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Abstract

We consider a mixing Smale space, the relations of stable and un-
stable equivalence on such a space and the C∗-algebras which are con-
structed from them. In general, these associations are not functorial.
However, we show that, if one restricts to the class of s-resolving, finite-
to-one factor maps, then the construction of the stable C∗-algebra is
contravariant, while that of the unstable C∗-algebra is covariant. We
also discuss the constructions of these C∗-algebras for Smale spaces
which are not mixing.

1 Introduction and notation

There are several papers [Rue, Put1, Put2, PS] discussing the construction
of various C∗-algebras from certain hyperbolic dynamical systems. More
specifically, one begins with a mixing Smale, (X, d, φ). This means that
(X, d) is a compact metric space and φ is a homeomorphism of X possessing
canonical coordinates of contracting and expanding directions. We refer to
[Put1] for the definitions. These arise as the non-wandering set for Smale’s
Axiom A systems. We will note here that the key item is a map [, ], which
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is defined on a pair x, y in X such that d(x, y) ≤ εX , where εX is some
fixed positive constant. The idea is that [x, y] is where the local stable set
(i.e. contracting direction) of x meets the local unstable set (i.e. expanding
direction) of y. From the bracket, the local stable and unstable sets of x are
given by

V s(x, ε) = {y | d(x, y) < ε, [y, x] = x}
V u(x, ε) = {y | d(x, y) < ε, [x, y] = x},

for any ε ≤ εX . The global stable and unstable sets of x are given by

V s(x) = ∪∞n=0φ
−n(V s(φn(x), ε))

V u(x) = ∪∞n=0φ
n(V u(φ−n(x), ε)).

We consider the principal groupoids [Ren] of stable and unstable equiva-
lence

Gs(X, φ) = {(x, y) | y ∈ V s(x)}
Gu(X, φ) = {(x, y) | y ∈ V u(x)},

respectively. These are locally compact Hausdorff groupoids with Haar sys-
tems and we may build their groupoid C∗-algebras, which are denoted S(X, φ)
and U(X, φ) respectively [Put1].

One property which has not been considered is the question of the functo-
riality of this construction. A factor map, π, between two such systems (X, φ)
and (Y, ψ) is a continuous surjection from X onto Y satisfying π ◦φ = ψ ◦π.
These are the natural morphisms between such dynamical systems. We
want to understand whether such maps induce *-homomorphisms of the C∗-
algebras.

The importance of this issue can hardly be understated. A basic result in
dynamics asserts that such a system, (X,φ), if is also topologically transitive,
admits a Markov partition [KH, Bo] and therefore there is a very well-behaved
factor map

π : (ΣA, σA) → (X, φ),

where A is some square, non-negative integer matrix and (ΣA, σA) the as-
sociated shift of finite type. It isn’t too important for the moment exactly
what a shift of finite type is (see [LM] for the definition), or in exactly what
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sense this map is well-behaved. The main point is that these form a par-
ticularly well-understood class of Smale space. Usually in dynamics, this is
the starting point for an analysis of (X, φ). From our point of view, the C∗-
algebras S(ΣA, σA) and U(ΣA, σA) are both AF-algebras and are particularly
tractable. (See [Put2, Put1] for more details.) Some sort of map at the level
of C∗-algebras would be particularly useful.

Unfortunately, such an algebra homomorphism does not exist in general.
The aim of the paper is to show that there is functoriality for a special class of
factor maps which are called s-resolving. A map is s-resolving if it is injective
on each stable set. (Of course, there is an analogous notion of u-resolving.)
Basically, we will show that the construction of S(X,φ) is contravariant for
finite-to-one, s-resolving maps, while the construction of U(X, φ) is covariant.

That statement is not exactly what we will show. One of the disadvan-
tages of the groupoids Gs(X, φ) and Gu(X,φ) is that they are not r-discrete.
In [PS], a technique was developed to introduce r-discrete groupoids which
are equivalent in the sense of Muhly, Renault and Williams [MRW] to the
ones of interest. The basic technique is to reduce on a transversal. For stable
equivalence, the natural choice for such a transversal is the unstable set of
some point, x, of X. There is a subtlety here since the relative topology of
such a subset is rather horrid. In [PS], it is shown how to introduce a new
topology and how to adapt the methods of [MRW] to this situation. The re-
sult is to produce groupoids, denoted Gs(X, φ, x) and Gu(X, φ, x) which are
equivalent to our earlier pair and are r-discrete. We denote their C∗-algebras
by S(X, φ, x) and U(X, φ, x), respectively. In the next section, we also dis-
cuss generalizing this situation to allow a finite or countable set instead of a
single point x. Our main results show the functoriality of the constructions
of the C∗-algebras S(X, φ, x) and U(X, φ, x).

It is worth noting that stable equivalence for (X, φ) is unstable equivalence
for (X, φ−1) and that if π is a factor from (X, φ) to (Y, ψ), then it is also
a factor from (X, φ−1) to (Y, ψ−1). With these observations, it is a simple
matter to state analogous results for u-resolving maps instead of s-resolving.
Our only real excuse in concentrating on the case of s-resolving is that they
arise naturally if the context of substitution tiling systems [AP].

It is interesting to view the results of [BMT] in the context of our result.
Suppose that A is a primitive, non-negative integer matrix. Associated to A
are a shift of finite type (ΣA, σA) (which is a Smale space) and a dimension
group GA. Given two such matrices, A and B, [BMT] shows that if there
is an s-resolving factor map between the systems, then there is a surjective
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positive group homomorphisms between the dimnsion groups. In fact, these
dimension groups are the K-zero groups of the associated C∗-algebras. The
construction of [BMT] is just the composition of our functor with K-theory,
which is well-known to be functorial. (Here, ”right closing” is u-resolving
and the C∗-algebra under consideration is S(ΣA, σA).)

There is still one other issue which we address in this paper. The con-
struction of the C∗-algebras S(X,φ) and U(Xφ), to this point, has been
given only for mixing Smale spaces. In the next section we will discuss more
general situations. We show how, using basic structure results for the dy-
namics, we can extend the definition easily to any Smale space in which each
point is non-wandering.

The third section describes the functoriality results.

2 Non-mixing Smale spaces

So far, the construction of C∗-algebras from a Smale space, (X, d, φ), has only
been given in the case of a mixing Smale space. Here, we will discuss more
general situations. Basically, we can reduce to the mixing case by applying
Smale’s spectral decomposition theorem.

Theorem 2.1. Let (X, φ) be any Smale space in which every point is non-
wandering. Then there is a partition of the space X into a finite number of
pairwise disjoint closed sets X1, . . . , Xn, and a permutation, σ, of 1, . . . , n
such that

φ(Xi) = Xσ(i)

for all i = 1, . . . , n. Moreover, for any i and k such that σk(i) = i, the
system (Xi, φk) is a mixing Smale space.

We will not give a proof. Notice that the local product structure on a
Smale space means that it has the shadowing property. It can then be seen,
just as in the case of the non-wandering set for a hyperbolic diffeomorphism,
that the periodic points are dense. The basic outline of the rest of the proof
is exactly for basic sets for Axiom A systems, as given in [KH].

We can define the stable and unstable groupoids of (Xi, φk), where σk(i) =
i, as before and then define stable and unstable groupoids for (X, φ) by

Gs(X, φ) = ∪n
i=1Gs(Xi, φki)
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and

Gu(X, φ) = ∪n
i=1Gu(Xi, φki),

where ki is the least integer such that σki(i) = i, and each being given the
disjoint union topology.

To define the Haar systems, we proceed as follows. For each cycle,
(i1 · · · ik) in σ, we choose an element, say i1, of the cycle. We let µs be
the Haar system on Gs(Xi1 , φ

k). Then for each 1 < j ≤ k, we define the
Haar system on Gs(Xij , φ

k) to be λ(1−j)/kµ ◦ (φ×φ)−j+1, where log(λ) is the
entropy of (Xi1 , φ

k). The unstable groupoid is handled in a similar way.
This provides groupoids for stable and unstable equivalence with almost

all the properties of the mixing case. The most important difference, of
course, is that the equivalence classes are no longer dense. We have

S(X, φ) ∼=
n

⊕

i=1

S(Xi, φki).

The automorphism αφ
s = αs of [Put1] permutes these summands according

to σ.
We also want to remark that the techniques of [PS] are still essentially

valid. Let us describe the main ideas. Consider a mixing Smale space,
(X, φ). If we select any point, x0, of X, we let T = V u(x0) be its unstable
set. This set can be regarded as an abstract transversal to the groupoid
Gs(X,φ) and the reduction of the groupoid is denoted by Gs(X, φ, x0). The
important subtlety here is that we must endow T and this groupoid with a
new topology, which is finer than the relative topologies of X and Gs(X,φ).
In this context, the automorphism αs becomes an isomorphism

αφ
s : S(X,φ, x0) → S(X,φ, φ(x0)).

Although it is not stated there in this generality, this situation can be
extended. Suppose that A is any finite or countable subset of X with no two
points of A being unstably equivalent. Then we let

T = V u(A) = ∪x∈AV u(x)

and we can reduce the groupoid Gs(X, φ) on this abstract transversal and the
result we denote by Gs(X, φ, A). Here, we give the set T the disjoint union
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topology, using the same topology on each V u(x) as before. We will let
S(X,φ, A) to denote the C∗-algebra of Gs(X, φ, A). Now our automorphism
becomes an isomorphism

αφ
s : S(X,φ, A) → S(X, φ, φ(A)).

There are obvious analogous constructions with the groupoid of unstable
equivalence, using stable sets as abstract transversals.

Now all of these techniques may be extended to the case that every point
of (X, φ) is non-wandering. The only important issue is that one must choose
a finite or countable set A such that T contains at least one point from each
of the sets Xi as above, so that every stable (or unstable) equivalence class
will meet V u(A) (V s(A), respectively).

3 The main results

Let (X, φ) and (Y, ψ) denote mixing Smale spaces as described in [Put1]. A
factor map π from (X, φ) to (Y, ψ) is a continuous surjection

π : X → Y

such that

π ◦ φ = ψ ◦ π.

We will usually write π : (X, φ) → (Y, ψ) for such a factor map.
We will say that such a map is finite-to-one if there is a constant B such

that #π−1{y} ≤ B, for all y in Y . (Here #A denotes the number of elements
of a set A.)

Definition 3.1 (Fried [Fr]). A factor map π : (X, φ) → (Y, ψ) is s-resolving
(u-resolving) if, for every x in X, π | V s(x) ( π | V u(x), respectively) is in-
jective.

We begin our analysis of factor maps with the following simple lemma.

Lemma 3.2. Let π : (X, φ) → (Y, ψ) be a factor map between two Smale
spaces. Then there is επ > 0 such that, for all x, x′ in X with d(x, x′) < επ,
we have

π([x, x′]) = [π(x), π(x′)].
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Proof. Let εY > 0 be such that [y, y′] is defined for all y, y′ in Y with
d(y, y′) < εY . As π is continuous and X is compact, π is uniformly con-
tinuous. So there is an ε > 0 such that d(π(x), π(x′)) < εY for all x, x′ in X
with d(x, x′) < ε. We may also choose this ε < εX so that [x, x′] is defined
for all x, x′ in X with d(x, x′) < ε. Now, for any x, x′ in X with d(x, x′) < ε,
both sides of the equation above are defined. That fact that they are equal
follows easily from the choice of ε and the description of [x, x′] as

[x, x′] = V s(x, ε) ∩ V u(x′, ε)

and

V s(x, ε) = {z ∈ X | d(φn(z), φn(x)) < ε, for all n ≥ 0}
V u(x′, ε) = {z ∈ X | d(φ−n(z), φ−n(x′)) < ε, for all n ≥ 0}

and a similar description of [π(x), π(x′)]. We omit the details.

The next result is easy, but will be used frequently.

Lemma 3.3. Let π : (X,φ) → (Y, ψ) be an s-resolving factor map between
two Smale spaces. Let επ be as in Lemma 3.2. If x, x′ are in X with d(x, x′) <
επ and π(x) = π(x′), then x and x′ are unstably equivalent; that is, x′ ∈
V u(x).

Proof. From Lemma 3.2, each of the following is defined and we have

π([x, x′]) = [π(x), π(x′)]
= [π(x), π(x)]
= π(x).

Now the points x and [x, x′] are both in V s(x) and since π is s-resolving, it
is injective on this set. So we have [x, x′] = x and this implies the result.

We are now prepared to prove the following result.

Theorem 3.4. Let π : (X,φ) → (Y, ψ) be a finite-to-one, s-resolving factor
map between two Smale spaces in which each point is non-wandering. Let
x be any point of X. Then π | V s(x) is a homeomorphism from V s(x) to
V s(π(x)).
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Proof. By applying our spectral decomposition result in the last section and
the discussion which follows it, we may restrict to the case when (X,φ) is
mixing.

First, we let r = min{#π−1{y} | y ∈ Y } and choose a point y in Y such
that π−1{y} has exactly r elements, which we denote by x1, . . . , xr. For each
i, choose an open set Ui containing xi with diameter less than επ. We also
assume that these sets are chosen to be pairwise disjoint.

We claim that there is an open neighbourhood W of y in Y with the
following property. Every periodic point in W has exactly r pre-images
under π, one in each of the sets Ui. If there is no such set, we may find
a sequence of periodic points, yk, converging to y where this property fails.
Now the factor map π must map orbits to orbits. And since it is finite-to-one,
it cannot map an infinite set onto a finite one. This means that every point
in the pre-image of a periodic point must itself be periodic. No two distinct
periodic points can be unstably equivalent, hence no two distinct points in
the pre-image of a periodic point can be within επ, by Lemma 3.3. Therefore
there is at most one point in the pre-image of any yk in any Ui. Next we
argue that there must be at least one point in the pre-image of yk in each
Ui. By the minimality of r and choice of y, we know that the pre-image
of yk must contain at least r points. If there is a Ui not containing any of
them, then there must be one, say zk, in X − (U1 ∪ · · · ∪ Ur). By passing to
a subsequence, we may assume that the zk converge to some point z in X.
Then we have

π(z) = π(lim
k

zk) = lim
k

π(zk) = lim yk = y

and since X − (U1 ∪ · · · ∪ Ur) is closed, it contains z. But this contradicts
that fact that we chose the Ui to contain the pre-image of y. This establishes
the existence of W with the desired property.

Next, let x in a periodic point in any one of the sets Ui be such that π(x)
is in W and let U be an open neighbourhood of x contained in Ui. We claim
that there is an open neighbourhood Z of π(x), such that

Z ∩ V s(π(x), εY ) ⊂ π(U ∩ V s(x, επ)). (1)

Begin by choosing open sets V1 ⊂ V s(x, εX) and V2 ⊂ V u(x, εX) and letting
V = [V2, V1]. Such open sets form a neighbourhood base for X at x. We
choose such a V so that its closure is contained in U . Now we repeat exactly
the same argument we used above to produce W , replacing y with π(x)
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and the one set Ui containing x with V . We obtain in this way an open
neighbourhood Z of π(x) such that each periodic point in Z has a unique
pre-image in V . To establish the containment we want, we let y be in Z ∩
V s(π(x), εY ) Since Z is open and the periodic points of Y are dense, we
choose a sequence of periodic points, yn, in Z converging to y. Each has
a pre-image in V , say xn. By passing to a subsequence, we may assume
that the xn converge to a point x′ in V̄ ⊂ U . Now the points [x, xn] are in
V s(x, εX) and also in V , since we chose V to be a rectangle. They converge
to [x, x′] which is in U ∩ V s(x, επ). It is easy to check that π([x, x′]) = y as
desired.

We now choose a periodic point x in U1 with π(x) in W . Let m denote the
period of x. We choose ε0 sufficiently small so that the closure of V s(x, ε0) is
contained in U1 and so that its image under π is contained in W . It follows
from 1 that this image is an open set in V s(π(x)) and that the map π is open
on this set.

The set

V s(x) = ∪∞n=0φ
−nm(V s(φnm(x), ε0))

= ∪∞n=0φ
−nm(V s(x, ε0))

is dense in X. It follows that we may choose a positive integer n such that,
for every x′ in X, V u(x′, επ/2) meets φ−nm(V s(x, ε0)).

We claim that, given ε > 0, there is a δ > 0 such that, for any x′ in X,
we have

V s(π(x′), δ) ⊂ π(V s(x′, ε)). (2)

We know this holds for x′ in V s(x, ε0). The fact that the δ may be chosen
uniformly for all x′ in this set follows from the pre-compactness. Next, if y
and z are any two points of X with [y, z] = z and d(y, z) < εX/2, then the
map sending w in V s(y, εX/2) to [z, w] is a local homeomorphism. It satisfies
the same condition, and it is easy to show, again using compactness, that for
a given ε the δ may be chosen independent of y and z. This same conclusion
holds in Y . Finally, the maps φ and ψ also have the same property using the
uniform continuity of their inverses.

Now for any x′ in X, the map π on V s(x′, ε) may be written as a compo-
sition of these maps. First we choose x′′ in V u(x′, εX/2) ∩ φ−nm(V s(x, ε0)).
Then we write π as the composition of the map y → [x′′, y], followed by φnm,
followed by π, followed by ψ−nm, followed by the map y → [y, π(x′)]. Each of
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maps has the desired property, hence so does π. We omit the rather tedious
details.

To complete the proof, we let x be any point in X and note that π maps
V s(x) onto V s(π(x)) as follows

π(V s(x)) = π
(

∪n≥0φ−n(V s(φ−n(x), ε)
)

= ∪n≥0π
(

φ−n(V s(φ−n(x), ε)
)

= ∪n≥0
(

ψ−n(π(V s(φ−n(x), ε))
)

⊃ ∪n≥0
(

ψ−n(V s(π(φ−n(x)), δ))
)

= ∪n≥0
(

ψ−n(V s(ψ−n(π(x)), δ))
)

= V s(π(x))

So we see that π is a bijection from V s(x) to V s(π(x)). Moreover, it
is clearly continuous and open by 2. Since both of these spaces are locally
compact, it is a homeomorphism. This completes the proof.

We are now in a position to prove the first of our main results on functo-
riality.

Corollary 3.5. Let π : (X,φ) → (Y, ψ) be a finite-to-one, s-resolving factor
map between two mixing Smale spaces and let x be any point of X. Then

π × π : Gu(X, φ, x) → Gu(Y, ψ, π(x))

is a homeomorphism to an open subgroupoid of Gu(Y, ψ, π(x)).
Moreover, this inclusion induces a *-homomorphism of C∗-algebras

π∗ : U(X, φ, x) → U(Y, ψ, π(x)).

Finally, the map π∗ satisfies

π∗ ◦ αφ
u = αψ

u ◦ π∗.

Proof. We use the fact that the range and source maps for both groupoids
are local homeomorphisms to their respective unit spaces. Then the result
follows easily from the last theorem. The final equation also follows easily
from the definitions. We omit the details.
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The above result is in the context of mixing Smale spaces. As we discussed
in the last section, these ideas can be generalized to the non-mixing case in
the following way. The proof is an easy consequence of the mixing case and
the discussion of the last section.

Corollary 3.6. Let π : (X, φ) → (Y, ψ) be a finite-to-one, s-resolving factor
map between two Smale spaces in which each point is non-wandering. Also
suppose that (X, φ) (and hence (Y, ψ)) has a dense orbit. Suppose that A
is any finite or countable subset of X such that no two points of A are sta-
bly equivalent after applying π. Also assume that V s(A) meets each mixing
component of (X, φ). Then

π × π : Gu(X,φ, A) → Gu(Y, ψ, π(A))

is a homeomorphism to an open subgroupoid of Gu(Y, ψ, π(A)).
Moreover, this inclusion induces a *-homomorphism of C∗-algebras

π∗ : U(X,φ, A) → U(Y, ψ, π(A)).

Finally, the map π∗ satisfies

π∗ ◦ αφ
u = αψ

u ◦ π∗.

We next begin to look at the situation for the stable C∗-algebras. Again,
we begin with a technical result.

Lemma 3.7. Let π : (X, φ) → (Y, ψ) be an s-resolving factor map between
two Smale spaces. Then there is a constant, M , with the following property.
If {x1, . . . , xm} is any finite set in X such that no two elements are unstably
equivalent, and there is a y in Y such that π(xi) ∈ V u(y), for all i = 1, . . . , m,
then m ≤ M .

Proof. We will find M with the property that, if {x1, . . . , xm} is any finite
set in X with m > M and π(xi) ∈ V u(y), for some y in Y and for all i, then
for some i 6= j, xi ∈ V u(xj). The conclusion follows from this.

Since X is a compact metric space, we may find M such that, any finite
set in X with more than M elements will contain two distinct points within
distance επ. Now let {x1, . . . , xm} be any finite set. Since the set is finite, if
all points π(xi) are unstably equivalent to each other, we may find a negative
integer n such that

d(ψn(π(xi)), ψn(π(xj))) < εY ,
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for all i, j. Now if m > M , two points of the set {φn(x1), . . . , φn(xm)} must
be within distance επ. Let φn(xi) and φn(xj) be two such points. Now we
consider the point [φn(xi), φn(xj)], which is well-defined since the distance is
less than επ. This point is clearly stably equivalent to φn(xi). We apply π to
this point, using Lemma 3.2 and the fact that π is a factor, and obtain

π([φn(xi), φn(xj)]) = [π(φn(xi)), π(φn(xj))]
= [ψn(π(xi)), ψn(π(xj))]
= ψn(π(xi))
= π(φn(xi)).

Since π is s-resolving and the points [φn(xi), φn(xj)] and φn(xi) are stably
equivalent, we see that there are actually equal. This means that φn(xi) and
φn(xj) are unstably equivalent and hence, so are xi and xj. This completes
the proof.

Theorem 3.8. Let π : (X, φ) → (Y, ψ) be an s-resolving factor between two
Smale spaces and let y be any point of Y . Then there is a finite subset
{x1, . . . , xm} of X such that

π−1(V u(y)) =
m
⋃

i=1

V u(xi)

and the sets in the union are pairwise disjoint.
Moreover, the map

π :
m
⋃

i=1

V u(xi) → V u(y)

is continuous and proper.

Proof. It is clear that the image under π of an unstable equivalence class in X
is contained in an unstable class in Y . So the pre-image of V u(y) under π can
be written as a union of disjoint unstable classes in X. The fact this union is
finite follows from Lemma 3.7. So the first statement is established. As for
the second, it is fairly clear from the definitions that π is continuous. To show
it is proper, it suffices to prove that if {zk} is any sequence in ∪m

i=1V
u(xi) such

that {π(zk)} is convergent in V u(y), then it has a convergent subsequence.
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Since X itself is compact, the sequence has a convergent subsequence in X.
Passing to yet another subsequence, we may assume that all the terms are
contained in one of the sets, V u(xi). We let {zkl} denote this subsequence
and z its limit. Then since the topology on V u(y) is finer than the relative
one from X, we see that the limit of {π(zkl)} must be π(z). This means that
the sequence converges in the usual topology on Y and that, for sufficiently
large l,

[π(zkl), π(z)] = π(zkl).

Now we consider the points [zkl , z] which are well-defined for l sufficiently
large and are stably equivalent to zkl . Moreover, we have

π([zkl , z]) = [π(zkl), π(z)] = π(zkl).

Since π is s-resolving and [zkl , z] and zkl are stably equivalent we conclude
that, for sufficiently large l, [zkl , z] = zkl and this means that the subsequence
is actually converging to z in V u(z). This completes the proof.

We are now ready to state our other main result on functoriality.

Corollary 3.9. Let π : (X,φ) → (Y, ψ) be a finite-to-one, s-resolving factor
map between two mixing Smale spaces and let y be in Y . Let {x1, . . . , xm}
be as in Theorem 3.8. Then the map

π × π : Gs(X, φ, {x1, . . . , xm}) → Gs(Y, ψ, y)

is continuous, proper and surjective. Moreover, it induces a *-homomorphism
of C∗-algebras

π∗ : S(Y, ψ, y) → S(X,φ, {x1, . . . , xm}).

Finally, the map π∗ satisfies

π∗ ◦ αψ
s = αφ

s ◦ π∗

Proof. Let us begin with some observations. First, if x is in X and z′ is in Y
and is stably equivalent to π(x), then there is a unique point x′ in X which
is stably equivalent to x and and has π(x′) = z′. This follows from Theorem
3.4. If, in addition, z′ is in V u(y), then both x and x′ lie in V u({x1, . . . , xm}).
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The facts that π×π is continuous and proper follow immediately from the
definitions and the last theorem. Let us prove it is surjective. In fact, we will
show a little more. Given (z, z′) in V u(y), we can find x in V u({x1, . . . , xm})
such that π(x) = z. Now for this given x, there is a unique x′ which is
stably equivalent to x and has π(x′) = z′. As noted above, this x′ is also in
V u({x1, . . . , xm}). This means that π × π is surjective.

Now we must check that π×π induces a *-homomorphism of C∗-algebras.
We first consider the dense subalgebras of continuous, compactly supported
functions on our groupoids, Cc(Gs(X,φ, {x1, . . . , xm})) and Cc(Gs(Y, ψ, y)).
Since π × π is continuous and proper, it induces a linear map, denoted π∗,
from the latter to the former. It is clear that this map is also *-preserving.
It remains to check that it is multiplicative. Let f, g be in Cc(Gs(Y, ψ, y))
and let (x, x′) be in Gs(X, φ, {x1, . . . , xm}). Then we have

π∗(f · g)(x, x′) = (f · g)(π(x), π(x′)

=
∑

f(π(x), z)g(z, π(x′)),

where the sum is over all z in V u(y) which are stably equivalent to π(x).
But we know from above that for each such z there is a unique x′′ in
V u({x1, . . . , xm}) which is stably equivalent to x and with π(x′′) = z. Thus,
we have

π∗(f · g)(x, x′) =
∑

f(π(x), π(x′′))g(π(x′′), π(x′))

=
∑

π∗(f)(x, x′′)π∗(g)(x′′, x′)

= (π∗(f) · π∗(g))(x, x′)

where the sums above are over all x′′ stably equivalent to x in V u({x1, . . . , xm}).
This shows that π∗ is a homomorphism. Finally, we must argue that π∗ will
extend continuously to the C∗-algebras which are the completions of the
spaces of functions above. Here, we can use the fact that these groupoids are
amenable [PS] and r-discrete. Furthermore, the map π × π maps the unit
space onto the unit space. So if λ is the left regular representation induced
from a point mass on the unit space of Gs(X,φ, {x1, . . . , xm}), then λ ◦ π∗

is the direct sum of representations induced from point masses on the unit
space of Gs(Y, ψ, y). Continuity follows from these observations. The proof
of the final equality follows at once from the definitions. This completes the
proof.

14



Again, we want to observe that this result extends to the non-mixing
case. Again, the proof follows easily from the mixing case and the discussion
of the last section.

Corollary 3.10. Let π : (X,φ) → (Y, ψ) be a finite-to-one, s-resolving fac-
tor map between two Smale spaces, having each point non-wandering. Also
suppose that (X, φ) (and hence (Y, ψ)) has a dense orbit. Let B be any subset
of Y such that no two points of B are stably equivalent. For each point y in
B, let {x1, . . . , xm} be as in Theorem 3.8 and let A denote the union of these
sets as y runs over B. Also assume that A meets each mixing component of
(X,φ). Then the map

π × π : Gs(X,φ, A) → Gs(Y, ψ,B)

is continuous, proper and surjective. Moreover, it induces a *-homomorphism
of C∗-algebras

π∗ : S(Y, ψ, B) → S(X,φ, A).

Finally, the map π∗ satisfies

π∗ ◦ αψ
s = αφ

s ◦ π∗

We conclude this section with a discussion of functoriality at the level of
K-theory of our C∗-algebras. For simplicity, we will begin with the unstable
C∗-algebras, although an analogous situation exists for the stable ones.

Let π : (X, φ) → (Y, ψ) be a finite-to-one, s-resolving factor between
mixing Smale spaces and let A be a finite set in X such that V s(A) meets
each unstable equivalence class and so that no two points in A are stably
equivalent. From [PS], we know that the C∗-algebras U(X,φ) and U(X,φ, A)
are strongly Morita equivalent. In fact, there is a canonical equivalence
bimodule and this implements an isomorphism at the level of K-theory, which
we denote by

κA : K∗(U(X, φ)) → K∗(U(X, φ,A)).

Similarly, is we assume that no two points of A are stably equivalent after
applying π, there is an isomorphism

κπ(A) : K∗(U(Y, ψ)) → K∗(U(Y, ψ, π(A))).
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Now, we claim that

κ−1
π(A) ◦ (π∗)∗ ◦ κA : K∗(U(X, φ)) → K∗(U(X,ψ))

is independent of the choice of A. To see this, suppose that A and A′ are
two such sets. Let B be a subset of A ∪ A′ such that each point in the
union is stably equivalent to exactly one point in B. Then, U(X, φ, A) and
U(X,φ, A′) are both full corners in U(X, φ,B). Denote the inclusion maps by
i, i′, respectively. Similarly, U(Y, ψ, π(A)) and U(Y, ψ, π(A′)) are full corners
in U(Y, ψ, π(B). We use the same i, i′ to denote the inclusions. Then there
is a a *-homomorphism

π∗ : U(X,φ, B) → U(Y, ψ, π(B))

such that (π∗)∗ ◦ i∗ = i∗ ◦ (π∗)∗ and (π∗)∗ ◦ i′∗ = i′∗ ◦ (π∗)∗. The conclusion
follows from these observations. We omit the details.

It seems most convenient (although rather an abuse of notation) to denote
κ−1

π(A) ◦ (π∗)∗ ◦ κA by

π∗ : K∗(U(X, φ)) → K∗(U(Y, ψ)).

In an analogous way, there is a homomorphism

π∗ : K∗(S(Y, ψ)) → K∗(S(X, φ)).
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