)) =
C∗(T+(YB)). We will actually study the second algebra in this list as it is more convenient
and we pass over the third.

Our main tolls are the local description of T ](SsB) given in Proposition 7.12 and the
inductive limit for C∗(T+(XB)) given in Proposition 8.9.

Recall that Es
m,n,m < n consists of pairs p = (p1, p2) such that p1, p2 are in EY

m,n and p2 is

the s-successor of p1. For p = (p1, p2) in Es
m,n, we define r(p) = (r(p1), r(p2)). We also define

Gm,n : {(p, q) | p, q ∈ Es
m,n, r(p) = r(q)},

which is a finite equivalence relation on Es
m,n and hence also a groupoid. For i = 1, 2, we

define αi : Gm,n → EY
m,n × EY

m,n by αi((p
1, p2), (q1, q2)) = (pi, qi).

Proposition 8.10. Let B be an ordered bi-infinite Bratteli diagram satisfying the conditions
of 6.4. Let m < n. Suppose a =

∑
p,q∈EYm,n

ap,q ⊗ fp,q, with fp,q in C(X+
r(p)) for each p, q, in

EY
m,n. Then a is in C∗(T ](SsB)) if and only if the following hold:

(1) for any p, q in EY
m,n with r(p) = r(q), fp,q = gp,q ◦ ϕr(p)s , where gp,q : [0, νs(r(p))]→ C

is continuous and ϕ
r(p)
s is as in 4.8,

(2) for every (p, q) in Es
m,n with r(p) = r(q), we have fp1,q1(xs−maxr(p1) ) = fp2,q2(xs−minr(p2) ).

(3) if (p, q) is not in α1(Gm,n), then fp,q(x
s−max
r(p) ) = 0,

(4) if (p, q) is not in α2(Gm,n), then fp,q(x
s−min
r(p) ) = 0,

We define Bm,n to be the set of all elements, a, satisfying these conditions.
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Proof. We will first show that any element satisfying the conditions lies in C∗(T ](SsB)).
It suffices to show that, for any (x, y) in T+(YB), a(x, y) is zero if (x, y) is not in T ](YB)

and that a(x, y) = a(∆s(x),∆s(y)), if x, y are in ∂sXB. It is clear that T+(YB) and T ](YB)
agree except on ∂sXB and so for both conditions we need only consider the cases when x, y
are in ∂sXB. Without loss of generality, assume that xn is s-maximal, for all n sufficiently
large. Hence, yn is also.

We first observe that if a(x, y) is non-zero, then both p = x(m,n] and q = y(m,n] are in EY
m,n,

which implies they are both in YB. This implies that n(x), n(y) ≥ m. In addition, we must
have (x, y) in T+

n (XB).
If n(x) > n, then n(y) = n(x) > n also and ∆s(x)(m,n] = p,∆s(y)(m,n] = q and from the

first hypothesis f(x(n,∞)) = f(∆s(x)(n,∞).
The case which remains is m < n(x), n(y) ≤ n. If either Ss(x(m,n]) or Ss(y(m,n]) is not in

EY
m,n then a(x, y) = 0 by the third condition. It is also clear that a(∆s(x),∆s(y)) = 0 in this

case.
Next, we suppose that Ss(x(m,n]) and Ss(y(m,n]) are in EY

m,n, but
r(Ss(x(m,n])) 6= r(Ss(y(m,n])). Again by the third condition a(x, y) = a(∆s(x),∆s(y)) = 0
since (∆s(x),∆s(y)) is not in T+

n (YB).
We are left with the case that Ss(x(m,n]) and Ss(y(m,n]) are in EY

m,n and r(Ss(x(m,n])) =

r(Ss(y(m,n])). Here, the second condition, using p1 = p, p2 = Ss(p), q
1 = q, q2 = Ss(q) clearly

implies a(∆s(x),∆s(y)) = a(x, y).
The converse direction is relatively simple and we omit the details. �

As we noted above, Gm,n is an equivalence relation on a finite set, namely pairs (p, q) in
EY
m,n with r(p) = r(q).

It should cause no confusion if we also define αi : C∗λ(Gm,n)→ AYm,n by αi(g) =
∑

(p,q)∈Gm,n g(p, q)aαi(p,q),
for any function g : Gm,n → C. It is a simple matter to verify that α1, α2 are ∗-homomorphisms.

We now want to consider, for m < n, the C∗-algebra ⊕v∈VnAp,q,v ⊗ C[0, νvs ]. Following
Corollary 8.4, we can regard this as a subalgebra of ACm,n by mapping ap,q⊗f to ap,q⊗f ◦ϕvs .
In fact, this is exactly the subalgebra of ACm,n satisfying the first condition of Proposition
8.10.

We have two homomorphisms ev0, ev1 : ACm,n → Am,n defined by

ev0

(∑
p,q

ap,q

)
=

∑
p,q

fp,q(x
−
r(p))ap,q

ev1

(∑
p,q

ap,q

)
=

∑
p,q

fp,q(x
+
r(p))ap,q.

Theorem 8.11. (1) For all m < n, Bm,n is a C∗-subalgebra of C∗λ(T ](SsB)).
(2) For all m < n, Bm,n ⊆ Bm−1,n+1.
(3)

⋃∞
n=1B−n,n is dense in C∗λ(T ](SsB)).

(4) For all m < n, we have

Bm,n
∼= {(a, h) ∈ (⊕v∈VnAm,n,v ⊗ C[0, νvs ])⊕ C∗(Gm,n) |

ev0(a) = α2(h), ev1(a) = α1(h)}.
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Proof. The first three parts are immediate. For the last, for ap,q⊗g in ⊕v∈VnAp,q,v⊗C[0, νvs ],
note that ev0(ap,q ⊗ g) = g(0)ap,q while ev1(ap,q ⊗ g) = g(νsr(p))ap,q. Then the conditions

ev0(a) = α2(g), ev1(a) = α1(g) are just a restatement of the last three conditions of Propo-
sition 8.10. �

While our C∗-algebras Bm,n are not unital, the reader should compare the result in part
4 with the definition of recursive subhomogeneous C∗-algebras given in [Phi07].

Corollary 8.12. For m < n, we have a short exact sequence

0 // ⊕v∈VnAm,n,v ⊗ C0(0, νs(v)) // Bm,n
// C∗(Gm,n) // 0.

We now turn our attention to the C∗-algebra of the horizontal foliation, C∗(F+
B ). When

it is convenient, we will also denote C∗(F+
B ) by C+

B . We want to show that C∗(F+
B ) has an

inductive limit structure analogous to that of C∗(T ](SB)) appearing in Theorem 8.11 and
Corollary 8.12.

If m < n and p is any path in EY
m,n and x is in X+

r(p), the set X−s(p)px lies in YB. Moreover,

it is also equal to [xr−mins(p) px, xr−maxs(p) px]r and its image under πr is homeomorphic to a closed

interval. Hence, its image under π is contained in a single equivalence class of F+
B (Definition

7.14).
Let p, q be in Gm,n; that is, they are in Es

m,n such that r(p) = r(q). Observe that if there
are x, y in T+(YB) such that

X−s(p1)p
1xs−maxr(p1) , X−s(q1)q

1xs−maxr(q1) ⊆ [x, y]r ⊆ YB

then it follows from Proposition 5.5 that

X−s(p2)p
2xs−minr(p2) , X−s(q2)q

2xs−minr(q2) ⊆ [∆s(x),∆s(y)]r ⊆ YB

We define, for each m < n, Hm,n to be the set of all (p, q) in Gm,n satisfying this condition.
This is a subgroupoid of Gm,n.

We remark that an analogue of Proposition 8.10 holds: we simply change C∗λ(T ](SB)) to
C∗λ(F+

B )) and replace Gm,n in conditions 3 and 4 by Hm,n. This is an immediate consequence
of Proposition 8.10 and Definition 7.14. We let Cm,n be the set of all elements satisfying
these conditions; that is, Cm,n = ACY

m,n ∩ C∗λ(F+
B )).

We then obtain analogues of Theorem 8.11 and Corollary 8.12 which we state precisely
for the record.

Theorem 8.13. (1) For all m < n, Cm,n is a C∗-subalgebra of C∗λ(F+
B )).

(2) For all m < n, Cm,n ⊆ Cm−1,n+1.
(3)

⋃∞
n=1C−n,n is dense in C∗λ(F+

B )).
(4) For all m < n, we have

Cm,n ∼= {(a, h) ∈ (⊕v∈VnAm,n,v ⊗ C[0, νvs ])⊕ C∗(Hm,n) |
ev0(a) = α2(h), ev1(a) = α1(h)}.

Corollary 8.14. For m < n, we have a short exact sequence

0 //
⊕
v∈Vn

Am,n,v ⊗ C0(0, νs(v)) // Cm,n // C∗(Hm,n) // 0.
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9. A Fredholm module

The aim of this section is to produce a Fredholm module for our C∗-algebras. This will
be crucial in the K-theory computations of the next section.

The books by Blackadar [Bla86], Higson and Roe [HR01] and Connes [Con94] are all good
references for Fredholm modules. We remind readers that, for any C∗-algebra A, a Fredholm
module for A consists of a Hilbert space H, a representation π of A on H and a bounded
operator F on H such that (F 2 − 1)π(a), (F − F ∗)π(a) and [π(a), F ] = π(a)F − Fπ(a)
are all compact operators, for each a in A. In our case, we will give the Hilbert space
and representation of the AF-algebra, C∗λ(T+(XB)). The operator F will actually satisfy
F 2 = 1, F = F ∗, but the crucial condition that [π(a), F ] is compact, for each a, holds if we
consider a in the C∗-subalgebra C∗λ(T+(YB)). In fact, our Hilbert space comes with a natural
Z2-grading, the representation π is by even operators, while F is odd. In other words, we
will have an even Fredholm module.

The last discussion will probably not be very helpful to non-operator theorists. Let us give
a simple example where these properties will be clear. At the same time, what is happening
in the example is really exactly what is going on in our situation to follow and so this should
provide some intuition.

Let X ⊆ [0, 1] be the standard Cantor ternary set. Let us list the open intervals in its
complement (in [0, 1]) as (xn, yn), n ≥ 1 (the order is not important here). Let H be a
Hilbert space with a canonical basis indexed by the endpoints, δxn , δyn . (One view is to
put an infinite measure on X with point mass at each xn and yn and consider the space
of square-integrable functions. The C∗-algebra of continuous functions on X, C(X) can be
represented as operators on this Hilbert space by simple evaluation of the functions: we
supress the representation and simply write fδxn = f(xn)δxn , fδyn = f(yn)δyn , for all n ≥ 1.

Define an operator F on this space Hilbert space by specifying Fδxn = δyn , F δyn = δxn , for
all n ≥ 1. It is trivial to see F 2 = I, F ∗ = F . It is a simple matter to check, if f is locally
constant, then f(xn) = f(yn), for all but finitely many n and the operator [F, f ] = Ff − fF
is finite rank. Only slightly more subtle is that, for any f in C(X), [F, f ] is compact. Finally,
if π : X → [0, 1] denotes the devil’s staircase, then f in C(X) has the form f = g ◦ π, for
some g in C[0, 1] if and only if [F, f ] = 0.

Definition 9.1. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4. Let IB, JB and xi, 1 ≤ i ≤ IB + JB, be as in Proposition 7.6. For 1 ≤ i ≤
IB + JB, we define Hi = L2(T+(xi), ν

xi
r )),

Hmax
B =

⊕
1≤i≤IB

Hi, Hmin
B =

⊕
IB<i≤IB+JB

Hi,

and HB = Hmax
B ⊕Hmin

B . We define πB =
⊕

1≤i≤IB+JB

λxi.

Finally, we define FB : HB → HB to be the operator (FBξ)(x) = ξ(∆s(x)), for any ξ in
HB and x in

⋃
i T

+(xi).

We make several observations. It would probably be more accurate to replace T+(xi) by
T+(xi) ∩ YB, but as the difference is a set of measure zero, it has no effect on the L2-space.
Secondly, notice that HB comes with a natural Z2-grading. The associated grading operator
is the identity on Hmax

B and minus the identity on Hmin
B . Finally, it is a consequence of
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Proposition 5.5 that

∆s :
⋃

1≤i≤I+
B

T+(xi) →
⋃

I+
B<j≤I

+
B+J+

B

T+(xj)

∆s :
⋃

I+
B<j≤I

+
B+J+

B

T+(xj) →
⋃

1≤i≤I+
B

T+(xi)

are measure preserving bijections and hence induce unitary operators on the associated L2-
spaces. In addition, ∆s ◦∆s is the identity so FB is odd, F 2

B = 1 and FB = F ∗B.
We need to set out some notation. If p is any element of Em,n, we define

ξmaxp = νr(s(p))
−1/2χX−

s(p)
pxs−maxv

,

ξminp = νr(s(p))
−1/2χX−

s(p)
pxs−minv

.

Each is a unit vector in Hmax
B and Hmin

B , respectively. Observe that if e is the s-maximal
(s-minimal) edge with s(e) = r(p), then ξmaxp = ξmaxpe (ξminp = ξminpe , respectively). It is an
easy exercise to check that the linear span of all such vectors is dense in HB.

The following is an immediate consequence of the definitions and the fact that

∆s(X
−
s(p)px

max
r(p) ) = X−s(p)Ss(p)x

min
r(Ss(p))

if p is not s-maximal.

Lemma 9.2. Let p be in Em,n. If p is not s-maximal, then FBξ
max
p = ξminSs(p)

. If p is not

s-minimal, then FBξ
min
p = ξmaxPs(p)

.

If ξ, η are any vectors in a Hilbert space H, we define ξ ⊗ η∗ to be the rank one operator
defined by (ξ ⊗ η∗)ζ = 〈ζ, η〉ξ, for ζ in H. If T is any other operator, we have T (ξ ⊗ η∗) =
(Tξ)⊗ η∗ and (ξ ⊗ η∗)T = ξ ⊗ (T ∗η)∗.

It is worth noting that it is a straightforward computation from the definitions that, for
any m < n ≤ n′, p, q in Em,n q

′ in Em,n′ , if we let ξmaxq′ be as above and ap,q be as in 8.5, then
πB(ap,q)ξq′ = 0 if (q′)(m,n] 6= q and πB(ap,q)ξ

max
q′ = ξmaxp′ if (q′)(m,n] = q, where p′ = p(q′)(n,n′].

An analogous statement holds for ξminq′ . In particular, the representation respects the grading
on HB. In addition, it will be useful to have the following which is slightly less routine.

Lemma 9.3. Let m < n, p, q in Em,n with r(p) = r(q) = v be in Vn and f : X+
v → C be

continuous. For any n′ > n and q′ in Em,n′, we have

πB(ap,q ⊗ f)ξmaxq′ = f(q′xs−maxr(q′) )ξmaxp(q′)(n,n′]

if (q′)(m,n] = q and is zero otherwise, while

πB(ap,q ⊗ f)ξminq′ = f(q′xs−minr(q′) )ξminp(q′)(n,n′]

if (q′)(m,n] = q and is zero otherwise.

Proof. We prove the first statement only. Let us consider all paths p′′ in En,n′′ with s(p′′) =
r(p). We may identify app′′,qp′′ = ap,q⊗χp′′X+

r(p′′)
, regarding χp′′X+

r(p′′)
: X+

v → C. Without loss

of generality, we may assume that n′′ > n′. The continuous function f may be approximated
by sums of such functions and so it suffices for us to prove the result for these functions. We
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have π(app′′,qp′′)ξ
max
q′ is zero unless q = (q′)(m,n], p

′′ = (q′)(n,n′] and p′′(n′,n′′] is s-maximal. In this

case, the result is ξmaxp(q′)(n,n′]
. In either case, this agrees with χp′′X+

r(p′′)
(xs−maxr(q′) )ξmaxp(q′)(n,n′]

. �

Proposition 9.4. Let m < n and assume that p, q are in EY
m,n with r(p) = r(q) = v.

(1) We have

[π(ap,q), FB] = ξmaxp ⊗ (ξminSs(q))
∗ + ξminp ⊗ (ξmaxPs(q))

∗ − ξmaxPs(p) ⊗ (ξminq )∗ − ξminSs(p) ⊗ (ξmaxq )∗.

(2) Consider the function f(x) = νr(v)−1ϕvs(x), for x in X+
v . We have

[πB(ap,q)⊗ f, FB] = ξmaxp ⊗ (ξminSs(q))
∗ − ξminSs(p) ⊗ (ξmaxq )∗.

(3) If g is any continuous C-valued function on [0, 1], then

[πB(ap,q ⊗ g ◦ f), FB] = g ◦ f(xs−maxv )
(
ξmaxp ⊗ (ξminSs(q))

∗ − ξminSs(p) ⊗ (ξmaxq )∗
)

+g ◦ f(xs−minv )
(
ξminp ⊗ (ξmaxPs(q))

∗ − ξmaxPs(p) ⊗ (ξminq )∗
)

Proof. Let Hm denote the closed linear span of all vectors ξmaxp , ξminp , where p is in Em,n′ and
n′ > m. It is clear that this space is invariant under FB and a direct computation shows
that π(ap,q)|Hm = 0. It follows that [π(ap,q), FB]|Hm = 0.

Next, let us consider n′ > n and q′ in Em,n′ such that (q′)(n,n′] is not s-maximal. It follows
that (Ss(q

′))(m,n] = (q′)(m,n] and in consequence
πB(ap,q)FBξ

max
q′ = πB(ap,q)ξ

min
Ss(q′)

. If q 6= (Ss(q
′))(m,n] = (q′)(m,n], this is zero. If q =

(Ss(q
′))(m,n] = (q′)(m,n], this equals ξminp′ where p′ = p(Ss(q

′)(n,n′]). On the other hand,

FBπB(ap,q)ξ
max
q′ is also zero if q 6= (q′)(m,n], and if q = (q′)(m,n], it equals FBξ

max
p′′ = ξminSs(p′′)

,

where p′′ = p(q′)(n,n′]. As (q′)(n,n′] is not s-maximal, we have Ss(p
′′) = pSs((q

′)(n,n′]) = p′. We
conclude that [πB(ap,q), FB]ξmaxq′ = 0. A similar argument for ξminq′ shows the same conclusion.

As we noted above if q′ is in Em,n′ , n
′ > n and (q′)(n,n′] is s-maximal, then ξmaxq′ = ξmax(q′)(n,n′]

and so it remains to consider the case q′ is in Em,n. We need to consider [πB(ap,q), FB] on the
two types of vectors, ξmaxq′ and ξminq′ . Using the fact that p, q are in EY

m,n, we may summarize
the only situations where the result is non-zero as follows:

πB(ap,q)FBξ
max
q′ = ξminp , Ss(q

′) = q
πB(ap,q)FBξ

min
q′ = ξmaxp , Ps(q

′) = q
FBπB(ap,q)ξ

max
q′ = ξminSs(p)

, q′ = q

FBπB(ap,q)ξ
min
q′ = ξmaxPs(p)

, q′ = q.

The result follows from this, Lemmas 9.2 and 9.3.
The proof for the second part is almost the same. In view of Lemma 9.3, the operators

π(ap,q) and πB(ap,q ⊗ f) are equal except that

πB(ap,q ⊗ f)ξmaxq = ξmaxq , πB(ap,q ⊗ f)ξminq = 0.

We omit the remaining details.
For the last part, the property is clearly linear in the function g and we know it is satisfied

by constant functions from part 1 and g(t) = t by part 2. We then show it holds for
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g(t) = tk, k ≥ 1, by induction on k by noting that

[πB(ap,q ⊗ f(x)k+1), FB] = [πB(ap,q ⊗ f(x)k)πB(aq,q ⊗ f(x)), FB]

= [πB(ap,q ⊗ f(x)k), FB]πB(aq,q ⊗ f(x))

+πB(ap,q ⊗ f(x)k)[πB(aq,q ⊗ f(x)), FB]

=
(
ξmaxp ⊗ (ξminSs(q))

∗ − ξminSs(p) ⊗ (ξmaxq )∗
)
πB(aq,q ⊗ f(x))

+πB(ap,q ⊗ f(x)k)
(
ξmaxq ⊗ (ξminSs(q))

∗ − ξminSs(q) ⊗ (ξmaxq )∗
)

= 0− ξminSs(p) ⊗ (ξmaxq )∗ + ξmaxp ⊗ (ξminSs(q))
∗ − 0.

It follows that the result holds for all polynomial functions g, and hence for all continuous
functions by continuity. �

Corollary 9.5. The triple (HB, πB, FB) is an even Fredholm module for C∗λ(T+(YB)).

Lemma 9.6. Let m < n and for each p, q in EY
m,n with r(p) = r(q), let αp,q be a complex

number. We have∥∥∥∥∥∥
∑

(p,q)/∈α1(Gm,n)

αp,qξ
max
p ⊗ (ξmaxq )∗ +

∑
(p,q)∈Gm,n

αp1,q1 − αp2,q2

2
ξmaxp ⊗ (ξmaxq )∗

∥∥∥∥∥∥
≤ 3

2

∥∥∥∥∥∥
 ∑
r(p)=r(q)

αp,qξ
max
p ⊗ (ξmaxq )∗, FB

∥∥∥∥∥∥
and ∥∥∥∥∥∥

∑
(p,q)/∈α2(Gm,n)

αp,qξ
min
p ⊗ (ξminq )∗ +

∑
(p,q)∈Gm,n

αp2,q2 − αp1,q1

2
ξminp ⊗ (ξminq )∗

∥∥∥∥∥∥
≤ 3

2

∥∥∥∥∥∥
 ∑
r(p)=r(q)

αp,qξ
min
p ⊗ (ξminq )∗, FB

∥∥∥∥∥∥ .
Proof. We will prove the first statement only. Let Fmax = span{ξmaxp ⊗(ξmaxq )∗ | p, q,∈ EY

m,n}
which is a finite dimensional C∗-algebra.

For each v in Vn, let Pv =
∑
ξmaxp ⊗ (ξmaxp )∗, where the sum is taken over all p in EY

m,n

with r(p) = v. Then the map ε : Fmax → Fmax defined by ε(a) =
∑

v∈Vn PvaPv is a
conditional expectation from Fmax onto span{ξmaxp ⊗ (ξmaxq )∗ | r(p) = r(q)}. In particular, ε
is a contraction. Furthermore, for each v = (v1, v2) in r(Es

m,n), we let Qv =
∑
ξmaxp1

⊗(ξmaxp1
)∗,

where the sum is over all (p1, p2) in Es
m,n with r(p1, p2) = v. Then the map ε′ : Fmax →

Fmax defined by ε′(a) =
∑

v∈r(Esm,n) QvaQv is a conditional expectation from Fmax onto

span{ξmaxp1
⊗ ξmax∗q1

| (p, q) ∈ Gm,n}. In particular, ε′ is a contraction.
Lemma 9.2 shows that

FB

 ∑
r(p)=r(q)

αp,qξ
max
p ⊗ (ξmaxq )∗, FB

 =
∑

αp,q
[
−ξmaxp ⊗ (ξmaxq )∗ + ξmaxP s(p) ⊗ (ξmaxP s(q))

∗

+ ξminp ⊗ (ξminq )∗ − ξminSs(p) ⊗ (ξminSs(q))
∗]
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where the sum is over p, q in EY
m,n with r(p) = r(q). We denote this operator by a. Next,

we compute ε(a). The effect on the last two terms in the sum is to make them zero, as
the vectors do not lie in Fmax. The first term is unchanged and the second becomes zero
if r(P s(p)) 6= r(P s(q)) and is unchanged if (p, q) = α2((P s(p)), P s(q)), (p, q)) where α2 is as
described just before Proposition 8.10. Hence, by simply re-indexing the terms, we have

ε(a) =
∑

(p,q)/∈α1(Gm,n)

αp,qξ
max
p ⊗ (ξmaxq )∗ +

∑
(p,q)∈Gm,n

(αp1,q1 − αp2,q2)ξmaxp ⊗ (ξmaxq )∗.

Applying ε′ simply removes the first term, so we can write

ε(a)− 2−1ε′(ε(a)) =
∑

(p,q)/∈α1(Gm,n)

αp,qξ
max
p ⊗ ξmax∗q +

∑
(p,q)∈Gm,n

αp1,q1 − αp2,q2

2
ξmaxp ⊗ ξmax∗q .

The conclusion follows from the facts that ε, ε′ are contractions. �

Theorem 9.7. An element a in C∗λ(T+(YB)) is in C∗λ(T ](SsB)) if and only if [πB(a), FB] = 0.

Proof. Let us begin by proving that if a is in C∗λ(T ](SsB) , then [πB(a), FB] = 0. To do so, we
first assume that a =

∑
p,q ap,q,v ⊗ fp,q is in ACm,n = ⊕vAm,n,v ⊗ C(X+

r(p)), for some m < n,

where the sum is over p, q in EY
m,n with r(p) = r(q) and satisfies the conditions of Proposition

8.10. The general case then follows from part 3 of Theorem 8.11 and continuity.
From the first condition of Proposition 8.10, we see that each fp,q = gp,q ◦ fr(p), where

fv(x) = νs(v)−1ϕvs(x), for x in X+
v , and gp,q : [0, 1]→ C is continuous.

In addition, we know from conditions 3 and 4 that gp,q = 0 if (p, q) is not in α1(Gm,n) ∪
α1(Gm,n). Applying part 3 of Proposition 9.4, we have

[πB(a), FB] =
∑

(p,q)∈Esm,n
gp1,q1(1)

(
ξmaxp1 ⊗ (ξminSs(q1))

∗ − ξminSs(p1) ⊗ (ξmaxq1 )∗
)

+gp2,q2(0)
(
ξminp2 ⊗ (ξmaxPs(q2))

∗ − ξmaxPs(p2) ⊗ (ξminq2 )∗
)

From condition 2 of Proposition 8.10, We also know that gp1,q1(1) = gp2,q2(0). The defini-
tion of Gm,n implies that Ss(q

1) = q2, Ss(p
1) = p2, Ps(q

2) = q1 and Ps(p
2) = p1 and so the

result is zero, as desired.
For the converse direction, from the facts that the union of theAYm,n are dense in C∗λ(T+(YB))

and the function sending a in C∗λ(T+(YB)) to ‖[πB(a), FB]‖ is continuous, it suffices for us
to prove that, for any m < n and a in AYm,n, there is b in ACY

m,n with a − b in Bm,n and
‖b‖ ≤ 2‖[πB(a), FB]‖.

Let a =
∑

p,q αp,qap,q be in AYm,n, where the sum is over p, q in EY
m,n with r(p) = r(q). For

each p, q in EY
m,n with r(p) = r(q), define cp,q = αp,q if (p, q) /∈ α1(Gm,n) and

cp1,q1 = αp1,q1 +
αp1,q1 − αp2,q2

2

for (p, q) in Gm,n. We also define dp,q = αp,q if (p, q) /∈ α2(Gm,n) and

dp2,q2 = αp1,q1 +
αp2,q2 − αp1,q1

2

for (p, q) in Gm,n. Let bp,q(t) = cp,qt+ dp,q(1− t), for all t in [0, 1]. Finally, we define

b =
∑
p,q

ap,q ⊗ bp,q ◦ fr(p),
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where fr(p) : X+
r(p) → [0, 1] is as before. So b is in ACY

m,n.

It is a simple computation, using the results of Propositions 9.4 and 8.10 to verify that
a− b is in Bm,n. It remains for us to prove that ‖b‖ ≤ 2‖[πB(a), FB]‖.

The map sending ap,q to ξmaxp ⊗ (ξmaxq )∗, for p, q in EY
m,n with r(p) = r(q), extends linearly

to an injective ∗-homomorphism from AYm,n to Fmax which is necessarily isometric. The
desired inequality follows from this and an application of Lemma 9.6. �

10. K-theory

The purpose of this section is to compute the K-theory of the C∗-algebras considered in
the section 8. It is probably more accurate to say that we shall investigate the relations
between the K-theory of the C∗-algebras. We remark that elements of the K1-group of any
C∗-algebra, A, are given by equivalence classes over matrix algebras over the unitization of
A, which we denote by A∼.

Given a bi-infinite Bratteli diagram B, the K-theory of the AF-algebra C∗λ (T+(XB)) is
readily computable from the data given and the results of Proposition 8.6. It is worth noting
at this point that it does not depend on the order structure, nor the half of the diagram
indexed by the negative integers.

Theorem 10.1. Let B be a bi-infinite Bratteli diagram. For each integer n, we consider En
to be the #Vn ×#Vn−1 positive integer matrix which describes the edge set En. We have

K0

(
C∗λ(T+(XB))

) ∼= lim
n→+∞

Z#V0
E1→ Z#V1

E2→ · · ·

and K1(C∗λ(T+(XB)) = 0.

As we noted in Theorem 8.8, C∗λ(T+(YB)) is a full hereditary subalgebra of C∗λ(T+(XB))
and hence they are Morita equivalent [Exe93]. The following is an immediate consequence.

Theorem 10.2. Let B be an ordered bi-infinite Bratteli diagram satisfying the conditions of
Definition 6.4. Then the inclusion
C∗λ(T+(YB)) ⊆ C∗λ(T+(XB)) induces an order isomorphism
K0(C∗λ(T+(YB))) ∼= K0(C∗λ(T+(XB))) and K1(C∗λ(T+(YB))) = 0.

We now turn to the C∗-algebra C∗λ(T ](SsB)), first considering its K1-group.

Proposition 10.3. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4. Let m < n, v be any vertex in Vn, p be in EY

m,n with r(p) = v and
fv : [0, νr(v)] → [0, 1] be any continuous function with fv(0) = 0, f(νr(v)) = 1. Then
K1(C∗λ(T ](SsB))) ∼= Z and is generated by the unitary u = exp(2πifv ◦ ϕvr(x))ap,p + (1− ap,p)
considered as an element of B∼m,n ⊆ C∗λ(T ](SsB))∼.

Proof. We use the fact that C∗λ(T ](SsB)) is the closure of the union of the Bm,n,m < n, so

K1(C∗λ(T ](SsB))) = lim
n→∞

K1(B−n,n).

We will first compute K1(B−n,n) and then the inductive limit.
We use with the short exact sequence found in Corollary 8.12

0 //
⊕
v∈Vn

Am,n,v ⊗ C0(0, νs(v)) // Bm,n
// C∗(Gm,n) // 0.
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For simplicity, we denote Am,n,v ⊗C0(0, νs(v)) by Iv. We have the associated six-term exact
sequence for K-groups

K0

(⊕
v∈Vn

Iv

)
// K0(Bm,n) // K0(C∗(Gm,n))

��

K1(C∗(Gm,n))

OO

K1(Bm,n)oo K1

(⊕
v∈Vn

Iv

)
oo

Let us start with K∗(⊕vIv) ∼=
⊕

vK∗(Iv). As Am,n,v is a full matrix algebra, we have
K0(Iv) ∼= K0(C0(0, νv(r))) ∼= K1(C) = 0 while K1(Iv) ∼= K1(C0(0, νv(r))) ∼= K0(C) ∼= Z.
Moreover, if p, fv are as above, then uv = exp(2πif ◦ ϕvr(x))ap,p + (1− ap,p) is a generator of
this group.

We now turn to K∗(C
∗(G−n,n)). The groupoid G−n,n is finite and its C∗-algebra is finite-

dimensional. Hence its K1-group is trivial. On the other hand, it is a direct sum of full
matrix algebras, indexed by the elements of r(p), p ∈ Es

−n,n. It follows that K∗(C
∗(G−n,n)) ∼=⊕

r(Es−n,n) Z, with generators [χ(p,p)]0, where p is chosen to be any path in Es
−n,n, as r(p) takes

all possible values.
Our six-term exact sequence now looks like

0 // K0(B−n,n) //
⊕

r(Es−n,n)

Z

exp

��

0

OO

K1(B−n,n)oo
⊕
v∈Vn

Zoo

It is a fairly standard argument to check that the exponential map takes [χ(p,p)]0 in
K0(C∗(G−n,n)), where p is any path in Es

−n,n, to [up1 ]1 − [up2 ] in
⊕

vK1(Iv).
From this we can see that the exponential map is not surjective; indeed for any fixed v,

the elements m[uv]1 are all distinct in K1(B−n,n).
To compute the inductive limit, it suffices to show that, for v in Vn and v′ in Vn′ with

n′ > n, we have [uv]1 = [uv′ ]1, as elements of K1(Bm,n′), provided that there is at least one
path p′ from v to v′. Let p be any element of Em,n with r(p) = v and let fv′ be any function
as above. Then define fv as follows

fv(x) =

 0 x(n,n′] <s p
′

fv′(x(n′,∞)) x(n,n′] = p′

1 x(n,n′] <s p
′

It is easy to see that fv satisfies the desired conditions and that, with these choices, uv =
uv′ . �

To describe the K-zero group, we need to establish some notation.
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For any finite set A, let ZA denote the free abelian group on A. Recalling the definition
of IB ?∆ JB from Definition 7.4, we define

θ1 : Z(IB ?∆ JB) → Z{x1, . . . , xIB},
θ2 : Z(IB ?∆ JB) → Z{xIB+1, . . . , xJB},
θ : Z(IB ?∆ JB) → Z{x1, . . . , xIB+JB}

σ : Z{x1, . . . , xIB+JB} → Z

by θ1(xi, xj) = xi, θ2(xi, xj) = xj, θ(xi, xj) = xi + xj and σ(xi) = 1, 1 ≤ i ≤ IB, σ(xj) =
−1, IB < j ≤ IB + JB. Observe that σ ◦ θ = 0, so σ also defines a homomorphism from
coker(θ) to Z.

Theorem 10.4. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4. There is a short exact sequence

0 // ker(θ) // K0(C∗λ(T ](SsB)))
i∗ // K0(C∗λ(T+(YB))) // coker(θ)

σ // Z // 0

where i : C∗λ(T ](SsB))→ C∗λ(T+(YB)) is the inclusion map. In particular, K0(C∗λ(T ](SsB))) is
finite rank and is finitely generated if and only if K0(C∗λ(T+(YB))) is. If either IB = 1 or
JB = 1, then i∗ is an isomorphism.

Proof. We make use of the notion of the relative K-theory for C∗-algebras along with an
excision result of the second author [Put21]. Relative K-theory was introduced by Karoubi
[Kar08], but we also refer the reader to [Put21] or Haslehurst [Has21] for a more extensive
treatment. To any C∗-algebra, A, and C∗-subalgebra, A′ ⊆ A, there are relative K-groups,
Ki(A

′;A), i = 0, 1 which fit into a six-term exact sequence

K0(A′;A) // K0(A′)
i∗ // K0(A)

��
K1(A)

OO

K1(A′)
i∗

oo K1(A′;A)oo

where i : A′ → A denote the inclusion map.
In Theorems 3.2 and 3.4 of [Put21], the situation is described of C∗-algebras A,B,E

along with a bounded ∗-derivation δ : A+B → E such that there is a natural isomorphism
K∗(ker(δ) ∩ A;A) ∼= K∗(ker(δ) ∩ B;B). Referring back to notation established in Defini-

tion 9.1, we use A =
⊕IB+JB

i=1 K(Hi), where K denotes the C∗-algebra of compact operators,
B = C∗λ(T+(YB)) or more accurately, B = πB(C∗λ(T+(YB))). As we noted earlier, the repre-
sentation is faithful under our hypotheses, so this amounts to a notational difference only.
We use E = B(HB), the algebra of bounded linear operators on HB and δ(x) = i [x, FB], for
any operator x. (The use of B for the bounded linear operators and for the Bratteli diagram,
is unfortunate, but should not cause any confusion.)

We need to verify the hypotheses of [Put21] hold. The first is that AB ⊆ A and this
follows from the facts that, for all i, Hi is invariant for the representation πB and that A
consists entirely of compact operators on this space.

The hypotheses of Theorem 3.4 of [Put21] involve the choice of a dense ∗-subalgebra,
A ⊆ A. For this, we use the linear span of all rank one operators of the form ξmaxp ⊗ (ξmaxq )∗
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and ξminp ⊗ (ξminq )∗, where p, q vary over EY
m,n with r(p) = r(q) and m < n vary over all

integers.
We now verify property C1 from Theorem 3.4 of [Put21]: let

a =
∑

αmaxp,q ξ
max
p ⊗ (ξmaxq )∗ + αminp,q ξ

min
p ⊗ (ξminq )∗,

where the sum is over p, q in EY
m,n with r(p) = r(q), be in A. Let

a′ =
∑ αmaxp1,q1

+ αminp2,q2

2

(
ξmaxp1

⊗ (ξmaxq1
)∗ + ξminp2

⊗ (ξminq2
)∗
)

where the sum is over all ((p1, q1), (p2, q2)) in Gm,n. It is an easy calculation that δ(a′) =
i[a′, FB] = 0 and ‖a − a′‖ ≤ 3

2
‖δ(a)‖ follows immediately from the first part of Proposition

9.4 and Lemma 9.6.
Using the dense ∗-subalgebra

⋃
nA

Y
−n,n of C∗λ(T+(YB)) , and Lemma 4.2 of [Put21], we see

that δ(B) ⊆ δ(A).
It remains to see that condition C2 of Theorem 3.4 of [Put21] holds. For that, we can

assume that the a1, . . . , aI all lie in some span{ξmaxp ⊗ (ξmaxq )∗, ξminp ⊗ (ξminq )∗}, as p, q range

over EY
m,n, for some m,n. We let e be the unit of this algebra,

e =
∑

p∈EYm,n

ξmaxp ⊗ (ξmaxp )∗ + ξminp ⊗ (ξminp )∗

and for

ai =
∑

αmaxp,q ξ
max
p ⊗ (ξmaxq )∗ + αminp,q ξ

min
p ⊗ (ξminq )∗,

we use bi in ACY+
m,n defined by

bi =
∑

ap,q ⊗
(
αmaxp,q fr(p) + αminp,q (1− fr(p))

)
where fv(x) = (νvs )−1ϕvs(x), for x in

⋃
vX

+
v , is as in the last section. The desired properties

follow from Proposition 9.4; we omit the details. We have verified the conditions of Theorem
3.4 of [Put21]. In addition, Theorem 9.7 shows that C∗λ(T ](SsB)) = ker(δ)∩C∗λ(T+(YB)). We
conclude that conclude that K∗(ker(δ) ∩ A;A) ∼= K∗(C

∗
λ(T ](SsB));C∗λ(T ](YB))).

We now turn to the computation of K∗(ker(δ) ∩ A;A). Recall that A =
⊕IB+JB

i=1 K(Hi).
For (i, j) in IB ?∆ JB, we define

Hi,j = Hi ∩ FBHj = L2(T+(xi) ∩∆s(T
+(xj)))

and observe that FBHi,j = L2(∆s(T
+(xi))∩ T+(xj)). It is a simple matter to check that the

map sending (ki,j)(i,j) to
∑

(i,j) ki,j +FBki,jFB is an isomorphism between ⊕IB?∆JBK(Hi,j) and

ker(δ) ∩ A.
For any Hilbert space H, there is a canonical isomorphism from K0(K(H)) to Z induced

by the trace. In addition, we have K1(K(H)) ∼= 0 (see [Exe93]). Hence, we have K1(A) ∼=
K1(ker(δ)∩A) ∼= 0, K0(A) ∼= Z{x1, . . . , xI}⊕Z{xI+1, . . . , xJ} andK0(ker(δ)∩A) ∼= ZIB?∆JB.
Moreover, the map induced by the inclusion ker(δ) ∩ A ⊆ A is simply θ. In summary, the
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six-term exact sequence for the relative groups of the inclusion becomes

K0(ker(δ) ∩ A;A) // ZIB ?∆ JB
θ // Z{x1, . . . , xIB+JB}

��
0

OO

0oo K1(ker(δ) ∩ A;A)oo

and so K0(ker(δ) ∩ A;A) ∼= ker(θ) and K1(ker(δ) ∩ A;A) ∼= coker(θ). Combining this with
the computation of the relative groups already done above and the results of Theorem 10.2
and Proposition 10.3 completes the proof.

The remaining statements are straightforward. In particular, it is a simple matter to check
that if IB = 1, then IB ?∆ JB = {1} × {2, . . . , JB} and θ(1, j) = x1 + xj, for 1 < j ≤ JB,
which is clearly injective and has coker(θ) ∼= Z. �

A crucial part of K-theory (at least K0) for a C∗-algebra is its natural order structure.
As a simple example, if α, β are any two irrational numbers, then the subgroups of the real
numbers Z+αZ and Z+ βZ are isomorphic as abstract groups, but with the relative orders
from the real numbers, they are not isomorphic in general as ordered groups. One of the
difficulties in operator algebra K-theory is that many computational tools do not respect the
order structure. As an example here, while we may easily check in some specific situation
that the map i∗ of Theorem 10.4 is an isomorphism, it does not follow at once that it is an
isomorphism of ordered groups. Part of that is easily dealt with: the fact that it is induced by
a ∗-homomorphism of C∗λ(T ](SsB)) in C∗λ(T ](YB)) means that it is a positive homomorphism
in the sense it maps the positive cone in the former into the positive cone in the latter.

Theorem 10.5. Let B be an ordered Bratteli diagram satisfying the conditions of Definition
6.4. If the following sequence is exact

0 // ZIB ?∆ JB
θ // Z{x1, . . . , xIB+JB}

σ // Z // 0

and the equivalence classes of the relation T ](YB) are all dense, then

i∗ : K0(C∗λ(T ](SsB)))→ K0(C∗λ(T ](YB)))

is an isomorphism of ordered abelian groups. In particular, if IB = 1 or JB = 1, then the
same conclusion holds.

Proof. We know already from the last theorem and the hypothesis on the exact sequence that
i∗ is an isomorphism and since it is induced by a ∗-homomorphism at the level of C∗-algebras,
it maps positive elements to positive elements. It remains for us to show that every positive
element of K0(C∗λ(T+(YB))) is the image of a positive element of K0(C∗λ(T+(SsB))). In view
of Theorems 10.1 and 10.2, it suffices to consider a projection in C∗λ(T+(YB)) of the form
ap,p, where p is in EY

m,n, for some m < n, and show it is Murray-von Neumann equivalent to
one in C∗λ(T+(SsB)).

Consider two points x, y in Xr(p) satisfying the following: x ≤s y, X−r(p)x ⊆ T+(xi) and

X−r(p)y ⊆ T+(xj), for some 1 ≤ i ≤ IB < j ≤ IB + JB. It follows that ap,p ⊗ χ[x,y] is in

AYm,n ⊗ C(X+
r(p)) = ACm,n and so it determines a class in K0(C∗λ(T+(SsB))).
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Observe that as p is not s-maximal or s-minimal, ∆s(X
−
s(p)px)(m,∞) is a single path, as

is ∆s(X
−
s(p)py)(m,∞). In particular, ∆s(X

−
s(p)px) is contained in T+(xj′), for some j′, while

∆s(X
−
s(p)py) is contained in T+(xi′), for some i′.

We first consider the special case that j′ = j. (The case i′ = i can be done in a similar
way.) This means we can find N > n such that ∆s(X

−
s(p)px)(N,∞) = y(N,∞). Let p̄ =

∆s(X
−
s(p)px)(m,N ].

We define

w =
∑
p′

ap′,p′ + cos
(π

2
νr(r(yN))−1ϕr(yN )

r (z)
)
ay(m,N ],y(m,N ]

+ sin
(π

2
νr(r(yN))−1ϕr(yN )

r (z)
)
ay(m,N ],p̄

where the sum is over all p′ in Em,N with px ≤s p′ <s py and the variable z lies in X+
r(yN ). It

is a simple matter to check that w∗w = ap,p ⊗ χ[x,y] while ww∗ lies in ACm,N . We conclude
that the class of ap,p ⊗ χ[x,y] lies in the image of i∗.

We now consider the general case, dropping the hypothesis that j′ = i. It is clear that
xi′−xj′ lies in the kernel of σ. It follows that we may find a finite sequence (il, jl), 1 ≤ l ≤ L
in IB ?∆ JB such that j1 = j′, jl+1 = il, 1 ≤ l < L and iL = i′. By the minimality of
T+(xi1) ∩∆s(T

+(xj1)), we may find y1 in X+
r(p) with x <s y1 <s y with

X−r(p)y1 ⊆ T+(xi1) ∩∆s(T
+(xj1)).

By application of the special case above, the class of ap,p ⊗ χ[x,y1] lies in the image of i∗.
Continuing in this way, we may construct x <s y1 <s y2 <s · · · <s yL <s y such that yl is in
T+(xil) ∩∆s(T

+(xjl)) and the class of ap,p ⊗ χ[yl,yl+1] and also ap,p ⊗ χ[yL,y] lie in the image
of i∗. We conclude that the class of

ap,p ⊗ χ[x,y] = ap,p ⊗ χ[x,y1] +
L−1∑
l=1

ap,p ⊗ χ[yl,yl+1] + ap,p ⊗ χ[yL,y]

also lies in the image of i∗. Finally, we note that if we choose x = xs−minr(p) and y = xs−maxr(p) ,

then ap,p = ap,p ⊗ χ[x,y].
We finish by considering the case IB = 1 ( with JB = 1 being similar). For any 2 ≤ j ≤ 1+

JB, we know that ∆s(T
+(xj)) must be contained in T+(x1), so IB?∆JB = {1}×{2, . . . , 1+JB}

and it is a simple matter to verify the given sequence is exact. Next, we also have
∆s(T

+(x1))∩T+(xj) = T+(xj) which is dense by our hypotheses on B. It follows that every
equivalence class in T ](YB) is dense. �

We finally turn to the K-theory of the foliation algebra of (SB,F+
B ).

Remark 10.6. As the foliation F+
B arises from an action of R on the space SB, Connes’

analogue of the Thom isomorphism Theorem (see 10.2.2 of [Bla86]) asserts that

Ki(C
∗(F+

B )) ∼= Ki+1(SB).

On the other hand, this is not terribly useful at the moment, since we don’t know the K-theory
(or cohomology) of the space SB, nor does it seem particularly likely that it can be computed
directly, given our construction. In any event, Connes’ result does not reveal anything about
the order structure on the K0 group of the foliation algebra. Instead, we will compute its
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K-theory as it relates to our AF-algebra. Having done this, we can then use Connes’ result
to compute the K-theory of our surface.

We begin by recalling some notation. We let IB be the collection of connected subsets
of the union of π(T+(xi) ∩ ∆s(T

+(xj))) over all (i, j) in IB ?∆ JB. We also recall that
each such subset is homeomorphic to R. Now, for each I in IB, we define ι(I) = (i, j), if
I ⊆ π(T+(xi)∩∆s(T

+(xj))). It is clearly surjective. We also let ι be the map induced from
ZIB to Z(IB ?∆ JB).

We are going to construct a sequence of groupoids and C∗-algebras interpolating between
F+
B and T ](SB). Let us begin by selecting I0 ⊆ IB which contains exactly one interval

from each set π(T+(xi) ∩ ∆s(T
+(xj)). That is, ι : I0 → IB ?∆ JB is a bijection. We then

enumerate the remaining intervals of IB − I0 as I1, I2, . . .. Although this may be finite, we
will ignore that in our notation. Observe that, for each l ≥ 1, there is a unique I ′l in I0 such
that ι(Il) = ι(I ′l) and the collection Il − I ′l , l ≥ 1 is a set of generators for ker(ι) having no
relations.

We define a sequence of groupoids, beginning with F+
0 = F+

B . Then for l ≥ 1, set F+
l to

be the union of F+
l−1 with all sets Il×I and I×Il, where I is in F+

l−1 and satisfies ι(I) = ι(Il).

That is, on the set ∪j≤lIj, F+
l agrees with T ](SB), while on ∪j>lIj, it agrees with FB. We

leave it as a simple exercise to check that F+
l is an open subgroupoid of T ](SB), F+

l is an
open subgroupoid of F+

l+1 and the union over all l is T ](SB).

We let jl to denote the inclusion of C∗(F+
l ) in C∗(T ](SB)) and il,k to denote the inclusion

of C∗(F+
k ) in C∗(F+

l ), for k ≤ l.

Theorem 10.7. Let l ≥ 0 and let j denotes the inclusion of C∗(F+
l ) in C∗r (T ](SB)), then

(jl)∗ : K1(C∗(F+
l ))→ K1(C∗r (T ](SB))) ∼= Z

is an isomorphism.

Proof. For m < n, we define the groupoid Hl,m,n to be all (p, q) in Gm,n such that I(p) = I(q)
if either equals Ij, for some j > l. Recall the short exact sequence of Proposition 8.12:

0 //
⊕
v∈Vn

Am,n,v ⊗ C0(0, νs(v)) // Bm,n
q // C∗(Gm,n) // 0.

where we have used q to denote the quotient map. As Hl,m,n is a subgroupoid of Gm,n, there
is a natural inclusion of their C∗-algebras, which we also denote jl. We define a subalgebra
Cl,m,n of Bm,n ∩ C∗(F+

l ) as the pull-back of these two maps, q, jl. The inclusion coincides
with our definition of jl. That is, we have short exact sequences

0 //
⊕
v∈Vn

Am,n,v ⊗ C0(0, νs(v)) // Bm,n
q // C∗(Gm,n) // 0

0 //
⊕
v∈Vn

Am,n,v ⊗ C0(0, νs(v)) //

=
OO

Cl,m,n
q //

jl

OO

C∗(Hl,m,n) //

jl

OO

0

It is easy to check that such that C∗(F+
l ) is the closure of the union of the Cl,−n,n, over

n ≥ 1. While the terms involving C∗(Hl,m,n) and C∗(Gm,n) are different, these C∗-algebras
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are both finite dimensional and have trivial K1-groups and this is sufficient to conclude the
inclusion of Cl,m,n in Bm,n induces an isomorphism on K1. The conclusion follows as C∗(F+

l )
and C∗r (T ](SB)) are inductive limits of these sequences. �

Let us continue to develop the ideas of this last proof. It is clear from the definitions
that for fixed m,n, l, Hl,m,n is a subgroupoid of Hl+1,m,n. It is also a simple matter to check
that (p, q) is in Hl+1,m,n, but not in Hl,m,n if and only if I(p) = Il+1, I(q) = Il′ , l

′ ≤ l or
vice verse. If I(p) = l + 1, its equivalence class in Hl+1,m,n consists of q with (p, q) in Gm,n

and I(q) = Il′ , l
′ ≤ l + 1 and in Hl,m,n this becomes two equivalence classes, those q with

I(q) = Il+1 and those q with I(q) = Il′ , l
′ ≤ l. Provided that such a pair (p, q) exists,

the map from K0(C∗(Hl,m,n)) to K0(C∗(Hl+1,m,n) is surjective and has kernel generated
by [δ(p,p)]0 − [δ(q,q)]0. If we consider the exact sequences on K-groups associated with the
commutative diagram

0 //
⊕
v∈Vn

Am,n,v ⊗ C0(0, νs(v)) // Cl+1,m,n
q // C∗(Hl+1,m,n) // 0

0 //
⊕
v∈Vn

Am,n,v ⊗ C0(0, νs(v)) //

=
OO

Cl,m,n
q //

il+1,l

OO

C∗(Hl,m,n) //

il+1,l

OO

0

the [δ(p,p)]0− [δ(q,q)]0 is also in the kernel of the index map and hence lifts to a non-zero class
we denote by αl in K0(Cl,m,n). As the inductive limit over m,n of Cl,m,n is C∗(F+

l ), αl also
represents a non-zero class in K0(C∗(F+

l )) which freely generates the kernel of the map to
K0(C∗(F+

l+1)) induces by the inclusion.
As for the existence of the pair (p, q), we know that i(Il+1) = i(Il′), for some l′ ∈ I0. We

may find (i, j) in IB ?∆ JB and x, y in T+(xi) ∩ ∆s(T
+(xj) with π(x) in Il+1 and π(y) in

Il′ . The fact that (x, y) is in T+, there exists n ≥ 1 such that x(n,∞) = y(n,∞), As Il and Il′

are open, we may find m < 0 such that π(X−s(xm)x(m,∞)) ⊆ Il+1 while π(X−s(ym)x(m,∞)) ⊆ Il′ .

Letting p = [xm, xn] and q = [ym, yn], this pair satisfies the hypotheses for this particular
m,n. The same argument works for all lesser m and greater n. We have proved the following.

Lemma 10.8. For each l ≥ 1, with αl as above, there is a short exact sequence

0→ Zαl → K0(C∗(F+
l ))

(il+1,l)∗−→ K0(C∗(F+
l+1))→ 0.

Theorem 10.9. There is a short exact sequence

0 // ker(ι)
β // K0(C∗(F+

B ))
j∗ // K0(C∗r (T ](SB))) // 0

where j denotes the inclusion of C∗(F+
B ) in C∗r (T ](SB)).

Proof. As we noted above, we can list a free set of generators for ker(ι) as follows. For each
l ≥ 1, let (i, j) = ι(Il). There is a unique I ′l in I0 with ι(Il) = ι(I ′l) and Il− I ′l , as an element
of ZIB and in ker(ι). As l ≥ 1 varies, these form a free set of generators.

We define the inclusion β of ker(ι) in K0(C∗(F+
B )) as follows. Since each map (il+1,l)∗ is

surjective, so are their compositions. So for each l ≥ 1, we may find βl in K0(C∗(F+
0 )) =
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K0(C∗(F+
B )) such that (il,0)∗(βl) = αl, as in Lemma 10.8. For any integers kl, 1 ≤ l ≤ L,

define

β

(
L∑
l=1

kl(Il − I ′l)

)
=

L∑
l=1

klβl.

Let us first observe that, if m > l, then

(im,0)∗(βl) = (im,l+1)∗ ◦ (il+1,l)∗ ◦ (il,0)∗(βl) = (im,l+1)∗ ◦ (il+1,l)∗(αl) = 0.

The fact that the image of β is precisely the kernel of j∗ can be seen as follows. As the
union of the C∗(F+

l ), l ≥ 0, is dense in C∗(T ]B, SB), K0(C∗(T ]B, SB)) the inductive limit of

K0(C∗(F+
B )) = K0(C∗(F+

0 ))
(i1,0)∗→ K0(C∗(F+

1 ))
(i2,1)∗→ · · ·

First, as each (il+1,l)∗ is surjective, so is j∗. It also follows that a in K0(C∗(F+
B )) is in the

kernel of j∗ if and only if (im,0)∗(a) = 0, for some m ≥ 1. If a = β
(∑L

l=1 kl(Il − I ′l)
)

, then

this holds for any m > L from the definition of β and our observation above.
Conversely, suppose 0 = (im,0)∗(a), for some m. This means that (im−1,0)∗(a) is in the

kernel of (im,m−1)∗ and hence there is an integer km−1 such that (im−1,0)∗(a) = km−1αm−1.
It then follows that

(im−1,m−2)∗ ◦ (im−2,0)∗(a− km−1βm−1) = (im−1,0)∗(a− km−1βm−1) = 0,

so we may find km−2 such that (im−2,0)∗(a−km−1βm−1) = km−2αm−2. Continuing in this way

ends by seeing that a =
∑m−1

l=1 klβl as desired.

Let us finally show that β is injective. Suppose that β
(∑L

l=1 kl(Il − I ′l)
)

= 0. It follows

that

(iL,0)∗

(
β

(
L∑
l=1

kl(Il − I ′l)

))
=

L∑
l=1

kl(iL,0)∗(βl) = kLαL,

using again the observation above that (il,0)∗(βl) = 0 if L > l. As αL has infinite order, it
follows that kL = 0. Continuing in this way shows that kl = 0, for all 1 ≤ l ≤ L. �

As we indicated earlier, knowing the K-theory of the foliation algebra allows the compu-
tation of the K-theory of the surface SB as an immediate consequence of Connes’ analogue
of the Thom isomorpism Theorem: 10.2.2 of [Bla86].

Theorem 10.10. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions of
Definition 6.4. We have Ki+1(SB) ∼= Ki(C

∗(F+
B )).

Corollary 10.11. Let B be a bi-infinite ordered Bratteli diagram satisfying the conditions
of Definition 6.4. If K0(A+

B ) is not finitely generated then the surface SB has infinite genus.

11. Chamanara’s surface

There is a family of surfaces of infinite genus introduced by Chamanara [Cha04] which
kicked off the study of flat geometry and dynamics of surfaces of infinite genus. The simplest
of them has become known as the Chamanara surface (see Figure 1). Later, in [LT16], the
connection was made between this surface, the Bratteli diagram of the 2∞ UHF C∗-algebra,
and the diadic odometer. In this section we apply our machinery to study the different
algebras and their K-theory.
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Figure 1. Two presentations of the Chamanara surface: the interiors of the
edges with the same label are identified by a translation. The point at the
boundary of such edges are not part of the surface and the surface has infinite
genus. The presentation on the left is the standard presentation.

The bi-infinite, ordered Bratteli diagram which is relevant here has the properties

Vn = {vn},
En = {0n, 1n},
0n ≤r 1n,

0n ≤s 1n

for all n in Z. This diagram has a state which is unique, up to scaling:

νr(vn) = 2n, νs(vn) = 2−n, n ∈ Z.
It is easy to see that

Xext
B = {(· · · 1 1 1 · · · ), (· · · 0 0 0 · · · )}.

It is also clear that in Proposition 7.6 that we have IB = JB and we can use x1 = 1∞ =
(· · · 1 1 1 · · · ) and x2 = 0∞ = (· · · 0 0 0 · · · ). It is also easy to see that ∂sXB consists of
sequences that have a last 0, or a last 1, while ∂rXB consists of sequences that have a first
0, or a first 1. Among these, for each integer n, we define four special points:

• wn: has a 1 in entry n and 0’s elsewhere,
• xn: has 0 in all entries ≤ n and 1’s elsewhere,
• yn: has 1 in all entries ≤ n and 0’s elsewhere,
• zn: has a 0 in entry n and 1’s elsewhere.

It is easy to check that

∆s(w
n) = xn, ∆r(w

n) = yn−1

∆s(z
n) = yn, ∆r(z

n) = xn−1

It follows that
∆r ◦∆s(w

n) = zn+1 6= zn−1 = ∆s ◦∆r(w
n)

and
{wn, xn, yn, zn | n ∈ Z} ⊆ ΣB.

The reverse containment is quite easy.
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It is fairly easy to check that the functions ϕ1∞
r , ϕ0∞

r can be written quite explicitly as

ϕ1∞

r (x) = −
∑
n∈Z

2n(1− xn),

ϕ0∞

r (y) =
∑
n∈Z

2nyn,

for any x in T+(1∞) and y in T+(0∞), respectively. The ranges are

ϕ1∞

r (T+(1∞) ∩ YB) = ∪n∈Z(−2n,−2n+1),

ϕ0∞

r (T+(0∞) ∩ YB) = ∪n∈Z(2n, 2n+1).

The quotient map then identifies each interval of the former with the corresponding interval
in the latter having the same length.

Moving on to K-theory, we have K0(C∗λ(T+(XB))) ∼= Z[1/2], as ordered abelian groups,
with the latter having the usual order from the real numbers. In fact, the map sends the
class of a projection ap,p, p ∈ Em,n to 2−n = νs(r(p)).

Theorem 10.5 then tells us that K0(C∗λ(T ](SsB))) ∼= K0(C∗λ(T+(XB))) ∼= Z[1/2], as ordered
abelian groups. The collection of connected subsets of T ](1∞) is indexed by the integers:
interval n having length 2n.That is, we have a canonical identification of IB = {In | n ∈ Z},
where In has length 2n. The map ι of Theorem 10.9 is induced by sending each generator In
to the same thing, so ker(ι) is the free abelian group with generators In − In−1.

We claim that K0(C∗(FB)) is the free abelian group on a countably infinite set, which we
will index by the integers. We will now explicitly write a set of generators.

Fix an integer m and consider pm = 01011 and qm = 01010 in EY
m−5,m. (The presence of

two 0’s and two 1’s guarantees that we avoid ΣB.) Define

(1) wm = apm,pm ⊗ cos
(π

2
2−mϕvms (z)

)
+ aqm,pm ⊗ sin

(π
2

2−mϕvms (z)
)
,

for z in X+
vm , which lies in ACm−5,m. A simple computation shows w∗mwm = apm,pm while

wmw
∗
m equals apm,pm when evaluated at z = xs−minvm and equals aqm,qm when evaluated at

z = xs−maxvm . (This is the same wm appearing in the proof of Theorem 10.5.) Just as
in Theorem 10.5, this shows that wmw

∗
m lies in C∗λ(T ](SsB)) and is Murray-von Neumann

equivalent to apm,pm in C∗λ(T+(YB))). In particular, identifying K0(C∗λ(T+(YB)))) ∼= Z[1/2],
j∗([wmw

∗
m]) = 2−m.

There is a geometric way to visualize the functions wm in (1). First, since |Vm| = 1 for all
m, we have that X−vmX

+
vm = XB for all m. What the different presentations of XB as X−vmX

+
vm

highlight are the special types of paths, e.g. x
s−max/min
vm . This type of different presentation

is analogous to the different presentations of Chamanara’s, e.g. the two presentations in
Figure 1.

Let π : YB → SB be the map from the (nonsingular) path space to the surface. The paths
pm, qm ∈ EY

m−5,m define cylinder sets [pm], [qm] ⊂ YB and the image of these cylinder sets
under π is denoted by Um, Vm ⊂ SB. The functions wm in (1) are in fact the pullback of
functions w̄m on SB which are supported on Um ∪ Vm: wm = π∗w̄m, see Figure 2.

It follows then that [wmw
∗
m]−2[wm+1w

∗
m+1] is in ker(j∗). Finally, one can show that under

the identification of ker(j∗) with ker(ι) given in Theorem 10.9, this element corresponds to
Im − Im+1. This computation is rather long and involves a lot of technical details from the
main results of [Put21] that we do not provide. However, given this, it is a fairly simple
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Figure 2. The functions w̄0 (in black) and w̄1 (in red) on the two presenta-
tions of Chamanara’s surface from Figure 1. For w̄0, white is 0, black is 1, and
grey is in between, whereas for w̄1 white is 0, red is 1, and the other shades of
red are in between.

matter to show that the collection [wmw
∗
m],m ∈ Z, generates all of K0(C∗(F+

B )) and has
no relations, completing the proof of our claim above that the group is free abelian with a
generating set indexed by the integers.

12. Translation surfaces of finite genus

The general goal of this section is to relate our constructions to the well-established study
of translation surfaces in the finite genus case. More specifically, we aim to show that all
finite genus translation surfaces whose vertical and horizontal foliations are minimal arise
via our construction or, to be more precise, to see how standard techniques may be used to
produce ordered Bratteli diagrams for finite genus surfaces.

There are several equivalent ways to define a compact translation surface. Here we give
two and refer the reader to [Via06, Zor06, FM14] for thorough introductions to flat surfaces.

Let S be a compact Riemann surface of genus g > 1 and α a 1-form on S which is
holomorphic with respect to the complex structure on S. The pair (S, α) defines a flat
surface and a pair of transverse foliations, the horizontal and vertical foliations, F±. These
are the foliations defined by the integrable distributions of the real and imaginary parts of
α:

F+ = 〈ker=α〉 and F− = 〈ker<α〉.
The unit-time parametrization of these foliations are respectively the horizontal and vertical
flows φ+

t and φ−t .
By the Poincaré-Hopf index theorems, since g > 1, these foliations (and the corresponding

flows) are singular; the singular points are the zeros of α and these are called the singularities
of α, which are denoted by Σ. The 1-form α gives S a flat metric on S \ Σ as follows. Let

p ∈ S \ Σ and p′ in a neighborhood of p. The map p′ 7→
∫ p′
p
α ∈ C defines a chart around

p such that the pullback of dz is α. This gives S \ Σ a flat geometry, and the reader can
verify that maps which are change of coordinates between these types of charts are of the
form z 7→ z + c, justifying the use of the name translation surface. A saddle connection is a
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geodesic γ ⊆ S with respect to the flat metric which starts and ends in Σ. More specifically,
it satisfies the property that ∂γ ⊆ Σ.

The geometry fails to be flat at the singular points in Σ. At these points the local

coordinate is of the form d
(
zp+1

p+1

)
= dzp for some p ∈ N, called the degree of the singularity.

At a point z ∈ Σ of degree p, the conical angle around z is 2π(p + 1). If Σ = {z1, . . . , zk},
and the degree at zi is κi, then by the Gauss-Bonnet theorem we have that

∑k
i=1 κi = 2g−2.

Since the holomorphic 1-form α determines the geometry of the flat surface (S, α), it defines
its area by Area(S) = i

2

∫
S
α ∧ ᾱ.

Another way to define a flat surface is as follows: start with a 2n-gon P̄ ⊆ C with
the property that edges come in parallel pairs of the same length. That is, P̄ has edges
ζ+

1 , . . . , ζ
+
n , ζ

−
1 , . . . , ζ

−
n , where ζ+

i and ζ−i are parallel and of the same length. Let S = P̄ / ∼
be the object obtained by the identifying pairs of edges which are parallel and of the same
length: ζ+

i ∼ ζ−i . The holomorphic 1-form on S is the unique one which pulls back as dz on
C, although it may be singular at points where different edges meet. The points on S where
this happens is the singularity set Σ. The horizontal and vertical foliations on S are now
seen as the horizontal and vertical lines in P̄ . That this definition is equivalent to the one
given above is left as an exercise for the reader who has not seen this before.

Translation surfaces come in families: all translation surfaces of genus g are elements of the
moduli spaceMg of translation surfaces of genus g. The spaceMg is finite dimensional and it
is stratified into strataH(κ̄), where κ̄ describes how many and which types of singularities the
surfaces in H(κ̄) are allowed to have. The stratum H(κ̄) is locally modeled by H1(S,Σ;C).
By the remarks above, H(κ1, . . . , κd) ⊆ Mg if and only if κ̄ satisfies

∑
κi = 2g − 2. The

Teichmüller flow is the 1-parameter family of homeomorphisms of Mg, taking (S, α) 7→
(S, αt) = gt(S, α), where <αt = e−t<α and =αt = et=α.

In the rest of this section, we establish a way of defining an ordered, bi-infinite Bratteli
diagram B(S, α) for a typical choice of compact flat surface (S, α).

12.1. Veech’s zippered rectangles. Veech [Vee82] introduced a way of presenting flat
surfaces as the union of rectangles which are “zippered” on their sides. Here we review the
construction. We will follow the conventions of Viana [Via06].

Let A be an alphabet of size d ≥ 4, whose elements are usually written as α, and π0, π1 :
A → {1, . . . , d} two bijections. We will consider examples with A = {A,B,C,D}. We will
use α to denote the inverses of these functions, but instead of writing αε(i) = π−1

ε (i), for
ε = 0, 1, 1 ≤ i ≤ d, we write αεi . These bijections may be written conveniently as

π =

(
α0

1 α0
2 · · · α0

d

α1
1 α1

2 · · · α1
d

)
,

the top and bottom rows being ordered lists of the elements of A. It will always be assumed
here that π defines an irreducible permutation, in the sense that there is no k < d such that
π1 ◦ π−1

0 {1, . . . , k} = {1, . . . , k}.
We will now define vectors, (λα, τα) in the plane, indexed by α in A. Each λα will be

required to be positive while τ satisfies

(2)
∑

π0(α)≤k

τα > 0 and
∑

π1(α)≤k

τα < 0,
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Figure 3. The flat surface defined by the vectors ζi = (λ, τ) ∈ RA+ × T+
π .

for all k < d. We let RA+ to denote positive vectors and T+
π denote the set of all τ in RA

satisfying inequalities (2). Given ζ = (λ, τ) inRA+ × T+
π , let Γ = Γ(π, λ, τ) ⊆ R2 be the curve

bounded by the concatenation of the vectors defined by ζ:

ζα0
1
, ζα0

2
, · · · , ζα0

d
,−ζ1

α1
d
,−ζ1

α1
d−1
, · · · ,−ζ1

α1
1
.

The constraints which define T+
π imply that about half of the vertices of Γ are on the

upper half plane, and the other rough half on the lower half plane. Assuming Γ has no
self-intersections1, the vector ζ defines a flat surface by first defining ζ+

i and ζ−i to be the
corresponding edges in the concatenation above in the upper and lower half of the plane,
respectively, and then considering the interior of Γ and making the identifications ζ+

i ∼ ζ−i
on the boundary edges (see Figure 3).

Given the data (π, λ, τ) as above, we now define the vector h in RA by

hα = −
∑

π1(β)<π1(α)

τβ +
∑

π0(β)<π0(α)

τβ.

This is more concretely expressed as h = −Ωπ(τ), where Ωπ : RA → RA is the matrix defined
by

Ωαβ =

 +1 if π1(α) > π1(β) and π0(α) < π0(β),
−1 if π1(α) < π1(β) and π0(α) > π0(β),

0 otherwise.

Note that, the assumption that τ is in T+
π implies that hα > 0 for all α in A. We define the

image of the positive cone T+
π under −Ωπ by H+

π = −Ωπ(T+
π ).

1If there are self-intersections, there is a quick fix for it.
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Figure 4. The zippered rectangles for the surface in Figure 3.

We now define rectangles Rε
α of width λα and height hα by

R0
α =

 ∑
π0(β)<π0(α)

λβ,
∑

π0(β)≤π0(α)

λβ

× [0, hα]

R1
α =

 ∑
π1(β)<π1(α)

λβ,
∑

π1(β)≤π1(α)

λβ

× [−hα, 0].

(3)

along with the “zippers”

Z0
α =

 ∑
π0(β)≤π0(α)

λβ

×
0,

∑
π0(β)≤π0(α)

τβ


Z1
α =

 ∑
π1(β)≤π1(α)

λβ

×
 ∑
π1(β)≤π1(α)

τβ, 0


which are vertical segments ending at the points of concatenation of the curve Γ. As such,

the flat surface S(π, λ, τ) can be presented as the quotient of the closure of the union of
the rectangles {R0

α}α∈RA and zippers under a relation defined on the edges of the rectan-
gles. The genus g of this surface satisfies 2g = dim Ωπ(RA). The area of the surface is
Area(S(π, λ, τ)) = λ · h. Moreover, the horizontal and vertical foliations are the obvious
choices. See Figure 4.
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12.2. Rauzy-Veech Induction. Given a triple (π, λ, τ), where π = {π0, π1} is an irre-
ducible permutation, λ in RA+ and τ in T+

π , we will define an operation which produces a
new triple (π′, λ′, τ ′) with the same properties. This procedure is known as Rauzy-Veech
induction, or RV induction.

First, let us describe what this procedure is meant to do geometrically, and then we will
give the details as to how it is done. Recall that from the triple (π, λ, τ) the flat surface it
defines can be presented in zippered recangles form. The map R(π, λ, τ) = (π′, λ′, τ ′) gives
new data from which the same surface can be presented in zippered rectangle form, except
that the base one of the rectangles will be shorter and the height of one of the rectangles will
be longer. This is done by cutting one of the rectangles Rε

α into two and stacking one of the
subrectangles above or below another one of the rectangles. The choices of the rectangles
picked for this operation are determined by (π, λ).

Remark 12.1. It will be important to keep in mind one of the benefits of using Rauzy-Veech
induction: it allows us to understand the behavior of the leaf of the vertical foliation on
S(π, λ, τ) which emanates from the point on this surface coming from the origin in R2. An
analogous procedure for the horizontal foliation will be described in §12.3.

First, we define π′ and λ′. Let α(ε) = π−1
ε (d) = αεd. That is, α(0) and α(1) are the last

entries in the top and bottom rows of π.

Definition 12.2. We say that (π, λ) has

type 0 if λα(0) > λα(1) or type 1 if λα(0) < λα(1).

If (π, λ) is of type ε ∈ {0, 1} then the winner is the symbol α(ε) and the loser is α(1− ε).

This makes sense as long as λα(0) 6= λα(1), so we will make the following assumption, to
which we will return later.

Hypothesis 12.3. The pair (π, λ) satisfies λα(0) 6= λα(1).

If (π, λ) has type 0, then π′ is defined by

(4) π′ =

(
α0

1 · · · α0
k−1 α0

k α0
k+1 · · · · · · α(0)

α1
1 · · · α1

k−1 α(0) α(1) α1
k+1 · · · α1

d−1

)
,

that is,

α0′

i = α0
i and α1′

i =

 α1
i if i ≤ π1(α(0))
α(1) if i = π1(α(0)) + 1
α1
i−1 if i > π1(α(0)) + 1

.

The vector λ′ is now defined by

(5) λ′α = λα if α 6= α(0) and λ′α(0) = λα(0) − λα(1),

whereas τ ′ is defined by

(6) τ ′α = τα if α 6= α(0) and τ ′α(0) = τα(0) − τα(1).

If (π, λ) has type 1, then π′ is defined by

(7) π′ =

(
α0

1 · · · α0
k−1 α(1) α(0) α0

k+1 · · · α0
d−1

α1
1 · · · α1

k−1 α1
k α1

k+1 · · · · · · α(1)

)
,
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that is,

α1′

i = α1
i and α0′

i =

 α0
i if i ≤ π0(α(1))
α(0) if i = π0(α(1)) + 1
α1
i−1 if i > π0(α(1)) + 1

.

The vector λ′ is now defined by

(8) λ′α = λα if α 6= α(1) and λ′α(1) = λα(1) − λα(0),

whereas τ ′ is defined by

(9) τ ′α = τα if α 6= α(1) and τ ′α(1) = τα(1) − τα(0).

Let Θ = Θπ,λ : RA → RA be the matrix defined, when (π, λ) has type 0,as

Θαγ =

 1 if α = γ
1 if α = α(1) and γ = α(0)
0 otherwise

whose inverse is

Θ−1
αγ =

 1 if α = γ
−1 if α = α(1) and γ = α(0)
0 otherwise.

When (π, λ) has type 1,

Θαγ =

 1 if α = γ
1 if α = α(0) and γ = α(1)
0 otherwise

whose inverse is

Θ−1
αγ =

 1 if α = γ
−1 if α = α(0) and γ = α(1)
0 otherwise.

This matrix satisfies [Via06, Lemma 10.2] the relation

(10) ΘΩπΘ∗ = Ωπ′ .

As such, the relations between λ and λ′ and between τ and τ ′, are expressed by

λ′ = Θ−1∗λ or λ = Θ∗λ′, and τ ′ = Θ−1∗τ,

and so Rauzy-Veech induction is the map

R : (π, λ, τ) 7→ (π′,Θ−1∗λ,Θ−1∗τ).

In terms of zippered rectangles, RV induction has an explicit expression in terms of the
height vector h = −Ωπ(τ) in H+

π . Indeed, we have that ΘΩπ = Ωπ′Θ
−1∗ and so denoting

h′ = −Ωπ′(τ
′) the corresponding height vector for τ ′, we have that h′ = Θh. It is straight

forward to verify that if τ in T+
π then τ ′ in T+

π′ . As such, the surface S(π′, λ′, τ ′) has area

Area(S(π′, λ′, τ ′)) = λ′ · (−Ωπ′(τ
′)) = −Θ−1∗λ ·ΘΩπΘ∗(τ ′) = −Θ−1∗λ ·ΘΩπ(τ)

= Θ−1∗λ ·Θh = λ · h = Area(S(π, λ, τ)).

Geometrically, Rauzy-Veech induction makes a vertical cut through the widest rectangle
at the end, takes the right subrectangle, and stacks it above or below the rectangle according
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Figure 5. Geometric illustration of Rauzy-Veech induction. Since λα(1) >
λα(0), this corresponds to type 1.

to the rules described above. Figure 5 illustrates an example of what Rauzy-Veech induction
does to the zippered rectangles and the surface it represents from Figure 4.

Note that in the definition of RV induction, whenever it was defined (Hypothesis 12.3), we
may have that π′ 6= π. Thus we can consider all possible permutations that can be obtained
from π under RV induction.

Definition 12.4. The Rauzy graph Gd of permutations on d elements is the directed graph
which has as vertices equivalence classes of permutations π = {π0, π1}, where π ∼ π′ when-

ever π1◦π−1
0 = π′1◦π−1′

0 , and there is an edge from [π] to [π′] if there are representatives π, π′

and vector λ in RA+ such that π′ is the permutation obtained from (π, λ) through Rauzy-Veech
induction. A Rauzy class is by connected components of the Rauzy graph.

There are two outgoing edges from each class [π], one for each type, as well as two incoming
edges. See Figures 9 and 10 for examples in genus 2.

Let (π, λ, τ) in C ×RA × T+
π satisfying Hypothesis 12.3. Then the map R is well defined,

and we obtain (π′, λ′, τ ′) = R(π, λ, τ) in C ×RA×T+
π . We would like to once again apply R

to this new data, but we do not know a-priori whether (π′, λ′, τ ′) satisfies Hypothesis 12.3.
To establish conditions for which all iterates of RV induction are defined, we first need to

define the interval exchange transformation (IET) defined by (π, λ). For α in A, let

Iα =

 ∑
π0(γ)<π0(α)

λγ,
∑

π0(γ)≤π0(α)

λγ


and with |I| = ‖λ‖1, the IET f : [0, |I|)→ [0, |I|) defined by (π, λ) is

f(x) = x+ Ωπ(λ)α for x ∈ Iα.
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The reader is encouraged now to verify that the zippered rectangle surfaces in §12.1 are
suspensions over the IET f with roof functions given by the height vector h. Denote by ∂Iα
the left endpoint of the interval Iα.

Definition 12.5. A pair (π, λ) satisfies the Keane condition if fm(∂Iα) 6= ∂Iγ for all m in
N and α, γ ∈ A with π0(γ) 6= 1.

Remark 12.6. (1) This condition guarantees that the orbits of the left endpoints of the
intervals are as disjoint as possible. This surely guarantees Hypothesis 12.3. Below
we will see that this characterizes the good data for which RV induction is defined for
all iterates.

(2) It is known that the Keane condition implies the minimality of the interval exchange
transformation f , that is, that every orbit is dense. This in turn implies that the
vertical foliation on S(π, λ, τ) has no closed leaves and every leaf is dense in the
surface.

Theorem 12.7. The following are equivalent:

(1) (π, λ) satisfies the Keane condition.
(2) All iterates Rn(π, λ) of Rauzy-Veech induction are defined for n > 0.
(3) For each α in A, there is a subsequence nαi → ∞ such that α is the winner for
Rnαi (π, λ) for every i.

(4) For each α in A, there is a subsequence nαi →∞ such that α is the loser for Rnαi (π, λ)
for every i.

Moreover, these equivalent conditions are satisfied on a full measure subset of the space of
parameters.

For a proof, see [Via06, §5]. Thus, it is better to replace Hypothesis 12.3 with the Keane
condition.

12.3. RH Induction. The previous section reviewed a procedure which, starting with some
data (π, λ, τ) and depending only on π and λ, produced a new triple R(π′, λ′, τ ′). Moreover,
there is a precise condition that characterizes all data for which all iterates of this procedure
are defined. Denoting by (π(n), λ(n), τ (n)) = Rn(π, λ, τ), the surfaces S(π(n), λ(n), τ (n)) are
different presentations of S(π, λ, τ) which allow us to keep track of longer and longer segments
of the vertical leaf emanating from the origin.

In this section, we define a different procedure, P : (π, λ, τ) 7→ (π′, λ′, τ ′), with the aim of
doing the same for the trajectory of the horizontal foliation emanating from the origin, that is,
we will get presentations S(π(n), λ(n), τ (n)) of S(π, λ, τ) through (π(n), λ(n), τ (n)) = Pn(π, λ, τ)
which will allow us to capture longer and longer segments of the horizontal leaf emanating
from the origin. We will then relate this procedure to RV induction. This exposition is our
own, but the recent work [Ber21] captures most of the aspects presented here.

Let us first describe and illustrate how this procedure is meant to work and then we will
give the details. Let (π, λ, τ) in C×RA+×T+

π and consider the zippered rectangles presentation
of it in (3). Our goal is to extend [0, |I|) to [0, |I ′|), where |I ′| = ‖λ′‖1. Given π = (π0, π1),
define

(11) β(ε) = π−1
ε (πε(α(1− ε)) + 1),

for ε = {0, 1}. In words, β(ε) is the symbol immediately to the right of α1−ε
d on πε.
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Figure 6. The case hα(1) > hβ(0) and hα(0) < hβ(1).

Suppose for the moment that hα(1) > hβ(0) and hα(0) < hβ(1) (see Figure 6). In order to
extend the horizontal leaf starting at the origin, it must come out of the bottom edge of the
rectangle R1

α(0) cut through R1
β(1), subdividing it into two subrectangles. The top rectangle

will be absorbed into a larger rectangle R1
α′(0) = R1

α(0), while the bottom rectangle will be

moved to the right and become R1
α′(1). Thus, we extend [0, |I|) by λβ(1) and rearrange the

rectangles as in Figure 7.
If hα(1) < hβ(0) and hα(0) > hβ(1) then an analogous procedure is defined by cutting through

the rectangle R0
β(0) and moving the top rectangle to the right-most place on the top set of

rectangles.
It may be unclear how to proceed if hα(1) < hβ(0) and hα(0) < hβ(1), as in Figure 4.

What really determines which rectangle to cut has to do with the τ ∈ T+
π which defines

h = −Ωπ(τ). Indeed, in the case hα(1) > hβ(0) and hα(0) < hβ(1) as in Figure 6 the zipper
between R0

α(1) and R0
β(0) is somewhere in the interior of the right edge of R0

α(1), meaning

that it is on the right edge of R1
α(1), meaning that

∑
α τα < 0. Likewise, hα(1) < hβ(0) and

hα(0) > hβ(1) imply that
∑

α τα > 0.
Let us remark that the case hα(1) > hβ(0) and hα(0) > hβ(1) is impossible. Indeed, consider

the zipper between R0
α(1) and R0

β(0). There is a singularity of the flat surface somewhere

between these two rectangles. But this singularity is to the right of R0
α(1), which means that

there is a singularity on the right edge of R1
α(1), which has to have height

∑
α τα < 0. The

same argument for the rectangles R1
α(0) and R1

β(1) implies that
∑

α τα > 0. Since τ ∈ T+
π ,

it satisfies one of the two conditions of (2), so it is impossible to have hα(1) > hβ(0) and
hα(0) > hβ(1).

Hypothesis 12.8. The pair (π, τ) with τ in T+
π satisfies

∑
α τα 6= 0.

Motivated by this discussion and following the terminology [Via06, §12], we have the
following definition.

Definition 12.9. If the pair (π, τ) satisfies Hypothesis 12.8, it will be called

Type 0 if
∑
α

τα > 0 or Type 1 if
∑
α

τα < 0.

76



Figure 7. Starting from Figure 6, the procedure producing a new zippered
rectangles presentation implies that α′(0) = α(0) and α′(1) = β(1). Compare
with Figure 5.

If (π, τ) is of type ε ∈ {0, 1} then the τ -winner is the symbol α(1− ε).

Thus if (π, τ) is type 0, then the rectangle R0
β(0) will be subdivided into two rectangles,

the bottom part will be absorbed into R0
α(1) while the top part will be moved to the right

to become R0′

d . If (π, τ) is type 1, the rectangle R1
β(1) will be subdivided into two rectangles,

the top part will be absorbed into R1
α(0) while the top part will be moved to the right to

become R1′

d , as depicted in Figure 7.
These operations are formally defined as follows. Let τ in T+

π be of type 0. Starting with
(π, λ, τ) and based on the description in the previous paragraph, the new data (π′, λ′, h′) =
P(π, λ, h) = P(π, λ,−Ωπ(τ)) is defined, first, by letting

(12) π′ =

(
α0

1 · · · α0
k−1 α(1) α0

k+2 · · · α(0) β(0)
α1

1 · · · α1
k−1 α1

k α1
k+1 · · · · · · α(1)

)
,

that is,

(α
′
)1
i = α1

i and (α
′
)0
i =

 α0
i if i ≤ π0(α(1))
α0
i+1 if π0(α(1)) < i < d
β(0) if i = d

.

The vector λ′ is now defined by

(13) λ′α = λα if α 6= α(1) and λ′α(1) = λα(1) + λβ(0),

whereas h′ is defined by

(14) h′α = hα if α 6= β(0) and h′β(0) = hβ(0) − hα(1).

The definition of τ ′ will follow from Proposition 12.9.
Let τ in T+

π be of type 1. Starting from (π, λ, τ) we now define (π′, λ′, h′) by

(15) π′ =

(
α0

1 · · · α0
k−1 α0

k α0
k+1 · · · · · · α(0)

α1
1 · · · α1

k−1 α(0) α1
k+2 · · · α(1) β(1)

)
,
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that is,

α0′

i = α0
i and α1′

i =

 α1
i if i ≤ π1(α(0))
α1
i+1 if π1(α(0)) < i < d
β(1) if i = d

.

The vector λ′ is now defined by

(16) λ′α = λα if α 6= α(0) and λ′α(0) = λα(0) + λβ(1),

whereas h′ is defined by

(17) h′α = hα if α 6= β(1) and h′β(1) = hβ(1) − hα(0).

The definition of τ ′ will follow from Proposition 12.9.
Let Ψ = Ψπ,h : RA → RA be the matrix defined, when (π, h) has type 0, as

(18) Ψαγ =

 1 if α = γ
1 if α = α(1) and γ = β(0)
0 otherwise

whose inverse is

Ψ−1
αγ =

 1 if α = γ
−1 if α = α(1) and γ = β(0)
0 otherwise.

When (π, h) has type 1, as

(19) Ψαγ =

 1 if α = γ
1 if α = α(0) and γ = β(1)
0 otherwise

whose inverse is

Ψ−1
αγ =

 1 if α = γ
−1 if α = α(0) and γ = β(1)
0 otherwise.

Thus, the map P acts on data as P : (π, λ, h) 7→ (π′,Ψλ,Ψ−1∗h).
Here we want to pick out a condition, analogous to the Keane condition in Theorem 12.7,

which characterizes the data for which Pn(π, λ, t) is defined for all n > 0. First observe that
if we restrict ourselves to all h with rationally independent entries, that is, to h ∈ H+

π so
that

(20)
∑
α

nαhα 6= 0 for all n ∈ ZA,

then Pn(π, λ, h) is defined for all n > 0. Moreover, the collection of all such vectors has full
measure in H+

π .

Definition 12.10. The triple (π, λ, τ) is RH-complete if for every α in A there is a subse-
quence nαi →∞ such that α is the τ -winner of Pnαi (π, λ, τ) for all i.

There is an analogous way to characterize when Pn is defined for all n > 0 recently proved
by Berk (see [Ber21]). Compare the following with Theorem 12.7.

Theorem 12.11 ([Ber21]). The following are equivalent:

(1) All iterates Pn(π, λ, τ) of RH-induction are defined.
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(2) (π, λ, τ) is RH-complete.
(3) The horizontal leaf emanating from the singularity associated to the origin has infinite

length.

12.4. Relations between RV and RH inductions. Here, we prove that RH induction is
the inverse of RV induction.

Proposition 12.12. Let (π, λ, h) = (π, λ,−Ωπ(τ)) with τ in T+
π . If λ in RA+ satisfies

Hypothesis 12.3, then P ◦ R = Id. If τ in T+
π satisfies Hypothesis 12.8, then R ◦ P = Id.

Proof. Let (π′, λ′, h′) = P(π, λ, h). Now suppose τ in T+
π is of type 0. Then by (13):

λ′α′(0) = λβ(0) < λβ(0) + λα(1) = λ′α′(1),

which means that (π′, λ′) is of type 1. Comparing (8) and (13), we get thatR(λ′)α = λ′α = λα
whenever α 6= α′(1) = α(1) and

R(λ′)α′(1) = λ′α′(1) − λ′α′(0) = (λα(1) + λβ(0))− λβ(0) = λα(1).

Finally, comparing (7) and (12), we get that R◦P(π, λ) = (π,Θ−1∗Ψλ) = (π, λ), so Ψ = Θ∗.
If α′(ε) are the last symbols of the permutation π′ε, then α′(0) = β(0). So R(h′)α = hα if
α 6= α′(0) = β(0), and

R(h′)α′(0) = h′α′(0) + h′α′(1) = h′β(0) + h′α(1) = (hβ(0) − hα(1)) + hα(1) = hβ(0) = hα′(0),

so R ◦ P(π, λ, h) = (π,Θ−1∗Ψλ,ΘΨ−1∗h) = (π, λ, h). So R ◦ P(π, λ, h) = (π, λ, h).
Suppose now τ in T+

π is of type 1. Then by (16):

λ′α′(1) = λβ(1) < λβ(1) + λα(0) = λ′α′(0),

which means that (π′, λ′) is of type 0. Comparing (5) and (16), we get thatR(λ′)α = λ′α = λα
whenever α 6= α′(0) and

R(λ′)α′(0) = λ′α′(0) − λ′α(1) = (λα(0) + λβ(1))− λβ(1) = λα(0).

Finally, comparing (4) and (15), we get that R◦P(π, λ) = (π,Θ−1∗Ψλ) = (π, λ), so Ψ = Θ∗

in this case too.
Note that if α′(ε) are the last symbols of the permutation π′, then α′(1) = β(1). So
R(h′)α = hα if α 6= α′(1) = β(1), and

R(h′)α′(1) = h′α′(1) + h′α′(0) = h′β(1) + h′α(0) = (hβ(1) − hα(0)) + hα(0) = hβ(1) = hα′(1),

so R ◦ P(π, λ, h) = (π,Θ−1∗Ψλ,ΘΨ−1∗h) = (π, λ, h).
Let (π′, λ′, τ ′) = R(π, λ, τ) and (π, λ) is of type 0. Then by (6) we have that∑

α

τ ′α =
∑
α 6=α(1)

τα < 0

and so by (2) we have that (π′, τ ′) is of type 1 (as in Figure 7). Let λ′ = Θ−1∗λ, where Θ
is the type 0 matrix. Comparing (4) and (15) it also follows that β′(1) = α(1). In addition,
comparing (8) and (16), we get that P(λ′)α = λ′α = λα whenever α 6= α′(0) = α(0) and

P(λ′)α′(0) = λ′α′(0) + λ′β′(1) = λ′α(0) + λ′α(1) = (λα(0) − λα(1)) + λα(1) = λα(0),

so P ◦ R acts as the identity on λ.
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It follows from (17) that P(h′)α = h′α = hα if α 6= β′(1) = α(1) and

P(h′)β′(1) = h′β′(1) − h′α′(0) = (hα(0) + hα(1))− hα(0) = hβ′(1) = hα(1) = P(h′)α(1).

So it follows that P◦R(π, λ, h) = (π,ΨΘ−1∗λ,Ψ−1∗Θh) = (π, λ, h). The last case is similarly
proved. �

It follows that the map P changes the τ coordinate by τ 7→ Ψτ .

Proposition 12.13. The map P preserves the cones T+
π .

Proof. Suppose (π, τ) is of type 0 with τ in T+
π and let P(π, τ) = (π′,Ψτ). Then

∑
π′0(α)≤k

(Ψτ)α =


∑

π0(α)≤k

τα > 0 if k < π0(α(1)) = π′0(α(1))∑
π0(α)≤k+1

τα > 0 if π0(α(1)) = π′0(α(1)) ≤ k < d,

where the case for k = d− 1 follows because (π, τ) is of type 0. We also have for any k < d∑
π′1(α)≤k

(Ψτ)α =
∑

π1(α)≤k

τα < 0,

and so it follows that Ψτ ∈ T+
π′ . Likewise if (π, τ) is of type 1 then

∑
π′1(α)≤k

(Ψτ)α =


∑

π1(α)≤k

τα < 0 if k < π1(α(0)) = π′1(α(0))∑
π1(α)≤k+1

τα < 0 if π1(α(0)) = π′1(α(0)) ≤ k < d,

where the case for k = d− 1 follows because (π, τ) is of type 1. We also have for any k < d∑
π′0(α)≤k

(Ψτ)α =
∑

π0(α)≤k

τα > 0,

and so the defining conditions of the cones (2) are preserved. �

Thus the map P is the inverse of the Rauzy-Veech induction map R and it is sometimes
called “backwards Rauzy-Veech induction”. As such, the action on data triples is of the
form P : (π, λ, τ) 7→ (π′,Ψλ,Ψτ).

12.5. Dynamics on the space of zippered rectangles. Since a flat surface can be con-
structed from data (π, λ, τ) in C × RA+ × T+

π , it is natural to ask how the set of all zippered
rectangles relates to the set of all flat surfaces. This was described by Veech [Vee82].

Definition 12.14. The space of zippered rectangles corresponding to a Rauzy class C is the
set

V̄C =
{

(π, λ, τ) : π ∈ C, λ ∈ RA, τ ∈ T+
π

}
.

There is a natural volume measure mC in V̄C locally given by mC = dπ dλ dτ , where dπ
is the counting measure, while dλ, dτ are restrictions of Lebesgue measure on RA. The
Teichmüller flow on V̄C is the one-parameter group of diffeomorphisms of V̄C defined by
Φt(π, λ, τ) = (π, e−tλ, etτ). We emphasize here that our convention for Teichmüller flow
here is backwards Teichmüller flow in the general literature. The reason for this is that our

80



focus here is on the horizontal flow, which is renormalized by the Teichmüller flow as we
have defined it.

The Teichmüller flow preserves the measure mC. Note that
Area(S(Φt(π, λ, τ))) = Area(S(π, λ, τ)) for any t in R. Any a > 0 defines two independent
global cross-sections V̄±aC , defined by

V̄+a
C = {(π, λ, τ) ∈ V̄C : |Ωπ(τ)|1 = |h|1 = a},
V̄−aC = {(π, λ, τ) ∈ V̄C : |λ|1 = a}.

(21)

The renormalization times of (π, λ, τ) are defined by

(22) t+R(π, λ, τ) = − log

(
1−

hα(1−ετ )

|h|1

)
and t−R(π, λ, τ) = − log

(
1−

λα(1−ελ)

|λ|1

)
,

where ε∗ is the ∗-type of the triple, for ∗ ∈ {λ, τ}, and it is immediate to check that the
composition

(23) P̂± = P±1 ◦ Φt±R
: (π, λ, τ) 7→ P±1(π, e∓t

±
Rλ, e±t

±
Rτ)

maps each cross section V̄±aC to itself (assuming P±1 is defined on the triple). In fact, the

transformation P̂± : V̄±aC → V̄
±a
C is an almost everywhere invertible Markov map (see [Via06,

Corollary 20.1]). Let Π± be the maps defined by

Π+(π, λ, τ) = (π, h) = (π,−Ωπ(τ)) and Π−(π, λ, τ) = (π, λ)

for all (π, λ, τ) in V̄C, and let m±C = Π±∗mC be the pushforward of the volume measure and
m±1 be their restriction to the simplices

V+
C = Π+(V̄1

C) =

{
(π, h) ∈

⊔
π∈C

{π} ×H+
π : |h|1 = 1

}
,

V−C = Π−(V̄−1
C ) =

{
(π, λ) ∈

⊔
π∈C

{π} × RA+ : |λ|1 = 1

}
.

There are unique maps P± : V±C → V±C satisfying P± ◦Π± = Π± ◦ P̂±, for all triples (π, λ, τ)
where P±1 is defined, which we respectively call the RH/RV renormalization maps.

Proposition 12.15. The measure on V+
C defined by∏
α∈A

h−1
α dh

is invariant under the RH renormalization map P+.

This measure is a counterpart to the Gauss measures m−1 on V−C of Veech [Vee82]. Veech
proved that m−1 has an invariant density which is a homogeneous rational function of λ
of degree −|A| bounded away from zero (see [Via06, §21]). The measure above is also a
homogeneous rational function of degree −|A|. That a measure of this form was invariant
was claimed in [Put92, §4].
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Proof. Recall that every (π, h) in V+
C has two preimages (πε, hε), that is, P+(πε, hε) = (π, h),

where ε in {0, 1} is the τ -type. Let π be represented as(
· · · α(0)
· · · α(1)

)
.

In terms of h, the two preimages hε are given by

(24) hεα =
hα

1 + hα(1−ε)
if α 6= α(ε) and hεα(ε) =

hα(ε) + hα(1−ε)

1 + hα(1−ε)

from which we get

(25)
∂hεα
∂hβ

=


(1 + hα(1−ε))δα,β − hαδβ,α(1−ε)

(1 + hα(1−ε))2
if α 6= α(ε)

(1 + hα(1−ε))
−1 if α = β = α(ε)

1 + hα(ε)

(1 + hα(1−ε))2
if α = α(ε) and β = α(1− ε).

We denote by Fε the map satisfying Fε(h) = hε and by Jε its Jacobian. Note that the only
nonzero entries of Jε are along the diagonal, which are mostly (1 + hα(1−ε))

−1 except in the
α(1−ε) entry, in which case it is (1+hα(1−ε))

−2, and in the column for index α(1−ε), where
the entry for index α 6= α(ε) is −hα/(1 +hα(1−ε))

−2. Thus, we can compute the determinant
of Jε by expanding along the row with index α(1− ε), and we get that

|Jε| = (1 + hα(1−ε))
−|A|.

Let D(h) =
∏

α h
−1
α . We would like to verify that D ◦ Fε|Jε|+D ◦ F1−ε|J1−ε| = D. First:

(26) D ◦ Fε(h) =
∏
α

(hεα)−1 =
(1 + hα(1−ε))

|A|

(hα(ε) + hα(1−ε))
∏

α 6=α(ε)

hα
=

(1 + hα(1−ε))
|A|hα(ε)D(h)

hα(ε) + hα(1−ε)
.

Now putting everything together:

D ◦ Fε|Jε|+D ◦ F1−ε|J1−ε| =
hα(ε)D(h)

hα(ε) + hα(1−ε)
+

hα(1−ε)D(h)

hα(1−ε) + hα(ε)

= D(h).

�

Let V̂C ⊆ V̄C be the space of data (π, λ, τ) which satisfies the Keane condition and is

RH-complete. It is invariant under both P and Φt. Define the spaces V±C = V̂C/ ∼±, where
∼± is the relation

(27) P±1(π, λ, τ) ∼ Φ±t±R
(π, λ, τ),

called the pre-strata of the Rauzy class C. The Teichmüller flow Φt descends to flows Φ±t
on V±C , and the image of V̄±1

C ∩ V̂C are Poincaré sections for the flows. These now serve as
combinatorial models for the Teichmüller flow in the moduli space of flat surfaces.

The Teichmüller flows on V±C further project to suspension flows over P± : V±C → V±C with
roof functions t±R. More precisely, let

V̄+
C =

{
(h, s) ∈ V+

C × R : s ∈ [0, t+R)
}
,

V̄−C =
{

(λ, s) ∈ V−C × R : s ∈ [0, t−R)
}(28)
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be the set of coordinates for the suspension flows: (h, s) 7→ esh and (λ, s) 7→ esλ.

Theorem 12.16 ([Vee82]). The RV renormalization map P− : V−C → V−C is ergodic with
respect to m−1 , and thus so is the Teichmüller flow on V̄−C with respect to m−C = es|A|dm−1 ds.
Moreover, given a Rauzy class C, there exists a vector κ̄ and a finite-to-one, measurable map
ΠC : V−C → H(κ̄), where H(κ̄) is stratum of flat surfaces such that ΠC ◦ Φ−t = gt ◦ ΠC, and
this flow is ergodic when restricted to the subset of surfaces of area 1.

Using the coordinates (28), define the measure on V̄+
C

m̂h
C =

∑
π∈C

es|A|D(h)dπ1h ds,

where D(h) =
∏

α h
−1
α and dπ1h is the Lebesgue volume in the simplex ∆+

π ⊆ H+
π of vectors

h with |h|1 = 1.

Proposition 12.17. The measure m̂h
C is Φt-invariant.

Proof. Using the coordinates (h, s) as above, we pick a small flowbox of the form B̄ =
Bδ × [0, ε], where Bδ ⊆ ∆+

π is a small ball for some π ∈ C, where ε < maxh∈Bδ tR(π, h). For
any t small enough,

m̂h
C(Φt(B̄)) =

∫
Bδ

∫ ε+t

t

es|A|D(esh) ds dπ1 =

∫
Bδ

∫ ε+t

t

es|A|

es|A|
∏

α hα
ds dπ1h

= ε

∫
Bδ

D(h) dπ1h =

∫
Bδ

∫ ε

0

es|A|

es|A|
∏

α hα
ds dπ1h

=

∫
Bδ

∫ ε

0

es|A|D(esh) ds dπ1 = m̂h
C(B̄).

(29)

This, combined with Proposition 12.15 shows the Φt-invariance of m̂h
C. �

12.6. Bratteli diagrams for finite genus. Given (π, λ, τ) in V(1)
C , we want to produce a

bi-infinite ordered Bratteli diagram, Bπ,λ,τ , so that the resulting surface S(Bπ,λ,τ ) is S(π, λ, τ).
We make a couple of remarks. The first is that, as we noted earlier, while the space SB

depends only on the bi-infinite ordered Bratteli diagram, the atlas for it also depends on the
given state νr, νs. In fact, the state here will be given in a rather simple fashion from λ and
τ .

The second comment is that we will only construct the Bratteli diagram for (π, λ, τ) which
are RH-complete and satisfy the Keane condition. This isn’t unreasonable as our foliations
F±B tend to be minimal under rather mild restrictions.

Let (π, λ, τ) in VC. In order to define a bi-infinite ordered Bratteli diagram Bπ,λ,τ , it suffices
to describe the vertex set Vn and the edge set En, for all integers n, along with the partial
orders ≤r,≤s at every vertex. For all n ∈ Z, we define Vn = A. This presents a minor
notational problem: if we write r−1(α) ⊆ En, we are considering α as an element of Vn,
but this does not appear explicitly in the notation. To solve this, we use rn : En → A and
sn : En → A for the range and source maps. Note that the set A is that of symbols and not
of their positions zippered rectangles. As such, in order to describe En, it suffices to provide
a A×A matrix Mn which describes the connections between Vn−1 and Vn.
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Figure 8. The edge set En in the case that Pn−1(π, λ, τ) is of τ -type ε in {0, 1}. The − and +

symbols indicate the orders at the vertices where there are more than one incoming or outgoing edges.

When Pn−1(π, λ, τ) is of τ -type 0, the three dots in the rectangles R0
α(1)

and R0
β(0)

used to define the

orders ≤r,≤s. Indeed, the two dots sharing a y-coordinate sit on the same leaf of the horizontal leaf,

making them right-tail-equivalent in B. That eαn(1) <r en in this case is dictated from the order on the

leaf of the foliation containing those two points. This same order on the horizontal foliation happens in the

case of τ -type 0. The choice for the ≤s order comes from comparing two points on the same vertical leaf,

and these take different forms depending on the type. This is evident from the two figures.

For n > 0, let

(30) Mn =

{
(18) if Pn−1(π, λ, τ) is of τ -type 0
(19) if Pn−1(π, λ, τ) is of τ -type 1,

and let En be the edge set defined by Mn. In other words, there is an edge eα in En with
sn(eα) = α in Vn−1 and rn(eα) = α in Vn, for each α inA. We refer to such edges as horizontal.
In addition, there is an edge en in En with sn(en) = βn−1(ε) and rn(en) = αn(1 − ε), if
Pn(π, λ, τ) is of type ε in {0, 1}, where αn(ε) and βn(ε) are the corresponding symbols in the
permutation in Pn(π, λ, τ). Note that βn(ε) = αn+1(ε) depending on the type of Pn(π, λ, τ).

We now move to define the orders ≤r,≤s on B. These will also depend on the τ -type of
Pn−1(π, λ, τ). Since |r−1

n (α)| = 1 for all α 6= αn(1 − ε) and n > 0, it suffices to define the
order ≤r on {en, eαn(1−ε)} = r−1

n (αn(1− ε)), depending of the type of Pn−1(π, τ). We let

(31) eαn(1−ε) <r en

at each r−1
n (αn(1 − ε)), depending on the type. Since |s−1

n (α)| = 1 for all α 6= βn−1(ε) =
αn(ε) and n > 0 (here ε is the type of Pn−1(π, λ, τ)), it suffices to define the order ≤s on
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{en, eβn−1(ε)} = s−1
n (βn−1(ε)), depending of the type of Pn−1(π, λ, τ). We define the orders

(32)
en <s eαn(1) = eβn−1(0) if Pn−1(π, λ, τ) is of τ -type 0,

eαn(0) = eβn−1(1) <s en if Pn−1(π, λ, τ) is of τ -type 1,

at s−1
n (βn−1(ε)). These choices define the positive half of Bπ,λ,τ , see Figure 8 for a geometric

justification for these choices.
The definition for the negative part will essentially be the same form as (30), if we use

Proposition 12.9. Recall from the proof of Proposition 12.9 that if (π, λ, τ) = P(π′, λ′, τ ′) is
of λ-type ε, then (π′, λ′, τ ′) = R(π, λ, τ) is of τ -type 1 − ε. Thus, going by (30) for n = 0
we can define M0 as (19) if (π, λ, τ) is of λ type 0, and as (18) if (π, λ, τ) is of λ type 1.
Extending for higher powers of R = P−1, we get, for n ≤ 0:

(33) Mn =

{
(19) if Rn(π, λ, τ) is of λ-type 0
(18) if Rn(π, λ, τ) is of λ-type 1.

The orders are now similarly defined for the negative half: we extend the definitions using
(31) and (32) depending on the τ -type of Pn−1(π, λ, τ), that is, depending on the λ-type of
Rn(π, λ, τ).

Remark 12.18. (1) Note that there are 2(|A| − 1) possible matrices that can appear as
Ψ in (30) and (33), all of which are invertible and of determinant 1. As such, we
have for the AF algebras C∗λ(T+(XBπ,λ,π)) that the diagrams define,

(34) K0(C∗λ(T+(XBπ,λ,π))) ∼= Z|A| ∼= H1(S(π, λ, τ),Σ;Z),

which had already been proved in [Put92]. This does not, however, address the subtler
issue of the natural order structure.

(2) Given the definition of the Bratteli diagram B = Bπ,λ,τ above, it is easy to identify
some extreme elements at once: for any α in A the path pα = (. . . , pn−1

α , pnα, p
n+1
α , . . . )

in XB with sn(pnα) = α and rn(pnα) = α is in Xr−min
B and so Xr−min

B has exactly |A|
elements, the horizontal paths in Figure 8.

Our next task is to define a state on the Bratteli diagram which we have just constructed.
In fact, this is fairly simple: we let (πn, λn, τn) be (π, λ, τ) for n = 0, Pn(π, λ, τ) for n > 0
and R−n(π, λ, τ) for n < 0. We again let hn = Ωπn(τn), which lies in RA. For α in A = Vn,
we define νr(α) = (λn)α and νs(α) = (hn)α. It is a trivial matter to see that this is a state
on B.

It is a simple matter to see that these definitions mean that, for any n > 0, a symbol α
in A is the τ -winner in RH induction, Pn, if and only if the non-horizontal edge of En has
range equal to α. Similarly, a symbol α is the λ-winner in Rauzy-Veech induction, Rn, if
and only if the non-horizontal edge of E−n has range equal to α. This proves the following.

Proposition 12.19. The Bratteli diagram Bπ,λ,τ satisfies the Keane condition if, for every
α in A, |r−1

n {α}| > 1 for infinitely many negative integers n, and is RH-complete if and only
if |r−1

n {α}| > 1 for infinitely many positive integers n.

The next fact follows from [MMY05, §1.2.4] (see also [Ber21, Corollary 10]).

Proposition 12.20. If (π, λ, τ) satisfies the Keane condition and is RH-complete, then Bπ,λ,τ
is strongly simple.
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Figure 9. The Rauzy graph for surfaces in the hyperelliptic component of H(2). The arrows represent

a step of RH induction depending on the τ -type in {0, 1}. Next to every arrow is the edge set associated to

the Bratteli diagram: if (π, λ, τ) is RH-complete, then it defines an infinite walk on this graph, and the edge

set En is defined by the edge set corresponding to the arrow above in the nth step. If (π, λ, τ) satisfies the

Keane condition, then it defines an infinite backwards walk on this graph and the edge sets of the Bratteli

diagram Bπ,λ,τ are defined accordingly.

The Keane condition allows us to describe the elements of Xext
Bπ,λ,τ and even more, paths

which are tail equivalent to these. To do so, we introduce some notation. Consider compatible
representatives of the vertices of the Rauzy graph of π. That is, pick a representative
π = (π0, π1) of a vertex and consider the representatives of other classes which can be
reached under finitely many steps of induction. Let Aε = πε(1), the first symbol of πε,
and note that they are the first symbols in each representative in the Rauzy graph, that is,
they are preserved under induction. Recall that there is an edge e defined by the τ -type of
(π, λ, τ), which satisfies s(e) = β(ε) and r(e) = α(1− ε) whenever the τ -type is ε (Figure 8).

Proposition 12.21. Suppose that (π, λ, τ) satisfies the Keane condition, is RH-complete
and that x is an infinite path in Bπ,λ,τ .

(1) Suppose there is n0 such that xn is r-minimal, for all n ≤ n0. Then xn is horizontal,
for all n ≤ n0. In particular, Xr−min

Bπ,λ,τ consists of the |A| infinite horizontal paths.

(2) If x is in Xr−max
Bπ,λ,τ , then xn is not horizontal, for infinitely many n > 0.

(3) Suppose that there is an integer n0 such that xn is s-maximal for all n ≥ n0. Then
there exists m0 ≥ n0 such that r(xn) = s(xn) = A0, for all n ≥ m0.
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(4) Suppose that there is an integer n0 such that xn is s-minimal for all n ≥ n0. Then
there exists m0 ≥ n0 such that r(xn) = s(xn) = A1, for all n ≥ m0.

Proof. The first part follows easily (even without the Keane condition) from the fact that if
xn is r-minimal, then it is horizontal, by the definition of ≤r.

For the second part, suppose that xn is horizontal for all n > 0. From the BK condition,
there n > 1 with |r−1(r(xn)| > 1. The definition of ≤r implies that xn is not r-maximal.

The last two parts are more subtle.
Observe that Aε 6= β(ε), since by definition β(ε) is the symbol to the right of another

symbol, and Aε is never to the right of another symbol. Thus there is no non-horizontal edge
e defined by the graph with the property that s(e) = Aε when the data is of type ε. This
means that whenever there is a non-horizontal edge e with s(e) = A0, then this corresponds
to type 1, and so it is s-max, and likewise if there is a non-horizontal edge e with s(e) = A1,
then this corresponds to type 0, and so it is s-min. It follows that the constant path {A0}
is s-min while the constant path {A1} is s-max, and both of these paths are also r-min.

For a set V ⊆ Vn, we define

Q(V ) = {s(e) | e ∈ En is s-minimal and r(e) ∈ V }.
For V ⊆ Vn we will denote Qm(V ) ⊆ Vn−m the image of the composition of Q m times. We
first observe that if α is in Qm({A0}) ⊆ Vn−m, then there is an s-min path in En−m,n with
s(p) = α and r(p) = A0.

Lemma 12.22. For any 1 ≤ i < d, if V = {α0
1, . . . , α

0
i }, then Q(V ) equals one of

{(α′)0
1, . . . , (α

′)0
i } or {(α′)0

1, . . . , (α
′)0
i+1} Moreover, if (π, λ, τ) is τ -type 0 and α(1) is in V ,

then the latter holds.

Proof. The first case to consider is when (π, λ, τ) is τ -type 1. In this case, every s-minimal
edge in En is horizontal and so Q(V ) = V , for any set V . On the other hand, (α′)0 = α0

and so the conclusion holds, with the first of the two cases.
We now assume (π, λ, τ) is τ -type 0. Suppose α(1) = α0

k, for some 1 ≤ k ≤ d. There are
two cases to consider. The first is that α(1) is not in V . In other words, α(1) = α0

j , for some
j > i. In this case, the horizontal edge to each element of V is also s-minimal so Q(V ) = V .
Moreover, the change in β0 from α0 only occurs in entries greater than k. In other words,
we have {(α′)0

1, . . . , (α
′)0
i } = {α0

1, . . . , α
0
j} = V and Q(V ) = V .

Now, we suppose that α(1) is in V . In other words, α(1) = α0
j , for some j ≤ i. In this

case, we have the non-horizontal s-min edge goes from α(0) to α(1). Observe that because
i < d, α(0) is not in V . It follows that Q(V ) = V ∪ {α(0)}. On the other hand, (α′)0 is
obtained from α0 by inserting α(0) to the right of α(1) and moving the entries to the right
one more space to the right. In other words, we have {(α′)0

1, . . . , (α
′)0
i+1} = V ∪ {α(0)} and

we are done. �

�

Proposition 12.23. If (π, λ, τ) is such that, |r−1
n {A0}| > 1 for infinitely many n > 0, then

any x in XBπ,λ,τ such that there is some n0 such xn is s-minimal, for all n ≥ n0, there is n1

such that xn is the horizontal edge from A0 to itself, for all n ≥ n1. In particular, I+
Bπ,λ,τ = 1

with x1 being the infinite horizontal path through A0. Similarly, if (π, λ, τ) is such that,
|r−1
n {A1}| > 1 for infinitely many n > 0, then any x in XBπ,λ,τ such that there is some n0
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such xn is s-maximal, for all n ≥ n0, there is n1 such that xn is the horizontal edge from A1

to itself, for all n ≥ n1. In particular, J+
Bπ,λ,τ = 1 with x2 being the infinite horizontal path

through A0.

Proof. We prove the first statement only. Choose n1 > n0 so that |r−1
n {A0}| > 1, for at least

|A| values of n between n0 and n1. If we then consider A0 as a vertex in Vn1 , and apply Q
successively to V = {A0}, there will be at least |A| times when Qm(V ) is strictly larger then
V . For some some n0 ≤ n ≤ n1, we have Qn1−n(V ) = Vn. It follows that every s-minimal
starting in Vn will have range equal to A0. Also, any s-minimal path starting at A0 will be
horizontal. As n ≥ n0, x satisfies both properties and the conclusion follows. �

Theorem 12.24. If (π, λ, τ) in VC satisfies the Keane condition and is RH-complete, then
Bπ,λ,τ satisfies the standard conditions of Definition 6.4.

Proof. We have already seen that Bπ,λ,τ is strongly simple in Proposition 12.20. It is clearly
finite rank since #Vn = #A, for all integers n.

We finally verify the third condition, starting with considering (Xs−min
B ∪Xs−max

B )∩∂rXB.
We know from Proposition 12.23 that (Xs−min

B and Xs−max
B ) consist of x1 and x2, the horizon-

tal paths through A0 and A1, respectively, and hence are both in Xr−min
B which is excluded

from ∂rXB, by definition.
We now consider (Xr−min

B ∪Xr−max
B )∩∂sXB. Again Proposition 12.23 implies that ∂sXB is

contained in T+(x1) and T+(x2). The only paths which also lie in Xr−min
B are the horizontal

paths x1 and x2, which are excluded from ∂sXB, by definition. If x is in T+(x1) and Xr−max
B ,

then xn is the horizontal edge from A0 to itself for all n ≥ n0. By RH-completeness, there
is some n ≥ n0 with |r−1

n {A0}| > 1, which means that xn is not r-maximal, a contradiction.
The same argument shows T+(x2) ∩Xr−max

B is empty. �

12.7. Flatness of Bπ,λ,τ . In this section, we will prove the following flatness property of
Bπ,λ,τ .

Theorem 12.25. If (π, λ, τ) in VC satisfies the Keane condition and is RH-complete, then
ΣBπ,λ,τ = ∅.

Denote by xε = {Aε} the corresponding s-min/max paths from Proposition 12.21. Then
T+(xε) is linearly ordered by ≤r and ∆s : T+(xε) \ {xε} → T+(x1−ε) \ {x1−ε} is a bijection.

Lemma 12.26. If ∆s preserves ≤r, then ΣB = ∅.

Proof. Let x ∈ ∂XB and suppose ∆r(x) is the r-successor of x. Then ∆s ◦ ∆r(x) is the
r-successor of ∆s(x), that is ∆r ◦∆s(x) = ∆s ◦∆r(x). �

For every n, En has an edge which is not s-max, call it yn and an edge zn which is not
s-min. These are the edges {yn, zn} = s−1(vβn−1(ε)). Define

Yn = {x ∈ XB | xn = yn and xi is s-max for all i > n}
Zn = {x ∈ XB | xn = zn and xi is s-min for all i > n} .

(35)

Note that ∆s : Yn → Zn is a bijection for every n. Moreover, by definition, we also have that

T+(x0) \ {x0} =
⊔
n

Yn and T+(x1) \ {x1} =
⊔
n

Zn
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Figure 10. Rauzy graph for surfaces in the non-hyperelliptic component of
H(2) along with corresponding edge sets for the Bratteli diagrams.

so if Yn ≤r Yn+1 and Zn ≤r Zn+1, for all n, then ∆s : T+(xε) \ {xε} → T+(x1−ε) \ {x1−ε}
preserves ≤r.

Proposition 12.27. Yn ≤r Yn+1

Let x = {ei} be in Yn and x′ = {e′i} be in Yn+1. Let ` > n be the smallest integer where
r(ei) = r(e′i). We will show that e` ≤r e′`. We first treat two simple cases.

Lemma 12.28. If En, En+1 are respectively of τ -type 0,0 or 1,0, then ` = n+ 1 and en+1 ≤r
e′n+1.

Proof. If they are of type 0,0, it is immediate to check that (en, en+1) is the concatenation
of the s-min path from β(0) to α(0) followed by the horizontal edge eα(0), whereas e′n+1 is
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the s-min path from some vertex to vα(0), meaning that r(en+1) = r(e′n+1). Since horizontal
paths are always r-min, it follows that en+1 ≤r e′n+1.

If they are of type 1,0, then it is immediate to check that (en, en+1) is the horizontal path
associated with symbol β(1), whereas e′n+1 is the s-min path from some vertex to β(1) =
r(en+1). Again, since horizontal paths are always r-min, it follows that en+1 ≤r e′n+1. �

Thus we are left to inspect the cases where En, En+1 are respectively of types 0,1 or 1,1.

Lemma 12.29. Suppose En, En+1 are respectively of types 0,1 or 1,1. For n+1 ≤ i < `−1,
if r(ei) = γ and r(e′i) = γ′, then the symbol γ is immediately to the left of γ′ on the bottom
row of the permutation defined by P i(π, λ, τ).

Before proving this lemma, let us prove the proposition assuming the lemma.

Proof of Proposition 12.27 assuming Lemma 12.29. First note that if r(e`) = r(e′`), then
P`−1(π, λ, τ) is of τ -type 1, as this is the only way that we can have a non-horizontal s-max
edge in E`. If r(e`−1) = γ and r(e′`−1) = γ′ and γ is immediately to the left of of γ′, then
by the definition ( 30) of M`, the non-horizontal edge goes from γ′ in V`−1 to γ in V`, and so
e` ≤r e′`, showing that Yn ≤r Yn+1. �

We now move to prove Lemma 12.29. To get us started, we have the following.

Lemma 12.30. If En, En+1 are respectively of τ -type 0,1 or 1,1, then ` > n + 1 and the
permutation associated to Pn+1(π, λ, τ) is of the form

(36)

(
· · · · · ·
· · · γγ′

)
for some γ, γ′ in A, then r(en+1) = γ and r(e′n+1) = γ′.

Proof. Suppose they are respectively of type 0,1. Then the sequence of permutations are of
the form(

· · ·α(1)β(0) · · ·α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(
· · ·α(1) · · ·α(0)β(0)
· · · β(0)β′(1) · · ·α(1)

)
7→
(
· · ·α(1) · · ·α(0)β(0)
· · · β(0) · · ·α(1)β′(1)

)
,

assuming β(0) 6= α(0) and β′(1) 6= α(1). Now, by definition, (en, en+1) is the concatenation
of the edge from β(0) to the vertex α(1) followed by the horizontal edge associated to the
symbol α(1), and so γ = α(1), whereas e′n+1 is the horizontal edge associated to the symbol
β′(1) and γ′ = β′(1).

Note that it cannot be the case that both β(0) = α(0) and β′(1) = α(1) as this would
make the permutation irreducible. Now, if β(0) = α(0) and β′(1) 6= α(1), then the sequence
of permutations is of the form(

· · ·α(1)α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(

· · ·α(1)α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(
· · · · · · · · ·α(1)α(0)
· · ·α(0) · · ·α(1)β(1)

)
.

Here, (en, en+1) is the concatenation of the edge from α(0) to α(1) followed by the horizontal
edge associated to the symbol α(1), and so γ = α(1), whereas e′n+1 is the horizontal edge
associated to the symbol β(1) and γ′ = β(1), and the result also holds here.

If β(0) 6= α(0) and β′(1) = α(1), then the sequence of permutations is of the form(
· · ·α(1)β(0) · · ·α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(
· · ·α(1) · · ·α(0)β(0)

· · · β(0)α(1)

)
7→
(
· · ·α(1) · · ·α(0)β(0)

· · · β(0)α(1)

)
,
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Here, (en, en+1) is the concatenation of the edge from β(0) to α(1) followed by the (non-
horizontal) path from β′(1) = α(1) to β(0), whereas e′n+1 is the horizontal edge associated
to the symbol α(1), and so (γ, γ′) = (β(0), α(1)) and the case of types 0,1 is proved.

Now suppose they are respectively of type 1,1. Then the sequence of permutations are of
the form(
· · ·α(1)β(0) · · ·α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(

· · · β(1)β′(0) · · ·α(0)
· · ·α(0)β′(1) · · ·α(1)β(1)

)
7→
(

· · · · · · · · · · · ·α(0)
· · ·α(0) · · ·α(1)β(1)β′(1)

)
,

assuming β(1) 6= α(1) (note that β′(1) 6= β(1) as equality would imply that α(0) = α(1)
making the original permutation reducible). Now, by definition, e′n+1 is the horizontal edge
associated to the symbol β′(1) 6= β(1), whereas (en, en+1) is the concatenation of the hori-
zontal edge associated to the symbol β(1) followed by the horizontal edge associated to the
same symbol, β(1), and so γ = β(1) and γ′ = β′(1).

If α(1) = β(1), then the starting permutation is fixed under P and P2 (under τ -type 1)
and it is of the form (

· · ·α(1)β(0) · · ·α(0)
· · ·α(0)α(1)

)
.

In this case, (en, en+1) is the concatenation of the horizontal edge with symbol β(1) = α(1)
followed by the (non-horizontal) edge from β(1) to α(0), whereas e′n+1 is the horizontal edge
with symbol β(1) = α(1). So (γ, γ′) = (α(0), α(1)) in this case and the lemma is proved. �

Proof of Lemma 12.29. Given Lemma 12.30, we only need to prove that this property does
not change when applying P . Now, if En+2 is of τ -type 0 then en+2, e

′
n+2 are both horizontal

edges and the condition in the permutation in Lemma 12.30 does not change. In general,
going through an edge set of τ -type 0 does not change anything: if ei, e

′
i are horizontal edges

and have symbols γ, γ′, respectively, and γ sits to the left of γ′ in the bottom row, and Ei is
of τ -type 0, then the new permutation will have γ and γ′ in the same relative positions in
the bottom row. Thus it is only when we get to an edge set Ei of τ -type 1 that things may
change.

Let ei, e
′
i ∈ Ei have r(ei) = vγ and r(e′i) = vγ′ and such that the permutation of P i(π, λ, τ)

is of τ -type 1 and has γ immediately to the left of γ′ on the bottom row. Then either

(1) P i+1(π, λ, τ) has γ, γ′ in the same positions on the bottom row,
(2) P i+1(π, λ, τ) has γ, γ′ shifted on spot to the left on the bottom row,
(3) P i+1(π, λ, τ) has γ at the end of the bottom row, or
(4) P i+1(π, λ, τ) has γ′ at the end of the bottom row.

We now treat each case. In case (i), then the bottom row of the permutation in P i+1(π, λ, τ)
differs from the bottom row of that of P i(π, λ, τ) on some symbols to the right of γ′. This
means that r(ei+1) = vγ and r(ei+1) = vγ′ and so the condition is preserved. If case (ii)
holds, then that means that a symbol to the left of γ got sent to the end of the bottom
row when going from P i(π, λ, τ) to P i+1(π, λ, τ). This again implies that r(ei+1) = vγ and
r(ei+1) = vγ′ and so the condition is also preserved.

Now suppose that case (iii) holds. Then the non-horizontal edge e∗ ∈ Ei+1 goes from
βi(1) = γ to αi(0) 6= γ′. This edge is s-max and so since s(e∗) = r(ei) we have that
e∗ = ei+1. Since γ got moved to the end of the row, we have that γ′ sits immediately to the
right of αi(0). Since r(ei+1) = αi(0), the condition is preserved.
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Finally, in case (iv), since γ′ gets moved to the end of the bottom row this means that
the non-horizontal edge in Ei+1 goes from γ′ to γ and so r(ei+1) = r(e′i+1). This can only
happen if i + 1 = ` by the definition of `, but we are assuming i < ` − 1, so this cannot
happen. We have proved that the condition is preserved under every case. �

We now move to prove that Zn ≤r Zn+1. It is done through the same arguments used to
show that Yn ≤r Yn+1 (Proposition 12.21).

Proposition 12.31. Zn ≤r Zn+1

Let x = {ei} be in Zn and x′ = {e′i} be in Zn+1. Let ` > n be the smallest integer where
r(ei) = r(e′i). We will show that e` ≤r e′`.

Lemma 12.32. If En, En+1 are respectively of τ -type 0,1 or 1,1, then ` = n+ 1 and en+1 ≤r
e′n+1.

Proof. If they are of type 0,1, it is immediate to check that (en, en+1) is the concatenation
of the s-max path from β(0) to β(0) followed by the horizontal edge eβ(0), whereas e′n+1 is
the (non-horizontal) s-max path from some vertex to β(0), meaning that r(en+1) = r(e′n+1).
Since horizontal paths are always r-min, it follows that en+1 ≤r e′n+1.

If they are of type 1,1, then it is immediate to check that (en, en+1) is the non-horizontal
horizontal path from β(1) to α(0) followed by the horizontal path associated to the symbol
α(0), whereas e′n+1 is the s-max path from some vertex to vα(0) = r(en+1). Again, since
horizontal paths are always r-min, it follows that en+1 ≤r e′n+1. �

We now inspect the cases where En, En+1 are respectively of types 0,0 or 1,0.

Lemma 12.33. Suppose En, En+1 are respectively of types 0,0 or 1,0. For n+1 ≤ i < `−1,
if r(ei) = vγ and r(e′i) = γ′, then the symbol γ is immediately to the left of γ′ on the top row
of the permutation defined by P i(π, λ, τ).

Before proving this lemma, let us prove the proposition assuming the lemma.

Proof of Proposition 12.31 assuming Lemma 12.33. First note that if r(e`) = r(e′`) then
P`−1(π, λ, τ) is of τ -type 0, as this is the only way that we can have a non-horizontal s-
min edge in E`. If r(e`−1) = γ and r(e′`−1) = γ′ and γ is immediately to the left of of γ′,
then by the definition (30) of M`, the non-horizontal edge goes from γ′ in V`−1 to γ in V`,
and so e` ≤r e′`, showing that Zn ≤r Zn+1. �

To prove Lemma 12.33, we begin by proving the analog of Lemma 12.30.

Lemma 12.34. If En, En+1 are respectively of τ -type 0,0 or 1,0, then ` > n + 1 and the
permutation associated to Pn+1(π, λ, τ) is of the form

(37)

(
· · · γγ′

· · · · · ·

)
,

for some γ, γ′ in A, then r(en+1) = γ and r(e′n+1) = γ′.

Proof. Suppose they are respectively of type 0,0. Then the sequence of permutations are of
the form(
· · ·α(1)β(0) · · ·α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(
· · ·α(1)β′(0) · · ·α(0)β(0)

· · ·α(0)β(1) · · ·α(1)

)
7→
(
· · ·α(1) · · ·α(0)β(0)β′(0)

· · · · · · · · · · · ·α(1)

)
,
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assuming β(0) 6= α(0) (note that β′(0) 6= β(0) as equality would imply that α(0) = α(1)
making the original permutation reducible). Now, by definition, e′n+1 is the horizontal edge
associated to the symbol β′(0) 6= β(0), whereas (en, en+1) is the concatenation of the hori-
zontal edge associated to the symbol β(0) followed by the horizontal edge associated to the
same symbol, β(0), and so γ = β(0) and γ′ = β′(0).

If α(0) = β(0), then the starting permutation is fixed under P and P2 (under τ -type 0)
and it is of the form (

· · ·α(1)α(0)
· · ·α(0)β(1) · · ·α(1)

)
.

In this case (en, en+1) is the concatenation of horizontal edge with symbol β(0) = α(0)
followed by the (non-horizontal) edge from β(0) to α(1), whereas e′n+1 is the horizontal edge
with symbol β(0) = α(0). So (γ, γ′) = (α(1), α(0)) in this case and the lemma is proved for
type 0,0.

If we have type 1,0, then the sequence of permutations are of the form(
· · ·α(1)β(0) · · ·α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(
· · · β(1)β′(0) · · ·α(0)
· · ·α(0) · · ·α(1)β(1)

)
7→
(
· · · β(1) · · ·α(0)β′(0)
· · ·α(0) · · ·α(1)β(1)

)
,

assuming β(1) 6= α(1) and β′(0) 6= α(0). Now, by definition, (en, en+1) is the concatenation
of the edge from β(1) to the vertex α(0) followed by the horizontal edge associataed to the
symbol α(0), and so γ = α(0), whereas e′n+1 is the horizontal edge associated to the symbol
β′(0) and γ′ = β′(0).

Note that it cannot be the case that both β(1) = α(1) and β′(0) = α(0) as this would
make the permutation irreducible. Now, if β(1) = α(1) and β′(0) 6= α(0), then the sequence
of permutations is of the form(

· · ·α(1)β(0) · · ·α(0)
· · ·α(0)α(1)

)
7→
(
· · ·α(1)β(0) · · ·α(0)

· · ·α(0)α(1)

)
7→
(
· · ·α(1) · · ·α(0)β(0)
· · · · · · · · ·α(0)α(1)

)
.

Here ,(en, en+1) is the concatenation of the edge from α(1) to α(0) followed by the horizontal
edge associated to the symbol α(0), and so γ = α(0), whereas e′n+1 is the horizontal edge
associated to the symbol β(0) and γ′ = β(0), and the result also holds here.

Finally, if β(1) 6= α(1) and β′(0) = α(0), then the sequence of permutations is of the form(
· · ·α(1)β(0) · · ·α(0)
· · ·α(0)β(1) · · ·α(1)

)
7→
(

· · · β(1)α(0)
· · ·α(0) · · ·α(1)β(1)

)
7→
(

· · · β(1)α(0)
· · ·α(0) · · ·α(1)β(1)

)
,

Here (en, en+1) is the concatenation of the edge from β(1) to α(0) followed by the (non-
horizontal) path from β′(0) = α(0) to β(1), whereas e′n+1 is the horizontal edge associated
to the symbol α(0), and so (γ, γ′) = (β(0), α(1)) and the case of types 0,1 is proved. �

Proof of Lemma 12.33. The proof of this Lemma follows the same argument as the proof of
Lemma 12.29 except τ -type ε has to be replaced with type 1− ε and bottom rows with top
rows due to Lemma 12.34. We leave the details to the reader. �

Proof of Theorem 12.25. By Propositions 12.27 and 12.31, ∆s preserves the ≤r order. The
result then follows from Lemma 12.26. �
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Now that the bi-infinite ordered Bratteli diagram has been defined for a typical (π, λ, τ),
we move on to define the states. Define the negative and positive cones of Bπ,λ,τ as

C−π,λ,τ =
⋂
n>0

M
(−n)
π,λ,τ

(
RA+
)

and C+
π,λ,τ =

⋂
n>0

M
(n)∗
π,λ,τ

(
RA+
)
.

Recalling Proposition 2.9, we have the following.

Lemma 12.35. The set of states for Bπ,λ,τ is parametrized by C−π,λ,τ × C
+
π,λ,τ .

It follows from Veech’s theorem on the ergodicity of the Teichmüller flow (Theorem 12.16
above) that the set of normalized states of a typical triple (π, λ, τ) is in a sense unique.

Theorem 12.36. For almost every (π, λ, τ), there exists a normalized state ν = (νr, νs)
for Bπ,λ,τ which is unique in the sense that any other normalized state ν ′ = (ν ′r, ν

′
s) Bπ,λ,τ

satisfies (ν ′r, ν
′
s) = (e−tνr, e

tνs), for some t in R.

12.8. Dynamics of Bratteli diagrams. Since we have determined how to build a Bratteli
diagram Bπ,λ,τ from the triple (π, λ, τ) ∈ VC, we point out that there is an obvious relationship
between the diagram for (π, λ, τ) and that of P(π, λ, τ).

Definition 12.37. Let B be a bi-infinite ordered Bratteli diagram. The shift of B is the bi-
infinite ordered Bratteli diagram B′,≤′r,s such that E ′n = En+1, V ′n = Vn+1 with the property
that r′ = r, s′ = s,≤r′=≤r,≤s′=≤s. We also denote the shift by B′ = σ(B).

In short, σ(B) shifts all the indices of B while preserving the structure. It follows from
the construction in the previous section that we have

BPn(π,λ,τ) = σn(Bπ,λ,τ ).
We now make some remarks about how these ideas carry over to the algebras constructed.

First, it is straight-forward that the AF algebras defined by Bπ,λ,τ and BPn(π,λ,τ) =
σn(Bπ,λ,τ ) are the same for every n. That is, they are independent of where one chooses
the “origin” on Bπ,λ,τ to be. This is true for any bi-infinite Bratteli diagram and not just
for those Bπ,λ,τ being built from zippered rectangles data.

Second, if ν = (νr, νs) form a state for Bπ,λ,τ , then νt = (e−tνr, e
tνs) is a one-parameter

family of states for Bπ,λ,τ (deforming states like this also does not depend on Bπ,λ,τ being
built from zippered rectangles data). While the AF algebras defined by Bπ,λ,τ do not depend
on the state ν, the various algebras associated to our foliated spaces do depend on a choice
of state. Thus νt gives several one-parameter families of algebras.

In addition, given the definition of a pre-stratum in (27) it is tempting to make the
identification of the form

(Bπ,λ,τ , e−t
+
Rνr, e

t+Rνs) ∼ (BP(π,λ,τ), σ∗νr, σ∗νs) = (σ(Bπ,λ,τ ), σ∗νr, σ∗νs).
Thus the Teichmüller flow gt (or Φt) is manifested as a continuous deformation of the algebras
by deforming the states ν 7→ νt up to some time before shifting the Bratteli diagram.

12.9. The K-theory. We are at a point where we can compute the K-theory of the foliation
algebras of the typical flat surface in any stratum H(κ̄). Let us summarize how we got
here: through Veech’s construction of zippered-rectangles, we can represent almost every flat
surface (S, α) ∈ H(κ̄) by a triple (π, λ, τ) ∈ VC in the space of zippered rectangles VC. In fact,
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the subset VC is made up exclusively of triples which satisfy the Keane condition and is RH-
complete, meaning that we can assign to them a strongly simple bi-infinite Bratteli diagram
Bπ,λ,τ . We saw in Propositions 12.21 and 12.23 that these diagrams have the property that
|Xs−max| = |Xs−min| = 1 and Xs−max ∪Xs−min ⊆ Xr−min. Moreover, in Theorem 12.25 we
saw that they also satisfy ΣBπ,λ,τ = ∅. This sets the stage to compute their K-theory.

Theorem 12.38. For m−C -almost every (π, λ, τ), we have

K0(C∗(F+
Bπ,λ,τ ))

∼= K0(C∗λ(T+(XBπ,λ,τ )))
∼= ZA and K1(C∗(F+

Bπ,λ,τ ))
∼= Z.

Proof. The third and fourth parts of Proposition 12.21 imply that IBπ,λ,τJBπ,λ,τ = 1, so by
Proposition 10.3 and Theorem 10.4, we have that

K0(C∗λ(T ](SsBπ,λ,τ )))
∼= K0(C∗λ(T+(XBπ,λ,τ )))

and K1(BBπ,λ,τ )
∼= Z. Turning to Theorem 10.9, ker(ι) is trivial, and so by exactness we

obtain that K0(C∗(F+
Bπ,λ,τ,≤r,s

)) ∼= K0(C∗λ(T ](SsBπ,λ,τ ))). �

12.10. Ordered K-theory and asymptotic cycles. In this subsection we connect the
structure of the topological invariants of the surface with that of the algebras constructed.

First we recall the Schwartzman asymptotic cycle [Sch57]. Let φ+
t be the horizontal flow

on a flat surface S of finite genus, which we assume for the moment to be minimal and
uniquely ergodic, and p ∈ S a point with an infinite trajectory. For any T let γT (p) ⊆ S
be a closed curve which contains the orbit segment {φ+

t (p)}Tt=0 and is closed by a segment
γ∗T (p) of diameter at most diam (S). Define cT (p) = [γT (p)] ∈ H1(S,Σ;Z) to be its integer
homology class. This class is not uniquely defined, but the error is bounded independently
of T as the closing segments γ∗T (p) have bounded length. The (Schwartzman) asymptotic
cycle is defined as

(38) c = lim
T→∞

cT (p)

T
∈ H1(S,Σ;R).

That this limit does not depend on p is a consequence of unique ergodicity.
Recall the map P̂+ in (23) and consider its induced action P̂+

∗ : H1(S,Σ;R)→ H1(S,Σ;R).

There is a natural choice of basis of H1(S,Σ;R), indexed by A, such that P̂+
∗ is given in

coordinates by Θ−1. This is the (backwards) Rauzy-Veech cocycle over the space of zippered

rectangles V̄C. We denote by P̂(n)
∗ = P̂+n

∗ the linear map on homology obtained from the
composition of this cocycle n times. This cocycle is not integrable with respect to the measure
m−1 . However, Zorich [Zor96] found an acceleration of this cocycle, called the Zorich cocycle,
which is integrable and thuse yields an Oseledets splitting of the homology space. More
specifically, there exist real numbers ν1 > ν2 > · · · > νk

m−1
(the Lyapunov spectrum) such

that for m−1 -almost every (π, λ, τ), there exists cycles c1, . . . , ck
m−1
∈ H1(S(π, λ, τ),Σ;R)

(called Zorich cycles) and a P̂+
∗ -invariant splitting of H1(S(π, λ, τ),Σ;R)

(39) H1(S(π, λ, τ),Σ;R) =

k
m−1⊕
i=1

Ei
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with Ei = span {ci}, such that for any non-zero c ∈ Ei

lim
n→∞

log ‖P̂(n)
∗ c‖
n

= νi.

The Zorich cocycle preserves a symplectic form, and therefore the Lyapunov spectrum is sym-
metric around zero, that is, if νi is in the Lyapunov spectrum, then so is −νi. Forni [For02]
proved that there are exactly g positive and g negative exponents, and Avila-Viana showed
[AV07] that each Oseledets subspace corresponding to a non-zero exponent has dimension
1, that is, the Lyapunov spectrum is of the form ν1 > ν2 > · · · > νg > 0 > νg+1 = −νg >
· · · > −ν1 = νg. The top Zorich cycle, c1 coincides the the Schwartzman asymptotic cycle for
the horizontal flow. There is a dual cocycle to the Rauzy-Veech cocycle acting on cohomol-
ogy, called the Kontsevich-Zorich cocycle, and dual cocycles c∗1, . . . , c

∗
2g ∈ H1(S(π, λ, τ),Σ;R)

called Forni cocycles with the same properties. In addition, c∗1 = [iY ω] ∈ H1(S(π, λ, τ),Σ;R),
where ω is the area form on S(π, λ, τ) and Y is the vector field generating the vertical folia-
tion.

To make the connection between the cocycles above with their Oseledets decomposition
and the invariants of our algebras, we need to define the trace space of an AF algebra.

Definition 12.39. A trace on a ∗-algebra A is a linear functional τ : A → C satisfying
τ(ab) = τ(ba), for all a, b in A. A trace τ is called positive if τ(a∗a) ≥ 0, for all a in A.
We let Tr(A) denote the set of all traces on A, which is a complex vector space.

Remark 12.40. Some remarks:

(1) It is a fairly easy exercise to see that, for any n ≥ 1, the ∗-algebra of n×n-matrices,
Mn(C), has a trace which simply sums the diagonal entries and this is unique, up to
a scaling factor. It follows that the set of traces on any finite-dimensional C∗-algebra,⊕K

k=1 Mnk(C), is in bijection with RK.
If we consider an inductive system of such ∗-algebras as we have in Proposition

8.6,
Am,m ⊆ Am,m+1 ⊆ · · ·

with inclusions described by matrices Em+1, Em+2, . . ., then the set of traces on the
union can be identified with

lim
←

RVm
ETm+1←− RVm+1

ETm+2←− · · ·

It is important to note that these traces are defined only on the union of the finite-
dimensional algebras; most do not extend to the AF-algebra which is the completion.
On the other hand, it is well-known that the inclusion of the locally finite-dimensional
algebra which is the union in the AF-algebra which is its completion induces an order
isomorphism on K-theory.

In our situation, where we construct these algebras from groupoids, the traces cor-
respond to finitely additive measures defined on clopen transversals to the equivalence
relation T+(YB). This idea first appeared in the work of Bowen and Franks [BF77].
This relates some of our point of view with that of Bufetov’s [Buf14, Buf13].

(2) The trace space Tr(A) serves as a dual to K0(A): if p and q are projections in A
which determine the same K-theory class, and if τ is any trace, then τ(p) = τ(q) is
a consequence of the trace property. Hence, there is pairing Tr(A)×K0(A)→ C.
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Note that by Remark 12.18 (i), we obtain isomorphisms
(40)
iπ,λ,τ : K0(A+

Bπ,λ,π)→ H1(S(π, λ, τ),Σ;Z) and i∗π,λ,τ : H1(S(π, λ, τ),Σ;C)→ Tr(A+
Bπ,λ,τ ).

Through these identifications, and through the identifications of K0(A+
Bπ,λ,τ ) with

K0(C∗(F+
Bπ,λ,τ ,≤r,s)) from Theorem 12.38, the map P̂+ also induces isomorphisms which we

also denote as

P̂+
∗ : K0(A+

Bπ,λ,π) −→ K0(A+
σ(Bπ,λ,π)) and

P̂+
∗ : K0(C∗(F+

Bπ,λ,τ ,≤r,s))→ K0(C∗(F+
σ(Bπ,λ,τ ,≤r,s)))

(41)

and a maps at the level of traces. Moreover, the maps are order-preserving.

Theorem 12.41. For m−C -almost every (π, λ, τ), the order structure on K0(C∗λ(T+(XBπ,λ,τ )))

and K0(C∗(F+
Bπ,λ,τ ,≤r,s)) are determined by the first Zorich cocycle, that is, the Schwartzman

asymptotic cycle, and the maps (41) are order-preserving.

Proof. Let (π, λ, τ) be an Oseledets-regular point for the Zorich cocycle, that is a triple so
that an Oseledets decomposition of the form (39) holds. We define the order structure on
K0(C∗λ(T+(XBπ,λ,τ ))); the structure K0(C∗(F+

Bπ,λ,τ ,≤r,s)) is obtained from the order-preserving

isomorphism in Theorem 10.5.
Define the positive cone

K+
0 (C∗λ(T+(XBπ,λ,τ ))) =

{
[p] ∈ K0(C∗λ(T+(XBπ,λ,τ ))) : i∗π,λ,τc

∗
1([p]) = c∗1(iπ,λ,τ ([p])) > 0

}
,

where c∗1 is the dual of the Schwartzman cycle. By the invariance of the Oseledets decom-

position, P̂+
∗ is an order-preserving isomorphism. �

We can now argue that there is some appeal to our approach to translation flows on flat
surfaces. It goes like this: the Schwartzman asymptotic cycle is defined for flows on compact
manifolds or those whose homology spaces are finite dimensional. If we were to pick at
random, the random bi-infinite Bratteli B diagram (of finite rank, supposing for a moment
that there is a unique normalized state on B in the sense of Theorem 12.36) and random
order ≤r,s with a choice of normalized state ν will yield a flat surface of infinite genus SB,≤r,s .
If we were to try to define the asymptotic cycle using (38) as a definition, then it is not
necessarily clear it is well-defined as the topology of H1(S;R) is not automatically defined.
However, what Theorem 12.41 suggests is that what is relevant to capture the asymptotic
topological information is the order structure of K0(C∗(F+

B,≤r,s)) especially when its inclusion

into K0(C∗λ(T+(XBπ,λ,τ ))) yields an order isomorphism, and when the shift induces an order
isomorphism K0(C∗λ(T+(XBπ,λ,τ )))→ K0(C∗λ(T+(Xσ(Bπ,λ,τ )))).
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