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1. Introduction and Statement of the Main Results

Our interest in this paper is in Smale spaces and their associated C∗-algebras. For

more detailed information, we refer the reader to [7,8,11]. We will also give explicit de-

scriptions of the basic ideas in the next section, but for the moment, a Smale space is a

homeomorphism, φ, of a compact metric space, (X, d), having specific properties. Roughly,

these mean that X has local canonical coordinates of contracting and expanding directions

for φ. We will also assume throughout that φ is mixing [7,8].

These systems include Anosov diffeomorphisms (the smooth case), shifts of finite type

(the zero dimensional case) and other interesting examples from the theory of self-similar

tilings [3].

We consider the notions of stable and unstable equivalence; x and y are stably (un-

stably) equivalent if d (φn(x), φn(y)) tends to zero as n tends to plus (minus, respectively)

infinity. We let Gs and Gu denote these equivalence relations, i.e. principal groupoids.

They may be topologized and given Haar systems so we may consider their C∗-algebras:

S = C∗(Gs), U = C∗(Gu).

In the case of a shift of finite type, these are the AF -algebras considered by Krieger [4].

In general, φ induces automorphisms of Gs and Gu and we may form groupoids

Gs >/ Z and Gu >/ Z, whose C∗-algebras are ∗-isomorphic to the crossed products

C∗(Gs) >/ Z, C∗(Gu) >/ Z.

These are denoted Rs and Ru, respectively and we refer to them as the Ruelle algebras.

Again for a shift of finite type, these are the (stabilized) Cuntz-Krieger algebras.

Here, we are interested in analyzing the structure of the C∗-algebras: S, U , Rs, Ru.

We state the main results as follows.

Theorem 1.1. The groupoids Gs and Gu are amenable in the sense of Renault.

Hence, we have
S = C∗(Gs) ∼= C∗red(Gs),

U = C∗(Gu) ∼= C∗red(Gu),
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and these are amenable C∗-algebras.

Theorem 1.2. The groupoids Gs >/ Z and Gu >/ Z are amenable in the sense of

Renault. Hence, we have

Rs = C∗(Gx >/ Z) ∼= C∗red(Gs >/ Z)

Ru = C∗(Gu >/ Z) ∼= C∗red(Gu >/ Z)

and these are amenable C∗-algebras.

Theorem 1.3. The C∗-algebras S and U are simple.

Theorem 1.4. The C∗-algebras Rs and Ru are simple.

Theorem 1.5. The C∗-algebras Rs and Ru are purely infinite.

The main technique is to use ideas and results of Muhly, Renault and Williams (build-

ing on earlier work of Rieffel) regarding equivalence of groupoids and strong Morita equiv-

alence of their C∗-algebras. A common set-up is to have a groupoid G with an abstract

transversal T ⊆ G◦ (the unit space of G). In our situation, in considering Gs, we show

how we can use any single unstable equivalence class as a transversal. The subtlety here

lies in the fact that such a set is dense in X and its relative topology is rather unwhole-

some. It does, however, possess a nice topology in a very natural way. We show how the

Muhly-Renault-Williams machine may be adapted to such a situation. Reducing Gs on

such a transversal yields an r-discrete groupoid, because of the transverse nature of the

local stable and unstable co-ordinates. It is then much simpler to analyze these groupoids

and translate the results back to the original algebras using the strong Morita equivalence.

2. Smale Spaces

Here, we give the basic definitions of a Smale space along with the constructions of

the groupoids associated with them. This is taken more or less directly from [10], but we

present it for completeness.
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Let (X, d) be a compact metric space and let φ be a homeomorphism of X. We

will assume throughout (X, φ) is topologically mixing [7]. (This is not part of the usual

definition of Smale space.) We assume that we have constants

ε0 > 0, 0 < λ0 < 1

and a continuous map

(x, y) ∈ {(x, y) ∈ X ×X | d(x, y) ≤ 2ε0} → [x, y] ∈ X

satisfying axioms as in [7,8,10,11].

For 0 < ε ≤ ε0, we define

V s(x, ε) = {y ∈ X | d(x, y) < ε, [x, y] = y}

V u(x, ε) = {y ∈ X | d(x, y) < ε, [y, x] = y}

so we have (as an axiom)

d (φ(y), φ(z)) ≤ λ0 d(y, z), y, z ∈ V s(x, ε)

d
(

φ−1(y), φ−1(z)
)

≤ λ0 d(y, z), y, z ∈ V u(x, ε).

That is, φ contracts on V s(x, ε) while φ−1 contracts on V u(x, ε). The axioms imply that the

map sending (y, z) in V u(x, ε)×V s(x, ε) to [y, z] is a homeomorphism onto a neighbourhood

of x. Such a neighbourhood is called a rectangle.

Next, we define, for any x in X,

V s(x) =
⋃

n≥0

φ−n (V s (φn(x), ε))

V u(x) =
⋃

n≥0

φn (

V u (

φ−n(x), ε
))

,

both being independent of ε > 0. Each set φ−n (V s (φn(x), ε)) is given the relative topology

of X, while V s(x) is given the inductive limit topology. In this topology it is a locally

compact, non-compact Hausdorff space. On the other hand, if we assume that (X,φ) is

mixing, then V s(x) is dense in X [10]. We treat V u(x) in an analogous way.
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We recall from [7,8],

G1
s = {(x, y) ∈ X ×X | y ∈ V s(x, ε0)}

G1
u = {(x, y) ∈ X ×X | y ∈ V u(x, ε0)}

Gn
s = (φ× φ)−n+1 (G1

s), n ≥ 2

Gn
u = (φ× φ)n−1 (G1

u), n ≥ 2

Gs =
⋃

n≥1

Gn
s

Gu =
⋃

n≥1

Gn
u.

Then Gs and Gu are equivalence relations on X, called stable and unstable equivalence.

Each Gn
s , Gn

u are given the relative topologies of X×X and Gs, Gu are given the inductive

limit topologies. Notice that the Gs-equivalence class of x in X is simply V s(x). Finally,

we let
Gn

a = Gn
s ∩Gn

u, n ≥ 1

Ga =
⋃

n≥1

Gn
a .

Again, each Gn
a is given the relative topology of X while Ga is given the inductive limit

topology. Ga is also an equivalence relation on X. For each x in X, we denote its Ga-

equivalence class by V a(x); it is countable and dense in X if (X,φ) is mixing [10].

We regard Gs, Gu, Ga as principal groupoids. With their topologies they are locally

compact and Hausdorff. Moreover, Ga is r-discrete and counting measure is a Haar system.

Haar systems

{µx
s | x ∈ X} , {µx

u | x ∈ X}

for Gs and Gu, respectively, are described in [7,8]. We let S(X,φ), U(X, φ) and A(X, φ)

denote the C∗-algebras of Gs, Gu and Ga, respectively.

The map φ × φ acts as automorphisms of Gs, Gu and Ga (scaling the Haar systems
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in the first two). We form the semi-direct products as follows:

Gs >/ Z = {(x, n, y) | n ∈ Z, (φn(x), y) ∈ Gs}

Gu >/ Z = {(x, n, y) | n ∈ Z, (φn(x), y) ∈ Gu}

Ga >/ Z = {(x, n, y) | n ∈ Z, (φn(x), y) ∈ Ga}

with groupoid operations

(x, n, y) · (x′, n′, y′) = (x, n + n′, y′) if y = x′

(x, n, y)−1 = (y, −n, x).

Observe that Gs ⊆ Gs >/ Z, Gu ⊆ Gu >/ Z, Ga ⊆ Ga >/ Z by identifying (x, y) in Gs

with (x, 0, y) in Gs >/ Z, for example.

Notice that Go
s = (Gs >/ Z)o, Go

u = (Gu >/ Z)o, Go
a = (Ga >/ Z)o, with the

identifications above.

Finally, the map, η, sending (x, y, n) in Gs×Z to (x, n, φn(y)) in Gs >/ Z is bijective,

and we transfer the product topology from Gs × Z over via this map.

For any x in X, (x, 0, x) is in the unit space (Gs >/ Z)o and

r−1 {(x, 0, x)} = {(x, n, y) ∈ Gs >/ Z}

=
⋃

n∈Z
η ({(x, y) ∈ Gs} × {n}) .

Using this decomposition, we define a Haar system λx
s on Gs >/ Z by setting

λx
s | {(x, y) | y ∈ V s(x)} × {n} = µx

s ◦ η−1.

We treat Gu >/ Z and Ga >/ Z similarly.

The C∗-algebras C∗(Gs >/ Z), C∗(Gu >/ Z) and C∗(Ga >/ Z) are denoted Rs, Ru

and Ra and are called the Ruelle algebras.

Another description of these algebras is to consider the automorphisms αs, αu and

αa of S, U and A, respectively, which are induced by the automorphisms φ× φ of Gs, Gu
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and Ga and take the C∗-crossed products by Z. That is,

Rs ∼= S >/ Z

Ru ∼= U >/ Z

Ra ∼= A >/ Z.

3. Generalized Transversals

In this section, we present a general result on groupoids. The idea is to show how the

techniques of Muhly, Renault and Williams [6] on equivalence of groupoids may be applied

to certain situations involving “generalized transversals”. Let us begin by giving a simple

example to motivate our result.

Let θ be a fixed irrational number between 0 and 1. Let G be the groupoid of the

Kronecker flow on the two-torus, T2, determined by θ. That is,

G = T2 × R

(w1, w2, s) · (z1, z2, t) = (w1, w2, s + t)

if z1 = e2πis w1 and z2 = e2πisθ w2.

An example of an “abstract transversal” in this situation is

T = T× {1} × {0} ⊆ G0.

The reduction of G on T is:

GT
T = {g ∈ G | r(g), s(g) ∈ T}

and can, in this case, be identified with

T× Z

(w, k) · (z, `) = (w, k + `) if z = e2πikθ w,
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in a straightforward way.

Our point is that there is another, less obvious, choice. Pick any irrational α, between

0 and 1 and unequal to θ. Let

T =
{(

e2πit, e2πiαt, 0
)

∈ G0 | t ∈ R
}

which is a line, winding densely in T2 ∼= G0 and transverse to each G-orbit. This T can

also be used as a transversal to G; of course, its relative topology in G is rather horrid.

Instead we want to use its natural topology as a line. In this case

GT
T
∼= R× Z× Z

(x, k, `) · (y,m, n) = (x, k + m, ` + n)

if y = x + k + `θ.

The difficulty lies in showing that this “re-topologizing” of the transversal can be

incorporated into the equivalence of Muhly, et al.

¿From now on, we assume that G is a second countable locally compact, Hausdorff

groupoid with Haar system. Let T be a locally compact, second countable, Hausdorff space

and let f : T → G0 be a continuous, injective map.

We say that open sets U ⊆ G and V r ⊆ T satisfy (Ar) if, for all x in U , there is a

unique y in U with s(x) = s(y) and r(y) ∈ f(V r).

We note that if (U, V r) satisfy (Ar) then so does the pair
(

U, f−1 r(U) ∩ V r
)

. We

will say that open sets U ⊆ G, V s ⊆ T satisfy (As) if (U−1, V s) satisfies (Ar).

Finally, we say that open sets U ⊆ G, V r, V s ⊆ T satisfy (A) if

(i) for all t in V r, there is a unique y in U with r(y) = f(t) and s(y) in f(V s)

and

(ii) for all t in V s, there is a unique y in U with s(y) = f(t) and r(y) in f(V r).

On the groupoid G, space T and continuous injective map f : T → G0, we consider

the following conditions.

T1. For any x in G with r(x) in f(T ), and open sets

x ∈ U0 ⊆ G, f−1r(x) ∈ V0 ⊆ T,
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we may find open sets U ⊆ G, V ⊆ T such that x ∈ U ⊆ U0, f−1r(x) ∈ V ⊆ V0 and

(U, V ) satisfy (Ar).

T1′. For any x in G with s(x) in f(T ), and open sets

x ∈ U0 ⊆ G, f−1s(x) ∈ V0 ⊆ T,

we may find open sets U ⊆ G, V ⊆ T such that x ∈ U ⊆ U0, f−1s(x) ∈ V ⊆ V0 and

(U, V ) satisfy (As).

T2. For any x in G with r(x) and s(x) in f(T ) and open sets

x ∈ U0 ⊆ G

f−1r(x) ∈ V r
0 ⊆ T

f−1s(x) ∈ V s
0 ⊆ T,

there are open sets
x ∈ U ⊆ U0

f−1r(x) ∈ V r ⊆ V r
0

f−1s(x) ∈ V s ⊆ V s
0

such that (U, V r, V s) satisfy (A).

T3. For any x in G, there is y in G with r(y) = r(x), s(y) ∈ f(T ).

We let
GT = {x ∈ G | s(x) ∈ f(T )}

GT
T = {x ∈ G | r(x), s(x) ∈ f(T )} .

(Note that these are Gf(T ) and Gf(T )
f(T ), in the notation of [6].)

Lemma 3.1. Suppose G, T , f satisfy T1. Then

(i) G, T , f satisfy T1′.

(ii) G, T , f satisfy T2.

(iii) the collection of sets

U ∩ s−1 f(V s) ∩ r−1 f(V r),
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where U ⊆ G, V s, V r ⊆ T are open, forms a base for a topology on GT
T .

(iv) the collection of sets

U ∩ s−1 f(V s),

where U ⊆ G, V s ⊆ T are open, forms a base for a topology on GT .

Proof. The proof of (i) is straightforward and we omit it. As for (ii), consider x, U0,

V r
0 , V s

0 as in condition T2. We apply T1 and T1′ to obtain open sets U1, U2 ⊆ U0 with

x ∈ U1, x ∈ U2, and open sets V r
1 , V s

1 in T with f−1r(x) ∈ V r
1 ⊆ V r

0 , f−1s(x) ∈ V s
1 ⊆ V s

0 ,

such that (U1, V r
1 ) satisfy (Ar) while (U2, V s

1 ) satisfy (As). Writing x = r(x)x, we may

find open sets U3 and U4 in G, r(x) ∈ U3, x ∈ U4 and U3U4 ⊆ U1 ∩ U2. We once again

apply T1 and T1′ to r(x) ∈ U3, f−1r(x) ∈ V r
1 and x ∈ U4, f−1s(x) ∈ V s

1 to obtain

open sets U5, U6 in G with r(x) ∈ U5 ⊆ U3, x ∈ U6 ⊆ U4, and open sets V r
2 , V s

2 in

T with f−1r(x) ∈ V r
2 ⊆ V r

1 , f−1s(x) ∈ V s
2 ⊆ V s

1 , such that (U5, V r
2 ) satisfy (Ar) and

(U6, V s
2 ) satisfy (As). We let U = U5U6, V r = f−1 r(U) ∩ V r

2 and V s = f−1 s(U) ∩ V s
2 .

Let us prove (i) holds in (A). Suppose t is in V r. Then f(t) = r(yz), for some y in U5,

z in U6. By (As), there is z′ in U6 with r(z′) = r(z) and s(z′) in f(V s
2 ). Then yz′ is

in U , r(yz′) = f(t) and s(yz′) = s(z′) ∈ f(V s). As for the uniqueness, suppose z1 and

z2 are both in U with r(z1) = r(z2) = f(t) and s(z1), s(z2) are both in f(V s). Then

z1, z2 ∈ U = U5U6 ⊆ U3U4 ⊆ U1 ∩ U2 ⊆ U2, r(z1) = r(z2), and s(z1), s(z2) are in

f(V s) ⊆ f(V s
1 ). By the uniqueness part of condition (As), we have z1 = z2. The proof of

(ii) of (A) is similar. We omit the details.

Parts (iii) and (iv) are routine and we omit the details.

Definition 3.2. We let H and Ω denote GT
T and GT , respectively, with the topologies

given in the Lemma.

It is immediate that H and Ω are second countable. Also observe that, a sequence

{xn} converges to x in H if and only if

lim xn = x in G

lim f−1r(xn) = f−1r(x)

and lim f−1s(xn) = f−1s(x), in T.
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Similarly, {xn} converges to x in Ω if and only if

lim xn = x in G

lim f−1s(xn) = f−1s(x) in T.

The following is an immediate consequence of the definitions.

Lemma 3.3. Suppose G, T , f satisfy T1. The collection of sets

U ∩ r−1f(V r) ∩ s−1f(V s)

where U , V r, V s are open and satisfy (A) forms a base for the topology of H.

The collection of sets

U ∩ s−1 f(V s)

where U ⊆ G, V s ⊆ T are open and satisfy (As), forms a base for the topology of Ω.

Our aim is to show that conditions T1 and T3 imply that H is a locally compact,

Hausdorff r-discrete groupoid with counting measure as a Haar system and that Ω is a

G-H equivalence bimodule in the sense of [6].

The following is an immediate consequence of the definitions and we omit the proof.

Lemma 3.4. Suppose (U, V r, V s) are open and satisfy (A) Let

N = U ∩ r−1f(V r) ∩ s−1f(V s).

Then
r : N −→ f(V r)

s : N −→ f(V s)

are bijective.

Lemma 3.5. Let t be in T and x = f(t). Suppose (U, V r, V s) are open, satisfy (A)

and x ∈ U , f−1r(x) = f−1s(x) = t ∈ V r ∩ V s. Then there is V ⊆ V r ∩ V s, t ∈ V and V

open such that

U ∩ r−1f(V ) ∩ s−1f(V ) ⊆ G0.
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Proof. By definition, U ∩ G0 is open in G0. As f is continuous, we may find V , t ∈ V ⊆

V r ∩ V s with f(V ) ⊆ U ∩G0. Now suppose y is in U ∩ r−1f(V ) ∩ s−1f(V ). So s(y) is in

f(V ) and f(V ) ⊆ U , so s(y) is also in U . We have:

y ∈ U, r(y) ∈ f(V ) ⊆ f(V r)

s(y) ∈ f(V ) ⊆ f(V s)

s(y) ∈ U, r (s(y)) = s(y) ∈ f(V ) ⊆ f(V r)

s (s(y)) = s(y) ∈ f(V ) ⊆ f(V s)

and s(y) = s (s(y)) .

Hence by (A) (ii), y = s(y) by uniqueness. This implies y is in G0.

Theorem 3.6. H is a second countable, locally compact, Hausdorff, r-discrete

groupoid, with counting measure as Haar system.

Proof. That H = GT
T is a groupoid, in the purely algebraic sense, is immediate. It is also

immediate from the lemma and the facts that both T and G are second countable, that H

is also. It is straightforward to check that the groupoid operations on H are continuous

and we omit the details.

Lemma 3.5 shows that H0 is open in H. The map f : T −→ H0 is clearly bijective

and it is easy to check that it is a homeomorphism.

We will now prove that r : H −→ H0 is a local homeomorphism; the remaining

conclusions follow from this.

First, by 3.3, we have a base for the topology of H consisting of sets

N = U ∩ r−1f(V r) ∩ s−1f(V s)

where U , V r, V s are open and satisfy (A). For such a set r(N) = f(V r), which is open

in H0, as f is a homeomorphism from T to H0. Therefore, r : H −→ H0 is open. By

3.4, r is bijective, and is continuous because the groupoid operations are. Therefore, r is

a homeomorphism from N to f(V r). This completes the proof.
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Let us now bring in Ω = GT , with the topology as given earlier.

Theorem 3.7. Suppose G, T , f satisfy T1 and T3. Then Ω is a G-H equivalence

bimodule in the sense of [6].

Proof. We must show:

(i) Ω is a left principal G-space: i.e. the left action of G is free and the map sending

(x, y) in G ∗ Ω to (xy, y) in Ω× Ω is proper.

(ii) Ω is a right principal H-space.

(iii) the G and H-actions commute.

(iv) r : Ω/H −→ G0 is a homeomorphism.

(v) s : G\Ω −→ H0 is a homeomorphism.

Notice that condition (iii) and the freeness conditions of (i) and (ii) do not involve

any topology. Their proofs are exactly as in [6].

We will make use of the following characterization of proper maps, which is a relative

exercise in topology. Let X and Y be second countable Hausdorff spaces and let π : X → Y

be a continuous map. Then π is proper if and only if, for every sequence {xn}∞1 in X such

that {π(xn)}∞n=1 is convergent in Y , {xn}∞1 has a convergent subsequence in X.

Suppose then that {(xn, yn)}∞1 is a sequence in G ∗ Ω (i.e. s(xn) = r(yn), for all n)

such that {(xnyn, yn)}∞1 has limit (z, y) in Ω× Ω. Thus,

lim xnyn = z, in G,

lim yn = y, in G

and
lim f−1s(xnyn) = f−1s(z)

lim f−1s(yn) = f−1s(y)

in T . Also s(xnyn) = s(yn) and hence s(z) = s(y). Immediately, {yn} converges to y in Ω

and
lim xn = lim xnyn y−1

n

= z · y−1, in G.
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We conclude that

lim(xn, yn) = (zy−1, y)

in G ∗ Ω.

We move on to the map

(x, y) ∈ Ω ∗H −→ (x, xy) ∈ Ω× Ω.

Suppose {(xn, yn)}∞ is in Ω∗H (i.e. s(xn) = r(yn) ∈ f(T ), s(yn) ∈ f(T )) and (xn, xnyn)

converges to (x, z) in Ω× Ω. This means that

lim xn = x in G,

lim xnyn = z in G,

lim f−1s(xn) = f−1s(x) in T,

lim f−1s(xnyn) = f−1s(z) in T.

Then we have
lim yn = lim x−1

n xnyn

= x−1z in G

and
lim f−1s(yn) = lim f−1s(xnyn)

= f−1s(z)

= f−1s(x−1z) in T,

lim f−1r(yn) = lim f−1s(xn)

= f−1s(x)

= f−1r(x−1z) in T.

Hence yn converges to x−1z in H and (xn, yn) converges to (x, x−1z) in Ω ∗H. Thus, the

map is proper.

To verify (iv) and (v), it suffices to show that r : Ω → G0 and s : Ω → H0 are

continuous and open. In fact, since f : T → H0 is a homeomorphism, we will discuss

14



f−1 ◦ s : Ω → T , rather than s. Suppose {xn}∞1 is a sequence converging to x in Ω. Then,

we have
lim xn = x in G

lim f−1s(xn) = f−1 s(x) in T.

It follows at once that f−1s is continuous and r is continuous on G and so from Ω to G0.

As for openness, it suffices to consider a set U ∩ s−1 f(V s), U ⊆ G open, V s ⊆ T open and

(U, V s) satisfy (As). It follows from (As) that r
(

U ∩ s−1 f(V s)
)

= r(U), which is open

since r : G → G0 is open [9]. Also, we have

s
(

U ∩ s−1 f(V s)
)

= s(U) ∩ f(V s)

and

f−1 s
(

U ∩ s−1 f(V s)
)

= f−1 s(U) ∩ V s

which is open in T since s : G → G0 is open and f : T → G0 is continuous. This completes

the proof.

4. Reduction of Stable and Unstable Equivalence

The aim of this section is to show that the results of Section 3 may be applied to the

groupoids of Section 2. Specifically, we consider G = Gs and G = Gs >/ Z as in Section 2

and, for any x0 in X, the transversal T = V u(x0). The map f is just the inclusion of T in

X, regarded as the unit space of G. More accurately, in the case G = Gs

f(x) = (x, x), x ∈ V u(x0)

and in the case G = Gs >/ Z,

f(x) = (x, 0, x), x ∈ V u(x0).

Let us also note here that the results immediately apply to G = Gu, G = Gu >/ Z and

T = V s(x0), by simply considering the Smale space (X, d, φ−1) and noting, for example,

Gs(X, φ−1) = Gu(X, φ).
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It is worth stressing that the topology on V u(x0) is that given in Section 2 and not

the relative topology of X.

Lemma 4.1.

(a) Let x0 be in X. Define f : V u(x0) → G0 by f(x) = (x, x), x ∈ V u(x0). Then f is

continuous and injective.

(b) Let x be in X, V ⊆ V u(x, ε0) W1,W2 ⊆ V s(x, ε0) open in the relative topologies of

V u(x) and V s(x), respectively, and x in W1. Let

U = {(x′, y′) | [x′, x] = [y′, x] ∈ V, [x, x′] ∈ W1, [x, y′] ∈ W2} .

Then U is an open subset of Gs and (U, V ) satisfy (Ar).

Proof. The proof of (a) is clear. For (b), it is easy to check that U is in Gs and is open.

We must check (Ar). Suppose (x′, y′) is in U . Then it is easy to verify that ([x′, x], y′)

is in U , r([x′, x], y′) = f([x′, x]) is in f(V ) and s([x′, x], y′) = s(x′, y′) = (y′, y′). As for

uniqueness, suppose (x′′, y′′) is in U , r(x′′, y′′) is in f(V ) and s(x′′, y′′) = s(x′, y′). Then

we see at once that y′′ = y′. As (x′′, y′′) is in U , and x′′ ∈ V ,

x′′ = [x′′, x] = [y′′, x] = [y′, x] = [x′, x].

This completes the proof.

Theorem 4.2. Let (X, d, φ) be a mixing Smale space and let x0 be in X. Then

G = Gs, T = V u(x0) and f as above satisfy T1 and T3.

Proof. Let us first suppose that (x, y) is in G0
s, with x in V u(x0). Suppose also that we

have open sets (x, y) ∈ U0 ⊆ Gs, x ∈ V0 ⊆ V u(x0). First, we may find an open set x ∈

V1 ⊆ V u(x, ε0) with V1 ⊆ V0. Next, since the rectangles in X form a base for its topology,

we may find open sets x ∈ V2 ⊆ V u(x, ε0), x ∈ W2 ⊆ V s(x, ε0), x ∈ V3 ⊆ V u(x, ε0),

y ∈ W3 ⊆ V s(x, ε0) such that [V2,W2] × [V3,W3] contains (x, y) and is contained in U0.

Let V = V1 ∩ V2 ∩ V3 and

U = {(x′, y′) | [x′, x] = [y′, x] ∈ V, [x, x′] ∈ W2, [x, y′] ∈ W3} .
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Then (x, y) ∈ U ⊆ U0, x ∈ V ⊆ V0 and (U, V ) satisfies (Ar) by 4.1.

For a general (x, y) in Gs, we have (x, y) is in Gn
s , for some n. We may apply the

above arguments to (φn(x), φn(y)), (φ×φ)n(U0) and φn(V0) to obtain the result. We omit

the details.

It remains to verify T3. Let x be any point in X. As V a(x) is dense in X, we may

find y in V a(x) with d(x0, y) < ε0. Then (x, [y, x0]) is in Gs, r (x, [y, x0]) = (x, x) and

s (x, [y, x0] = [y, x0]) is in V u(x0). Condition T3 follows.

Theorem 4.3. Let (X, d, φ) be a mixing Smale space and let x0 be any point of X.

Then G = Gs >/ Z, T = V u(x0), f as before satisfy the conditions T1 and T3.

Proof. Property T3 follows easily from the fact that it holds for Gs and Gs ⊆ Gs >/ Z

with G0
s = Gs >/ Z0.

As for T1, suppose (x, n, y) is in Gs >/ Z and U0, V0 are as in T1. Without loss of

generality we may assume that

U0 ⊆ {(x′, n, y′) | (φn(x′), y′) ∈ Gs} .

We may apply T1 for Gs from 4.2 to (φn(x), y) ∈ Gs,

Ũ0 = {(φn(x′), y′) | (x′, n, y′) ∈ U0}

Ṽ0 = φn(V0)

to obtain Ũ , Ṽ satisfying (Ar). Now let

U =
{

(x′, n, y′) | (φn(x′), y′) ∈ Ũ
}

V = φ−n(Ṽ ).

It is easy to check (U, V ) satisfies (Ar).

Definition 4.4. For x0 in X, we let Gs(x0) denote the groupoid H of 4.2 in the case

G = Gs, T = V u(x0). We let Gs(x0) >/ Z denote the groupoid H in the case

G = Gs >/ Z, T = V u(x0).
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Similarly, we define Gu(x0) is H in the case G = Gu and T = V s(x0) and Gu(x0) >/ Z

is H in the case G = Gu >/ Z and T = V s(x0).

It is worth noting that all of these groupoids are r-discrete; Gs(x0), Gu(x0) are also

principal. We may identify unit spaces: Gs(x0)0, Gs(x0) >/ Z0 with V u(x0). Note that

the Gs(x0)-equivalence class of x in V u(x0) is V a(x).

The notation Gs(x0) >/ Z may be somewhat misleading: this is the semi-direct prod-

uct groupoid only in the case V u(x0) contains a fixed-point of φ and hence is φ-invariant.

5. Proofs of the Main Results

We begin with Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We show that Gs is amenable in the sense of Renault. The case for

Gu is analogous.

We construct a sequence {fn} in Cc(Gs) such that fnf∗n converges to 1 uniformly on

compact subsets of Gs. (Note that the other condition of II.3.6 of [9] follows since the unit

space of Gs is compact.) Let ∆ denote the unit space of Gs. Let g in Cc(Gs) be chosen so

that g is non-negative and strictly positive on ∆. Then

gg∗(x, x) =
∫

y∈V s(x)
|g(x, y)|2 dµx

s (y)

> 0, for all x in X.

Let

f(x, y) = gg∗(x, x)−
1
2 g(x, y), (x, y) ∈ Gs.

Then f is in Cc(Gs) and

ff∗(x, x) = 1, for all x in X.

Define
fn = λ−

n
2 f ◦ (φ× φ)n

= λ
n
2 α−n

s (f)

18



(with log(λ) equal to the entropy of φ). Then

fnf∗n = λ
n
2 α−n

s (f) λ
n
2 α−n

s (f∗)

= λn α−n
s (ff∗)

= ff∗ ◦ (φ× φ)n.

Now for any compact set K ⊆ Gs and ε > 0, there is a δ > 0 so that ‖ff∗ − 1‖ < ε on the

set

∆δ = {(x, y) ∈ Gs | d(x, y) < δ} ,

because ff∗ is continuous and ff∗ | ∆ = 1. Choose N sufficiently large so that

(φ× φ)n(K) ⊆ ∆δ, for all n ≥ N.

Then n ≥ N implies ‖fnf∗n − 1‖ < ε on K. We have now shown the existence of {fn} as

desired.

The remainder of the proof follows from [2,9].

Proof of 1.2. The amenability of Gs >/ Z results from 1.1 and the amenability of Z as

follows. Define

c : Gs >/ Z −→ Z

by c(x, n, y) = n, (x, n, y) ∈ Gs >/ Z. The kernel of c is Gs and this situation satisfies the

hypotheses of Theorem 5.2.13 [2]. It follows that Gs >/ Z is amenable. Again, the rest

follows from [2,9].

Before beginning the proof of 1.3, we need a dynamical result and a result regarding

equivalence of amenable groupoids.

Lemma 5.1. Let x0 be in X and x be in V u(x0). Then V a(x) is dense in V u(x0),

in the new topology introduced in Section 2.

Proof. It suffices to show that V a(x)∩V u(x0, ε0) is dense in V u(x0, ε0). Let U be an open

set in V u(x0, ε0). Then [U, V s(x0, ε0)] is open in X. Since V a(x) is dense, we may find

y in V a(x) in this set. Let z = [y, x0], which is in U. Also y and z are stably equivalent,
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so z is stably equivalent to x. Also, z and x are both in V u(x0), hence they are unstably

equivalent. Thus z is in V a(x), as desired.

Proof of 1.3. First of all Gs is amenable. Let x0 be in X. By [6], Gs(x0) is equivalent to

Gs. Hence Gs(x0) is also amenable by Theorem 2.2.13 of [2].

Therefore the C∗-algebras

C∗(Gs) ∼= C∗red(Gs)

C∗ (Gs(x0)) ∼= C∗red (Gs(x0))

have the same ideal structure. Now Gs(x0) is an r-discrete groupoid and so its ideals are

described completely by II.4.6 of [9]. In particular, in view of the last lemma, C∗red (Gs(x0))

is simple. The conclusion follows.

Proof of 1.4. The argument begins in the same way as 1.3. We use the fact that Gs >/ Z

is equivalent to Gs(x0) >/ Z, which is an r-discrete groupoid. To apply II.4.6 of [9] to

show C∗red (Gs(x0) >/ Z) is simple, we must again see two things: Gs(x0) >/ Z is minimal

and essentially principal. Minimality is the same as for Gs(x0). In both cases, the unit

space is V u(x0) and, for a given x in V u(x0), its Gs(x0) >/ Z-equivalence class contains

its Gs(x0)-equivalence class which is V a(x), which is already dense in V u(x0). It remains

to show that Gs(x0) >/ Z is essentially principal; that is, the isotropy

r−1 {(x, 0, x)} ∩ s−1 {(x, 0, x)} = {(x, n, x) ∈ Gs(x0) >/ Z | n ∈ Z}

is trivial (equals {(x, 0, x)}) for a dense set of x in V u(x0). We will, in fact, show that the

set of x for which this is non-trivial is countable. As V u(x0) is locally compact and has

no isolated points, the conclusion follows.

This will be divided into three Lemmas.

Lemma 5.2. In a mixing Smale space (X, φ), the set of periodic points of period n,

Pern = {x | φn(x) = x}

is finite, for any positive integer n.
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Proof. As noted in [8,10,11], φ is expansive. That is, there is an ε1 > 0 so that for any

x, y in X, if d
(

φk(x), φk(y)
)

< ε1, for all k in Z, then x = y. We may then choose εn

sufficiently small so that d(x, y) < εn implies d
(

φi(x), φi(y)
)

< ε1, for 0 ≤ i < n. Then it

is easy to check that φn is also expansive, with constant εn. From this, it follows that the

distance between any two fixed-points of φn is at least εn. The result follows since X is

compact.

Lemma 5.3. Suppose φn(x) is in V s(x), for some x in X, n ≥ 1. Then

lim
k→+∞

φnk(x)

exists and is in Pern.

Proof. Suppose z is a limit point of
{

φnk(x) | k ≥ 1
}

. Then

φn(z) = φn
(

lim
i

φnki(x)
)

= lim
i

φnki (φn(x))

= lim
i

φnki (x)

= z

since x and φn(x) are stably equivalent.

Thus, the limit points of
{

φnk(x) | k ≥ 1
}

— which exist as X is compact — are

contained in Pern. We must show there is at most one such point.

Let Pern = {x1, · · · , xm} (by 5.2) and choose open neighbourhoods Ui of xi such that

φn(Ui)∩Uj = ∅ for i 6= j. If there are infinitely k ≥ 1 such that φnk(x) is not in the union

of the Ui, then this sequence has a limit point in X −U1−U2− · · ·−Um, by compactness.

This limit point is in Pern, but Pern is contained in U1 ∪ U2 ∪ · · · ∪ Um, a contradiction.

Thus, for some k0 ≥ 0, φnk(x) is in U1∪· · ·∪Um, for all k ≥ k0. But as φn(Ui)∩Uj = ∅,

for all i 6= j, φnk(x) must all be in the same Ui, for k ≥ k0. It follows then that

lim
h

φnk(x) = xi

as xi is the only point of Pern in Ui. This completes the proof.
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Lemma 5.4. The set of x in V u(x0) such that φn(x) is in V s(x), for some n 6= 0, is

countable.

Proof. It is clearly sufficient to prove this for a fixed n 6= 0.

Suppose x is such that φn(x) is in V s(x), x in V u(x0). Then by Lemma 5.3,

lim
k→+∞

φnk(x) = y,

for some y in Pern. It is then easy to see that x is in V s(y). So the set of x under

consideration is contained in

⋃

y∈Pern

V s(y) ∩ V u(x0).

Now, Pern is finite and we noted earlier that for any x0, y

V s(y) ∩ V u(x0)

is countable. This completes the proof.

We can now complete the proof of 1.4 outlined earlier. The groupoid Gs(x0) >/ Z is

minimal as described above. For a fixed unit (x, 0, x) with non-trivial isotropy, (x, n, x)

is in Gs(x0) >/ Z for some n 6= 0. This means φn(x) is in V s(x). The set of such x is

countable. Hence the points of non-trivial isotropy are countable and their compliment is

dense. That is, Gs(x0) >/ Z is essentially principal. The conclusion follows.

Toward the proof of 1.5, we begin with the following.

Proposition 5.5. Let A and B be simple separable C∗-algebras which are strongly

Morita equivalent. If A is purely infinite then so is B.

Proof. Let K denote the C∗-algebra of compact operators on the Hilbert space `2(N). For

each i, j in N, eij denotes the operator

(eij ξ)(k) =
{

ξ(j) if i = k

0 otherwise,

for ξ in `2(N), k in N.
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As A and B are separable and strongly Morita equivalent, we have

A⊗K ∼= B ⊗K.

First, we show A⊗K is purely infinite. Let C be any hereditary subalgebra of A⊗K.

Choose 1 ≥ x ≥ 0, x 6= 0, in C. For some i in N,

(1⊗ eii) x(1⊗ eii) = xii ⊗ eii

is non-zero, where 0 ≤ xii ≤ 1 is in A. As A is purely infinite, there is an infinite projection

p in xiiAxii. Then p⊗ eii is an infinite projection in C.

Next, as A ⊗ K ∼= B ⊗ K, the latter is purely infinite. Finally B is isomorphic to

B ⊗ e11 which is a hereditary subalgebra of B ⊗K, and hence purely infinite.

Definition 5.6 ([1]). A topological groupoid G is called locally contracting if, for

every non-empty open set U ⊆ G0, there is an open G-set ∆ such that

r(∆̄) ⊂
6=

s(∆) ⊆ U.

Also, compare this definition with that of a “local boundary” contained in [5].

Proposition 5.7. For any x0 in X, Gs(x0) >/ Z is locally contracting.

Proof. Suppose U ⊆ V u(x0) is non-empty and open. Then for some n ≥ 1,

φ−n(U) ∩ V u (

φ−n(x0), ε0
)

is non-empty and open in V u (φ−n(x0), ε0) . Consider

[

φ−n(U) ∩ V u (

φ−n(x0), ε0
)

, V s (

φ−n(x0), ε0
)]

which is open in X. Thus, it contains a periodic point for φ, say x1, with φN (x1) = x1,

for some N ≥ 1.

Find ε1 > 0 such that

[

V u(x1, ε1), φ−n(x0)
]

⊆ φ−n(U) ∩ V u (

φ−n(x0), ε0
)

.
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As V u(x1, ε1) is not discrete, we may find m ≥ 1 such that

φ−mN (V u(x1, ε1)) ⊆ V u (

x1, ε1λ−mN)

⊆
6=

V u(x1, ε1).

For each y in V u(x1, ε1), φ−mN (y) is also in the same set and
[

y, φ−n(x0)
]

∈ V s(y)

[

y, φ−n(x0)
]

∈ V u (

φ−n(x0), ε0
)

[

φ−mN (y), φ−n(x0)
]

∈ V s (

φ−mN (y)
)

[

φ−mN (y), φ−n(x0)
]

∈ V u (

φ−n(x0), ε0
)

.

Let

∆ =
{

(

φn [

φ−mN (y), φ−n(x0)
]

, mN, φn [

y, φ−n(x0)
])

∣

∣

∣ y ∈ V u(x1, ε1)
}

.

It is easy to check that ∆ ⊆ Gs(x0) >/ Z and is a Gs(x0) >/ Z-set. Moreover,

r(∆̄) = φn [

φ−mN (V u(x1, ε1)) , φ−n(x0)
]

s(∆) = φn [

V u(x1, ε1), φ−n(x0)
]

and the desired conclusion follows.

The proof of 1.5 follows immediately from 5.5, 5.7, Proposition 2.4 of [1] and the fact

that Gs(x0) >/ Z is essentially principal, as shown in the proof of 1.4.
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