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Abstract. Let p and q be distinct odd primes. We analyse a semigroup crossed
product C∗(Gp,q)oαN2 similar to the semigroup crossed product which models the
Hecke C∗-algebra of Bost and Connes. We describe a composition series of ideals
in C∗(Gp,q)oα N2, and show that the structure of one of the subquotients reflects
interesting number-theoretic information about the multiplicative orders of q in the
rings Z/plZ.

In [3], Bost and Connes introduced and studied a Hecke C∗-algebra CQ which has
many fascinating connections with number theory. It was shown in [11] that CQ
can be realised as a crossed product C∗(Q/Z) oα N∗ by an endomorphic action α
of the multiplicative semigroup N∗ of positive integers, and this realisation gives a
great deal of insight into the Bost-Connes analysis (see [9]). Here we fix two odd
primes p and q, and analyse the semigroup crossed product C∗(Gp,q)oαN2 associated
to the subgroup Gp,q := {n/pkql : n ∈ Z}/Z of Q/Z and the restriction of α to
the subsemigroup {pkql} ⊂ N∗, which is isomorphic to the additive semigroup N2.
This crossed product still exhibits rich connections with number theory, though of a
somewhat different nature: it has a subquotient, for example, whose ideal structure
encodes the multiplicative orders of q in the rings Z/plZ.

We begin our analysis by passing to the Fourier transform of our dynamical sys-
tem, which involves the algebras of continuous functions on the spaces of p-adic and
q-adic integers. We describe our dynamical system (C∗(Gp,q),N2, α) and its Fourier
transform in §1. Next we construct a composition series for C∗(Gp,q)oαN2 using gen-
eral results about invariant ideals and tensor products of semigroup crossed products
which have been worked out in [13]. Our main structure theorem is Theorem 2.2,
which is proved in §2 and §3. Theorem 3.1, which gives a detailed description of an
ordinary crossed product C(U(Zp)) o Z arising in our analysis, is interesting in its
own right: it shows, for example, that C(U(Zp)) o Z is simple if and only if q is a
primitive root modulo pl for all l, which happens if and only if it is primitive modulo
pl for any single l > 1 (see Remark 3.8). In the last section, we describe the topology
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on the primitive ideal space of C∗(Gp,q)oα N2, thus completely determining its ideal
structure.

1. The dynamical system and its Fourier transform

Let p and q be distinct odd primes. We consider the additive group

Z[p−1, q−1] = {rp−kq−l : r, k, l ∈ Z}

and its quotient Gp,q := Z[p−1, q−1]/Z. We write α for the action of N2 by endo-
morphisms of the group C∗-algebra C∗(Gp,q) which is characterised on the canonical
generating unitaries {δr : r ∈ Gp,q} by

(1.1) αm,n(δr) =
1

pmqn

∑

{s∈Gp,q :pmqns=r}

δs;

we can see that there is such an action either by modifying [11, Proposition 2.1]
or by applying the general method of [14, §1] to the action of N2 on Z defined by
ηm,n(k) = pmqnk (see [14, Example 1.2]). As in [10, Proposition 2.1], the action
satisfies

(1.2) αk,l(1)αm,n(1) = αk∨m, l∨n(1).

A covariant representation of the dynamical system (C∗(Gp,q),N2, α) consists of a
nondegenerate representation π of C∗(Gp,q) and a representation V of N2 by isometries
on the same space such that

(1.3) π(αm,n(a)) = Vm,nπ(a)V ∗
m,n for a ∈ C∗(Gp,q) and (m,n) ∈ N2;

the relation (1.2) then implies that the isometric representation V is Nica covariant,
in the sense that Vk,lV ∗

k,lVm,nV ∗
m,n = Vk∨m, l∨nV ∗

k∨m, l∨n. One can see that the system
has nontrivial covariant representations by modifying the constructions in [11], or by
applying [14, Lemma 1.7]. Thus there is a crossed product

(

C∗(Gp,q) oα N2, iA, iS
)

,
which is a universal C∗-algebra for covariant representations of the system (see [10,
Proposition 2.1]). (To avoid complicated notation, we always write iA and iS for the
algebra and semigroup components of the universal covariant representation.) This
crossed product carries a dual action α̂ of T2 which leaves iA(C∗(Gp,q)) invariant and
satisfies α̂w,z(iS(m,n)) = wmzniS(m,n).

To compute the Fourier transform of the system, we need a description of the dual
group ̂Gp,q. Note that with Gp := Z[p−1]/Z, the map (r, s) 7→ r+s is an isomorphism
of Gp×Gq onto Gp,q, and, dually, we have ̂Gp,q

∼= ̂Gp× ̂Gq. To describe ̂Gp, note that
Z[p−1] =

⋃∞
l=1 p−lZ, so Gp = (

⋃

p−lZ)/Z has a natural description as a direct limit
lim−→p−lZ/Z, and ̂Gp is an inverse limit lim←−(p−lZ/Z)̂of finite groups. The usual pairing
〈t, n〉 = exp 2πitn of Z with R/Z induces an isomorphism of Z/plZ onto (p−lZ/Z) ,̂
and it is easy to check that the dual of the inclusion p−lZ/Z ↪→ p−(l+1)Z/Z is the map
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of Z/pl+1Z onto Z/plZ given by reduction mod pl. Thus ̂Gp is naturally identified as
a compact group with the inverse limit lim←−Z/plZ.

Each Z/plZ is a ring, and the reduction maps are ring homomorphisms, so lim←−Z/plZ
is a compact topological ring Zp, which is called the ring of p-adic integers; in the
previous paragraph, we identified ̂Gp with the additive group of Zp. However, the
multiplicative structure of Zp plays a crucial role in our analysis, for two reasons.
First, we can use it to describe the action α: the reduction maps Z → Z/plZ in-
duce an embedding of Z in Zp, and αm,n is, loosely speaking, division by pmqn (see
Lemma 1.1 below). Second, the group U(Zp) of units in Zp (the multiplicatively in-
vertible elements) appears in our theorems. We need to know that there is a natural
identification of U(Zp) with lim←−U(Z/plZ), and that an integer m is a unit in Zp pre-
cisely when m is coprime to p. For these and other properties of Zp, we refer to [16,
Chapter II].

We are now ready to describe the Fourier-transform system. The dual of Gp,q is
Zp × Zq; if πl denotes the canonical map of Zp onto Z/plZ, then the pairing is given
by

(1.4) 〈r+s, (x, y)〉 = exp 2πi(rπl(x)+sπl(y)) for r ∈ Z[p−1], s ∈ Z[q−1] and l large.

Lemma 1.1. The Fourier transform C∗(Gp,q) ∼= C(Zp×Zq) carries the action defined
by (1.1) into the action given by

(1.5) αm,n(f)(x, y) =

{

f(p−mq−nx, p−mq−ny) if x ∈ pmqnZp and y ∈ pmqnZq,
0 otherwise.

Proof. We aim to apply [13, Proposition 4.5]. To do this, note that αm,n is defined by
averaging over the solutions s of βm,n(s) = r, where βm,n is the endomorphism of Gp,q

defined by βm,n(s) = pmqns. From the pairing (1.4), we see that the endomorphism
̂βm,n of Zp×Zq is given in terms of the ring structure by ̂βm,n(x, y) = (pmqnx, pmqny).
Thus the Lemma follows directly from [13, Proposition 4.5]. �

2. The structure theorem

Our main theorem describes the structure of C∗(Gp,q)oα N2 — or, equivalently, of
the crossed product C(Zp × Zq) oα N2 of the Fourier-transform system described in
Lemma 1.1. To state it, we need a number-theoretic lemma. If k and m are coprime
integers, so that m is a unit in Z/kZ, we write ok(m) for the order of m in U(Z/kZ).
Lemma 2.1. Let p and q be distinct odd primes. Then there is a positive integer
L = Lp(q) such that

(2.1) opl(q) =

{

op(q) if 1 ≤ l ≤ L
pl−Lop(q) if l > L.
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This lemma is presumably well-known; certainly some of its immediate conse-
quences are (see Remark 3.8). We are not going to prove it now, because we shall
prove a slightly more general result in Theorem 3.1. However, we want to use the
integers Lp(q) from this lemma in the statement of our main theorem.
Theorem 2.2. Let p and q be distinct odd primes. Then there are α̂-invariant ideals
I1 and I2 in C∗(Gp,q)oα N2 such that I1 ⊂ I2,

I1
∼= K(l2(N2))⊗ C(U(Zp)× U(Zq)),(2.2)

I2/I1
∼= (K(l2(N))⊗ C)⊕ (K(l2(N))⊗D), and(2.3)

(C∗(Gp,q)oα N2)/I2
∼= C(T2),(2.4)

where C is the direct sum of (p − 1)pLp(q)−1/op(q) Bunce-Deddens algebras with su-
pernatural number op(q)p∞ and D is the direct sum of (q − 1)qLq(p)−1/oq(p) Bunce-
Deddens algebras with supernatural number oq(p)q∞.

The algebra C∗(Gp,q) ∼= C(Zp×Zq) decomposes as a tensor product C(Zp)⊗C(Zq),
and the action α given by (1.5) decomposes as a tensor product of two actions of N2.
At this point, we cannot separate the actions of the two copies of N (as Bost and
Connes say, the two primes interact), but there is a large invariant ideal C0(Zp \ {0})
in C(Zp) where the action does split as a tensor product of two actions of N. The
ideals I1 and I2 will be crossed products of different invariant ideals in C(Zp)⊗C(Zq)
built from C0(Zp \ {0}) and its twin.

For ordinary crossed products A o G by group actions, invariant ideals in A give
rise to short exact sequences

0 −→ I oG −→ AoG −→ (A/I)oG −→ 0.

For semigroup crossed products Aoα S, one has to know that the ideal I is extendibly
invariant, in the sense that each endomorphism αs extends to endomorphisms of
M(I) and M(A) in such a way that αs(1M(I)) = αs(1M(A)) as multipliers of I (see
[1, 13]). Since the endomorphism x 7→ pmqnx of Zp leaves both Zp \ {0} and {0}
invariant, it follows from Lemma 1.1 and [13, Theorem 4.3] that I := C0(Zp \ {0})
and J := C0(Zq \ {0}) are extendibly invariant ideals in A := C(Zp) and B := C(Zq).
We can therefore apply [13, Theorem 3.1] to deduce that the ideals I1 := (I⊗J)oN2

and I2 := (I ⊗B + A⊗ J)oN2 form a composition series in which

I1
∼= (I ⊗ J)oα N2,(2.5)

I2/I1
∼= ((A/I)⊗ J)oN2 ⊕ (I ⊗ (B/J))oN2, and(2.6)

(A⊗B)oα N2/I2
∼= ((A/I)⊗ (B/J))oN2.(2.7)

Notice that because the ideals are crossed products, they are α̂-invariant. To prove
Theorem 2.2, therefore, we have to identify the subquotients.

We begin by noting that the maps f 7→ f(0) induce isomorphisms A/I ∼= C and
B/J ∼= C, so (A/I)⊗(B/J) ∼= C⊗C ∼= C. Thus (2.7) is CoidN2. When the action is
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unital, as the identity action id certainly is, the covariance relation (1.3) implies that
the isometries are all unitary; thus Coid N2 is the universal C∗-algebra generated by
a unitary representation of Z2. In other words, C oid N2 = C∗(Z2) ∼= C(T2), and we
have proved (2.4).

For the other two parts, we need the promised decomposition of the action of N2

on I = C0(Zp \ {0}).
Lemma 2.3. The map (n, x) 7→ pnx is a homeomorphism of N×U(Zp) onto Zp\{0}.
Proof. Since every nonzero p-adic number can be uniquely written as a power of p
times a unit (by Proposition 2 of [16, Chapter II], for example), the map is a bijection.
It is a homeomorphism because it carries the basic open sets {n}×V for the topology
on N× U(Zp) into the basic open sets pnV for the topology on Zp \ {0}. �

The lemma implies that I = C0(Zp \ {0}) ∼= c0(N) ⊗ C(U(Zp)). To describe what
happens to the action α under this isomorphism, we need some notation. We let τ
denote the action of N on c0(N) by forward shifts; if we think of elements of c0(N) as
functions on N, then

τm(f)(k) =

{

f(k −m) if k ≥ m
0 if k < m.

Since (q, p) = 1, q is a unit in Zp, and division by powers of q defines an action
σ = σp,q of Z by automorphisms of C(U(Zp)): σn(f)(x) = f(q−nx). We now have the
following immediate corollary of Lemma 2.3:
Corollary 2.4. The isomorphism C0(Zp \ {0}) ∼= c0(N) ⊗ C(U(Zp)) induced by
the homeomorphism of Lemma 2.3 carries α into the tensor product action τ ⊗ σ :
(m, n) 7→ τm ⊗ σn.
Lemma 2.5. There is an isomorphism

(2.8) I2/I1
∼= K(l2(N))⊗

(

C(U(Zp))oσp,q Z)
)

⊕K(l2(N))⊗
(

C(U(Zq))oσq,p Z)
)

.

Proof. First, recall that A/I ∼= C and B/J ∼= C, so from (2.6) we have

(2.9) I2/I1
∼= (I oα N2)⊕ (J oα N2).

Next, we use the decomposition of Corollary 2.4 and [13, Theorem 2.6] (which applies
because our action satisfies (1.2)), to see that

(2.10) I oα N2 ∼= (c0(N)oτ N)⊗
(

C(U(Zp))oσp,q N
)

.

Because σp,q consists of automorphisms, the isometries in any covariant representation
of (C(U(Zp)),N, σ) are unitary, and C(U(Zp)) oσ N is the usual crossed product
C(U(Zp))oσ Z.

To handle the other factor in (2.10), recall that coτ N = BN oτ N is the Toeplitz
algebra, and c0(N) oτ N is the ideal of compact operators. More precisely, let M
denote the representation of c by multiplication operators on l2(N), and let S be
the unilateral shift on l2(N). Then (M, S) is a covariant representation of (c,N, τ)
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such that M × S is an isomorphism of c oτ N onto the C∗-algebra generated by S.
(This formulation of Coburn’s Theorem is described in [2], for example.) It is easy to
check that M o S carries the ideal c0 oτ N onto K(l2(N)). Thus (2.10) implies that
I oαN2 ∼= K⊗ (C(U(Zp))oσ Z). Swapping p and q gives an analogous description of
J oα N2, and the Lemma follows from (2.9). �

The description of I2/I1 in (2.3) will follow from this lemma and Theorem 3.1.
To describe I1 := (I ⊗ J)oα N2, we use two applications of Corollary 2.4 to get an

isomorphism

I ⊗ J = C0(Zp \ {0})⊗ C0(Zq \ {0}) ∼= C0(N× N× U(Zp)× U(Zq))

which carries the endomorphism αm,n into τm ⊗ τn ⊗ σp,q
n ⊗ σq,p

m . We now borrow
another idea from the theory of ordinary crossed products: recall that (C0(G) ⊗
A)oτ⊗β G ∼= (C0(G)oτ G)⊗A for any action β. Because q ∈ U(Zp) and p ∈ U(Zq),
the endomorphism φ of C0(N× N× U(Zp)× U(Zq)) defined by

φ(f)(k, l, x, y) = f(k, l, qlx, pky)

is an automorphism. A quick calculation shows that

φ ◦ (τm ⊗ τn ⊗ σp,q
n ⊗ σq,p

m ) = τm ⊗ τn ⊗ id⊗ id,

so φ induces an isomorphism

(I ⊗ J)oα N2 ∼=
(

c0(N× N)oτ⊗τ (N× N)
)

⊗ C(U(Zp)× U(Zq)).

To finish off the proof of (2.2), either note that

c0(N2)oτ⊗τ N2 ∼= (c0 oτ N)⊗ (c0 oτ N) ∼= K(l2(N))⊗K(l2(N)) = K(l2(N2)),

or check directly that the natural covariant representation of BN2 oτ N2 on l2(N2)
restricts to an isomorphism of c0(N2)oN2 onto K(l2(N2)).

To prove Theorem 2.2, therefore, it remains to prove Lemma 2.1 and to identify
C(U(Zp))oσ Z with the appropriate number of Bunce-Deddens algebras. We do this
in Theorem 3.1.

3. The crossed products C(U(Zp))oσ Z

Our analysis of C(U(Zp)) oσp,q Z does not require that q is prime, only that it is
coprime to p. We therefore fix an odd prime p and an integer m coprime to p, and
consider the action σ = σp,m of Z on C(U(Zp)) defined by

(3.1) σp,m
n (f)(x) = f(m−nx).

Theorem 3.1. Suppose that p is an odd prime and (m, p) = 1, and denote by opl(m)
the order of m in U(Z/plZ). Then there is a positive integer L such that

(3.2) opl(m) =

{

op(m) if 1 ≤ l ≤ L
pl−Lop(m) if l > L,
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and C(U(Zp))oσp,m Z is the direct sum of pL−1(p−1)/op(m) Bunce-Deddens algebras
with supernatural number op(m)p∞.

We begin by establishing the number-theoretic statements. Because U(Z/plZ) is
cyclic of order (p − 1)pl−1 (see Theorem 2 of [8, Chapter 4], for example), we can
apply the following elementary lemma about cyclic groups.
Lemma 3.2. Suppose that (n, p) = 1 and G, H are cyclic groups of orders pln, pl−1n,
respectively. If π : G → H is a surjective homomorphism and g is a generator of G,
then the order of π(gr) is given by

o(π(gr)) =

{

|G|/(r, |G|) if pl divides r
|G|/p(r, |G|) if pl does not divide r.

Proof. Since π(g) is a generator of H, we have

o(π(gr)) = o(π(g)r) =
|H|

(r, |H|)
=

|G|
p(r, |H|)

.

If pl divides r, say r = spl, then

p(r, |H|) = p(pls, pl−1n) = pl(ps, n) = pl(s, n) = (r, pln) = (r, |G|),
as claimed. If pl does not divide r, then (r, |G|) = (r, pln) = (r, pl−1n) = (r, |H|). �

Corollary 3.3. Suppose p is prime and (p,m) = 1. Then

opl(m) =

{

opl+1(m) if p does not divide opl+1(m)
opl+1(m)/p if p does divide opl+1(m).

Proof. Since a number is coprime to pl iff it is coprime to pl+1, the reduction map π
is a homomorphism of U(Z/pl+1Z) onto U(Z/plZ), and Lemma 3.2 applies. Indeed,
there is a generator g such that m = gr where r := (p− 1)pl/opl+1(m). Then

opl(m) = o(π(gr)) =

{

opl+1(m) if pl divides (p− 1)pl/opl+1(m)
opl+1(m)/p if pl does not divide (p− 1)pl/opl+1(m),

which translates into what we want. �

Corollary 3.4. There is a positive integer L such that (3.2) holds.

Proof. We first note that the sequence {opl(m) : l ∈ N} must be unbounded: for fixed
N , mN is eventually less than pl, and then opl(m) > N . In particular, {opl(m)} is
certainly not constant. Let L be the first integer such that opL(m) < opL+1(m). Then
opl(m) = op(m) for 1 ≤ l ≤ L, and by Corollary 3.3, we have opL+1(m) = pop(m),
and p divides opL+1(m). Since opL+1(m) divides opl(m) for all l > L, it follows that
p divides opl(m) for all l > L, and l − L applications of Corollary 3.3 show that
opl(m) = pl−LopL(m) = pl−Lop(m). �
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Remark 3.5. The referee has pointed out that one can also deduce Corollary 3.4
from the isomorphism of U(Z/pZ) × pZ+

p onto U(Zp) provided by sending elements
of U(Z/pZ) to their Teichmüller representatives and the exponential isomorphism of
the additive group pZ+

p onto 1 + pZp (see [7, Corollary 4.5.10], for example). This
isomorphism is compatible with the inverse limit decompositions of U(Zp) and pZ+

p ,
and hence it suffices to prove the analogous properties of additive orders in pZ+

p .
Let H be the closed subgroup of U(Zp) generated by m. Then H is invariant under

multiplication by powers of m, and the formula (3.1) also defines an action σ of Z on
C(H). This is where the Bunce-Deddens algebras come from:
Proposition 3.6. The crossed product C(H)oσ Z is a Bunce-Deddens algebra with
supernatural number op(m)p∞.

The Bunce-Deddens algebras were originally defined to be the C∗-algebras gener-
ated by certain weighted shifts on l2 [5, §V.3], but we shall recognise them as crossed
products associated to odometer actions. Let {nk} be a sequence of integers each of
which is at least 2, and let Xk = {0, 1, . . . , nk − 1}. The odometer action τ of Z on
∏

k≥1 Xk is given by addition with carry over: let N1 = 1, Nk :=
∏

i<k ni for k > 1,
and then

τn({ak}) = {bk} where
∑l

k≥1 bkNk :≡ n +
∑l

k≥1 akNk (mod Nl+1).

The crossed product C(
∏

k≥1 Xk)oτ Z is then a Bunce Deddens algebra with super-
natural number

∏

k≥1 nk [5, Theorem VIII.4.1]. In general, Bunce-Deddens algebras
are simple [5, Theorem V.3.3], and are determined up to isomorphism by their super-
natural number [5, Theorem V.3.5].

Proof. Write d for op(m), and let

O := {0, 1, · · · , d− 1} × {0, 1, · · · , p− 1}N.
For l > L, we define hl : O → U(Z/plZ) by

hl({an}) = ma0+da1+dpa2+···+dpl−L−1al−L (mod plZ);

because the order of m in U(Z/plZ) is dpl−L, the maps hl satisfy hl+1({an}) = hl({an})
(mod plZ). Since the hl are continuous by definition of the product topology, they
induce a continuous map h : O → U(Zp) = lim←−U(Z/plZ), which is an injection because
hl({an}) determines a0, . . . , al−L uniquely. The range of h is a compact subgroup, and
contains the positive powers of m, which are the images of the sequences in O which
are eventually zero; since such sequences are dense in O, their images generate the
range. In other words, h is a continuous injection of O onto H, and is therefore
a homeomorphism. Since h(τ{an}) = mh({an}) for all {an}, we deduce that the
Bunce-Deddens algebra C(O)oτ Z is isomorphic to C(H)oσ Z. �

To finish the proof of our theorem, we need to decompose the dynamical system
(C(U(Zp)),Z, σ) as a sum of copies of (C(H),Z, σ). This needs a simple group-
theoretic lemma.
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Lemma 3.7. Suppose G = lim←−Gn is a compact group which is the inverse limit of
finite groups Gn, and suppose that the canonical maps πn : G → Gn are surjective. If
H is a closed subgroup of G and there is an integer k such that |Gn/πn(H)| = k for
all n, then |G/H| = k.

Proof. Certainly |G/H| ≥ |πn(G)/πn(H)| = k. Suppose g1H, · · · , gk+1H are cosets in
G/H; we shall prove that two must be the same. The hypothesis implies that for each
n, two of πn(giH) coincide. Since there are only finitely many possibilities, we can
assume by passing to a subsequence that the same two coincide in each Gn/πn(H);
say πn(g1H) = πn(g2H) for all n. Then πn(g1g−1

2 ) ∈ πn(H); say πn(g1g−1
2 ) = πn(hn).

By definition of the topology on the inverse limit, we have hn → g1g−1
2 in G, so that

g1g−1
2 ∈ H and g1H = g2H. �

End of the proof of Theorem 3.1. Since πl(H) is the subgroup of U(Z/plZ) generated
by m, we have

|U(Z/plZ)/πl(H)| = (p− 1)pl−1/opl(m) = (p− 1)pL−1/op(m) for all l ≥ L.

We can therefore apply Lemma 3.7 to U(Zp) = lim←−(U(Z/plZ), l ≥ L) to deduce that
H has index N := (p− 1)pL−1/op(m) in U(Zp).

Next, note that because H is a closed subgroup of finite index, it is also open:
its complement is the finite union of cosets of H, and hence closed. Since H is by
definition invariant under multiplication by powers of m, it follows that U(Zp) is the
disjoint union of N open and closed invariant sets of the form xH, and C(U(Zp))
is the direct sum of σ-invariant ideals of the form C(xH). The dynamical systems
(C(xH),Z, σ) are all conjugate to (C(H),Z, σ). Thus the Theorem follows from
Proposition 3.6. �

Remark 3.8. An integer m which generates U(Z/plZ) is called a primitive root modulo
pl. If m is a primitive root modulo pl for one l > 1, then (3.2) implies that Lp(m) = 1
and op(m) = p − 1, and hence that m is a primitive root modulo pk for all k. (This
is known; see [6, §17, Exercise VI.4], for example.) Theorem 3.1 gives a curious C∗-
algebraic characterisation of primitive roots: m is primitive modulo pl for all l if and
only if C(U(Zp))oσZ is simple. More generally, the cardinality of PrimC(U(Zp))oZ
determines the orders opl(m) of m in U(Z/plZ).

The relations (3.2) are the only restrictions on the possible values of op(m). Indeed,
given an odd prime p, a divisor d of p− 1, and an integer L ≥ 1, there are infinitely
many primes q with op(q) = d and Lp(q) = L. To see this, choose k such that
opL+1(k) = pd. Then every integer q in the arithmetic progression k + npL+1 has
op(q) = d and opL+1(q) = pd, and it follows from (3.2) that opl(q) = pl−Ld for all l > L.
Now our assertion follows from Dirichlet’s Theorem: every arithmetic progression
k + nr with (k, r) = 1 contains infinitely many primes [8, §16.1].
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4. The primitive ideal space

Since PrimC(X,K) is homeomorphic to X [15, Example A.24] and Bunce-Deddens
algebras are simple [5, Theorem V.3.3], Theorem 2.2 gives us a setwise description of
the primitive ideal space of the algebra C(Zp×Zq)oαN2. It consists of a copy {Ix,y} of
U(Zp)×U(Zq) embedded as an open subset, a copy {Lw,z} of T2 embedded as a closed
subset, and two finite sets {JxHp}, {KyHq} parametrised by the quotients U(Zp)/Hp =
U(Zp)/qZ and U(Zq)/Hq = U(Zq)/pZ whose cardinalities determine the number of
Bunce-Deddens algebras in the subquotients. The topology on Prim(C(Zp×Zq)oαN2)
is then given by:

Theorem 4.1. The maps (x, y) 7→ Ix,y, xHp 7→ JxHp, yHq 7→ JyHq and (w, z) 7→ Lw,z

combine to give a bijection of the disjoint union

(4.1)
(

U(Zp)× U(Zq)
)

t U(Zp)/qZ t U(Zq)/pZ t T2

onto Prim(C(Zp × Zq) oα N2). Write πp for the map U(Zp) × U(Zq) → U(Zp) →
U(Zp)/qZ. Then the hull-kernel closure of a nonempty subset F of (4.1) is

(a) the usual closure of F in T2 if F ⊂ T2;

(b) F ∪ T2 if F ⊂ U(Zp)/qZ t U(Zq)/pZ;
(c) the usual closure of F in U(Zp)× U(Zq) together with πp(F ) ∪ πq(F ) ∪ T2 if

F ⊂ U(Zp)× U(Zq).

We shall prove this by writing down irreducible representations of C(Zp×Zq)oαN2

realising each of these primitive ideals, identifying their kernels as crossed products
of invariant ideals in C(Zp × Zq) using results from [13], and then reading off the
topology from standard properties of the topology on Zp × Zq.

The ideals Lw,z are lifted from the quotient (C(Zp × Zq) o N2)/I2 = C oid N2,
and are the kernels of the characters γw,z : (m,n) 7→ wmzn; more precisely, Lw,z =
ker(ε0,0 × γw,z), where ε0,0(f) := f(0, 0). Because Prim(C oid N2) is a closed subset
of Prim(C(Zp × Zq)oN2), this also proves part (a) of Theorem 4.1.

The ideals JxHp are lifted from the image of the surjection (id⊗ε0)∗ of C(Zp×Zq)o
N2 onto C(Zp) o N2 induced by id⊗ε0 : C(Zp × Zq) → C(Zp), and are determined
in the image by their intersections with the ideal C0(Zp \ {0})oN2. Recall that the
homeomorphism hp : (k, x) 7→ pkx induces an isomorphism

(4.2) h∗p : C0(Zp \ {0})oN2 ∼= C(U(Zp), c0(N)oτ N)oσ⊗id Z.

Because M × T is an isomorphism of c0(N)oτ N onto K(l2(N)) and Z acts freely on
U(Zp) = Prim C(U(Zp),K), the primitive ideals of the right-hand side of (4.2) are
induced from the ideals ker(M × T ) ◦ εx. In particular, we have

JxHp ∩
(

C0(Zp \ {0})oN2) = ker
(

(

IndZ{0}(M × T ) ◦ εx
)

◦ h∗p ◦ (id⊗ε0)∗
)

.
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We can now use the standard form π̃×λ of the induced representation to see that we
can realise JxHp as the kernel of the representation ρx× (T ⊗ λ) of C(Zp×Zq)oα N2

on l2(N× Z), where
(ρx(f)ξ)(k, l) := f(pkqlx, 0)ξ(k, l)

Similarly, with σy : C(Zp × Zq) → B(l2(Z× N)) defined by

(σy(f)ξ)(k, l) = f(0, pkqly)ξ(k, l),

we have ker(σy × (λ⊗ T )) = KyHq .
The ideals Ix,y are determined by their intersection with I1, and Ix,y ∩ I1 is pulled

back under the isomorphism (2.2) from the kernel of the evaluation map εx,y :
C(U(Zp) × U(Zq),K) → K. This isomorphism is induced by the homeomorphism
h : (l, k, x, y) 7→ pkql(x, y) of N2×U(Zp)×U(Zq) onto (Zp \{0})× (Zq \{0}), and the
Toeplitz representation M × T of c0(N2)oτ N2 onto K(l2(N2)). The representation

(πx,y(f)ξ)(k, l) = f(pkqlx, pkqly)ξ(k, l)

satisfies πx,y|C0((Zp\{0})×(Zq\{0})) = M ◦ εx,y ◦ (h−1)∗, and it follows that (πx,y, T ) is a
covariant representation of (C(Zp × Zq),N2, α) with Ix,y = ker(πx,y × T ).

To identify the kernels of these representations, we shall use the following analogue
of the standard characterisations of faithful representations.
Lemma 4.2. Let (η, T ) be a covariant representation of a semigroup dynamical sys-
tem (A,Nk, α) with extendible endomorphisms. Suppose that ker η is an extendibly α-
invariant ideal, and that there is a unitary representation W of Tk such that (η×T,W )
is a covariant representation of the dual system (AoNk,Tk, α̂). Then

ker(η × T ) = (ker η)oNk = span{iS(m)∗iA(a)iS(n) : m,n ∈ Nk, a ∈ ker η}.

Proof. We know from [13, Theorem 1.8] that (ker η)o Nk is naturally isomorphic to
the ideal

span{iS(m)∗iA(a)iS(n) : m,n ∈ Nk, a ∈ ker η} ⊂ AoNk,
and that the quotient map π : A → A/(ker η) induces a homomorphism π × id of
AoNk onto (A/ ker η)oNk with kernel (ker η)oNk. There is a faithful representation
ζ of A/ ker η such that η = ζ ◦ π, and then (ζ, T ) and (ζ × T,W ) are covariant. It
suffices to prove that ζ o T is faithful, for then η × T = (ζ × T ) ◦ (π × id), and

ker(η × T ) = ker(ζ × T ) ◦ (π × id) = ker(π × id) = (ker η)oNk.

To prove ζ×T faithful, we follow the standard procedure of [4, Lemma 2.2]. Write
C = A/ ker η, and let θ : C oNk → C oNk be the expectation obtained by averaging
over the dual action α̂ on CoNk, which is faithful on positive elements by [10, Remark
3.6]. Because S = Nk is abelian, CoNk is spanned by the elements iS(m)∗iC(c)iS(n)
[13, Lemma 1.3], and hence θ(C oNk) is spanned by the elements iS(m)∗iC(c)iS(m);
because every finite set of elements in Nk has an upper bound, we can imitate the
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proof of [2, Lemma 1.5] to see that ζ × T is faithful on θ(C o Nk). Now we can use
the covariance of (ζ × T, W ) to get an estimate

‖(ζ × T )(θ(f))‖ =
∥

∥

∥

∫

Tk
W ∗

z (ζ × T )(f)Wz dz
∥

∥

∥

≤
∫

Tk
‖W ∗

z ζ × T (f)Wz‖ dz

= ‖ζ × T (f)‖,

and follow the argument of [4, Lemma 2.2] to see that ζ × T is faithful. �

The ideal kerπx,y consists of the functions which vanish on the closure of the orbit
pNqN(x, y); to check that kerπx,y is extendibly invariant, we need to know exactly
what this closure is.
Lemma 4.3. Let (x, y) ∈ Zp×Zq. Then qNx has the same closure in Zp as qZx, and
the closure of pNqN(x, y) in Zp × Zq is

(4.3) pNqN(x, y) ∪
(

pNqZx× {0}
)

∪
(

{0} × pZqNy
)

.

Proof. Since q ∈ U(Zp), multiplication by q is a homeomorphism of U(Zp), and defines
a free and minimal action of Z on qZx. The sequence {qkx : k ∈ N} has a convergent
subsequence, qknx → x0, say, and then qZx0 = qZx by minimality. Thus every element
of qZx can be approximated first by qnx0, and then by elements qn+knx of qNx. Thus
qNx = qZx. This argument also shows that every element of qZx is the limit of a
sequence qmnx in which mn →∞.

Since (0, 0) = limn pnqn(x, y), it certainly belongs to the orbit closure. Suppose
pknqlnx → s and s 6= 0. Write s = pis0 for s0 ∈ U(Zp). Then piU(Zp) is an open
neighbourhood of s, so kn = i for large n, and qlnx → p−is. As observed above, we
may as well suppose ln → ∞; but then qlny → 0, and pknqln(x, y) → (s, 0). Thus
pNqZx× {0} is contained in the orbit closure, and, by symmetry, so is {0} × pZqNy.

For the other inclusion, suppose (w, z) ∈ Zp × Zq and pknqln(x, y) → (w, z). It is
obvious that (w, z) belongs to (4.3) if one of w or z is 0, so suppose w and z are both
nonzero. We can write (w, z) = (piw0, qjz0) for units w0, z0 and i, j ∈ N, and then
piU(Zp)× qjU(Zq) is a neighbourhood of (w, z). Thus (kn, ln) = (i, j) for large n, and
(w, z) = piqj(x, y) belongs to pNqN(x, y), as required. �

Lemma 4.4. Let (x, y) ∈ U(Zp)× U(Zq). Then

(a) JxHp = span
{

iS(i, j)∗iA(f)ιS(m, n) : f ≡ 0 on pNqZx× {0}
}

;

(b) KyHq = span
{

iS(i, j)∗iA(f)iS(m,n) : f ≡ 0 on {0} × pZqNy
}

; and

(c) Ix,y = span
{

iS(i, j)∗iA(f)iS(m,n) : f ≡ 0 on pNqN(x, y)
}

.

Proof. For part (a), we want to apply Lemma 4.2 with η = ρx, and we therefore
need to know that ker ρx is extendibly invariant. We have ρx(f) = 0 iff f ≡ 0 on
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pNqNx × {0}, which is equivalent by Lemma 4.3 to f ≡ 0 on pNqZx × {0}. Thus it
is enough by [13, Theorem 4.3] to prove that pNqNx × {0} and its complement are
invariant under multiplication by pkql. This is trivially true for pNqNx×{0}. Suppose
(w, z) /∈ pNqNx×{0}. If z 6= 0, then pkql(w, z) is certainly not in pNqNx×{0}. So we
consider the case z = 0, and suppose pknqlnx → pkqlw. Since w cannot be 0, we can
write w = piw0 for w0 ∈ U(Zp). Eventually pknqlnx ∈ pk+iU(Zp), so kn = k + i for
large n, and qlw = lim pkn−kqlnx belongs to pi

(

qNx
)

. Since qNx = qZx, this implies
that w ∈ pi

(

qNx
)

, and hence that (w, z) ∈ pNqNx× {0}, which is a contradiction. So
pkql(w, z) /∈ pNqNx×{0} for all k, l ∈ N, and we have shown that ker ρx is extendibly
invariant.

Next we observe that Ww,zξ(k, l) := wkzlξ(k, l) defines a unitary representation W
of T2 on l2(N×Z) such that (ρx× (T ⊗ λ),W ) is covariant for the dual action. Thus
we can deduce from Lemma 4.2 that JxHp = ker(ρx× (T ⊗ λ)) has the required form.
This gives (a), and of course (b) is exactly the same.

For (c), we apply the same argument to

ker πx,y =
{

f ∈ C(Zp × Zq) : f ≡ 0 on pNqN(x, y)
}

;

as above, the crux is to prove that if pkql(w, z) belongs to the closure of pNqN(x, y),
then so does (w, z). So suppose (w, z) ∈ Zp × Zq and pknqln(x, y) → pkql(w, z). If w
or z is 0, we are in the situation covered by the first paragraph. So suppose w and
z are both nonzero: say w = piw0 and z = qjz0 for units w0, z0. By Lemma 4.3, we
must have pkql(w, z) = pmqn(x, y) for some m,n ∈ N. Then pk+iqlw0 = pmqnx and
pkql+jz0 = pmqny. The first of these equations implies that k + i = m, so k ≤ m,
and the second that l ≤ n. Thus (w, z) = pm−kqn−l(x, y) belongs to pNqN(x, y). This
proves that kerπx,y is extendibly invariant. Part (c) follows from an application of
Lemma 4.2 with W given by the same formula as before. �

Proof of Theorem 4.1. We have already observed that (a) is easy. For (b), notice
that for any xHp ∈ U(Zp)/Hp, the spanning elements iS(i, j)∗iA(f)iS(m,n) of JxHp

go to f(0, 0)iS(i, j)∗iS(m,n) in the quotient C oid N2, and hence JxHp ⊂ Lw,z for all
(w, z) ∈ T2.

For (c), we observe that F ∩ (U(Zp)×U(Zq)) is the usual closure because (x, y) 7→
Ix,y is a homeomorphism of U(Zp)×U(Zq) onto the open set Prim I1. That the closure
contains the other points follows from Lemma 4.4: f ∈ ker πx,y implies f ∈ ker ρx,
so all the generators for Ix,y described in Lemma 4.4 belong to JxHp , and (x, y) ∈ F
implies

JxHp ∈ F =
{

P ∈ Prim(C(Zp × Zq)oN2) :
⋂

Q∈F Q ⊂ P
}

.

To see that Jx0Hp does not belong to F when x0Hp /∈ πp(F ), let F1 be the union of the
cosets in πp(F ). Choose g ∈ C(U(Zp)) such that g(x0) = 1 and g ≡ 0 on F1, extend
g to a continuous function on Zp by taking it to be zero outside U(Zp), and define
f(x, y) = g(x). Now we can see from Lemma 4.3 that f vanishes on the closure of
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pNqN(x, y) for every (x, y) ∈ F , and hence iA(f) belongs to
⋂

{Ix,y : x, y ∈ F} but not
to Jx0Hp . Thus F ∩ U(Zp)/Hp is precisely πp(F ), and part (c) follows from (b). �

Remark 4.5. It is interesting to compare our description of PrimC∗(Gp,q)o N2 with
that obtained for the Bost-Connes algebra CQ in [12]. In Prim CQ, the finite sets
coming from Prim I2/I1 do not appear; loosely speaking, we believe this happens
because CQ contains all the primes, and some of these will act minimally on any given
U(Zp) (see Remark 3.8). So the numbers opl(q) cannot be recovered from Prim CQ. Of
course this information is still buried somewhere in CQ: it follows from Theorem 2.1
of [14] that the inclusion of Gp,q in Q/Z induces an isomorphism of C∗(Gp,q) o N2

into C∗(Q/Z)oN∗ = CQ.
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