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Abstract

We consider the C∗-algebra, AT , constructed from a substitution
tiling system which is primitive, aperiodic and satisfies the finite pat-
tern condition. Such a C∗-algebra has a unique trace. We show that
this trace completely determines the order structure on the group
K0(AT ); a non-zero element in K0(AT ) is positive if and only if its
image under the map induced from the trace is positive.

1 Introduction and statement of the main re-
sult

We begin by introducing some of the terminology and notation. All of these
things are developed more fully in the survey article [KP]. We have included
other references to more original sources where appropriate.

A substitution tiling system in Rd consists of a finite collection of bounded,
regular closed sets p1, . . . , pN in Rd called prototiles. We also have a constant
λ > 1 and, for each i = 1, . . . , N , ω(pi) which is a finite collection of subsets of
Rd with pairwise disjoint interiors; each is a translate of one of the prototiles
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and their union is λpi = {λx | x ∈ pi}. In general, we call a translate of one
of the prototiles a tile. Several one and two dimensional examples, including
the Penrose tiles, are given in [AP]. As a generalization of the above, one
can also have a finite set called labels. A labelled prototile is then a bounded,
closed regular subset together with a label. (The idea being that we now
have a way of distinguishing two prototiles which may be exactly the same
geometric object.) It is clear how to extend the remainder of the definitions
to this situation. All of our results apply equally well to the situation of
labelled prototiles.

Collections of tiles with pairwise disjoint interiors are called partial tilings.
The union of such a set of tiles is called the support of the partial tiling and
a partial tiling whose support is Rd is called a tiling. If T denotes a tiling
(or even a partial tiling), then for any x in Rd, T + x denotes the tiling (or
partial tiling) obtained by translating all tiles in T by x.

Notice that we can extend our definition of ω to tiles by ω(p + x) =
ω(p) + λx, for any prototile p and vector x. We can further extend this
definition to partial tilings by ω(T ) = {ω(t) | t ∈ T}. This also means that
we can iterate ω, and for any prototile p, we may construct ωn(p), for any
n = 1, 2, . . . , which is a partial tiling with support λnp.

We will assume here that all of our prototiles contain the origin in their
interior. (This loses no generality.) We define the puncture of any prototile
p to be the origin and for any vector x, we define the puncture of t = p + x,
denoted x(t), to be x. So each tile has a distinguished point in its interior.

We say that the substitution is primitive if there is a positive integer k
such that, for every ordered pair of prototiles p, p′, a translate of p′ appears
inside ωk(p).

We construct a tiling as follows. There exists a prototile p, a vector
x, and a positive integer k so that so that the sequence of partial tilings
ωnk(p + x), n = 1, 2, . . . is coherent in the sense that the nth one contains
all the earlier ones. Moreover, these grow to cover Rd. We will not prove
this here, although the proof is not difficult. We let T denote the union of
these partial tilings which is a tiling. We look at all translations of T and
put a metric d on this set as in [RW, Rud, So1]). The completion of this set
of translations of T is denoted Ω. It is also worth noting that the elements
of this completion can be viewed as tilings with the same tiles. This space is
actually independent of the choice of T as above. From now on, we revert to
using T to denote an arbitrary element of Ω. Under a hypothesis called the
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finite pattern condition, [RW], it is a compact metric space. The map

ω : Ω → Ω

then becomes a continuous surjection. We will focus our attention on the
case when this map is also injective, and hence, a homeomorphism. This is
usually referred to as the unique composition property or that the substitu-
tion is locally invertible. However, Solomyak [So2] has shown that, with the
hypothesis of the finite pattern condition, this is equivalent to the set Ω con-
taining no periodic tilings. That is, if T in Ω and x in Rd satisfy T + x = T ,
then x = 0. (In the terminology of [So2], Ω is the local isomorphism class of
any of its elements.) Therefore, we will say that the substitution system is
aperiodic if the map ω is injective. We will also assume that our substitu-
tion forces its border [Kel1]. As discussed in [KP], this loses no generality,
provided we allow labelled tiles.

We define Ωpunc to be the set of all tilings in Ω which have a puncture
on the origin. This set is compact and totally disconnected. We want to
describe a base for its topology consisting of clopen sets. Fix some finite
partial tiling P inside ωk(p), where p is a prototile and k is a positive integer,
and let t be any tile in P . We let

U(P, t) = {T ′ | P − x(t) ⊂ T ′}.

That is, we translate the patch P back by vector x(t), so that t now covers
the origin, with its puncture exactly on the origin. Then we look at all tilings
containing this patch. This set is closed and open in Ωpunc and such sets form
a base for the topology.

We are interested in the equivalence relation on Ωpunc which is simply
translational equivalence. That is, we define

Rpunc = {(T, T + x) | T, T + x ∈ Ωpunc}.

This set is also given a topology which is easiest to describe as follows. Let
P be a patch as before and let t, t′ be two tiles in P . The map sending T in
U(P, t) to T + x(t) − x(t′) is a homeomorphism onto U(P, t′). Its graph is
contained in Rpunc and is denoted U(P, t, t′). These sets form a base for the
topology of Rpunc. Indeed, they are actually clopen sets and Rpunc is totally
disconnected.

This makes Rpunc into a locally compact, Hausdorff, σ-compact, r-discrete,
principal groupoid with counting measure as a Haar system. (See [Ren] as a
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general reference on the subject of groupoids, or [Put2] for a leisurely treat-
ment.) We use r, s to denote the range and source maps from Rpunc to Ωpunc.
That is, r(T, T ′) = T and s(T, T ′) = T ′.

We let AT denote its C∗-algebra of Rpunc. We refer the reader to [KP] or to
[Ren] as the main source for the construction of C∗-algebras from groupoids.
For general references to C∗-algebras, we suggest [Fi, Da, Pe]. (We should
note that this really doesn’t depend on T . The notational confusion comes
because this is a special case of a more general construction [KP]. It would
probably be preferable to use the notation Aω, but we will stay with this for
historical reasons.) This C∗-algebra is the completion in a certain norm of
the *-algebra of continuous compactly supported functions on Rpunc, denoted
Cc(Rpunc).

Let us mention some properties of this C∗-algebra. The key point is
that the space Ω with map ω can be viewed as a Smale space [AP]. Then
the space Ωpunc can be viewed as an abstract transversal to the relation of
unstable equivalence. The reduction of this groupoid on Ωpunc is exactly
Rpunc. Hence AT is strongly Morita equivalent to U(Ω, ω) and the results of
[PS] apply. In particular, the equivalence relation Rpunc is minimal in the
sense that every equivalence class is dense in Ωpunc and also amenable in the
sense of Renault [Ren].

We are interested in the computation of the K-theory of AT , and especially
its K-zero group. We refer the reader to [Bl, W-O] as general references
for K-theory for operator algebras and [Be1, Kel1] for further information
and motivation for this problem in physics. Methods have been given in
[AP, Be2, BCL, Kel1, Kel2] for the computation of the K-theory of AT . In
some cases, these included the order structure on K-zero. Here, we will prove
a more general result.

The space Ωpunc possesses a natural measure µ. It is most easily described
as follows. The mixing Smale space, (Ω, ω), has a measure of maximum
entropy which is a product measure with respect to the canonical stable and
unstable coordinates. The entropy is d log(λ). The set Ωpunc is contained in a
finite collection of local stable sets and the measure µ is simply the restriction
of the stable component of the measure of maximal entropy. Its key properties
are that it is finite and Rpunc-invariant. This means that it is preserved under
the local homeomorphisms whose graphs make up our topology base above.
This measure has full support. This is because the equivalence relation Rpunc

is minimal and, since µ is Rpunc-invariant, its support is also. This measure
is also unique. We will have more to say about this later.
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This measure µ defines a trace, τ , on the C∗-algebra AT . For an element
f which lies in the dense sub-algebra Cc(Rpunc), its trace is given by

τ(f) =
∫

Ωpunc

f(x, x)dµ(x).

This is a positive bounded linear functional of norm one. It is also faithful
since the measure has full support.

Such a trace induces a positive group homomorphism on the K-zero group
of AT [Bl, W-O]

τ̂ : K0(AT ) → R.

It is our goal here to show that, under a very mild hypothesis regarding the
topology of the prototiles, this homomorphism completely determines the
order structure on K0(AT ) [Bl, W-O].

Theorem 1.1. Let p1, . . . , pN , ω be a substitution tiling system (or labelled
substitution tiling system) in Rd which is primitive, aperiodic and satisfies
the finite pattern condition. Suppose that for each prototile, the capacity or
box-counting dimension of its boundary is strictly less than d. Then the order
on K0(AT ) is determined by the trace. That is, for any element a in K0(AT ),
a is in K0(AT )+ if and only if a = 0 or τ̂(a) > 0.

Notice that the hypothesis regarding dimension is satisfied by any polyhe-
dra, where the boundaries are made up of lower dimensional hypersurfaces.

Our proof will be presented in the last section. It will make use of a
canonical C∗-subalgebra of AT , denoted AFT [Kel1, Kel2]. This sub-algebra
is reasonably large inside AT , but also has the advantage of being AF or
approximately finite dimensional. (Again, AFω might be more appropriate
notation.) The structure of this C∗-algebra is fairly well-understood. It
is one of the AF -algebras constructed by Cuntz and Krieger from a mixing
topological Markov chain, and the analogue of our main result above is known
for such C∗-algebras. Our proof will make use of this. The rest of the
argument is to show how we may interpolate between projections in AT with
projections in AFT . The details appear in section 3.

Let us give a description of AFT . For each prototile p and each positive
integer n, let Punc(p, n) denote the set of all punctures in the tiles of the
partial tiling ωn(p). Suppose that x is in some Punc(p, n), and T is any
tiling in Ωpunc such that p is in T . Recall that the puncture in p is the origin.
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Then the tiling ωn(T )−x is again in Ωpunc. We let W (p, n, x) denote the set
of all tilings of this form. It is not difficult to check that, for a fixed value of
n, the collection of sets

{W (p, n, x) | p a prototile, x ∈ Punc(p, n)},

is a partition of Ωpunc into clopen sets. Since we assume the substitution
forces its border, then as n varies, these generate the topology on Ωpunc.

Suppose that p is a prototile and n is a positive integer. If we have x and y
in Punc(p, n), then the map sending T to T +x−y is a homeomorphism from
W (p, n, x) onto W (p, n, y). The graph of this map is denoted by W (p, n, x, y).
It is a clopen subset of Rpunc. We define RAF to be the union of these sets,
which is then an open subgroupoid of Rpunc. Then the C∗-algebra of RAF is
denoted by AFT and the obvious inclusion of

Cc(RAF ) ⊂ Cc(Rpunc)

extends to an inclusion AFT ⊂ AT .
To see that AFT is approximately finite dimensional, it suffices to notice

that if we take An to be the linear span of the characteristic functions of
the sets W (p, n, x, y), where p is a prototile and x, y are in Punc(p, n), then
in fact, this is actually a finite dimensional C∗-subalgebra. The details are
given in [KP]. It is also shown there that the matrix which describes the
embedding of An ⊂ An+1 is the same for every n and is equal to the N ×N
matrix whose i, j entry is the number of different translates of pi appearing
in ω(pj) for all i, j. Since the substitution is primitive, so is this matrix in
the sense that some power has no zero entries [LM]. Our trace, τ , restricts
to a trace on AFT . By the results of [Ha], such a C∗-algebra has a unique
trace. This implies the uniqueness of our Rpunc-invariant measure µ since
any other measure would give rise to another trace. These would be distinct
on C(Ωpunc) which is contained in AFT .

While our main theorem gives a complete answer to the question of the
order on K0(AT ), there is one important question which we leave unanswered.
That is to compute the range of the map τ̂ . There is a natural conjecture,
namely

τ̂(K0(AT )) = τ̂(K0(AFT ))
= {µ(E) | E ⊂ Ωpunc clopen }+ Z.
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One inclusion in the first equality is obvious. In some special situations in
low dimensions (d ≤ 3), equality is known [vE]. As well, our result in the
next section, Theorem 2.1, suggests that this will be true under the same
hypothesis as Theorem 1.1. Furthermore, the set τ̂(K0(AFT )) is known to
be the subgroup of R generated by numbers of the form λ−ndξi, where n
is a positive integer and ξi is an entry of the left Perron eigenvector of the
primitive matrix of the last paragraph.

I would like to thank Johannes Kellendonk, Chris Bose, Florin Diacu and
Rua Murray for helpful conversations.

2 A technical result

In this section we will prove a technical result which we will need in the proof
of the main theorem. We include it as a separate section because it may be
of some independent interest, as we will try to explain below.

As we discussed in the introduction, we have two equivalence relations
(or principal groupoids), RAF ⊂ Rpunc, on the space Ωpunc. The second has
a topology in which it is locally compact, Hausdorff, metrizable, r-discrete
σ-compact and for which counting measure is a Haar system. The first is
an open subgroupoid. Roughly speaking, the structure of the subgroupoid
is fairly well-understood and the difficulty in analyzing the C∗-algebra AT

usually involves Rpunc−RAF . Our main technical result here is to show that,
at the level of measure theory, the difference is negligible. Specifically, we
will prove the following.

Theorem 2.1. Let p1, . . . , pN , ω be a substitution tiling system in Rd which
is primitive, aperiodic and satisfies the finite pattern condition. Let Rpunc

and RAF be the associated principal groupoids and let µ be the unique Rpunc-
invariant probability measure on Ωpunc. If the boundary of each pi has capacity
or box-counting dimension strictly less than d, then we have

µ(r(Rpunc −RAF )) = 0.

The proof will be broken into a series of lemmas and we will introduce
some new notation.

Recall that Punc(p, n) denotes the set of all punctures in the tiles of
ωn(p). For any x in Punc(p, n), we define ∂(x) to be the Euclidean distance
from x to the boundary of λnp, which is the support of ωn(p); that is,

∂(x) = inf{|x− y| | y ∈ Rd − λnp},
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where || denotes the usual Euclidean norm on Rd. We fix b > 0 so that
B(0, b) ⊂ p, for all prototiles p. Here, B(x, r) denotes the open ball in
Rd centred at x and with radius r. Notice that this means for all tiles t,
B(x(t), b) ⊂ t.

We let #X to denote the number of elements of any finite set X.

Lemma 2.2. For each prototile p, there is a positive constant ap such that

#Punc(p, n) ≥ apλdn.

for all positive integers n.

Proof. We define the N ×N substitution matrix B as follows. The i, j entry
of B is the number of occurrences of translates of pj in ω(pi). The fact that
the substitution is primitive is equivalent to the fact this non-negative matrix
is primitive [LM]. Let v be the vector in Rd whose ith entry is the volume of
pi. It is easy to calculate that v is a (right) eigenvector of B with eigenvalue
λd. Since this eigenvector is clearly positive, this is the Perron eigenvector
for B and λd is the Perron eigenvalue. (See section 4.2 of [LM].) Since B is
primitive, we may apply 4.5.12 of [LM] to conclude that, for every pair i, j,
we may find a positive constant ai,j such that

lim
n→∞

|(Bn)i,j − ai,jλdn| = 0.

But #Punc(p, n) is simply the number of different tiles in ωn(p) which is sum
over all i of (Bn)i,j, where pj = p. The result follows easily from this.

Lemma 2.3. Let p1, . . . , pN , ω be a primitive substitution tiling system in Rd

such that, for each prototile p, boundary of p, ∂p, has box-counting dimension
strictly less than d. Then, for any R > 0 and prototile p, we have

lim
n→∞

#{x ∈ Punc(p, n) | ∂(x) ≤ R}
#Punc(p, n)

= 0.

Proof. We let δ be the maximum box-counting dimension of the boundaries
of the prototiles. So our hypothesis is that δ < d. This means that there
is a constant K and a function m(ε) ≤ Kε−δ such that, for any prototile p,
we may cover its boundary with m(ε) balls of radius ε, for any ε > 0. Fix a
prototile p and a positive integer n, let ε = Rλ−n. Choose an open cover of
∂p with ε-balls as above and denote their centres by xi, i = 1, . . . , m(ε).
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Now if x is in Punc(p, n) and ∂(x) ≤ R, then for some y in ∂(λnp), we
have |x − y| ≤ R. Then we have |λ−nx − λ−ny| ≤ Rλ−n = ε, λ−ny is in ∂p
and hence |xλ−n − xi| < 2ε, for some i.

So each point x of Punc(p, n) within R of the boundary of λnp, is con-
tained in some λnB(xi, 2ε). Notice that

λnB(xi, 2ε) = B(λnxi, λn2ε)
= B(λnxi, 2R)

We next want an upper bound on the number of such x, for a fixed i. Let

ki = #(Punc(p, n) ∩B(λnxi, 2R)).

We will use the fact that B(x(t), b) ⊂ t, for any tile t. This means that the
balls B(x, b), for x in Punc(p, n), are pairwise disjoint. And if x is also in
B(λnxi, 2R), then B(x, b) is contained in B(λnxi, 2R + b). This means that

V ol(B(λnxi, 2R + b)) ≥
∑

V ol(B(x, b))

where the sum is taken over all x in Punc(p, n) ∩ B(λnxi, 2R). There is a
positive constant, Vd, so that for all positive r, V ol(B(x, r)) = Vdrd. So we
have

Vd(2R + b)d ≥ kiVdbd

which in turn gives us

ki ≤ (1 + 2R/b)d. (1)

Now if we sum over i, we obtain

#{x ∈ Punc(p, n) | ∂(x) ≤ R} ≤
m(ε)
∑

i=1

ki

≤
m(ε)
∑

i=1

(1 + 2R/b)d

≤ m(ε)(1 + 2R/b)d

≤ Kε−δ(1 + 2R/b)d

= K(Rλ−n)−δ(1 + 2R/b)d

= K(1 + 2R/b)dR−δλnδ

= K ′λnδ,
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where K ′ = K(1 + 2R/b)dR−δ is independent of n. Now we combine this
estimate with Lemma 2.2 to obtain

lim
n→∞

#{x ∈ Punc(p, n) | ∂(x) ≤ R}
#Punc(p, n)

≤ lim
n→∞

K ′λnδ

(apλdn)

= lim
n→∞

(K ′/ap)λn(δ−d)

= 0,

since δ < d.

Definition 2.4. For any tiling T in r(Rpunc − RAF ), there is a vector x in
Rd such that T − x is in Ωpunc, but (T, T − x) is not in RAF . For such T we
define

ρ(T ) = inf{|x| | (T, T − x) ∈ Rpunc −RAF}.

Lemma 2.5. Let p be a prototile and n be a positive integer. Suppose that
x is in Punc(p, n) and that T is in r(Rpunc − RAF ) ∩W (p, n, x). Then we
have

ρ(T ) ≥ ∂(x).

Proof. The hypothesis means that we can write T = ωn(T ′) − x, where T ′

contains the tile p.
Suppose that y is any vector with |y| < ∂(x). We claim that if T − y is

in Ωpunc, then (T, T − y) is in RAF . From this it follows that if (T, T − y)
is to be in Rpunc −RAF , we must have |y| ≥ ∂(x) and the conclusion follows
from the definition of ρ.

As for the claim, we begin by noting that if |y| < ∂(x), then x + y is
in the interior of λnp. If, in addition, T − y is in Ωpunc, then the T − y =
ωn(T ′)− x− y = ωn(T ′)− (x + y) and so x + y is in Punc(p, n). The graph
of the map sending ωn(T ′) − x to ωn(T ′) − (x + y) is contained in RAF . In
particular, the pair (T, T − y) is in RAF . This completes the proof of the
claim.

Recall that we are trying to prove that µ(r(Rpunc−RAF )) = 0. It is easy
to check that for fixed R > 0, the set

{(T, T − x) | |x| ≤ R} ∩ (Rpunc −RAF )
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is compact in Rpunc. It follows that for any R > 0,

r(Rpunc −RAF ) ∩ ρ−1[0, R]

is compact in Ωpunc. To prove our result, it suffices to show that the µ-
measure of this set is zero, for any R.

We now fix R0 > 0 and, for convenience, we denote
{T ∈ r(Rpunc −RAF ) | ρ(T ) ≤ R0} by Y0.

We will construct a sequence of positive constants, R0 < R1 < R2 < . . . ,
and a sequence of locally defined maps γ1, γ2, . . . with the following proper-
ties. Each γm is a local homeomorphism whose graph is a clopen set in RAF

and whose domain contains Y0. Moreover, for all T in Y0, we will have

Rm−1 < ρ(γm(T )) ≤ Rm − 1.

We may conclude from this last equation that the sets γm(Y0) are pairwise
disjoint. Moreover, the maps γm all preserve the measure µ. So each of these
sets has the same measure as Y0 and since the measure is finite, we conclude
that µ(Y0) = 0, as desired.

We begin by setting

R0 = sup{ρ(T ) | T ∈ Y0}.

Assume that, for some m ≥ 1, we have Rm−1 defined with the property that
ρ(T ) < Rm−1, for all T in Y0. We define γm as follows. We apply Lemma 2.3
using the value R = Rm−1 +1. We may find a n sufficiently large so that the
ratio in the limit is less than 1/2, for all prototiles p. This means that, for
this value of n,

#{x ∈ Punc(p, n) | ∂(x) ≤ Rm−1}
≤ #{x ∈ Punc(p, n) | ∂(x) ≥ Rm−1 + 1},

for each prototile p. Now for each prototile, p, we may define an injection, η,
from the first set above to the second. (Of course, there is a different η for
each p, but we will suppress this in out notation.)

The domain of the map γm will be the union of all sets W (p, n, x) where p
is any prototile and x is in Punc(p, n) with ∂(x) ≤ Rm−1. For T in W (p, n, x),
we define

γm(T ) = T + x− η(x).
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It is easy to check that γm is a homeomorphism on its domain. Also, for
every T in YR, we know that T is in some set W (p, n, x). It follows from
Lemma 2.5 that

Rm−1 ≥ ρ(T ) ≥ ∂(x)

and so W (p, n, x), and hence T , is in the domain of γm. It is also clear from
the definition and Lemma 2.5 that

ρ(γm(T )) ≥ ∂(η(x)) ≥ Rm−1 − 1.

Therefore γm has all the required properties. To complete the induction, we
choose Rm to be

Rm = sup ρ(γm(Y0)) + 1.

This completes the proof of Theorem 2.1.

3 Proof of the main result

We begin a proof of the main result Theorem 1.1. The key ingredient is the
following.

Lemma 3.1. Let p be a non-zero projection in AT and suppose that 0 < ε < τ(p).
Then there is a projection q in AFT satisfying

[q] ≤ [p] in K0(AT )

and

|τ(p)− τ(q)| < ε.

The proof will take some time and involve several lemmas. Begin by
choosing 0 < δ ≤ ε/20 and so that δ < 1/400. We use the facts that

Cc(Rpunc) ⊂ AT

is dense and that Rpunc is totally disconnected to find a function f in Cc(Rpunc)
which is locally constant (i.e. f has finite range) and so that

‖p− f‖ < δ. (2)
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By replacing f by f∗f if necessary, we may assume that f is positive in AT .
We may also assume that ‖f‖ ≤ 1. It follows from equation 2 that

‖f2 − f‖ < 3δ (3)

Note that when we write f 2, we mean the product in AT , which is the
convolution product on Rpunc, not the pointwise product.

Let

K = r(supp(f) ∩ (Rpunc −RAF ))

which is a compact subset of Ωpunc and has µ(K) = 0, by Theorem 2.1. We
may choose a clopen set F ⊃ K such that

∫

F
f 2(x, x)dµ(x) < δ. (4)

We define a function e on Rpunc by

e(T, T ′) =
{

1 if T = T ′ /∈ F
0 otherwise

Notice that e is a projection in AFT .

Lemma 3.2. The element ef (product in AT ) is a locally constant function
on Rpunc and ef is in Cc(RAF ). Finally, we have

|τ(f)− τ(f 2ef)| < 7δ. (5)

Proof. The first statement is obvious since both e and f have the same prop-
erty. As for the second, we only need to see that ef is zero on Rpunc −RAF .
We have

ef(T, T ′) = e(T, T )f(T, T ′),

for any (T, T ′) in Rpunc. If (T, T ′) is in Rpunc−RAF and f is not zero on this
point, then T = r(T, T ′) is in K and so e(T, T ) = 0.
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For the last inequality, we have

|τ(f)− τ(f 2ef)| ≤ |τ(f)− τ(f 2)|+ |τ(f 2)− τ(fef)|
+|τ((f − f 2)ef)|

≤ ‖f − f 2‖+ |τ(f 2)− τ(ef 2)|
+‖f − f 2‖

≤ 6δ + τ((1− e)f 2)

= 6δ +
∫

F
f 2(x, x)dµ(x)

< 7δ,

by equation 4.

We now know that the element fef = (ef)∗(ef) is self-adjoint and lies
in AFT . Since it is a locally constant function on RAF it will actually lie in
one of the canonical approximating finite-dimensional C∗-algebras, denoted
by AN in [KP]. This means that its spectrum is finite and we may write

fef =
m

∑

i=1

λiei (6)

where the λi are positive constants less than or equal to 1 and the ei are
projections in AFT satisfying

m
∑

i=1

ei = 1,

eiej = 0, for i 6= j.

By re-arranging the order of the terms, we may assume that

λi ≤ 1/2, for i = 1, . . . , k,
λi ≥ 1/2, for i = k + 1, . . . , m,

for some fixed k.
We now define

q =
m

∑

i=k+1

ei.

Notice immediately that q is a self-adjoint projection and lies in AFT .
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Lemma 3.3. 1.

‖pq − q‖ < 4δ.

2.

‖pqp− q‖ < 8δ.

Proof. We use the definition of q and equation 6:

‖pq − q‖ = ‖(p− 1)
∑

i>k

ei‖

= ‖(p− 1)
∑

i>k

(

m
∑

j=1

λjej

)

λ−1
i ei‖

= ‖(p− 1)
∑

i>k

fefλ−1
i ei‖

≤ ‖(p− 1)f‖‖e‖‖f‖‖
∑

i>k

λ−1
i ei‖

≤ (‖p(f − p)‖+ ‖p− f‖) sup
i>k
{λ−1

i }

< (2δ)2 = 4δ.

The second inequality follows at once from the first. We omit the details.

Since δ < 1/400, we obtain ‖(pqp)2−pqp‖ < 24δ < 1/16, so the spectrum
of pqp is contained in [−1/8, 1/8]∪ [7/8, 9/8] and so we may apply functional
calculus and obtain q′ = χ(1/2,∞)(pqp). Then q′ is a self-adjoint projection in
AT within 1/8 of pqp and hence within distance 1/2 of q. Therefore, [q′] = [q],
by 4.3.2 of [Bl] or 5.2.6 of [W-O]. Also, the element q′ can be obtained as a
limit of polynomial functions with zero constant term applied to pqp. From
this we see that pq′ = q′ = q′p, or q′ ≤ p. We have all the properties we
desired from q and q′, except the estimate on the trace of q.

Lemma 3.4.

|τ(p)− τ(q)| < ε.

15



Proof. First, we want to estimate |τ(f)− τ(fq)|. Recall that the sum of the
ei’s was the identity. So that, we have

|τ(f)− τ(fq)| = |
m

∑

i=1

τ(fei)−
∑

i>k

τ(fei)|

= |
k

∑

i=1

τ(fei)|.

Now we use the fact that, for i ≤ k, we have λi ≤ 1/2. So we may continue

|τ(f)− τ(fq)| ≤ |
k

∑

i=1

2(1− λi)τ(fei)|

≤ |
n

∑

i=1

2(1− λi)τ(fei)|

= 2|
n

∑

i=1

τ(fei)− τ(fλiei)|

= 2|τ(f)− τ(f 2ef)|
< 14δ

by Lemma 3.2.
Now we are ready to compute

|τ(p)− τ(q)| ≤ |τ(p)− τ(f)|+ |τ(f)− τ(fq)|
+|τ(fq)− τ(pq)|+ |τ(pq)− τ(q)|

< δ + 14δ + ‖f − p‖+ ‖pq − q‖
< 20δ < ε,

using Lemma 3.3 for the last term.

We have now completed the proof of Lemma 3.1 and we are now ready
to give a proof of Theorem 1.1. First, we consider the ”only if” direction.
If a is any positive element in K0(AT ), then by definition, a = [p] for some
projection p in some Mn(AT ). By applying II.4.2 of [Ren], we may view p as
a matrix of functions on Rpunc. Since p = p∗p, the diagonal elements of the
matrix p are non-negative on the diagonal in Rpunc. This means that τ(p) is
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non-negative. Moreover, if it is zero, then since µ has full support, then each
diagonal entry of p is zero. This in turn implies that p = 0.

Now we turn to the ”if” direction of the proof. That is, suppose that
a = [p] − [q] is in K0(AT ) and has τ̂(a) = τ(p) − τ(q) > 0. We will show
that [p] ≥ [q] in K0(AT . We will first consider the case that the projections
actually lie in the algebra AT , rather than in matrices over AT .

Begin with two projections p1 and p2 in AT and suppose that τ(p1) >
τ(p2). let ε = (τ(p1) − τ(p2))/3. We apply Lemma 3.1 to the projection
p1 and ε > 0 to obtain q1 in AFT with [p1] ≥ [q1] and |τ(p1) − τ(q1)| < ε.
We apply the same result to the projection 1− p2 and the same ε to obtain
a projection in AFT . We let q2 be its orthogonal complement. So we have
[q2] ≥ [p2] and |τ(p2) − τ(q2)| < ε. Then by a simple application of the
triangle inequality, we have

τ(q1)− τ(q2) ≥ ε > 0.

The C∗-algebra AFT has a unique trace and it is a simple AF-algebra. For
simple AF-algebras, the order on their K-zero groups is completely deter-
mined by the traces [EHS]. We know then that [q1] ≥ [q2] and hence
[p1] ≥ [p2] in K0(AT ) as desired.

In the case that the projections lie in Mn(AT ), we can use the same
argument by replacing the groupoids Rpunc and RAF by their products with
the trivial groupoid {1, . . . , n} × {1, . . . , n}. All of the essential features of
the groupoids remain and the effect at the level of C∗-algebras is to tensor
on C∗({1, . . . , n}× {1, . . . , n}) ∼= Mn, the C∗-algebra of n×n matrices. We
omit the details.
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image par la trace, le cas du ré octaggonal, C. R. Acad. Sci. Paris,
t.326, Série I, (1998), 197-200.

[Bl] B. Blackadar, K-theory for Operator Algebras, MSRI Publications 5,
Springer-Verlag, Berlin-Heidelberg-New York, 1986.

[Co2] A. Connes, Non-commutative Geometry, Academic Press, San Diego,
1994.

[Da] K.R. Davidson, C∗-algebras by example, Amer. Math. Soc., Provi-
dence, R.I., 1996.

[Ef] E.G. Effros, Dimensions and C∗-algebras, CBMS Regional Conf. Ser.
no. 46, Amer. Math. Soc., Providence, R.I., 1981.

[EHS] E.G. Effros, D.E. Handelman and C.-L. Shen, Dimension groups and
their affine representations, Amer. J. Math. 102 (1980), 385-407.

[vE] A. van Elst, Gap-labelling theorems for Schrödinger operators on the
square and cubic lattice, Rev. Math. Phys. 6 (1994), 319-342.

[Fi] P.A. Fillmore, A user’s guide to operator algebras, Wiley, New York,
1996.
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